creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Input Distribution Analysis for
Learning Two Layer Neural
Network

(2% AT 42 AT 9 BE 24)

20194 29

Agdisty 5k
SEEL R

Input Distribution Analysis for
Learning Two Layer Neural
Network

(2% 84T F42 9T 4 B BA)

o]

| =82 oA} SR o s AR

20184 109

5 g B |t SRS AF

20184 12¢

()

f 4o Lo
=
e

e o o
2

Input Distribution Analysis for
Learning Two Layer Neural
Network

by

Jeongmyeong Park

A DISSERTATION

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
for the degree of Master of Science
in the Department of Mathematical Sciences

Seoul National University
February 2019

Abstract

Input Distribution Analysis for
Learning Two Layer Neural
Network

Jeongmyeong Park

Department of Mathematical Sciences
The Graduate School

Seoul National University

In recent years, Deep neural networks have achieved state-of-the-art perfor-
mance in many tasks. Despite those empirical successes, it remains hard to
explain why stochastic gradient descent can solve the highly non-convex op-
timization problem. In this paper, we analyze the convergence of stochastic
gradient descent for weights in learning process. The model we used is two
layer neural network with ReLU activation function. In particular, our theory
used the notion of the smoothness of the input distribution so that we don’t
need any specific input distribution.

Key words: Optimization, Input distribution, Neural Network, Deep Learn-

ing
Student Number: 2016-20235

Contents

Abstract i
1 Introduction 1
2 In case of n=1 3
3 Generalization for arbitrary n 6
4 Conclusion 9
The bibliography 10
5 appendix 11

5.1 Proof of Theorem 3.4 11
Abstract (in Korean) 15

i

Chapter 1

Introduction

In recent years, Deep neural networks have achieved state-of-the-art perfor-
mance in many tasks such as computer vision [6], natural language processing
[2], speech recognition [4]. Despite those empirical successes, it remains diffi-
cult to explain the performance theoretically. One of the theoretical problems
is the optimization. To optimize the neural network, We use stochastic gra-
dient descent(SGD). SGD is a simple algorithm using first order which is
effective and easy to modify. Even though there are many different optimiz-
ers used in real works, all of them are based on SGD. Why such a simple
algorithm can be so successful? Because of the simplicity of SGD, one may
think that it won’t be hard to explain it. But it is wrong. Deep neural net-
works are the highly non-convex optimization problems. Not only because it
is deep, people usually adopt ReLLU function as their activation function. So
it is almost impossible to analyze all of the aspect in deep network. Although
it is a difficult problem, researchers have tried many theoretical attempts to
analyze it. Recently, there have been many papers which try to explain the
convergence of shallow networks. Zhang et al.[7] analyzed two layer network
on certain types of activation functions, but generalization on ReLLU function
remained unclear. Brutzkus et al. [1] showed optimization of convolutional
network with ReLLU function and gaussian input can be proved. Janzamin et
al. [5] guarantees the reexery of parameters on 2-layered network with tensor
decomposition. However, most of those attempts relies on the certain input
distribution, like gaussian distribution. Instead of the specific form of input

distribution, Du et al. [3] used the notion of smoothness of the input distri-
bution. Their analysis shows that any kind of inputs can be optimized with
some conditions. In this paper, we will follow the similar method. We build
a shallow network and discuss about its convergence. More precisely, we are
going to follow the Idea of Du et al. [3]. Their suggestion of smoothness will
be used and there will be no assumption of input distribution except the
smoothness. Since his idea is constrained on one layer convolutional network,
we will adapt the notion of smoothness on two layer network with ReLLU ac-
tivation function. With the notion of smoothness, We are going to connect it
to the convergence rate for weights recovery. The smoother input distribution
is, the faster convergence happens. The content of this paper is organized as
follows. We introduce our network and apply Du’s idea in cases that only one
weight vector is used in Chapter 2. We generalize the idea in cases when

multiple weight vectors are used in Chapter 3. Conclusions are in Chapter
4.

Chapter 2

In case of n=1

Now, we introduce our two layer neural network. We will analyze the op-
timization on this architecture. We call z € R* as an input vector, W =
(wy, wa, .. w,) € R¥*™ and w; € R* as weights. o(z) = maz(z,0) is the ReLU
activation function. In this paper, we focus on the following two layer ReLLU
neural network.

