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In this dissertation, a novel approach by the adaptive two stage point mass 

filter (ATSPMF) is proposed for improving computation efficiency and estimation 

performance in point mass filter (PMF) based terrain referenced navigation (TRN). 

The inertial navigation system (INS) is provides the position, velocity and attitude 

of the vehicle based on dead reckoning with an inertial measurement unit (IMU) 

alone. INS has advantages for small short term error, high update frequency and 

robustness of external disturbance, but it has a fatal disadvantage that it diverges 
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over time. To overcome this problem, INS should be aided by another sensor that 

provides absolute position or other information that can be used to estimate 

position such as global positioning system (GPS). INS aided GPS is the most 

widely used for integrated navigation system because it can be configured easily 

and estimates position, velocity, attitude and bias error of the IMU by only GPS 

position information as a measurement of the Kalman filter. In recently, however, 

GPS can be disturbed by jamming or spoofing and it may lost reliability or become 

unusable. 

The TRN is a navigation system suitable for alternative navigation system for 

INS aided GPS. It uses the difference between measured terrain elevation which 

received by radar altimeter (RA) and barometric altimeter (BA) and terrain 

elevation information provided by digital elevation map (DEM) as a measurement 

of the TRN. Also, the TRN uses the nonlinear filter such as the PMF by using the 

measurement mentioned above because the nonlinearity of the measurement is 

severe. For improving PMF based TRN, I have proposed the novel approaches by 

grid support adaptation and two stage filtering. 

First, I have proposed adaptive grid support algorithm for improving 

estimation performance and computation efficiency in PMF based TRN. In general 

PMF based TRN, the size of the grid support is maintained constantly. But that
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simple way has some disadvantages for computation burden and estimation 

performance. So, I have proposed new grid support adaptation method which can 

consider the roughness of the terrain elevation and accuracy of the measurement by 

using mutual information (MI) as an adaptation index. The adaptation index 

determines whether to increase the size of the grid support or decrease. 

Second, the two stage PMF (TSPMF) is proposed for state augmentation with 

computation efficiency. For improving estimation performance of PMF based TRN 

itself, it is advantageous to set more state variables. But, the more state variables, 

the more computational burden exponentially. The TSPMF can provide great 

efficiency with state augmentation by two stages. In first stage, the nonlinear state 

variables are estimated by general PMF. Next, in second stage, the linear state 

variables are estimated by a single Kalman filter. At this time, some information 

that can be obtained by PMF in first stage is used in second stage for considering 

the correlation nonlinear and linear state variables. 

In simulation results, the estimation performance and computational efficiency 

is improved by grid support adaptation in two dimensional state variables PMF and 

TRN. Also, when the state variables are augmented by three dimensions, the 

computation efficiency is improved by TSPMF as the estimation performance is 

maintained.
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1.1 Motivation and Background

In this dissertation, a novel point mass filter (PMF) based terrain referenced 

navigation (TRN) by grid support adaptation and two stage filtering is proposed for 

computational efficiency. The inertial navigation system (INS) is one of the 

navigation methods based on dead reckoning and the position, velocity and attitude 

of the vehicle can be obtained with an inertial measurement unit (IMU) alone. INS 

have advantages for small short-term error, high update frequency and robustness 

of external disturbance, but it has a fatal disadvantage that it diverges over time due 

to errors of IMU output such as a bias error or white noise error [1-3]. For making 

up for the weakness of INS, it is integrated by using another sensor that provides 

absolute position or other information that can be used to estimate position such as 

global positioning system (GPS). INS/GPS integrated system is the most widely 

used integrated navigation system because it can be compensated by GPS position 

Chapter 1 

Introduction
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measurement up to INS position, velocity, attitude and bias error of IMU using 

Kalman filter with simple configuration [4-7]. In recently, however, jamming of 

spoofing which disturb the GPS information, may cause the reliability of the GPS 

to be lost or become unusable [8-11]. Databased referenced navigation (DBRN) is 

one of the alternative navigation system. The DBRN uses geophysical information 

that has fixed value at certain location on the earth such as gravity field [12-18] or 

geomagnetic field information [19-24] etc. to estimate vehicle position.

The terrain referenced navigation (TRN), which is one of the DBRN, is a 

navigation system suitable for INS/GPS. TRN has terrain elevation data of flight 

area to estimate position and uses it to perform absolute navigation [25-29]. TRN 

can be classified into batch processing and sequential processing. Batch processing 

TRN fixes the position which has the highest correlation between the terrain 

elevation database and measured elevation profile for a certain period of time [30-

38]. Although this method has a disadvantage of heavy computation, it is useful 

when initial error is very large. The sequential processing TRN is a method of 

estimating a position through the nonlinear filter using a measurement received at 

every epoch. This method has an advantage that the updating period is fast and the 

calculation is simple, but there is a disadvantage that estimation performance is 

degraded or diverged when the initial error of the filter is large. In general, batch 

processing TRN is performed at an early stage until the position information is 
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relatively inaccurate, and it switches to the sequential processing TRN when 

position information converges. In this dissertation, I considered only sequential 

processing.

Sequential processing TRN uses the nonlinear filter such as extended Kalman 

filter (EKF) [39-43], unscented Kalman filter (UKF) [42, 44-46] particle filter (PF) 

or point mass filter (PMF) whose measurement is the terrain elevation. In case of 

EKF, since the terrain elevation used in the measurement equation is not defined by 

a specific function, it is inevitable to perform numerical differentiation in 

linearizing the measurement equation. In this process, if there is large nonlinearity 

of the terrain, the performance of the filter may deteriorate or if may diverge in 

severe cases. Bayesian filters such as particle filter or point mass filter can be 

applied to overcome these problems [47-64]. Because Bayesian filter based TRN 

considers nonlinearity of measurement equation which cannot be modeled by 

specific equation and wide area of terrain, accurate estimates can be made and the 

possibility of divergence is low [67, 68]. To improve TRN performance, I apply 

PMF and have studied two novel approaches to improve the computation time and 

the estimation performance. 

The first one is about the grid support adaptation. General PMF maintains a 

constant size of grid support which means the area where the point is set after 

setting the size large enough [55]. The larger the size of the grid support is, the 
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greater the probability that a true position is presented in the grid support even 

though the position error is large, thus increasing the robustness of the filter. 

However, there is a disadvantage that the amount of calculation is increased. In 

addition, if the size of the grid support is large when the filter is sufficiently 

converged, unnecessary information is received as measurements, which may 

adversely affect the estimation performance of the filter. Therefore, it is 

advantageous for the estimation performance to appropriately change the grid 

support rather than fix it [55-57]. In an intuitive way, it can be used to the 

roughness of the terrain to change the grid support, but this does not consider the 

error of the measuring sensor or the multimodal that occurs in specific terrains. So, 

I propose a method to improve the performance of the PMF by adapting the size of 

the grid support according to certain conditions instead of fixing the size of the grid 

support uniformly considering these characteristics. At this time, the index used in 

the information theory called mutual information (MI) is used to determine 

whether the grid support is expanded or reduced.

The second one is about the two stage filtering for computation efficiency 

when the state variable is augmented. Generally, two- or three-dimensional state 

variables that are latitude and longitude, or including height are used in PMF based 

TRN [62]-[64]. As the dimension of state variable increases, its computation 

burden and its complexity exponentially increase to be implemented. To overcome 
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this drawback, Rao-Blackwellized PMF (RBPMF), which estimates linear state 

variables by linear filters, has been studied by separating nonlinear state variables 

and linear state variables [65, 72]. However, there is a problem that the amount of 

computation increases exponentially in the time propagation of the linear state 

variable, and it has only to be solved by a heuristic method. Besides, there is a 

disadvantage in that a linear filter of the number of grid points must be operated. 

To improve this, I propose two stage PMF in this dissertation. The two stage 

filtering is a way to operate two filters in parallel by separating the dynamic state 

variable and the bias state variables [15]–[20]. The two filters are a bias free filter 

which estimate the dynamic state variables and a bias filter for estimating bias state 

variables respectively and correction is performed taking into consideration the 

correlation between each other. In many researches, few studies have applied 

different filters to these two filters. There are studies using the name “two stage” 

but did not succeed to the concept of the previous studies. I inherited the original 

two stage method and approach to benefit from applying different filters to the two 

filters. The main concept of the proposed algorithm is that, in PMF based TRN, the 

latitude and longitude that cause large nonlinearity in the measurement model are 

estimated by PMF, and the altitude or including velocity are estimated by using 

linear filter. This can greatly reduce the amount of computation and simplify the 

configuration, even if the state variable is further augmented rather than RBPMF. 
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The estimation performance is also similar to the full-state PMF.

1.2 Objectives and Contributions

The main goal of this dissertation is to improve the estimation performance 

and computation efficiency of the PMF based TRN by adaptation and two stage 

filtering technique. The contributions of this study are as follows. First, the 

estimation performance and the computation efficiency has improved by the grid 

support adaptation in PMF based TRN. Unlike general PMF based TRN that keep 

grid support size constant, the proposed adaptive PMF changes the size of the grid 

support by using MI as an adaptation index then it can consider the terrain 

elevation roughness and the accuracy of the measurement. As a result, the 

efficiency of computation has been improved by efficiently adapting the size of the 

grid support and eliminating the grid points of the unnecessary area, and the 

estimation performance also has been improved by excluding unnecessary 

measurement. 

