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Abstract

This review study considers the problem of testing a parameter change in zero-
inflated general integer-valued time series models where the conditional density
of current observations is assumed to follow a zero-inflated one-parameter expo-
nential family. This thesis focuses on the standardized residual-based CUSUM
tests, based on the previous study of Lee and Lee (2018) and show that their

null distributions converge weakly to the functions of Brownian bridges.

Keywords: Time series of counts, integer-valued GARCH models, zero-inflated
exponential family, parameter change test, CUSUM test.
Student Number: 2017-26674
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Chapter 1

Introduction

Integer-valued time series models have been studied by many researchers and
applied to many applications in science, engineering, and economics. Integer-
valued autoregressivee (INAR) time series models based on a binomial thinning
operation are introduced by the authors such as McKenzie (1985, 2003), Alzaid
and Al-Osh (1990), Al-Osh and Aly (1992). See Weif3(2008). Other models such
as nonlinear integer-valued generalized autoregressive conditional heteroscedas-
tic (INGARCH) models are also used by Heinen (2003), Ferland et al. (2006),
Fokianos et al. (2009), and Neumann (2011). Among discrete distributions, the
Poisson distribution has been widely used as the conditional distribution of
current observations given past information but other distributions are also
considered. See Davis and Wu (2009), Zhu (2011), and Christou and Fokianos
(2014) who consider negative binomial INGARCH (NB-INGARCH) models,
and also Zhu (2012a,b) and Lee et al. (2016) who consider zero-inated gener-
alized Poisson and negative binomial INGARCH models. Davis and Liu (2016)

consider nonlinear INGARCH models with conditional densities belonging to



one-parameter exponential family. Lee and Lee (2018) recently studied the pa-
rameter change test in their models.

The change point problem has attracted much attention from researchers
during the past decades since many time series often experience structural
changes in their underlying models, see Csorgo and Horvath (1997) for a general
review and Lee et al. (2003) for a background. The change point test for integer-
valued time series has been studied by Kang and Lee (2009), Fokianos and Fried
(2010, 2012), Franke et al. (2012), Fokianos et al. (2014), Kang and Lee (2014),
Hudecova et al. (2016), and Diop and Kengue (2017). The CUSUM test per-
forms well in many situations, but the estimate-based CUSUM test suffers from
severe size distortions in GARCH models, see Kang and Lee (2014) and Lee
et al. (2016). As a remedy, the residual-based CUSUM test has been proposed,
see Lee et al. (2004) and Lee and Lee (2015). However, its performance is poor
particularly when a parameter change locates in conditional mean part, see Oh
and Lee (2018). Lee and Lee (2018) proposed to use the score vector-based
CUSUM test and standardized residual-based CUSUM test, and Lee, Seok and
Kim (2018) has extended Lee and Lee (2018) to the zero-inflated exponential
family INGARCH models. For zero-inflated integer-valued models, we refer to
Jazi and Lee et al. (2016), Kim and Lee (2018), and Chen et al. (2018).

The remainder of this thesis is organized as follows. Chapter 2 reviews the
previous studies including the work of Lee and Lee (2018) and Lee, Seok and
Kim (2018) and introduces the zero-inflated one parameter exponential family
INGARCH models and establishes the asymptotic results for the CMLE and
the CUSUM tests based on the residuals and standardized residuals. Chapter 3

provides concluding remarks. Finally, all proofs are provided in the Appendix.



Chapter 2

Literature review and main result

2.1 Model formulation

Let {Y;,t > 1} be the zero-inflated general nonlinear INGARCH time series of
counts satisfying with the conditional distribution of the one-parameter expo-

nential family
Yt|.7:t—1 ~ p(Z’??t), Xi = E(Y;t|ft—1) = fe(Xt—l,Yt—l), (2-1)

where F; is the o-field generated by m,Y1,...,Y:, and fyp(x,y) is a nonnega-
tive bivariate function defined [0,00) x Ny (INg = INU {0}), depending on the

parameter § € © C R?, and p(:|-) is a probability mass function given by

p(zln) = {p+ (1 —p)g0n)}(z=0)+ (1 —p)g(z[n)I(z > 1) with

q(z|n) = exp{nz—A(n)}th(z), 2>0, and 0<p < 1.

