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Abstract

This review study considers the problem of testing a parameter change in zero-

inflated general integer-valued time series models where the conditional density

of current observations is assumed to follow a zero-inflated one-parameter expo-

nential family. This thesis focuses on the standardized residual-based CUSUM

tests, based on the previous study of Lee and Lee (2018) and show that their

null distributions converge weakly to the functions of Brownian bridges.

Keywords: Time series of counts, integer-valued GARCH models, zero-inflated

exponential family, parameter change test, CUSUM test.

Student Number: 2017-26674

i



Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Literature review and main result 3

2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Conditional likelihood inference . . . . . . . . . . . . . . . . . . . 6

2.3 Change point test . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 3 Conclusion 10

Appendix A Proofs of Main Results 11

Bibliography 24

국문초록 28

ii



Chapter 1

Introduction

Integer-valued time series models have been studied by many researchers and

applied to many applications in science, engineering, and economics. Integer-

valued autoregressivee (INAR) time series models based on a binomial thinning

operation are introduced by the authors such as McKenzie (1985, 2003), Alzaid

and Al-Osh (1990), Al-Osh and Aly (1992). See Weiß(2008). Other models such

as nonlinear integer-valued generalized autoregressive conditional heteroscedas-

tic (INGARCH) models are also used by Heinen (2003), Ferland et al. (2006),

Fokianos et al. (2009), and Neumann (2011). Among discrete distributions, the

Poisson distribution has been widely used as the conditional distribution of

current observations given past information but other distributions are also

considered. See Davis and Wu (2009), Zhu (2011), and Christou and Fokianos

(2014) who consider negative binomial INGARCH (NB-INGARCH) models,

and also Zhu (2012a,b) and Lee et al. (2016) who consider zero-inated gener-

alized Poisson and negative binomial INGARCH models. Davis and Liu (2016)

consider nonlinear INGARCH models with conditional densities belonging to
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one-parameter exponential family. Lee and Lee (2018) recently studied the pa-

rameter change test in their models.

The change point problem has attracted much attention from researchers

during the past decades since many time series often experience structural

changes in their underlying models, see Csörgö and Horváth (1997) for a general

review and Lee et al. (2003) for a background. The change point test for integer-

valued time series has been studied by Kang and Lee (2009), Fokianos and Fried

(2010, 2012), Franke et al. (2012), Fokianos et al. (2014), Kang and Lee (2014),

Hudecová et al. (2016), and Diop and Kengue (2017). The CUSUM test per-

forms well in many situations, but the estimate-based CUSUM test suffers from

severe size distortions in GARCH models, see Kang and Lee (2014) and Lee

et al. (2016). As a remedy, the residual-based CUSUM test has been proposed,

see Lee et al. (2004) and Lee and Lee (2015). However, its performance is poor

particularly when a parameter change locates in conditional mean part, see Oh

and Lee (2018). Lee and Lee (2018) proposed to use the score vector-based

CUSUM test and standardized residual-based CUSUM test, and Lee, Seok and

Kim (2018) has extended Lee and Lee (2018) to the zero-inflated exponential

family INGARCH models. For zero-inflated integer-valued models, we refer to

Jazi and Lee et al. (2016), Kim and Lee (2018), and Chen et al. (2018).

The remainder of this thesis is organized as follows. Chapter 2 reviews the

previous studies including the work of Lee and Lee (2018) and Lee, Seok and

Kim (2018) and introduces the zero-inflated one parameter exponential family

INGARCH models and establishes the asymptotic results for the CMLE and

the CUSUM tests based on the residuals and standardized residuals. Chapter 3

provides concluding remarks. Finally, all proofs are provided in the Appendix.
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Chapter 2

Literature review and main result

2.1 Model formulation

Let {Yt, t ≥ 1} be the zero-inflated general nonlinear INGARCH time series of

counts satisfying with the conditional distribution of the one-parameter expo-

nential family

Yt|Ft−1 ∼ p(z|ηt), Xt := E(Yt|Ft−1) = fθ(Xt−1, Yt−1), (2.1)

where Ft is the σ-field generated by η1, Y1, . . . , Yt, and fθ(x, y) is a nonnega-

tive bivariate function defined [0,∞) ×N0 (N0 = N ∪ {0}), depending on the

parameter θ ∈ Θ ⊂ Rd, and p(·|·) is a probability mass function given by

p(z|η) = {ρ+ (1− ρ)q(0|η)}I(z = 0) + (1− ρ)q(z|η)I(z ≥ 1) with

q(z|η) = exp{ηz −A(η)}h(z), z ≥ 0, and 0 ≤ ρ < 1.

Here η is the natural parameter, A(·) and h(·) are known functions, and A′(·)

exists and is strictly increasing, and further, ηt = (A′)−1( Xt
1−ρ). We express
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B(η) = A′(η). Then, (1 − ρ)B(ηt) and (1 − ρ){B′(ηt) + ρB(ηt)
2} are the

conditional mean and variance of Yt, respectively, and Xt = (1 − ρ)B(ηt),

C(ηt) := (1 − ρ){B′(ηt) + ρB(ηt)
2}. To emphasize the role of θ, we also use

notation Xt(θ) and ηt(θ) to stand for Xt and ηt. Note that although Xt neces-

sarily depends upon ρ, the recursion in model (2.1) is designed to operate with

a link function only depending on θ as done in Lee et al. (2016). In fact, we can

write Xt = Xt(ρ, θ) = fθ(Xt−1(ρ, θ), Yt−1). We put ϑ = (ρ, θT )T and denote the

true parameter by ϑ0 = (ρ0, θ
T
0 )

T .

