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Abstract

Global Optimality in Deep
Neural Networks with

Regularization

Youngjin Koh

Department of Mathematical Sciences

The Graduate School

Seoul National University

In recent years, Deep Neural Networks(DNNs) have shown a dramatic

success in many domains. However, the theoretical reasons for explaining the

performance remain elusive. One of the most important key issue is the error

optimization problem. In general, minimizing the loss function of the DNNs

is a non-convex problem, hence the optimization algorithms may fail to find

the global minimum. In this paper, we introduce several conditions for a local

minimum to be globally optimal. In particular, we provide the conditions

in DNNs with regularization and suggest the efficient network structure and

regularization function. We also apply the theoretical results to the practical

DNNs.
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Chapter 1

Introduction

In recent years, Deep Neural Networks(DNNs) have shown a great practical

performance in many application areas of machine learning such as computer

vision, signal processing, pattern recognition and many other fields. However,

despite its huge practical success, theoretical reasons of why neural networks

perform well remains elusive.

One of the important theoretical challenge is the error optimization prob-

lem. In general, error function is not convex with respect to learning param-

eters in neural network, hence optimization algorithm could get stuck in a

poor local minimum. Recently, several theoretical results for above challenge

suggested. Bengio et al. [1] showed that the number of neurons in the hid-

den layer is not fixed, then the process of training a globally optimal neural

network is analogous to selecting a finite number of hidden units. Dauphin

et al. [4] applied random matrix theory to high-dimensional non-convex op-

timization. Using arguments from that, Choromanska [3] showed that, all

local minima become increasingly close to being global minima under several

assumptions. Janzamin et al. [6] proposed that with sufficient assumptions,

polynomial-time training is possible. Further, Safran and Shamir [12] sug-

gested the conditions that ensure a random initialization could be within the

basin of a global minimizer.

In this thesis, we introduce several global optimality conditions of error op-

timization problem in neural networks, and provide the experimental results.

First, we discuss about the case of deep linear neural network. By adapting
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the results of Lu and Kawaguchi [11]’s and Yun et al. [13]’s, we introduce the

assumption to avoid poor local minima, and provide necessary and sufficient

conditions to determine a critical point to be global minimum in linear neu-

ral network. In addition, we expend the same discussion above to the case of

deep nonlinear neural network with ReLU. We introduce the open problem

of Choromanska [3]’s, and Kawaguchi [7]’s result. So we successfully reduce

the error optimization problem in nonlinear network to that of linear model.

Moreover, we discuss about the optimization problem with regularization. In

this part, from the results of Haeffele and Vidal [5]’s, we suggest efficient

network structure and regularization. We also provide practical results.

The content of this paper is organized as follows. We discuss on the error

optimization problem in deep neural network in Chapter 2. We introduce

the efficient network architecture with regularization in Chapter 3. The

experimental results are provided in Chapter 4. Conclusions in Chapter 5.
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Chapter 2

Global Optimality in Deep

Neural Networks

2.1 Deep linear neural network

In this section, we will analyze the error optimization problem in deep linear

neural network. First, we describe the notations for deep neural networks.

Suppose we have m input-output training data pairs, where the dimensions

of input data and output data are dx ≥ 1, dy ≥ 1, respectively. Let (X,

Y ) be the training data set with input X ∈ Rdx×m and output Y ∈ Rdy×m.

Suppose H be the number of hidden layers, where each hidden layer have

width d1, . . . dH . We denote the weight parameter matrices by W, where

Wi ∈ Rdi×di−1 with 1 ≤ i ≤ H + 1. For simplicity, let d0 = dx and dH+1 = dy.

Let Φ(W1, . . . ,WH+1) ∈ Rdy×m be the output of deep neural network

model. Φ can be arbitrary mapping. In this section, We assume that Φ is the

output of feedforward deep linear neural network, as

Φ(W ) = WH+1WH · · ·W2W1X, (2.1)

where W =(W1, . . . ,WH+1). We consider the optimization problem of sum-

mation of squared error loss over all data points,

min
W

L(W ) =
1

2
‖Φ(W1, . . . ,WH+1)− Y ‖2

F , (2.2)
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where ‖ · ‖F is the Frobenius norm.

We will now introduce several Theorems for deep linear neural network.