Here 7 is the natural parameter, A(-) and h(-) are known functions, and A’(-)

exists and is strictly increasing, and further, n, = (A’ )*l(ﬁ—tp). We express



B(y) = A'(n). Then, (1 — p)B(m) and (1 — p){B'() + pB(n)?} are the
conditional mean and variance of Y;, respectively, and X; = (1 — p)B(n),
C(nt) :== (1 — p){B'(n:) + pB(n)?}. To emphasize the role of 6, we also use
notation X;(0) and n,(0) to stand for X; and 7;. Note that although X; neces-
sarily depends upon p, the recursion in model (2.1) is designed to operate with
a link function only depending on 6 as done in Lee et al. (2016). In fact, we can
write X; = X4(p,0) = fo(Xi_1(p,0),Y;_1). We put 9 = (p,#7)” and denote the
true parameter by 9y = (po, 03 )7T.

As an example of model (1) with p = 0, we can consider Poisson (linear)
INGARCH model, Y;|Fi—1 ~ Poisson(N\), At = w + aX—1 + BY;—1. In this
case, we have n, = log(X;(0)), A(n) = e, B'(n) = €", B'(n) = X4(0), and
B'(n) = B"(n). Moreover, we can consider the negative binomial (NB) IN-
GARCH model, ;| F1 ~ NB(r,p), X; = "2 — o 4+ X, + BY;_1,

Pt
where r € IN is assumed to be known and Y ~ NB(r, p) implies

k+r—1
P(Y;=k) = (1—p)kpr, k=0,1,2,....

r—1
In this case, ny = log(X:(0)/(X¢(0) + 1)), A(n) = —rlog(r/(1 —e")), B'(n) =
re’ /(1 —eM?, B'(n;) = X¢(0)(X4(0) +7)/r, and B"(n) = re"(1+e7)/(1 —e")3.

In what follows, we assume

(A0) For all z,2’ > 0 and y, 3y’ € INy,
Sup |[folz,y) — fo(a',y")| < wilw — 2| + waly — ¥/,
€

where wq,ws > 0 satisfies wy + wo < 1.

Davis and Liu (2016) showed that this assumption ensures the strict sta-
tionarity and ergodicity of {(X¢,Y:)} when p equals 0 and the existence of a

measurable function gZ : IN® = {(nq,na,...),n; € No,i = 1,2,...} — [0,00)



such that X;(6) = g2 (Y;_1,Y;_2,...) a.s., which also holds for any p € (0,1).
The stationarity and ergodicity in model (2.1) can be shown as seen below

similarly to Davis and Liu (2016), but verifying them is not straightforward.

Theorem 1 (Stationarity) Suppose that the bivariate chain {(Yz, X¢);t € IN}
in model (2.1) satisfies (AO). Then, it holds that

(i) There exists a random variable Zs such that for all x, Z,(z) — Zs
almost surely. In particular, Zo, does not depend on x and has distribution

m, which makes the stationary distribution of {X;}.

(ii) The {X} is geometric moment contracting (GMC) with .

Furthermore, E; X1 < oo.

(iii) If {X:} has stationary distribution m, then {Y;} is also a stationary pro-

Cess.

Theorem 2 (Ergodicity) Suppose that the bivariate chain {(Yy, Xt);t € IN}
in model (2.1) satisfies (AO). Then, it holds that

(i) There exists a measurable function g%, : IN&® — [0,00) such that X;(0) =

g% (Yi_1,Yi_o,...) almost surely.

(ii) The process {Y:} is absolutely reqular (or B-mizing) with coefficients sat-
isfying B(n) < (a+0)"/(1 — (a+b)). Hence, {(Yy, X3);t € N} is ergodic.

Theorems 1 and 2 play an important role in establishing the consistency and
asymptotic normality of parameter estimates and the weak convergence of the

CUSUM tests based on those estimates.



