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Abstract

Drug design seeks to generate chemical compounds aimed to satisfy specific preferable prop-
erties. In this paper, I propose a new drug design model called DAGAN, capable of producing
molecule samples that match with a particular set of desirable metrics. This methodology
combines recent advances in generative adversarial networks (GANSs). I primarily used the
ideas from boundary-seeking GAN (BSGAN) and objective-reinforced GAN (ORGAN), to
directly deal with molecules encoded as text sequences. I also adopt Wasserstein GAN
(WGAN), to improve the convergence and quality of generated de novo drug candidates.
Moreover, I adopt variational autoencoder (VAE) for the generator in GAN, in order to
improve the stability and quality of sample model generation, avoiding mode collapse that
often happens in other GAN models. The results show that D4GAN successfully tunes the

structure and quality of generated samples.

Keywords: Drug design, Generative model, Deep learning
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Chapter 1

Introduction

Over the last decades, the discovery and development of novel drug candidates have
been a challenging issue in the pharmaceutical industry. The cost of developing new
drugs has been soaring nowadays. Recent work shows that the estimated cost of
developing a single cancer drug was 648 million dollars, and the launching price for a
new drug has doubled over the past two decades. Failures in the development process
are critical contributors to this cost. The estimated clinical approval success rate is
only 11.8% (Prasad and Mailankodyl 2017).

The very beginning step of new drug developing process, the prehuman/preclinical
step, where researchers search for potential drug candidates from large molecule
database, takes its share about 28.6% in the total cost of a drug development trial
(Avorn, 2015). Definitely, this pilot study is one of the biggest drivers of the cost in
pharmaceutical industrial innovation aside for Phase III stage. Recently, massively
stacking datasets on molecular structures and their biochemical properties make this
process more efficient and comprehensive. However, at the same time, demand for
more effective methods that guarantee both diversity and druglikeness of potential

molecular candidates is a rising concern (Roy, 2012).



New generative methods in deep learning have gained interest in computer-
assisted de novo drug design (CADD). In the mainstream, methods using qualitative
structure activity relationship (QSAR) or molecular docking have been suggested in
the new drug design (Cherkasov et al2014; Meng et al., 2011). These methods as-
sociate particular molecular structures or ligands to the chemical properties of the
molecule with several data analysis techniques, such as linear regressions, support
vector machines, stochastic tree searches. However, because of too much complexity
and variability of drug-like molecule family, the methods using statistics, combina-
torics or machine learning have had limited ability to analyze and generate potential
candidates thoroughly.

Recently, with the advent of deep neural network techniques and parallel comput-
ing, researchers have enjoyed more complicated non-linear models on the design of
novel molecules. Models using neural networks like long short-term memory (LSTM)
(Segler et al., 2017}, variational autoencoder (VAE) (Blaschke et al., 2017)) or rein-
forcement learning-based generative adversarial network (GAN) (Guimaraes et al.|
2017) have been suggested, and the reinforcement learning-based language model
has also been adopted in generating sample molecules (Olivecrona et al., 2017).
These model think of molecules as a sequence of atoms, so used SMILES (simpli-
fied molecular-input line-entry system; see Table[I.T|for examples) for describing the
grammar of how the atoms are composed to build the structure of the given molecule.
Another state-of-the-art model, which think of molecules as a sequence of chemical
reactions, adopted Monte Carlo tree search (MCTS) also showed compatible poten-
tial for generating new molecules (Segler et al., 2018)).

In this paper, I propose a new drug design model called DAGAN, capable of
producing molecule samples that match with a particular set of desirable metrics.