Second, the computation efficiency has been improved by TSPMF when the 

more state variables are augmented. The most intuitive way to improve the 

performance of a PMF based TRN is to estimate more state variables. However, in 
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the case of PMF, the more state variables, the more exponential the computation 

burden is. There is RBPMF as a pre-invented method for solving this problem, but 

it has a drawback that it needs to drive Kalman filters as many as the number of 

grid points. The proposed TSPMF can estimate nonlinear state variables by general 

PMF and linear state variables by only one Kalman filter separately. At this time, 

the correlation nonlinear state variables and linear state variables is considered by 

some coupling equations. The simulations has been performed for full state PMF, 

RBPMF and TSPMF to verify improvement by using the proposed method, as a 

result, TSPMF has had the most efficiency for computation burden and it has 

shown almost same performance of the full state PMF which is the most optimal 

filter among them.

1.3 Organization of the Dissertation

Chapter 1 provides the motivation and background of this dissertation as well 

the objective and contributions. In Chapter 2, detailed information to understand 

the main contributions of this dissertation is provided including nonlinear filters, 

and typical sequential processing TRN algorithms. Chapter 3 describes the grid 

design method for the PMF. The conventional grid design methods proposed by 
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Bergman and Simandl are explained. Also, the new grid design method considering 

model uncertainties is described in detail and it is shown that the novelty of the 

proposed grid design by the PTRN simulations. Chapter 4 provides detailed 

derivation of a modified measurement model for slant range measurement. It is 

shown how to reflect on horizontal and vertical distance to the measurement model 

caused by the slant range. Also, the influence of the vehicle attitude and the 

measurement angle to the slant range is separated and measurement variance that 

reflects the attitude errors and the measurement angle errors is proposed. Chapter 5 

gives conclusions.
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This chapter presents an introduction to the general PMF based TRN. The 

TRN is based on strapdown INS (SDINS) and it uses terrain information as an 

aided measurement. Therefore, this chapter briefly describes SDINS first. Next, a 

general PMF based TRN will be described. 

Chapter 2 

Point Mass Filter Based Terrain Referenced 

Navigation 
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2.1 Strapdown Inertial Navigation System

The INS is one of the navigation system which is based on dead reckoning 

with inertial measurement unit (IMU) composed of accelerometer and gyroscope. 

Early INS used platform with gimbaled IMU but it is inevitable to mechanical 

complexity, heavy weight and large room. Now a day, gimbaled IMUs are rarely 

used because of these drawbacks and SDINS is widely used because of its benefits 

which are lower cost and reduced size. The SDINS is needed more complex 

calculation process that gimbaled INS but it is not a problem for computational 

capacity of computers these days. The INS mentioned later means SDINS, the 

coordinate represents and INS algorithm will be explained to explain the concept of 

INS.
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Figure 2.1  Reference frames
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2.1.1 Reference Frames

The reference frames are important to understanding INS algorithm. For the 

navigation on the Earth, it must be defined to a set of axes so that inertial 

measurements can be associated with the navigation solution for the Earth. In the 

navigation, the reference frame is a standard for expressing navigation information. 

In this section, inertial frame, Earth frame, navigation frame and body frame are 

resented. Figure 2.1 shows reference frames. 

- Inertial frame 

The inertial frame is a standard coordinate that is the basis of the law of 

physics. The center of the coordinate and the z-axis coincide with the center of the 

Earth and the axis of rotation of the Earth, and the x-axis faces the mean vernal 

equinox. So, it is also called by Earth fixed inertial (ECI) frame. This frame cannot 

be said to be stopped strictly speaking, but it can be assumed that there are no 

rotation and acceleration because it is very slow compared to the Earth’s physical 

time. The inertial frame, denoted by the symbol i as Fig. 2.1, is the most 

important frame for the understanding of INS because IMU, a sensor for INS, 

measures the acceleration or rotation of a vehicle based on inertial frame. 
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- Earth frame 

In the Earth frame, the Earth centered Earth fixed (ECEF) is most widely used 

as an Earth frame. The ECEF is quite similar to the ECI frame. In ECEF, the center 

and z-axis of the coordinate coincides with the center of the Earth and the Earth 

rotation axis, like the ECI frame, and rotates with the Earth rotation. So, if the IMU 

is stopped, the centripetal acceleration due to the Earth rotation will be measured 

on the accelerometer and the angular velocity about the earth's rotational axis will 

be measured in the gyroscope. At this time, the x-axis is facing the Greenwich 

Observatory and this position becomes the starting point of the longitude. Here is 0 

degree and it increases in the east or west direction. The latitude is relative to the 

equator, defined as 90 degrees for north and 90 degrees for south. It is a very 

important coordinate because it expresses the position based on the ECEF when 

performing navigation on the Earth in general. It is denoted by the symbol e as 

Fig. 2.1. 

- Navigation frame 

The navigation frame is a coordinate based on the local level plane at the 

Earth’s surface relative to the current position of the vehicle. The axes face north, 

east and down direction, or east, north and up, respectively. When we define the 

velocity of the vehicle, the velocity can be defined in the navigation frame because 
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it is ambiguous to define the direction and the unit in the Earth frame. When 

performing dead reckoning using this velocity, the position is calculated by 

geometric transformation. It is also used as a reference frame to define the attitude 

of the vehicle. It is denoted by the symbol n as Fig. 2.1.

- Body frame 

The body frame refers to a coordinate fixed to the body to define the attitude 

of the vehicle, which is generally defined by its axes are defined by engineers. In 

case of INS, the body frame is used to be defined as the sensor frame for 

convenience. The three axes are generally defined as forward, right and down. The 

attitude of the vehicle is defined by relationships between body frame and 

navigation frame. The measurement of the INS from the IMU are measured on this 

frame. It is denoted by the symbol b as Fig. 2.2
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Figure 2.2  Body frame representation

2.1.2 Inertial Navigation Mechanization 

The INS is widely used because of its accuracy, high sampling rate, robustness 

to external disturbance and self-positioning. INS does not need any additional aid 

and only uses IMU for calculating position, velocity and attitude of the vehicle. 

The IMU consisted of accelerometer and gyroscope is able to measure the specific 

force and angular rate between body frame and inertial frame of the vehicle. So, we 

should understand exactly the output of the IMU. In this section, it will be 

explained about output of the IMU and the way to treat that for calculating 

navigation solutions by SDINS mechanization. 
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2.1.2.1 Outputs of Inertial Measurement Unit

The accelerometer measures a specific force of the vehicle between inertial 

frame and body frame. The specific force is the combination of the acceleration 

due to maneuver ia , and the acceleration due to the gravitational field mg in the 

inertial coordinate system. Therefore, the accelerometer measures specific force f

as follows 

i m= -f a g . (2.1)

The inertial acceleration is the second derivative of the position vector r

with respect to time in the inertial space. So, the inertial acceleration is expressed 

as follow

2

2i

i

d

dt
=

r
a . (2.2)

where i in subscript means observation in the inertial frame. 

If the vehicle is rotating with the Earth rotation, it is expressed in centripetal 

acceleration in the inertial frame. In other words, besides the gravity due to 

universal gravitation, the centripetal acceleration due to the earth rotation also acts 

as gravity. This gravity is called by plum-bob gravity and expressed as follow
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( )m ie ie= - ´ ´g g ω ω r . (2.3)

[ ]0 0
T

ie ie= Wω (2.4)

where ieω is the Earth rotation vector, ieW is the angular rate of the Earth. 

Subscript ie means relative physical quantities between the inertial frame and 

Earth frame. 

Substituting from (2.2) and (2.3) into (2.1) yields the specific force measured 

by accelerometer as follow 

( )
2

2 ie ie

d

dt
= - + ´ ´

r
f g ω ω r . (2.5)

The gyroscope in the IMU senses an angular rate of the vehicle when it is 

turning. The angular rate is the relative angular rate between the inertial frame and 

the body frame. Therefore, the gyroscope not only measures the angular rate

caused by the maneuver between the navigation frame and the body frame nbω , 

but also measures the angular rate caused by the Earth's rotation ieω and transport

rate enω which is generated by moving the curved surface of the Earth. The 

measured angular rate ibω is expressed by 

b b b b

ib ie en nb= + +ω ω ω ω (2.6)
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where superscript b means that it is measured in the body coordinate system.

Since the attitude is calculated using the relative angular rate between the body 

frame and the navigation frame nbω , it is necessary to remove b
ieω , which is 

determined by the position, and b
enω , which is determined by velocity in the output 

of the gyroscope. 

2.1.2.2 Attitude update equation 

The attitude update equation, which uses angular rate between navigation 

frame and body frame and previously known attitude, follows well known attitude 

kinematics equations. The representation by direction cosine matrix (DCM) as 

follows 

( )n n b
b b nb= ´C C ω& (2.7) 

( )b b b n n
nb ib n en ie= - +ω ω C ω ω (2.8) 

The angular rate between inertial and body frame b
ibω can be measured 

gyroscope, the Earth rotation rate in local position n
ieω can be obtained as follow 

[ ]cos 0 sin
Tn

ie ie ieL Lw w= -ω . (2.9)
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The transport rate n
enω is defined by a velocity and position of the vehicle, 

and can be expressed as 

0 0 0

tann NE E
en

vv v L

R h R h R h

é ù- -
= ê ú

+ + +ë û
ω (2.10)

where 0R is the radius of the Earth, h is height of the vehicle, L is the latitude, 

Nv and Ev are velocity of the north and east direction, respectively. 