2.2 Conditional likelihood inference

The conditional likelihood function of model (2.1), based on the observations

Y1,...,Y,, is given by

n

£(0) =TT [E@1(Y: = 0) + La(0)1(v; = 1),
t=1

with

Lo@) = p+ (1 - p)exp{—A((0))}h(0),
La(@) = (1—p)exp{i(6)Y: — Al (6))}h(Y7)

where 7j,(0) = B~Y(342) and X,(0) = fo(Xi-1(0), Y1), t > 2, are recursively

updated with an initial random variable X;. The CMLE of 9 is defined as

D, = arg max log L(¥)
Je®

where

n n

L) =3 b(0) = > [ln(@) (Y = 0) + I (D)I(Y; > 1)

t=1 t=1

with

Go(0) = loglp+ (1— p) exp{—A(i(6))}h(0)],
0n(®) = log(1—p)+i(8)Y: — A(i(8)) — log h(Yy).

We impose some regularity conditions, wherein V' and £ € (0,1) stand for
a generic integrable random variable and constant, respectively; symbol || - ||
denotes the L' norm for matrices and vectors; and F(-) is taken under ¥y. Fur-
ther, we use notation 7, = 7;(0) for simplicity. To ensure the strong consistency

and asymptotic normality of én, we assume the following conditions:

(A1) E (suppee X7(0)) < 0o and E <sup9€@ X%(G)) < o0.



(A2) For all ¢, supyeg supg<s<1 B'((1 —0)n: + 7)) > c for some constant ¢ > 0,

and supgeg Supg<s<1 B((1 — ) + 07¢) > d for some constant d > 0.
(A3) X;(0) = X¢(0p) a.s. implies 6 = 6.

(A4) For all ¢, there exists constant M > 0,

B(m)
S <M
o6 B'() ~
(A5)
2X,(0) || 0°x1(0) ||”
E(Sgg 20 <oo and E 21618 96907 < o0
(A6) For all t,
0X,(0)  9X4(6) R %n,

<VA' as.

< VA" and Sug
€

sup

0cH 0000 — 9006T

00 00

(A7) For all t, supyeg | B (M) — B'(m)] < V4! a.s. and supyeg |C () — C(ne)| <

VAt as.

AS8) dg is an interior point in the compact parameter space ® := [0, p*] x ©
P

for some constant 0 < p* < 1. © € R,
(A9) E{Y1suppee [m(0)|} < occ.

(A10)

2

97m

o o )|] <= |
B’ < v < oo, F [su
)\ g 507 o

(A11) For all t, suppeg C(n)%/2C" (1) < K for some K > 0.

E [sup
0cO

(A12) T 6)(819(9) = 0 a.s. (or equivalently, Z/Tanéie(o) =0 a.s.) if and only if v = 0.

(A13) For any 0 € © and y € N, 2 (y) > z} € R(B), where R(B) is the
range of B(n). Moreover, zj > 2* € R(B) for all 6.

<o



Davis and Liu (2016) derived the asymptotic properties of the CMLE. The
proposition below can be proven using Lemmas 1 and 2 in the Appendix, in a

manner similar to that seen in their Theorems 1 and 2.

Theorem 3 (Strong Consistency) Suppose that conditions (A0)—(A3) hold.
Then, the conditional maximum likelihood estimator (CMLE) Oy, is strongly

consistent. That is, as n — oo,

A~

Y, — Yo a.s.,

Theorem 4 (Asymptotic Normality) Suppose that conditions (A0)—(A13)
hold. Then, the conditional mazimum likelihood estimator (CMLE) Oy, is asymp-

totically normal. That is, as n — 00,
V0, — 90) —5 N (0, I(00)™Y),

where

2
1) = & (P50 ) =< (Gt ) = B (B ) T )

with

to(d) = log[p+ (1 — p) expf{—A(m:(6) }h(0)],
(a() = log(l— p) +n(6)Y: — A(mi(6)) — log h(Y¥y).

2.3 Change point test

In this section, we study the residual-based CUSUM tests used to assess the

hypotheses

Hy : 6 does not change over Yi,---,Y, vs. Hi: not Hy.



