creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Deep Neural Network Based

Multi-Objective Dispatcher
for Re-Entrant Manufacturing Lines

20193 2 ¢

8 A A

Deep Neural Network Based

Multi-Objective Dispatcher
for Re-Entrant Manufacturing Lines

TR

2018 d 12 ¢

3 A A

2018 d 12 ¢

—_—

¢

N

zel

Nd

—_—

¢

ﬁo

0

_?d

_(H
_(H
_CH

¢

A =

<!

........

__O.~
o

—

_?d

Abstract

Deep Neural Network Based

Multi-Objective Dispatcher
for Re-Entrant Manufacturing Lines

Jaeseok Huh
Department of Industrial Engineering
The Graduate School

Seoul National University

A re-entrant manufacturing line (RML) is a manufacturing line in which parts make
several visits to the same stage before exiting the line. RMLs have intrigued interest
in both academia and industry with the recent emergence of semiconductor manu-
facturing and thin film transistor-liquid crystal display (LCD) manufacturing lines.
As small devices embedded with flash memory and LCD have grown in demand,
relevant research effort has been motivated to date.

This thesis aims to propose real-time dispatchers (RTD) based on deep neural
networks (DNN) that decrease flow time without deteriorating resource utilization
at the bottleneck stage for real-world RMLs. Frequent re-entrant parts between
multiple stages in RMLs make it challenging to achieve the dual goals of reducing
flow time and improving resource utilization. To be more specific, the level of resource
utilization can be kept high by simply providing a sufficiently large amount of work-

in-process (WIP) to maximize throughput. On the contrary, an excessive amount of

WIP leads to a longer waiting time for parts in the next operations, thus increasing
flow time for the parts.

This thesis suggests new methods as follows. First, a discrete event based sim-
ulator (DEBS) and monitoring tool are implemented to generate training data and
evaluate the performance of dispatching decisions. DEBS plays a role in imitating
real-world RMLs and generating training data used for DNNs. The monitoring tool
is in charge of presenting the state of an RML at the time of each dispatching de-
cision being made. Furthermore, it also provides the ability to observe changes in
various performance indicators over time.

Second, two deep neural network based RTDs with different decision-making
processes are presented by the thesis. In the training phase, the proposed RTDs
learn the preferences of each alternative when dispatching decisions are required ac-
cording to RML data generated by the application of the developed DEBS. Then, in
the real-time dispatching phase, RTDs perform dispatching decisions by considering
intentional delays. A preferred alternative records a higher value as the dispatching
decision is likely to reduce the part’s waiting time and decrease the idle time of the
resources in the bottleneck stage.

The thesis makes contributions and holds utilitarian significance in three ways.
First, it developed a monitoring tool that allows users to investigate each dispatching
decision. Second, the proposed approach is capable of generating training data used
for DNNs by merely performing a simulation while using the developed DEBS that
imitates real-world RMLs. Finally, the proposed RTDs are successful in decreasing
flow time while increasing resource utilization at the bottleneck stage by factoring

in intentional delays in RMLs.

ii

Keywords: Re-entrant manufacturing lines, Real-time dispatcher, Intentional de-
lay, Deep neural network, Flow time, Utilization, Discrete event based simulator,
Monitoring tool

Student Number: 2013-23211

iii : #ﬂ _-L'I:r_]_..” =

Contents

[Abstract] i
Contents vi
[List of Tables| vii
|[List of Figures| xiii
|[Chapter 1 Introduction| 1
1.1 Background and motivation| 1
1.2 Objectives| e 6
[L3 Thesisoutline 8
|[Chapter 2 Literature Review| 9
[2.1 Dispatching decisions in RMLs| 9
[2.2 Neural network-based approaches to dispatching decisions| 13
|[Chapter 3 Problem Definition| 17
[3.1 Multiple-chip product (MCP) assembly lines| 17
13.2 Lot dispatching process in MCP assembly lines| 21
iv

s e 8 R R

|[Chapter 4 Frameworks for Data GGeneration and Performance Eval- |

| uation| 24
4.1 Discrete event-based simulatorl 24
[4.1.1 Purpose of implementation| 24

4.1.2 Details of the structurel 25

4.2 Monitoring tool| 30
[4.2.1 Purpose of implementation| 30

4.2.2 Details of functionsl. oL, 32
|[Chapter 5 Deep Neural Network Based Dispatcher| 43
[b.1 Real-time rule selection dispatcher| 46
[5.1.1 Dispatcher structure| 46

[5.1.2 Training phase| oo 49

[>.1.3 Real-time dispatching phase|. 52

[5.2 Real-time lot selection dispatcher| 53
[.2.1 Dispatcher structure] 53

[5.2.2 Training phase| oL 57

[5.2.3 Real-time dispatching phase|. 58
|[Chapter 6 Experiments| 60
6.1 Datasetd 60
6.2 Experiment settings| Lo oL 61
6.3 Experiment results| oL oL 67
[6.3.1 Pertormance comparison|. 67

[6.3.2 Performance difterences according to weights| 79

[Chapter 7 Conclusions| 92
7.1 Summary and contributions| L. 92
(7.2 Limitations and future researchl 94

Append 96

[Chapter A Performance comparison results| 97

|[Chapter B Performance contour of RTRD with respect to A\, and A;[104

|[Chapter C Performance contour of RTLD with respect to \,, A, |

I and Ag| 117

|Bibliography| 130

SEES] 146
vi

List of Tables

[Table 2.1 ~ Overview of previous research on dispatching decisions of RMLs.| 11
[Table 2.2 Overview of previous research on dispatching decisions using |
neural networks)o Lo 14
[Table 4.1 Descriptions on the event types tor the event loop.| 28
[Table 5.1 Components of the state vector for R, , of RIRD.| 48
[Table 5.2 Dispatching rules used to generate the action vector for R, s [
of RI'RDJ . . . o o o o 50
[Table 5.3 Components of the lot-DA assignment vector, for L;; and ;.| 55
[Table 6.1 Descriptions on the datasets used for the experiments.| 62
[Table 6.2 Problem description for experiments.|. 63
[Table 6.3 'Training results of the proposed dispatchers.|. 66
[Table 6.4 ALT improvement rates of RI'LD compared to the existing |
methods and RT'RDJ 72
[Table 6.5 Statistically significant differences in ALT" between RTRDs |
trained in different datasets.). 89
[Table 6.6 Statistically significant differences in ALT between RTLDs |
trained in different datasets.). 91
vii

List of Figures

|[Figure 1.1 ~ Concept of re-entrant manufacturing line| 2
|[Figure 3.1 Lot flow of DA and WB stages in MCP production.|. 19
|[Figure 3.2 Candidate lots according to status and intentional delay.| . . 21
|[Figure 3.3 Illustration of how the dispatcher assigns a lot to a DA resource.| 23
[Figure 4.1 Structure of DEBS (Discrete Event Based Simulator).. . . . 26
|[Figure 4.2 Main screen of the monitoring tool| 32
|[Figure 4.3 Resource view of the monitoring tool.|. 33
|[Figure 4.4 Decision window of the resource view.. 35
[Figure 4.5 Statistics view of the monitoring tool.f. 37
|[Figure 4.6 KPI view of the monitoring tool.| 38
[Figure 4.7 WIP charts of the monitoring tool.| 40
|[Figure 4.8 Comparison page of the monitoring tool.| 42
[Figure 5.1 Overall structure ot the proposed approach. 45
|[Figure 5.2 The structure of RTRD.| 46
|[Figure 5.3 The structure of RTLD.| 54
[Figure 6.1 AW, AIl', and AL results of the proposed dispatchers |

and the existing methods for dataset 1.|. 68

viii o ﬂ“[—.?" _[__” ¢'1|: T]-ur_

T
 S—

[Figure 6.2 AW AIT', and ALT" results of the proposed dispatchers |

and the existing methods for dataset 2.| 69

[Figure 6.3 AW AIT, and ALT results of the proposed dispatchers |

and the existing methods for dataset 7.| 70

[Figure 6.4 AW AIT, and ALT results of the proposed dispatchers |

and the existing methods for dataset 11.] 71
|[Figure 6.5 WIP graphs ot the proposed dispatchers, and SVR. 73
|[Figure 6.6 ~ Gantt charts of the proposed dispatchers and SVR. 74
|[Figure 6.7 Utilization graphs of the proposed dispatchers and SVR. . . 75
|[Figure 6.8 Dispatching frequencies according to lot statuses over time.| 76

|[Figure 6.9 Computation time of RTRD, RTLD, and SVR according to |

the average number of operations.|. 78

|[Figure 6.10 Performances of RTRD against SVR depending on A, and |

Apindataset 4. 80

[Figure 6.11 Performances of RI'RD against SVR depending on A, and |

Apindataset 9.o 81

[Figure 6.12 Performances of RI'RD against SVR depending on A, and |

Az in dataset 10o o 82

|[Figure 6.13 Performances of RI'RD against SVR depending on A, and |

A in dataset 11. 83

[Figure 6.14 Performances of RTLD against SVR depending on A, A, |

and Ay iIndataset 3.|. 84

[Figure 6.15 Performances of RTLD against SVR depending on A, A, |

and Ay iIndataset 6.]. 85

54 2o et

_

|Figure 6.16

Pertformances of RI'LD against SVR depending on A, A;,

and A\gindataset 9.]. L. 86
[Figure 6.17 Pertormances ot RTLD against SVR depending on A, A, |
and Agindataset 12.f 87
[Figure A.1 AWT, AI'T', and ALT results of the proposed dispatchers |
and the existing methods for dataset 1.|. 97
[Figure A.2 AW'T, AlT', and ALT results of the proposed dispatchers |
and the existing methods for dataset 2.| 98
[Figure A.3 AWT., AI'T', and ALT results of the proposed dispatchers |
and the existing methods for dataset 3.| 98
[Figure A4 AWT, AI'l', and ALT results of the proposed dispatchers |
and the existing methods for dataset 4.| 99
[Figure A.5 AWT, AI'T and ALT results of the proposed dispatchers |
and the existing methods for dataset 5.] 99
[Figure A.6 AWT, AI'T| and ALT results of the proposed dispatchers |
and the existing methods for dataset 6. 100
[Figure A.7 AW, AIT, and ALT results of the proposed dispatchers |
and the existing methods for dataset 7.| 100
[Figure A.8 AW AIT, and ALT" results of the proposed dispatchers |
and the existing methods for dataset 8.| 101
[Figure A.9 AW AIT, and ALT results of the proposed dispatchers |
and the existing methods for dataset 9.| 101
[Figure A.10 AW'T AIT, and ALT results of the proposed dispatchers |
and the existing methods for dataset 10.f 102
X —
A2 g

|[Figure A.11

AWT, AIT, and ALT results of the proposed dispatchers |

and the existing methods for dataset 11.] 102

[Figure A.12 AW AIT, and ALT results of the proposed dispatchers |
and the existing methods for dataset 12. 103
|[Figure B.1 ~ Performances of RI'RD against SVR depending on A, and |
A in dataset 1. 105
|[Figure B.2 Performances of RI'RD against SVR depending on A,, and |
AN Indataset 2.o o 106
|[Figure B.3 Performances of RI'RD against SVR depending on A,, and |
AN Indataset 3o 107
|[Figure B.4 Performances of RI'RD against SVR depending on A,, and |
A indataset 4. 108
|[Figure B.5 Performances of RIT'RD against SVR depending on A,, and |
A Indataset bo 109
|[Figure B.6 Performances of RT'RD against SVR depending on A, and |
A Indataset 6.o o 110
[Figure B.7 Pertormances of RI'RD against SVR depending on A,, and |
Ay Indataset 7o 111
[Figure B.8 Pertormances of RI'RD against SVR depending on A,, and |
Ay Indataset 8]o oL 112
[Figure B.9 Pertormances of RI'RD against SVR depending on A,, and |
AyIndataset 9. oo oo 113
|[Figure B.10 Pertormances of RT'RD against SVR depending on A,, and |

ArIndataset 10 oo 114

54 2o et

_

|[Figure B.11

Pertormances of RI'RD against SVR depending on A, and |

Apin dataset 11.. 115

|[Figure B.12 Pertormances of RT'RD against SVR depending on A,, and |
Apin dataset 12 116
[Figure C.1 Performances of RTLD against SVR depending on A, A, |
and \ygindataset 1.|]. 118
|[Figure C.2 Performances of RI'LD against SVR depending on A, A, |
and \gindataset 2.]. oL 119
|[Figure C.3 Performances of RI'LD against SVR depending on A, A, |
and \gindataset 3.]. 120
|[Figure C.4 Performances of RI'LD against SVR depending on A, A, |
and \gindataset 4.]. L. 121
|[Figure C.5 Performances of RI'LD against SVR depending on A, A, |
and A\gindataset 5.]. oL 122
|[Figure C.6 Performances of RI'LD against SVR depending on A, A, |
and A\gindataset 6.]. 123
[Figure C.7 Pertormances of RTLD against SVR depending on A, A, |
and A\gindataset 7.]. L. 124
[Figure C.8 Pertormances ot RTLD against SVR depending on A, A, |
and Ay indataset 8.|. 125
[Figure C.9 Pertormances ot RTLD against SVR depending on A, A, |

and Ay mdataset 9.|. 126

|[Figure C.10

Pertformances of RI'LD against SVR depending on A, A;, |

and Ay in dataset 10.| 127

54 2o et

_

[Figure C.11 Pertormances ot RTLD against SVR depending on A, A, |

and A\gindataset 11.] 128

[Figure C.12 Pertormances ot RTLD against SVR depending on A, A, |

and Agindataset 12.f 129

xiii o ﬂ‘} _.,?_ E” 5} T!_-r_

Chapter 1

Introduction

1.1 Background and motivation

Re-entrant manufacturing lines (RML) have become at the center of attention
in both academia and industry since semiconductor manufacturing and thin film
transistor-liquid crystal display (LCD) manufacturing lines came along [I}, 2} 3] 4], [5].
RMLs are systems where parts can visit the same stage several times before exiting
the line [6l [7, [8]. Research in this discipline has been motivated with an increas-
ing demand for small devices equipped with flash memory and LCD such as smart
phones and wearable devices [9, [10].

Figure shows the concept of RML and the dashed line at the bottom of the
figure indicates the flow of parts which go back to the previous stage. There are two
types of stockers where parts stay temporarily. The first one at the top of the figure
is a place where parts, which have completed an operation at the previous stage,
wait before they enter the current one. The second at the bottom of the figure, called
a re-entrant stocker, illustrates a place where parts, which have completed the next
stage, wait for the re-entrance to the current one.

There are parallel resources that are responsible for processing parts at each

stage and assigning a part to a resource is referred to as the dispatching decision.

y ebeig

"oUI] SULINJORJNUBW JURIJUS-21 JO 3deouo)) :1'T 2InJI

r MOJ} UEIiUS—8Y v

190018
luenue-ay

¢ obeig

¢ obeig

1930015

80Inosay

| ebe1g

Furthermore, a typical type of RML may regard a stage as a bottleneck if its re-
source utilization is above 85% [11, [12], 13]. This value is considerably subjective.
In practice, it is maintained above 90% for semiconductor manufacturing lines [14].
Since the maximum throughput is determined by the bottleneck stage, it is essential
to maintain a high level of resource utilization in the bottleneck [15].

It is achievable to keep the resource utilization level high by simply providing
a sufficiently large amount of work-in-process (WIP). On the contrary, an excessive
amount of WIP leads to increase in the waiting time for parts in the next operations,
thus increasing flow time of parts [16]. Therefore, managing WIP levels properly
matters in order to resolve the multi-objective problem of reducing flow time of
parts and improving resource utilization [17].

Unfortunately, the re-entrant nature brings about a challenge to WIP level con-
trol [18]. Specifically, if newly arrived parts are frequently assigned to resources of
the non-bottleneck stage with re-entrant parts not into consideration, the WIP level
of the bottleneck stage will excessively increase. On the other hand, giving a high
priority level to re-entrant parts in the non-bottleneck stage can result in a lack of
WIP at the bottleneck stage, which decreases resource utilization in the bottleneck
stage [19) 20].

From the remark above, it is clear that RMLs require dispatching decisions that
differ from those performed in traditional manufacturing lines and flow shops [211, 22,
23]. For this reason, a number of scholars have presented methods for dispatching
decisions in RMLs using optimization, meta-heuristics, and dispatching rules [19]
99, [24), 25, 26, 27, 28, 29, [30].

On one hand, approaches with a long computation time to yield dispatching de-

cisions, such as optimization and meta-heuristics, are not proper to be applied to
real-world RMLs although they successfully improve objectives through an exhaus-
tive search over solution spaces [31]. This is because, from a practical standpoint,
a part has to be immediately assigned to a resource in the event that the resource
requests a part.

On the other hand, the benefits of the rule based methods include computational
efficiency and ease of implementation [32] [33]. However, the majority of previous dis-
patching rules are usually designed to address a sole objective, and have limitations
when addressing various characteristics of real-world RMLs [34] [35].

In the meantime, it should be noted herein that the previous studies have focused
mainly on selecting one among the waiting parts ready to be processed immediately.
That is, a resource becomes idle only when there are no waiting parts in the stockers.
Yet, it is well known that performance can be improved when an intentional delay
is made in resource usage by idling a resource even through there are parts waiting
for its processing [36, [37].