FW.2) = 3 300 (1) (21)

After multiplication of input and weights, ReLLU activation function fol-
lows. Lastly average pooling derives output. For Loss function,

Uw,z) = 5 (f(w,2) = [(w.,2))* (2.2)

N | —

When we apply stochastic gradient descent in real experiment, it works a s
follows

wy = w' —n'Ve(w', 2) (2.3)

However, z is not a fixed input. It is a random variable of input distribution.
So we use population gradient in analysis.

wiy = w' — N'E[VL(w', 2)] (2.4)

Before we start the discussion, we clarify some notations. Apq.(R) is the
largest singular value of the matrix R and A,,;,(R) is the smallest singular

value of the matrix R. || - ||oper denotes the operator norm of a matrix. For
the convenience in the calculation, we will use vector mathbfW,.. instead of
matrix W. The definition is as follows. Wy = [w],w; ,..w!] € R Also
we make some assumptions. Assume that inputs, weights are bounded. As a
result, gradient functions are uniformly bounded.

In our paper, activation function is ReLU function. ReLLU function is hard
to deal because of its vanishing properties. To solve the problem with mini-
mum assumptions, we split regions so that we can verify the vanishment by
ReLU function. Since our network is shallow network, it is affordable calcula-
tions. Also using following definitions, we will define the smoothness of input
distribution.

Definition 2.1. (in Du/3]) We define two events and matrices. w can be any
w; mn erc
R(w,w,) = {z cw'z > 0w 2> O}

R(w,—w,) = {z cw'z >0, —wjz > 0}
Ryw, =E [22"T{R (w,w.)}]
Ry —w. = E [22"I{R (w, —w.)}]

(2.5)

Now it’s time to introduce the smoothness in the case of n=1. We are
going to generalize it for arbitrary n in Chapter 3.

Definition 2.2. (in Du/3]) For ¢ in [0, 7],

my(9) = min Apin (R w,)

min
w: AW, Wx=¢

mw,w* <¢) —_ max)\max (Ru},w*)

max
w: W, W=

(2.6)

Du defined the smoothness as the diffrenece of the largest and smallest
eigenvalue values of the R, ,,, If the difference of the two eigenvalue is large,
then we can consider it as the sign of the biased probability mass. When the
input distribution is gaussian distribution or the rotationally invariant, Two
eigenvalue will match by definition. So, closer two eigenvalues are, more even
the probability mass is. Therefore the definition can be called the smoothness.
This is the definition of smoothness when n=1. Du generalized the smoothness
to use on the convolutional network. Since our network is not convolutional

network, we tried a different way of generalization. Before we discuss the two
layer network for arbitrary n, we will analyze the case of n=1.

Theorem 2.3. (in Du/3]) Assume that there exists positive d s.t. m@"=(¢p) =
MAXyy: /1,10, =6 Amax (Ruw,—w,) < d. and ||[wy — wy|, < [Jw||y for the initializa-
tion wy. Let ¢' = arcsin ([wy — w.l|y / w.lly). IO < np < mingcpey, srmm=es
then

Mmaz ($)+20)

o = .l < (1= 2200 @)

Now, by this theorem, we can sure that network will converge in a proper
time. This theorem show the convergence rate of the n=1 network. It suggests
the relationship between smoothness and converging time. With small «,
small m,,,, and Large m,,;,, we can choose large learning rate. Also the
bigger m,,;, is, the faster convergence comes.

A 2t 8

Chapter 3

Generalization for arbitrary n

It is time to generalize for our network. Our network has two layers. In the
hidden layer, each w;’s multiplies z and pass through the ReLU function.
So when we investigate the gradient of loss function, we have to face the
intersection of ReLU functions. Therefore, we need more complex split of

regions.
Definition 3.1.

bt = 22 R (wi, (—1)*wi) R ((—1)'wy, (—1)™w;,)

bk,l,m . bk’,l,m
1 L1 L (3.1)
Brim = EE : .
e
Definition 3.2.
mmax((ba wi,*) = Vi ZLH%UX —)\max(BO,O,O)
R (3.2)
mmm(¢7 wvec,*) = Vi 4%1{Ul~:¢ >\min<B0,0,0)

Assumption 3.3. We assume that exists positive o and mgy,. such that

max { max)\maz(Bk,l,m>}§m7e’rfaz

(k,l,m)=(1,0,0),(0,0,1),(0,1,0),(1,1,0) | V&, Zw;,w; «=

(3.3)

maxv;, /w;, Wi« =0)\max (B 1,0,1) S Oé¢

By converging n weights in one vector, we derived the very similar detail
with Du’s generalization on Convolutional Neural Network. So the following
theorems are adaptation of his work on two layer neural network. By following
theorem, we show the convergence guarantee of the two neural network in the
following theorem.