We consider the two types of residuals: ¢,1 = Y; — X;(6p) and 2 = (Y; —
X¢(600)) \/W The former is considered by Franke et al. (2012), Kang and
Lee (2014), and Lee et al. (2016a,b) in some Poisson AR models, whereas the
latter is newly considered here. Since {e;, F:}, i = 1,2, are stationary ergodic
martingale difference sequences, using a functional central limit theorem, we
can derive

[ns] n

Z tz_*zet,i i> sup ’Bi(s)’a (22)

O<s<1 sz P 0<s<1

where 72 = Var(e;1) and 73 = 1. Note that ;; is not observable, but it is
possible to compute é 1 = Y; — X, or €2 = (Y — Xt)/\/C(ﬁt), where X; =
fa, (Xi—1,Yi1), i = B"YX,/(1—p)) for t > 2 and X is an arbitrarily chosen

value. We thus consider the tests

k

n
E €ti — - E €t
2

~ 1 no 22 A
where 72, = L3 &, and 72, = Y11 &,. Then, we can obtain the fol-

>

: 1
Tré' = max
n
1<k<n /N7y ;i

: (2.3)

lowing theorem, the proof of which is similar to that of Kang and Lee (2014)

and is omitted for brevity.

Theorem 5 (Residual-based CUSUM test) Suppose that conditions (A0)—

(A13) hold. Then, under Hy, as n — oo,

Tres % sup IBi(s)|, i=1,2.
0<s<1



Chapter 3

Conclusion

In this study, we formulated the zero-inflated general integer-valued GARCH
models, and established the asymptotic property for CMLE of the models. Also,
we considered CUSUM tests based on residuals, and derived their limiting null
distributions under certain conditions. This thesis is based on the work of Lee,

Seok and Kim (2018), and empirical studies are now on investigation.

10 Al = TH ¢



Appendix A

Proofs of Main Results

Definition 1 A random wvariable X is said to be stochastic smaller than a
random variable Y (X <gr Y ) if Fx(x) > Fy(x) for all x € R where Fx is is

the cumulative distribution function of a random variable X .

Lemma 1 Let two random variables Y' and Y follow a distribution belonging
to ZIFE with the same A, h,p and p(counting measure), but with natural pa-
rameter ' and 1", respectively.

Ify <", thenY' <gr Y".

Proof. Let q(z|n) be the probability mass function of one-parameter exponential

family. Then, by proposition 6 of Davis and Liu (2016),

Z, ~ q(2|,’7/) / /" ! " : / /!
If and ' <" then Z' <gp Z". (i.e. q(z|n") > q(z|n")).
Z// ~ q(z‘,r]//)

So, if ' <", then q(z|n') > q(z|n") for all y € Ny. Let p(y|n) be the probability
mass function of ZIEF. Then, for all p € [0,1) and 7’ < n”,

pyn') = pdoy + (1 — p)ayln’) > pdoy + (1 — p)a(yn”) = p(yln”).

1 [ -1 =
11 -"‘-u_g'l'll { o



. Vi~ p(z\n’) / " / " :
Thus, if and " < n”, then Y’ <gp Y". This completes the

V" ~ p(z[n")
proof. O

Let F,(y) be the cumulative distribution function of ZIEF p(y|n) with = :=
ElY] = (1-p)B(n).

Lemma 2 Let U ~ Unif(0,1).
Y= F,YU)

. x
Define two random variables

Y = FSNU)

T

2= (1— p)B(y) = E[Y'
where . Then E|Y' =Y"| = |2/ — 2"|.

2= (1- p)B(") = B[Y"]
Proof. First, assume 2/ < z”. Then 1/ < 7 and Y’ <gr Y”. So Fa;,l(U) <
F(U) for all w € (0,1). That is, Y’ < Y”. Thus E|Y' - Y"| = E(Y" -Y') =
" — 2’ = |2/ — 2"|. Likewise, if 2" < 2/, then E|Y' - Y"| = E(Y' —-Y") =

x' — 2" = |2’ — 2”|. These establish the lemma. O

Proof of Theorem 1. Use Lemma 1 and the proof of Proposition 1 of Davis
and Liu (2016).
Proof of Theorem 2. Use Lemma 2 and the proof of Proposition 2 of Davis

and Liu (2016).

