

저 시-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

이학석사학위논문

De Novo Drug Design Using Deep
Generative Models

딥러닝기반생성모형을이용한드노보약물합성

2019년 2월

서울대학교대학원

자연과학대학통계학과

한석진

Abstract

Drug design seeks to generate chemical compounds aimed to satisfy specific preferable prop-

erties. In this paper, I propose a new drug design model called D4GAN, capable of producing

molecule samples that match with a particular set of desirable metrics. This methodology

combines recent advances in generative adversarial networks (GANs). I primarily used the

ideas from boundary-seeking GAN (BSGAN) and objective-reinforced GAN (ORGAN), to

directly deal with molecules encoded as text sequences. I also adopt Wasserstein GAN

(WGAN), to improve the convergence and quality of generated de novo drug candidates.

Moreover, I adopt variational autoencoder (VAE) for the generator in GAN, in order to

improve the stability and quality of sample model generation, avoiding mode collapse that

often happens in other GAN models. The results show that D4GAN successfully tunes the

structure and quality of generated samples.

Keywords: Drug design, Generative model, Deep learning

Student Number: 2017-21920

i

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

2 Review of Generative Models 5

2.1 Variational Autoencoder (VAE) . 5

2.2 Generative Adversarial Network (GAN) 6

2.2.1 GAN with Discrete Data 6

2.3 VAE/GAN . 7

3 D4GAN: Discrete De Novo Drug Design Using GAN 9

3.1 Overview of Training Algorithm . 9

4 Experiments 11

4.1 Details on Experimental Setup . 11

4.1.1 Encoder . 11

iii

4.1.2 Generator . 12

4.1.3 Discriminator . 12

4.1.4 Training Set . 13

4.1.5 Evaluating Organic Compounds 14

4.1.6 Other Information . 14

4.2 Results . 15

4.2.1 Chemical Properties . 15

4.2.2 Examples . 16

5 Conclusions 19

Bibliography 21

초록 25

Acknowledgments 27

iv

List of Figures

2.1 The overall structure of VAE/GAN (Larsen et al., 2015) 8

4.1 Structure of the encoder . 12

4.2 Structure of the generator . 13

4.3 Structure of the discriminator . 13

4.4 Learning curves of D4GAN . 15

4.5 Violin plots of training samples and generated samples 16

4.6 Examples of well-known organic compounds found in generated samples 17

4.7 Examples of unknown organic compounds found in generated samples . 17

v

List of Tables

1.1 Examples of SMILES representation 3

4.1 Summary statistics among generated valid samples 16

vii

Chapter 1

Introduction

Over the last decades, the discovery and development of novel drug candidates have

been a challenging issue in the pharmaceutical industry. The cost of developing new

drugs has been soaring nowadays. Recent work shows that the estimated cost of

developing a single cancer drug was 648 million dollars, and the launching price for a

new drug has doubled over the past two decades. Failures in the development process

are critical contributors to this cost. The estimated clinical approval success rate is

only 11.8% (Prasad and Mailankody, 2017).

The very beginning step of new drug developing process, the prehuman/preclinical

step, where researchers search for potential drug candidates from large molecule

database, takes its share about 28.6% in the total cost of a drug development trial

(Avorn, 2015). Definitely, this pilot study is one of the biggest drivers of the cost in

pharmaceutical industrial innovation aside for Phase III stage. Recently, massively

stacking datasets on molecular structures and their biochemical properties make this

process more efficient and comprehensive. However, at the same time, demand for

more effective methods that guarantee both diversity and druglikeness of potential

molecular candidates is a rising concern (Roy, 2012).

1

New generative methods in deep learning have gained interest in computer-

assisted de novo drug design (CADD). In the mainstream, methods using qualitative

structure activity relationship (QSAR) or molecular docking have been suggested in

the new drug design (Cherkasov et al., 2014; Meng et al., 2011). These methods as-

sociate particular molecular structures or ligands to the chemical properties of the

molecule with several data analysis techniques, such as linear regressions, support

vector machines, stochastic tree searches. However, because of too much complexity

and variability of drug-like molecule family, the methods using statistics, combina-

torics or machine learning have had limited ability to analyze and generate potential

candidates thoroughly.

