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Abstract 

Groundwater moves very slowly and has plenty of minerals through water-rock 

interaction. Because groundwater reflects geological features, distribution of water 

properties would be significantly different each region. The main purpose of this 

study is to specify geological conditions producing the groundwater that is suitable 

for drinking. First of all, multivariate analysis was conducted to classify the 

groundwater into groups in Hoengseong area. Eight major ions of Na, K, Ca, Mg, 

SO4, NO3, Cl, and HCO3 were used for analysis. Result of principal component 

analysis for reducing variable, 3 components were enough for the analysis of whole 

data of 8 ions. First factor represented artificial contamination, second factor was 

abundance of carbonate minerals, and third factor was rich in sodium and 

bicarbonate. Using these 3 factors, the data were classified into 4 clusters by k-means 

cluster analysis. Properties of each cluster were explained by comparing with 3 

factors. Cluster 1, 3, and 4 were less polluted groups and cluster 2 was significantly 

polluted. Cluster 1 was rich in carbonate minerals and cluster 3 was the lowest 

concentration of all ions and most suitable for drinking. Clustering analysis is proper 

to understand specific features of groundwater itself, but difficult to find out 

influence of environmental variables. And multivariate analysis would be a valid 

way to find clean water from the existing wells. To understand relations between 

water quality and environmental conditions, association rules were used. Association 

rule method could be a data mining method to find a new location where clean water 

would be produced from target area. Five variables of water quality, depth of the 

well, geological rock, land use and slope gradient of the location were used for 

association rules in Hoengseong area. There are total 1186 rules, and 42 rules related 
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with water quality that is suitable for drinking as result (right hand side of the rule). 

By three measures, there was highest probability on gneiss, forest, and steep slope 

area as conditions for suitable for drinking water as results. To verify the result of 

association rules in Hoengseong, association rule analysis was conducted again with 

national level of 1269 data. There were 3 variables of water quality, geology, and 

depth. There were total 90 rules, and 8 rules related with water quality of suitable for 

drinking as result (right hand side of the rule). The highest probability was on gneiss 

and shallow depth as conditions and suitable for drinking water as results.  

Key words : Groundwater, Geochemical analysis, Statistical analysis, 

Multivariate analysis, Association rule, Water quality 
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1. Introduction 

Groundwater is important water resource that occupies 11 percent of available 

water resource of south Korea (National Groundwater Information Center of K-

water). Dependence on groundwater gets higher especially drought season. Since the 

season when rainfall is concentrated is distinct in Korea, groundwater is helpful 

resource during drought season. Groundwater is not only stable water source of 

supply in all seasons, but also able to develop with small scale in inaccessible area.  

Groundwater can be used for various purposes such as bottled water, hot springs, 

industrial use, and agriculture. Geochemical properties of groundwater depend on its 

use. For instance, temperature is the most important factor for hot springs. In the case 

of industrial groundwater, economic efficiency and specific ion concentration, such 

as iron and manganese, are important (National Groundwater Information Center of 

K-water). The water quality of groundwater is determined by various variables such 

as quantity, temperature, pH, various major ions and trace elements. And these water 

quality variables are affected by a number of environmental variables such as 

geology, slope, land use, depth of the well, precipitation, evapotranspiration, and 

distance from pollution sources. This study intends to find out the relations of water 

quality and environmental variables with statistical methods. Especially this study is 

focused on finding environmental variables for groundwater that is suitable for 

drinking.   

The water quality variables are affected by environmental conditions. For example, 

ion concentrations of groundwater are produced by water-rock interaction and reflect 

geological features. Ion concentrations determine high marketability in the bottled 

water market. The water that is suitable for drinking should be fit into conditions 
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specified in the relevant laws, and of course, the lower the pollution, the better. 

Concentrations of major ions (Na, K, Ca, Mg, Cl, NO3, SO4, and HCO3) are 

important elements in determining water quality. However, determining the 

suitability can be subjective. Therefore, in this study, ions concentration standards 

for drinking water were based on the water quality data from six companies in the 

spring water market and relevant laws.  

There are several data set from national groundwater observation network, rural 

groundwater net, national groundwater background water quality observation 

network, contamination groundwater observation network and so on. And a massive 

amount of groundwater data base is being built with basic survey of groundwater 

across the country by K-water (National Groundwater Information Center of K-

water). For water resource management, big data set of groundwater needs to be 

statistically analyzed, identified and managed.  

There have been many studies using statistical methods to analyze the water 

quality of groundwater (Ko et al., 2005; Moon et al., 2002; Kim et al., 2016). 

However, these studies have been analyses of small data set or analyzed only the 

hydrological characteristics inherent in groundwater, and were not related to the 

environment in which groundwater is produced. Statistical approach is needed 

because there is a lack of statistical analysis of the environmental variables affecting 

the water quality of groundwater. 

Data mining, on the other hand, refers to the methodology for extracting hidden 

patterns from big data set. Association rule analysis is one of powerful data mining 

techniques (Park et al.,1998). Association rules are statistical techniques that reveal 

strong associations between variables (also called as items), and finding useful 

patterns or associations in big data set can help decision making systems. (Han, J. et 
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al., 2011). The purpose of this study is to identify relations between the quality of 

groundwater and environmental variables and to discover rules about environmental 

conditions of groundwater suitable for drinking. The results of this study could be 

used to manage big data set of groundwater when the groundwater fundamental 

survey is completed in the future. Furthermore, this will enable the determination of 

environmental conditions for various uses of groundwater and help effective 

development of groundwater. 
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2. METERIALS AND METHODS  

2.1. Data 

2.1.1. Standards of water quality  

Water with high ionic concentration of 4 ions (Na, K, Ca and Mg) is not suitable 

for drinking, but water with too low concentrations is also not good water. For pH, 

the suitable range is also needed. However, it can be too subjective to determine the 

appropriate range of ion concentrations and pH. Therefore, in case of 4 ions and pH, 

the target value between the minimum value and the maximum value of each variable 

was determined from water quality data of 6 kinds of bottled water. Water within this 

target value was classified as good water and the rest as bad water. 