This methodology combines recent advances in GANs. I primarily used the ideas



Table 1.1: Examples of SMILES representation

Chemical Name Structure SMILES formula

Benzene © C1=CC=CC=C1

OH
O
Acetaminophen i /©/ CC(=0)NC1=CC=C(C=C1)0
HsC™ N
H

from boundary-seeking GAN (BSGAN) (Hjelm et al.,[2018]) and objective-reinforced
GAN (ORGAN) (Guimaraes et al., 2017). Both models are designed for training a
generative model adversarially with discrete data, which is expected to directly deal
with the discrete sequential nature of SMILES dataset in a stable manner. I also adopt
Wasserstein GAN (WGAN), which uses Wasserstein distance for assessing the loss
of the generated sample, to improve the convergence and quality of generated de novo
drug candidates (Arjovsky et al., [2017). Moreover, I adopt VAE for the generator
in GAN, in order to improve the stability and quality of sample model generation,
avoiding the mode collapse that often happens in other GAN models (Larsen et al.|
2015)).

I test the model in the context of drug generation, optimizing several molecule
metrics. The results show that D4AGAN successfully tunes the structure and quality

of generated samples.
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Chapter 2

Review of Generative Models

In this section, I elaborate on variational autoencoders (VAEs) and generative adver-
sarial networks (GANSs) in the context of probability measures. Then, I introduce
GAN with discrete data and VAE/GAN, both of which provide a fundamental back-

ground for DAGAN.

2.1 Variational Autoencoder (VAE)

A VAE (Kingma and Welling|, 2014) consists of two networks called an encoder and
a decoder. An encoder maps a data sample x € X to a probability measure on a
latent feature space R”, and a decoder maps the latent feature z € RP back to its
corresponding probability measure on X. In the case where X is finite (i.e., x is

discrete), one can put the encoder and decoder as specified below:
z ~ Ency(x) = N(ugp(x), diag(o-é(x))), x ~ Decg(z) = Softmax(pg(z)).

Training a VAE can be conducted by optimizing ELBO (evidence lower bound), the

sum of negative expected log likelihood and the Kullback-Leibler divergence (KL



divergence):
Ly ag = —Egnc, (x)[log Decg(u)] + Dk L(Ency(x)|IN(0, 1)).

Note that the negative expected log likelihood can be viewed as a reconstruction loss,

and the KL divergence can be considered as a regularizer.

2.2 Generative Adversarial Network (GAN)

A GAN (Goodfellow et al.,[2014)) is comprised of two networks: a generator and a
discriminator. The generator Qy maps latent z € R” to a probability measure on data
space X. The discriminator Dy classifies whether the given data x € X is chosen
from a real dataset or from a dataset produced by the generator. After training, one
can expect the generator to produce high-quality samples indistinguishable from real

data. Training a GAN is performed by minimizing
V(P,Qy. Do) = Ep[log Dg(x)] + En(z)[log(1 — Dg(Gy ()],

where optimizer of Dy aims to maximize V (P, Qy, Dg) and optimizer of G tends to
minimize it.

In practice, however, the GAN struggles to achieve stable development and train-
ing. Therefore, variants of this model were developed as an alternative. The most pop-
ular among these is WGAN (Arjovsky et al.,|2017), which adopts Wasserstein distance
in the objective function of GAN: V(P,Qy, Dg) = Ep[Dg(x)] — En;)[De(Gy(2))].

2.2.1 GAN with Discrete Data

In GANSs, optimizing the value function V(P,Qy,Dy) is only possible when the
generated samples are completely differentiable with respect to 6. For discrete data,

the sampling process is not differentiable, and thus several variations of GAN exist

6



to deal with such data type. One popular variation is SeqGAN (Yu et al., 2017).
A SeqGAN model trains the generator Qy as an agent in a reinforcement learning
context. Instead of minimizing V(P,Qy, Dg), this model maximizes the expected
long-term reward, where the reward function is given by R(X) = Dg(X). Building on
the ideas of SeqGAN, ORGAN (Guimaraes et al., 2017) takes into account additional
molecule metrics O. The reward function is extended to a linear combination of Dy
and O, parametrized by 1: R(X) = ADg(X)+ (1 —1)O(X). Note that in both SeqGAN
and ORGAN, the policy gradient can be computed using the REINFORCE algorithm
(Williams|, |1992).