2.1.2.3 Velocity and Position Update

The velocity of the vehicle is required to calculate with respect to ground. The 

inertial velocity 
i

d

dt

r
is represented to ground velocity using the Coriolis equation 

ie

i e

d d

dt dt
= + ´

r r
ω r (2.11)

The first term of (2.11) right hand side is the ground velocity ev of the 

vehicle and the acceleration on the inertial frame can be obtained by differentiating 

(2.11) as follows 
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( ) ( )

2

2

e
ie

iii

n n n ne
in ie e ie ie

n

dd d

dt dt dt

d

dt

= + ´

= + + ´ + ´ ´

vr r
ω

v
ω ω v ω ω r

(2.12)

The specific force bf is measured by the accelerometer as (2.5), then the 

acceleration equation can be derived from (2.12) 

( )2n n b n n n
b ie en= - + ´ +v C f ω ω v g& (2.13)

where, the superscripts mean the frame where each vector is expressed, and nv is 

the velocity vector on the navigation frame as [ ]
Tn

N E Dv v v=v . The velocity 

on the navigation frame is computed by integration of the (2.22). The position 

which are latitude, longitude and height of the vehicle can be calculated as follows 

N

o

v
L

R h
=

+
& (2.14a)

( )cos
E

o

v
l

R h l
=

+
& (2.14b)

Dh v= -& (2.14c)

The overall INS process is shown in Fig. 2.3. 
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Figure 2.3  Strapdown INS algorithm

2.1.3 INS Error Propagation 

Since the position of the INS is obtained from the IMU output through 

coordinate transformation and integration, the position error is affected not only by 

the velocity error but also by the attitude error, the accelerometer and the gyro error.

Table 2.1 shows the error elements affecting the position error in the north 

direction of the inertial navigation system and the position error in the north 

direction caused by each error elements. The medium term error is an error model 

considering 84.4 minutes of error propagation period of the inertial navigation 

system. The short term error is an error model for a short time within 1/4 of the 
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Schuler cycle.

From Table 2.1, the elements and sizes of the inertial navigation system are 

assumed as shown in Table 2.2 to observe the positional errors over time. The 

medium term position error due to the error factors in Table 2.2 is shown in Fig. 2.4. 

In Fig. 2.4, total error is calculated by RSS (root sum square) as shown in Equation 

(2.1). As shown in Fig. 2.4, the east position error and the north accelerometer bias 

error are major factors of the position error up to about 2500 seconds, which is half 

of the Schuler cycle, and the influence of the east gyro bias error and the vertical 

axis attitude error is dominant. In the relation between the error of the inertial 

sensor and the navigation error, the horizontal axis position error is mainly 

influenced by the bias error of the accelerometer, and the vertical axis position 

error is mainly influenced by the gyro bias error. And the long - term position error 

is a major factor in error related gyroscope.
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Table 2.1  INS position errors according to error elements

Error element Medium Term Error Short Term Error
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Table 2.2  Error elements and its values

Error element Value

Initial velocity error ( Nvd ) 0.01m/s

Initial east tilt error ( Ej ) 0.11mrad

North accelerometer bias( NÑ ) 100μg

Initial vertical tilt error ( Dj ) 1mrad

East gyro bias ( Ee ) 0.01deg/hr

Vertical gyro bias ( De ) 0.01deg/hr

Figure 2.4  Medium term INS position error caused by error elements
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Figure 2.5  Short term INS position error caused by error elements
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2.2 Terrain Referenced Navigation 

In this section, it is described that the navigation components and their 

characteristics for performing the TRN and how they are reflected in the TRN. In 

addition, the nonlinear filtering methods described in Section 2.2 are applied to the 

TRN and the numerical simulation results are introduced.

2.2.1 General PMF Algorithm

The Bayesian filter is a technique for obtaining the probability density 

function of the state variable kx with respect to the measurement kZ , and the 

following nonlinear system and measurement model are considered. 

( )1k k k k+ = +x f x w (2.15)

( )k k k k= +z h x v (2.16)

where ( )k ×f is the nonlinear system model, ( )k ×h is the nonlinear measurement 

model, kw and kv are additive white noise errors of system and measurement 

model with known probability density functions ( )kp w , ( )kp v , respectively.

A posterior probability density function (pdf) ( )k
kp x Z which is purpose of 

the Bayesian filter can be calculated as follows:



27

( )
( ) ( )

( )

1

1

,k k
k k kk

k k
k

p p
p

p

-

-
=

x Z z x Z
x Z

z Z
(2.17)

where ( )1k
kp -x Z is a prior pdf, ( ), k

k kp z x Z is a likelihood function and 

( )1k
kp -z Z is normalization constant. Each terms can be expressed as follows: 

( ) ( ) ( )1 1
1 1 1

k k
k k k k kp p p d- -

- - -= òx Z x Z x x x (2.18)

( ) ( )( ),
k

k
k k k k kp p= -vz x Z z h x (2.19)

( ) ( ) ( )1 1k k
k k k k kp p p d- -= òz Z x Z z x x (2.20)

where (2.18) is the well-known Chapman-Kolmogorov expression and ( )1k kp -x x

is the transition density determined by the system model. 

As can be seen from (2.18), integral operation must be perform for obtaining a 

posterior pdf ( )k
kp x Z . However, the analytical solution can be obtained with 

special assumption that the system model and the measurement model are linear 

and each pdf are additive, independent and Gaussian. PMF performs numerical 

integration on (2.18) and (2.20), assuming these assumptions are not satisfied. The 
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PMF algorithm represents pdf by grid of points, by set of area masses of each grid 

point’s neighborhood, and by set of pdf values at the grid points. The general 

algorithm of the PMF is as follows. 

1) Initialization

Set an initial grid ( )0 0NX for the prior pdf ( )0p x .

2) Time propagation of grid points

Propagate the grid ( )k kNX to ( )1k kH N+ = { }1, ; 1, ,k i ki N+ =η L , by the 

system dynamic model ( )1, ,k i k k i+ =η f ξ , where η is a set of the propagated 

grid points and ξ is a set of the prior defined grid points. k is a time index 

and i is an index of points.

3) Grid redefinition

Redefine the propagated grid ( )1k kH N+ to a new grid ( )1 1k kN+ +X with 

the same structural properties as the original grid ( )1 1k kN+ +X =

{ }1, 1; 1, ,k j kj N+ +=ξ L . Then, compute the volume pass of the neighborhood 

( ) { }1 1 1, 1D ; 1, ,k k k j kN j N+ + + += D =ξ L .

4) Prediction

Compute the a prior pdf at the new grid ( )1 1k kN+ +X , by using 
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( )1, 1, 1,1 , ,1

k

k

N

k i k i k ik k j k k ii
P P p+ + ++ =

= D -å wξ ξ η for 11, , kj N += L .

5) Filtering 

Compute the posterior pdf at the new grid ( )1 1k kN+ +X for 11, , kj N += L by 

( )( )1
1,1 1, 1 , kk k k k ik k i k k i

P c P p-
++ + +

= -v z h ξ where 1

1, 1 ,1

kN

k k i k k ii
c P+

+ +=
= D ×å ξ

( )( )1,k k k k ip +-v z h ξ . Then, calculate the minimum mean square error 

estimate, 1

1 1, 1,1 11
ˆ kN

k k i k ik ki
P+

+ + ++ +=
= Dåx ξ ξ

Figure. 6 presents the general PMF algorithm by block diagram. 

Figure 2.6  General PMF algorithm
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2.2.2 Point Mass Filter Based TRN 

Sequential processing TRN uses the difference between measured terrain 

elevation and the database terrain elevation as measurement of the filter. Because 

the measurement equation is determined by the terrain which cannot be represented 

by specific function, we should use EKF with numerical derivatives or Bayesian 

filter with numerical integration. The EKF has the disadvantage that the 

nonlinearity is severe of the initial error is very large. So, we apply the PMF to 

TRN which has robustness for the terrain nonlinearity and large initial error. The 

system model and the measurement model for the PMF based TRN are given as 

follows:

1k k k kdt+ = + +x x u w (2.21)

( )k k kz h v= +x (2.22)

where kx is the horizontal position of the vehicle, ku is velocity vector obtained 

by INS, dt is sampling time and kw is the additive white process noise error. 

kz is the terrain elevation measurement, ( )h × is the measurement equation 

determined by terrain elevation and kv is the additive white measurement noise 

error. The measurement model ( )kh x is expressed by as follows 
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( ) ( ),k DB k k kh h L l h= - +x (2.23)

where ( ),DB k kh L l is a terrain elevation obtained from DEM with respect to 

latitude and longitude, kh is a height of the vehicle. As can be seen in (2.23), it 

can be known that the measurement is a range from ground to vehicle. Figure. 2.7 

shows the geometry of the measurement. 

Figure 2.7  Measurement of the TRN
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In general, the integrated navigation system combined with INS uses 15 state 

variables that consist of position, velocity, attitude and IMU bias error. However, in 

the case of PMF, since the amount of computation increases exponentially 

according to the number of state variables, only latitude and longitude are set as 

state variables. In case of aerial application which is considered in this paper, 

terrain elevation measurement kz can be obtained by difference between the 

absolute altitude obtained by the barometric altimeter and the distance between the 

vehicle and the ground obtained by the RADAR. And it is assumed that the error 

between the barometric altimeter and the RADAR is Gaussian and independent of 

each other.
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Measurements of TRN use the difference between the measured terrain 

elevation and the database's terrain elevation. Therefore, the measurement equation 

should be a terrain elevation according to the position of the vehicle. If the terrain 

itself cannot be defined as a specific function, then the nonlinearity is very strong. 

