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Abstract

Input Distribution Analysis for
Learning Two Layer Neural

Network

Jeongmyeong Park

Department of Mathematical Sciences

The Graduate School

Seoul National University

In recent years, Deep neural networks have achieved state-of-the-art perfor-

mance in many tasks. Despite those empirical successes, it remains hard to

explain why stochastic gradient descent can solve the highly non-convex op-

timization problem. In this paper, we analyze the convergence of stochastic

gradient descent for weights in learning process. The model we used is two

layer neural network with ReLU activation function. In particular, our theory

used the notion of the smoothness of the input distribution so that we don’t

need any specific input distribution.

Key words: Optimization, Input distribution, Neural Network, Deep Learn-

ing
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Chapter 1

Introduction

In recent years, Deep neural networks have achieved state-of-the-art perfor-

mance in many tasks such as computer vision [6], natural language processing

[2], speech recognition [4]. Despite those empirical successes, it remains diffi-

cult to explain the performance theoretically. One of the theoretical problems

is the optimization. To optimize the neural network, We use stochastic gra-

dient descent(SGD). SGD is a simple algorithm using first order which is

effective and easy to modify. Even though there are many different optimiz-

ers used in real works, all of them are based on SGD. Why such a simple

algorithm can be so successful? Because of the simplicity of SGD, one may

think that it won’t be hard to explain it. But it is wrong. Deep neural net-

works are the highly non-convex optimization problems. Not only because it

is deep, people usually adopt ReLU function as their activation function. So

it is almost impossible to analyze all of the aspect in deep network. Although

it is a difficult problem, researchers have tried many theoretical attempts to

analyze it. Recently, there have been many papers which try to explain the

convergence of shallow networks. Zhang et al.[7] analyzed two layer network

on certain types of activation functions, but generalization on ReLU function

remained unclear. Brutzkus et al. [1] showed optimization of convolutional

network with ReLU function and gaussian input can be proved. Janzamin et

al. [5] guarantees the reexery of parameters on 2-layered network with tensor

decomposition. However, most of those attempts relies on the certain input

distribution, like gaussian distribution. Instead of the specific form of input
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distribution, Du et al. [3] used the notion of smoothness of the input distri-

bution. Their analysis shows that any kind of inputs can be optimized with

some conditions. In this paper, we will follow the similar method. We build

a shallow network and discuss about its convergence. More precisely, we are

going to follow the Idea of Du et al. [3]. Their suggestion of smoothness will

be used and there will be no assumption of input distribution except the

smoothness. Since his idea is constrained on one layer convolutional network,

we will adapt the notion of smoothness on two layer network with ReLU ac-

tivation function. With the notion of smoothness, We are going to connect it

to the convergence rate for weights recovery. The smoother input distribution

is, the faster convergence happens. The content of this paper is organized as

follows. We introduce our network and apply Du’s idea in cases that only one

weight vector is used in Chapter 2. We generalize the idea in cases when

multiple weight vectors are used in Chapter 3. Conclusions are in Chapter

4.
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Chapter 2

In case of n=1

Now, we introduce our two layer neural network. We will analyze the op-

timization on this architecture. We call z ∈ Rk as an input vector, W =

(w1, w2, ...wn) ∈ Rk×n and wi ∈ Rk as weights. σ(x) = max(x, 0) is the ReLU

activation function. In this paper, we focus on the following two layer ReLU

neural network.

f(W, z) =
1

k

k∑
i=1

σ
(
w>i z

)
(2.1)

After multiplication of input and weights, ReLU activation function fol-

lows. Lastly average pooling derives output. For Loss function,

`(w, z) =
1

2
(f(w, z)− f (w∗, z))

2 (2.2)

When we apply stochastic gradient descent in real experiment, it works a s

follows

wt+1 = wt − ηt∇`(wt, z) (2.3)

However, z is not a fixed input. It is a random variable of input distribution.

So we use population gradient in analysis.

wt+1 = wt − ηtE[∇`(wt, z)] (2.4)

Before we start the discussion, we clarify some notations. λmax(R) is the

largest singular value of the matrix R and λmin(R) is the smallest singular
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value of the matrix R. ‖ · ‖oper denotes the operator norm of a matrix. For

the convenience in the calculation, we will use vector mathbfWvec instead of

matrix W. The definition is as follows. Wvec = [w>1 , w
>
2 , ...w

>
n ] ∈ Rkn Also

we make some assumptions. Assume that inputs, weights are bounded. As a

result, gradient functions are uniformly bounded.

In our paper, activation function is ReLU function. ReLU function is hard

to deal because of its vanishing properties. To solve the problem with mini-

mum assumptions, we split regions so that we can verify the vanishment by

ReLU function. Since our network is shallow network, it is affordable calcula-

tions. Also using following definitions, we will define the smoothness of input

distribution.