Recently, with the advent of deep neural network techniques and parallel comput-

ing, researchers have enjoyed more complicated non-linear models on the design of

novel molecules. Models using neural networks like long short-term memory (LSTM)

(Segler et al., 2017), variational autoencoder (VAE) (Blaschke et al., 2017) or rein-

forcement learning-based generative adversarial network (GAN) (Guimaraes et al.,

2017) have been suggested, and the reinforcement learning-based language model

has also been adopted in generating sample molecules (Olivecrona et al., 2017).

These model think of molecules as a sequence of atoms, so used SMILES (simpli-

fied molecular-input line-entry system; see Table 1.1 for examples) for describing the

grammar of how the atoms are composed to build the structure of the given molecule.

Another state-of-the-art model, which think of molecules as a sequence of chemical

reactions, adopted Monte Carlo tree search (MCTS) also showed compatible poten-

tial for generating new molecules (Segler et al., 2018).

In this paper, I propose a new drug design model called D4GAN, capable of

producing molecule samples that match with a particular set of desirable metrics.

This methodology combines recent advances in GANs. I primarily used the ideas

2

Table 1.1: Examples of SMILES representation

Chemical Name Structure SMILES formula

Benzene C1=CC=CC=C1

Acetaminophen CC(=O)NC1=CC=C(C=C1)O

from boundary-seeking GAN (BSGAN) (Hjelm et al., 2018) and objective-reinforced

GAN (ORGAN) (Guimaraes et al., 2017). Both models are designed for training a

generative model adversarially with discrete data, which is expected to directly deal

with the discrete sequential nature of SMILES dataset in a stable manner. I also adopt

Wasserstein GAN (WGAN), which uses Wasserstein distance for assessing the loss

of the generated sample, to improve the convergence and quality of generated de novo

drug candidates (Arjovsky et al., 2017). Moreover, I adopt VAE for the generator

in GAN, in order to improve the stability and quality of sample model generation,

avoiding the mode collapse that often happens in other GAN models (Larsen et al.,

2015).

I test the model in the context of drug generation, optimizing several molecule

metrics. The results show that D4GAN successfully tunes the structure and quality

of generated samples.

3

Chapter 2

Review of Generative Models

In this section, I elaborate on variational autoencoders (VAEs) and generative adver-

sarial networks (GANs) in the context of probability measures. Then, I introduce

GAN with discrete data and VAE/GAN, both of which provide a fundamental back-

ground for D4GAN.

2.1 Variational Autoencoder (VAE)

A VAE (Kingma and Welling, 2014) consists of two networks called an encoder and

a decoder. An encoder maps a data sample x ∈ X to a probability measure on a

latent feature space Rp, and a decoder maps the latent feature z ∈ Rp back to its

corresponding probability measure on X . In the case where X is finite (i.e., x is

discrete), one can put the encoder and decoder as specified below:

z ∼ Encφ(x) ≡ N(µφ(x), diag(σ2
φ(x))), x ∼ Decθ(z) ≡ Softmax(pθ(z)).

Training a VAE can be conducted by optimizing ELBO (evidence lower bound), the

sum of negative expected log likelihood and the Kullback-Leibler divergence (KL

5

divergence):

LV AE = −EEncφ (x)[log Decθ(u)] + DKL(Encφ(x)‖N(0, I)).

Note that the negative expected log likelihood can be viewed as a reconstruction loss,

and the KL divergence can be considered as a regularizer.

2.2 Generative Adversarial Network (GAN)

A GAN (Goodfellow et al., 2014) is comprised of two networks: a generator and a

discriminator. The generatorQψ maps latent z ∈ Rp to a probability measure on data

space X . The discriminator Dθ classifies whether the given data x ∈ X is chosen

from a real dataset or from a dataset produced by the generator. After training, one

can expect the generator to produce high-quality samples indistinguishable from real

data. Training a GAN is performed by minimizing

V(P,Qψ,Dθ) = EP[log Dθ(x)] + Eh(z)[log(1 − Dθ(Gψ(z)))],

where optimizer of Dθ aims to maximizeV(P,Qψ,Dθ) and optimizer of Gψ tends to

minimize it.