To analyze (2.2), Lu and Kawaguchi [11] suggested the following optimization

problem, which is equivalent to (2.2) in terms of the global minimum value.

min
R
F (R) = ‖RX − Y ‖2

F s.t. rank(R) ≤ dp, (2.3)

where R ∈ RdH+1×d0 and p = argmin0≤i≤H+1di. Unless dp = min(dH+1, d0),

(2.3) is non-convex. We can deduce the optimization problem (2.2) from (2.3)

by following Theorem.

Theorem 2.1 (Lu and Kawaguchi [11]). Suppose that X and Y have full

rank. If W̄ = (W̄1, . . . , W̄H+1) is a local minimum point of (2.2), then R̄ =

W̄H+1 · · · W̄1 is a local minimum point of (2.3).

Theorem 2.1 concludes that every local minimum in (2.2) corresponds to

those in (2.3). Therefore, we can consider the optimization problem (2.3) only.

The following Theorem shows that there is no poor local minimum in (2.3).

Theorem 2.2 (Lu and Kawaguchi [11]). If X has full rank, then all local

minima of (2.3) are global minima.

By the results of Theorem 2.1 and Theorem 2.2, the following Theorem

holds. That is, there is no poor local minima in deep linear neural network

with a square error loss.

Theorem 2.3 (Lu and Kawaguchi [11]). If X and Y have full rank, then all

local minima of (2.2) are global minima.

We only consider the Frobenius loss function in (2.2) here, however, this

theorem holds for more general loss function which satisfies several conditions.

Previously, Kawaguchi [7] proposed more strong properties for a deep linear

neural network under some strong assumptions. Theorem 2.3 generalizes one

of this property with fewer assumptions.

Theorem 2.3 states that every critical point is either a global minimum or

a saddle point. Therefore, we cannot determine which critical point is global

minimum. Yun et al. [13] proposed the conditions to distinguish between the

4



two with more strong assumptions. Here, following Theorems partition the

domain of L(W ) into two sets which one set with only global minima of (2.2),

and the other with saddle points.

Let k = min0≤i≤H+1 di and Y XT (XXT )−1X = UΣV T be the singular

value decomposition of Y XT (XXT )−1X ∈ Rdy×dx .

Theorem 2.4 (Yun et al. [13]). Suppose that dx ≤ m, dy ≤ m, and XXT and

Y XT have full ranks. Also, suppose the singular values of Y XT (XXT )−1X

are all distinct. If k = min{dx, dy}, let

V1 := {(W1, . . . ,WH+1) : rank(WH+1 · · ·W1) = k}. (2.4)

Then, every critical point of L(W) in V1 is a global minimum. Moreover,

every critical point of L(W) in Vc
1 is a saddle point.

Theorem 2.5 (Yun et al. [13]). Suppose that dx ≤ m, dy ≤ m, and XXT and

Y XT have full ranks. Also, suppose the singular values of Y XT (XXT )−1X

are all distinct. If k < min{dx, dy}, let

V2 := {(W1, . . . ,WH+1) : rank(WH+1 · · ·W1) = k, col(WH+1 · · ·Wp+1) = col(Û)},
(2.5)

where Û ∈ Rdy×k be a matrix consisting of the first k columns of U. Then,

every critical point of L(W) in V2 is a global minimum. Moreover, every

critical point of L(W) in Vc
2 is a saddle point.

Note that Theorem 2.4 and Theorem 2.5 provide necessary and sufficient

conditions to determine a critical point of L(W ) to be a global minimum.

Therefore, we can easily determine if the critical point of error function is

global optimum or not.

In this section, we have analyzed about the optimization problem (2.2)

in deep linear neural network. Theorem 2.3 guarantee that there is no poor

local minimum in deep linear neural network, and Theorem 2.4 and Theorem

2.5 gives the conditions to distinguish between the global minima and saddle

points from the critical values.
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2.2 Deep nonlinear neural network

We have obtained several properties for optimization problem of error func-

tion in deep linear network. Now we will extend the same discussion to deep

nonlinear neural network. We use the same notation as for the deep linear

neural network models. Typically, each layer of nonlinear neural network ap-

plies some form of linearity, followed by a nonlinear activation functions (e.g.,

max-pooling, sigmoid). We consider one of the most used activation function,

rectified linear unit (ReLU).

Here, we assume that Φ(W1, . . . ,WH+1) ∈ Rdy×m is the output of deep

nonlinear neural network, as

Φ(W ) = qσH+1(WH+1σH(WH · · ·σ2(W2σ1(W1X)) · · · ))), (2.6)

where q ∈ R is simply a normalization factor. σi : Rdi×m → Rdi×m is the

element-wise rectified linear function:

σi


 b11 · · · b1m

...
. . .