BSGAN (Hjelm et al., 2018)), in the vein of f-GAN (Nowozin et al. [2016),
optimizes the variational lower bound for the f-divergence, V(P,Qy,Ty) = Ep[v o
Fo(x)] = Eq, [f*(v o Fy(x))] where the generator is given by Ty = v o Fy. It computes

target generated samples density from f-divergence importance weights,

) = T/
Bq, [0 [0T)T(x)]

then provides a policy gradient for training the generator when the empirical density

qy(x),

qy(x) is discrete. Lower-variance version of this policy gradient is obtained in the
form of expected conditional KL divergence or reverse KL divergence, which can be

computed using Monte Carlo estimation or the REINFORCE algorithm.

2.3 VAE/GAN

A VAE/GAN (Larsen et al., 2015) attempts to combine the advantage of GAN as a
high-quality generative model and VAE as a method that produces an encoder of data
into the latent feature space RP. It trains the VAE and GAN jointly, so as to make
the generator learn the advantages of both VAE and GAN. Then, the generator can

reproduce a molecule from the encoded feature, and produce a new result from an

7



VAE

encoder decoder
X X
X

generator

discriminator

GAN

» y e [0,1]
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arbitrary element in latent feature space RP. Figure 2.1]illustrates the main idea of

VAE/GAN.

98

i

; 1_'_” (e

)

I

n



Chapter 3

D4GAN: Discrete De Novo Drug
Design Using GAN

3.1 Overview of Training Algorithm

Algorithm 3.1 provides an outline of the training procedure of D4GAN.

The overall structure of D4GAN is analogous to VAE/GAN. The significant dif-
ference between D4GAN and VAE/GAN is the loss functions. D4GAN applies
Wasserstein loss, BSGAN and ORGAN style loss functions, which are not included
in VAE/GAN. The VAE/GAN model serves as a mechanism to prevent mode collapse
for D4AGAN. In practice, applying only BSGAN and ORGAN models with Wasser-
stein loss results in unstable learning and frequent mode collapse. Furthermore,
VAE/GAN and D4GAN maneuver distinct data types: image data and sequential
data, respectively. Thus, while VAE/GAN replaces the VAE reconstruction (ex-
pected log likelihood) error term with a reconstruction error expressed in the GAN

discriminator, D4GAN does not change the reconstruction loss.



Algorithm 3.1 Training DAGAN

Require: Encoder network, Encg,. : 3T 5 RP X RP

Require: Generator network, Geng,, : R” — M(ZT)

Require: Discriminator network, Disg,, : 2T — [0,1]
1: Initialize parameters 6g,0G,0p

2: repeat

3: Pick X € X7 randomly from the training set

4: i, 02 — Encg, (X)

50 LrkL—33b (,ui + 0l —2logoy - 1) > KL divergence as regularizer
6:  § « Geng(Z) where Z ~ N(u,diag(c?)), § « Geny, (Z) where Z ~ N(0,I)

7: XNg,XJ' ~i_,~,d7§f0rj=1,2,...,m

8: LRecon — —log g(X) > Negative log-likelihood loss as the reconstruction loss

) . DngD (XJ) .
9: wj — —17D159D()2f) forj=12,...,m
10:  Lrr—-X2", [AO(X,-) +(1-)sml—|logg(X;)  »ORGAN + BSGAN loss
J= Zk:l Wi

11: LGan <« — [DiseD (X) — Disg,, X) - # ;.”:1 Disg,, ()?j) > Wasserstein loss
12: 0 < 0 — eV, (LxkL + LRecon)
13: 0 <« 0 — UGVQG (K-LRecon + -ERL)

14: 0p < 0p —1npVe, Lcan

15: until converge

10



Chapter 4

Experiments

4.1 Details on Experimental Setup

Here I test the effectiveness of D4AGAN for generating molecules with advantageous
properties in the context of drug design. Here, molecules are encoded text sequences

by using the SMILES representation of a molecule.