The remaining ion concentrations followed the legal standards for drinking water 

quality. Water that met all of these legal standards was classified as good water, and 

water that did not satisfy any of them was classified as bad water. 
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Table 1. Water quality analysis from six bottled water companies in Gangwon 

Province (mg/L). 

Company K Na Ca Mg 

A 1.1 4.7 11.4 3.3 

B 8.89 21.14 34.74 4.22 

C 0.6 7.09 13.43 1.97 

D 0.53 4.8 20 1.16 

E 0.38 5.16 10.2 1.47 

F 0.5 19.8 18.7 6.1 

 pH Latitude Longitude Geology 

A 7.21 38° 9'56.72"N 128°15'44.55"E Gneiss 

B 7.45 37°13'55.96"N 127°53'53.24"E Granite 

C 7.68 37°33'4.71"N 128°19'37.03"E Granite 

D 8.43 38°12'40.04"N 127°27'59.62"E Granite 

E 7.3 37°42'16.98"N 127°58'30.73"E Granite 

F 8.48 37°39'10.11"N 128° 9'43.57"E Granite 
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Table 2. Regulations for Drinking Water Management, Water Quality 

Standards and Inspection Rules for tap water and drinking water (Water 

quality standards in this study). 

 Legal standards  Legal standards 

pH 4.5 ~ 9.5 Pb 0.01mg/L or less 

Cl 250mg/L or less Cr 0.05mg/L or less 

SO4 250mg/L or less TCE 0.03mg/L or less 

Zn 3mg/L or less PCE 0.01mg/L or less 

Fe 0.3mg/L or less 1.1.1-TCE 0.1mg/L or less 

Mn 0.3mg/L or less Benzene 0.01mg/L or less 

Al 0.2mg/L or less Toluene 0.7mg/L or less 

NO3 10mg/L or less Ethylbenzene 0.3mg/L or less 

Cd 0.005mg/L or less Xylene 0.5mg/L or less 

Ar 0.01mg/L or less Bacteria Undetected (250mL) 

Phenol 0.005mg/L or less Turbidity 1NTU or less 

Hg 0.001mg/L or less   
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2.1.2. Groundwater data  

There are two sets of data used in this study. The first set is 227 data collected 

from basic survey of groundwater by K-water in the Hoengseong area. The second 

set is 1269 data of 106 areas all over South Korea collected from national 

groundwater background water quality network by national institute of 

environmental research.  

Eight major ions (Na, K, Ca, Mg, Cl, NO3, SO4, and HCO3), and pH are used as 

water quality variables of groundwater. And geology of the well location and the 

depth of the well are used as environmental variables of groundwater. Geological 

rock types are divide into granite, banded gneiss, granite gneiss, schist, amphibole, 

andesite, volcanic rock, etc. 97 percent of the wells are located at granite or gneiss.  

The second set is 1269 data of 106 areas all over South Korea (17 regions of 

Gangwon province, 15 regions of Gyeonggi province, 10 regions of Gyeongnam 

province, 18 regions of Gyeongbuk province, 17 regions of Jeonnam province, 7 

regions of Jeonbuk province, 9 regions of Chungnam province, 9 regions of 

Chungbuk, and Gwangju, Daegu, Incheon). The geological condition is divided into 

8 types of rocks (Granite, Gneiss, Limestone, Clastic sedimentary rock, Semi-

consolidated sedimentary rock, Unconsolidated sedimentary rock, Unconsolidated 

sediments, and Vesicular volcanic rock). 
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2.2. Site Description 

Hoengseong is a county where is located in the middle area of South Korea and 

South-west of Gangwon Province. Hoengseong is located at 37°32′ to 36°41′ north 

degrees of latitude and 127°46′ to 128°20′east degrees of longitude. Hoengseong is 

997.7 square kilometers in area. Because it is located inland mountains and is not 

affected by the ocean at all, it is a continental climate and a wide difference in 

temperature. Average annual temperature is 12.6 °C, January average temperature is 

-3.2 °C, August average temperature is 25.3 °C, and annual precipitation is 1425.3 

㎜. 

South Korea lies between latitudes 33° and 39°N, and longitudes 124° and 130°E 

and its total area is 100,032 square kilometers. South Korea has a humid continental 

climate and a humid subtropical climate, and is affected by the East Asian monsoon. 

Average annual temperature is 10 to 15 ℃, August average temperature is 23 to 

26 ℃, January average temperature is -6 to 3 ℃. The average annual precipitation 

varies from 1200 to 1500 mm in middle area of the country, and 1000 to 1800 mm 

in south area. The average annual precipitation varies from 1370 mm in Seoul to 

1470 mm in Busan. 50 to 60 percent of annual precipitation is concentrated in 

summer months. 
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Figure 1. Location and geological map of Hoengseong province, South Korea.   
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Figure 2. Annual precipitation distribution in 2014 (South Korea) 
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2.3. Multivariate statistical analysis 

2.3.1. Principal components analysis 

Principal components analysis (PCA) is an analytical technique to reduce the 

levels of several variables associated with each other while preserving as much 

information as possible. Principal component analysis has been widely used to 

evaluate the chemical composition of groundwater. The order of principal 

component analysis is as follows. 

First, a linear combination of original variables calculates a set of uncorrected 

variables (factors or principal components). The number of principal components 

can be created by the maximum number of original variables, of which the first few 

principal components are ordered to have most of the variations of the original 

variables. Next, the values of the higher-dimensional raw data are converted into a 

small number of low-dimensional principal components. Dimensioning a dataset can 

visualize the data into a low-dimensional space. The reduction of data can greatly 

reduce some numerical algorithm computation times and can be used to provide 

linear associations with no correlation between covariates. PCA is based on 

decomposing the data matrix X (n by p) into two matrices U (n by k) and V (p by k). 

In higher dimensions (p), it transforms into lower dimensions (k). A suitable number 

of k can be found from the PCA results.  