In practice, however, the GAN struggles to achieve stable development and train-

ing. Therefore, variants of this model were developed as an alternative. The most pop-

ular among these is WGAN (Arjovsky et al., 2017), which adopts Wasserstein distance

in the objective function of GAN:V(P,Qψ,Dθ) = EP[Dθ(x)] − Eh(z)[Dθ(Gψ(z))].

2.2.1 GAN with Discrete Data

In GANs, optimizing the value function V(P,Qψ,Dθ) is only possible when the

generated samples are completely differentiable with respect to θ. For discrete data,

the sampling process is not differentiable, and thus several variations of GAN exist

6

to deal with such data type. One popular variation is SeqGAN (Yu et al., 2017).

A SeqGAN model trains the generator Qψ as an agent in a reinforcement learning

context. Instead of minimizing V(P,Qψ,Dθ), this model maximizes the expected

long-term reward, where the reward function is given by R(X) = Dθ(X). Building on

the ideas of SeqGAN, ORGAN (Guimaraes et al., 2017) takes into account additional

molecule metrics O. The reward function is extended to a linear combination of Dθ

and O, parametrized by λ: R(X) = λDθ(X)+ (1−λ)O(X). Note that in both SeqGAN

and ORGAN, the policy gradient can be computed using the REINFORCE algorithm

(Williams, 1992).

BSGAN (Hjelm et al., 2018), in the vein of f -GAN (Nowozin et al., 2016),

optimizes the variational lower bound for the f -divergence, V(P,Qψ,Tθ) = EP[ν ◦

Fθ(x)] −EQψ [f
∗(ν ◦ Fθ(x))] where the generator is given by Tθ = ν ◦ Fθ . It computes

target generated samples density from f -divergence importance weights,

p̃(x) =
(∂ f ∗/∂T)T(x)

EQψ [(∂ f ∗/∂T)T(x)]
qψ(x),

then provides a policy gradient for training the generator when the empirical density

qψ(x) is discrete. Lower-variance version of this policy gradient is obtained in the

form of expected conditional KL divergence or reverse KL divergence, which can be

computed using Monte Carlo estimation or the REINFORCE algorithm.

2.3 VAE/GAN

A VAE/GAN (Larsen et al., 2015) attempts to combine the advantage of GAN as a

high-quality generative model and VAE as a method that produces an encoder of data

into the latent feature space Rp. It trains the VAE and GAN jointly, so as to make

the generator learn the advantages of both VAE and GAN. Then, the generator can

reproduce a molecule from the encoded feature, and produce a new result from an

7

VAE GAN

x

z

x̃

x
y ∈ [0,1]

encoder decoder/generator

discriminator

Figure 2.1: The overall structure of VAE/GAN (Larsen et al., 2015)

arbitrary element in latent feature space Rp. Figure 2.1 illustrates the main idea of

VAE/GAN.

8

Chapter 3

D4GAN: Discrete De Novo Drug

Design Using GAN

3.1 Overview of Training Algorithm

Algorithm 3.1 provides an outline of the training procedure of D4GAN.

The overall structure of D4GAN is analogous to VAE/GAN. The significant dif-

ference between D4GAN and VAE/GAN is the loss functions. D4GAN applies

Wasserstein loss, BSGAN and ORGAN style loss functions, which are not included

in VAE/GAN. The VAE/GAN model serves as a mechanism to prevent mode collapse

for D4GAN. In practice, applying only BSGAN and ORGAN models with Wasser-

stein loss results in unstable learning and frequent mode collapse. Furthermore,

VAE/GAN and D4GAN maneuver distinct data types: image data and sequential

data, respectively. Thus, while VAE/GAN replaces the VAE reconstruction (ex-

pected log likelihood) error term with a reconstruction error expressed in the GAN

discriminator, D4GAN does not change the reconstruction loss.