4.1.1 Encoder

Figure depicts the structure of the encoder network. The encoder maps a given
SMILES sequence (X1, X>,...,Xr) € X7 into a feature vector z € RP by sampling
z from a multivariate normal distribution N(u,diag(c?)). 1 apply a simple gated
recurrent unit (GRU) (Cho et al.L[2014)) after an embedding layer, where the dimension
of the embedded vector is set to be 32. Note that only the hidden layer of GRUs is
used and the outputs are ignored. I then apply two distinct fully-connected layers to
obtain y,log o € R” . The dimension of the feature space and hidden layer of GRUs

is both chosen to be 512.

11



Xi X Xt

l ! l

Embed Embed Embed
v v v FC —> g
0—>| GRU |—> GRU  |[—> ------ —>| GRrU <
FC > logo

Figure 4.1: Structure of the encoder

4.1.2 Generator

Figure §.2] clarifies the structure of the generator network. The generator produces
SMILES sequences as follows. At time ¢, the generator returns new features z; € R”
and a probability measure g;, given previous features z;_; € R? and previous SMILES
characters x;_; € Z. Next, the generator samples x; from g;. Here an embedding layer
and a GRU are used again as in the encoder network, with fully-connected layers
and softmax layers used to construct a probability measure. The dimension of the
embedding layer and output layer of GRU is 32 and 512, respectively. In addition,
I employ teacher forcing (Williams and Zipser, [1989) with probability 0.9, when

training the generator.

4.1.3 Discriminator

Figure [4.3] denotes the structure of the discriminator network. The discriminator
classifies the given SMILES sequences as real or generated. The discriminator is a
convolutional neural network. All leaky ReLLU layers have a negative slope of 0.2,
and all convolutional layers have output channels of 128, a kernel size of 5, stride of

1 and padding of 2.

12



Init. Char > Char, > - —>» Charr, > Charr

Embed Embed Embed
77— GRU > GRU » oo —> GRU
FC+ FC+ FC+
logsoftmax logsoftmax logsoftmax
Sample Dist. Sample Dist. | | _ 1 Sample Dist.
(w/ log prob) (w/ log prob) (w/ log prob)

Figure 4.2: Structure of the generator

2T ——» | ConvID

!

Batch Normalization Leaky ReLU > FC
l Sigmoid
Leaky ReLU —

l [0, 1]

Conv1D [——m Batch Normalization

Figure 4.3: Structure of the discriminator

4.1.4 Training Set

For training, I follow the setting of |(Guimaraes et al.|(2017)). I utilized a random subset
of 5,000 molecules from the set of 134 thousand stable small molecules. I regard each
molecule’s SMILES code as a multinomial Bernoulli distribution sequence. The

maximum sequence length is 98 and the size of alphabets is 41.

13



4.1.5 Evaluating Organic Compounds

Evaluating the validity and quality of the generated samples is essential. I judge the
generated molecules based on the following in silico chemical properties. I picked

qualities that are normally desired for small molecule discovery.

* Solubility: a property that measures how likely a molecule can mix with water,
also known as the water-octanol partition coefficient (log P) (Wildman and

Crippen, |1999).

» Synthesizability: estimates how hard (0) or easy (1) how it is to synthesize a

given molecule (Ertl and Schuffenhauer, 2009).

* Druglikeness: how likely a molecule is a viable candidate for a drug, an estimate
that captures the abstract notion of aesthetics in medicinal chemistry (Bickerton

et al.[2012).

Molecule metrics are implemented using the RDKit chemoinformatics packagd]
I referred to the code for ORGAN, including metrics for each experiment, available

on GitHub to evaluate these propertie§?]

4.1.6 Other Information

Tused Adam (Kingma and Ba, 2014)) to train D4AGAN, the learning rates of the encoder
and generator set to be 1073 and 107> for the discriminator. Also, I chose A = 0.5 and
k =4, where A and « are as given in Algorithm The model is trained with 100

epochs with a mini-batch size of 64. I developed D4GAN using PyTorch and RDKit.