As an example of model (1) with ρ = 0, we can consider Poisson (linear)

INGARCH model, Yt|Ft−1 ∼ Poisson(λt), λt = ω + αλt−1 + βYt−1. In this

case, we have ηt = log(Xt(θ)), A(η) = eη, B′(η) = eη, B′(ηt) = Xt(θ), and

B′(η) = B′′(η). Moreover, we can consider the negative binomial (NB) IN-

GARCH model, Yt|Ft−1 ∼ NB(r, pt), Xt = r(1−pt)
pt

= ω + αXt−1 + βYt−1,

where r ∈ N is assumed to be known and Y ∼ NB(r, p) implies

P (Yt = k) =

 k + r − 1

r − 1

 (1− p)kpr, k = 0, 1, 2, . . . .

In this case, ηt = log(Xt(θ)/(Xt(θ) + r)), A(η) = −r log(r/(1 − eη)), B′(η) =

reη/(1− eη)2, B′(ηt) = Xt(θ)(Xt(θ) + r)/r, and B′′(η) = reη(1 + eη)/(1− eη)3.

In what follows, we assume

(A0) For all x, x′ ≥ 0 and y, y′ ∈ N0,

sup
θ∈Θ

|fθ(x, y)− fθ(x
′, y′)| ≤ ω1|x− x′|+ ω2|y − y′|,

where ω1, ω2 ≥ 0 satisfies ω1 + ω2 < 1.

Davis and Liu (2016) showed that this assumption ensures the strict sta-

tionarity and ergodicity of {(Xt, Yt)} when ρ equals 0 and the existence of a

measurable function gθ∞ : N∞
0 = {(n1, n2, . . .), ni ∈ N0, i = 1, 2, . . .} → [0,∞)
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such that Xt(θ) = gθ∞(Yt−1, Yt−2, . . .) a.s., which also holds for any ρ ∈ (0, 1).

The stationarity and ergodicity in model (2.1) can be shown as seen below

similarly to Davis and Liu (2016), but verifying them is not straightforward.

Theorem 1 (Stationarity) Suppose that the bivariate chain {(Yt, Xt); t ∈ N}

in model (2.1) satisfies (A0). Then, it holds that

(i) There exists a random variable Z∞ such that for all x, Zn(x) → Z∞

almost surely. In particular, Z∞ does not depend on x and has distribution

π, which makes the stationary distribution of {Xt}.

(ii) The {Xt} is geometric moment contracting (GMC) with π.

Furthermore, EπX1 < ∞.

(iii) If {Xt} has stationary distribution π, then {Yt} is also a stationary pro-

cess.

Theorem 2 (Ergodicity) Suppose that the bivariate chain {(Yt, Xt); t ∈ N}

in model (2.1) satisfies (A0). Then, it holds that

(i) There exists a measurable function gθ∞ : N∞
0 → [0,∞) such that Xt(θ) =

gθ∞(Yt−1, Yt−2, . . .) almost surely.

(ii) The process {Yt} is absolutely regular (or β-mixing) with coefficients sat-

isfying β(n) ≤ (a+ b)n/(1− (a+ b)). Hence, {(Yt, Xt); t ∈ N} is ergodic.

Theorems 1 and 2 play an important role in establishing the consistency and

asymptotic normality of parameter estimates and the weak convergence of the

CUSUM tests based on those estimates.
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2.2 Conditional likelihood inference

The conditional likelihood function of model (2.1), based on the observations

Y1, . . . , Yn, is given by

L̃(θ) =
n∏

t=1

[
L̃t0(θ)I(Yt = 0) + L̃t1(θ)I(Yt ≥ 1)

]
,

with

L̃t0(ϑ) = ρ+ (1− ρ) exp{−A(η̃t(θ))}h(0),

L̃t1(ϑ) = (1− ρ) exp{η̃t(θ)Yt −A(η̃t(θ))}h(Yt)

where η̃t(θ) = B−1( X̃t(θ)
1−ρ ) and X̃t(θ) = fθ(X̃t−1(θ), Yt−1), t ≥ 2, are recursively

updated with an initial random variable X̃1. The CMLE of ϑ0 is defined as

ϑ̂n = argmax
ϑ∈Θ

log L̃(ϑ)

where

L̃(ϑ) :=
n∑

t=1

ℓ̃t(ϑ) =
n∑

t=1

[
ℓ̃t0(ϑ)I(Yt = 0) + ℓ̃t1(ϑ)I(Yt ≥ 1)

]
with

ℓ̃t0(ϑ) = log [ρ+ (1− ρ) exp{−A(η̃t(θ))}h(0)] ,

ℓ̃t1(ϑ) = log(1− ρ) + η̃t(θ)Yt −A(η̃t(θ))− log h(Yt).

We impose some regularity conditions, wherein V and ξ ∈ (0, 1) stand for

a generic integrable random variable and constant, respectively; symbol ∥ · ∥

denotes the L1 norm for matrices and vectors; and E(·) is taken under ϑ0. Fur-

ther, we use notation η̃t = η̃t(θ) for simplicity. To ensure the strong consistency

and asymptotic normality of θ̂n, we assume the following conditions:

(A1) E
(
supθ∈ΘX2

1 (θ)
)
< ∞ and E

(
supθ∈Θ X̃2

1 (θ)
)
< ∞.
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(A2) For all t, supθ∈Θ sup0≤δ≤1B
′((1− δ)ηt+ δη̃t) ≥ c for some constant c > 0,

and supθ∈Θ sup0≤δ≤1B((1− δ)ηt + δη̃t) ≥ d for some constant d > 0.

(A3) Xt(θ) = Xt(θ0) a.s. implies θ = θ0.

(A4) For all t, there exists constant M > 0,

sup
θ∈Θ

B(ηt)

B′(ηt)
≤ M

(A5)

E

(
sup
θ∈Θ

∥∥∥∥∂X1(θ)

∂θ

∥∥∥∥4
)

< ∞ and E

(
sup
θ∈Θ

∥∥∥∥∂2X1(θ)

∂θ∂θT

∥∥∥∥2
)

< ∞.

(A6) For all t,

sup
θ∈Θ

∥∥∥∥∥∂X̃t(θ)

∂θ
− ∂Xt(θ)

∂θ

∥∥∥∥∥ ≤ V γt and sup
θ∈Θ

∥∥∥∥ ∂2η̃t
∂θ∂θT

− ∂2ηt
∂θ∂θT

∥∥∥∥ ≤ V γt a.s.