Theorem 3.4. (adapted from Du[3]) Assume that [W3,, — Woecilly < [|[Woecs|ls

for the initialization WY,,. Let ¢' = arcsin (|[W!,, — W[,

man 10 max
If iy < ming<y<y, T(@ﬁ)ueﬂm)z; then

vec,*HQ) .

t+1
HW - vec,*

vec

||W W HQ (1 - Ne(Momin — 10m$rfaa:))
vee *,vec||g

2
Proof. In Appendix n

Now, we have our result. Population gradient leads the network to the con-
vergence. For the faster convergence, we have to get a smaller m¢ larger
Mumin, Smaller L. Then we can have larger learning rate and better conver-
gence rate. But we haven’t show whether m,,;,, — 10m¢? is positive or not.

max
Therefore, we introduce the next theorem.

maz’

Theorem 3.5. (adapted from Du[3]) Suppose Z has unit norm. ¢ is angle
between w;, w; . Assume that there exists 3 such that for all ¢

P [R(wi7 _wi,*)] ’IP) [R(_wi> wi,*)] S 5¢

then we have my. < B¢

Proof. Assume [z, 23, ...x,] has unit norm.

[-7317 T2, ---ZUn]Bo,o,l[-l"l, o)

oy

T

S B[] 22" R, wi) Ry,)

1
S5 > il |l B [R(wi, w;2) R(wy, —w;.)]

IN

1

n2

IN

IN

Bo

n

1 1
=305 (Ul + lP) B[R, wi) Rlws, —w;.)]

1
5 (il + lls[%) B [R(wj, —w;.)]

1 1
3 Z 3 (sl + ll;11) B

For B1 0,0,Bo,1,0, B1,1,0, the same as above.

Now we have upper bound of m

EXT
max-*

]

If input distribution has low probabil-

ity in R(w;, —w;), R(—w;, w;), then the assumptions above can be fulfilled.

Chapter 4

Conclusion

In this paper, we have discussed about the conditions on the convergence of
two layer neural network. First, we discussed the case of n=1. We defined
the smoothness and established theorem for convergence.Secondly, We gen-
eralized the smoothness for arbitrary n. Using the notion,we provided the
conditions to guarantee the convergence for two layer neural network. While
input distribution satisfies the conditions, it doesn’t heed guassian distribu-
tion. Also, with the convergence rate we calculated, we can check the two layer
neural network can learn weights in a proper time. For the future works, we
have to think about how to expand the smoothness for deeper network. Basi-
cally, our method is based on the dividing the regions. If a network has more
layers, there are too many regions to consider. So it is not likely to work on
a deeper network.

Bibliography

1]

A. BRUTZKUS AND A. GLOBERSON, Globally optimal gradient descent for
a convnet with gaussian inputs, arXiv preprint arXiv:1702.07966, (2017).

[2] Y. N. DAuPHIN, A. FAN, M. AuLl, AND D. GRANGIER, Language mod-

eling with gated convolutional networks, arXiv preprint arXiv:1612.08083,
(2016).

S. S. Du, J. D. LEE, AND Y. TIAN, When is a convolutional filter easy
to learn?, arXiv preprint arXiv:1709.06129, (2017).

G. HinTON, L. DENG, D. Yu, G. E. DAHL, A.-R. MOHAMED,
N. JArTLY, A. SENIOR, V. VANHOUCKE, P. NGUYEN, T. N. SAINATH,
ET AL., Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups, IEEE Signal processing maga-
zine, 29 (2012), pp. 82-97.

M. JANZAMIN, H. SEDGHI, AND A. ANANDKUMAR, Beating the per-

ils of non-convexity: Guaranteed training of neural networks using tensor
methods, arXiv preprint arXiv:1506.08473, (2015).

A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet clas-
sification with deep convolutional neural networks, in Advances in neural
information processing systems, 2012, pp. 1097-1105.

X. ZHANG, Y. Yu, L. WANG, AND Q. Gu, Learning one-hidden-
layer relu networks via gradient descent, arXiv preprint arXiv:1806.07808,
(2018).

10

Chapter 5

appendix

5.1 Proof of Theorem 3.4

Assume that | W0, — Woeei|ly < [[Woee,s ||, for the initialization W7, Let ¢
mmin(d’)_lomsrfax

= arcsin (Hwiec — Woees|ly / ||erc7*||2>~ If 9y < ming<g<y, 2L(¢)+14Lop+4a)’
then

W = Woed|[; < [Whee = Wl (1 i mmfrfw))

vec vec 2
Proof. For w; without time mark, consider it as weights of time t.
E[V.,, (W', 2)] =

1 n
= Z E [z2 ' T{R (w;, w;) R (wj,w;.) + R (w;, —w;.) R (wj, w;.)}] (w; — w;.)

Jj=1

1 n
+) Z E [z2 ' T{R (w;, w;.) R (wj, —w;.) + R (w;, —w;.) R (w0, —w;)} w;

J=1

1 n
+ — Z E [ZZT]I {R (w;, w; +) R(—w;,w;.) + R (w;, —w;) R (—wj, wjﬁ*)}} (—wj)

=1

11

1=1
1 (n,n)
— (w; — wi’*)T E [zzT]I {R (w;, w;) R (w;, wj.)+
n
(Zvj):(Ll)

R (w;, —w;) R (wj, wj.) (w; — w;.)