9

Algorithm 3.1 Training D4GAN
Require: Encoder network, EncθE : ΣT → Rp × Rp

Require: Generator network, GenθG : Rp →M(ΣT)

Require: Discriminator network, DisθD : ΣT → [0,1]
1: Initialize parameters θE, θG, θD
2: repeat
3: Pick X ∈ ΣT randomly from the training set
4: µ,σ2 ← EncθE (X)
5: LKL ←

1
2
∑p

k=1

(
µ2
k
+ σ2

k
− 2 logσk − 1

)
. KL divergence as regularizer

6: g̃ ← GenθG (Z̃) where Z̃ ∼ N(µ,diag(σ2)), ĝ ← GenθG (Ẑ) where Ẑ ∼ N(0, I)
7: X̃ ∼ g̃, X̂j ∼i.i.d. ĝ for j = 1,2, . . . ,m
8: LRecon ← − log g̃(X) . Negative log-likelihood loss as the reconstruction loss
9: ωj ←

DisθD (X̂j)

1−DisθD (X̂j)
for j = 1,2, . . . ,m

10: LRL ← −
∑n

j=1

[
λO(X̂j) + (1 − λ)

ω j∑m
k=1 ωk

]
log ĝ(X̂j) . ORGAN + BSGAN loss

11: LGAN ← −

[
DisθD (X) − DisθD (X̃) − 1

m

∑m
j=1 DisθD (X̂j)

]
.Wasserstein loss

12: θE ← θE − ηE∇θE (LKL + LRecon)

13: θG ← θG − ηG∇θG (κLRecon + LRL)

14: θD ← θD − ηD∇θDLGAN

15: until converge

10

Chapter 4

Experiments

4.1 Details on Experimental Setup

Here I test the effectiveness of D4GAN for generating molecules with advantageous

properties in the context of drug design. Here, molecules are encoded text sequences

by using the SMILES representation of a molecule.

4.1.1 Encoder

Figure 4.1 depicts the structure of the encoder network. The encoder maps a given

SMILES sequence (X1,X2, . . . ,XT) ∈ Σ
T into a feature vector z ∈ Rp by sampling

z from a multivariate normal distribution N(µ, diag(σ2)). I apply a simple gated

recurrent unit (GRU) (Cho et al., 2014) after an embedding layer, where the dimension

of the embedded vector is set to be 32. Note that only the hidden layer of GRUs is

used and the outputs are ignored. I then apply two distinct fully-connected layers to

obtain µ, logσ ∈ Rp . The dimension of the feature space and hidden layer of GRUs

is both chosen to be 512.

11

Embed

GRU0

X1

Embed

GRU

FC

FC

X2 XT

μ

Embed

GRU

logσ

Figure 4.1: Structure of the encoder

4.1.2 Generator

Figure 4.2 clarifies the structure of the generator network. The generator produces

SMILES sequences as follows. At time t, the generator returns new features zt ∈ Rp

and a probability measure gt , given previous features zt−1 ∈ R
p and previous SMILES

characters xt−1 ∈ Σ. Next, the generator samples xt from gt . Here an embedding layer

and a GRU are used again as in the encoder network, with fully-connected layers

and softmax layers used to construct a probability measure. The dimension of the

embedding layer and output layer of GRU is 32 and 512, respectively. In addition,

I employ teacher forcing (Williams and Zipser, 1989) with probability 0.9, when

training the generator.

4.1.3 Discriminator

Figure 4.3 denotes the structure of the discriminator network. The discriminator

classifies the given SMILES sequences as real or generated. The discriminator is a

convolutional neural network. All leaky ReLU layers have a negative slope of 0.2,

and all convolutional layers have output channels of 128, a kernel size of 5, stride of

1 and padding of 2.

12

Embed

GRU

FC +
logsoftmax

Sample Dist.
(w/ log prob)

Z

Init. Char Char1

Embed

GRU

FC +
logsoftmax

Sample Dist.
(w/ log prob)

CharT-1 CharT

Embed

GRU

FC +
logsoftmax

Sample Dist.
(w/ log prob)

Figure 4.2: Structure of the generator

Conv 1D

Batch Normalization

ΣT

Leaky ReLU

Conv 1D Batch Normalization

Leaky ReLU FC

[0, 1]

Sigmoid

+

Figure 4.3: Structure of the discriminator

4.1.4 Training Set

For training, I follow the setting of Guimaraes et al. (2017). I utilized a random subset

of 5,000 molecules from the set of 134 thousand stable small molecules. I regard each

molecule’s SMILES code as a multinomial Bernoulli distribution sequence. The

maximum sequence length is 98 and the size of alphabets is 41.