 

2.3.2. Factor analysis 

Factor analysis, a multivariate statistical method, yields the general relationship 

between measured chemical variables by showing multivariate patterns that may 

help to classify the original data. It enables the geographical distribution of the 

resulting factors to be determined. The geological interpretation of factors yields 
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insight into the main processes, which may govern the distribution of hydro-

chemical variables. (Chen-Wuing Liu, 2003) Factor Analysis is to divide data matrix 

X into products of two data matrices, U and V. 

                           𝑿 = 𝑼𝑽𝑻                            

Eq.1 

U is “score matrix” and V is “loading matrix”. The loading is the weight for each 

of the original variables when calculating principal components. The weight means 

the coefficient of principal components. 

In the principal component analysis, factor 1 explains for most of the variance. 

The rotation of a factor redefines a factor so that the loading of several factors is very 

large (near -1 or 1) or very small (near 0). There are orthogonal and oblique modes 

of rotation. Orthogonal rotation is a rotation that maintains the independence of 

factors. There are varimax and quartimax in the orthogonal rotation, the orthogonal 

rotation is common in analysis.  

 

2.3.3. k-means Clustering Analysis 

Cluster analysis is an analytical method of grouping several variable values into 

several clusters with similar characteristics. And it is a multivariate analysis 

technique that analyzes the relationships among the clusters by analyzing the 

characteristics of the formed clusters.  

It is a hierarchical cluster analysis method that is widely used in previous studies 

as a method to classify groundwater or surface water quality. However, since 

hierarchical cluster analysis is difficult to handle and visualize large amounts of data, 

k-means cluster analysis method is used in this study. 

The algorithm requires as input a matrix of M points in N dimensions and a matrix 
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of K initial cluster centers in N dimensions. Given an initial set of k means m1
(1), … , 

mk
(1), the algorithm proceeds by alternating between two steps. 

Assignment step: Assign each observation to the cluster whose mean has the least 

squared Euclidean distance, this is intuitively the nearest mean. 

𝑺𝒊
(𝒕)

= {𝒙𝒑: ‖𝒙𝒑 − 𝒎𝒊
(𝒕)

‖
𝟐

≤ ‖𝒙𝒑 − 𝒎𝒋
(𝒕)

‖
𝟐

∀𝒋,   𝟏 ≤ 𝒋 ≤ 𝒌}        Eq.2 

Update step: Calculate the new means to be the centroids of the observations in 

the new clusters. 

                   𝒎𝒊
(𝒕+𝟏)

=
𝟏

|𝑺𝒊
(𝒕)

|
∑ 𝒙𝒋𝒙𝒋∈𝑺

𝒊
(𝒕)                       Eq.3 

The algorithm has converged when the assignments no longer change. (Hartigan, 

1979) The k-means clustering is a simple and fast algorithm and can handle more 

data than hierarchical clusters.  

 

2.3.4. Association Rule Analysis  

Data mining is a technology that identifies associations in big data and converts it 

into information to quantify. Data mining discovers hidden regularity in the database 

and the extraction of useful information. Association rule is one of data mining 

techniques that calculate the frequency and probability of simultaneous occurrence 

of data. This is an analysis method that reveals the association between one variable 

and another, or groups of variables. Association rule analysis finds hidden rules in 

the database and extract useful information. The basis of association rules is the 

calculation of frequency. A rule is in the form R: X ⇒ Y, where X and Y are item 

groups that do not have the same elements. X is the condition of the rule and Y is the 

result. There are many interesting measures to identify only meaningful rules among 
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large number of total rules. Support is a measure of how many data out of the total 

data are simultaneously included and how many trends are identified. A rule with 

high confidence and high lift and low support is highly relevant rule but unlikely to 

occur. Confidence represents the probability that another variable will be included 

under the conditions of one variable and can determine the degree of association. As 

a conditional probability, the closer to 1 the greater the probability and the greater 

association. Lift is the rate of occurrence associated with the condition compared to 

the random result. If Lift is greater than 1 then it is more likely to have positive 

correlation and occur simultaneously. 
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3. RESULTS AND DISCUSSION 

3.1. Multivariate Analysis (Hoengseong) 

3.1.1. Principal Component Analysis (Hoengseong)  

Principal component analysis is a multivariate analysis that uses an orthogonal 

transformation to reduce variables (Na, 2017). PCA uses the loading matrix of n × k 

to traverse the n × p matrix into the score matrix, which is the lower dimension of k 

× p. Case of Hoengseong, eight ions were used from 227 wells, size of original data 

set is the matrix of 227 × 8 . To find a suitable number of k for the analysis, the 

variance associated with the principal component was. The first three components 

are shown to explain for most of the variation in the data, based on the variance of 

1.0, in Hoengseong calculated (Figure 3). Therefore, three main components were 

selected. Varimax orthogonal transformation was chosen, this is the orthogonal 

transformation of principal components to maximize the factor loading (Jöreskog et 

al., 1993). 
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Figure 3. The graph of variances related to each principal component in 

Hoengseong area.  
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3.1.2. Factor Analysis   

Factor Analysis is useful method for explaining groundwater quality data 

(Lawrence et.al., 1982). Three main components were selected as the main 

component analysis method. The original data matrix was 8 × 227, which could be 

separated by score matrix of 227 × 3 and loading matrix of 3 × 8. Loading matrix of 

3 × 8 provides loading values of each factor about original variables of eight ions 

(Table 3) The loading values in this loading matrix allow the interpretation of the 

meaning of each factor. Positive values mean positive correlations, and negative 

values are negative correlations. If there is no value, there is no correlation between 

the variables. And the score matrix of 227 × 3 was a new matrix of data that could 

be obtained as a result of factorial analysis. 

In factor 1, the loading value of SO4 was 0.471, Cl was 0.710, and NO3 was 0.697. 

Sulfate, chlorine, and nitrates are the main contents which represent the pollution. 