...

bdi1 · · · bdim


 =

 σ̄(b11) · · · σ̄(b1m)
...

. . .
...

σ̄(bdi1) · · · σ̄(bdim)

 , (2.7)

where σ̄(bij) = max{0, bij}, the rectified linear unit (ReLU). As the model

Φ(W1, . . . ,WH+1) can be represented a directed acyclic graph, Choromanska

et al. [2] suggested the expression of (2.6) as

Φ(W ) = q
Ψ∑
i=1

XiZi

H+1∏
k=1

w
(k)
i , (2.8)

where Ψ is the total number of paths from the inputs to outputs in the directed

acyclic graph. Moreover, Xi ∈ R denotes the entry of the input which is used

in i -th path, and w
(k)
i ∈ R is the entry of Wk which is used in i -th path.

Here, we have considered the rectified linear function, Zi ∈ {0, 1} represents

whether the i -th path is active (Zi = 1) or not (Zi = 0).

Dauphin et al. [4] explained the connection between the loss function of

neural networks and the theory of random Gaussian fields by providing ex-

periments, and Choromanska et al. [3] discussed the theoretical results for the
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existence of this connection. However, their results relied on several unreal-

istic assumptions, which were labeled A1p, A2p, A3p, A4p, A5p, A5u, A6u,

and A7p. Choromanska et al. [3] suggested that implying their results with

milder assumptions is an important open problem.

In Kawaguchi [7], he introduced the results that successfully discarded

most of those assumptions. In his paper, he discarded A2p, A3p, A4p, A6u,

and A7p, and used only A1p-m and A5u-m, which are weaker versions of

assumptions A1p and A5u, respectively. Assumption A1p-m assumes that

Zi’s in (2.8) are Bernoulli random variables with the same probability, that is,

Pr(Zi = 1) = ρ for all i. Assumption A5u-m is that the Zi’s are independent

from the input X ’s and parameters w ’s. Therefore, under the assumptions

A1p-m and A5u-m, we can notate EZ [Φ(W )] = q
∑Ψ

i=1Xiρ
∏H+1

k=1 w
(k)
i .

For the squared error loss with expectation L(W ) = 1
2
‖EZ [Φ(W )− Y ]‖2

F ,

the following theorem holds:

Theorem 2.6 (Kawaguchi [7]). Assume A1p-m and A5u-m. Let q = ρ−1.

Then the loss function of the deep nonlinear network L(W) can be reduced to

that of the deep linear model L̄(W ). Therefore, under the same conditions of

Theorem 2.3, then all local minima are global minima.

Theorem 2.6 provides the same results as theorem 2.3, which is in case

of deep linear neural network, with milder assumptions compare to results of

Choromanska [3]’s.

In this section, we have analyzed about the global optimality conditions

in optimization problem of error function in deep neural network without any

regularization terms. In next chapter, we will discuss on the optimization of

error function, which contains the regularization terms.
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Chapter 3

Deep Neural Networks with

Regularization

3.1 Neural network with one hidden layer

We have discussed on the error optimization problem in deep neural network

without regularization. However, to prevent overfitting, we typically designed

neural network model with regularization term. Unfortunately, This regular-

ization term makes the error optimization problem more complex. In this

section, we will discuss about the global optimality conditions in the error

optimization problem in deep linear neural network with regularization term.

We use the same notation as in Chapter 2. The most important differ-

ence between two chapters is the regularization term. Here, we consider the

optimization problem :

min
W

L(W ) + λΘ(W ), (3.1)

where L(W ) is a loss function and Θ is a regularization function designed to

prevent overfitting. Note that we require both the loss function and regular-

ization function to be convex on input data X.

First, we will discuss about the neural network with just one hidden layer.

Let r be the dimension of hidden layer. We now denote as following: X ∈
Rd0×m, Y ∈ Rd1×m, W1 ∈ Rr×d0 , W2 ∈ Rr×d1 .

Under these conditions, Haeffele and Vidal [5] proposed the conditions
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that every local minima in optimization problem is globally optimal. Before

introduce the result, we need to define the positive homogeneity.

Definition 3.1. Suppose f : V → W is a function between two vector spaces

V and W over a field F, and k is an integer. If f(αv) = αkf(v) for all α > 0,

α ∈ F and v ∈ V , then f is said to be positively homogeneous of degree

k.