Therefore, one of the Bayesian filters, PMF, is widely used for terrain reference 

navigation. In PMF, the estimation performance is changed by several setting 

parameters. In this chapter, I analyzed the relationship between the performance 

and grid support, one of the configuration parameters, and grid support and 

measurement quality. In addition, an index that determines the quality of the 

measurement has been set and applied to the grid support adaptation technique.

Chapter 3 

Grid Support Adaptation Using Mutual Information 
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3.1 Grid Support Adaptation Algorithm 

In this section, it is necessary to first define the quality of the measurement., 

because the proposed adaptation rule is based on determination for measurement 

quality. Therefore, I will first discuss the quality of the measurements in 

accordance with the grid support, and then discuss how to determine the quality of 

the measurements and how to adapt the grid support using the measurement quality.

3.1.1 Measurement Quality According to Grid Support 

PMF is a grid based Bayesian filter and its performance is determined by grid 

design parameter such as grid support, resolution and etc. The grid support, in 

general, is set widely to express the integral approximation of (2.15) as accurately 

as possible. In other words, the larger the grid support is, the more reliable the 

measurement equation is represented, and conversely, the smaller the grid support, 

the less reliable the measurement equation. Therefore, it can be expected that the 

wider the grid support, the better the estimation performance of the filter. However, 

this logic may not always be appropriate in PMF based TRN. 

I would like to think of two cases of this problem. First, let’s assume that the 

filter is sufficiently converged. In this case, if the grid support is set too wide, 

positions with the same elevation as the actual terrain elevation can exist in many 

points in the grid support. Therefore, peaks of the likelihood can occur in many 

points, and the estimation performance may be degraded because the likelihood can 
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make it more imprecise by updating the prior pdf to the posterior pdf. In other 

words, the wider the grid support, the more accurate the measurement equation can 

be, but the lower the quality of the measurement. Second, let’s assume that the 

estimation error is too large. In this case, if the size of the grid support is not large 

enough to contain the actual position, the filter may diverge. This can be the case 

when the initial error is very large, or when the error is getting large as the vehicle 

encounter continuous flat terrain area. Based on these cases, widening the grid 

support to accurately represent the measurement equation does not always 

guarantee the quality of the measurement. In conclusion, in order to improve the 

estimation performance, it may be advantageous to change the size of the grid 

support in consideration of the quality of the measurement.

3.1.2 Mutual Information for Measurement Quality Discrimination

As the mention in the previous sub-section, the grid support adaptation 

considering quality of the measurement can improve estimation performance. In an 

intuitive way, we can consider the measurement quality by taking into account the 

roughness of the terrain. For example, 
Ts or 

Zs [26] which is generally a way to 

calculate the roughness of the terrain can be used. If the terrain is rough, it can be 

judged that the measurement quality is good. On the contrary, if the terrain is flat, 

the measurement quality is considered badly. However, considering only the 

roughness of the terrain, the error of the measurement sensor, such as RADAR or 
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barometric altimeter, cannot be taken into consideration and the multimodality of 

the pdf in a specific terrain cannot be considered. To overcome these problem, we 

propose a method to identify measurement quality by MI. MI is an index used in 

information theory and is an index of how the information between two random 

variables is correlated [29]. If MI is large, it means that two random variables are 

closely related to each other. On the other hand, if it is small or smaller than 0, it 

means that there is no relationship between two random variables. The MI for two 

random variables X and Y can be expressed as (3.1), which is expressed as the 

entropy of each random variable.

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

,

,
; , log

x y

p x y
I X Y p x y

p x p y

H X H X Y

H Y H Y X

=

= -

= -

å

(3.1)

where ( );I X Y is MI of X and Y, ( )H × is entropy which can be calculated by

( ) ( )logi i
i

H X X X= -å (3.2)

where iX is a i-th component of pdf ( )p X . To determine the measurement 

quality using this index, set X to 1k -x Z and Y to 1k
k

-z Z then (3.1) can be 
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written as follow.

( ) ( ) ( )1 1 1 1 1;k k k k k
k kI H H- - - - -= -x Z z Z x Z x Z z Z (3.3)

In this case, 
1k

k
-z Z can be expressed kz because the measurement is 

independent of every epoch. Therefore, (3.3) can be derived as follows

( ) ( ) ( )
( ) ( )

1 1 1 1

1

;k k k k

k k k k

k k
k k

I H H

H H

- - - -

-

= -

= -

x Z z Z x Z x Z z

x Z x Z
(3.4)

From (11), we can see that the MI of 1k -x Z and 
1k

k
-z Z is the entropy 

difference between the prior and posterior probability distributions.

Now, let’s look at the physical meaning of equation (3.4). In left side of 

equation (3.4), the MI is an index of how the MI of 1k -x Z and 
1k

k
-z Z is, that is, 

how the measurement kz is related to 1k -x Z . Therefore, if it is larger than 0, it 

can be considered that a good measurement has come in. Conversely, if it is smaller 

than or equal to 0, it can be considered that a bad measurement has been received. 

Likewise, let’s look at the meaning of the right side in (3.4). The entropy of the 

prior and posterior estimate indicate how the pdf is concentrated in one place. In 

other words, they are related to their variance. Therefore, if the filter performs a 
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measurement update with good measurements coming in, the entropy of the 

posterior will be smaller than the entropy of the prior. Conversely, if it is less than 0, 

it means that the posterior pdf is wider than the prior pdf, which has the same 

meaning as the left side. According to [79], entropy is also used as an index to 

determine the uncertainty of a random variable, which supports the validity of 

determining the quality of a measurement by the difference of entropy between 

prior and posterior pdf. Some readers can think intuitively that using variance or 

standard deviation will have the same effect instead of entropy. But, in case of non-

Gaussian, it can be calculated that the variance is larger in the more concentrated 

probability distribution (see section 3.1.2.1). Thus, the entropy is more 

advantageous than variance when determining the concentration of a non-Gaussian 

probability distribution.

3.1.2.1 Comparison Variance and MI for Discriminator About 

Measurement Quality

Suppose normalized pdf A and B as following equation and figure. 

( ) ( )
( ) ( ) ( )

2

2 2

0,1

0,1 1.5,0.3

p A N

p B N N

=

= +
(3.5)
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Figure 3.1 Normalized pdf of A and B

In above figure, the peak of pdf B is formed narrower and higher than that of 

pdf A. Therefore, it can be said that a good quality measurement is obtained if A is 

prior and B is posterior pdf in PMF. At this time, the standard deviations of A and 

B are 1 and 1.05, respectively. This means that the pdf is inaccurate by 

measurement, and this is a result that does not reflect the shape of the pdf because 

the pdfs are not normal distribution. However, when we calculate the MI, it has a 

positive value of 0.16. This means that the posterior pdf is more concentrated in 

one place and it is more accurate. For this reason, MI is an index that better 

describes the shape of the pdf than the standard deviation or variance. So, we have 

used MI as a judging index for the quality of the measurement.

3.1.3 Adaptation Algorithm 

In case of PMF based TRN, posterior pdf is obtained by multiplying prior pdf 
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by likelihood. The likelihood is determined by the shape of the terrain and the 

measurement error. After all, MI considers likelihood, not terrain alone, so the 

terrain roughness and measurement quality are considered. Accordingly, using MI 

can take into account the errors caused by multimodal distribution that occur in a 

specific terrain or large measurement errors. Based on the above, I propose an 

adaptation method using MI. MI is used as an index to judge the measurement 

quality and the size of the grid support is changed according to the value of the MI. 

The adaptive algorithm proposed in this dissertation is shown as Fig.3.2. The 

change in grid size, as shown in Fig.3.2, reduces the size if MI is greater than T, 

and increases the size if MI is less than T.T is a tuning parameter close to zero.  

The smaller the T, the more sensitive and the larger the T, the more robust.
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Figure 3.2  Adaptive grid support PMF algorithm

3.2 Numerical Analysis 

In this Section, I have performed simulations to verify the performance 

improvement of the proposed adaptive algorithm. First, the simulation conditions 

are introduced briefly. Then, I compared the performance of the proposed adaptive 

grid algorithm with that of the conventional fixed grid. Lastly, the analysis of 

whether MI was appropriate as an adaptation index has been conducted.
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3.2.1 Simulation Conditions 

A horizontal resolution of the terrain DB is 3arcsec(≈90m) which is assumed 

that the length of 1 arcsec is not changed in simulation trajectory, and it is assumed 

that there is white noise with 5m standard deviation in the database. IMU is 

assumed by the navigation grade, and it is assumed that barometric altitude and 

RADAR have only white noise error. Table 3.1 shows parameter specifications. 

Table 3.1  IMU and Sensor Specifications

Sensor Error component Specification (1-σ)

Accelerometer

Bias 100μg

Velocity random walk 12μg/rt(Hz)

Gyroscope

Bias 0.01deg/h

Angular random walk 0.005deg/rt(h)

Barometric altitude White noise 10m

RADAR White noise 10m
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The velocity is 240m/s in the forward direction and the vertical attitude is set

to zero. The initial position error covariance is set equal to the initial position error 

which is set by 50m(1-σ). The initial grid support of the adaptation algorithm is set

at 150m, and the maximum grid support is set at 150m and the minimum at 50m 

because even if the grid support is larger than 150m, the estimation performance is 

not affected and in order to maintain robustness, the minimum was set at 50 meters. 