13

4.1.5 Evaluating Organic Compounds

Evaluating the validity and quality of the generated samples is essential. I judge the

generated molecules based on the following in silico chemical properties. I picked

qualities that are normally desired for small molecule discovery.

• Solubility: a property that measures how likely a molecule can mix with water,

also known as the water-octanol partition coefficient (log P) (Wildman and

Crippen, 1999).

• Synthesizability: estimates how hard (0) or easy (1) how it is to synthesize a

given molecule (Ertl and Schuffenhauer, 2009).

• Druglikeness: how likely a molecule is a viable candidate for a drug, an estimate

that captures the abstract notion of aesthetics in medicinal chemistry (Bickerton

et al., 2012).

Molecule metrics are implemented using the RDKit chemoinformatics package1.

I referred to the code for ORGAN, including metrics for each experiment, available

on GitHub to evaluate these properties2.

4.1.6 Other Information

I used Adam (Kingma and Ba, 2014) to train D4GAN, the learning rates of the encoder

and generator set to be 10−3 and 10−5 for the discriminator. Also, I chose λ = 0.5 and

κ = 4, where λ and κ are as given in Algorithm 3.1. The model is trained with 100

epochs with a mini-batch size of 64. I developed D4GAN using PyTorch and RDKit.

1https://www.rdkit.org/
2https://github.com/gablg1/ORGAN

14

https://www.rdkit.org/
https://github.com/gablg1/ORGAN

4.2 Results

I generated 5,000 molecules using D4GAN. Among them, 766 were valid, and 620

were chosen as final candidates after removing duplicates. Figure 4.4 shows the

learning curves of D4GAN with respect to different molecule metrics. The plots are

based on mean values of valid generated molecules, except for validity. Note that the

plots are not drawn at the initial stages since there is no valid data at that point.

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00
Validity

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

Solubility
(mean ± sd; among valid molecules)

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

Synthesizability
(mean ± sd; among valid molecules)

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

Druglikeness
(mean ± sd; among valid molecules)

Figure 4.4: Learning curves of D4GAN

4.2.1 Chemical Properties

Table 4.1 shows summary statistics for evaluation of chemical properties. Figure 4.5

displays violin plots of chemical properties in the training set and the generated set.

Both show that D4GAN is able to capture successfully mimics the distribution of

properties of the training set well.

15

Table 4.1: Summary statistics among generated valid samples

Solubility

Mean: 0.547 SD: 0.161
min: 0.000 Q1: 0.451 Q2: 0.556 Q3: 0.657 max: 1.000

Synthesizability

Mean: 0.651 SD: 0.246
min: 0.000 Q1: 0.504 Q2: 0.701 Q3: 0.834 max: 1.000

Druglikeness

Mean: 0.720 SD: 0.146
min: 0.274 Q1: 0.623 Q2: 0.751 Q3: 0.840 max: 0.944

Train Generated
0.0

0.2

0.4

0.6

0.8

1.0

Solubility
(among valid molecules)

Train Generated

Synthesizability
(among valid molecules)

Train Generated

Druglikeness
(among valid molecules)

Figure 4.5: Violin plots of training samples and generated samples

4.2.2 Examples

Figure 4.6 and 4.7 show molecules generated using D4GAN. It should be noted that

I was able to create molecules that are not in the initial training set.

16

Well-known Organic Compounds

Among the 620 selected molecules around 20 of them were familiar organic com-

pounds, for instance, ethanol, formaldehyde, methylamine, and methylpyridine.

Methylamine and methylpyridine are the primary precursors to caffeine and vita-

min B, respectively.

(a) Ethanol (b) Formaldehyde (c) Methylamine (d) Methylpyridine

Figure 4.6: Examples of well-known organic compounds found in generated samples

Unknown Organic Compounds

A large portion of generated samples were unknown organic compounds. I could

not find these compounds in PubChem, a database of chemical molecules and their

activities against biological assays.

NH2

Cl O

S

N

N

NH2

N

NH

O
NH

O

N
N

Figure 4.7: Examples of unknown organic compounds found in generated samples

17

Chapter 5

Conclusions

In this work, I have presented D4GAN, a new framework for generating organic

compounds with desirable properties in a pharmaceutical context of drug discovery.