Theorem 3.2. Suppose Φ and Θ are sums of positively homogeneous func-

tions of the same degree. If one of the columns W1 and W2 is equals to zero,

all local minima of (3.1) are global minima.

Note that the ReLU, max(average)-pooling, and convolution are positively

homogeneous. Therefore, we can easily design the network to be positively

homogeneous. The important part is that Φ and Θ have same degree of ho-

mogeneity. Typically, we construct a neural network with one hidden layer as

following:

Φ(W1,W2) =
r∑
i=1

φ(W i
1,W

i
2),

Θ(W1,W2) =
r∑
i=1

θ(W i
1,W

i
2),

(3.2)

where W i
1, W i

2 are the i -th columns of W1 and W2, respectively. Clearly,

φ(w1, w2) = w>2 w1X and θ(w1, w2) = ‖w1‖2 + ‖w2‖2 here. These φ and θ

are positively homogeneous of degree 2, therefore, this network satisfies the

conditions of Theorem 3.2.

Note that φ(w1, w2) = w>2 σ̄(w1X) satisfies the conditions also, where σ̄

is the rectified linear unit (ReLU). ReLU, max-pooling, and linear transfor-

mations are positively homogeneous of degree one, so these do not influence

on the conditions of Theorem 3.2. However, sigmoid is not positively homo-

geneous, which could possibly explain the improved performance of ReLU

compare to sigmoid.
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3.2 Neural network with parallel structure

In this section, we extend our analyzation to network with r parallel sub-

networks, which each sub-network have the same architecture. We use same

notation as above. Let (X, Y ) be the training data set with input X ∈ Rdx×m

and output Y ∈ Rdy×m. Suppose r be the number of sub-networks and H be

the number of hidden layers in each sub-network, where each hidden layer

have width d1, . . . dH . We denote the weight parameter matrices in r -th sub-

network by W r, where Wr
i ∈ Rdi×di−1 with 1 ≤ i ≤ H + 1. The maps Φr and

Θr are defined as following:

Φr(W1, . . . ,WH+1) =
r∑
i=1

φ(W i
1, . . . ,W

i
H+1),

Θr(W1, . . . ,WH+1) =
r∑
i=1

θ(W i
1, . . . ,W

i
H+1).

(3.3)

We assume φ and θ are positively homogeneous of same degree. To address

the issue of non-convexity of (3.1), Haeffele and Vidal [5] suggested to define

the factorization regularization function Ωφ,θ(Z).

Definition 3.3 (Haeffele and Vidal [5]). The factorization regularization

function Ωφ,θ(Z) is

Ωφ,θ(Z) := inf
r∈N+

inf
Wr

r∑
i=1

θ(W i
1, . . . ,W

i
H+1)

s.t. Φr(W1, . . . ,WH+1) = Z,

(3.4)

with the additional condition that Ωφ,θ(Z) =∞ if Z /∈
⋃
r Im(Φr)

Theorem 3.4 (Haeffele and Vidal [5]). The factorization regularization func-

tion Ωφ,θ(Z) has the following properties

1. Ωφ,θ(Z) is positively homogeneous of degree 1.

2. Ωφ,θ(Z) is convex with respect to Z.
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Theorem 3.4 states that Ωφ,θ(Z) is convex w.r.t. Z, thus, the infimum (3.3)

exists when the number of sub-networks r is finite. We will now consider the

convex problem, as

min
Z
F (Z) := L(Z) + λΩφ,θ(Z). (3.5)

Here Z is the output of network, that is Z = Φr(W1, . . . ,WH+1) and

λ > 0. Haeffele and Vidal [5] provided the results to analyze the optimization

problem.

min
Wr

fr(W1, . . . ,WH+1) := L(W1, . . . ,WH+1) + λ
r∑
i=1

θ(W i
1, . . . ,W

i
H+1) (3.6)

Theorem 3.5 (Haeffele and Vidal [5]). Any local minimizer of (3.6) such that

(W i0
1 , . . . ,W

i0
H+1) = (0, . . . , 0) for some i0 ∈ {1, . . . , r} is a global minimizer

of (3.6). Moreover, Z = Φr(W1, . . . ,WH+1) is a global minimizer of (3.5).