Simulations are performed on the two trajectories. The first trajectory, Trajectory I, 

is the area with rough terrain as a whole path and the second trajectory, Trajectory 

II, is the trajectory over the ocean in the middle of a generally flat area. Fig.3.3 and 

Fig.3.4 show the terrain elevation map of the Trajectory I and II and change of the 

terrain elevation under the flight path. The flight paths are set in the north direction 

along the red line in the figure. 50 Monte Carlo simulations is performed on each 

trajectory. Results if the graphs are the mean values of Monte Carlo simulations.
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Figure 3.3  Terrain elevation map and elevation profile of Trajectory I
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Figure 3.4  Terrain elevation map and elevation profile of Trajectory II

3.2.2 Performance Comparison According to Fixed or Adaptive 

Grid Support

In order to confirm the performance according to the grid support in the 

Trajectory I and II, various grid supports are set up and simulations are performed. 

Grid supports are set at 150m, 100m and 50m. And T of the adaptive parameter is 

set at 0.05, and the increase and decrease of the grid support size is set to 30m and 

10m, respectively because setting a large value has an advantage in an error-
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increasing section, and setting a small value is advantageous in an error-reducing 

section. First, the simulation is performed for the Trajectory I. The Trajectory I is 

generally a path made up of rough areas. The 50 times Monte Carlo simulation 

results of several grid supports and proposed adaptive method is shown in Fig.3.5, 

and the change of the grid support is shown in Fig.3.6.

Figure 3.5  Horizontal position errors in Trajectory I
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Figure 3.6  Change of the size of the grid support in Trajectory I

Fig.3.5 shows that the larger the grid support size, the faster the convergence 

speed at the beginning when the error still large. However, if the size of the grid 

support is small, the convergence speed is low at first, but after the filter converges, 

the estimation error is smaller than when the grid support is large. Fig.3.6 shows 

the grid support change of the proposed adaptive algorithm. It can be seen that the 

flight path is generally rough terrain so that if generally maintains a small grid 

support. In the case of the adaptive method, the convergence speed is fast and the 
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estimation error after convergence is also kept small. Fig.3.7 and Fig.3.8 show the 

estimation results and the change of proposed adaptive algorithm for the Trajectory 

II. 

Figure 3.7  Horizontal position errors in Trajectory II
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Figure 3.8  Change of the size of the grid support in Trajectory II

The Trajectory II has a generally flat terrain and it is a trajectory passing over 

the sea in the middle. In the Fig.3.7, it can be seen that the convergence speed is 

slower in the beginning than the Trajectory I when the grid support is small. 

Similar to Trajectory I, the estimation performance is better after the filter 

convergence at 150sec to 200sec, but it diverges more rapidly when the sea is 

encountered from 300sec to 350sec. In the case of the proposed adaptive method, 
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the estimation performance is good in almost all intervals. In the Fig.3.8, it can be 

confirmed that the size of the grid support is maintained larger than that in the 

Trajectory I because most of the terrain is flat. Especially, the grid support is 

maintained at the maximum size in the interval of 300sec to 350sec passing over 

the sea. Quantitative results as in Table. 3.3 and 3.4 show that the estimation 

performance of the proposed algorithm is better than general PMF with fixed grid 

support. In the computation time of the proposed algorithm which is calculated by 

tic-toc function in Matlab, it is short in Trajectory I, because the overall small grid 

is maintained. On the other hand, in the Trajectory II, which is a flat terrain, the 

grid support is largely maintained and the calculation time is relatively long. 

Overall, it showed good performance with proposed algorithm and the computation 

time is also advantageous.

Table 3.2  Quantitative Simulation Results of Trajectory I

Size of grid support Horizontal RMSE [m] Computation time [sec]

50m 16.65 38.18

100m 16.33 38.96

150m 15.98 56.26



51

Adaptation
(proposed)

15.14 41.95

Table 3.3  Quantitative Simulation Results of Trajectory II

Size of grid support Horizontal RMSE [m] Computation time [sec]

50m 26.30 48.89

100m 24.34 55.84

150m 24.84 80.62

Adaptation
(proposed)

23.38 61.53

3.2.3 Analysis of Mutual Information for Adaptive Index 

In this Section, I try to analyze whether MI is appropriate as an adaptive index. 

In the previous section, changes of the grid support seemed to be dominantly 

influenced by the roughness of the terrain. In other words, the MI value seemed to 

have a small value when the terrain was flat and a large value when the terrain was 

rough. Fig.8 shows the change in terrain elevation and MI values over time in 
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trajectory II. Likewise, in this figure, we can see that the change of MI value and 

the change of terrain elevation are very similar. The roughness of the terrain is 

calculated as

( )
2

1

1 n

T i
i

H H
n

s
=

= -å (3.6)

where n is the number of the sample, iH is a height of the i-th grid point and  

H is a mean of the heights [35]. Fig.3.9 shows the relation between MI value and 

terrain roughness. Also, it shows that the flat terrain has small MI and rough terrain 

has large MI. Based on these facts, it can be seen that the adaptive method using 

the MI reflects the roughness of the terrain well.
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Figure 3.9  Relationship between MI and terrain roughness

But, as shown in the upper left part of Fig.3.9, there is the terrain which is 

rough but the MI is small. Conversely, in the bottom right part of the figure, the 

terrain is flat but the MI is large. These parts cannot be considered if the only 

terrain roughness is used for adaptation method. However, as proposed in this 

paper, if MI is used as an adaptation index, these exceptions can be considered. 

Here are examples to support this argument. In the Fig.3.10, the terrain roughness, 

in left upper part, is 51.8m which can be seen as rough terrain. However, due to the 

large measurement error, the peak of the likelihood, in the left bottom part, is 
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greatly deviated from the prior estimated position. As a result, although the terrain 

is sufficiently rough, the estimation error increases as shown in the right two 

graphs. In this case, MI is smaller than 0, and it means the measurement quality is 

low despite of rough terrain. Conversely, in the Fig.3.11, the roughness of the 

terrain is 7.0m which can be seen as flat terrain, but the measurement error is 

relatively small, and the peak of likelihood don’t deviate greatly. So, it can be 

confirmed that the estimation error is slightly reduced as right two graphs. In this 

case, MI is larger than 0, and it means the measurement quality is high despite of 

flat terrain. Based on these examples, MI can be used as an index of adaptation 

algorithm because it can consider other factors in addition to the terrain roughness.
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Figure 3.10  Low measurement quality case in the rough terrain with MI < 0

Figure 3.11 High measurement quality case in the flat terrain with MI > 0
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3.2.3.1 Comparison Terrain Roughness and MI for Discriminator About 

Measurement Quality

As shown in figure. 3.9, the terrain roughness and MI are shown by almost 

linear relationship. So, it might be wondering what is the performance difference 

when using roughness or MI as an adaptation index. In order to analyze this, it is 

compared the accuracy of the correction with the case of MI by setting the 

threshold value to the roughness.

Figure 3.12  The relationship of MI and Reduction in Error
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Figure 3.13  The relationship of roughness and Reduction in Error

Figure 3.12 shows the relationship of MI and reduction in error which means 

the amount of correction due to measurement update and figure 3.13 shows that of 

roughness for trajectory II. The red dots which are the reduction in error are

positive values means that there have been mis-corrected by measurement update, 

and the blue dot means the opposite. The black lines in figures are threshold and 

each value is 0.01 and 12m. These values are set to filter out the same amount of 

mis-correction. The total number of total mis-correction is 204, and the total 

number of filtered correction is 156 and 157, respectively. In this case, the number 
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of correction (blue dots to the right of the black line) to be filtered is 57 and 65, 

respectively, and the rate of mis-correction is higher in MI. In other words, MI can 

be more advantageous in discriminating the measurement quality because the mis-

correction by measurement update can be more easily filtered out by MI.

3.3 Summary

In this chapter, I propose an adaptive grid support method of PMF for TRN 

using MI as an adaptation index. General PMF set the size of the grid support 

constant and applied it to the TRN, but I find that changing the size of the grid 

support rather than a constant size improve the estimation performance. So, I adopt 

MI as an adaptation index to dicriminate measurement quality and to determine 

changes of the size of the grid support, which can consider not only the roughness 

of the terrain but also other factors affecting estimation performance. In simulation 

results, in large position errors and trajectory which flight over the sea in the 

middle, the estimation performance of the proposed algorithm is better than general 

PMF that size of the grid support is fixed in the whole trajectory. Also, the 

computation burden caused by applying the proposed algorithm is insignificant. 
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Generally, two or three dimensional state variables that are latitude and 

longitude, or including height are used in PMF based TRN. As the dimension of 

state variable increases, its computation burden and its complexity exponentially 

increase so as to be implemented. To overcome this drawback, Rao-Blackwellized 

PMF (RBPMF), which estimates linear state variables by linear filters, has been 

studied by separating nonlinear state variables and linear state variables. However, 

there is a problem that the amount of computation increases exponentially in the 

time propagation of the linear state variable, and it has only to be solved by a 

heuristic method. Besides, there is a disadvantage in that a linear filter of the 

number of grid points must be operated. To improve this, I propose two stage PMF 

in this chapter.

Chapter 4 

Two Stage Point Mass Filter for State Augmentation 
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4.1 Computational Problem for PMF 

4.1.1 2 Dimensional Time Propagation

General PMF based TRN use only two or three state variables, including 

latitude and longitude, or altitude, in the system model. This is because the amount 

of computation of the PMF increases exponentially as the number of state variables 

increases. Especially, in the time propagation process of PMF, it is necessary to 

consider the relation with all points in order to calculate the density for one point. 

For example, if the total number of points is N, N repetition calculations are 

performed to calculate the density at one point, and therefore NN iterations must be 

performed to calculate the density at all points.