Definition 2.1. (in Du[3]) We define two events and matrices. w can be any

wi in Wvec

R (w,w∗) =
{
z : w>z ≥ 0, w>∗ z ≥ 0

}
R (w,−w∗) =

{
z : w>z ≥ 0,−w>∗ z ≥ 0

}
Rw,w∗ = E

[
zz>I {R (w,w∗)}

]
Rw,−w∗ = E

[
zz>I {R (w,−w∗)}

] (2.5)

Now it’s time to introduce the smoothness in the case of n=1. We are

going to generalize it for arbitrary n in Chapter 3.

Definition 2.2. (in Du[3]) For φ in [0, π],

mw,w∗
min (φ) = min

w:∠w,w∗=φ
λmin (Rw,w∗)

mw,w∗
max (φ) = max

w:∠w,w∗=φ
λmax (Rw,w∗)

(2.6)

Du defined the smoothness as the diffrenece of the largest and smallest

eigenvalue values of the Rw,w∗ If the difference of the two eigenvalue is large,

then we can consider it as the sign of the biased probability mass. When the

input distribution is gaussian distribution or the rotationally invariant, Two

eigenvalue will match by definition. So, closer two eigenvalues are, more even

the probability mass is. Therefore the definition can be called the smoothness.

This is the definition of smoothness when n=1. Du generalized the smoothness

to use on the convolutional network. Since our network is not convolutional
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network, we tried a different way of generalization. Before we discuss the two

layer network for arbitrary n, we will analyze the case of n=1.

Theorem 2.3. (in Du[3]) Assume that there exists positive d s.t. mw,−w∗
max (φ) =

maxw:∠w,w∗=φ λmax (Rw,−w∗) < dφ. and ‖w0 − w∗‖2 < ‖w∗‖2 for the initializa-

tion w0. Let φt = arcsin (‖w0 − w∗‖2 / ‖w∗‖2). If 0 ≤ ηt ≤ min0≤φ≤φt
mmin(φ)

2(mmax(φ)+2α)2
,

then

‖wt+1 − w∗‖22 ≤
(

1− ηtmmin (φt)

2

)
‖wt − w∗‖22 (2.7)

Now, by this theorem, we can sure that network will converge in a proper

time. This theorem show the convergence rate of the n=1 network. It suggests

the relationship between smoothness and converging time. With small α,

small mmax and Large mmin, we can choose large learning rate. Also the

bigger mmin is, the faster convergence comes.
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Chapter 3

Generalization for arbitrary n

It is time to generalize for our network. Our network has two layers. In the

hidden layer, each wi’s multiplies z and pass through the ReLU function.

So when we investigate the gradient of loss function, we have to face the

intersection of ReLU functions. Therefore, we need more complex split of

regions.

Definition 3.1.

bk,l,mi,j = zz>R
(
wi, (−1)kwi,∗

)
R
(
(−1)lwj, (−1)mwj,∗

)
Bk,l,m =

1

n2
E

 bk,l,m1,1 · · · bk,l,m1,n
...

. . .
...

bk,l,mn,1 · · · bk,l,mn,n

 (3.1)

Definition 3.2.

mmax(φ,wi,∗) = max
∀i,∠wi,wi,∗=φ

λmax(B0,0,0)

mmin(φ,wvec,∗) = min
∀i,∠wi,wi=φ

λmin(B0,0,0)
(3.2)

Assumption 3.3. We assume that exists positive α and mex
max such that

max
(k,l,m)=(1,0,0),(0,0,1),(0,1,0),(1,1,0)

{
max

∀i,∠wi,wi,∗=φ
λmax(Bk,l,m)

}
5 mex

maxφ

max∀i,∠wi,wi,∗=φλmax(B1,0,1) ≤ αφ

(3.3)
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By converging n weights in one vector, we derived the very similar detail

with Du’s generalization on Convolutional Neural Network. So the following

theorems are adaptation of his work on two layer neural network. By following

theorem, we show the convergence guarantee of the two neural network in the

following theorem.

Theorem 3.4. (adapted from Du[3]) Assume that ‖W0
vec −Wvec,∗‖2 < ‖Wvec,∗‖2

for the initialization W0
vec. Let φt = arcsin

(
‖Wt

vec −Wvec,∗‖2 / ‖Wvec,∗‖2
)
.