Since there were high correlations with SO4, Cl, and NO3, factor 1 indicates artificial 

contaminations. Ca was also highly correlated with 0.585, but Ca was much more 

correlated with 0.808 in factor 2. In factor 2, three ions of calcium, magnesium and 

bicarbonate were highly correlated with 0.808 on Ca, 0.732 on Mg and 0.590 on 

HCO3. Therefore, factor 2 directs the abundance of carbonate ions of Ca, Mg and 

HCO3. For example, if Factor2 is high in the region, it may be assumed that it is 

affected by carbonate minerals, which can be checked against the actual geological 

map. Factor 3 showed a high correlation between the two ions with Na of 0.98 and 

HCO3 of 0.799. 
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Table 3. The loading matrix from factor analysis (Hoengseong) 

 

  

 Factor 1 Factor 2 Factor 3 

Na 0.175  0.982 

K 0.452 0.111 0.144 

Ca 0.585 0.808  

Mg 0.292 0.732 0.156 

SO4 0.471 0.393 0.104 

Cl 0.710 0.286 0.159 

NO3 0.697 0.164 -0.214 

HCO3  0.590 0.799 
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Figure 4. Scatter-plot of 3 factors (Hoengseong) 
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3.1.3. Cluster Analysis  

Cluster Analysis is a multivariate analysis technique that groups several clusters 

of similar characteristics among different objects and identifies and analyzes 

characteristics of each cluster. K-means clustering is one of cluster analysis. This 

method specifies the initial value as much as the number of clusters of k, forms the 

cluster based on the nearest initial value in each data, and updates the center value 

by recalculating the mean of each cluster. This repeats the new allocation process for 

the new central value and forms the final cluster of k when the center value is no 

longer moving.  

The score matrix, which consists of three factor values from the result of factor 

analysis, is used for k-means clustering. Using k-means clustering, 227 wells were 

grouped into four clusters, as shown in figure 5.  

Figure 5 (a) it the scatterplot of factor 1 (y-axis) and factor 2 (x-axis). Factor 1 

was a factor that directs artificial pollutants with high correlation between SO4, Cl 

and NO3. Since Factor 1 was higher than other clusters, Cluster 2 is a relatively 

contaminated cluster. Cluster 1 showed high values in factor 2 value. Factor 2 had a 

high correlation of Ca, Mg and HCO3, indicating carbonate minerals. Cluster 1, a 

cluster with high Factor 2, was a cluster which was rich in carbonate minerals and 

relatively low levels of pollution. Figure 5 (b) is a scatterplot of factor 1 (y-axis) and 

factor 3 (x-axis). Also in this instance, cluster 2 was a cluster of contaminated one 

because the value of factor 1 is higher than other clusters. For cluster 4, factor 3 was 

high. Factor 3 directed Na and HCO3, so it was shown that Cluster 4 was a cluster 

with high Na and HCO3 concentrations. Figure 5 (c) is a scatterplot of factor 2 (y-

axis) and factor 3 (x-axis). In this figure, cluster 1 had a higher factor 2 and cluster 

4 had a higher factor 3, as well. In summary, Cluster 1 was a cluster of low pollution 
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and high carbonate minerals, cluster 2 was a cluster of high-contamination, cluster 3 

was low-contamination and the lowest concentration of ions overall, and cluster 4 

was rich in Na and HCO3 with low contamination. 

The results of cluster analysis also differed comparing each cluster with the 

geological conditions of wells. Among the wells in Hoengseong area, the proportion 

of wells located in gneiss rock zone was 24%. Twenty-two percent of cluster 1 was 

located on gneiss and 78% of cluster 1 was located on granite zone. Cluster 2 was 

located in 9% of gneiss, 9% of volcanic rocks, and 82% of granite areas. Cluster 3 

was located at 34 % of gneiss, 2 % of volcanic rock and 64 % of granite. Cluster 4 

was located on 42% of gneiss and 58 % of granite. For Cluster 3 with the lowest 

contamination and the lowest ionic concentration, and cluster 4 had relatively high 

probability on gneiss rock zone. 
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Figure 5. Scatter-plot of 4 clusters (Hoengseong) 
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Figure 5. (a) Scatter-plot of factor 1 and factor 2. Four color represent each 4 

clusters from k-means clustering analysis. (Hoengseong) 
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Figure 5. (b) Scatter-plot of factor 1 and factor 3. Four color represent each 4 

clusters from k-means clustering analysis. (Hoengseong) 
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Figure 5. (c) Scatter-plot of factor 2 and factor 3. Four color represent each 4 

clusters from k-means clustering analysis. (Hoengseong) 
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3.2. Association Rules (Hoengseong) 

3.2.1. Discretization of data 

In order to perform association rules, continuous data should be discrete. 

Geological features were classified into 3 types of rock of granite, gneiss, and 

volcanic rock. The depth is divided into three categories: Shallow, Medium and Deep, 

based on 50m and 100m. Water quality was categorized into two categories: suitable 

for drink and not suitable. This is based on eight major ion concentration (Na, K, Ca, 

Mg, SO4, NO3, Cl, HCO3) and pH by 6 types of bottled water quality data. Land use 

of the area (Radius 100 m) is divided into three categories: forest, medium and farm 

area. Slope gradient is divided into three categories: Gradual, Medium, and Steep. 

Slope gradient was divided by 7 and 12 degrees. 

a) Geology  

There are nine sub-categories specifically, granite, banded gneiss, granite gneiss, 

schist, amphibole, leucocratic gneiss, volcanic rock, granite porphyry, and andesite. 

This is based on the data of geology within 100 m radius from the well. Most wells 

were found to comprise 100 % of a single geology. Of the total 227 wells, there are 

152 wells that are located on granite, 5 wells that are located on banded gneiss, 51 

wells that are located on granite gneiss, 3 wells that are located on schist, 2 wells are 

on leucocratic gneiss, one well is located on sedimentary rock or volcanic rock, one 

well is on granite porphyry, and 5 wells are located on andesite. Total of 220 wells 

were located in a single geological area (Table 4). The remaining seven wells were 

classified as geology if the well had a dominant presence of more than 75%. For 

example, in case of HSR-0089, it was classified as granite since it was located on 

98 % of granite and 2 % of banded gneiss. In the case of HSR-0714, this well is 

located on 44% of granite and 56% of granite porphyry (Table 5). It could not be 
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classified by this method, was classified as granite, because granite and granite 

porphyry have similar chemical composition.  