(A7) For all t, supθ∈Θ |B′(η̃t)−B′(ηt)| ≤ V γt a.s. and supθ∈Θ |C(η̃t)−C(ηt)| ≤

V γt a.s.

(A8) ϑ0 is an interior point in the compact parameter space Θ := [0, ρ∗] × Θ

for some constant 0 < ρ∗ < 1. Θ ∈ Rd.

(A9) E {Y1 supθ∈Θ |η1(θ)|} < ∞.

(A10)

E

[
sup
θ∈Θ

∥∥∥∥B′(η1)

(
∂η1
∂θ

· ∂η1
∂θT

)∥∥∥∥] < ∞, E

[
sup
θ∈Θ

∥∥∥∥(Y1 −B(η1))
∂2η1
∂θ∂θT

∥∥∥∥] < ∞.

(A11) For all t, supθ∈ΘC(ηt)
−3/2C ′(ηt) ≤ K for some K > 0.

(A12) νT ∂X1(θ)
∂θ = 0 a.s. (or equivalently, νT ∂η1(θ)

∂θ = 0 a.s.) if and only if ν = 0.

(A13) For any θ ∈ Θ and y ∈ N∞
0 , fθ

∞(y) ≥ x∗θ ∈ R(B), where R(B) is the

range of B(η). Moreover, x∗θ ≥ x∗ ∈ R(B) for all θ.
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Davis and Liu (2016) derived the asymptotic properties of the CMLE. The

proposition below can be proven using Lemmas 1 and 2 in the Appendix, in a

manner similar to that seen in their Theorems 1 and 2.

Theorem 3 (Strong Consistency) Suppose that conditions (A0)–(A3) hold.

Then, the conditional maximum likelihood estimator (CMLE) ϑ̂n is strongly

consistent. That is, as n → ∞,

ϑ̂n −→ ϑ0 a.s.,

Theorem 4 (Asymptotic Normality) Suppose that conditions (A0)–(A13)

hold. Then, the conditional maximum likelihood estimator (CMLE) ϑ̂n is asymp-

totically normal. That is, as n → ∞,

√
n(ϑ̂n − ϑ0)

d−→ N(0, I(ϑ0)
−1),

where

I(ϑ0) = E

(
∂ℓt(ϑ0)

∂ϑ

∂ℓt(θ0)

∂ϑT

)
= −E

(
∂2ℓt(ϑ0)

∂ϑ∂ϑT

)
= E

(
B

′
(ηt(θ0))

∂ηt(θ0)

∂θ

∂ηt(θ0)

∂θT

)
with

ℓt0(ϑ) = log [ρ+ (1− ρ) exp{−A(ηt(θ))}h(0)] ,

ℓt1(ϑ) = log(1− ρ) + ηt(θ)Yt −A(ηt(θ))− log h(Yt).

2.3 Change point test

In this section, we study the residual-based CUSUM tests used to assess the

hypotheses

H0 : θ does not change over Y1, · · · , Yn vs. H1 : not H0.

8



We consider the two types of residuals: ϵt,1 = Yt −Xt(θ0) and ϵt,2 = (Yt −

Xt(θ0))/
√
C(ηt(θ0)). The former is considered by Franke et al. (2012), Kang and

Lee (2014), and Lee et al. (2016a,b) in some Poisson AR models, whereas the

latter is newly considered here. Since {ϵt,i,Ft}, i = 1, 2, are stationary ergodic

martingale difference sequences, using a functional central limit theorem, we

can derive

sup
0<s<1

1√
nτi

∣∣∣∣∣∣
[ns]∑
t=1

ϵt,i −
k

n

n∑
t=1

ϵt,i

∣∣∣∣∣∣ w−→ sup
0≤s≤1

|B◦
1(s)|, (2.2)

where τ21 = V ar(ϵ1,1) and τ22 = 1. Note that ϵt,i is not observable, but it is

possible to compute ϵ̂t,1 = Yt − X̂t or ϵ̂t,2 = (Yt − X̂t)/
√
C(η̂t), where X̂t =

fθ̂n(X̂t−1, Yt−1), η̂t = B−1(X̂t/(1− ρ)) for t ≥ 2 and X̂1 is an arbitrarily chosen

value. We thus consider the tests

T res,i
n = max

1≤k≤n

1√
nτ̂n,i

∣∣∣∣∣
k∑

t=1

ϵ̂t,i −
k

n

n∑
t=1

ϵ̂t,i

∣∣∣∣∣ , (2.3)

where τ̂2n,1 = 1
n

∑n
t=1 ϵ̂

2
t,1 and τ̂2n,2 = 1

n

∑n
t=1 ϵ̂

2
t,2. Then, we can obtain the fol-

lowing theorem, the proof of which is similar to that of Kang and Lee (2014)

and is omitted for brevity.

Theorem 5 (Residual-based CUSUM test) Suppose that conditions (A0)–

(A13) hold. Then, under H0, as n → ∞,

T res,i
n

d−→ sup
0≤s≤1

|B◦
1(s)|, i = 1, 2.
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Chapter 3

Conclusion

In this study, we formulated the zero-inflated general integer-valued GARCH

models, and established the asymptotic property for CMLE of the models. Also,

we considered CUSUM tests based on residuals, and derived their limiting null

distributions under certain conditions. This thesis is based on the work of Lee,

Seok and Kim (2018), and empirical studies are now on investigation.
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Appendix A

Proofs of Main Results

Definition 1 A random variable X is said to be stochastic smaller than a

random variable Y (X ≤ST Y ) if FX(x) ≥ FY (x) for all x ∈ R where FX is is

the cumulative distribution function of a random variable X.

Lemma 1 Let two random variables Y ′ and Y ′′ follow a distribution belonging

to ZIFE with the same A, h, ρ and µ(counting measure), but with natural pa-

rameter η′ and η′′, respectively.