Before proving Theorems 3 and 4, we prepare some lemmas. In what follows,

we use notation 79 = 1,(6p) and 1 = n,(0,,).
Lemma 3 Suppose that conditions (A0), (A1) and (A2) hold. Then, we have

sup |Xt(9) — Xi(0)] < VAt sup I — me| < VAt as.
0cO [USC)

¥ [ ]
12 -i == T



Proof. Note that

1X:(0) — X:(0)] = |fo(Xi—1(0),Yi1) — fo(Xu—1(0),Yi—1)

< wil X1 (0) — X1 (0)] < wi X1 - Xa(0)].

Then, using the mean value theorem and (A2), we have

Xt(G) Xt(G) wifl =

=l = BT - B ) < = K - Xi0)
< “a X1 - X1(6)],
(1-p)
where nf = B_l(IXTt*p) and X} is an intermediate point between X;(6) and
X(0). Hence, using (A1), we establish the lemma. O

Lemma 4 Suppose that conditions (A0), (A1) and (A2) hold. Then, we have

1 n
sup |—

- 1 &
0 (0) — — (0) — 0 a.s.
o 2 +(0) n;t() a.s

Proof. 1t suffices to show that for i =0, 1,
sup [05(0) — €5(0)] = 0 a.s. as t — oc. (A1)
0O

Since [0;(0) — £5(0)] = [01(0) — £ (0)] 4 + [€:s(0) — £1i(6)] 1 for i = 0,1, we first

show that for ¢ = 0,1, as t — o0

sup [4i(0) — £1(0)] 1 — 0 a.s.
0cO

First, note that, by the mean value theorem, logx < z — 1 and Lemma 3,

: L=phO) aratn
fol®) = Lol < L0 = h)e-am ¢ A — e A
MO =9), ) _ =i,

p

h(0)(1 — p)A' (1) , - A
SICIELE AP

IN

MO g —

13 "-:l;" I 'kl-.| T 1_-“ [= 5



for some intermediate points X; between X;(#) and X;(8) and nf = B~ (X} /(1—
p)). Since

X;(0) < Xi(0) + | Xe(6) — Xe(0)] < Xe(0) + V',

according to (A1) and Lemma 3, we can show that supgeg [£10(68) —lio(8)]+ —>
0 a.s..

Second, note that, by the mean value theorem, (A2) and Lemma 3,

[0i1(0) — b1 (0)) 4 < |7 — me|Ye + |A() — A(me)|

- R ke xo
B'(n;*)(1 = p)

(1-p)Y: + X7

for some intermediate points X;* between X;(#) and X,(#) and n;* = B~ (X;*/(1—
p)). Since

X7(0) < X4(0) + | X:(0) — X4(0)] < Xo(6) + VA,

according to (A1) and Lemma 3, we can show that supgeg [£11(8) — i1 (8)]+ —
0 as.

Similarly, it can be shown that for ¢ = 0,1, as t — oo
sup [(i(0) — Lii(0)]- — 0 a.s.
0O
This validates the lemma. U

Proof of Theorem 3. We can express

- Zzt - %Zet(e)
t=1

The first term of the RHS of the inequality above converges almost surely to 0

n

LS u0) - B®)|

t=1

< sup|—
0O

+sup
9cO

by Lemma 4. Since ¢; is strictly stationary and ergodic, the second term also

converges almost surely to 0.