In conclusion, geological conditions of this area were largely categorized into 

three main types: 157 wells on granite, 64 wells on gneiss, 6 wells on volcanic rock. 

These three main types were used in this study.  

b) Depth 

Data on the depth of wells are continuous data. The depth of the well was divided 

into three categories on the basis of 50 m and 100 m. Wells with a depth of less than 

50 m were classified as "shallow". Wells with a depth of above 50 m and not more 

than 100 m were classified as "medium". And wells with more than 100 m of depth 

were classified as “deep”. There were 60 shallow depth wells, 55 medium depth 

wells, and 112 deep depth wells.  

c) Water quality (ionic concentration)  

Na, K, Ca, Mg and pH were divided into two categories of “Suitable for drinking” 

and “Not suitable (for drinking)” based on water quality data of 6 bottled water 

(Table 1). Based on minimum and maximum values, five variables were divided into 

three categories: "Low", "Suitable", and "High". Na ranged 4.7 ~ 21.14 (mg/L). K 

ranged 0.38 ~ 8.89 (mg/L). Ca ranged 10.2 ~ 34.74 (mg/L). Mg ranged 1.16 ~ 6.1 

(mg/L). NO3, Cl, SO4 and HCO3 were divided into two categories of "Suitable” and 

"Not suitable” based on maximum value only (Table 2). In conclusion, water quality 

that was suitable for all 9 variables was classified as "Suitable for drinking" and the 

rest as "Not suitable". There are 26 wells of “Suitable for drinking” and 201 wells of 

“Not suitable”.  

  d) Land use 
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Land use data was based within 100 m radius from the well. This was divided into 

three categories: forest, medium and farm. Forest zone is less than 33 % of farm zone. 

Farm zone was where more than 67 percent of the area is covered by farms. Medium 

zone was between 33 and 67 percent. There were 129 wells on forest area, 43 wells 

on medium zone and 55 wells on farm zone.  

e) Slope gradient 

Slope gradient was divided into 3 categories: Gradual, Medium and Steep. This 

classification was based on 1 quartile of data (7 degree) and 3 quartile of data (12 

degree). There were 57 wells of gradual slope, 113 wells of medium slope and 57 

wells of steep slope gradient.  
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Table 4. Number of wells located on single type of geological rock. 

  
Number of wells located on single type of geological rock 

Granite 152 

Banded gneiss 5 

Granite gneiss 51 

Schist 3 

Amphibole 0 

Leucocratic gneiss 2 

Volcanic rock 1 

Granite porphyry 1 

Andesite 5 

Total 220 
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Table 5. Seven wells located on multiple types of geological rock. Part of total data in Hoengseong. 

 

 

Well 

Number 
Granite 

Banded 

gneiss 

Granite 

gneiss 
Schist Amphibole 

Leucocratic 

gneiss 

Volcanic 

rock 

Granite 

porphyry 
Andesite 

Original 

Category 

Large 

Category 

HSR-0089 0.98 0.02 0 0 0 0 0 0 0 Granite Granite 

HSR-0164 0 0.99 0.01 0 0 0 0 0 0 
Banded 

gneiss 
Gneiss 

HSR-0208 0 0.13 0 0.87 0 0 0 0 0 Schist Gneiss 

HSR-0399 0 0.03 0 0 0 0.97 0 0 0 
Leucocratic 

gneiss 
Gneiss 

HSR-0421 0.94 0 0 0 0.06 0 0 0 0 Granite Granite 

HSR-0714 0.44 0 0 0 0 0 0 0.56 0 Unclassified Granite 

HSR-0742 0.96 0 0 0 0 0 0 0.04 0 Granite Granite 
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Figure 6. Histogram of well depth distribution (Hoengseong)  
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Table 6. Part of categorized data of geology, depth and water quality. 

Well number Class Geology Depth 

HSR-0088 Not suitable Gneiss Med 

HSR-0089 Not suitable Granite Deep 

HSR-0091 Suitable for drinking Granite Shallow 

HSR-0093 Not suitable Granite Med 

HSR-0104 Not suitable Granite Med 

HSR-0114 Not suitable Granite Shallow 

HSR-0119 Not suitable Granite Deep 

HSR-0124 Not suitable Granite Deep 

HSR-0126 Not suitable Granite Deep 

HSR-0127 Suitable for drinking Granite Deep 

HSR-0135 Not suitable Granite Shallow 

HSR-0143 Not suitable Gneiss Shallow 

HSR-0153 Not suitable Gneiss Shallow 

HSR-0157 Not suitable Gneiss Med 

HSR-0161 Not suitable Gneiss Deep 
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Table 7. Categorized data in Hoengseong area (Total 227 wells). 

Variables Category Number of wells 

Water quality 
Suitable 26 

Not suitable 201 

Geology 

Granite 157 

Gneiss 64 

Volcanic rock 6 

Depth 

Shallow 60 

Medium 55 

Deep 112 

Land use 

Forest 129 

Medium 43 

Farm 55 

Slope gradient 

Gradual 57 

Medium 113 

Steep 57 
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3.2.2. Association Rules Analysis (Hoengseong)  

The result of association rules using 5 variables of water quality, depth of the well, 

geology, land use and slope gradient, there were 1186 rules in Hoengseong area 

(Minimum support value = 0.01, Minimum confidence value = 0.1). Top 10 results 

in descending order for confidence are in table 8. The highest rule for confidence 

was land use of forest as a result and volcanic rock as a condition. There are only six 

wells that are on volcanic rock zone. So additional study using large amounts of 

volcanic rock data will be needed, in order to determine whether this result can be 

seen as a significant result. In case of depth, artificial pollutants are mainly located 

on the surface, it was expected that the deeper the well, the better the quality of the 

water, but the result was the opposite. This is because not only artificial 

contamination was considered, but also high concentrations of cations were 

classified as "Not suitable for drinking". A high concentration of Ca and Mg results 

in a high hardness, which is not suitable for drinking.  