Proof. Since (3.5) is convex in Z by Theorem 3.4, the global optimality can

be shown. By definition of Ωφ,θ(Z), (3.5) lower bounds (3.6) for any Z =

Φr(W1, . . . ,WH+1). Therefore, this implies that every local minimum of (3.6)

is a global minimum.

This gives the result of Theorem 3.2 as a Corollary. In practice, when

the size of neural network is large enough and ReLU or max-pooling is used,

we can observe that many weight of network becomes zero. Theorem 3.5

possibly explains that phenomenon regarded as dead neurons. This Theorem

also provides the following Corollary.

Corollary 3.6 (Haeffele and Vidal [5]). If r > card(Z), then from any ini-

tialization of network (V1, . . . , VH+1) such that fr(V1, . . . , VH+1) < ∞, there

exists a non-increasing path to a global minimizer of fr(W1, . . . ,WH+1).

Proof. 1. From given initialization, perform local descent to find a local

minimum.

2. If that local minimum satisfies the conditions of Theorem 3.5, i.e.,

(W i0
1 , . . . ,W

i0
H+1) = (0, . . . , 0) for some i0 ∈ {1, . . . , r}, then by The-

orem 3.5, That local minimum is a global minimum.
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3. Else, there exists nonzero β ∈ Rr such that
∑r

i=1 βiφ(W i
1, . . . ,W

i
H+1) =

0 by the assumption r > card(Z). Let scale β so that mini βi = −1 and

set W i
k ← (1 + βi)

1/pW i
k. Repeating this operation guarantees arriving

at a point where one of the sub-networks is all 0.

Theorem 3.6 guarantees that by local descent, we can always find a global

minimizer of fr(W1, . . . ,WH+1) from any initialization (V1, . . . , VH+1) of par-

allel network when the size of network is large enough. However, since several

assumptions which are unrealistic to practical use, there is a limitations to use

the result to design the network. In the next Chapter, we will design several

neural network applying our results and observe the performances.
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Chapter 4

Experiments

In this Chapter, we apply our theoretical discussions to practical deep neural

network. We use the CIFAR10 [9] dataset. The MNIST [10] is also a very

popular dataset, however we do not use the MNIST. The reason is that the

performance of neural network on the MNIST dataset is originally very high,

we could not compare to the performances well.

The CIFAR10 dataset is a database which consists of 50,000 examples for

training, and 10,000 examples for test. Each example is a 32×32 color image in

10 classes. The classes contains airplane, automobile, bird, cat, deer, etc. This

dataset is so popular and basic for the image classification in neural network,

hence we could provide a practical result easily, and compare to the other

network structures, or other works. We applied experiments by Tensorflow in

Python 2 environment. We operates GeForce GTX 1080 to implement.

First, we compare to the performances in simple fully connected neural

network. We observe the classification accuracy in neural network with various

degree of homogeneity for network and regularization. In addition, we provide

the performances in neural network with parallel sub-networks, which each

sub-network have the same architecture.

4.1 Model of Neural Network

Here, we want to observe that the effect of degree of homogeneity for net-

work and regularization. therefore, we construct four simple fully connected

13



# hidden layer
regularization

None l1 l2 l3

0 23.48 24.87 24.83 23.63

1 32.47 32.25 33.01 32.31

2 32.90 33.52 34.54 34.41

3 30.49 30.81 31.64 31.87

Table 4.1: Accuracy(%) on the CIFAR10 in simple fully connected networks.
Columns : Applied regularization function. Rows : The number of hidden
layers, that is, degree of homogeneity.

networks, which each have 0, 1, 2, and 3 hidden layers with 500 hidden neu-

rons respectively. We do not contain any regularization function first, and we

apply l1, l2, l3 regularizations in regular sequence. We do not use dropout or

other regularization, and any specific initialization also. For parallel networks,

we design the network with parallel sub-network, which each sub-network is

simple fully connected network with one hidden layer with 500 hidden neu-

rons. The loss function is the cross-entropy and we use the Gradient-Descent.

Every activation function in hidden layers is ReLU.

4.2 Results

Simple fully connected network

Table 4.1 gives the result. We do not use the Convolutional Neural Network

(CNN) and just design the simple fully connected network, hence the per-

formance of classification is not that high. However, it is enough to observe

that the effect of degree of homogeneity for network and regularization. The

network contains 2 hidden layers with 12 regularization provides the highest

performance, 34.54%.