To solve this problem, PMF based TRN usually uses two-dimensional state 

variables for latitude and longitude, and uses grid points of square placement with 

constant point spacing. Let's assume that four simple grid points are propagated by 

the system model as shown in the following figure.
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Figure 4.1  Grid point propagation by linear system model for 2 dimension

In TRN, 2 dimensional the system model is a linear model, so each grid point 

is propagated in parallel by system model as shown in figure 4.1. In the figure, LD , 

lD are point intervals in the latitudinal and longitudinal directions. The blue points 

on the left are propagated by Ld and ld as shown on the right, and the 

redesigned points are red points. At this time, the uncertainty of the system model 

is an additive white Gaussian, so redesigned grid point of 1q is as follow
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Equation (4.1) can be rewritten as 

( ) ( )
( )

( )
1 2

1

3 4

,
, ,

,
l

L L

l

p p N l Q
q N L Q N L L Q

p p N l l Q

d
d d

d

é ùé ù
= + Dé ù ê úê úë û + Dë û ë û

. (4.2)

As shown in (4.2), it can be expressed as a matrix multiplication without 

performing iterative computation. 1q , 2q , 3q and 4q can be calculated 

simultaneously by stacking matrices. For this reason, the amount of computation 

can be drastically reduced, so only two state variables are used.

4.1.2 3 Dimensional Time Propagation 

As described in the previous session, time propagation can be performed 

without iterative calculation with a simple matrix multiplication for two 

dimensional state variables. However, it cannot be expressed as a matrix 

multiplication for state variables for three or more dimensional state variables. 

Let's assume a 3D grid point as shown in the following figure.
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Figure 4.2  Grid point propagation by linear system model for 3 dimension

As in the two dimensions, each point moves in parallel by the linear system 

model and the probability density for 111q is calculated as follows 
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As (4.2), (4.3) is expressed as a matrix multiplication as follows 

[ ]
( )

( )
,

,
h

h

N h Q
A B

N h h Q

d

d

é ù
= ê ú

+ Dë û
(4.4)

where 
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. (4.6)

As (4.4)-(4.6), 3 matrix multiplications to calculate probability density at one 

point are needed at two points per dimension. If there are N points per dimension, 

N matrix multiplications are required to calculate probability density at one point.

In other words, if the dimension of the state variables is more than three, time 

propagation of simple matrix multiplication is not possible as in the two dimension, 

and the complexity and burden of calculation increases as the state variable 

increases.



65

4.2 Rao-Blackwellized Point Mass Filter 

In PMF based TRN, the state variable cannot be augmented due to 

computational burden as mentioned by previous section. Therefore, when the 

barometric altimeter is not used, the altitude error diverges and the estimation 

performance deteriorates. Also, since the velocity is not estimated, the position 

error increases over the time. RBPMF improves the above problem by separating 

the state variables into nonlinear state variables and linear state variables, 

estimating nonlinear state variables as PMF, and estimating linear state variables as 

linear filters. In this section, briefly describe the derivation process of the RBPMF 

and discuss its problems.

4.2.1 Derivation of Rao-Blackwellized Point Mass Filter

The PMF has robustness to large initial error and nonlinearity of system and 

measurement equation and it gives global optimal estimate solution. Despite these 

advantages, there is a drawback that the computation burden increases 

exponentially as the dimension of the state variable increases. The Rao-

Blackwellization (RB) method which is a marginalization technique is the effective 

approach of reducing the computation burden when it is possible to distinguish 

between linear and nonlinear state variables. Especially for TRN, the system model 
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can be approximated as a linear system with state variables including position, 

velocity and attitude, but the measurement model is expressed as a nonlinear 

function of latitude and longitude. Therefore, latitude and longitude can be set as 

nonlinear state variables, and altitude, velocity or attitude can be set as linear state 

variables. 

The basic concept of the RB is to separate the state vector as

n
k

k l
k

é ù
= ê ú
ë û

x
x

x
     (4.6)

where n
kx is the nonlinear state variable and l

kx is the state variable with 

conditionally linear. In general case, the system and measurement model become as

( )1
n n n nl l n
k k k k k k+ = + +x f x F x w      (4.7)

( )1
l ln n l l l
k k k k k k+ = + +x f x F x w      (4.8)

( )n n l l
k k k k k k= + +z g x G x v .      (4.9)

According to the Rao-Blackwellization method, the posterior pdf (2.29) 

becomes as follows.
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( ) ( ) ( )
( ) ( )
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p p p

-
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=
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     (4.10)

where ,n j
kx is j-th nonlinear state variables, ,l j

kx is j-th linear state variables and   

( ) ( ),
1| |j n j

k k k kp p -z x x Z can be replaced by the posterior pdf ( ), |n j
k kp x Z for 

nonlinear state variables without considering linear state variables. Then j-th value 

of the posterior pdf of RBPMF is as follows.

( ) ( ) ( ), ,| | | ,j n j l n j
k k k k k k kp p p=x Z x Z x x Z      (4.11)

The pdf of i-th linear state variables ,l j
kx given ,n j

kx and 1k-Z can be written 

as (4.12) with assumption of the Gaussian pdf, partially linear measurement 

equation and the Gaussian pdf of the measurement noise.

( ) ( ), , ,
1

ˆ| , , ,l n j l l j l j
k k k k k kp N + +

- =x x Z x x P      (4.12)
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As in (4.12), since each grid point for nonlinear state variables is given, there 

are N estimates of the linear state variables for each grid point.

Next, the prior pdf becomes as follows
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      (4.14)

where the conditional probability property is used and

( ) ( ) ( ), , , , , ,
1 1 1 1 1 1, | , | , , | ,n j l n i l l n j n i l n j n i l
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1 1 1 1 1 1 1, | | , |n i l l n i n i

k k k k k k k kp p p- - - - - - -=x x Z x x Z x Z .          (4.16)

Substituting (4.15) and (4.16) into (4.14) can be rewritten as follows
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where ( ) ( ), , ,
1 1 1 1

1

| , |
N

n j n i l n i
k k k k k

i

p p- - - -
=

å x x x x Z can be replaced by the prior pdf 

( ),
1|n j

k kp -x Z which not consider linear state variables. As shown in (4.11), (4.17) 

can also be expressed as pdf for the nonlinear state variables with pdf for the linear 

state variables as follows

( ) ( ) ( ) ( ), , , ,
1 1 1 1 1 1

1

| | | , , | ,
N

j n j l n j n i l n i l
k k k k k k k k k k k

i

p p p p- - - - - -
=

= åx Z x Z x x x Z x x x .     (4.17)

The term in the sigma of (4.17) which is the pdf of the time propagation can 

be written as (4.18) with assumption of the Gaussian pdf
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where

( ) ( ) ( ), , , ,,
1 1 1 1

ˆ ˆl i j l i jln n i l
k k k k k
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- - - -= +x f x F x      (4.19)

( ) ( ) ( ), , , ,
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Tl i j l i jl l l
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( ) ( ) ( )( ), , , ,, ,
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k k k k k k

+ + +
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( ) ( ), , ,, ,
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- - - - -= -P P K F P      (4.22)

( ) ( ) ( )( )
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, , ,
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T Ti j l i nl nl l i nl n
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-

- - - - -= +K P F F P F Q      (4.23)
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( ) ( ), , ,
1 1 1

i j n j n n i
k k k k- - -= -y x f x      (4.24)

4.2.2 Problem in Rao-Blackwellized Point Mass Filter 

The above equation has a structure similar to a general Kalman filter. Equation 

(4.21) and (4.22) are equivalent to the measurement update using the artificial 

measurement (4.24), and (4.19) and (4.20) are equivalent to time propagation using 

the system model. By the way, there is a big problem that heavy computation is 

needed in this process. This is because, in order to estimate the linear state variable 

at the jth point at time k, the relation with all the points at time k-1 must be 

considered to artificial measurement, as in (4.24). For this reason, in jth point at 

time k, estimates are calculated as the number of the grid points at time k-1 and the 

problem of how to merge them also occurs. Authors in [72] solved this problem 

through moment matching and heuristic technique, but the optimal solution has not 

yet been studied.
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4.3 Two Stage Point Mass Filter 

The two stage filtering is a way to operate two filters in parallel by separating 

the dynamic state variable and the bias state variables [73-78]. The two filters are a 

bias free filter which estimate the dynamic state variables and a bias filter for

estimating bias state variables respectively and correction is performed taking into 

consideration the correlation between each other. In many researches, few studies 

have applied different filters to these two filters. There are studies using the name 

“two stage” but did not succeed to the concept of the previous studies. We inherited 

the original two stage method and approach to benefit from applying different 

filters to the two filters. The main concept of the proposed algorithm is that, in 

PMF based TRN, the latitude and longitude that cause large nonlinearity in the 

measurement model are estimated by PMF, and the altitude or including velocity 

are estimated by using linear filter. This can greatly reduce the amount of 

computation and simplify the configuration, even if the state variable is further 

augmented rather than RBPMF.

4.3.1 Two Stage Filtering

Consider the linear stochastic system and measurement model as follows

1
d

k k k k k k+ = + +d A d B b w      (4.25)
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1
b

k k k k+ = +b D b w (4.26)

, ,k d k k b k k k= + +z H d H b v      (4.27)

where kd is the dynamic state vector, kb is the bias state vector and kz is the 

measurement vector. kA , kB , kD , ,d kH ,and ,b kH are matrices of dynamic, bias 

and measurement, respectively. d
kw , b

kw and kv are zero mean uncorrelated 

Gaussian random noise of system, bias and measurement model and its covariance 

are d
kQ , b

kQ , and kR .