Since the purpose of this study is to find the conditions for good drinking water, 

only 42 rules for "suitable for drinking" of water quality as results were compiled 

out of the whole 1186 association rules (Table 8). The highest rule for lift and 

confidence was in conditions with gneiss and forest and steep slope area. 

Considering only geology as condition, there was the highest probability that suitable 

water for drinking was in gneiss, the probability at granite zone was lower than 

gneiss zone. There were 6 wells in volcanic rock zone, and all of those 6 wells were 

not suitable for drinking.   
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Table 8. Top 10 rules in descending order by confidence. Part of total 1186 rules. 

(Hoengseong)  

 Lhs (Condition)  Rhs (Result) support confidence lift 

[1] {Geology=Volcanic Rock} ⇒ {LandUse=Forest} 0.026 1.000 1.760 

[2] {Geology= Volcanic Rock } ⇒ {Class=Not Suitable} 0.026 1.000 1.129 

[3] 
{Geology= Volcanic Rock, 

Depth=Deep} 
⇒ {LandUse= Forest } 0.018 1.000 1.760 

[4] 
{Geology= Volcanic Rock, 

Depth=Deep} 
⇒ {Class=Not Suitable} 0.018 1.000 1.129 

[5] 
{Geology= Volcanic Rock, 

 LandUse=Forest} 
⇒ {Class=Not Suitable} 0.026 1.000 1.129 

[6] 
{Class=Not Suitable,  

Geology= Volcanic Rock } 
⇒ {LandUse= Forest } 0.026 1.000 1.760 

[7] 
{LandUse=Medium,  

SlopeGradient=Steep} 
⇒ {Class=Not Suitable} 0.044 1.000 1.129 

[8] 

{Geology= Volcanic Rock,  

Depth=Deep,  

LandUse=Forest} 

⇒ {Class=Not Suitable} 0.018 1.000 1.129 

[9] 

{Class=Not Suitable,  

Geology= Volcanic Rock,  

Depth=Deep} 

⇒ {LandUse= Forest } 0.018 1.000 1.760 

[10] 

{Class=Suitable for drinking,  

Geology=Gneiss, 

LandUse=Medium} 

⇒ {SlopeGradient=Medium} 0.013 1.000 2.009 
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Figure 7. Network graph of total 67 rules (Hoengseong) 
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Table 9. Top 10 rules about “suitable for drinking” (Total 42 rules, Hoengseong) 

lhs (condition)  rhs (result) support confidence lift 

{Geology=Gneiss,  

Land Use=Forest,  

Slope Gradient=Steep} 

→ {Class=Suitable for drinking} 0.018 0.174 1.518 

{Geology=Gneiss,  

Land Use=Medium,  

Slope Gradient=Medium} 

→ {Class=Suitable for drinking} 0.018 0.167 1.455 

{Geology=Granite, 

Depth=Shallow,  

Slope Gradient=Gradual} 

→ {Class=Suitable for drinking} 0.044 0.156 1.364 

{Depth=Shallow,  

Slope Gradient=Gradual} 
→ {Class=Suitable for drinking} 0.022 0.135 1.180 

{Geology=Gneiss, 

Depth=Deep,  

Land Use=Forest} 

→ {Class=Suitable for drinking} 0.035 0.133 1.164 

{Geology=Gneiss,  

Slope Gradient=Steep} 
→ {Class=Suitable for drinking} 0.031 0.127 1.111 

{Geology=Gneiss,  

Land Use=Forest} 
→ {Class=Suitable for drinking} 0.018 0.111 0.970 

{Geology=Granite,  

Land Use=farm, 

Slope Gradient=Medium} 

→ {Class=Suitable for drinking} 0.070 0.102 0.890 

{Depth=Deep,  

Land Use=Forest, 

Slope Gradient=Steep} 

→ {Geology=Granite} 0.070 0.615 0.890 

{Geology=Gneiss, 

Depth=Shallow} 
→ {Depth=Deep} 0.048 0.423 0.857 

{Geology=Gneiss,  

Land Use=Forest,  

Slope Gradient=Steep} 

→ {Geology=Gneiss} 0.044 0.385 1.364 

{Geology=Gneiss,  

Land Use=Medium,  

Slope Gradient=Medium} 

→ {Depth=Shallow} 0.035 0.308 1.164 

{Geology=Granite, 

Depth=Shallow,  

Slope Gradient=Gradual} 

→ {Depth=Med} 0.031 0.269 1.111 
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Figure 8. Network graph of top 10 rules for “Suitable for drinking” as result. 

Size of a circle means support values and color of a circle represents lift values. 
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3.3. Association Rules (National Data)   

Additional association rules were applied to national-wide data to verify the result 

in Hoengseong. Total 1269 data collected across the country from the National 

Institute of Environmental Research were used. 

3.3.1. Discretization of data 

Associated rules require a categorical change of continuous data. Geological 

variable used eight classifications. The depth is divided into three categories, 

Shallow, Medium and Deep, based on 50m and 100m. Water quality was categorized 

into two categories of "suitable for drinking" and "not suitable" based on bottled 

water using 10 variables of eight major ions, and pH.  

a) Geology  

97.3% of the wells are located in gneiss or granite, and data were divided into 3 

categories of granite, granite and volcanic rock. Nationwide data were evenly 

distributed in the number of wells belonging to each geographical category 

comparing with the data in Hoengseong. The purpose of this part is to examine 

whether the same rules appear when different numbers of categories are used with 

different data. There are 336 well on granite, 336 wells on gneiss, 264 wells on 

unconsolidated sediments, 167 wells on clastic sedimentary rock, 96 wells on non-

vesicular volcanic rock, 46 wells on limestone, 12 wells on semi-consolidated 

sedimentary rock, and 12 vesicular volcanic rock.  

b) The depth 

As in Hoengseong, the depth of the well was divided by 50 m and 100 m with 3 

categories of “Shallow”, “Medium”, and “Deep”. Shallow 845 wells, Medium 416 

wells, and Deep 8 wells, there were few deep wells compared to Hoengseong. 

c) Water quality 
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Based on the bottled water data, maximum and minimum values of Na, K, Ca, and 

Mg were selected. The corresponding values were classified as "suitable for 

drinking" and rest of data were classified as "not suitable" (for drinking). There were 

187 wells for "suitable for drinking" and 1,082 wells for "not suitable''. 