) 3 =11 =1 —
' A 2o 8 3



Hence we obtain

1 =~
- 0:(0) — E6(0
zlelgnz:: +(0) (@) — 0 a.s
Note that
R 1 < - 1 S o . .
0 < Bl(00) — E(0n) < (Bl(00) =~ > 4(00)) + (- D 1(0n) — Eb(0n))
t=1 t=1
< 2sup 0(0) — Ely(
0cO ntzl ! t

Therefore, by (A1) and Lebesgue dominated convergence theorem,

lim E4(0,) = Ey(6y).

n—oo
Since E¢:(#) has a unique maximum at 6y by (A3), the strong consistency can

be proven. O

The first derivatives of log conditional likelihood function are obtained as

follows:
Ol(9)  9lyo(V) Oy (9)
pr— — >
99 oy [(Vi=0)+——=I(Y; > 1)
with
—A(ne Xt B(nt —A(n,
Otuo(v) _ 1= h(O 0 — g h(0)e
dp p+ (1= p)h(0)e=A0mr)
o) meghOe A oy,
90 p+ (1= p)h(0)e=AM) 99
0X,
= ~Zol) 89t
and
0l (0) _ 1 +{Yt_B(T7t)}Xt
Z =5 (= pPBm)
Ot (V) _ Y, — B(n:) 0Xy
o0 (L= p)B'(m) 90
0X,
= Zn(W)=+

00 -

15 A&t e i



Also, the second derivatives are as follows:

020,(9)  0%10(0) 820, (9)

oouT ~ guagt 111 = O+ g I =1
with
0%l40(0)
0p?
— {n(0) {B'(m)B(m)Q + B"(m)B(n) = B'(n)* B(m)*  (B'(m) + B(m)*)?
B (n)? B'(nt) B/ (ne)?
o—2A(n:) 2(B'(ne) + B(nt)®) | B'(ne)B(m)* + B" () B(ne) — B'(n)?
"+ A0) [ B (n:) - B’ ()3
pPBm)*] —am) 1
1—p ]e 1} (o (L= p)h(0)eAtm)2
bo(¥) (L= p)h(0)[p(B' () — B(m)*) + (1 — p)h(0)B' ()™ )] 9y 91y
99067 [0+ (1 p)h(0)e—AM]2 29 90T
+ (1= p)h(0)B(n)e= ) 92y,
o+ (1= p)h(0)e An) 9996T
Pl { B'(n) B(m)? + B" () B(m:) — B'(m:)’
opos " B' ()2
B" () B(ne) — 2B’ (n)? ~A(m
+ (1-p) [1 + B(m)? h(0)e= A0 )} }
h(0)B(n;)e= A One
ot (T p)h(0)e AW 90
and
() _ 1 [Y; — 2B(m)]| B(ne)
Ip? (1-p)? (1 —p)2B'(n:)
Y= Bn)1B(m)[B" () B(me) — B (1n)°]
(1= p)3B'(n)?
() _ B'(n)’+[Ye— Bn)]B"(n) O One | Yi— B(m)  m
90007 (1 —p) B (n;)? 96 96T " (1 — p)B'(n;) 0096T
(9) 1 (Yy = B(m)) B () B" (e | Ome
2p00  — (—p) (Yy —2B(m)) — B(n)? ) 50

I = 11 "‘;
16 .-"\.—! - |-.' __;i .'| 11
| |



Lemma 5 Under (A2) and (A4), we have

() 1B = Bl = = [%l0) = X,(0)]

) | s = | < ) + B B - Bl

~ \2 2
i) [ SO PO < 1B )+ B0 B ) + B [B(@) — Bl
(iv) |e A0 — =AU < M |B(i;) — B(n))|

< ;(B’(m) + B(n)) |Bi) — B(m)| + M2 |B(ii) — B(ny))

vy [0, a) _ B0,
"(7e) B'(ny)
< g[(B'(m) + B(n))B' () + B(nt)Q] |B(1:) — B(n)]

+J\2B(m) |B(71t) — B(ne)] -

Sy

Sy

Proof. Use the mean value theorem. O

Lemma 6 Suppose that (A0)-(A2) and (A4) hold. Then,

. Mh(0
(i)  sup|Zw ()| < Mh(0) and sup |Zpn (W) < — +
V€O YeO

(i) sup |Zuw () —Zto(ﬁ)’
ve©

h(0)(1 —dr)
~ 67 (1 = h(0))%¢?