I have built on basic structures of ORGAN, BSGAN, and WGAN, and extended them

with VAE/GAN to handle mode collapse.

I have shown that D4GAN can improve certain metrics that desired, namely sol-

ubility, synthesizability, and druglikeness. More importantly, non-repetitive samples

were generated, a large portion of which were novel organic compounds not registered

in any public chemical substances database. Chemical properties of the generated

data show its competency to be of practical use in the field of organic chemistry as

well as the pharmaceutical industry.

One area of improvement is to complicate D4GAN’s current network framework.

Tuning model hyperparameters and adopting different molecule metrics are one of

many possibilities. I believe these extensions to be quite promising since the present

structure is largely simple. Furthermore, at present D4GAN uses publicly available

datasets for training, which does not contain sufficient enough likely candidates for

drug discovery. Forthcoming research should diversify chemical compounds in the

19

training sets to promote diversity of generated samples.

20

Bibliography

Arjovsky, M., S. Chintala, and L. Bottou (2017). Wasserstein GAN. arXiv preprint

arXiv:1701.07875v3.

Avorn, J. (2015). The $2.6 billion pill—methodologic and policy considerations. New

England Journal of Medicine 372(20), 1877–1879.

Bickerton, G. R., G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hopkins (2012).

Quantifying the chemical beauty of drugs. Nature chemistry 4(2), 90.

Blaschke, T., M. Olivecrona, O. Engkvist, J. Bajorath, and H. Chen (2017). Applica-

tion of generative autoencoder in de novo molecular design. Molecular informatics.

Cherkasov, A., E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin, M. Cronin, J. Dear-

den, P. Gramatica, Y. C. Martin, R. Todeschini, et al. (2014). Qsar modeling: where

have you been? where are you going to? Journal of medicinal chemistry 57(12),

4977–5010.

Cho, K., B. Van Merriënboer, D. Bahdanau, and Y. Bengio (2014). On the proper-

ties of neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259.

21

Ertl, P. and A. Schuffenhauer (2009). Estimation of synthetic accessibility score of

drug-like molecules based on molecular complexity and fragment contributions.

Journal of cheminformatics 1(1), 8.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio (2014). Generative adversarial nets. In Advances

in neural information processing systems, pp. 2672–2680.

Guimaraes, G. L., B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and A. Aspuru-

Guzik (2017). Objective-reinforced generative adversarial networks (organ) for

sequence generation models. arXiv preprint arXiv:1705.10843.

Hjelm, R. D., A. P. Jacob, T. Che, A. Trischler, K. Cho, and Y. Bengio

(2018). Boundary-seeking generative adversarial networks. arXiv preprint

arXiv:1702.08431v4.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kingma, D. P. and M. Welling (2014). Auto-encoding variational Bayes. arXiv

preprint arXiv:1312.6114v10.

Larsen, A. B. L., S. K. Sønderby, H. Larochelle, and O. Winther (2015). Au-

toencoding beyond pixels using a learned similarity metric. arXiv preprint

arXiv:1512.09300v2.

Meng, X.-Y., H.-X. Zhang, M. Mezei, and M. Cui (2011). Molecular docking: a

powerful approach for structure-based drug discovery. Current computer-aided

drug design 7(2), 146–157.

22

Nowozin, S., B. Cseke, and R. Tomioka (2016). f -GAN: Training genera-

tive neural samplers using variational divergence minimization. arXiv preprint

arXiv:1606.00709v1.

Olivecrona, M., T. Blaschke, O. Engkvist, and H. Chen (2017). Molecular de-novo

design through deep reinforcement learning. Journal of cheminformatics 9(1), 48.

Prasad, V. and S. Mailankody (2017). Research and development spending to

bring a single cancer drug to market and revenues after approval. JAMA inter-

nal medicine 177(11), 1569–1575.

Roy, A. S. (2012). Stifling new cures: the true cost of lengthy clinical drug trials.

Manhattan Institute for Policy Research 5, 5–13.