Motivated by the considerations above, this thesis attempts to suggest a dis-
patching method based on deep neural networks (DNNs) that decrease flow time
without loss in resource utilization of the bottleneck stage for real-world RMLs.
Whenever a dispatching decision is required, the proposed method choose the best
part by considering both cases: when parts are processed directly; and when parts
undergo an intentional delay in a resource. In other words, the proposed method
maintains a high level of resource utilization and minimizes flow time by continu-
ously prioritizing newly arrived parts and re-entrant parts according to the status

of the RML.

To achieve this, we use a simulator to generate training data that are used
to train the dispatcher. The main difference between the existing learning-based
methods and our efforts lies in the fact that the existing work requires training data
generated from optimal solutions which are difficult to obtain, while our method is
capable of generating training data by simply performing simulations with random
decision making. In detail, the performances of the decisions in randomly generated
simulation logs are measured by the proposed score generator, and the evaluated
simulation logs are used to train the DNN in the proposed dispatcher. In real-time
dispatching phase, the proposed method quantifies the degree of preference for each
decision with a numerical score and then completes the dispatching decision based
on the score.

As mentioned above, to learn dispatching decisions considering intentional delay,
we employ a DNN which is capable of capturing complex non-linear dynamics [38].
Furthermore, it is known that a DNN enables computational models to learn repre-
sentations of data through multiple levels of abstraction to understand the hidden
relationships among input features [39) 40]. Neural networks (NNs) have been suc-
cessfully applied to a variety of areas which involve decisions, including dispatching

and scheduling problems [41], 42 [43] [44], 45], [46], [47) [48].

1.2 Objectives

The objective of this thesis is to propose a real time dispatcher (RTD) for decreasing
flow time while maintaining a high level of resource utilization in real-world RMLs.
The thesis consists of two major studies to reach its goals. The first one focuses on
implementing an underlying environment for conducting research. Then, the second
one that deals with developing RTDs is sub-categorized into two parts according
to how decisions are made. The basic concepts and purposes of the studies are
summarized as follows.

First, a discrete event based simulator (DEBS) and monitoring tool are proposed
in Chapter @l DEBS is designed to imitate the RML described in Chapter [3| and
calculate key performance indicators (KPIs) such as mean flow time and resource
utilization. Furthermore, a DEBS takes on generating training data used to train
a DNN. In addition to the functions of the existing Gantt chart, the monitoring
tool presents various information on RMLs at the time of a dispatching decision
being made. This feature is used to analyze the reason behind dispatching decision
making, which is helpful to improving performance in RTDs.

Second, two DNN based RTDs with different decision-making processes are sug-
gested in Chapter [l RTDs are in charge of choosing the best part by considering
both cases: when parts are processed directly; and when parts undergo an inten-
tional delay in a resource at the non-bottleneck stage. To make that happen, we
utilize the DEBS developed in Chapter [4] to generate training data used for RTDs
in the training phase. In the real time dispatching phase, dispatching decisions can
be made quickly thanks to the calculation of using parameters of the trained RTDs.

In detail, each alternative of the dispatching decision for a resource is represented

in the form of a vector. The proposed method quantifies the degree of preference for
each vector with a numerical score, on which it completes the dispatching decision. A
preferred vector receives a higher value as the dispatching decision is likely to shorten
the part’s waiting time and reduce the idle time of resources in the bottleneck stage.

Finally, the effectiveness and efficiency of the proposed methods are demon-
strated through extensive experiments in Chapter [6] The performances of the pro-
posed RTDs are compared with the conventional dispatching methods in terms of
flow time and bottleneck resource utilization. Additionally, numerical experiments

are conducted to investigate the merits and demerits of the proposed two RTDs.

2] 8

S Y |

1.3 Thesis outline

This thesis is comprised of seven chapters and the remainder is organized as follows.
In Chapter [2, previous research on the dispatching methods for RMLs is examined
and DNN based techniques applied to the dispatching decision are reviewed. Chapter
describes the problem under consideration and defines the notations used in the
thesis. The features and functions of DEBS and monitoring tool are presented in
Chapter [The proposed approaches, consisting of two RTDs, a score generator,
and learning algorithm, is introduced in Chapter |5} Subsequently, the experimental
results are summarized and discussed in Chapter [6} Finally, we conclude this work

with contributions and future work of this thesis in Chapter [7]

2] 8

S Y |

Chapter 2

Literature Review

2.1 Dispatching decisions in RMLs

A considerable amount of literature has been published on dispatching methods in
RMLs. Previous research is classified according to their approaches and performance
metrics, as presented in Table

Simulation-based studies have attempted to understand the characteristics of
part flows by executing tasks virtually in advance [49, 50]. Most studies utilized
simulation techniques to analyze or improve their objectives [51) 52, 53, 54]. On
the other hand, researchers in [55, [56] sought simulation methods that precisely
represent real-world RMLs and quickly process events.

Another line of research aims to perform dispatching decisions by utilizing dis-
patching rules [15, [57]. Publications on rule-based dispatching can be classified into
two categories. The first group proposes methods for selecting a dispatching rule
among the existing ones to obtain desired performance measures in a specific sit-
uation [14] 58, (9L 60]. To effectively cope with changes in the bottleneck stage,
algorithms to detect bottleneck stage are also to be applied in [14] [60].

The second category focuses mainly on improving objectives by developing their

own rule-based methods [61] [62], 63, [64]. In particular, Bard et al. [63] presented a

multi-stage approach consisting of three steps, which decides on the best resource-
tooling configurations and the way to assign parts to resources. They succeeded
in increasing weighted throughput in small-size problems. However, their method
requires a longer computation time as problems become as large as those in the real
world.

To overcome the limitations of the dispatching rules, Ma et al. [65] investigated
a dynamic scheduling method based on support vector regression (SVR). Specifi-
cally, they proposed a composite dispatching rule - a linear combination of multiple
dispatching rules with a weight assigned to each rule. The scheduling model trained
with SVR determines the weights of the composite dispatching rule for a given pro-
duction line state. Their method outperformed simple dispatching rules in terms of
multiple performance measures such as flow time and resource utilization.

Besides the rule-based methods, some studies investigating meta-heuristics have
been conducted to improve their particular objectives through an exhaustive search
over solution spaces [26]. Genetic algorithm (GA) based methods were popularly
used to decrease flow time and increase resource utilization [19} 29] [66]. In particular,
the work in [29, [66] utilized the heuristic algorithm as proposed in [73] to reduce
time spent on searching solution space.

Additionally, a Tabu search (TS) based algorithm, presented in [30], aims to
minimize tardiness. Kang et al. [30] introduced a rolling horizon method that limits
the area of unnecessary neighborhood solutions, thus decreasing computation time.
Although the existing studies of meta-heuristics attempted to reduce computation
time, it is difficult to introduce them into the real-world RMLs where dispatching

decisions are required to be made in a real-time manner.

10

Table 2.1: Overview of previous research on dispatching decisions of RMLs.

Approaches

Performance metrics

References

Simulation

Flow time
Simulation cost
Tardiness

Throughput

49], [B0l, b1, [52], 53]

Dispatching rule

Flow time
Tardiness
Throughput

Utilization

Z
z

ZEEEH HE
E EE

Support vector regression

Flow time

Utilization

Meta-heuristic

Flow time
Tardiness
Throughput

Utilization

E
E

Case-based reasoning

Utilization

Mathematical programming

Flow time
Tardiness
Throughput

Utilization

Reinforcement learning

Flow time

Throughput

HEEEEREEEREE BB EEEHEHEE

R |B

5 B EE B

11

S B LT

To resolve the disadvantages of meta-heuristics, such as a long computation time
to obtain solutions, Lim et al. [34] extended the earlier work in [31] using case-based
reasoning. Unfortunately, they failed to achieve as much resource utilization as the
existing method provides [31].

Studies were conducted to analyze dispatching decisions using the mathematical
formulation of part flow in RMLs [27, [68), 69]. To reduce complexity of the problem
of determining dispatching decisions, the works in [21], 25, 28] 67] divided RMLs
in different hierarchical layers. Furthermore, reinforcement learning based methods
also have been proposed to perform dispatching decisions in RMLs [71], (72, 23] [70].
These methods are characterized in that they attempted to improve the performance

of cumulative dispatching results rather than that of immediate dispatching results.

12

2.2 Neural network-based approaches to dispatching de-

cisions

Recently, there has been a considerable interest in using NNs for dispatching deci-
sions in various manufacturing domains [43] [74, [75]. Table [2.2| presents the summary
of the previous studies on dispatching decisions with the help of NNs. They are cat-
egorized into four cases according to subject.

The field of job shops have attracted attention among many researchers, and the
dispatching decision in the job shop system is traditionally known as a complex task
[477, [76]. Two NNs are proposed in order to decide different dispatching rules locally
for each resource [77]. Due to the structure of the developed NNs, the proposed
method was not robust to the number of resources.

An attempt was made to generate training datasets for NNs by using a GA,
which can obtain the optimal solution to job shop problems [44]. Although a trained
NN successfully yielded performances at the closest level to those of the GA, the
NN was designed solely to work for 6x6 job shop problems. Branke et al. [78] used
NNs to automatically design dispatching rules in a dynamic stochastic job shop
scenario. They also compared three different techniques for automated rule design:
NNs, a linear combination of attributes, and a tree representation. Their numerical
experiments indicated that NNs outperformed the rest for small-sized problems.

Meanwhile, a sensitivity analysis was conducted [47] in order to find which input
attributes of the NN has significant impact on the performance of dispatching results.
To be more specific, it measured the relative importance among the inputs of the
NN and illustrated how NN output is changed in response to variations in input.

A flow shop is different from the job shop in that all jobs follow the same process-

13 :

9911 UOISIOOP A Pojoa[es 9N Suryojedsip o) Jo soueuriofred o) SuridIparg
oUI[97} JO UOI}RULIOJUI dWII}-[BdI U0 paseq NN JO siojowrered oY) SUIUTWLIONP A[[RITWRUA(]
NN Susn uorjouny anfea rewrndo o) Surpewrxorddy

UOALS OIR SOINSROUWL 90URUWLIONIDd POIISOp UoyMm SOTILI SuryojedsIp SUI}od[og

TINY

w)SAS JO 99r)S o) WOy seanjeay Jo dnoisqns ewrydo oy 90979s 03 NN Pu® y¥) surjerssjuy

NN dewr Surzrued1o-Jjos SUIsn $90INOSAI 91} JO [[DBd 0} SO[NI JuIydjedsIp JUoIOPIP SUTUSISSY

SINA

wode pasodoxd oy Surziipn Aq A[eormreuAp 9)er Surwres| oY) surnsnlpy

doys morq

M%_
wmm_
Wmi
w%_
;w_
Wow_
41@ @wgoﬂ\@\wwﬁ @Qp gﬁg ZZ @gp mO wwﬂwﬂwg ®£u MQMQMEMQQQQ qﬂﬂ_
HE_
NN Jo so[qerrea jndur oY} JO SSOUSAIIDOHS 9} JO SISA[RUR AJIAIISUDS SUIPONPUOY) 77
uorjejuasaIdol YIoMau SNoa) so[mnl suryjedsp SUTUSISop pojewony <71

VD pue NN Suish ol oes SurziLoL i

E

92IN0SaI Yord 10} A[[BD0[So[NI SurydedsIp JUSISPIP 9PIIAP ey} SNN OMT,

doys qor

uorpdrIdso(] S9OUDI9JOY

109[qng

"SHIOM)OU [RINOU SUIS SUOISINOP SuryojedsIp U0 YoIeasal snotasld Jo MOIAIOA() 7' 9[qe],

14

ing order [83]. Mouelhi-Chibani and Pierreval [41] suggested a NN based approach
for assigning the most suited dispatching rule to a resource each time the resource
becomes available. In their research, weights of the NN are determined with the
simulated annealing (SA) method rather than using training examples.

Unlike the flow shop, a hybrid flow shop (HFS) contains at least one stage that
consists of multiple resources [84]. The delta-bar-delta algorithm was developed to
further speed up the convergence of the weights of NNs in the HFS [79]. This algo-
rithm is tasked with adjusting the learning rate dynamically based on the variation
of training errors.

Some authors investigated how to use NNs in a flexible manufacturing system
(FMS) defined in [85]. On the one hand, Shiue and Guh [81] presented a hybrid
learning framework that integrates a NN and GA to select the optimal subgroup of
features from the state of the FMS. Although the performance of the framework is
superior to other machine learning methods, it takes an excessively long computation
time to discover the chromosomes and determine the learning parameters of the NN.

Meanwhile, Guh et al. [80] developed a method to assign different dispatching
rules in each of the resources using self-organizing map (SOM) NNs. In detail, the
proposed method determines appropriate multiple dispatching rules (MDRs) for a
specific period. The results showed that their method outperforms two alternatives
with the same dispatching rule in all resources.

Adding to this, many studies were carried out on the dispatching decisions using
NNs in RMLs [33], 45] [59) 82]. To take a closer look, Min and Yih [59] proposed an
approach for the selection of dispatching rules when desired performance measures

are given with the status of the RML. However, they made an unsuccessful effort

15

to obtain high quality datasets of dispatching decisions, which has been left to be
addressed.

In order to dynamically determine the parameters of a NN, Li et al. [33] devised
an adaptive dispatching rule (ADR) that takes into account real-time state informa-
tion of RMLs. They demonstrated that their method was superior to the existing
dispatching rules by doing numerical experiments on semiconductor fabrication fa-
cilities.

A hybrid knowledge discovery framework was developed to decide the most ap-
propriate dispatching rule using a decision tree and NN [82], which are responsible
for selecting one among the existing dispatching rules, and then predicting the per-
formance of the selected rule. In addition, Zhou et al. [45] attempted to approximate
the optimal value function by using a NN. More specifically, they presented a dy-
namic dispatching approach for RMLs by combining dynamic programming (DP)
with DNNs.

In spite of the fact that previous research successfully addresses the use of NNs for
dispatching decisions on various manufacturing systems, most conventional methods
can learn dispatching strategies only if training datasets are obtained from optimal
solutions. This only implies inefficiency as their methods necessitate a solver that
yields optimal solutions for given problems. Furthermore, as mentioned above, they
do not factor in intentional delay decisions, which can possibly improve performance

if they are done properly.

16

Chapter 3

Problem Definition

3.1 Multiple-chip product (MCP) assembly lines

We consider a multiple-chip products (MCPs) assembly line for semiconductor man-
ufacturing which is the most representative one of RMLs [I7]. MCP production in-
volves complex and correlated assembly stages consisting of backlap, wafer sawing,
die attach (DA), wire bonding (WB), and molding [29] 61]. Especially, in the DA and
WRB stages, wafers are grouped as a lot and processed by a resource. Here, assigning
a lot to a resource is referred to as the lot dispatching decision.

For producing the large capacity MCPs, frequently re-entrant lots between the
DA and WB stages are necessary to assemble multiple chips into one single pack-
aging module [61]. In particular, the capacity of MCP tends to be proportional to
the number of visits to these stages [31]. The WB stage is usually considered as a
bottleneck compared to the DA stage due to its extremely long processing time for
soldering a number of wires to each die [86]. To efficiently operate assembly lines,
maintaining high utilization of resources in the WB stage is essential.

To manage the WIP level, in an attempt to decrease the flow time without loss
in resource utilization of the bottleneck stage, in this thesis, we focus on controlling

the lot flow in the DA stage. This is because the lot dispatching decision in a non-

17 :

bottleneck stage has a significant impact on the WIP level of an assembly line [54], 86].
Furthermore, the utilization of the DA stage is not necessary to be kept high if that
of the WB stage does not decrease because the throughput of the assembly line is
determined by the bottleneck stage [15].

For lot dispatching in the bottleneck stage, a higher utilization rate of resources
can be achieved simply by processing lots primarily with longer processing time
[86, 87]. Therefore, the lot dispatching decisions of the WB stage in this thesis are
carried out by using the rule that assigns a high priority level to the lot which has
the longest processing time for a resource.

We are given a set of resource types, M = {M,|qg =1, ..., Ny}, where M, is as-
sociated with n, resources, Ry 1, ..., Rgn,. For each operation, its available resources
and processing time are determined according to the resource type. There is a set
of job types, J = {J;]i = 1,...,N;}, where J; consists of a sequence of operations
specified in a predetermined order. We represent the j** operation of J; as 0, j, and
A(0O; ;) indicates a set of resource types capable of processing O; ;. The kth lot for J;
is denoted as L; i, k = 1, ...,n;, where n; is the number of lots of type J;. Thus, L;
is processed according to the operation sequence corresponding to J;, and I(L;)
returns the smallest index among those of the operations waiting to be processed.
Additionally, the processing time of a lot is to be proportional to the number of
chips in the lot.

Fig. illustrates the lot flow of the MCP production process considered in this
thesis. Specifically, a lot is required to be processed in the DA stage prior to the
WRB stage, and the final operation of a lot is to complete in the WB stage. The

dashed line at the bottom represents the flow of lots which revisit the DA stage

18

.
abeis g

oL

‘uorgonpord JOIN Ul so8e)s gA\ PUR V(I JO MO[30T :T°¢ 2In3rq

90Jn0S8I GM

1900)S ¥ 0

o —o—

o —

o

1900}
| |———
18}nq 924n0sal am 19001S gM
amol 0L

abeys gm

v
oo
= |= =
19008
-~
) Jaynq 82Inosal va
. Jayng vaoL
. 92In0say
=
= | _
==
80.n0sal D 0o
¥ Jajjnq sounosal ayasse)
vaol
abejs ya

e

paAlle AiMaN

19

after finishing the WB operation.