If η′ ≤ η′′, then Y ′ ≤ST Y ′′.

Proof. Let q(z|η) be the probability mass function of one-parameter exponential

family. Then, by proposition 6 of Davis and Liu (2016),

If


Z ′ ∼ q(z|η′)

Z ′′ ∼ q(z|η′′)
and η′ ≤ η′′, then Z ′ ≤ST Z ′′. (i.e. q(z|η′) ≥ q(z|η′′)).

So, if η′ ≤ η′′, then q(z|η′) ≥ q(z|η′′) for all y ∈ N0. Let p(y|η) be the probability

mass function of ZIEF. Then, for all ρ ∈ [0, 1) and η′ ≤ η′′,

p(y|η′) = ρδ0,y + (1− ρ)q(y|η′) ≥ ρδ0,y + (1− ρ)q(y|η′′) = p(y|η′′).

11



Thus, if


Y ′ ∼ p(z|η′)

Y ′′ ∼ p(z|η′′)
and η′ ≤ η′′, then Y ′ ≤ST Y ′′. This completes the

proof. �

Let Fx(y) be the cumulative distribution function of ZIEF p(y|η) with x :=

E[Y ] = (1− ρ)B(η).

Lemma 2 Let U ∼ Unif(0, 1).

Define two random variables


Y ′ := F−1

x′ (U)

Y ′′ := F−1
x′′ (U)

where


x′ := (1− ρ)B(η′) = E[Y ′]

x′′ := (1− ρ)B(η′′) = E[Y ′′]

. Then E|Y ′ − Y ′′| = |x′ − x′′|.

Proof. First, assume x′ ≤ x′′. Then η′ ≤ η′′ and Y ′ ≤ST Y ′′. So F−1
x′′ (U) ≤

F−1
x′ (U) for all u ∈ (0, 1). That is, Y ′ ≤ Y ′′. Thus E|Y ′ − Y ′′| = E(Y ′′ − Y ′) =

x′′ − x′ = |x′ − x′′|. Likewise, if x′′ ≤ x′, then E|Y ′ − Y ′′| = E(Y ′ − Y ′′) =

x′ − x′′ = |x′ − x′′|. These establish the lemma. �

Proof of Theorem 1. Use Lemma 1 and the proof of Proposition 1 of Davis

and Liu (2016).

Proof of Theorem 2. Use Lemma 2 and the proof of Proposition 2 of Davis

and Liu (2016).

Before proving Theorems 3 and 4, we prepare some lemmas. In what follows,

we use notation η0t = ηt(θ0) and ηnt = ηt(θ̂n).

Lemma 3 Suppose that conditions (A0), (A1) and (A2) hold. Then, we have

sup
θ∈Θ

|X̃t(θ)−Xt(θ)| ≤ V γt, sup
θ∈Θ

|η̃t − ηt| ≤ V γt a.s.
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Proof. Note that

|X̃t(θ)−Xt(θ)| =
∣∣∣fθ(X̃t−1(θ), Yt−1)− fθ(Xt−1(θ), Yt−1)

∣∣∣
≤ ω1|X̃t−1(θ)−Xt−1(θ)| ≤ ωt−1

1 |X̃1 −X1(θ)|.

Then, using the mean value theorem and (A2), we have

|η̃t − ηt| = |B−1(
X̃t(θ)

1− ρ
)−B−1(

Xt(θ)

1− ρ
)| ≤ ωt−1

1

(1− ρ)B′(η∗t )
|X̃1 −X1(θ)|

≤ ωt−1
1

(1− ρ)c
|X̃1 −X1(θ)|,

where η∗t = B−1(
X∗

t
1−ρ) and X∗

t is an intermediate point between X̃t(θ) and

Xt(θ). Hence, using (A1), we establish the lemma. �

Lemma 4 Suppose that conditions (A0), (A1) and (A2) hold. Then, we have

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

t=1

ℓ̃t(θ)−
1

n

n∑
t=1

ℓt(θ)

∣∣∣∣∣ −→ 0 a.s.

Proof. It suffices to show that for i = 0, 1,

sup
θ∈Θ

|ℓ̃ti(θ)− ℓti(θ)| → 0 a.s. as t → ∞. (A.1)

Since |ℓ̃ti(θ)− ℓti(θ)| = [ℓ̃ti(θ)− ℓti(θ)]+ + [ℓti(θ)− ℓ̃ti(θ)]+ for i = 0, 1, we first

show that for i = 0, 1, as t → ∞

sup
θ∈Θ

[ℓ̃ti(θ)− ℓti(θ)]+ −→ 0 a.s.

First, note that, by the mean value theorem, log x ≤ x− 1 and Lemma 3,

[ℓ̃t0(θ)− ℓt0(θ)]+ ≤ [
(1− ρ)h(0)

ρ+ (1− ρ)h(0)e−A(ηt)
(e−A(η̃t) − e−A(ηt))]+

≤ h(0)(1− ρ)

ρ
|e−A(η̃t) − e−A(ηt)|

=
h(0)(1− ρ)A′(η̃t)

ρ
|η̃t − ηt|e−A(η∗t )

≤ h(0)X∗
t (θ)

ρ
|η̃t − ηt|

13



for some intermediate pointsX∗
t betweenXt(θ) and X̃t(θ) and η∗t = B−1(X∗

t /(1−

ρ)). Since

X∗
t (θ) ≤ Xt(θ) + |X̃t(θ)−Xt(θ)| ≤ Xt(θ) + V γt,

according to (A1) and Lemma 3, we can show that supθ∈Θ [ℓ̃t0(θ)−ℓt0(θ)]+ −→

0 a.s..