The two stage filter is given by the following equations when the stochastic 

system and measurement model given as (4.25) - (4.27)

ˆ
k k k k
- - -= +d d U b      (4.28)

ˆ
k k k k
+ + -= +d d V b      (4.29)

d d b T
k k k k k
- - -= +P P U P U      (4.30)

d d b T
k k k k k
+ + += +P P V P V      (4.31)

where ( )ˆ
k

×d is the estimate of the dynamic state variables and ( )d

k

×P is its 

covariance matrix with the assumption that the biases are perfectly known. ( )
k

×d is 

the estimate of the dynamic state variable with the assumption that there are no 
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biases and its covariance is ( )d

k

×P . ( )
k

×b , and ( )b

k

×P are the estimate of the bias state 

variable and covariance. kU , and kV are sensitivity matrices to be defined. The 

variables with (-) superscript mean a prior estimate and covariance and the 

variables with (+) superscript mean a posterior estimate and covariance. The two 

stage filter is decomposed into the bias free filter and bias filter. The bias free filter 

gives ( )
k

×d , and ( )d

k

×P , and the bias filter gives ( )
k

×b and ( )b

k

×P . After estimating in 

each filter, the corrected estimate ( )ˆ
k

×d and covariance ( )d

k

×P is obtained from each 

estimate of the two filters and coupling equations as in (4.28) - (4.31). The bias free 

filter is as follows 

1 1k k k
- +

- -=d A x      (4.32)

1 1 1 1
d d T d
k k k k k
- +

- - - -= +P A P A Q      (4.33)

( )
1

, , ,
d d T d T
k k d k d k k d k k

-- -= +K P H H P H R      (4.34)

( ),
d d d

k k d k k
+ -= -P I K H P      (4.35)

( ),
d

k k k k d k k
+ - -= + -d d K z H d      (4.36)

where d
kK is a Kalman gain for bias free filter to estimate dynamic state 

variables. The bias filter is as follows 

1 1k k k
- +

- -=b D b      (4.37)

1 1 1 1
b b T b
k k k k k
- +

- - - -= +P D P D Q      (4.38)
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( )
1

1, 1,
b b T d T b T
k k k k k k k k k k

-- - -= + +K P S H P H S P S R      (4.39)

( )b b b
k k k k
+ -= -P I K S P      (4.40)

( ),
b

k k k k k k b k k
+ - - -= + - -b b K z S d H b      (4.41)

where b
kK is a Kalman gain for bias filter to estimate bias state variables and k-th 

the coupling equations

, ,k d k k b k= +S H U H      (4.42)

( ) 1
1 1 1k k k k k

-
- - -= +U A V B D      (4.43)

d
k k k k= -V U K S      (4.44)

where kS , kU and kV are called sensitivity matrices and its derivation process 

are summarized in [75]. 

As described above, it can be separated into two parallel filter for bias free 

filter and bias filter. The original purpose of two stage filter is to avoid hard 

computational effort due to augment bias state to state variables. However, even if 

they are not dynamic state variables and bias state variables, there is no problem to 

apply two stage filter if the system model configuration is same as (4.25) - (4.27). 

Because ln
kF is zero, the system and measurement model for TRN have same 

configuration with (4.25) - (4.27) (see, Section 4.3.3), so it can be applied to two 

stage filter. Even if the velocity or attitude is included in the state variables, since 
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ln
kF is zero, so there is no problem to apply two stage filter.

4.3.2 Two Stage Point Mass Filter Algorithm 

In PMF based TRN, because of the computation burden in time propagation as 

in (2.30), only latitude and longitude are set as state variables, or including height. 

Although applying RBPMF for augmenting state variables, the problem of the 

amount of computation still exists due to the iterative operation of (4.19) - (4.24). 

To solve this problem, we describe the proposed algorithm which is called by two 

stage point mass filter (TSPMF) in this section. The main idea of the TSPMF is to 

apply the two stage filtering to augment the state variable in the PMF based TRN. 

In first stage, the bias free filter of (4.32) - (4.36) in two stage filter replaces the 

general PMF based TRN estimating nonlinear states which are latitude and 

longitude. In second stage, n
kK , and ,n kH , corresponding d

kK , and ,d kH in bias 

free filter, should be calculated first for estimating linear state which is altitude. But 

they do not exist because PMF is applied in the first stage. But it can be obtained 

by analytically because PMF applied in first stage doesn’t have matrix form of 

Kalman gain and measurement matrix. So, it should be calculated numerically. 

,d kH can be obtained easily by numerically differentiating ( )k ×g and its process is 

described in [64] . To calculate d
kK , the moment matching technique can be 

adopted as follows
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( )( ) ( )( ) ( ), , ,
1|

T
n j n j n j

k k k k k k k k k
j

pm m -= - -åS g x g x x Z      (4.45)

( ) ( )( ) ( ), , ,
1|

T
n j n n j n j

k k k k k k k k
j

pm-
-= - -åC x x g x x Z      (4.46)

1n
k k k

-=K C S      (4.47)

where 

( ) ( ), ,
1|n j n j

k k k k k
j

pm -=å g x x Z      (4.48)

( ), ,
1|n n j n j

k k k k
j

p-
-=åx x x Z      (4.49)

where kS is an estimated innovation covariance, kC is a estimated correlated 

covariance, n
kK is an estimated Kalman gain for first stage filter, km is an 

estimated measurement which is a sample mean of measurement function and n
k
-x

is a sample mean of the prior pdf. 

Finally, the bias filter corresponding to (4.37) - (4.41) applies the EKF for 

estimating the altitude by using n
kK and ,d kH in second stage. This method has 

the disadvantage of damaging optimality by using moment matching. However, 

since only one filter is used to estimate the linear state variable, the amount of 

computation can be greatly reduced compared to the general PMF or RBPMF with 
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extended state variables. Problems arising from numerical differentiation of 

measurement matrices and problems caused by moment matching are discussed in 

sub-session 4.4.2.1 and 4.4.2.2.The overall TSPMF algorithm is as in Table.4.1 and 

system and measurement models are defined by sub-section 4.3.3
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Table 4.1  TSPMF algorithm 

Initialize 

Set ( )0 0
np x Z , 0

l+P , 0
nx and 0

nx   

First stage 

- Estimate nonlinear states by PMF 

[ ], Tn j
k k kL l=x ( kL : latitude, kl : longitude)

( ) ( ) ( ), , , ,
1 1 1 1

1

| | |
N

n j n j n i n i
k k k k k k

i

p p p- - - -
=

=åx Z x x x Z

( ) ( ) ( ), , ,
1| | |n j n j n j

k k k k k kp p p -µx Z z x x Z

where kL is latitude and kl is longitude.

Second stage 

- Calculate ,n kH , d
kK by numerical differentiation and moment matching as 

(4.45) – (4.49) 

- Estimate linear state by Kalman filter 
l
k kx h= ( kh : height)

1 1
l

k k kx F x- +
- -=

( )1 1 1 1

Tl l l l l
k k k k kP F P F Q- +

- - - -= +

( )
1

, ,
l l T l T l T
k k k l k k l k k k k kK P S H P H S P S R

-- - -= + +

( )l l l
k k k kP I K S P+ -= -

( ),
l l b n l
k k k k n k k k kx x K z S x+ + - -= + - -H x

where kh is height, and sensitivity matrices are 

, ,k n k k l kS H= +H U

( ) ( )
1

1 1 1
n nl l

k k k k kF
-

- - -= +U F V F

n
k k k kS= -V U K

- Correct the estimates and covariance as (4.28) – (4.31)
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4.3.3 Applying to Terrain Referenced Navigation 

In general, for Bayesian filter based TRN, the system model is used by linear 

model, in which the position of the vehicle is set as state variables as follows

1k k k k k k+ = + +x F x T u w      (4.50)

3 3
1 1, 1k k

e e

diag
R R´

é ù= = -
ê úë û

F I T      (4.51)

[ ] [ ],
T T

k k k k k N E DL l h V V V= =x u      (4.52)

where kF is a system matrix, kT is a input matrix, eR is earth radius, kL , kl , 

and kh are latitude, longitude and height, the input vector ku which contain NV , 

EV , and DV is velocity for the navigation frame of north, east and down axis. 

RADAR altimeter which measure a range between the ground and the vehicle is 

used for TRN and measurement model as in (2.34) becomes as follows

( )k k k kz v= +g x      (4.53)

( ) ( ),DB
k k k k k kh L l h= - +g x      (4.54)

where ( )DB
kh × is the terrain elevation obtained by DEM and kh is altitude of the 

vehicle. The pdf ( )kp w , and ( )kp v are assumed to be Gaussian distribution.

To apply for RBPMF based TRN, the state variables are separated nonlinear 
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and linear as

,kn l
k k k

k

L
x h

l

é ù
= =ê ú
ë û

x      (4.55)

and the system and measurement model also should be divided as

n nl
k k

k ln l
k k

é ù
= ê ú
ë û

F F
F

F F
     (4.56)

( ) ( )n n l l
k k k k k kG x= +g x g x      (4.57)

where 2 2
n
k ´=F I , 2 1

nl
k ´=F 0 , 1 2

ln
k ´=F 0 and 1l

k =F . In measurement model in (4.57), 

( )n
k ×g , and l

kG correspond to ( )DB n
k kh- x and 1.