As shown in Fig. there are three types of stockers, namely cassette, DA,
and WB stockers where lots stay temporarily. First, the cassette stocker provides
locations for where newly arrived lots wait for the first DA operation. Next, the DA
stocker is a re-entrant stocker where lots that have completed a WB operation wait
for the re-entrance to the next DA operation. Finally, the WB stocker is where lots
that have completed a DA operation wait before they enter their WB operation.

Lots in either the cassette or DA stockers are transported to the WB stocker after
DA operations are finished. This means that newly arrived and re-entrant lots are
located together in the WB stocker, which yields complex lot flows. For this reason,
it becomes challenging to manage the WIP level of the WB stocker at appropriate
level, which is highly likely to decrease the utilization of the WB resources or increase
the waiting time of lots in the WB stocker.

In front of each resource, there is a resource buffer in which a lot waits for
the operation until the resource becomes idle. The capacity of a resource buffer
is assumed to be one. A lot is not interrupted once its operation starts, and an
operation is carried out by one resource at a time. Additionally, it is assumed that
there is no setup time between lots of different job types.

Regarding MCP assembly lines under the characteristics described above, we
alm to minimize the waiting time of lots and the idle time of WB resources in order
to reduce the flow time while maintaining high utilization of the bottleneck stage.
This is due to the fact that the flow time consists of processing time, moving time,
and waiting time. Since the processing and moving time are necessary to complete

all operations of a lot, the reduction in flow time is mainly achievable by decreasing

20

Candidate lots
In-Cassette- In-DA- To-DA- At-WB-
Stocker Stocker Stocker Resource
Status c oA
assette
stocker stocker I:I =
=== ===
Intentional
None Less More
delay

Figure 3.2: Candidate lots according to status and intentional delay.

the waiting time. Furthermore, the average utilization rate of the resources increases

as resources perform operations with shorter idle periods [17].

3.2 Lot dispatching process in MCP assembly lines

A candidate lot refers to one that is assignable to a DA resource when its resource
buffer is empty. The types of a candidate lot according to its status are illustrated in
Fig. A lot dispatching method determines the assignment between a candidate
lot, L;%, and a DA resource with an empty resource buffer, R,,, based on the
decision policy if M, € A(O; 1z, ,))- Furthermore, once a lot is dispatched, it is
excluded from the candidate lots.

For a DA resource, a lot can be moved from the stocker to the DA resource
buffer immediately whenever a candidate lot whose status is In-Cassette-Stocker
or In-DA-Stocker is selected to be dispatched. Otherwise, in case that a candidate
lot whose status is either To-DA-Stocker or At-WB-Resource is selected, this results

in an intentional delay on the DA resource due to the additional time to carry out

21 -

the remaining WB operation and/or to arrive at a DA stocker. The details of how
the dispatcher assigns a lot to a DA resource are described in Figure [3.3] The bottom
part of the step 3 shows the time for each lot to arrive the DA resource after the lot
is selected by the dispatcher.

In particular, the flow time of a lot begins to be measured when the lot in the
cassette stocker is dispatched. This is a well-known practice in MCP assembly lines
where the product type of each lot is determined when the first operation of the lot
is performed. In other words, the time lots spend in the cassette stocker is not the
interest in terms of WIP management.

In the WB stage, intentional delays are not necessary since high utilization of
resources should be achieved. Accordingly, among the lots in the WB stocker, the lot
with longest processing time is assigned to a WB resource when its resource buffer

is empty.

22

2] 8

S Y |

Step 1: Occurrence of empty DA resource buffer

=

» L

=

|
1

Empty DA
resource buffer

Step 2: Dispatcher-executed selection of one of the candidate lots

o
=]

e—=r—0c—>

=l

m—

Step 3: Process of assigning the selected lots according to their status

(@) In-Cassette-

Stocker

(b) In-DA-Stocker

Stocker

DA
resource

Movin

g time

(To resource buffer)

(c) To-DA-Stocker

DA DA
stocker D resource

Moving time
(To DA stocker and resource buffer)

(d) At-WB-Resource

] P
resource
DA

] e
resource

stocker

Processing time + Moving time
(To DA stocker and resource buffer)

Figure 3.3: Illustration of how the dispatcher assigns a lot to a DA resource.

23

M E) 8k o
I . I "

Chapter 4

Frameworks for Data Generation and
Performance Evaluation

In this chapter, we present a DEBS and monitoring tool which are essential for
generating training data and evaluating the performance of dispatching decisions.
Python and JavaScript are adopted to implement DEBS and the monitoring tool,

respectively, as their programming language.

4.1 Discrete event-based simulator
4.1.1 Purpose of implementation

A discrete event simulation (DES) is a widely used approach to analyzing and un-
derstanding the dynamics of manufacturing lines. It is a highly flexible tool that can
evaluate different alternatives of system configurations and operation strategies to
determine decisions in the manufacturing lines [88]. Under this rational, the purpose
of implementing DEBS directly in this thesis can be summarized in three ways.
The first purpose is to simulate real-world RMLs where practical constraints and
various types of events exist. A DEBS is required to perform dispatching decisions
in the situation where resource types capable of processing an operation are deter-

mined. The resource buffer capacity and the physical path of the lot should also be

24 -

considered. Furthermore, implementation is carried out on an event with an empty
resource buffer as well as all events that change the state of the manufacturing line.

More importantly, the second aim is to generate training data used for DNNs.
When a lot dispatching decision is required, a DEBS has to extract desired informa-
tion from various parameters representing the status of RMLs. After all simulations
are completed, the extracted information is printed in the form of a vector suitable
for the input layer of the DNN.

Finally, KPIs such as waiting time, idle time, WIP level and resource utilization
are calculated by a DEBS. The KPI calculations are used to evaluate dispatching
results and compare the proposed method with the existing methods. In addition,
a DEBS is in charge of generating a text file used as input data of the monitoring
tool. The text file contains not only the information needed to illustrate the Gantt
chart but also the information captured at the time each dispatching decision being

made.

4.1.2 Details of the structure

Fig. depicts the overall process of the proposed DEBS, which is a simulator where
state changes happen exclusively in discrete instances in time. In other words, not
any change in state occurs by the DEBS between two consecutive events [89]. The

description of each component of the DEBS is as follows.

Input

The input of the DEBS includes: (a) resource-related information that contains re-

source types, the number of resources, and operations that each resource can process;

25

‘(10yR[NUUIG poseq JUOAR 93010SI(]) SH(JO 2INJoNIYG :T°F oINS

juaaz Burem
22In0saYy 3|p|

juang buniepm
1017 djepipued

— Buissasoid
juang Buniem

JudAg ysiuly4
19905 01 A0
Jey jueg
?ldX
JueAZ ysiuly
Jayng o] aAol
|—0
jusAg s élinu
Jayng fydwg ¢odAL uang S1)SI7 JUaAg
JuaAg
ysiug uonesado
doojuang

awn Aq 1s1| Juans Bupog

uonezijeniu|

indu)

26

(b) job-related information, including job types, the operation sequence of each job
type, the number of lots assigned to each job type, and the number of chips in each
lot; and (c) physical constraints which determine processing and moving time for

lots, the capacity of a resource buffer, and whether pre-emption is allowed.

Initialization

Based on the input, the initialization step builds a set of variables for representing
the status of a RML and calculating the performance of dispatching decisions. These
variables are used to generate vectors for a DNN when a lot dispatching decision
is required. Furthermore, this step creates an event list and data structures for the
monitoring tool.

Another important role of the initialization step to play is to insert initial events
into the event list. As all resource buffers of the RML are empty, multiple lot dis-
patching decisions are required in this step. After lot dispatching decisions are de-
termined, each event corresponding to each decision is generated and added to the

event list.

Event loop

An event contains information of the lot and resource related to the event, and
timestamp. The timestamp indicates the time when the state changes due to the
processing of the event. In addition, the generation of an event leads to the deter-
mination of its type. There are six types of events as shown in Fig.

An event loop is a loop that is terminated when all events on the event list

are exhausted. This loop repeatedly consumes and processes events on the list by

27

Table 4.1: Descriptions on the event types for the event loop.

o s Generated
Event Description
event
Operation- Event triggered when a resource finishes Move-To-
Finish processing a lot Stocker-Finish
Empty-Buffer Event triggered when a resource buffer is Move—To—' .
empty Buffer-Finish

Empty-Buffer,

Move-To- Event triggered when a lot arrives at a .
.. Operation-

Buffer-Finish resource buffer a

Finish
Move-To- Event triggered when a lot arrives at a DA
Stocker-Finish or WB stocker
Candidate-Lot- Event waiting for candidate lots for a Move-To-
Waiting resource with an empty resource buffer Buffer-Finish

Empty-Buffer,
Operation-
Finish

Idle-Resource- Event waiting for a resource to become idle
Waiting to process the lot in the resource buffer

ascending order of timestamp among the rest. This process executes some code of
the DEBS to materialize an appropriate change in state, which is likely to result in
the generation of a new event. The details of events are summarized in Table

If an Operation-Finish event is selected on the event list, a resource finishes
processing a lot and the status of the resource becomes idle. If the lot has remaining
operations, a DEBS sends the lot to the stocker for the next operation and generates
a Move-To-Stocker-Finish event.

An Empty-Buffer event is an event requiring a lot dispatching decision. When
this type of event is triggered, a DEBS creates a list of candidate lots for the resource
with an empty resource buffer. If there is no candidate lot for the resource, the
DEBS adds a Candidate-Lot-Waiting event whose timestamp is oo to the event

list. Otherwise, a lot dispatching decision is made via a lot dispatching method.

28 :

Once a lot is assigned to an empty resource buffer as a result of the lot dispatching
decision, a Move-To-Buffer-Finish event is generated.

When a Move-To-Buffer-Finish event is selected on the event list, a lot ar-
rives at a resource buffer. If the resource is processing the other lot, a DEBS adds
an Idle-Resource-Waiting event whose timestamp is co to the event list. Oth-
erwise, the resource starts to process the lot in the resource buffer, which causes
Empty-Buffer and Operation-Finish events to be included on the event list.

A Move-To-Stocker-Finish event is triggered when a lot with remaining op-
erations arrives at the stocker for the next operation. This event is different from
other types of events in that it changes the state but does not generate a new event.

Since the timestamp of waiting events is co, Candidate-Lot-Waiting and Idle-
Resource-Waiting events are not able to be selected in the event loop. Therefore,
for each iteration of the event loop, a DEBS performs waiting event processing after
any event with a finite timestamp is selected among the four events.

In the waiting event processing, for Candidate-Lot-Waiting events, a DEBS
searches for candidate lots of the resource associated with each Candidate-Lot-
Waiting event. If there is a candidate lot of any resource, the waiting event of the
resource is removed from the event list. Then, a lot dispatching decision is made
by a lot dispatching method, and a Move-To-Buffer-Finish event is added to the
event list.

Meanwhile, a DEBS checks out the idleness of each resource related to Idle-
Resource- Waiting events. If a resource is idle, the lot in the resource buffer starts to
be processed by the resource Consequently, Empty-Buffer and Operation- Finish

events are to be added to the event list. Then, the Idle-Resource-Waiting event

29 :

corresponding to that resource is removed from the event list.

KPI and Gantt chart

Once the event list is exhausted, KPIs such as waiting time, idle time, and resource
utilization are calculated by a DEBS. Furthermore, the DEBS yields the simulation
log containing the entire dispatching history, which is used to generate training
datasets for NNs.

For the monitoring tool, DEBS also writes a text file in JSON (JavaScript Object
Notation) format, which can be easily parsed in different programming languages
[90, 91]. Based on the text file, the monitoring tool illustrates a Gantt chart for the
sequence of dispatched lots of each resource. In addition, the text file contains the

information of the RML at the time each lot dispatching decision being made.

4.2 Monitoring tool
4.2.1 Purpose of implementation

Gantt chart is known as a basic schedule representation tool that displays each
resource’s operational status by changing the color or position of bars [92], 93]. A
few studies attempted to extend the basic Gantt chart. Jo et al. [94] proposed a
framework containing algorithms to explore the schedule of large-scale manufactur-
ing lines. An interface was also proposed by [95] to deal with specific disruptions in
resources and the historical analysis of manufacturing line performance.

Although the previous research successfully improved the basic Gantt chart, their
framework has limitations in performing the analysis of dispatching decision units.

Therefore, we propose a novel monitoring tool with additional functions needed

30

to monitor KPIs and analyze RTD performances. The purpose of developing the
monitoring tool is presented as follows.

One of the most important purposes is to display a variety of information about
RMLs at the time each lot dispatching decision being made. The monitoring tool is
required to present figures including all alternatives, the amount of WIP, the number
of resources in operation. Through examining these values, a user can analyze the
reason why the lot dispatching decisions were conducted. The results of the analysis
are based on improving the learning framework or the decision making method of
the proposed dispatchers.

The second purpose is to illustrate how various performance indicators change
over time. Since dispatching decisions occur sequentially, it is important to observe
indicators that change in value according to the decisions made. Therefore, the
proposed monitoring tool is essential to presenting time-dependent changes in indi-
cators such as the amount of WIP, resource utilization, and the number of lots that
complete all operations.

Finally, the monitoring tool is required to be designed to compare multiple dis-
patching results. As there are a few indicators that represent the performance of
dispatching decisions, it is challenging to simply compare and analyze multiple dis-
patching results. Accordingly, the proposed function provides the ability to compare
the performances of multiple RTDs with DNNs learned under different parameters

in a single screen.

31

(A) Choose File | No file chosen

(B) Tmetlines compare Page (C)

Figure 4.2: Main screen of the monitoring tool.

4.2.2 Details of functions

The main screen of the monitoring tool is presented in Fig. A user can load
a DEBS-generated text file by pushing the ‘Choose file’ button on the upper left
side (A). When a text file is loaded, the ‘Time Lines’ tab (B) displays several views
in the bottom box. The ‘Compare Page’ (C) shows the performances of multiple

dispatching results on a page when text files are additionally loaded.

Resource view

Fig. illustrates the resource view when a text file is loaded with the ‘Choose
file’ button pushed. This view differs from the existing Gantt chart. The idle periods
caused by intentional delays are shown differently from those by the lack of WIP. The

former is visualized in the form of a rectangle filled with diagonal stripe patterns;

32 !

Choose File | 255_learner... 57604300) . 7

Timelines ComparePage | 255_leamer large s34s7sossrex |ll@ penod caused by an Intentional de|ay I» ------ %

few isics Vie 2

Resource View Statistics View KPI WIP CZZ"S ack of WIP I __________ L A
A7 T 21117 ,/5'

%

a0 Z
1501 117, — W
e R e

%
7
WB_RESO1

31D10024 0030000487 LOT5D1 LO124DILO107D! L0053D1 LOO9SD: LOOBD1 L0013D1005TDOBIL0039DE00S00D05BL0057D" L00OADT

we_R
BRES02 (018011 20097E 0044000950 L0061D1.0078 LO031D1 L0033D1 1012301 LO106D L0059D1 LOOS5D1 LO056D1 LOOGADO3OL LO055D1 100120110019 L0O020D1 L0047D° L0046D1 L00GSDL 00390101050 00250

WB_RES03!
- L0061D1 L0036 L0051D1 L0002D1 LOT17D1 LOOGZDIDOA1 LOO06D1L0091I LOOIZD1 LO016D1LO109MD1320030C L0130D1 |LOOBADE0129010040D L0OOSDT L0039D1L01270LO0SGANOGEE LO0GADT LOOAGD1

WB_RES04
BRESO. [L0008D1 L0126D1 LO108D1L0098D1 L0062D110060D1L0002D110063D1 L0O053D1 L0056D1 L0034D1L010AB02A0aT1089IL0111D1L0099D" L0111DL0054L0107D1.01290612210090DL.0021D1 L0018D1 L0O21D1 1004301

WB_RES05:

WB_RES06!

o1

1003301 L0063DNO0TAIOOATD LO033D1LOT25D 1005201 LO031D1 L00S201 LOOASD1 LO0S3D1 L0059D1 LO012D1 L0038D1 L0020D10035 LOO4GD1 LOOG6D LOOOIDILOOATD' LO121D1 L0021D1
1005201 | L0120D1 LOGASDOOZZ007410063R004001QMOSL LOTIZD1 LOO77D L0038DN0066093L0130D1 LOOAORO024 00660 0040D° LOOT7D1 LOOS0D' L00S3D10092D1220A(LOTIID1 LOOOIDILO0SLDOSEDO50

WB_RES07
- 01128088030 011301006001 L0126D1 L0123D1 L00S6D1LO0TAL0016D1 L0049D1 | L000GD1LODBS LOOBADL00540 003200076006 400030(L 0047(130092ID08AD13ICLO0BSDR 131D L0020D1 L002501.011801L0039D1)

Bttt B304 004506027 0112000 116} 360034088 0045 L0O0GD1 LO12501 LOOGZR00I006SL00G4D1 L0O1SD1 LO02BTID035L0042D LOOOTDT LOOSGD1 LOOGATLO032000541 LOTISD1 | LOOOTDY L00SS00M1SD LO0Z2D1 LO13D1

WB_RES09/
. ioﬁummmmnmsmﬁal Lot2001 Lo0samons100230 LofGRo2LOAEAD1 LO1OODA 00100 00490 LOGKGDY LOOZSDALOEROI LONZSD1 LOWADOTSE Lo0OSDY LooAmHAOMSGD1 LooorD

e Bl 1010801100101 L0114D1 L000BD1L0051EL0061D1 Loo15D1 L0102D1.004200132.00Z087 L0032D1 LO126DL003¢ LOOOSDNOO3: LOTISD1 LOOB00A7I L0012D1 L0019 LOOBSDAOT0SD 1002901

WB_RESt1

WB_RES12
- 1L0114D1 LO0SBO8045I L0031D1 L0034D10069000620L002800044L0061D1 LOOZ8D1 L0128D1L01030 L0017D1 L0048DL00S7D1 LO0OTD1 LOOABDOOT30 LOO26D1 LOZ7NOSTI LOWED1

Figure 4.3: Resource view of the monitoring tool.

while the latter is shown in the shape of simple white rectangles.