Second, note that, by the mean value theorem, (A2) and Lemma 3,

[ℓ̃t1(θ)− ℓt1(θ)]+ ≤ |η̃t − ηt|Yt + |A(η̃t)−A(ηt)|

=
Yt +

X∗
t

1−ρ

B′(η∗∗t )(1− ρ)
|X̃t(θ)−Xt(θ)|

≤ (1− ρ)Yt +X∗
t

c(1− ρ)2
V γt

for some intermediate pointsX∗∗
t betweenXt(θ) and X̃t(θ) and η∗∗t = B−1(X∗∗

t /(1−

ρ)). Since

X∗
t (θ) ≤ Xt(θ) + |X̃t(θ)−Xt(θ)| ≤ Xt(θ) + V γt,

according to (A1) and Lemma 3, we can show that supθ∈Θ [ℓ̃t1(θ)−ℓt1(θ)]+ −→

0 a.s..

Similarly, it can be shown that for i = 0, 1, as t → ∞

sup
θ∈Θ

[ℓ̃ti(θ)− ℓti(θ)]− −→ 0 a.s.

This validates the lemma. �

Proof of Theorem 3. We can express

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

t=1

ℓ̃t(θ)− Eℓt(θ)

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

t=1

ℓ̃t(θ)−
1

n

n∑
t=1

ℓt(θ)

∣∣∣∣∣+sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

t=1

ℓt(θ)− Eℓt(θ)

∣∣∣∣∣ .
The first term of the RHS of the inequality above converges almost surely to 0

by Lemma 4. Since ℓt is strictly stationary and ergodic, the second term also

converges almost surely to 0.
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Hence we obtain

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

t=1

ℓ̃t(θ)− Eℓt(θ)

∣∣∣∣∣ −→ 0 a.s..

Note that

0 ≤ Eℓt(θ0)− Eℓt(θ̂n) ≤ (Eℓt(θ0)−
1

n

n∑
t=1

ℓ̃t(θ0)) + (
1

n

n∑
t=1

ℓ̃t(θ̂n)− Eℓt(θ̂n))

≤ 2 sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

t=1

ℓ̃t(θ)− Eℓt(θ)

∣∣∣∣∣ .
Therefore, by (A1) and Lebesgue dominated convergence theorem,

lim
n→∞

Eℓt(θ̂n) = Eℓt(θ0).

Since Eℓt(θ) has a unique maximum at θ0 by (A3), the strong consistency can

be proven. �

The first derivatives of log conditional likelihood function are obtained as

follows:
∂ℓt(ϑ)

∂ϑ
=

∂ℓt0(ϑ)

∂ϑ
I(Yt = 0) +

∂ℓt1(ϑ)

∂ϑ
I(Yt ≥ 1)

with

∂ℓt0(ϑ)

∂ρ
=

1− h(0)e−A(ηt) − XtB(ηt)
(1−ρ)B′(ηt)

h(0)e−A(ηt)

ρ+ (1− ρ)h(0)e−A(ηt)

∂ℓt0(ϑ)

∂θ
= −

B(ηt)
B′(ηt)

h(0)e−A(ηt)

ρ+ (1− ρ)h(0)e−A(ηt)

∂Xt

∂θ

= −Zt0(ϑ)
∂Xt

∂θ

and

∂ℓt1(ϑ)

∂ρ
= − 1

1− ρ
+

{Yt −B(ηt)}Xt

(1− ρ)2B′(ηt)

∂ℓt1(ϑ)

∂θ
=

Yt −B(ηt)

(1− ρ)B′(ηt)

∂Xt

∂θ

= Zt1(ϑ)
∂Xt

∂θ
.
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Also, the second derivatives are as follows:

∂2ℓt(ϑ)

∂ϑ∂ϑT
=

∂2ℓt0(ϑ)

∂ϑ∂ϑT
I(Yt = 0) +

∂2ℓt1(ϑ)

∂ϑ∂ϑT
I(Yt ≥ 1)

with

∂2ℓt0(ϑ)

∂ρ2

=

{
h(0)2

[
B′(ηt)B(ηt)

2 +B′′(ηt)B(ηt)−B′(ηt)
2

B′(ηt)2
B(ηt)

2

B′(ηt)
− (B′(ηt) +B(ηt)

2)2

B′(ηt)2

]
e−2A(ηt) + h(0)

[
2(B′(ηt) +B(ηt)

2)

B′(ηt)
+

B′(ηt)B(ηt)
2 +B′′(ηt)B(ηt)−B′(ηt)

2

B′(ηt)3

ρB(ηt)
2

1− ρ

]
e−A(ηt) − 1

}
× 1

(ρ+ (1− ρ)h(0)e−A(ηt))2

∂2ℓt0(ϑ)

∂θ∂θT
=

(1− ρ)h(0)[ρ(B′(ηt)−B(ηt)
2) + (1− ρ)h(0)B′(ηt)e

−A(ηt)]

[ρ+ (1− ρ)h(0)e−A(ηt)]2
∂ηt
∂θ

∂ηt
∂θT

+
(1− ρ)h(0)B(ηt)e

−A(ηt)

ρ+ (1− ρ)h(0)e−A(ηt)

∂2ηt
∂θ∂θT

∂2ℓt0(ϑ)

∂ρ∂θ
=

{
ρ
B′(ηt)B(ηt)

2 +B′′(ηt)B(ηt)−B′(ηt)
2

B′(ηt)2

+ (1− ρ)

[
1 +

B′′(ηt)B(ηt)− 2B′(ηt)
2

B′(ηt)2
h(0)e−A(ηt)

]}

× h(0)B(ηt)e
−A(ηt)

[ρ+ (1− ρ)h(0)e−A(ηt)]2
∂ηt
∂θ

and

∂2ℓt1(ϑ)

∂ρ2
= − 1

(1− ρ)2
+

[Yt − 2B(ηt)]B(ηt)

(1− ρ)2B′(ηt)

− [Yt −B(ηt)]B(ηt)[B
′′(ηt)B(ηt)−B′(ηt)

2]

(1− ρ)3B′(ηt)3

∂2ℓt1(ϑ)

∂θ∂θT
= −B′(ηt)

2 + [Yt −B(ηt)]B
′′(ηt)

(1− ρ)B′(ηt)2
∂ηt
∂θ

∂ηt
∂θT

+
Yt −B(ηt)