If ηt ≤ min0≤φ≤φt
mmin(φ)−10mex

max

2(L(φ)+14Lex+4α)2
, then

∥∥Wt+1
vec −Wvec,∗

∥∥2
2
≤
∥∥Wt

vec −W∗,vec
∥∥2
2

(
1− ηt(mmin − 10mex

max)

2

)
Proof. In Appendix

Now, we have our result. Population gradient leads the network to the con-

vergence. For the faster convergence, we have to get a smaller mex
max, larger

mmin, smaller L. Then we can have larger learning rate and better conver-

gence rate. But we haven’t show whether mmin − 10mex
max is positive or not.

Therefore, we introduce the next theorem.

Theorem 3.5. (adapted from Du[3]) Suppose Z has unit norm. φ is angle

between wi, wi,∗ Assume that there exists β such that for all i

P [R(wi,−wi,∗)] ,P [R(−wi, wi,∗)] ≤ βφ

then we have mex
max ≤ βφ
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Proof. Assume [x1, x2, ...xn] has unit norm.

[x1, x2, ...xn]B0,0,1[x1, x2, ...xn]>

=
1

n2

∑
E
[
x>i ZZ

>xjR(wi, wi,∗)R(wj,−wj,∗)
]

≤ 1

n2

∑
‖xi‖ ‖xj‖E [R(wi, wi,∗)R(wj,−wj,∗)]

≤ 1

n2

∑ 1

2

(
‖xi‖2 + ‖xj‖2

)
E [R(wi, wi,∗)R(wj,−wj,∗)]

≤ 1

n2

∑ 1

2

(
‖xi‖2 + ‖xj‖2

)
E [R(wj,−wj,∗)]

≤ 1

n2

∑ 1

2

(
‖xi‖2 + ‖xj‖2

)
βφ

=
βφ

n

For B1,0,0,B0,1,0,B1,1,0, the same as above.

Now we have upper bound of mex
max. If input distribution has low probabil-

ity in R(wi,−wi,∗), R(−wi, wi,∗), then the assumptions above can be fulfilled.
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Chapter 4

Conclusion

In this paper, we have discussed about the conditions on the convergence of

two layer neural network. First, we discussed the case of n=1. We defined

the smoothness and established theorem for convergence.Secondly, We gen-

eralized the smoothness for arbitrary n. Using the notion,we provided the

conditions to guarantee the convergence for two layer neural network. While

input distribution satisfies the conditions, it doesn’t heed guassian distribu-

tion. Also, with the convergence rate we calculated, we can check the two layer

neural network can learn weights in a proper time. For the future works, we

have to think about how to expand the smoothness for deeper network. Basi-

cally, our method is based on the dividing the regions. If a network has more

layers, there are too many regions to consider. So it is not likely to work on

a deeper network.
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Chapter 5

appendix

5.1 Proof of Theorem 3.4

Assume that ‖W0
vec −Wvec,∗‖2 < ‖Wvec,∗‖2 for the initialization W0

vec. Let φt

= arcsin
(
‖Wt

vec −Wvec,∗‖2 / ‖Wvec,∗‖2
)
. If ηt ≤ min0≤φ≤φt

mmin(φ)−10mex
max

2(L(φ)+14Lex+4α)2
,

then∥∥Wt+1
vec −Wvec,∗

∥∥2
2
≤
∥∥Wt

vec −W∗,vec
∥∥2
2

(
1− ηt(mmin − 10mex

max)

2

)
Proof. For wi without time mark, consider it as weights of time t.

E[∇wi
`(Wt, z)] =

1

n2

n∑
j=1

E
[
zz>I {R (wi, wi,∗)R (wj, wj,∗) +R (wi,−wi,∗)R (wj, wj,∗)}

]
(wj − wj,∗)

+
1

n2

n∑
j=1

E
[
zz>I {R (wi, wi,∗)R (wj,−wj,∗) +R (wi,−wi,∗)R (wj,−wj,∗)}

]
wj

+
1

n2

n∑
j=1

E
[
zz>I {R (wi, wi,∗)R (−wj, wj,∗) +R (wi,−wi,∗)R (−wj, wj,∗)}

]
(−wj,∗)
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n∑
i=1

E[< ∇wi
`(Wt, z), wi − wi,∗ >] =

1

n2

(n,n)∑
(i,j)=(1,1)

(wi − wi,∗)> E
[
zz>I {R (wi, wi,∗)R (wj, wj,∗) +

R (wi,−wi,∗)R (wj, wj,∗) (wj − wj,∗)

+
1

n2

(n,n)∑
(i,j)=(1,1)

(wi − wi,∗)> E
[
zz>I {R (wi, wi,∗)R (wj,−wj,∗) +

R (wi,−wi,∗)R (wj,−wj,∗)wj

+
1

n2

(n,n)∑
(i,j)=(1,1)