If a user selects any operation in the resource view, the screen switches to the
one shown in the Fig. [£.4] The selected operation is highlighted and surrounded by
a red line (A), and only the operations that belong to the lot corresponding to the
selected operation are displayed on the screen. The vertical red line (B) signifies the
decision time - the time at which the lot dispatching decision corresponding to the
selected operation was made.

Furthermore, a pop-up window shows up, elaborating the properties of the lot
and resource involved in the lot dispatching decision and the status of the RML at the
decision time. Specifically, the first column (C) shows lot-related information such
as the number of chips, operation type, and the start and end time of the operation

in the resource. The job and resource types of the lot and resource involved in the

33

lot dispatching decision are presented in the second column (D). The last column
(E) displays RML-related properties including the amount of WIP, the number of
resources in operation, and the number of lots that departed the cassette stocker at
the decision time.

Finally, the table at the bottom (F) represents alternatives, including the one
chosen as a result of the dispatching decision at the decision time. For each alter-
native, lot-related information and the scores marked in terms of waiting and idle
time are presented. In detail, lot-related information includes the operation type of
the lot and the location where the lot stays at the decision time, and the job type

of the lot.

34

2] 8

S Y |

—
|
s
P
=
|k
=
In
"MOITA 92I1NO0SOI O O MOPUIM UTOISIOO F'F 9INJ1 ._U !
. [} Jo moput 1S109(F'F | _
20 0 z 0z 8 ot Wt 4 o 80 90 w0 00 @ oz 8 9 v 4 o 80 %0 v0 gy ...rn.,....“
zLSIH am) -
4
1S3y 8m 1
4
0LS3Y 8Mm
605347 8M
2083 8M
L0834 8Mm
90S3y4 " 8M
. il razorol
o " 5 B = = = S0STH am N
108°) 910°L S8L°0 | 90mO1d %2015"15) L0 dOWE 1va 10£0001-60534 va
[910'L 88.°0 | 90MO14 %2015 150 10 dOWE 1va 10£1001-60534 va 120k01 _ el
#08°} L10°) 88470 | 90MOTd M0LS 15D 10~ dIWE vad 1061001-£0534 va rOS3Y 8M
918°) 6860 | /7870 | ZOMOM 0153y _aM [zva 1096001-60534 va
818°) 0860 | 868°0 | ZOMOM 10534 M [zva 10/6001-680534 va c0sTH"aM
6681 G660 | Eb8°0 | ZOMOH 80534 am 10 dOWEZ zva 101/001-80534 va
781 G66'0 | 8¥8°0 | ZOMOM 10534 am 70 dOWET zva 1086001-80534 va _
268°) ¥16'0 | 8/8°0 | ZoMOM F0S3Y M 70 dIWZ 7va 10201070534 va cos3y am
[so 3Pl | Bunen | a1mod UoRes0T JuaLiny 5dA| Jonpoid 1 uopesadg Pl uoIsaq
A u_v 10834 am
o
gL / § :suonesado || 232]dwoo JeY3 530 O # E£WH V@ 3dA] asinosay gog :Apuend - POSTN VA
£01 / Ty 2422035 3335562 AU 3] 38y} 530] 4O 4 £0S3¥ vQ 92un0say Zva :uogesadg n
TL/Z1 1am Bupiiom Law. “zam. ‘zva, ‘1M, ‘Lva] :'bas uoneiado S6°60 | Aeq awy uoisioag _
¥ /7 :va Suppom ZOMOT4 ‘Pl MOld 00:80 | Aeq :3wil Suipugz - €053y va
0 113437 dIM 8M AMV oWz :dnoup 3onpe.y ADV 6€:£0 | Keqg :aun) Supiess AUV A v
207 dOWZ :PI3enpoid 1azZ0L0T PI 307 \vJ Z0sauva
. | (Q)
m 10834 va
z0 0 [0z 8t 9k vk 4 ok 20 90 20 00 [£4 0z 8t 9t vk 4 o 80 90 v0 4]
SUBUD JIM 1M MIASIISHEIS | MOIA 22IN0SIY

pacLozgz ees obiel Jawesl Loz abed aredwod S3UI7 WL

WIELOZoTE T Iewes 15T | =iy BT

Statistics view

The statistics view illustrates how the four performance indices change over time
as shown in Fig. The upper left graph (A) shows the amount of WIP for DA
and WB stages, which means the numbers of lots in the DA and WB stockers,
respectively. The number of lots that departed the cassette stocker per day for each
job type is visualized in the upper right graph (B).

The bottom left graph (C) with the increasing trends indicates the number of
lots with all operations complete. Finally, the graph on the bottom right represents
the resource utilization at each stage. The values in the graph mean the number
of resources processing a lot for each stage that is divided by the total number of

resources in the corresponding stage.

36

"[00} SULIO)TUOUT J} JO MOIA SIIISIIRIG (G SINSTI

W

i3

[ir4

107 das
L0 dOny —
L0 donE —
20 dome —
L0 doNE —

fep jad 1p00}s apSsED AL B 18U} S10l B #

—
om
~

v

S Kenuer zug Aenuer | nyL Arenuer ¢ 1es AKenuer z ug Aenuer | nyp
ho 0080 00¥0 0000 009k 00:ZL 0080 OOKD 00:00 b¥0o 0000 000z 009 00ZL 0080 OOWO 0000 009l 00Tk 0080 00O
0
E
9
0 5
g Ef
4 I
3 e 5
s o
2 @
B e
E] E]
o
2!
5
a
ook
d L
wo (@)
w— d 9]
Kienuer z U4 Ksenuer | nyL eS fuenuer z ug Ksenuer | nyL
bz 00:00 000z oo:zk 00:80 00:70 0000 boo, 000z 009k 00:ZL 0080 00:¥0 00:00| 00102 00:ZL 00:80 000 00:00
0

o
[2A277 dIM

" AY)

XI'EL0LLGELE OBl Iauesl 15T

MBIA SSEIS

PACLOLLS

Jawes)

MBIA 32IN0S Y

abed siedwod

3:14

E

ETS

14 2500UD

37

bl AfEH \251_Iearner_._.3_262613.tx1
Time Lines Compare Page 251__learmner_large_833.262613.txt
Resource View Stafistics View KPI WIP Charts
KPI

Average WIP level: 7.90 (unit)
Makespan: 3494.8 (min)

Total flow time:1638.75 (hour)
Total waiting time: 641.14 (min)
DA resource utilization: 0.253 (%)
WB resource utilization: 0.961 (%)
Waiting time / Flow time: 0.391

Figure 4.6: KPI view of the monitoring tool.

KPI view

As shown in Fig. the KPI view shows the performances yielded after all dispatch-
ing decisions are completed. Unlike other views of the monitoring tool, this function
shows the overall performance rather than time-based changes or information on
dispatching decision units.

To be more specific, ‘Average WIP level’ is calculated as the average of the
number of WIPs that are recorded every time that of WIPs changes. ‘Total flow
time’ indicates the sum of the flow time of all lots while ‘Total waiting time’ means

the sum of the waiting time of all lots. Here, waiting time is the sum of the time

38 .
S EigT
Heriw

that a lot waits in stockers or resource buffers from the start of the first operation
to the completion of all operations.

The average utilization rate of resources is calculated separately for each stage.
‘DA resource utilization’ is calculated as the average of the utilization of DA re-
sources. The utilization of each resource is obtained by dividing the total processing
time of the operations assigned to the resource by the dispatching horizon which
represents a time period for which the lots necessary for satisfying production re-
quirements are dispatched. Similarly, the value of ‘WB resource utilization’ is also

obtained.

WIP charts

Fig. [£.7 visualizes the amount of WIP in more detail than the statistics view does.
In WIP charts, the number of graphs represented is twice that of job types which
appear on the assembly line. Specifically, a row is generated to illustrate how the
amount of WIP for each job type changes over time. The row is divided into two
columns, each of which contains a graph.

A graph in the left column (A) shows the amount of WIP for DA and WB
stages, which means the number of lots belonging to one job type in the DA and
WB stockers, respectively. On the other hand, a graph in the right column (B)
indicates the amount of WIP for each operation type, which means the number of

lots belonging to the corresponding operation type in stockers.

39

"[00} SULIO)TUOW 9} JO SITRYD JIA\ :L'F 231 g

MreLgzsce

u N va —|-v u N g0 va —| -7
Arenuer z ug Arenuer 1 nuL feenuer z ug Arenuer | nuL
B0 0070 00:00 0002 009k 00TH 0080 00:¥0 00:0¢ 0 0070 00:00 00:02 009k 00Tk 00:80 00%0 00:0¢
| ’ 0
I
|
L L g
o o
H Dt
% 2
e S
b
£
z z
zam —
am — [eloL am —
wa — ¢ o va — ¢
Aienuer g 185 Arenuer z ug Asenuer L nuL Krenuer ¢ 1es Arenuer z u4 Asenuer L nuy
00:%0 00:00] 000z OOSL 00:ZL 00'80 00%0 0000 0O0Z 009L 00:TL 00:80 00¥0 00100 00%0 00:00| 000z 0O:'9L 00:TL 00:20 00:YD 0000 0010Z 009 00TE 0080 00¥D 0000
0
T 0
j T I | | T =
f, | NN
I i
z 2
s o
H Dt
o 2
[=
)
2 c m
= IS
v
—_ lelol gm —
wva — [° eI ¥g —
Amv A<V SUeUD dIM IdX MBIA SINSHEIS M3IA 32I1N0Say
X€19797cce obe sawes] joz | obed amdwony seur] awil

T1ewes 16| i BiT

40

!

Compare page

The ‘Compare page’ is activated when multiple text files are loaded, allowing a user
to compare multiple dispatching results on a single screen. As shown in Fig. this
page lists KPI and statistics views for each text file in the vertical direction, and a

column in the same format is added whenever text files are additionally loaded.

41 : !;,‘ﬂ ki]-H ."j]l- .T]II_

£ies

‘(007 Suriojruowt 91} Jo aged uostredwo)) :Q°F oINS

0.6 Asenuer
zus L nyL

o

oL

£4€°0 18w} Mol / sw B
(%) £26'0 :uone
(%) £92°0 :uonezin 831nossl yq

(uiw) 20889 s Bunem |ejoL

(unoy) £g°zreLiawn Mol [ejoL
(uiw) g'gege uedsexep

(nun) 91 188l dIM 8beseny
IdX

n 821081 GM

P4 GLzsvs 1eg 2bielJawea™ 09z

Aepad

13187 dImm

L

cles zuy L nyL

20 dowg —
10 dowe —

0.6 Aenuer

£€Z°0 18I MO|4 / 3L Buiepm
(%) p26°0 “uole
(%) 97’0 :uonez|nn 831n0sal ya
(uiw) 99+2e -swip Buniem |zjoL
(unoy) L0°96E 118 MOl [B10L

(uIw) 6'Zpoe (uedsexep

(Mun) zg'L 18N8l dIn ebeieay
Id%

IIn 82Inosal g

14°8r09.G ES obie Jawea 55T

Aep sad

18A87 dIM

) Lodos — =
10 dony — =
L0 domE — =
0 doWe — |- ¥
10 dowe —
0464 Aenuer
cud L nyL
0
H
o o
5
3
0z
16€°0 ‘awWi} Mol / swin Buntepp
(%) 196°0 :UoNEZINN 83IN0S8I GAA
(9%) £52°0 :uonezinn 831n0sal ya
(uiw) #1719 ‘8w Bupiem ejoL
(1noy) g2 '8e9l:BwWn Mol [BjOL
(uiw) 8'pepe uedsexep
(1un) 062 :19A8| dIM sbelsny
1d
pa'£L9z9z ee8 obue Jawes" 1oz
abeg aredwon Saur aunl

prclzsysL T Iswes 09z | BE BT

.""'..'L

Chapter 5

Deep Neural Network Based Dispatcher

Fig. depicts the overall process of the proposed approach. In the training phase,
we deploy a simulator that executes the DA and WB stages in MCP production
as shown in Fig. to generate simulation logs. By utilizing the simulator, all lot
dispatching decisions of a problem are determined using a random decision generator
(RDG) which is responsible for randomly assigning one of the candidate lots to a DA
resource with an empty buffer. The performances of the decisions by RDG are then
measured, and the scored simulation logs will be used by a learning algorithm to
train the DNNs embedded in RTDs. In the real-time dispatching phase, for a given
test problem, the simulator calls the trained dispatcher whenever a lot dispatching
decision is required.

In this thesis, we propose two DNN based RTDs with different decision-making
processes. The first one is a real-time rule selection dispatcher (RTRD). It determines
the best dispatching rule among the existing ones at the time when a lot dispatching
decision is required. According to the determined rule, one of the candidate lots is
assigned to a DA resource with an empty resource buffer. Secondly, a real-time lot
selection dispatcher (RTLD) marks scores for all candidate lots and assigns the lot

with the highest score to the DA resource. The details of RTDs are described in the

43 :

following sections.

44

Jayojedsip pasodoud ayy 0} NNQ paules Aojdag

‘preordde pesodoid oy} JO 9INIONIYS [[RIDA() :T°G 2INS3I

JayewW uoIsIoa(aul Alquiassy wa|qoid
Buiyojedsip 107 ——
Jayojedsip aul| Alquiasse wajqo.d
oull} |eay PlIOM-[eSY 191
s10}09A Buiyolepy
Buiyojedsip 10
Jo1elousb Hojedsip ot I\Q|/
UoISIoap J0}e|NWIS . M_o_nmh
- ulurel |
Wopuey $10100A BuIyoIR
sawl |\ Jeaday
Boj uopeinuis aseyd Bujyojedsip swi |eey D
\ aseyd Burer) []
wypoble Jojesaush
Buiuies ~ ejeqBuues) 81008

45

5.1 Real-time rule selection dispatcher
5.1.1 Dispatcher structure

Fig. illustrates the architecture of RTRD which consists of five layers: an input
layer, three hidden layers, and an output layer. The input layer contains 37 nodes,
and the number of nodes in each hidden layer are 64, 32, and 16, respectively,
whereas the output layer has one node. The numbers of hidden layers and nodes
in the hidden layers are empirically determined to reduce the training error. The
rectified linear unit (ReLU), f(z) = max(0, 2), is applied before each hidden layer
in order to provide a non-linear transformation, and all layers are fully connected

[96].

-

-] O O O
State vector <]| ReW Q ReLU Q ReLU Q
(] O O

O

Output layer

/
O

Action vector

] O O O
N - 2

Input layer Hidden layers

Figure 5.2: The structure of RTRD.

The input layer can be divided into two groups: state and action vectors. The

former describes the status of an MCP assembly line when a particular DA resource,

46

R, s, has an empty resource buffer, while the latter indicates the dispatching rule
used to select the lot to be assigned to R, ;. We propose the components of the state
vector, and then introduce dispatching rules for the action vector.

Table presents the details of the state vector for R, ;. From the state vector, a
RTRD is capable of capturing the characteristics of candidate lots and the flow of lots
in the assembly line. This is the basis on which the RTRD determines dispatching
rules for R, s. Specifically, the state vector contains 26 features that are categorized
into DA resource, statistics of candidate lots, and the distribution of lots as shown
in Table First, a single feature associated with R, indicates how much time
remains until R, becomes idle.

Next, the 12 features associated with candidate lots represent the minimum,
maximum, and average values of the four attributes that each lot has. The four
attributes are: the time when the lot departed the cassette stocker, the number of
chips in the lot, the number of the remaining operations to be processed, and the
processing time on R, . Other attributes of the lot were excluded since they are
not related to the performance measures that are considered in this thesis. RTRD
utilizes the statistics of all candidate lots rather than the characteristics of each
one because RTRD is not able to specify the lot to be assigned to R, until the
dispatching rule is determined, which differentiates RTRD from RTLD.

Finally, each feature belonging to the lot distribution includes the number of lots
that correspond to one of the 13 different locations, covering all areas where a lot
can exist in assembly lines. With these features, the proposed dispatcher knows not
only the distribution of lots in the assembly line, but also the progress of the overall

processes.

47

Table 5.1: Components of the state vector for R, s of RTRD.

Categories

Descriptions

DA resource

The time remaining until R, s becomes idle

Statistics of
candidate lots

Earliest time when lots depart the cassette stocker

Latest time when lots depart the cassette stocker

Average time when lots depart the cassette stocker
Minimum number of chips in lots

Maximum number of chips in lots

Average number of chips in lots

Minimum number of remaining operations assigned to lots
Maximum number of remaining operations assigned to lots
Average number of remaining operations assigned to lots
Minimum processing time of lots on R

Maximum processing time of lots on R, ¢

Average processing time of lots on Ry s

Lot
distribution

of lots in the cassette stocker

of lots being moved from the cassette stocker to DA resource buffers
of lots in DA resource buffers

of lots being processed on DA resources

of lots being moved from WB stocker to WB resource buffers

of lots in WB resource buffers

of lots being processed on WB resources

of lots being moved from WB resources to the DA stocker

of lots in the DA stocker

of lots being moved from the DA stocker to DA resource buffers
of lots being moved from DA resources to the WB stocker

of lots in the WB stocker

of lots that completed all operations

48 :

Table summarizes dispatching rules used to generate the action vector for
R, s, and the manners in which each rule chooses one of candidate lots. Each rule was
modified to be used in the assembly line considered. Among the existing dispatching
rules, we chose the ones that affect the waiting time of lots and the utilization of
resource [62, 97]. STOCKER is a rule developed in this thesis according to the
assembly line considered herein.