The number of hidden layers means the degree of homogeneity of net-

work architecture. Generally, when the network architecture and regulariza-

tion function have same degree of homogeneity, the highest performance is
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# sub-networks
regularization

None l1 l2 l3

4 38.92 40.80 42.82 40.50

8 40.11 42.50 43.17 42.10

12 42.24 43.45 44.79 42.32

Table 4.2: Accuracy(%) on the CIFAR10 in networks with parallel sub-
networks. Columns : Applied regularization function. Rows : The number
of sub-networks.

observed. Since the CIFAR10 dataset classification is easy to overfit compare

to the MNIST, the network without any regularization performs works. When

the network contains 2 hidden layers, we expect that l3 regularization gives

the highest performance, however, l2 gives the best. But it is negligible, since

the difference of accuracy between l2 and l3 regularization.

Note that every network except the one with 1 hidden layer in this exper-

iment actually do not satisfy the conditions of Theorem 3.2. This provides

that even if the number of hidden layer is not one, it’s important that the

degree of degree of homogeneity for network and regularization to be same.

Therefore, we can apply our theoretical results in deeper neural networks.

Network with parallel sub-networks

Table 4.2 gives the result. The network contains 12 sub-networks with 12

regularization provides the highest performance, 44.79%. In this case, every

network have the same degree of homogeneity: 2. Therefore, we can easily

predict that l2 regularization performs best. In practice, for every network,

the performances of l2 regularization is the highest. Again, the results support

our theoretical results efficiently. It’s well known that the ensemble of network

usually performs better compare to one. Haeffele and Vidal [5] suggested

that possible explanation which the reason is that to satisfy the condition

r > card(Z) in Theorem 3.6, the number of sub-network is require to be

large.

Note that again, every network except the one with 12 sub-networks in

15



this experiment actually do not satisfy the conditions of Theorem 3.6, which

requires r > card(Z). This provides that the condition about the degree of

degree of homogeneity for network and regularization is stronger than other

assumptions. Thus, we could apply our theoretical results in other structures

of network.

We have provided the practical results which are applied several vari-

ous conditions. Most of the results support our theoretical discussions well.

However, since several conditions of our theoretical results are too tight for

practical use, we do not provide the enough experimental results. In the next

Chapter, we conclude our results and discuss about the limitation.
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Chapter 5

Conclusion

In this thesis, we have discussed about the global optimality conditions of er-

ror optimization problem in deep neural networks. In Chapter 2, we proposed

the necessary and sufficient conditions to determine a critical point of error

function to be global minimum in deep linear neural network. Moreover, In

deep nonlinear neural network with ReLU activation, we successfully reduce

the error function to that of the deep linear model. In particular, we pro-

vided the sufficient conditions to guarantee that every local minimum to be a

global minimum of error function, and suggested the network architecture to

address the issue of non-optimal local minimum in deep neural network with

regularization.

Furthermore, we provided the experimental results to support our discus-

sions. We compared the deep neural network which satisfies the conditions

of our theories, and which doesn’t satisfy. In general, networks which have

same degrees of positive homogeneity between the network mapping and the

regularization function performs better. Therefore, the discussions in this pa-

per and experimental results gives fine fine guidelines to design a network

architectures and regularization.

Despite the above facts, we have several limitations of our discussions and

results. First, we have assumed some unrealistic conditions to conclude the

results. In Chapter 2, although Kawaguchi [7] successfully discarded most of

those assumptions, there still remaining some of those.

Additionally, the network architecture is so limited for practical use. In

17



Chapter 3, we only discussed about networks which have only one hidden

layer, or have parallel structure which each sub-network have the same archi-

tectures. We also assumed that r > card(Z) in Corollary 3.6, which makes

the size of network too large. It is also an important problem which is the

fact that global optimality does not always give the improved performance.

Despite the limitations above, It’s important to suggest the mathematical

reasons for the performance of neural network. Our results possibly explain

some phenomena, like dead neurons, improved performance of ReLU, and

poor performance of classical regularizations, such as an l1 or l2 norms. Re-

cently, Kawaguchi and Bengio [8] tried to suggest the similar discussions in

ResNet which is not limited to neural network architecture. This theoretical

attempts could provide more explanations about neural network, and improve

the performances.