(n,n)

+ ig Z (w; — wi’*)T E [zzT]I {R (w;, w; +) R (w;, —w;)+
(4,5)=(1,1)
R (w;, —w;) R (w;, —w; .)w;
1 (n,n) -
+ = Z (w; — win) E[22"T{R (w;, w;,) R (—w;, w;.) +
(6,5)=(1,1)

R (ws, —w;) R (—wj, wj.) (—wj)

= (erc - W*,vec>T (BO,O,O + BI,O,O) (erc — W*,vec)
+ (erc - W*,vec)—r (BO,O,I + Bl,O,l) (erc)
+ (erc - W*,vec)T (BO,I,O + Bl,l,O) (_W*,vec)

Use definiton so fm,,;, and remove positive terms

> [Waee = W seells M

+ (Wyee — W*,ve(:)T (B1,0,0) (—Wi vec)

+ (Woee = Weiee) ' (Boo1) (Woee)

+ (Woee = Wenee) T (Boto + B110) (—Wivee)

12

A -2-t) 83

Now use norm.

> [Woee = W seells Munin

— W weelly [Woee = W seelly [B10oll gper
~ Woeelly [Woee = W eelly 1Bo,0,1 | per
— [[Weveelly [Woee = Wi veelly 1Bo,1.0]l gper
— [Weseelly [Woee = Weeelly [1B1.1.0lper

With properly assigned initial weights, we can assume |[[Wyee — W, pecl|, <
W, vee|l, when t=0. If this theorem satisfies, then we can use it inductively
for all t. Therefore, [|[Wec|ly < 2||W, peell,

> [Waee = W e[y Mmin

— [Wiveelly [Woee = Wi veelly 1B1,0.0ll per
= 2[[Weveelly [Woee = Wiseelly [Bo.o,1 | per
— [Weeelly [Woee = Wiseelly [Bo,1.0ll pper
— [Wiweelly [Woee = Wiweelly 1B1,1.0ll per

By assumption, operation norm of B can be replaced.

Z ”erc - W*,vecHi Mpmin — 5 ||W*,vec||2 vaec - W*,vec”z mez (b

Since ¢ < 2sing for 0 < ¢ < 2/7, sing = |[Wyee — W el / [W weello

Z vaec - W*,vecH; Mmin — 10 HW*,vecHQ vaec - W*,vec”g mifaxSin<¢)
Z vaec - W*,vec”é mmin - 10 ”WU@C - W*,UECHg mel’

mazx
= ||erc - W*,UGCH; (mmin - 10m$:am>

13

In the same way,

OBV, (W, 2)]|[2)0

< ||Bo,0,0||oper [Waee = Wi veell + ||B170’0Hoper [Woiee = Wi veelly
+11Boo,1 [l pper Woeelly + [B1o,1llpper |Woeell

+ 11Bo,1.0l gper [Woeesslla + 1B11,0llpper Woee,lly

< L{[Woee = Waseelly + [B100ll per 3 1 Wweell,

+ B0, gper 2 Weeenlly + [Bro1ll gper 2 [Woeesl
+11Bo,1,0ll pper [Woee,elly + (B30l pper [Woees 2

< [[Woee = Wopeelly (L + 4a + 14mg7,)

If n; is small enough,

||Vv1t)—gc1 - vec,* Herc W*,vecHz (1 - nt(mmin - lomfgam) + nt (L + 40& + 14mirgfaac)
< (W, = W (1 i = L0 es)
vec *,vec|| o 9
[
14

"N B~ 3
~

T do i T o ©
R

X ~
ool T T T
ai_umfﬂo&matdr
_l._uAlL._L._uHA %o %
o AH - o

Al
o

Kol

o
S
7ol of

]
&

£ 3}
ol A
]
=

T &

[

<

Zlef i3
1o
At o] =&
A
x

11—

= FEZt Fed2 ofF ZopellA F
sk
T il o] 24
}
A

A= =

Ho

ﬂ,?o

3
S|

H: 2016-20235

f01%]:

=z

T
0"
=

	1 Introduction
	2 In case of n1
	3 Generalization for arbitrary n
	4 Conclusion
	The bibliography
	5 appendix
	5.1 Proof of Theorem 3.4 .

	Abstract (in Korean)

<startpage>7
1 Introduction 1
2 In case of n1 3
3 Generalization for arbitrary n 6
4 Conclusion 9
The bibliography 10
5 appendix 11
 5.1 Proof of Theorem 3.4 . 11
Abstract (in Korean) 15
</body>