When a lot dispatching decision is required, an 11-dimensional action vector
with zero values of all elements is generated. Then, if a specific dispatching rule is
selected, the value of 1 is assigned to the element corresponding to that rule in the
action vector. For example, in the case of MOR, the form of the action vector is
(0,0,1,0,0,0,0,0,0,0,0) while LPT generates (0,0,0,0,0,0,1,0,0,0,0).

The output layer represents the preference score of the input vector. All values
in each node are normalized to a range [0, 1] using the min-max normalization to

accommodate the inconsistencies of different units [98].

5.1.2 Training phase

In the training phase, each generated problem is solved multiple times by using
RDG which is responsible for randomly selecting one of dispatching rules presented
in Table Once all lot dispatching decisions of each problem are determined by
RDG, the generated simulation log containing the entire dispatching history each
of which consists of a dispatched lot and an assigned DA resource, and their input
vector is sent to the score generator.

The score generator evaluates each lot dispatching decision based on the waiting

time of the dispatched lot and the idle time of the WB resource that processed the

49

(%037 w0 Ae[op [RUOIULIUT U ASNED JOU OP
uor13sonb ur s30[oY T,) SI9D0IS (T 10 9330SSBD Y[} UL SJ0] JO SUO 1I9[9G

HAIMOOLS

"$10[JO Ioquunu jsof[ewts oY) s dnotd oyj 0} Surpuodsoriod jo1 oY)

(enonb 3xou o1} Je SI0] 1SoMI])

100108 “15p0)s g\ o wr (MDY sures oy qim s30] Swidnors 1093y ONIA
"$10[JO IoqUINU $SOSIe[Y} [IIM (ononb ur oqunu jsogrer)

dnois o1y Jo 107 oty 1000s (MDY sures o) Ym §90] Surdnois 197y ONT
"S0] JO IOQUINU JSO[[RUIS O} (1M (enonb ur zoqunu jso[RwS)

dnois oty Jo 101 oty 19008 ‘(TN oures o) Ym s90] Surdnois 13y ONS

'bar wo owury Surssoooid so8uol oYY YItM O] O T,

(ouury Surssoooid 9se8u0T) I,d7T

$'bar wo ouury Sursseoord §s93I0YS 9Y) YIM 0] OYT,

(owry Surssooord 4s0110US) TS

sdryo jo Iequnu 3s9B8Ie] oY) YIM 40 9],

HOdV'1T

sdIo Jo IoquInu }so[[ews oY) M 307 YT,

TIVINS

suorje1ado I0SS9JONS JO IoqUINU 1S93Ie] 91} YIM 0] oY,

(8ururewrax uoryerado 1so0|N) HOIN

suoryerado I0SS9JONS JO IOQUUNU ISO[[RWIS 97} YHM J0[9],

(Bururewa1 uoryerado jsear) YOI

I9YD01S 9939SSRD J1) WO} PaydIedsIp Usaq sey Jey) J0[1SOP[0 oY],

(1o 9481y ‘ut 1811) QAL

S70] @jepIipued 3uowe 9UO }I3[3S 0} MOH

sony

"MUIM Jo $Py7 105 103004 wOTIOR 91} 9yeIousS 03 posn so[ni Surydyedsi(] g G [qe],

50

lot. Here, the waiting time indicates the time during which a lot stays in the WB
stocker after being completed by a DA resource. In contrast, the idle time of WB
resource is calculated by subtracting the time at which its last operation ends from
the time at which it starts processing the lot.

For each dispatching decision, the score generator calculates score of the decision
in the range of [0, 1] according to the concept of min-max normalization [98]. The
formulas for calculating the waiting and idle scores are presented in Equations
and , respectively. Here, w and [respectively stand for the waiting and idle time
related to a lot dispatching decision.

W — Wmin

Sw = mCLI(—((Smax - Smm)) + Smaz, Smin)u (5'1)

Wmaxr — Wmin

l— lmm
S = max(—(i(smax - szn)) + Smax, Smin)a (52)

lmaz — lmin
where Wi and wpg, indicate the minimum and maximum values among all the
possible values of w. I, and 4, stand for the minimum and maximum values
among all the possible values of [. Also, Spmin and Spq. refer to the minimum and
maximum values among the possible values of score.

In Equations and , Wmazr a0 e are set to be twice the mean of
w and [values, respectively. This prevents a considerably high w and [from be-
ing converted to an unwanted positive score, which makes it possible to construct
well-balanced training data. This is reasonable because we do not focus on predict-
ing scores precisely; the primary aim is to determine the lot dispatching decision

expected to minimize the waiting and idle time.

51

Based on the training data generated by using two types of scores, s, and s,
two DNNSs, each of which correspond to each score, are trained to predict scores. As
a loss function, we used squared errors [99], defined as (s,, — shy)% and (s, — s7")?,
and the back-propagation training algorithm is used to minimize the loss function
[T00]. Here, s, and s; are the calculated score values for a dispatching decision by
using Equation and , respectively, and sty and s mean the predicted
scores in terms of the waiting and idle time, respectively, for the decision in the
training phase.

The tth correction of the weights, denoted as 6, using the back-propagation

training algorithm, is described as

oE

A0 =5,

+ alAb;_1, (5.3)

where 7 means the learning rate, a is the momentum factor, and E is the total error

between the predicted score and the actual score and is expressed as

N

. . N2

E=; Z(s(z) — sP"¢(i)) (5.4)
i=1

Here, s(i) and sP™(i) are the actual and predicted scores for the ith training data,

respectively, and N is the total number of training data.

5.1.3 Real-time dispatching phase

In the real-time dispatching phase, when a DA resource buffer is empty, input vectors
of the number of dispatching rules presented in Table are generated for the DA

resource. If multiple DA resource buffers are empty at the same time, this process

92

is performed on the first DA resource that is expected to be in the idle state.
The generated input vectors are given to RTRD as the input, and RTRD predicts
two types of scores for each vector. Then the final preference score of each input

vector is calculated by the following Equation (5.5)).

totalscore = Ay X shy® + Xy x 87", (5.5)

with Ay + A\; = 1. Value of A\, is the weight or importance of the flow time of lots,
and J); is the weight or importance of resource utilization in the bottleneck stage. As
a result of the equation, the dispatching rule involved in the vector with the highest
totalscore is selected as the lot dispatching decision. Then, one of the candidate lots
is assigned to the DA resource according to the selected dispatching rule.

The proposed dispatcher is anticipated to reach a better lot dispatching decision
quickly compared to the conventional meta-heuristics through a simple calculation
using the weights predetermined during the training. Therefore, it is expected that
the proposed method can be introduced into the real-world assembly lines where lot

dispatching decisions are required to be determined in a real-time manner.

5.2 Real-time lot selection dispatcher
5.2.1 Dispatcher structure

Fig. illustrates the architecture of RTLD with the same number of layers as
RTRD. The input layer contains 25 nodes, and the number of nodes in each hidden
layer are 64, 32 and 16, respectively, whereas the output layer has one node. As in

RTRD, the ReLU is applied before each hidden layer in order to provide a non-linear

93 1

transformation, and all layers are fully connected [96].

e

] O O

] RelLU O RelLU O RelLU
on ssjpuissingisd

assignment vector N | O O O

O O

O

Output layer

O

] O O O
T e a—

Input layer Hidden layers

Figure 5.3: The structure of RTLD.

A pair of a lot among the candidate lots and a DA resource is represented as
a vector called a lot-DA assignment vector for the input to RTLD. Specifically,
Table presents the components of the lot-DA assignment vector, for a particular
lot, L; %, and a particular DA resource, R, . The main difference between RTRD
and RTLD, when it comes to generating an input vector for DNN, is that RTRD
only utilizes information about the distribution of lots, while RTLD considers the
characteristics of each lot in the candidate lots.

Using the defined features of a lot-DA assignment vector, RTLD is capable of
predicting how long the lot waits in the WB stocker after it is processed by a DA
resource. Furthermore, the features provide a clue for estimating the idle time of the
WB resource that will process the lot involved in the vector. As a result, RTLD is

expected to be able to conduct lot dispatching decisions which reduce the waiting

54

suorjerado [[e peajerduwoo jeyy) s10[Jo #

IaD09)S AN O} Ul S101 JOo #

190018 A\ 92 0} S90INO0Sal (] WO PaAOW SUleq S10[JO #
SIOJN(90INO0SAI V(] 0) I9XYD0)S V(] 93 WO PaAOW SUIeq S10[JO #
I9YD09S (I 92 Ul $90[Jo #

I9¥D09S V(I 92 0} S$90INO0SAI A\ WOIJ PIAOW SUIdq SIO[JO F#

.J.-.-
S90INOSAI (JA\ U0 poassooord Suteq s10[Jo # uonnqLrrsp ™
SIOJN(90INO0SAI A\ Ul S10] JO # 01T
SIOJN(92IN0SAI A\ 03 IoY20)s A\ WOIJ PoAOW FUID(SIO[JO #
S9OINO0SAI (] U0 passedold Suraq s10[Jo #
SIoJN(Q 92INOSAI V(] Ul S10[JO #
SIOPN(90INOSII (] 0F IoND01S 91198SeD 9} WO PIAOWL SUID] SIO[JO #
IOYD0)S 9399sSeD 9} Ul S)0] JO #
sap Aq possoooid Suroq sjre)s T uoym
OWIT) O} PUR OPRUI ST UOISIOP SUrydjedsIp 10] @QWNQ@MM owry oY) QW@MQWQ w@é@wﬁ @M L ourry Aefad 3
Py wo Aty 30 owry SuUISSE001] Dy 10
S[PT sew009q Py [rpun owry Sururewar oy, SOTISLIDJORIRY)
47 g99001d 0} O[(R OIR R} SOOINO0SAI AN JO #
((4*7)1) posseooxd aq 0y Suryrem suorjerodo o1} Jo 90T} SUOUTE XOPUI }SA[LWS T, 117 30
(“u /pausisse suoryerado [[e aje1duwion jey) s10[Jo #) !/ Jo 9Jel SS2I1301J SO1ISLI9IDRIRY)
Ty ur sdip jo #
I9YD01S A\ 92 Ul Suljrem s)o[SUIIDIPUOD JO #
IOMD0)S AN B OF SOOINO0SAI Y (] WO POAOW SUIO(S)0] SUIPTFU0D JO #
%.?N Jjo

S90INO0SaI (] U0 passedord Sura(q sjo[SUIOIPU0d Jo #
SISJN(92INO0SAI V(] Ul SJO[SUIPOIPUOD JO #

SIOJTI 9DINOSAI (] 0} SIOND0IS (] PUR 93319sS8D WOIJ pasowl Suloq $)0] SUIDIPU0D Jo #

S10[SuIOIguOo))

suonydrioso(g

sar10893e)

by pue A7 10§ ‘103004 JUOWIUSISSE Y ([-0[0U} JO sjuouoduio)) ¢ G 9[qR],

time of lots and the idle time of WB resources.

That is, the lot-DA assignment vector contains 25 features categorized into con-
flicting lots, the characteristics of the lot and DA resource, the delay time, and the
distribution of lots as shown in Table First, the concept of conflicting lots is
introduced to represent lots that compete for WB resources. Lot, Ly j/, is called a

conflicting lot of L;y if Ly i and L;j satisfy either of the conditions presented in

Equations (5.6 and (5.7)).

AOp 1Ly) VA 11, 4)+1) # 0 (5.6)

AOp 11y)+1) NV AO; 1(1,)+1) # 0 (5.7)

The five features corresponding to the conflicting lots of L;; are presented in
Table[5.3] according to their status. Each feature represents the number of conflicting
lots that correspond to one of the five different states. RTLD is capable of capturing
the distribution of the lots by collectively using all these features.

Next, there are four features representing various characteristics of L; ; and two
for R, s. Features associated with L;; include the number of chips in L;, the
progress rate of J;, I(L;}), and the number of WB resources capable of process-
ing L;j. The last one is included as a feature to capture the degree of potential
conflict among the lots in the WB stage. In contrast to other features, this one
for L;; has a fixed value according to its resource type required in the WB stage
regardless of the other lot dispatching decisions.

The first feature related to R, , is identical to that in the state vector of RTRD.

o6

The second one is the processing time of L; ;, on R, s, which indicates how long L; j,
will stays on R, s. The features corresponding to the lot distribution category have
the same meaning as those in the state vector of RTRD.

Finally, the delay time refers to how long it takes from the moment the lot
dispatching decision is made until R, s starts processing L; ;. If the status of L;, is
In-Cassette-Stocker or In-DA-Stocker, the value of the delay time is calculated
as the sum of the time required for L; ;, to move from the stocker to the buffer of R, s
and the time that L;j spends in the buffer. Otherwise, the time required for L;
to move from the current location to DA stocker is added to the value mentioned
above. Through this feature, RTLD is capable of inferring whether or not L; j, causes
an intentional delay in R, .

The output layer represents the preference score of the assignment vector. All
values in each node are normalized to a range [0, 1] using the min-max normalization

to accommodate the inconsistencies of different units [98].

5.2.2 Training phase

In the training phase, unlike in RTRD, RDG is responsible for randomly selecting
one among candidate lots. Accordingly, the distribution of candidate lots by status
is reflected in the probability that lot is selected by RDG. This leads to the result
that the generated simulation logs do not make a significant difference in terms of
performances when a problem is solved by RDG multiple times.

Therefore, to obtain various simulation logs in terms of the flow time and resource
utilization, for each simulation, the intentional delay level with a value between 0 and

1 is randomly selected. The intentional delay level close to one means a high prob-

o7

ability of selecting lot whose status is To-DA-Stocker or At-WB-Resource, whereas
the intentional delay level close to zero indicates a high probability of selecting lot
whose status is in In-Cassette-Stocker or In-DA-Stocker.

Specifically, whenever a lot dispatching is required, a new random number with
a value between 0 and 1 is generated. If this random number does not exceed the
intentional delay level for that simulation, RDG makes a dispatching decision by
using only lots whose statuses are To-DA-Stocker or At-WB-Resource among can-
didates, to simulate the intentional delay by letting the DA resource associated with
the decision to be idle until the dispatched lot ready to be processed by the resource.

The remaining processes, after RDG completes all the lot dispatching decisions

of each problem, are identical to those in the training phase of RTRD.

5.2.3 Real-time dispatching phase

In the real-time dispatching phase, when a DA resource buffer is empty, lot-DA
assignment vectors for all the possible assignments between candidate lots and DA
resources are generated. The generated lot-DA assignment vectors are given to RTLD
as the input, and RTLD predicts the two types of scores, sh, ¢ and sf "¢ for each
vector.

Due to the fact that RTLD can evaluate individual lots unlike RTRD, another
score, called sg4, is introduced to RTLD. The trained dispatchers are able to predict
the waiting time of the lots in the WB stocker. However, the time that lots spend
in the DA stocker can be easily overlooked. Although the DA stocker is not at a
bottleneck stage, the time during which a lot stays in the DA stocker has to be

addressed since the flow time naturally increases if lots stay in the DA stocker for a

o8 1

long time. The formula for calculating sy is presented in Equation ([5.8)).

d— dmln

%= mam(_(dmaa} - dmzn

(Smax - szn)) + Smaz; Smin)a (58)

where d represents the time during which a lot stays in the DA stocker after being
completed by a WB resource. Unlike sb ¢ and sf "¢ the training phase for sy does
not have to be predicted since the value of s4 is simply calculated by the simulator
when a lot dispatching decision is required.

Then, the final preference score of each input vector is calculated by the following

Equation (/5.9)).

totalscore = Ay X sb¢ + X X 87" + Xg X s4, (5.9)
with Ay, + A; + Ag = 1. The meanings of A, and); are the same as those in RTRD
while a new term is added to Equation (5.5). The value of A4 is the weight or
importance of lots’ waiting time in the DA stocker. Consequently, the lot and DA
resource involved in the vector with the highest totalscore are selected as the lot

dispatching decision. Then, the lot is assigned to the DA resource.

99

Chapter 6

Experiments

6.1 Datasets

To validate the proposed approaches, we prepared 12 datasets that correspond to
diverse configurations by varying the numbers of resources, job types, and lots, as
shown in Table A lot is assigned a particular number uniformly distributed
between 100 and 750 when it comes to the number of chips it has. It is assumed that
dispatching practice is to satisfy as many production requirements as possible that
are given for the next 48 hours, as described in [34]. Production requirements for
the assembly line always exceed the line capacity and it takes more than 48 hours
to finish all the operations [31].

Datasets prepared for the experiments can be classified into four groups: datasets
1to 3,4 to6,7to9 and 10 to 12. Compared to datasets 1 to 6, datasets 7 to 12
represent the dispatching problems with the large number of job types. Furthermore,
the problems of datasets 4 to 6 have more resources than those of datasets 1 to 3,
and the same relationship goes with datasets 10 to 12 and datasets 7 to 9. The three
datasets in each group represent the different levels of difficulty for the dispatch-
ing problem of assembly lines. In this experiment, a level of difficulty is measured

in terms of the number of operations to complete the entire processing of lots. A

60 1

higher number of operations involved in a dataset leads to a greater computational
complexity in it because the number of decisions required to resolve problems in the
dataset increases proportionally.