Segler, M. H., T. Kogej, C. Tyrchan, and M. P. Waller (2017). Generating focused

molecule libraries for drug discovery with recurrent neural networks. ACS Central

Science.

Segler, M. H., M. Preuss, and M. P. Waller (2018). Planning chemical syntheses with

deep neural networks and symbolic ai. Nature 555(7698), 604.

Wildman, S. A. and G. M. Crippen (1999). Prediction of physicochemical param-

eters by atomic contributions. Journal of chemical information and computer

sciences 39(5), 868–873.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning 8, 229–256.

Williams, R. J. and D. Zipser (1989). A learning algorithm for continually running

fully recurrent neural networks. Neural computation 1(2), 270–280.

23

Yu, L., W. Zhang, J. Wang, and Y. Yu (2017). SeqGAN: Sequence generative

adversarial nets with policy gradient. arXiv preprint arXiv:1609.05473v6.

24

초록

신약 후보군 디자인 단계에서는 약물이 가져야 할 특정한 화학적 성질들을 만족하는

화합물을 생성하는 것을 목표로 한다. 본 논문에서 새로 제안한 모형인 D4GAN을 이용

하면 특정한 지표 수준을 만족하는 화합물 샘플들을 생성할 수 있다. D4GAN은 최근 생

산적 적대 신경망 분야에서 개발된 여러 모형을 결합하였다. D4GAN의 핵심적인 구조로

boundary-seeking GAN (BSGAN)및 objective-reinforced GAN (ORGAN)을사용하였는데,

이들은 문자열의 형태로 인코딩된 화합물 데이터를 직접적으로 다루기 위한 생산적 적대

신경망의변형이다. 또한, D4GAN이생성하는드노보약물후보물질들의수렴및품질개

선을위해Wasserstein GAN (WGAN)을도입하였다. 덧붙여, GAN의생성자에 variational

autoencoder (VAE)를 결합하여, GAN에서 종종 발생하는 mode collapsing 문제를 피하고

생성된화합물샘플들의안정성과품질을개선하고자하였다. 간단한실험결과, D4GAN이

생성한약물후보군샘플들의품질과구조가성공적으로조율되었음을확인하였다.

주요어: 약물합성,생성모형,딥러닝

학번: 2017-21920

25

Acknowledgments

This work is originally presented as a team project of the class 326.739A in 2018

spring semester. I would like to express a great appreciation to my teammates—

Hyoshin Kim, Kyeongwon Lee, and Seowon Choi—for allowing me to publish this

work as my dissertation. I should also mention that it was a great pleasure to work

with all of them.

27

	1 Introduction
	2 Review of Generative Models
	2.1 Variational Autoencoder (VAE)
	2.2 Generative Adversarial Network (GAN)
	2.2.1 GAN with Discrete Data

	2.3 VAE/GAN

	3 D4GAN: Discrete De Novo Drug Design Using GAN
	3.1 Overview of Training Algorithm

	4 Experiments
	4.1 Details on Experimental Setup
	4.1.1 Encoder
	4.1.2 Generator
	4.1.3 Discriminator
	4.1.4 Training Set
	4.1.5 Evaluating Organic Compounds
	4.1.6 Other Information

	4.2 Results
	4.2.1 Chemical Properties
	4.2.2 Examples

	5 Conclusions
	Bibliography
	초록
	Acknowledgments

<startpage>12
1 Introduction 1
2 Review of Generative Models 5
 2.1 Variational Autoencoder (VAE) 5
 2.2 Generative Adversarial Network (GAN) 6
 2.2.1 GAN with Discrete Data 6
 2.3 VAE/GAN 7
3 D4GAN: Discrete De Novo Drug Design Using GAN 9
 3.1 Overview of Training Algorithm 9
4 Experiments 11
 4.1 Details on Experimental Setup 11
 4.1.1 Encoder 11
 4.1.2 Generator 12
 4.1.3 Discriminator 12
 4.1.4 Training Set 13
 4.1.5 Evaluating Organic Compounds 14
 4.1.6 Other Information 14
 4.2 Results 15
 4.2.1 Chemical Properties 15
 4.2.2 Examples 16
5 Conclusions 19
Bibliography 21
초록 25
Acknowledgments 27
</body>