 

3.3.2. Association Rules Analysis  

From 1269 data nationwide, there were a total of 90 association rules (minimum 

support value 0.01, minimum confidence value 0.1). The highest association rule 

was "not suitable" in water quality under the condition of clastic sedimentary rock 

and medium depth of the well (Table 9). Only considering geological conditions, the 

rock most associated with not suitable for drinking water was clastic sedimentary 

rock, followed by unconsolidated sediments and limestone. Only considering the 

depth of wells, there was the highest probability that medium-depth wells (50 m ~ 

100 m) would yield "not suitable" water, and then shallow-depth wells (~ 50 m) next.  

To find conditions about drinking water, so only the rules related to "Suitable for 

drinking" were compiled separately. There were five rules under condition, nine rules 

in result, and 14 rules in total (Table 10). The highest association rule was the 

condition in which the depth was shallow (less than 50 meter), located in the gneiss 

zone. The following was the case of wells with medium depths (50 m ~ 100 m) 

located in intrusive igneous rocks. Considering only geological characteristics, the 

most powerful rule was about gneiss rock, followed by intrusive igneous rock and 

non - porous volcanic rock. For depth, the probability was higher under shallow wells 

and then at medium depths.  
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Table 10. Top 10 rules in descending order by confidence. Part of total 90 rules. 

(National-wide data) 

Condition  Result Support Confidence Lift 

{Geology=Clastic Sedimentary Rock, 

 Depth=Medium} 

⇒ {Class=Not suitable } 0.042 0.946 1.110 

{Geology=Limestone, Depth=Medium} ⇒ {Class=Not suitable } 0.012 0.938 1.100 

{Geology=Unconsolidated Sediments, 

 Depth=Medium} 

⇒ {Class=Not suitable } 0.065 0.932 1.093 

{Geology=Clastic Sedimentary Rock } ⇒ {Class=Not suitable } 0.122 0.929 1.089 

{Geology= Clastic Sedimentary Rock, 

 Depth=Shallow} 

⇒ {Class=Not suitable } 0.080 0.919 1.078 

{Geology=Unconsolidated Sediments} ⇒ {Class=Not suitable } 0.191 0.917 1.075 

{Geology=Unconsolidated Sediments, 

 Depth=Shallow} 

⇒ {Class=Not suitable } 0.126 0.909 1.066 

{Depth=Medium} ⇒ {Class=Not suitable } 0.282 0.861 1.009 

{Depth=Shallow} ⇒ {Class=Not suitable } 0.565 0.849 0.995 

{Geology=Limestone} ⇒ {Class=Not suitable } 0.031 0.848 0.994 
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Figure 9. Network graph of total 90 rules (national data). 
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Table 11. Fourteen rules related with “Suitable for drinking”. 

lhs (condition)  rhs (result) Support Confidence Lift 

{Geology=Gneiss, Depth=Shallow} ⇒ {Class=Suitable for drinking} 0.036 0.205 1.394 

{Geology=Granite, Depth=Medium} ⇒ {Class=Suitable for drinking} 0.017 0.204 1.382 

{Geology=Gneiss} ⇒ {Class=Suitable for drinking} 0.053 0.199 1.353 

{Geology=Gneiss, Depth=Medium} ⇒ {Class=Suitable for drinking} 0.017 0.194 1.320 

{Geology=Granite} ⇒ {Class=Suitable for drinking} 0.049 0.185 1.252 

{Geology=Vesicular volcanic rock} ⇒ {Class=Suitable for drinking} 0.013 0.177 1.202 

{Geology=Granite, Depth=Shallow} ⇒ {Class=Suitable for drinking} 0.031 0.174 1.182 

{Depth=Shallow} ⇒ {Class=Suitable for drinking} 0.101 0.152 1.028 

{Depth=Medium} ⇒ {Class=Suitable for drinking} 0.046 0.139 0.946 

{Class=Suitable for drinking} ⇒ {Depth=Shallow} 0.101 0.685 1.028 

{Class=Suitable for drinking} ⇒ {Geology=Gneiss} 0.053 0.358 1.353 

{Class=Suitable for drinking} ⇒ {Geology=Granite} 0.049 0.332 1.252 

{Class=Suitable for drinking} ⇒ {Depth=Medium} 0.046 0.310 0.946 

{Class=Suitable for drinking} ⇒ {Geology=Unconsolidated Sediments } 0.017 0.118 0.566 

  



44 

 

 

Figure 10. Network graph of only for "suitable for drinking". There are 9 rules 

related with "suitable for drinking". Size of a circle means support values and 

color of a circle represents lift values.  
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4. CONCLUSIONS 

The purpose of this study was to find the environmental variables producing water 

that is suitable for drinking. The characteristics of the target groundwater clusters 

were identified through multivariate analysis, and association rules were used to in 

this study specify environmental conditions.  

1) The groundwater quality data of 227 wells in the Hoengseong area were 

analyzed by multivariate analysis of eight kinds of Na, K, Ca, Mg, Cl, NO3, SO4 and 

HCO3. Using principal component analysis and factor analysis, variables were 

reduced to 3 factors. Factor 1 with high correlation of SO4, NO3, and Cl, was the 

factor about artificial contamination. Factor 2 was a highly correlated factor of Ca, 

Mg and HCO3, and factor 3 was a factor with high correlation of Na and HCO3. With 

these three factors, as a result of k-means cluster analysis, it was classified into four 

clusters. Cluster 1 was a low-pollution, carbonate-rich cluster, and cluster 2 was a 

highly polluted. Cluster 3 was low in pollution level and low in total ion 

concentration. Finally, Cluster 4 was low in pollution level and rich in Na and HCO3.  