(wi − wi,∗)> E
[
zz>I {R (wi, wi,∗)R (−wj, wj,∗) +

R (wi,−wi,∗)R (−wj, wj,∗) (−wj,∗)

= (Wvec −W∗,vec)
> (B0,0,0 + B1,0,0) (Wvec −W∗,vec)

+ (Wvec −W∗,vec)
> (B0,0,1 + B1,0,1) (Wvec)

+ (Wvec −W∗,vec)
> (B0,1,0 + B1,1,0) (−W∗,vec)

Use definiton so fmmin and remove positive terms

≥ ‖Wvec −W∗,vec‖22mmin

+ (Wvec −W∗,vec)
> (B1,0,0) (−W∗,vec)

+ (Wvec −W∗,vec)
> (B0,0,1) (Wvec)

+ (Wvec −W∗,vec)
> (B0,1,0 + B1,1,0) (−W∗,vec)
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Now use norm.

≥ ‖Wvec −W∗,vec‖22mmin

− ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B1,0,0‖oper
− ‖Wvec‖2 ‖Wvec −W∗,vec‖2 ‖B0,0,1‖oper
− ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B0,1,0‖oper
− ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B1,1,0‖oper

With properly assigned initial weights, we can assume ‖Wvec −W∗,vec‖2 ≤
‖W∗,vec‖2 when t=0. If this theorem satisfies, then we can use it inductively

for all t. Therefore, ‖Wvec‖2 ≤ 2 ‖W∗,vec‖2

≥ ‖Wvec −W∗,vec‖22mmin

− ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B1,0,0‖oper
− 2 ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B0,0,1‖oper
− ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B0,1,0‖oper
− ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2 ‖B1,1,0‖oper

By assumption, operation norm of B can be replaced.

≥ ‖Wvec −W∗,vec‖22mmin − 5 ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2m
ex
maxφ

Since φ ≤ 2sinφ for 0 ≤ φ ≤ 2/π, sinφ = ‖Wvec −W∗,vec‖ / ‖W∗,vec‖2

≥ ‖Wvec −W∗,vec‖22mmin − 10 ‖W∗,vec‖2 ‖Wvec −W∗,vec‖2m
ex
maxsin(φ)

≥ ‖Wvec −W∗,vec‖22mmin − 10 ‖Wvec −W∗,vec‖22m
ex
max

= ‖Wvec −W∗,vec‖22 (mmin − 10mex
max)
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In the same way,

(
∑∥∥E[∇wi

`(Wt, z)]
∥∥2
2
)0.5

≤ ‖B0,0,0‖oper ‖Wvec −W∗,vec‖2 + ‖B1,0,0‖oper ‖Wvec −W∗,vec‖2
+ ‖B0,0,1‖oper ‖Wvec‖2 + ‖B1,0,1‖oper ‖Wvec‖2
+ ‖B0,1,0‖oper ‖Wvec,∗‖2 + ‖B1,1,0‖oper ‖Wvec,∗‖2
≤ L ‖Wvec −W∗,vec‖2 + ‖B1,0,0‖oper 3 ‖W∗,vec‖2
+ ‖B0,0,1‖oper 2 ‖Wvec,∗‖2 + ‖B1,0,1‖oper 2 ‖Wvec,∗‖2
+ ‖B0,1,0‖oper ‖Wvec,∗‖2 + ‖B1,1,0‖oper ‖Wvec,∗‖2
≤ ‖Wvec −W∗,vec‖2 (L+ 4α + 14mex

max)

If ηt is small enough,∥∥Wt+1
vec −Wvec,∗

∥∥2
2
≤
∥∥Wt

vec −W∗,vec
∥∥2
2

(1− ηt(mmin − 10mex
max) + η2t (L+ 4α + 14mex

max)

≤
∥∥Wt

vec −W∗,vec
∥∥2
2

(1− ηt(mmin − 10mex
max)

2
)

14



국문초록

최근 몇년간 딥러닝은 여러 분야에서 최고의 성능을 보여줬다. 그러한 경험적

인 성공에도 불구하고 확률적 경사하강법이 왜 최적화 문제에서 높은 성능을

보여주는지에 대해 이론적인 설명이 아직 충분하지 않다. 이 논문에서는 확

률적 경사하강법이 각 파라미터들을 학습과정에서 수렴시키는 과정에 대하여

분석하였다. 이 논문에서 사용된 딥러닝 모델은 ReLU 함수를 사용한 2층 신

경망이다. 특히 입력 분포의 smoothness 개념을 사용하여 특정 분포가 아닌

일반적인 입력분포에 대해 적용 가능한 분석을 이끌어낼 수 있었다.

주요어휘: 최적화, 입력분포, 신경망 , 딥러닝

학번: 2016-20235
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