In each dataset, 100 problems were generated by varying the quantity of the lots
and the total number of lots for each job type. Specifically, 30 and 20 problems were
used to train and validate, respectively, the proposed dispatcher, while, after it was
trained, the remaining problems were used to test the performance of the proposed
dispatchers. In the experiments, Nj; and N are set to be 6 and 8, respectively.
Specifically, for each problem, both the DA and WB stages have three different
resource types. For the problems with 16 resources, four and 12 resource are assigned
to DA and WB stages, respectively, and for the problems with 70 resources, 20 and
50 resources are assigned to DA and WB stages, respectively.

Table [6.2] represents the operations for each job type and resource types that can
perform each operation. The odd-numbered operations of a job type are assumed to
be processed in the DA stage, whereas the even-numbered operations are processed
in the WB stage. The last column in Table [6.2] shows the processing time of each
operation per chip in the corresponding resource type. Additionally, it takes 900

seconds for a lot to move from the stocker to the resource buffer, and vice versa.

6.2 Experiment settings

In the training phase, we generated simulation logs by solving each problem 100
times using RDG. The scores of the generated simulation logs were calculated by
the score generator based on Equations (.1) and (5.2]). The performance of lot

dispatching is measured by means of the waiting time of lots and the idle time of

61

¢8'160¢ 9¢'69 ¢L69 cPhTvS 896V 6667 9I'TVE 1C6C 9768 0. ¢l

VT I8ST €e6y vLevy 9S96vy 9¢6y vee6y 10008 O0T'67F ¢S6v 0L 1T
8¢ 0L9T 8F e €6'€¢ €9TE €L6Y €LFS 9L6S TIST9 9979 0L 0T
9¢'9G6L cLve 8¢ve v0ce SVAT ¥ELL 8F'¢l €901 601 91 6
0€'799 VG'LT €CLT L9LT P9LT LOLAT TL°AT ¥E€LT 89'LT 91 8
0€'TLS ¢0'TT 16°6 L0¢T PRLT GLLT I8CE 997V¢ 9C7¢ 91 L
00°GL6T - LG0T 00°GL - 9L vL 6LTL - ¢lLsy 0L 9
86°T6LT - 06'7L 1G7L - S8L¥L 9TTL - 8ETL 0L G
786091 - 67y 197L - YEVL 6LTL - 17°€01 0L i
8¥%°LG9 - c67e 90°6¢ - 06'7C 897¢ - oLy 91 ¢
96'9%¢ - 9'7¢ 0e'v¢ - 6cVec ¢9VC - 91v¢ 91 ¢
06'vcS - 0cvl 8V¥¢ - 8LVC €€VC - 66°¢¢ 91 1
suorjerodo jo 8r i or ir r er er lr SO INOLO1 ‘ON
Ioquunu "SAY od£y qol yoeo Jo $30[Jo sToqUINU “SAY JOo oquinN jeseje

‘sjuewIIodxo 91} I0J Pasn sjasejep oY} uo suorjdrIdso(:1°9 9[qe],

62

Table 6.2: Problem description for experiments.

J; 0 ; Stages A(O; ;) Processing time
L O DA (My, My, My) (3, 3, 4.5)
! O12 WB (My, Ms, Mg) (16, 18, 18)
o Ou DA (M, My, My) (3, 4.5, 4.5)
> 0,5 WB (Ms, Mg) (20, 20)

Os1 DA (My, My, Ms) (6, 7.5, 6)

5 Os2 WB(My M, M) (26, 28, 28)
Oss DA (My, My, M) (7.5,7.5, 7.5)
Osy WB (My, Ms, M) (26, 28, 28)
Os1 DA (M, Ms) (7.5, 6)

5 Os WB (M, M, M) (36, 36, 36)
O3 DA (M, Ms) (7.5, 7.5)
Ows WB (M, Ms, M) (44, 46, 44)
Os1 DA (M, Ms) (6, 6)

i Os2 WB (My, Mg) (14, 20)
Oss DA (M, Ms) (6, 6)
Os.4 WB (My, Mg) (14, 20)
Os: DA (M, Ms) 9, 9)
Osa WB (M, Ms, Ms) (36, 36, 40)

s Oss DA (M My (7.5, 7.5)
Oss WB (My, M) (40, 70)
Oss DA (M, Ms) (7.5, 7.5)
Os 6 WB (M5, M) (46, 44)
Or1 DA (My, My, Ms) (6, 6, 4.5)
Ora WB (M, Ms, Ms) (56, 50, 50)
Or5 DA (M, M) (6, 6)

s Ona WB(My M, My) (40, 40, 24)
O75 DA (M, Mo) (4.5, 4.5)
Ors WB (M, Ms, Ms) (40, 40, 24)
Or7 DA (My, My, Ms) (4.5, 4.5, 4.5)
Ors WB (M, Ms, Mg) (40, 40, 24)
08,1 DA (Ml, Mo, Mg) (6, 6, 4.5)
Osa WB (M, Ms) (50, 30)
08,3 DA (MQ, Mg) (6, 6)

5 Osa WB (M, M) (50, 30)
Oss DA (M, Ms) (4.5, 4.5)
Os¢ WB (M, Ms) (30, 50)
Os; DA (My, My, Ms) (4.5, 4.5, 4.5)
Oss WB (M, Ms, Ms) (30, 50, 40)

the resources of the WB stage. The average waiting time of lots, AWT, is calculated

as:

SN S (eige — Tik — tig)
ZzNle g ’

where ¢; j, and 7; ;, are the time that the last WB operation of L; j, is completed and

AWT =

(6.1)

L; j, leaves the cassette stocker, respectively, and ¢; ;, indicates the sum of processing
time of L; j, on resources.
Additionally, the average idle time of the WB resources, AIT, is defined as

follows:

Z % (fq,s - tq,S)

VgeN s=1

> Ng 7

VqeQ

AIT = (6.2)

where f, s represents the time at which R, completes its last operation and t, , is
the total processing time of the operations assigned to R, s between time 0 and f s,
and € is a set of indices of the resource types which belong to the WB stage.
Moreover, to collectively measure the overall performance in terms of AWT and
AIT, we used the average loss time, or ALT, which is the arithmetical mean of these
two values. However, in the real-world, the weights for the two performance measures,
AWT and AIT, depend on the characteristics of RMLs or the operators’ judgement.
For instance, when the capacity of stockers is sufficient or changes in demand are
insignificant, reducing AIT may be more important than reducing AWT. Therefore,
in section[6.3.2] we measured the change in the values of AWT, AIT, and ALT while

changing the weights in the Equations (5.5)) and (5.9)) for each dataset.

64

For comparison purpose, we implemented the conventional dispatching rules pre-
sented in Table all of which are widely used to reduce the flow time or increase
resource utilization [62] 97, 101, 102]. Here, FIFO selects the oldest lot that has
been dispatched from the cassette stocker among the candidate lots. This rule ran-
domly dispatches the lot from the cassette stocker when the lots in the status of
In-Cassette-Stocker exist in the candidate lots only.

Furthermore, we also compared the proposed dispatchers with the composite
dispatching rule using SVR proposed by [65]. Among the dispatching rules presented
in Table[5.2] five rules including FIFO, MOR, LARGE, LNQ, and STOCK were used
to construct a linear combination of the composite dispatching rule. This is due to
the fact that the combination above yielded the best performance among all the
combinations of dispatching rules. The weight assigned to each rule is determined
by the model trained with SVR whenever a lot dispatching decision is required. The
feature set and the parameters of SVR used in the experiments are identical to those
in [65].

For each dataset, we trained two proposed dispatchers, RTRD and RTLD, using
generated training data. Table presents the training results. In Table [6.3} valy,
and val; represent the minimum values of the validation error in terms of the waiting
and idle time, respectively. In addition, iter,, and iter; are the numbers of iteration
required to achieve the validation error for the waiting and idle time, respectively.
The dispatchers in each dataset use the DNNs obtained when the numbers of iter-
ation of the training process in terms of waiting and idle time reach the values of
iter,, and iter;, respectively.

For RTRD, A\, and \; are set to 1/2 and 1/2, respectively. For RTLD, \,, A;,

65

and Ay are set to 1/3, 1/3 and 1/3, respectively.

Table 6.3: Training results of the proposed dispatchers.

Dataset No. Dispatchers wval,, val; itery, iter;

RTRD 0.0123 0.0988 35 150
RTLD 0.0122 0.0385 31 318

1

RTRD 0.0229 0.0942 23 112

’ RTLD 0.0155 0.0370 32 160
5 RTRD 0.0271 0.0898 41 76
RTLD 0.0196 0.0355 30 86
4 RTRD 0.0001 0.0853 59 229
RTLD 0.0151 0.0136 22 303
5 RTRD 0.0004 0.0876 10 283
RTLD 0.0158 0.0124 49 266
6 RTRD 0.0003 0.0873 3 112
RTLD 0.0162 0.0116 43 75
. RTRD 0.0157 0.1064 17 80
RTLD 0.0129 0.0400 56 154
g RTRD 0.0252 0.1000 12 95
RTLD 0.0149 0.0370 33 130
9 RTRD 0.0323 0.0925 27 119
RTLD 0.0188 0.0349 39 115
10 RTRD 0.0001 0.0839 14 280
RTLD 0.0127 0.0131 16 166
. RTRD 0.0573 0.0616 11 130
RTLD 0.0157 0.0352 50 158
19 RTRD 0.0002 0.0828 7 190

RTLD 0.0163 0.0111 67 204

66

6.3 Experiment results
6.3.1 Performance comparison

The performance comparison results of the proposed dispatchers, SVR, and the ex-
isting dispatching rules are presented in Figures and [6.4] which show the
results for datasets 1, 2, 7, and 11, respectively. The detailed results for each dataset
are presented in Appendix [A] In terms of AWT, FIFO, LOR, SMALL, LARGE,
SPT, LPT, FLNQ, and, SNQ show the better performances than the proposed dis-
patchers for all the datasets.

In detail, FIFO assigns a low priority level to the lot whose status is In-Cassette
-Stocker, and LOR prefers the job type whose number of operations is small. As a
result, the waiting time of lots are reduced owing to the decrease in the number of
lots in the WB stocker. In the case of LARGE, SMALL, SPT, LPT, FLNQ, SNQ,
there is a high probability that lots preferred by each rule are repeatedly selected
until all operations of them are completed. The result is that lots in the status of
To-DA-Stocker or At-WB-Resource are selected, which makes it difficult for newly
arrived lots to enter the assembly line. Accordingly, the amount of WIP decreases
and the idle time of WB resources naturally increases.

Meanwhile, MOR, LNQ, and STOCK showed better performances in terms of
AIT than other dispatching rules. MOR tends to disallow resources from being idle
since this rule assigns a higher priority to a lot with a higher number of operations
to be processed. Since LNQ attempts to balance the number of lots as per their
operation types, lots corresponding to the first operation type for each job type are

mainly selected at an early stage with a low WIP level. This increases the amount of

67

3500

| \DAWT.AIT.ALT\ |

3000

1000

500

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure 6.1: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 1.

WIP, leading to a shorter idle time of WB resources. STOCK only selects lots in the
status of To-DA-Stocker or At-WB-Resource when there is not any lot in cassette
or DA stockers. Because of this tendency, the lots that undergo an intentional delay
on DA resources are rarely selected.

In terms of ALT, the proposed dispatchers and SVR outperformed the other
methods in all datasets. While most existing methods tend to minimize only one
performance measure, the proposed dispatchers addressed both two measures at the
same time. Among the two proposed dispatchers, RTLD showed better performance
than RTRD. Although RTRD achieved a lower value of AIT than RTLD, AWT of
RTRD was more than twice that of RTLD for multiple datasets. This difference in
performance can be attributed to the fact that RTLD considers the time that lots
spend in the DA stocker due to the existence of scorey.

SVR achieved a lower ALT than RTRD in some datasets (shown in Figures

68 : !;,‘ﬂ ki]-H ."j]l- .T]II_

4500

| \DAWT.AIT.ALT\ |

4000

3500

3000

min

s — M I I [I | ‘ ‘ I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure 6.2: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 2.

and . However, it showed poorer performances than RTLD in terms of ALT for
all datasets. This is due to the lack of features that can represent the concept of
conflicting lots and candidate lots including ones with possible intentional delays on
a DA resource, although SVR attempts to choose a proper dispatching rule according
to a given assembly line state.

Based on the above observation, the proposed dispatchers successfully reduce
both AWT and AIT at the same time in contrast to the existing methods which
focus only on one performance measure. Therefore, the proposed dispatchers appear
to achieve a reduction in the flow time while maintaining high utilization of resources
in the bottleneck stage.

Table highlights the improvement rate of RTLD over the other dispatching
methods in terms of ALT. Except for RTRD, RTLD has reduced ALT from at least

33% to 85% compared to the existing methods. To provide further analysis of the

69

4000

| \DAWT.AIT.ALT\ |

3500 - 4

3000 — 4

2500 — 4

2000 — 4

min

1500 — 4

1000 —

500 ‘ I —
0 I N m - -]] 1 [I I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure 6.3: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 7.

effects of the lot dispatching decisions, we compared various performance indicators
between the dispatching methods for one problem belonging to dataset 2, which has
the greatest difference in performance between RTRD and RTLD. Figures [6.5H6.7]
present WIP levels of each stage; the dispatching results of each resource over time;
and resource utilization of each stage obtained by using dataset 2, respectively. Here,
the values on the utilization graph represent the numbers of resources processing a
lot divided by the total number of resources.

According to Figures and [6.5k, RTRD and SVR keep the WIP level of WB
stage close to zero while the WIP level of Figure often reached a value of two
or above. However, the two dispatching methods, RTRD and SVR, failed to prevent
the WIP level of DA stage from increasing dramatically. This is because they are
not able to address the WIP level of the DA stocker. Therefore, even if the rules

such as SPT, which are known to minimize the flow time, are used in the RTRD’s

70

14000

" DAWTEAITEALT] |

12000

10000

8000

min

6000

4000

2000

oy I I O I I I [1

Random FIFO LOR MOR SiALLLXRGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure 6.4: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 11.

decision-making process, RTRD has a limitation in reducing the waiting time of lots
in the DA stage. On the other hand, it is seemed that RTLD is able to effectively
control the amount of WIP in the DA stocker due to the presence of sg.

The results in Figures and indicate that RTLD keeps the utilization of
WB resources around 100% at all times except the early stage. Figures and
present that RTRD and SVR often involve the WB resource idle state, which causes
fluctuations in WB resource utilization (shown in Figures and [6.7¢). This may
be because the two methods tend to excessively reduce the amount of WIP in the

WB stocker.

71

WBIV %€ %19 %USL %8 %V9 %L9 %TL %Ll %38 %99 %08 %8 %V 4
%BSE WVE %68 %V6 %V6 %68 %6 %6 %96 9%%6 %%6 %6 %96 %%6 T
%L %EE WSS %L %USL %SS %S9 %USS %Vl %08 %09 %9L %L8 %SL 01
%6E WSS %UT9 %U6L %08 %99 %IL %LL %08 %38 WIL %08 %¥8 %08 6
%6E WUSY %UT9 %U6L %IS %99 UYL %LL %TS %V %0L %I8 %G8 %62 8
%BSE WEE U6S WLL %08 %6S %EL RIL %IS %ES %L U6L %W8 %08 L
BET WYY %0S %IL %VL %eS %eS %PS %19 %GL %09 %69 %8L %L9 9
WBIT %6V %8S %EL %6L %09 %T9 %E9 %OL %8L %E9 %IL %8 %¥L g
%9 %LE WLy %EL %EL %SY %IS %9S %9 %EL %6% %OL %8L %29 i
WBLE USS UV %08 %I8 %BL9 %IL %EL %LL %18 %SGL %6L %ES %08 €
%Sy %TS %99 %08 %E8 %69 UYL %IL %IS %V WYL %I8 %G8 %08 4
%OT %Sy %S9 %TES WI8 %S9 %Il %9L %08 %¥8 %0L %08 %G8 %08 I
AIId YAS MOOLS ONS ONTd ONT IdT ILdS dDUVT TIVINS YOI YOT OJld wWopuey -oN josere(

"YU.IY pue spoyjewr Sur)sixo a3 0} paredwod (I JO sojel juswesordwl 77y 9 9[qel,

72

WIP Lewvel [unit)

WP Level (unit)

WIP Level (unit)

— DA
— WB

Thu1 Fri2 Sat3 Sun 4

(a) RTLD

—_— DA
— WB

10

A n A/—)\

Thu 1 Fri2 Sat3 Sun 4 I

(b) RTRD

— DA
- WB

0 ll'n\ I

Thu 1 Fri2 Sat3 Sun 4 Mon 5

(c) SVR

Figure 6.5: WIP graphs of the proposed dispatchers, and SVR.

" A ek

A RESO1

0 RESO2|

04 RES0S|

DA_RESOH

W8 _REsor

WB_RESO?|

WB_RES03!

WB_RESO4

WB_RES0s!

WB_RES0s|

W8 Resor|

W8_RESOS|

WB_RES0S!