18
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Appendix A

Proof of Main Theorem

A.1 Proof of Theorem 3.5

Lemma A.1. If (W1, . . . ,WH+1) is a local minimum of fr(W1, . . . ,WH+1),

then for any β ∈ Rr,

〈−1

λ
∇ZL(Z),

r∑
i=1

βiφ(W i
1, . . . ,W

i
H+1)〉 =

r∑
i=1

βiθ(W
i
1, . . . ,W

i
H+1). (A.1)

Let

Ω◦φ,θ(U) := sup
(w1,...,wH+1)

〈U, φ(w1, . . . , wH+1)〉 s.t. θ(w1, . . . , wH+1) ≥ 1.

(A.2)

Note that

F (Z) = L(Z) + λΩφ,θ(Z) ≤ fr(W1, . . . ,WH+1) (A.3)

by the definition of Ωφ,θ(Z). Since (3.5) is convex, Z is a global minimum of

F (Z) if and only if

− 1

λ
∇ZL(Z) ∈ ∂Ωφ,θ(Z). (A.4)

Suppose (W1, . . . ,WH+1) is a local minimum of fr(W1, . . . ,WH+1). Then for

∀(U1, . . . , UH+1)r, ∃δ > 0 such that for ∀ε ∈ (0, δ), fr(W1+ε1/pU1, . . . ,WH+1+
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ε1/pUH+1) ≥ fr(W1, . . . ,WH+1). Let

(U j
1 , . . . , U

j
H+1) =

{
(0, . . . , 0) j 6= i0

(u1, . . . , uH+1) j = i0
, (A.5)

where (W i0
1 , . . . ,W

i0
H+1) = (0, . . . , 0). Then

L(Z) + λ
r∑
i=1

θ(W i
1, . . . ,W

i
H+1) ≤

L(Φr(W1 + ε1/pU1, . . . ,WH+1 + ε1/pUH+1))+

λ
r∑
i=1

θ(W i
1 + ε1/pU i

1, . . . ,W
i
H+1 + ε1/pU i

H+1)) =

L(
∑
i 6=i0

φ(W i
1, . . . ,W

i
H+1) + φ(W i0

1 + ε1/pU i0
1 , . . . ,W

i0
H+1 + ε1/pU i0

H+1))+

λ
∑
i 6=i0

θ(W i
1, . . . ,W

i
H+1) + λθ(W i0

1 + ε1/pU i0
1 , . . . ,W

i0
H+1 + ε1/pU i0

H+1) =

L(Z + εφ(u1, . . . , uH+1)) + λ
r∑
i=1

θ(W i
1, . . . ,W

i
H+1) + ελθ(u1, . . . , uH+1).

Therefore,

ε−1[L(Z + εφ(u1, . . . , uH+1))− L(Z)] ≥ −λθ(u1, . . . , uH+1). (A.6)

Taking the limit as ε↘ 0,

〈φ(u1, . . . , uH+1),∇ZL(Z)〉 ≥ −λθ(u1, . . . , uH+1). (A.7)

Since (u1, . . . , uH+1) is arbitrary,

〈φ(u1, . . . , uH+1),−1

λ
∇ZL(Z)〉 ≤ θ(u1, . . . , uH+1) (A.8)

⇔ Ω◦φ,θ(−
1

λ
∇ZL(Z)) ≤ 1. (A.9)
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By Lemma A.1, we get

r∑
i=1

θ(W i
1, . . . ,W

i
H+1) = 〈Z,−1

λ
∇ZL(Z)〉. (A.10)

This gives − 1
λ
∇ZL(Z) ∈ ∂Ωφ,θ(Z), concluding the result.
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국문초록

최근 깊은 신경망이 여러 분야에서 매우 좋은 성능을 내고 있지만 깊은

신경망의 성능에 대한 이론적인 설명은 부족하다. 깊은 신경망의 손실함수를

최적화하는 것은 매우 중요한 문제이다. 일반적으로 손실함수가 가중매개변수

에 대해 볼록하지 않기 때문에, 최적화 알고리즘의 전체적 최적성을 보장할 수

없다. 이 논문에서 우리는 깊은 신경망에서 손실함수의 극소점이 전체적으로

최적이 되는 조건을 알아본다. 추가적으로 우리는 정칙화가 포함된 깊은 신

경망에서의 전체적 최적성에 대해 알아보고, 최적화 문제를 고려해 효과적인

신경망의 구조를 제시한다. 또한, 우리의 이론을 실험을 통해 확인한다.

주요어휘: 최적화, 전체적 최적성, 정칙화, 깊은 신경망

학번: 2016-20227
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