(1− ρ)B′(ηt)

∂2ηt
∂θ∂θT

∂2ℓt1(ϑ)

∂ρ∂θ
=

1

(1− ρ)

[
(Yt − 2B(ηt))−

(Yt −B(ηt))B(ηt)B
′′(ηt

B′(ηt)2
)

]
∂ηt
∂θ

.
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Lemma 5 Under (A2) and (A4), we have

(i) |B(η̃t)−B(ηt)| =
1

(1− ρ)

∣∣∣X̃t(θ)−Xt(θ)
∣∣∣ ;

(ii)

∣∣∣∣ B(η̃t)

B′(η̃t)
− B(ηt)

B′(ηt)

∣∣∣∣ ≤ 1

c2
(B′(ηt) +B(ηt)) |B(η̃t)−B(ηt)| ;

(iii)

∣∣∣∣B(η̃t)
2

B′(η̃t)
− B(ηt)

2

B′(ηt)

∣∣∣∣ ≤ 1

c2
[(B′(ηt) +B(ηt))B

′(ηt) +B(ηt)
2] |B(η̃t)−B(ηt)| ;

(iv)
∣∣∣e−A(η̃t) − e−A(ηt)

∣∣∣ ≤ M |B(η̃t)−B(ηt)| ;

(v)

∣∣∣∣ B(η̃t)

B′(η̃t)
e−A(η̃t) − B(ηt)

B′(ηt)
e−A(ηt)

∣∣∣∣
≤ 1

c2
(B′(ηt) +B(ηt)) |B(η̃t)−B(ηt)|+M2 |B(η̃t)−B(ηt)| ;

(vi)

∣∣∣∣B(η̃t)
2

B′(η̃t)
e−A(η̃t) − B(ηt)

2

B′(ηt)
e−A(ηt)

∣∣∣∣
≤ 1

c2
[(B′(ηt) +B(ηt))B

′(ηt) +B(ηt)
2] |B(η̃t)−B(ηt)|

+MB(ηt) |B(η̃t)−B(ηt)| .

Proof. Use the mean value theorem. �

Lemma 6 Suppose that (A0)-(A2) and (A4) hold. Then,

(i) sup
ϑ∈Θ

|Zt0(ϑ)| ≤
Mh(0)

δL
and sup

ϑ∈Θ
|Zt1(ϑ)| ≤

Yt
δLc

+
M

δL
;

(ii) sup
ϑ∈Θ

∣∣∣Z̃t0(ϑ)− Zt0(ϑ)
∣∣∣

≤ h(0)(1− δL)

δ2L(1− h(0))2c2
[(1− h(0))(B′(ηt) +B(ηt)) +M2c2] |B(η̃t)−B(ηt)| ;

(iii) sup
ϑ∈Θ

∣∣∣Z̃t1(ϑ)− Zt1(ϑ)
∣∣∣

≤ Yt
δLc2

∣∣B′(η̃t)−B′(ηt)
∣∣+ 1

δLc2
(B′(ηt) +B(ηt)) |B(η̃t)−B(ηt)| .
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Proof. Use Lemma 5. �

Lemma 7 Suppose that (A0)-(A13) hold. Then, under H0, as n → ∞,

(i)

∥∥∥∥∥ 1√
n

n∑
t=1

∂ℓ̃t(ϑ0)

∂ϑ
− 1√

n

n∑
t=1

∂ℓt(ϑ0)

∂ϑ

∥∥∥∥∥ = oP (1);

(ii) sup
ϑ∈Θ

∥∥∥∥∥∂2ℓ̃t(ϑ)

∂ϑ∂ϑT
− ∂2ℓt(ϑ)

∂ϑ∂ϑT

∥∥∥∥∥ −→ 0 a.s. as t → ∞;

(iii) − 1

n

∂2L̃n(ϑ
∗
n)

∂ϑ∂ϑT
−→ I(ϑ0) a.s.,

where ϑ∗
n is the intermediate point ϑ̂n and ϑ0.

Proof. (i) First, by Lemma 6 and (A5), (A6), for i = 0, 1,∥∥∥∥∥ 1√
n

n∑
t=1

∂ℓ̃ti(ϑ0)

∂θ
− 1√

n

n∑
t=1

∂ℓti(ϑ0)

∂θ

∥∥∥∥∥
≤ 1√

n

n∑
t=1

∥∥∥∥∥Z̃ti(ϑ0)
∂X̃t

∂θ
(θ0)− Zti(ϑ0)

∂Xt

∂θ
(θ0)

∥∥∥∥∥
≤ 1√

n

n∑
t=1

∥∥∥∥∥(Z̃ti(ϑ0)− Zti(ϑ0))
∂X̃t

∂θ
(θ0)

∥∥∥∥∥+ 1√
n

n∑
t=1

∥∥∥∥∥Zti(ϑ0)(
∂Xt

∂θ
(θ0)−

∂X̃t

∂θ
(θ0))

∥∥∥∥∥
= oP (1).

Second, by Lemma 5,∣∣∣∣∣ 1√
n

n∑
t=1

∂ℓ̃t1(ϑ0)

∂ρ
− 1√

n

n∑
t=1

∂ℓt1(ϑ0)

∂ρ

∣∣∣∣∣ ≤ 1√
n

n∑
t=1

∣∣∣∣∣∂ℓ̃t1(ϑ0)

∂ρ
− ∂ℓt1(ϑ0)

∂ρ

∣∣∣∣∣
≤ 1√

n

1

(1− ρ)

n∑
t=1

Yt

∣∣∣∣ B(η̃t)

B′(η̃t)
− B(ηt)

B′(ηt)

∣∣∣∣+ 1√
n

1

(1− ρ)

n∑
t=1

∣∣∣∣B(η̃t)
2

B′(η̃t)
− B(ηt)

2

B′(ηt)

∣∣∣∣
= oP (1).