WB_RES10)

wa_Resti

Wa_REST2!

ws_RES0T

ws_Res02

B _RES0S

ws_RES0:

ws_RES0S

WE_RES0S

ws_REsoT

wB_RES0S

WE_RESDS

w8 _RESTD

we_RestH

we_RES2

we_Resor

We_RES0?|

we_Res0s|

We_RES04|

wa_Resos|

We_Resos|

we_Resor|

we_Resos|

We_RES09)

we_Res 0]

wa_REst

we_Res12|

,
7 7/)
;
% Wi
% 7
7
. 'y
vy
L M i
A / 7.
moE co i R Y -
s smon el o | s ks o L oo g o g e oo | o | o v | i
PN, Dol e (o RN | I | s | women womcn | snsan | somon [RSRA)] s
e P o R o [[——
e S e R o P
s oo oo s e oo | o o oo e e o i oo | oo
e RN N oo TEE o | [— -
. e e e S | e [o
S— | N e e e e e e - e
S [V (PR o Ry - Ot S — -
PN [wnEw—————— e — Y | e | vazmn | wwmn | s

Lot08D1 L0083 LOOTEDL00I0 Loa2o01 LoDt LossDt Lot LooweDn

ooosmporon oo3on Loosapt Lot LOOTSDN L00ZZD1 L0TDT LODKDY LODSDT LOVOZDT 100Z2D1 LOW0SD1 Looaton

12 14 15 15 20 22 00 02 04 05 05 10 12 14 15 18 20 22 00 02 04 05 08 1

Yy

T
Y~

i i TR 5 g R | by iy

1 00 6 o

: 05 G 10 12 13 16 18 20 22 00 G2 04

74

— DA

— WB
1 U \
g
5
B
N
E
o
2
3
4
4
a
Thu 1 Fri2 Sat3 Sun 4
(a) RTLD
— DA
— WB
1
g
5
B
=
5
g
5
2
4
4
o]
Thu1 Friz Sat3 Sun 4
(b) RTRD
— DA
— WB
1
£
5
B
o
5
g
5
2
]
i3
0
Thu 1 Fri2 Sat3 Sun 4 Mon 5
(c) SVR

Figure 6.7: Utilization graphs of the proposed dispatchers and SVR.

75

30

In-Cassette-
Stocker

)
S

,_
ot
of dispatching

In-DA-Stocker

To-DA-Stocker R

10
5
AT-WB-Resource -
L L L L L L L L L L L L L L L L L 0
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99
Time (h)
(a) RTLD
T 30
In-Cassette- i
Stocker 25
20

In-DA-Stocker

,_
ot
of dispatching

To-DA-Stocker

10
5
AT-WB-Resource -
L L L L L L L L L L L L L L 0
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93
Time (h)
(b) RTRD
T T 30
In-Cassette- i
Stocker 25
20
In-DA-Stocker - =l
i
53
=
15 &
£
ke
To-DA-Stocker B
10
5
AT-WB-Resource B
L L L L L L L L L L L L L L L L L L 0
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105
Time (h)
(¢) SVR

Figure 6.8: Dispatching frequencies according to lot statuses over time.

76

Additionally, we compared the lot dispatching decision patterns over time by the
proposed dispatchers and SVR. In Figure heat maps visualize the frequency of
status of the lots dispatched by each dispatching method over time, where Figures
[6.8h—c represent the results of RTLD, RTRD, and SVR, respectively. The value in
Figure indicates the number of dispatched lots that correspond to each status
for the interval of three hours.

In Figurd6.8h, RTLD appears to increase the utilization of WB resources by
dispatching lots in the status of In-Cassette-Stocker at an early stage with a low
WIP level. Subsequently, when the WIP level reaches a sufficient extent, it tends
to prevent the waiting time of lots from increasing by dispatching lots in the status
of In-DA-Stocker or At-WB-Resource. RTRD has a dispatching pattern similar
to that of RTLD while there are differences in the timing of selecting lots whose
status is In-DA-Stocker. As can be seen from Figure [6.8b, RTRD mainly focused
on selecting lots whose status is In-DA-Stocker only when the amount of WIP in
the DA stocker increases (shown in Figure [6.5p).

Compared to the proposed dispatchers, SVR gives a lower priority to the lots
whose status is In-Cassette-Stocker and a higher one to the lots whose status is
At-WB-Resource as presented in Figure [6.8c. This has contributed to the increase
in the amount of WIP in the DA stocker, causing the flow time of lots to rise.

Finally, an analysis was conducted on the computation time of the proposed
dispatchers and SVR. Figure presents the computation time of the dispatching
methods spent processing given lots according to the number of operations. For
all of the average of the number of operations, the computation time of SVR is

always longer than that of the proposed dispatchers. Combined with the previous

77

w
al
Ll

(O RTRD O

> RTLD
/g307DSVR DD 0] N
\?/257 -
E * *
E 20 kg ¥ * |
=]
S)
Z15-]
=
S10- . O 0O O 7
S e o0

5r- _
?‘%%% aﬁ\ | | |

O 1 1 1
400 600 800 1000 1200 1400 1600 1800 2000 2200
Avg. number of operations

Figure 6.9: Computation time of RTRD, RTLD, and SVR according to the average
number of operations.

experimental results, clearly, the proposed approaches excelled SVR in terms of
performance and computation time.

Meanwhile, according to Figure RTLD involves a much larger increase in the
computation time when the number of operations increases compared to the RTRD.
This result can be explained by the difference in the number of alternatives between
the two dispatchers when a dispatching decision is required. In detail, although the
scale of the RMLs becomes large, the number of alternatives of RTRD is always
equal to that of dispatching rules used in the training phase while RTLD has the
same number of alternatives as the number of candidate lots. Because of this, as the
number of operations increases, the difference is likely to be larger in the computation

time between the two dispatchers.

78

6.3.2 Performance differences according to weights

In this section, experiments were carried out to investigate how the performances of

RTRD and RTLD change according to the values of weights in Equations (5.5)) and

(5.9). In Figures|6.10} (6.11}]6.12} and [6.13] contour lines visualize the performances

of RTRD against SVR depending on values of A\, and); in datasets 4, 9, 10, and
11, respectively. The detailed results for each dataset are presented in Appendix [B]
The value in each figure means the performance measure of RTRD divided that of
SVR marked in percentage. Specifically, values less than 100 indicate that RTRD
outperforms SVR, and values greater than 100 represent the opposite. The X symbol
indicates the minimum value of the performance measure.

For most datasets, the minimum values of AWT and AIT were observed at the
lower right and upper left, respectively. This result is in line with our expectation
that the larger the value of)\, is, the more likely it is to make a decision for reducing
the waiting time, and the larger the value of);, the more likely it is to make a
decision for decreasing the idle time. However, in datasets 4, 9, 10, and 11, the

minimum value of AIT was obtained when the value of \,, was close to 1 (shown

in Figures|6.10p, [6.11p, [6.12b, and |6.13p). Furthermore, according to Figure |6.11f,

the minimum value of AWT was achieved when the value of \; was close to 1. This
rather contradictory result might be explained by the fact that there exists some
room for improvement in terms of the waiting time.

From a viewpoint of ALT, the X symbol of each dataset was observed at different
locations. In addition, the locations, where the performance of RTRDs was worse
than that of SVR, were found according to the values of A,, and \;. These findings

suggest that setting weight values according to the characteristics of the problem is

79
I

SRR

!

11’

o]

>
o
~
7
K 8
&
o S
/Q\/
)O)
\%

[o:] Y/
0.8 g o & % 0.8} 0)
0 & Z 1 %
\J (% 00
0.6 & 3 0.6f 4 L
o
1o}
] L (4
~J 0.4

02P,

851 0.2N N 1
(@) 2, R
. § ; ? i o\j
(4 \
. . 0.8 . . .

0 t 0 .
0 0.2 0.4 0.6 1 0 0.2 0.4 0.6 0.8 1
A A
w w
(a) AWT (b) AIT
1
% \7
&) Q.
0.8¢ © 6,0 ’000«*
% \ S \
.
0.6} P \ &6\
A EN o @ ©

&
8 s
04 };90 \0 \ 7
s
\ (96\ <90
02N % 9 D 1
N 0 \

(c) ALT

Figure 6.10: Performances of RTRD against SVR depending on A, and); in dataset
4.

crucial to the performances of RTRD.

In Figures [6.14] [6.15], [6.16] and contour lines visualize the performances

of RTLD against SVR depending on Ay, A;, and Az in datasets 3, 6, 9, and 12,

respectively. The detailed results for each dataset are presented in Appendix [C]

80

A&

q 2 p
7
r,\ 0 (27 90\ A v"oo U"%
08fg X \ \;}0 0.8} 2 \ S
(4
% \
0.6fg 1 i

& z 2
. (4 2 0.6 @ S N
) 4 (2 7 0
A & A > A\
I 4 I 2
L2
04} 5 ©.1 0.4k]
0 ' o S ,0
K4 % 1 @ © o)
7 -
02K % \ ~J 1 0.2} %b\’so\ ZSOSQ
7
< 0 % 7 /
0 00
NONCON o 0 . ?"N 150\,J
0 02 04 06 08 1 0 02 04 06 08 1
A A
W w
(a) AWT (b) AIT
"o
£o) 700 5

0.8 N 90\7 590-
06/ g, @ \\00 S\
%
NS ,00\\ 5
& 7,\

N
/
N

Figure 6.11: Performances of RTRD against SVR depending on A, and); in dataset
9.

The value in each Figure means the performance measure of RTLD divided that of
SVR marked in a percentage. Specifically, values less than 100 indicate that RTLD
outperforms SVR, and values greater than 100 represent the opposite. The X symbol

indicates the minimum value of the performance measure.

81

1
S "
0
% S
0.8 0.8} \ % |
0.6 '\@/\ 0.6 Z
: -) O S OO
> (%
/\I < °© /\I
0.4 , \/] 0.4 '
6o S X
0.2} o L/ 02|\ 8§
«60_&_{0\»‘ 700 50\‘%/
0 ‘ ‘ : ‘ 0 . \mn :
0 02 04 06 08 1 0 02 04 06 08 1
A A
w w
(a) AWT (b) AIT
1
7
7 > o "
0.8t 0\\\ %
06 2 1
4 2, >
/\l X)
7.
0.4t ~o \ 1
\700
=g
0.2 %, 790\ \j&
70,
0 . 740‘\- '?')n_//
0 02 04 06 08 1
A
W
(c) ALT

Figure 6.12: Performances of RTRD against SVR depending on A, and A; in dataset

10.

For most datasets, the minimum values of AWT were mostly observed at the top

of the triangle where the value of \; is close to 1. This result suggests that scorey is

a key factor in the difference of AWT between RTRD and RTLD. In Figure [6.17h,

X symbol is observed at the lower right corner where the value of)\; is larger and

82

2 A 2-T) 8

-

)

I

n

1 T
7
(9) Ve
0.8 4) S 0.8} \ o
S K2 "50 2
0.6 © 1 06N \
A 8 . A 76\ P
| S} o | 0 S
04t "7 00 047 \ '\“Q\ \
\ 0 2
02t = 7 02} © 3 & 2
\QQ 700
>
0 ‘ : ‘ : 0 : : :
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
A A
W w
(a) AWT (b) AIT
1
790 77@0
0.8 5 0%
77 90 770
7.
)\ (%
| 2 0. %
7. |
0.4 D \;}0
0.2 7770) \ ()0\7%
. S % @] |
0 S
& ¢ 1 \XJZ
0\ 0 70\/
0 ‘ . ‘
0 0.2 0.4 0.6 0.8 1
A
w
(c) ALT

Figure 6.13: Performances of RTRD against SVR depending on A, and); in dataset

11.

the values of A\, and Ay are smaller. This finding was an unexpected result, but the

minimum value of this location is approximately identical to the value at the top of

the triangle.

On the other hand, the minimum values of AIT were observed at the mid-bottom

83

BEE

e

)

I

n

0 01 02 03 04 05 06 07 08 09 1
A)\|

(a) AWT (b) AIT

10
S0 7 a0 /, 0
0 0.1 02 03 04 05 06 07 08 09 1

A

(¢) ALT
Figure 6.14: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 3.
(Aw = 0.5 and A; = 0.5), the middle of the right side (\; = 0.5 and A\; = 0.5),
and the lower right corner (A\; = 1). Judging from this result, it can be seen that
the minimization of AIT is achieved by dispatching decisions considering both the

waiting and idle time depending on the datasets.

84 ; -"{ﬂ _.:_i_]_” if-'-lr' T]nl_

(c) ALT

Figure 6.15: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 6.

In terms of ALT', the X symbol of each dataset was observed at different locations
asin RTRD. A few locations where the performance of RTLDs was lower than that of
SVR were revealed according to the values of A\, and A;. Surprisingly, the minimum

value in Figure was yielded on the mid-left side of the triangle (A, = 0.5 and

i Rk AL

e

(c) ALT

Figure 6.16: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 9.

Ag = 0.5). This result may be explained by the fact that dataset 9 has the larger
number of operations per resource than other datasets. Because of this, in dataset
9, the waiting time increases greatly in order to reduce the idle time. As shown in

the experiments on RTRD, the combination of findings implies the importance of

; Rk AL

e

0 0.1 02 03 04 0.5 06 0.7 08 09 1 0 0.1 02 03 0.4 05 06 07 08 0.9 1
)\I)\l
(a) AWT (b) AIT

0.5 » ¥ :
/ S
06/ g3 04
I 03
07 / g@ |
% 02
08 . o 2

4 QK _) 01

09/ $b: s

.

1 \\ N 0
0 01 02 03 04 05 06 07 08 09 1
)\I
(c) ALT

Figure 6.17: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 12.

setting weight values according to the characteristics of the dataset.

6.3.3 Robustness test

For the purpose of evaluating the robustness in performances of the proposed dis-

patchers, we applied the RTDs generated by training data of each dataset to the

i Rk AL

e

real-time dispatching phase of the dispatching problems that belong to different
datasets. Table[6.5]shows statistically significant differences in ALT between RTRDs
trained in different datasets by using the ¢-test at the 5% level presented. Each cell
presents the result of applying dispatching methods to the dataset corresponding to
the column which contains the cell. For example, for the first row, the problems of
datasets 2 to 12 were solved with the use of the RTRD generated from the dataset 1.
The calculated performances were then compared to those of the RTRDs generated
from datasets 2 to 12.

In detail, the bottom value in the Table indicates the corresponding p-value.
The shaded cells signify that there is no statistically significant difference in perfor-
mance between the two RTRDs corresponding to each cell. The top value in each
cell means the ALT of RTRD generated from the dataset corresponding to the row
divided that of SVR marked in percentage. Specifically, values less than 100 indicate
that the RTRD generated from the dataset corresponding to the row outperforms
SVR, and values greater than 100 with an asterisk (*) mean the opposite.

As specified in Table the RTRDs generated from datasets 11 and 12 show
the best performance in terms of robustness, and RTRDs generated from datasets 4
to 7 were robust for one dataset only. Surprisingly, although the RTRDs generated
from datasets 5 and 6 did not achieve robustness successfully, they outperformed
the others generated from datasets and SVR in terms of ALT'. These results did not
provide any obvious trends in terms of robustness between datasets. It is difficult to
explain the results, suggesting that there might be other important characteristics

in classifying problems except for the criteria considered in this thesis.