2) For association rules, categorized 5 variables were used (Water quality, geology, 

depth, land use, and slope gradient). There were total 1186 rules, and 42 rules related 

to water quality of suitable for drinking as result. The highest rule was about gneiss 

and forest area with steep slope gradient as conditions. Only considering the 

geological condition, it was more likely that water was suitable for drinking in the 

order of gneiss, granite, and volcanic rock.  

3) The method of categorizing 1269 data across the country for association rules 

was conducted. There were 3 variables of water quality, geology and depth of the 

well. Geology was used as original 8 classification of basic survey (Clastic 
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sedimentary rock, Granite, Limestone, Gneiss, Semi-consolidated sedimentary rock, 

Unconsolidated sedimentary rock, Unconsolidated sediments, and Vesicular 

volcanic rock). As a result of association rules, the highest related condition to yield 

water suitable for drinking was the condition of shallow depth well located in the 

gneiss zone. Considering only geological characteristics, probability was higher in 

order of gneiss, followed by intrusive igneous rock and non - porous volcanic rock. 

For depth, the probability was higher under shallow wells and then at medium depths.  

While previous studies covered small amounts of data, this study covered 

hundreds and thousands of units of groundwater data. Association rules were used to 

find environmental variables that produce water suitable for drinking. Thousands of 

ground water quality data will be gathered when the nation's groundwater 

fundamental research would be completed. Later, this study would be used the big 

data mining to derive meaningful findings.  
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국문 초록  

지하수는 땅 속을 천천히 이동하며 물과 암석 사이의 상호작용을 통해 

많은 미네랄을 함유한다. 따라서 지하수는 그 지역의 지질학적인 특징을 

반영하며, 지하수 수질의 특징은 지역에 따라 다른 분포를 띈다. 이 

연구의 주된 목적은 먹는 샘물에 적합한 지하수를 산출하는 지질학적인 

특징을 찾는 것이다. 먼저 횡성 지역의 지하수의 특징을 파악하기 위해 

다변량 분석을 시행했다. 다변량분석에는 8개 주요 이온을 이용했다(Na, 

K, Ca, Mg, SO4, NO3, Cl, HCO3). 먼저 주성분분석을 이용한 결과 8개 

이온의 상관성이 3개의 주요 주성분으로 해석 가능했기 때문에, 변수를 

8개에서 3개로 줄였다. 이 세가지 주성분을 이용하여 요인 분석을 

시행하여 각 주성분과 이온과의 상관성 분석을 통해 각 주성분의 의미를 

알 수 있었다. 첫번째 주성분은 인공적인 오염원을 지시했고, 두번째 

주성분은 탄산염 광물을 지시했고, 세번째 주성분은 나트륨과 

중탄산염을 지시했다. 요인 분석을 통해 얻은 주성분의 score를 값으로 

하는 새로운 행렬을 입력 변수로 하여 k-평균 군집 분석을 시행한 결과, 

횡성 지역의 데이터는 4개의 군집으로 분류할 때 가장 잘 해석되는 

것을 알 수 있었다. 각 군집의 주성분 값을 비교하여 군집의 특성을 

파악할 수 있었다. 군집 1, 3 그리고 4는 상대적으로 덜 오염된 

군집이었으며, 군집 2는 오염된 군집이었다. 군집 1은 탄산염 광물이 

가장 풍부했고, 군집 4는 나트륨이 풍부했으며, 군집 3은 전반적인 이온 

농도가 가장 낮은 군집으로 군집들 중 가장 먹는 샘물에 적합한 
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군집이었다. 이러한 군집 분석 방법은 물 고유의 수질 특성을 분석하고 

이해하는데 적합한 방법이지만, 환경적인 변수를 입력 변수로 

분석하기는 적합하지 않았다. 다변량분석은 수질 데이터를 얻을 수 있는 

기존 관정 중에서 먹는 샘물에 적합한 관정을 찾는 방법에는 적합하다. 

환경적인 변수와 수질의 관계를 이해하기 위해서 새로운 분석 방법을 

필요로 했고, 본 연구에서는 연관 규칙을 사용하였다. 연관 규칙은 

데이터 마이닝 방법 중 하나로, 연관 규칙을 이용하여 관정이 없는 타겟 

지역에서 먹는 샘물에 적합한 물이 산출될 확률이 높은 곳을 찾을 수 

있다. 횡성 지역의 수질, 관정의 심도, 지질, 토지이용도, 경사도의 

다섯가지 변수를 연관 규칙의 입력 변수로 사용하였다. 그 결과, 총 

1186개의 연관 규칙이 있었으며, 규칙의 조건부와 결과부 중 결과 

부분이 먹는 샘물에 적합한 수질을 지시하는 연관 규칙은 42개가 

있었다. 연관 규칙을 판단하는 세가지 측도를 이용하여, 가장 먹는 

샘물에 적합한 물을 산출하는 조건은 편마암, 숲, 가파른 경사도 세가지 

조건일 때였다. 횡성에서의 연관 규칙 결과를 검증하기 위해 전국의 

1269개 데이터를 이용하여 연관 규칙을 시행하였다. 수질, 지질, 심도의 

세가지 데이터를 입력 변수로 사용했다. 전체 90개의 연관 규칙이 

있었으며, 그 중 먹는 샘물에 적합한 결과에 대한 연관 규칙은 8개가 

있었다. 먹는 샘물에 적합한 물이 산출될 확률이 높은 환경적인 변수는 

편마암, 얕은 심도의 조건이었다.  

주요어 : 지하수, 지구화학 분석, 통계 분석, 다변량 분석, 연관 규칙, 

수질 
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