(iii) sup | Zy (9) —Zﬂ(ﬁ)’
UIS(S)

[(1 = 1(0))(B' () + B(ne)) + M} |B(ie) — B(ne)|

Y;
<
~ opc?

1

5.2 (B'(m) + Bn)) | BGi) = BOw)l.

|B'(it) — B'(m)| +
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Proof. Use Lemma, 5. O

Lemma 7 Suppose that (A0)-(A13) hold. Then, under Hy, as n — oo,

. (% 8€

(i) ! Z ! op(1);
.. 82&(19) 020,(0)
(ii) zgg 59007~ 99697 — 0 a.s.ast — oo;

1 0*Ln (0)

(iii) ~ 59997 I(Y9) a.s.,

where 9}, is the intermediate point 1§n and Yg.

Proof. (i) First, by Lemma 6 and (A5), (A6), for : = 0,1,

azm 190 1 = 0l (%)

IRGE=0KT
. Xt e
< Z4i(9g) —t Z
< ﬁ; 1(90) 5" (B0) = Zui(D0) 5" (Fo)
| 8Xt - 8Xt X,

< \/ﬁ; (Z1i (Vo) — Z1i (Vo)) —%7- 89 21 Zyi(P0)( (6o) — 50 (%))H
= Op(l).
Second, by Lemma 5,

1 = 94y (Vo) Ay (0 1 |00 190 9 (%)

vn ; dp Z dp Vn ; dp

B(n:)  B(m) ~|B()*  B(m)?

1 1
R

=op(1).

1 1
AT &

Bl B

B'(0:)  B'(ne)

-":lx_i _'q.l.'\-'_] |E ;- =
18 | &= L i



Finally, by Lemma 5,

" Oy (V) 8&0
p Z
Oly(Vo) Dl (do)
_’fozij dp dp

1

: %6%(1 =TS

~\2 y

+ph(0)

+(1 = p)h(0)°

Thus, the proof is completed.

B(i)*

,Ko)kamn__efAma

B(Tlt)Qe—
B'(n)
B(Ut)z

A(ne)

B/ (i)

B'(n)

] =op(1).

(ii) It’s similar to the proof of Proposition 5 of Lee et al. (2016a). It is easy

to show that for ¢ = 0,1, as t — oo,

27 . 2 .
wpaaﬁw_a@?)
veo| Op dp

%0y (0)  9%0y(0)
sup —
9c6 || 00007 9096
D%0,;(9)  0%4,(09)
sup —
gco || 0pdo dp0h

Thus, the proof is completed.

— 0 a.s.

— 0 a.s.

— 0 a.s.

(iii) This can be proven almost identically to the proof of Proposition 5 of

Lee et al. (2016a).

O

Proof of Theorem 4. Since {0¢:(0y)/00; F;} forms a martingale difference

sequence, we can show that %

00y (00)/00 converges weakly to

19
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using a martingale central limit theorem and the Cramér-Wold device. Then,

by using Taylor’s theorem and Lemma 5, we can prove the theorem. (]

Proof of Theorem 5. We consider 77, only

(the proof of Ty 25 supg<s<1 |B7(s)| is similar to that of Kang and Lee
(2014)).

First, note that by (A2),

Cln) = (1 —p{B'(m)+pB(m)’}
> (1-p)(c+ pd®)

= f>0

We write
Y- Xi  Yi— Xi(bh)
VC () VO ()

€t2 — €2 =

= (Xi(fo) —

(\/C (1) \/Cm>
1

1
+Et71<\/0(77t)_\/0 (n¢) ) V()

= Ry1+ Ryo + Ry 3.