18



Finally, by Lemma 5,∣∣∣∣∣ 1√
n

n∑
t=1

∂ℓ̃t0(ϑ0)

∂ρ
− 1√

n

n∑
t=1

∂ℓt0(ϑ0)

∂ρ

∣∣∣∣∣
≤ 1√

n

n∑
t=1

∣∣∣∣∣∂ℓ̃t0(ϑ0)

∂ρ
− ∂ℓt0(ϑ0)

∂ρ

∣∣∣∣∣
≤ 1√

n

1

δ2L(1− h(0))2

n∑
t=1

[
h(0)

∣∣∣e−A(η̃t) − e−A(ηt)
∣∣∣

+ρh(0)

∣∣∣∣B(η̃t)
2

B′(η̃t)
e−A(η̃t) − B(ηt)

2

B′(ηt)
e−A(ηt)

∣∣∣∣
+(1− ρ)h(0)2

∣∣∣∣B(η̃t)
2

B′(η̃t)
− B(ηt)

2

B′(ηt)

∣∣∣∣
]
= oP (1).

Thus, the proof is completed.

(ii) It’s similar to the proof of Proposition 5 of Lee et al. (2016a). It is easy

to show that for i = 0, 1, as t → ∞,

sup
ϑ∈Θ

∣∣∣∣∣∂2ℓ̃ti(ϑ)

∂ρ2
− ∂2ℓti(ϑ)

∂ρ2

∣∣∣∣∣ −→ 0 a.s.

sup
ϑ∈Θ

∥∥∥∥∥∂2ℓ̃ti(ϑ)

∂θ∂θT
− ∂2ℓti(ϑ)

∂θ∂θT

∥∥∥∥∥ −→ 0 a.s.

sup
ϑ∈Θ

∥∥∥∥∥∂2ℓ̃ti(ϑ)

∂ρ∂θ
− ∂2ℓti(ϑ)

∂ρ∂θ

∥∥∥∥∥ −→ 0 a.s.

Thus, the proof is completed.

(iii) This can be proven almost identically to the proof of Proposition 5 of

Lee et al. (2016a). �

Proof of Theorem 4. Since {∂ℓt(θ0)/∂θ;Ft} forms a martingale difference

sequence, we can show that 1√
n
∂ℓt(θ0)/∂θ converges weakly to N(0, I(θ0)) by
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using a martingale central limit theorem and the Cramér-Wold device. Then,

by using Taylor’s theorem and Lemma 5, we can prove the theorem. �

Proof of Theorem 5. We consider T res,2
n only

(the proof of T res,1
n

w−→ sup0≤s≤1 |B◦
1(s)| is similar to that of Kang and Lee

(2014)).

First, note that by (A2),

C(ηt) = (1− ρ){B′(ηt) + ρB(ηt)
2}

≥ (1− ρ)(c+ ρd2)

:= f > 0

We write

ϵ̂t,2 − ϵt,2 =
Yt − X̂t√
C(η̂t)

− Yt −Xt(θ0)√
C(η0t )

= (Xt(θ0)− X̂t)

(
1√
C(η̂t)

− 1√
C(η0t )

)

+ϵt,1

(
1√
C(η̂t)

− 1√
C(η0t )

)
+

1√
C(η0t )

(Xt(θ0)− X̂t))

:= Rt,1 +Rt,2 +Rt,3.

In view of (2.2), it suffices to show that

max
1≤k≤n

1√
n

∣∣∣∣∣
k∑

t=1

(ϵ̂t,2 − ϵt,2)−
k

n

n∑
t=1

(ϵ̂t,2 − ϵt,2)

∣∣∣∣∣ = oP (1), (A.2)

i.e., for i = 1, 2, 3,

max
1≤k≤n

1√
n

∣∣∣∣∣
k∑

t=1

Rt,i −
k

n

n∑
t=1

Rt,i

∣∣∣∣∣ = oP (1). (A.3)

Firstly, we express

max
1≤k≤n

1√
n

∣∣∣∣∣
k∑

t=1

Rt,1 −
k

n

n∑
t=1

Rt,1

∣∣∣∣∣ ≤ 2√
n

n∑
t=1

|Rt,1| ≤ In,1 + In,2 + In,3,
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where

In,1 =
2√
n

n∑
t=1

∣∣∣∣∣(Xt(θ0)−Xt(θ̂n)
)( 1√

C(η0t )
− 1√

C(ηnt )

)∣∣∣∣∣ ,
In,2 =

2√
n

n∑
t=1

∣∣∣∣∣(Xt(θ0)−Xt(θ̂n)
)( 1√

C(η̂t)
− 1√

C(ηnt )

)∣∣∣∣∣ ,
In,3 =

2√
n

n∑
t=1

∣∣∣∣∣(Xt(θ̂n)− X̂t

)( 1√
C(η̂t)

− 1√
C(η0t )

)∣∣∣∣∣ .
Using the mean value theorem with intermediate points θ∗n,1 and θ∗n,2 between

θ̂n and θ0, we have

In,1

=
1√
n

n∑
t=1

∣∣∣∣∣(θ̂n − θ0)
T
∂Xt(θ

∗
n,1)

∂θ
·

C ′(ηt(θ
∗
n,2))

C(ηt(θ∗n,2))
3/2

1

(1− ρ)B′(ηt(θ∗n,2))

∣∣∣∣∣∣∣∣∣(θ̂n − θ0)
T
∂Xt(θ

∗
n,2)

∂θ

∣∣∣∣
≤ n∥θ̂n − θ0∥2

1

c(1− ρ)

1

n
√
n

n∑
t=1

∣∣∣∣sup
θ∈Θ

C ′(ηt)

C(ηt)3/2

∣∣∣∣ · ∥∥∥∥sup
θ∈Θ

∂Xt(θ)

∂θ

∥∥∥∥2
= Op(1) · oP (1) = oP (1),

where we have used Theorem 4 and (A2), (A5) and (A11). Since η̂t can be

represented as η̃t(θ̂n) = B−1(X̃t(θ̂n/(1− ρ))) with X̃1(θ̂n) = X̂1, we have

In,2 ≤ 1√
n

1

f3/2

n∑
t=1

∣∣∣(Xt(θ0)−Xt(θ̂n)
)
(C(ηnt )− C(η̂t))

∣∣∣
≤

√
n∥θ̂n − θ0∥

V

nf3/2

n∑
t=1

γt
∥∥∥∥∂Xt(θ

∗
n,1)

∂θ

∥∥∥∥ = Op(1) · oP (1) = oP (1)

with intermediate point θ∗n,1 between θ̂n and θ0, due to (A2), (A5) and (A7).