Thttps://www.rdkit.org/
Zhttps://github.com/gablgl/ORGAN

14
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4.2 Results

I generated 5,000 molecules using D4AGAN. Among them, 766 were valid, and 620
were chosen as final candidates after removing duplicates. Figure 4.4] shows the
learning curves of D4AGAN with respect to different molecule metrics. The plots are
based on mean values of valid generated molecules, except for validity. Note that the

plots are not drawn at the initial stages since there is no valid data at that point.

Solubility
Validity (mean + sd; among valid molecules)
1.00 1.00

0.75 - 0.75 -
0.50 0.50 \ \\/\M/\[‘-v/‘v\’\/\'\f/\\/ww\/\’\/\l\’\,\/\/\
0.25 - MMWM 0.25 - \
0.00 0.00

0 20 40 60 80 100 0 20 40 60 80 100
Synthesizability Druglikeness
(mean + sd; among valid molecules) (mean + sd; among valid molecules)
1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
000 T T T T T T 000 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Figure 4.4: Learning curves of D4AGAN

4.2.1 Chemical Properties

Table . T shows summary statistics for evaluation of chemical properties. Figure 43|
displays violin plots of chemical properties in the training set and the generated set.
Both show that D4GAN is able to capture successfully mimics the distribution of

properties of the training set well.

15



Table 4.1: Summary statistics among generated valid samples

Solubility

Mean: 0.547 SD: 0.161

min: 0.000 Q1: 0451 Q2: 0.556 Q3: 0.657 max: 1.000

Synthesizability

Mean: 0.651 SD: 0.246

min: 0.000 Q1: 0.504 Q2: 0.701 Q3: 0.834 max: 1.000

Druglikeness

Mean: 0.720 SD: 0.146

min: 0.274 Q1: 0.623 Q2: 0.751 Q3: 0.840 max: 0.944

Solubility Synthesizability Druglikeness

(among valid molecules) (among valid molecules) (among valid molecules)

AL

N WEIR |
R |
1

Train  Generated Train  Generated Train  Generated

L
1
—
=

Figure 4.5: Violin plots of training samples and generated samples

4.2.2 Examples

Figure [4.6|and 4.7 show molecules generated using DAGAN. It should be noted that

I was able to create molecules that are not in the initial training set.

) A=t sw



Well-known Organic Compounds

Among the 620 selected molecules around 20 of them were familiar organic com-
pounds, for instance, ethanol, formaldehyde, methylamine, and methylpyridine.
Methylamine and methylpyridine are the primary precursors to caffeine and vita-

min B, respectively.

N

/\OH —] —NH, \ /

(a) Ethanol (b) Formaldehyde (c) Methylamine (d) Methylpyridine

Figure 4.6: Examples of well-known organic compounds found in generated samples

Unknown Organic Compounds

A large portion of generated samples were unknown organic compounds. I could
not find these compounds in PubChem, a database of chemical molecules and their

activities against biological assays.

7\

al
NH, N
NH >Q/
= X, .
| | Y
\ N N\yl (o}
NH,

Figure 4.7: Examples of unknown organic compounds found in generated samples
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Chapter 5

Conclusions

In this work, I have presented D4GAN, a new framework for generating organic
compounds with desirable properties in a pharmaceutical context of drug discovery.
I have built on basic structures of ORGAN, BSGAN, and WGAN, and extended them
with VAE/GAN to handle mode collapse.

I have shown that DAGAN can improve certain metrics that desired, namely sol-
ubility, synthesizability, and druglikeness. More importantly, non-repetitive samples
were generated, a large portion of which were novel organic compounds not registered
in any public chemical substances database. Chemical properties of the generated
data show its competency to be of practical use in the field of organic chemistry as
well as the pharmaceutical industry.

One area of improvement is to complicate DAGAN’s current network framework.
Tuning model hyperparameters and adopting different molecule metrics are one of
many possibilities. I believe these extensions to be quite promising since the present
structure is largely simple. Furthermore, at present D4AGAN uses publicly available
datasets for training, which does not contain sufficient enough likely candidates for

drug discovery. Forthcoming research should diversify chemical compounds in the

19



training sets to promote diversity of generated samples.
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