(X:(60) — Xy))

In view of (2.2), it suffices to show that

k n
1 R k
max 7 ;(et 92— €12) — - ;(m —€2)| = op(1) (A.2)
ie., fori=1,2,3,
S R = o) (A3)
1<k<n /10 n < Li| = OP ’

Firstly, we express

ZRt,l - Z Ryl < 7n Z |Ri1| < Injy + Ino + Ing,
=1 =1 =1

max ——=

1<k<n f

20 "-:l;" I 'kl-.| T 1_-“ [= |.



where

2 & . 1 1
— +(00) — X1 (0, — ,
ﬁ; (o)~ x4 )>< cum) \/cw))
PSS (tho)—xt(én))( Y )‘
2T Un N RVECR)
2 U . . 1 1
e X:(0,) — X; — .
g 2 | (Xt )<¢c<m> \/0(77?)>

Using the mean value theorem with intermediate points 6}, ; and 6}, , between

Gn and 6y, we have

In,l
_ izn: @ 70Xi( 21) C'(ne(6;,2)) 1
Vi 2 98 Cln0;9)"” (- p)B(m(6;)
i DX, (0% )
(9n—90)T%
0X:(0) |
< 77,”9 00”2 3/2 Slelg ate()

- op(1)-0p(1) = 0p(1)7

where we have used Theorem 4 and (A2), (A5) and (A11). Since 7; can be
represented as 7 (0,,) = B~1(X(0,,/(1 — p))) with X1(6,) = X1, we have

Lo < fwz\(xt (00) = X:(0)) (Cni) = Ci))|

n

Vil = ol —z 3/2 >

with intermediate point 0}, ; between 0, and 6y, due to (A2), (A5) and (AT).

8Xt )

IA

= 0,1)0p(1) = 0p(1)
Furthermore, note that |X; — X;(0,)| < VA a.s. since owing to (A0),
X, — X4(0,)] = fén(thlathl) fo, (Xi— 1(6,), Y1)

< wil X — Xi1(8,) < w’i’1|X1 — X1(6,)|.

1 [ ]
21 N =4



Then, by using this and (A2),

Thus, (A.3) holds for i = 1.

Secondly, we express

2
max —— ZRtQ ZRt2 < — ‘ n,1 +IIn,27
" Vi
where
k 1 k n 1
1,1 = max — €1 — — €t,1 — —
1<k<n \f Z <\/C(n ) \/C () ni3 < VO /Ol ) |

k
Il, > = max

1 k — 1 1
1<1c<nTZ ’1<\/C(77t) \/Cnt> nge (x/C(nF)_\/C(n?)>"

Similarly to the case of I, 2, we have

< ffg/gz‘etl (nt S T/QZ‘Etlh/ )
Using Taylor’s theorem, we have
y— _ 1 ; ony 1
)™ = C) ™ = 5 20(80) (B = 00) " S5 = 5 (0n = 00) (G1(62) = G(60)
where 67 is an intermediate point between 6,, and 6, and ¢,(6) = C”(nt)C(nt)*?’/Q%,
so that
IIn72 S II 2 + I n, 2,
where
1L 1
/ —
o = V/llfn =00l max — |0 X;et,lct(eo) - ; et1Gu(00)) -
. 2 — .
Iy = v/l =60l = > letal [6(07) — G0l
t=1

¥ [, 1 3
29 -'x_g '|.'1.|i § 1 -,'l.



Since {e;1¢:(0p)} is ergodic, \/ﬁHén — 6| = Op(1), and Ele1]]|G(6o)]| < o0
owing to (A1), (A2), (A4) and (A1l), we have I} , = op(1l). Moreover,
because

. 2
11y <Vl = 0012 3 leeal  supG(0) — G(6o)
t=1 16000 |<[10—00 |

and E supyeg [|¢:(0)]|* < oo owing to (A2), (A4) and (A11), using (A1) and
the dominated convergence theorem, we can have I1}} , = op(1) (cf., Proposition
5in Lee, S., Lee, Y. and Chen, C. W. (2016)). Thus, (A.3) holds for i = 2.

Finally, using Taylor’s theorem, we have

T aXt(QO)
00

Xe(0n) = X¢(60) + (0, — 00)

+ (én _ eo)T <8Xt(0:) o 8Xt(90)>

00 00

for some 6 between 0,, and 0. Then, similarly to the case of I}, 2, we can show

that (A.3) holds for i = 3. Hence, (A.2) is verified. O
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