Furthermore, note that |X̂t −Xt(θ̂n)| ≤ V γt a.s. since owing to (A0),

|X̂t −Xt(θ̂n)| =
∣∣∣fθ̂n(X̂t−1, Yt−1)− fθ̂n(Xt−1(θ̂n), Yt−1)

∣∣∣
≤ ω1|X̂t−1 −Xt−1(θ̂n)| ≤ ωt−1

1 |X̂1 −X1(θ̂n)|.
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Then, by using this and (A2),

In,3 ≤ 2√
n

n∑
t=1

V γt

∥∥∥∥∥supθ∈Θ

2√
C(ηt)

∥∥∥∥∥ ≤ 4V√
f
√
n

n∑
t=1

γt = oP (1).

Thus, (A.3) holds for i = 1.

Secondly, we express

max
1≤k≤n

1√
n

∣∣∣∣∣
k∑

t=1

Rt,2 −
k

n

n∑
t=1

Rt,2

∣∣∣∣∣ ≤ 2√
n

n∑
t=1

|Rt,2| ≤ IIn,1 + IIn,2,

where

IIn,1 = max
1≤k≤n

1√
n

∣∣∣∣∣
k∑

t=1

ϵt,1

(
1√
C(η̂t)

− 1√
C(ηnt )

)
− k

n

n∑
t=1

ϵt,1

(
1√
C(η̂t)

− 1√
C(ηnt )

)∣∣∣∣∣ ,
IIn,2 = max

1≤k≤n

1√
n

∣∣∣∣∣
k∑

t=1

ϵt,1

(
1√

C(ηnt )
− 1√

C(η0t )

)
− k

n

n∑
t=1

ϵt,1

(
1√

C(ηnt )
− 1√

C(η0t )

)∣∣∣∣∣ .
Similarly to the case of In,2, we have

IIn,1 ≤ 2√
n

n∑
t=1

∣∣∣∣∣ϵt,1
(

1√
C(η̂t)

− 1√
C(ηnt )

)∣∣∣∣∣
≤ 1√

n

1

f3/2

n∑
t=1

|ϵt,1(C(η̂t)− C(ηnt ))| ≤
V√
n

1

f3/2

n∑
t=1

|ϵt,1|γt = oP (1).

Using Taylor’s theorem, we have

C(ηnt )
−1/2 = C(η0t )

−1/2− 1

2
Zt(θ0)(θ̂n−θ0)

T ∂η
0
t

∂θ
− 1

2
(θ̂n−θ0)

T (ζt(θ
∗
n)− ζt(θ0)) ,

where θ∗n is an intermediate point between θ̂n and θ0, and ζt(θ) = C ′(ηt)C(ηt)
−3/2 ∂ηt

∂θ ,

so that

IIn,2 ≤ II ′n,2 + II ′′n,2,

where

II ′n,2 =
√
n∥θ̂n − θ0∥ max

1≤k≤n

k

n

∣∣∣∣∣1k
k∑

t=1

ϵt,1ζt(θ0)−
1

n

n∑
t=1

ϵt,1ζt(θ0)

∣∣∣∣∣ ,
II ′′n,2 =

√
n∥θ̂n − θ0∥

2

n

n∑
t=1

|ϵt,1| ∥ζt(θ∗n)− ζt(θ0)∥ .
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Since {ϵt,1ζt(θ0)} is ergodic,
√
n∥θ̂n − θ0∥ = OP (1), and E|ϵt,1|∥ζt(θ0)∥ < ∞

owing to (A1), (A2), (A4) and (A11), we have II ′n,2 = oP (1). Moreover,

because

II ′′n,2 ≤
√
n∥θ̂n − θ0∥

2

n

n∑
t=1

|ϵt,1| sup
∥θ−θ0∥≤∥θ̂n−θ0∥

∥ζt(θ)− ζt(θ0)∥

and E supθ∈Θ ∥ζt(θ)∥2 < ∞ owing to (A2), (A4) and (A11), using (A1) and

the dominated convergence theorem, we can have II ′′n,2 = oP (1) (cf., Proposition

5 in Lee, S., Lee, Y. and Chen, C. W. (2016)). Thus, (A.3) holds for i = 2.

Finally, using Taylor’s theorem, we have

Xt(θ̂n) = Xt(θ0) + (θ̂n − θ0)
T ∂Xt(θ0)

∂θ
+ (θ̂n − θ0)

T

(
∂Xt(θ

∗
n)

∂θ
− ∂Xt(θ0)

∂θ

)
for some θ∗n between θ̂n and θ0. Then, similarly to the case of IIn,2, we can show

that (A.3) holds for i = 3. Hence, (A.2) is verified. �
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국문초록

이재검토연구에서는영과잉일반정수값시계열모형의모수변화검정의문제를

다루었다. 일반 정수값 시계열 모형은 관측값의 조건부 밀도 함수가 영과잉 일변

량 지수족을 따르는 모형이다. 이 논문은 Lee and Lee (2018)의 연구에 기초하여

표준화된 잔차 기반 CUSUM 검정에 초점을 두고 있다. 또한, 표준화된 잔차 기

반 CUSUM 검정의 통계량이 귀무가설 하에서 브라우니안 브릿지의 함수로 분포

수렴함을 보였다.

주요어: 이산형 시계열, 정수값 GARCH 모형, 영과잉 지수족, 모수 변화 검정,

CUSUM 검정.

학번: 2017-26674
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