4.4 Numerical Simulation

4.4.1 Simulation Condition

In this section, to verify the advantages of the proposed TSPMF, numerical 

simulation is performed for terrain as shown in Fig. 4.3. The flight path is straight 

from the south to the north like a bold line and the flight velocity is 240m/s. The 

vertical attitude of vehicle is assumed to leveling. The resolution of the terrain map 

is 3 arcsec and it is assumed that there is not map error. The IMU is assumed 
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navigation grade and the radar altimeter error is a white noise as shown in 

Table.4.2. The initial error and covariance of state variables are set equal the initial 

position errors which are set by 50m for latitude and longitude and 10m for height. 

The simulations are performed for 3D PMF, RBPMF, TSPMF and adaptive TSPMF 

(ATSPMF) which is combined grid support adaptation and TSPMF. The RBPMF 

and the 3D PMF are set to the nonlinear state variable for latitude and longitude, 

and the linear state variable for altitude. 30 times Monte-Carlo simulations are 

performed in Matlab and the computation time is its run time calculated by tic-toc 

function.

Table 4.2  IMU and Sensor Specifications

Sensor Error component Specification (1-σ)

Accelerometer

Bias 100μg

Velocity random walk 12μg/rt(Hz)

Gyroscope

Bias 0.01deg/h

Angular random walk 0.005deg/rt(h)

RADAR White noise 10m
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Figure 4.3  Terrain elevation map and elevation profile

4.4.2 Performance Comparison

As shown in Fig.4.4 and Fig.4.5, the results of each algorithm show almost 

similar performance in horizontal and vertical errors. In Table.4.3, horizontal error 

and vertical error does not differ greatly, but it shows differences in computation 

time. The results of the RBPMF show that the computation time is smaller than 3D 

PMF. This results in repetitive operations in time propagation for linear state 
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variables, which consumes much computation time, because it is impossible to 

design the same kernel as in 2D PMF. In the case of general PMF, the 

computational time will increase exponentially when the state variable is 

augmented beyond 3D, but RBPMF will maintain above computation time. From 

the TSPMF results, the estimated performance is similar to that of 3D PMF, which 

is the most optimal result, and the computation time is drastically reduced because 

only one linear filter is used without any additional iteration. Like the RBPMF, 

even if more state variables are augmented, the computation time will be almost 

maintained, but the absolute computation time of TSPMF is overwhelmingly small.

The ATSPMF results shows the most estimation performance and computation 

efficiency. The ATSPMF can be confirmed to be improved in estimation 

performance and calculation efficiency than TSPMF.

Table 4.3  Position error and computation time

Results 3D PMF RBPMF TSPMF ATSPMF

Horizontal error [m] 16.61 16.93 16.80 16.33

Vertical error [m] 3.2 2.91 3.13 3.2



84

Computational time [sec] 56.63 54.87 47.72 45.86

Figure 4.4  RMS horizontal position error

H
o

ri
z
o

n
ta

l e
rr

o
r 

[m
]



85

Figure 4.5  RMS vertical position error

4.4.2.1 Effect of Nonlinearity for Measurement Model 

In order to estimate the linear stage variable kh in the second stage of 

TSPMF, the Kalman gain n
kK and the measurement matrix ,d kH for the 

nonlinear state variables of the first stage estimated using the PMF should be 

received. At this time, it cannot be calculated analytically, so we can get n
kK and 

,d kH by numerically as in sub-session 4.3.2. ,d kH is obtained through numerical 

differentiation, but if the nonlinearity of the measurement model is very severe, the 
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filter might be unstable because the linearization error increase. To confirm the 

effect, simulations are performed by adding the unknown error of the white noise 

characteristic to the DEM. This error causes the true slope of the terrain to differ 

from the slope of the terrain using the DEM with error, so it can be seen that the 

linearization error is applied. DEM errors are set to 0, 10, 30, 50m white noise. 

Figure 4.6  RMS horizontal position error with TSPMF
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Figure 4.7  RMS horizontal position error with full-state PMF

As can be seen in figures 4.6 and 4.7, the results of TSPMF and full-state PMF 

are almost the same when the DEM error is small. However, as the DEM error 

increases, the error of the TSPMF increases. This is due to the linearization error.

Since the level of DEM in recent years is less than 1 m in error with a resolution of 

about 10 m, it can be said that the influence of linearization error can be ignored.

4.4.2.2 Effect of Non-Gaussian Distribution of Prior PDF

Since the Kalman gain cannot be computed analytically in the PMF of the first 

stage, it is calculated through the moment matching as in Equation (4.45) - (4.49).
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At this time, if the prior pdf ( ),
1|n j

k kp -x Z deviates significantly from the Gaussian 

distribution, the Kalman gain estimation by the moment matching will be less 

accurate. Therefore, I adopt an index called Hellinger distance (HD) to analyze the 

similarity between the Gaussian distribution calculated through moment matching 

and the actual prior pdf. HD is calculated as an index to calculate the similarity of 

two probability distributions for two random variables { }1 ,..., nP p p= and 

{ }1 ,..., nQ q q= as follows.

( ) ( )
2

1

1
,

2

N

j j
j

H P Q p q
=

= -å      (4.58)

This value becomes closer to 0 as the probability distributions of the two are 

the same, and closer to 1 as they are different from each other. Using this index, I 

calculate the similarity of pdf obtained by using covariance calculated from 

moment matching and original prior pdf.
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Figure 4.8  HD between original prior pdf and estimated prior pdf by moment 

matching

Figure 4.8 shows the HD in the trajectory I. It can be seen from this result that the 

HD value decreases below a very small value of less than 0.1 in the initial few 

seconds, and then it keeps a small value after the convergence of the filter 

thereafter. Therefore, although some performance degradation may occur initially 

in the TSPMF, the distribution of the PDF is generally Gaussian, so that there is 

few influence by non-Gaussian distribution of prior pdf.

H
D



90

4.5 Summary

TSPMF for state augmentation on TRN was proposed. PMF was suitable for 

application to TRN because it had robustness to large position error and

nonlinearity of measurement equation. But it had a disadvantage of computation 

complexity when the state variables were augmented, so usually PMF used 2 or 3 

state variables which were latitude and longitude or including height. The TSPMF 

is designed to maintain the estimated performance without imposing a 

computational burden even if the state variable is augmented. The nonlinear state 

variables, latitude and longitude, were estimated using the general PMF and linear 

state, altitude, was estimated using a single Kalman filter. At this time, specific 

information which are Kalman gain and prior covariance of nonlinear filter should 

be transferred to the linear filter, and converted into a form that can be used by 

using the moment matching. Simulation results showed that the estimation 

performance of 3D PMF, RB-PMF, and TSPMF was almost similar, but the 

computation time of TSPMF was overwhelmingly than RB-PMF. In this paper, we 

considered only three state variables because it was difficult to implement three or 

more dimensional PMF. However, if we apply the proposed algorithm, we can 

apply it to more than three dimensional state variables without degradation of 

estimation performance and computation burden.
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This dissertation has proposed the methods to improve the estimation 

performance and computation efficiency in PMF based TRN. For this purpose, grid 

support adaptation has proposed by considering measurement quality for 

performance improvement and computation efficiency. In addition, the TSPMF, 

which combine PMF and two stage filter, has proposed for state augmentation 

without heavy computation load. 

In generally speaking, the estimation performance is improved when a large 

grid support size is applied because the probability density can be precisely 

expressed with large grid support. But, large grid support causes computational 

load heavy. It is because that the computational load is proportional to the square of 

the total number of grid points. But, in this dissertation, I have insisted that to adapt

the size of the grid support considering measurement quality has been better. If the 

measurement quality is good in previous epoch, it advantageous to reduce the size 

of the grid support for computational efficiency. Contrary, if the measurement 

quality is bad in previous epoch, it is advantageous to increase the size of the grid 

Chapter 5 

Conclusion
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support for estimation performance. At this time, the MI (mutual information),

which is an index that determines the correlation between two random variables, is 

used for discrimination parameter for grid support adaptation. Therefore, the MI

has been calculated for prior and posterior pdf, and judged that the measurement 

quality has been good when the value has been greater than 0. Conversely, when 

the value has been smaller than 0, it has been judged for bad the measurement 

quality. So, the adaptation algorithm is that if the MI is larger than 0, then the size 

of the grid support increases, or if the MI is smaller than 0, then the size of the grid 

support decreases. By the grid support adaptation algorithm, the estimation 

performance has been improved and computation time has decreased. 

Typically, almost previous PMF based TRN studies have used only latitude 

and longitude as two dimensional state variables. It is because that specific kernel 

is able to design for computation efficiency. Using this kernel, the time propagation 

can be done with a single matrix multiplication without iterations. But, in three or 

more dimensional state variables, the specific kernel cannot be designed, so a lot of 

iterations is needed. To solve this problem, the TSPMF (two stage point mass filter) 

has been proposed in this dissertation. The TSPMF has combined PMF and two 

stage filter. In first stage, the nonlinear state variables have been estimated by the 

general PMF. Next, in second stage, the linear state variables have been estimated 

by a single Kalman filter. At this time, error covariances and Kalman gain in first 
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stage have been needed for the Kalman filter in second stage. But, since the PMF 

does not have matrix-type covariances and Kalman gain, it has been calculated 

through moment matching. TSPMF has been applied to TRN by setting latitude 

and longitude as nonlinear state variables and height as linear state variables.

Simulations have been performed to compare the performance of full state 3 

dimensional PMF, RBPMF, and TSPMF. As a result, the estimation performance 

was almost similar, showing a reduction. In addition, by applying grid support 

adaptation to TSPMF, additional performance improvement and computational 

efficiency have been shown. 
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