88

- €0-HS98°¢ T10-H6T'Cc 90-H8T'L GO-HVC'LZ TOHIV'E L0-H6LT €C-U89'C TO-HSY'T L0-HVO'E€ T0-HEE'8 VI-HO0'€
£€8°09 6716 0468 818 60°86 60" 70T 99°08 6€°06 876 €L°G6 %66°€0T «6T°TTT o
YO-H16'€ - ¢0-H67'€ TO-HI8® CO-HVE6 VO-UESL <€0-H66'C I9T-HVP'T T0-HOLO9 TO-HP9'E€ G0-HIL'C 60-HI8G
81°8L 9466 99°¢6 €9°€L 0§¢8 81°G6 eyl 6068 8¥°9L 0018 8188 *«L¥°001 "
80-H¥¢'€ TO-HEOV - CT-U8Y'9 G0-HGE'C GO-H80'L ¢I-U8G'9 0c-HIV'I T0-HI6'T SGI-H6E8 ¢0-HOZ'T LO-HOEE
60°8L 496 PARS 99,01 60 70T 92’16 x9¢°00T x9€°00T 0T°6. *E8°9TT *86 V1T £€6°66 ot
€0-H6T'T OT-HLC'T ¥0-HSS'T - T0-H9E'T ¢0-HGL'€ PO-HLEL 9T-HOL'T €0-H9€'6 TO-HO6'T €0-HGL'E€ 80-HOE'C
9T°LG L2°C8 6¢°€L 12°€L 6506 %G5 00T GL'¢L ¢c9L G6°L9 0418 1976 69°86 0
€0-H8T'9 80-HCO'T T0-HG9C TO-HEE'T - G0-Heg'¢ GOHITY 91-H66'G €0-HEO'C V0-H80'9 G0-HL8'8 ¥0-U8G'T
19°L9 L2978 G818 €C9L GL98 £°€6 CS'8L €6°€L 2999 968 G406 L4916 i
ET-HO9'T ¥0-H89'T ¥O-HSE'T 60-H2O0'T 80-HLZ'C - LT-UGRG LE-HEO'T VO-UPT'9 80-U8C'¢ T10-HESG'¢ LI-HICS
6CTL *G1°60T 2086 v98 GV V0T x«78"80T cE48 S¥'v6 81°48 86°€6 x96°80T *CV'GTT .
0T-H00'7 LT-HPE'T ¥0-HO0'C ¥O-H8G'¥ ¥O-HL6'G 90-H66'€ - TT-H.8'G €0-HOT'9 ¢0-HeI'9 L0-H.LE'C €0-UVE'L
1°€g TE€VL cLclL 8¢'99 16°9L cq68 G699 T16TL ¥'L9 88°€L [48 7] Y798 K
EI-H68'T €T-HL¥V'C 90-H9L€ OT-U8T'S 90-HLLC OT-UIEE G0-H6E'T - 11-d€6'c CI-HV9'C LI-HIVV TO-HVS'E
¥9°9¥ 2989 €99 €9°LS 9L°0L VOLL 8G°LG 16°L9 1924 99°8¢ 9089 CECL ¢
T0-H09'9 T0-HTIL'G 90-H609 PO-HLT'T 60-H68'T €0-HEL'T €O-HIV'T CI-UEVT - G0-H96'¢ TO-HI96'G €T1-HES'E
9419 *GV° 10T x66'80T 18°¢8 x98°L0T *8E€VCl qreL 8€"GL 61°GL LL16 %x66'90T %9111 ’
TO-HTSG'T 70-H6L¥ T0-H68'G ¢O-HOEY 90-HeI'T €0-H09'€ TO-H6E® GO-HLL'T 80-HOT'T - 90-HTLV G0-HSC'T
69°€9 1898 GR'L8 91'8L x1L°C0T xC8'GCT 60°L9 ¥8'L9 ¢9'LS Ge'8L LT°L8 ¥9'86 £
80-HLZV T0-HS6'6 ¢O-HI8E GO-HSP'C G0-HS9V 10-Hee'€ O01-H00'¢ 0¢HIL9 TOHITG V0-HTI'L - 0T-HG0'T
€1°69 7466 G9°G6 L6°C8 L7766 xGO'ETT 66°08 6468 6°CL G'L8 *8F0T *L9°G0T ¢
T0-HET'L 80-HPO'T ¥O-HI8® TO0-HSL6 €0-HI8L L0-HL8'G TO-HERE €0-H90'C LO-HCeVy ¢0-H8EC €T-HGTS -
22°09 Gg'8. 9¢' 1. V1°€L 17'8L 1678 8199 6L°€9 €V LS 9 1L 16°6L Gl 9L !
4! 1T 01 6 8 L 9 g % € 4 T N
"'ON 19seIR(T Josere

"Sjose)eP JUSISHIP Ul paurel} (T3 Ueom)aq [T Ul SOOUSISHIP JuedyIusis A[[ed1)siyels :G'g o[qe],

89

Table [6.6] contains the results when the same test as in Table [6.5 was carried out
on RTLDs, and the meaning of each value in this table is the same as Table
Unlike the results for RTRD, RTLD generated from dataset 7 showed robustness in
terms of ALT for most datasets. Although RTLD generated from dataset 1 failed to
achieve robustness, it excelled SVR and RTLDs generated from each dataset except
datasets 2 and 12.

Although RTLD generated from dataset 6 achieved robustness for datasets 7, 8,
and 9, it resulted in lower performances for datasets 10 and 11 than SVR. However,
except for these cases, the values of ALT yielded in all other cases were smaller
than those of SVR. Furthermore, the number of shaded cells in Table is 28%
greater than that of the shaded cells in Table These results show that RTLD

was superior to RTRD in terms of both performance and robustness.

90

M E) 8k o
I . I "

- T0-H68'G ¢0-U8L'€ T0-HeS¥ T0-HIRC <¢0-HO9'® 91-HE6'9 TO-HUST'T <¢I-H9¢'€ 90-U8F'¢ LO-HIT'T 90-H6V'€ ,,l..

90°'8€ ¢9'99 Y9 1L SVEV E€T°LS 1G°€L L8°LY L6°€S 9.°¢S 868G 19°29 ¥6°89 ol |
G0-H29°6 - TO-HET'T ¢0-HL0'T 90-HIO'T GO0-H6L'T 61-d¥6'Cc T0-HL9C <CI-H60'€ TO-HeC'IT FO-HVO'E T0-HLA9T I.I.

€1'ey 0999 67°0L 6G°8€ 18°GY €€°99 9294 2699 GL'ES v vy 97°€S (4 t”.....-_
T10-H90°€ ¥0-HCE'C - €0-HC6'T €0-He88 T0-HGL'9 ¢E-H6C'C COHITY OI-H6E'C ¢0-d¥9'c V0-H86'6 G0-H6E'C .!._“-..

90°L€ 01’19 ¢0'L9 £€8°9¢ V'8V TL°G9 v1i'ev 18°CS €8°LG €487 cr'LS 6269 o ~,
€0-HIS¢'¢ T0-Hev'I ¢0-Hcv'e - CO-HLT'G 90-HSY'V €CH8L'T T0-H69¥ ¢CI-HAT'GS TO-HE8'T TO-HSI'T cO-HEE'T

V0’1V 91°69 6L°TL 64°GY L7784 8L18 864 19°¢9 0¥ ¥S 68°6¢ 8009 067 0
CI-HCT'T LT-H69'T 90-HSC'V ¥0-HIG'G - T10-H6L°6 TE€HOL'T VO-HIV'E E1-HPL9 90-HOZ'C <C0-HIE'E ¥O-HGL'T

ET'9Y ¥¢'98 £€6°08 8¢'9¢ 1874 10°29 g8'0v G067 081G LV'GE 0L€V 4LV i
¢0-H20'c T0-H9E'€ T0-HEEV €0-HIOG TO-HST9 - L8-HL0'T €0-HIL'G PI-UPE'8 T0-H99Z T0-H80F TO-HSO'T

L8°9€ cE'99 8G'89 8¢'8¢ 10°69 £€6'99 €CLY LEVS ¥0°67 LGcy 8¢"8Y 9¢'1G -
VI-HIE' S GT-HERL LE-U88'C TO0-H6CT T0-HGL'S TO-HIS'9 - GI-Hev'6 ¢O0-desy G0-HPSe'€ C0-HSS'T L0-H60°C

9¢°8¢ *GLV0T LT TTT 0€°€V 4R 6289 ¥9°6L G806 €1'e8 [80°€9 c0'1L ? =
CI-H8S'T 0T-He9'T T1-U8C'T TO-HOGT TO-HL6'9 <CO-HEG'E €O0-UVE9 - CI-HLL L OT-HVO’L OT-HELC CO-HSE'T

66°€S 67°88 1€°68 0€'T¥ 6¢€S Y719 8469 9£°09 CLYS 6829 9189 €09 ¢
CO-H88'¢ ¢0-He8'L 90-H6E€ T0-HL98 ¢0-H90'C <¢O-HI6'C TO-UST'T 90-HT6'C - €O-UIT'T 90-HSGO'T GO-U8G'L

9l'cv 8€°€L V166 80°G¥ 6179 1,792 V1L Ge'16 0¢"S6 986G G689 81°69 ’
GO-H6EY €0-H68'T T0-HO09 €0-HIL'T ¢0-Hc9'€ T0-HOG'C G¢-U6c'S TO-H6S L €E1-HVE6 - €0-UVL9 C0-HILE

997E 8819 26769 L2°LE 0009 ¥2°0L 0109 9¥°6G 61°¢S qlev 16°19 20709 £
90-Hc¢e’' T ¢I-H66'€ <¢0-H9¢'T 90-HOT'T 90-HP9'L GO-HFVT'9 0€-HLIE €0-HPI'T €I-U6T'E TO-HCI'E - T0-HLE°€

86°¢¢ €0°LG €6'19 96°'1€ 6941 0799 9E TV 0€°09 1809 ¢c9°0v 8697 0Tcs ¢
10-H6€'¢ ¥0-H6T°6 €0-HIS'S PFO-HIT'T <O0-H6T'T <CO-U89T TE€HOR8SG TO-HPST PI-H6V'T <CO-HEV'E CO-HIG'T -

11°6€ L2819 1019 1€°6¢ 0867 c009 Yxaay €987 19°9% 17°6€ 1719 98°¢4 !

¢l 1T 01 6 8 L 9 g % € 4 ! N
"'ON j9seje(] jesere(

"S19sR)RP JUOIOPIP Ul pourel) S(ITIA UWeomjaq /T Ul SOOUSISJIP JurOYIUSIS A[[edo1)sijels :9°g a[qel,

Chapter 7

Conclusions

7.1 Summary and contributions

RML is the manufacturing line where parts can make several visits to the same stage
before the parts complete all operations assigned. Recently, with the emergence of
semiconductor manufacturing and thin film transistor-liquid crystal display (LCD)
manufacturing lines, RMLs causes wide concern in both academia and industry. Due
to the frequently re-entrant parts between multiple stages in RMLs, it is challenging
to achieve both goals of reducing the flow time and increasing the utilization of
resources at the same time.

In order to decrease the flow time without loss in resource utilization of the
bottleneck stage for real-world RMLs, this thesis proposes a novel approach for DNN
based RTDs. First, the DEBS and monitoring tool were implemented to generate
training data and evaluate the performance of dispatching decisions. In addition to
imitating real-world RMLs, DEBS is in charge of generating simulation logs to be
converted into the training data for RTDs. The monitoring tool was designed to
display a variety of information about RML at the time each dispatching decision
being made. It provides not only the functionality of the existing Gantt chart, but

also the ability to show various performance indicators over time.

92 !

Second, the thesis proposes two DNN based RTDs with different decision-making
processes, called RTRD and RTLD. Whenever a dispatching decision is required,
RTRD determines the best among the existing dispatching rules while RTLD calcu-
lates scores on all candidate parts and assigns the part with the highest score to a
resource.

To learn an efficient dispatching policy in RMLs considering intentional delays,
we employed DNN which has the ability to capture complex non-linear dynamics.
In the training phase, in order to obtain training data used for RTDs, all dispatch-
ing decisions of each training problem are executed randomly. The performances of
decisions are then measured by the score generator, and the scored simulation logs
are used by a learning algorithm to train DNNs embedded in RTDs.

The experimental results demonstrate that the proposed RTDs are successful
in decreasing flow time and increasing the utilization of bottleneck resources at
the same time. RTLD outperforms the existing dispatching methods in terms of
the average loss time for all datasets considered. Meanwhile, through the weight
adjustment experiments and robustness test, we confirmed the direction in which
the proposed approaches could be further developed.

This thesis has made contributions as follows. First, it developed the monitor-
ing tool that ensures the ability to investigate each dispatching decision, which is
independent from the programming language used to implement the simulator. Sec-
ond, a proposal was made regarding a novel method for generating training data for
DNNs without a verified solver. Lastly, the proposed RTDs can perform effective

dispatching decisions considering intentional delays in RMLs.

93

7.2 Limitations and future research

Although satisfactory results were obtained through this thesis, there exist some
room for further improvement. First, RTRD is required to reduce the time parts
spend in the re-entrant stocker while RTLD is supposed to improve in terms of
decreasing computation time. If the concept of conflicting lots is introduced into
RTRD, the performance of RTRD is highly likely to be improved. However, this
attempt is less likely to be successful due to the nature of the RTRD’s decision-
making manner of not being able to specify a lot.

Second, we plan to investigate a reinforcement learning (RL) algorithm which is
capable of finding a policy that maximizes global rewards in order to enable more
intelligent dispatching decisions that minimize both the waiting and idle time. The
dispatching rules representing the action vector of RTRD can be used to define the
action space of the Q-learning which is the most representative of the RL. However,
it is essential to design an immediate reward between the current state and next
state, since the preference scores indicating the value of dispatching decisions are
calculated only after all simulations are completed.

Lastly, further studies are needed to improve the robustness of the proposed
dispatchers to the type of datasets such as the numbers of job types, resources,
and operations. Furthermore, it is necessary to investigate a learning method for
determining the weights between the flow time and resource utilization according to
the characteristics of RMLs.

Meanwhile, the proposed method is applicable to the resource allocation problem
in a cloud computing environment where it is required to efficiently assign jobs

of different complexities to computing resources. The goal of the cloud computing

94 !

environment is similar to the objective function addressed by RTDs in that the
completion time of each job is minimized and the utilization of computing resources
is maximized. Therefore, if the computation time of RTDs is reduced and the suitable
network structure for the cloud computing environment is studied, the proposed

method will be able to achieve superior performance even in the new environment.

95

Appendices

96

___;rx_-! _CI_':I - -I_-]i -

5l =7

Appendix A

Performance comparison results

3500

| [JAWTEAITEALT|

3000

2500

2000

min

1500

1000

500

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.1: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 1.

97

| ‘DAWT .AIT .‘ALT‘ |

4000

3500

3000

min

2000

1500

1000

500

s — M I I [I | ‘ ‘ I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.2: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 2.

| \DAWT .AIT .‘ALT\ |

min

-.II : Hl

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.3: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 3.

98

3000

2500

2000 —

1500

min

1000 —

Figure A.4: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 4.

| [JAWTEAITEALT] |

SNQ STOCK SVR RTRD RTLD

500 — ‘ |
0 I I [= | I I [I I I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ

3000

2500

2000

min

1500

1000

500

Figure A.5: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 5.

| [AWTEAITRALT] |

99

SNQ STOCK SVR RTRD RTLD

L = | I I [l I ‘ ‘ I I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ

3500

[JAWTEAITEALT] |

3000

2500

2000

min

1500

1000

o
Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.6: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 6.

4000

| \DAWT .AIT .‘ALT\ |

3500 —

3000

2500 —

2000 —

min

1500 —

1000 —

500 ‘ I
0 I N m - -]] 1 [I I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.7: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 7.

100

5000

| ‘DAWT .AIT .‘ALT‘ |

4500

4000

3500

3000

2500

min

2000

1500

1000

500

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.8: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 8.

6000

| \DAWT .AIT .‘ALT\ |

5000

4000

3000

min

2000

1000

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.9: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 9.

101

3000

| ‘DAWT .AIT .‘ALT‘ |

2500 — 4

2000

1500 — .

min

1000 — 4

0 I I [= | I I [l I ‘ I I I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.10: AWT, AIT, and ALT results of the proposed dispatchers and the
existing methods for dataset 10.

14000

" CAWTEAITRALT] |

12000

10000

8000

min

6000

4000

2000

oy — — I I O I I I [1

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.11: AWT, AIT, and ALT results of the proposed dispatchers and the
existing methods for dataset 11.

102

4000

[AWTEAITEALT]| |

3500

3000

2500

2000

min

1500

1000

_.II.|||‘|

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.12: AWT, AIT, and ALT results of the proposed dispatchers and the
existing methods for dataset 12.

103

Appendix B

Performance contour of RTRD with respect to)\,
and)\

104

1
S
P 90 700\ .
0.8 \ 3 0.8} 2 S
/\80\ 90\) 2
8 2
o6 L ¢ 80 06f °
/\I =])\' \ 3
o
T~ 70— . 0 b=}
) 2 \
Y 200
0 \ : . : 0 \30:7 SIS
0 02 04 06 08 1 0 02 04 06 08 1
A A
w W
(a) AWT (b) AIT
1
7 2 o
0.8 K\ \\
P
0.6 % X
A \ \
7.
04+
770\ \/ \
(e}
02f \ \ ‘%Q
\700\;5/
0
0 02 04 06 08 1
A
w
(c) ALT

1.

105

Figure B.1: Performances of RTRD against SVR depending on A, and); in dataset

; ,H B 1'_]'| '@}

0.6

0.8 T~ 7gp N 0.8}
& ’
°l o =
C’ 110 \ 7(')0 | Q %
0.4+ = 7, 0.4+ .,j
pa 0 100
0 \

02 % &)] 0.2} /
NS \ & Neqy 0
[rLQ Q
0 . : - ; 0 \200 '—.//rf'>
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
A A
w w
(a) AWT (b) AIT
1 \7
7
7 70 2 ;0 %)
Y \\&0 N
7
0.6 790 \ X 7,0 @\70_
A o
| 7; e
7 o 2]
04N D
770 >
7 790 77)O o
N S 0 « A
0.2 76'00 730\ \/ ~—
7"0 720 _)\n’b@
0 T L

Figure B.2: Performances of RTRD against SVR depending on A, and)\; in dataset
2.

10 2 A28k

70, 0
0.8 \ O 0.8¢ 2 %
So \
\ | N,
0.6 =) P 0.6 % '3

A 4
(=
by ~ b\ \ % 2}
I |
0.4 1 0.4}]
Z 2
2 \ % \
€ 3
. 1 27 o
S

0 02 04 06 08 1 0 02 04 06 08
A A
' w
(a) AWT (b) AIT
7
) 7
0.8/l o 4 ,‘5’0]
5 . \\Vo
0.6] 2
A 2 %0
I . 80 ©
> 7
0.4\ 2 \
7
k%) ®
0.2, % ©
0 NN
0 02 04 06 08 1
A
w
(¢c) ALT

Figure B.3: Performances of RTRD against SVR depending on A, and)\; in dataset
3.

" Rk g

(o)

[e2) 7
0.8 o % s 0.8} 3
&0\/./ v 00\]0 ’mw \&0
(7
0.6 & 3 0.6 (4 %
(@]
3 o)

0 ® F@
02), K4 85— 02N ° N < o
%5 9 °
7 2 ; % N 2%
0 : : : : 0 : : : ‘
0 02 04 06 08 1 0 02 04 06 08 1
A A
W W
(a) AWT (b) AIT
1
9% \7
S < s
0.8 0 © 00N
c%\ (%
% \&
0.6 X \ GO
&, & (7
/\I S, o © o5
04 ;0 \0 \)
2N
\ 2 %)
7, ¢
02N 'Y 9 © 1
7. 0 \
2%
s
0 \ 1 L

Figure B.4: Performances of RTRD against SVR depending on A, and); in dataset
4.

18 2 A28k

P 0 Z
(%)S - (% % 2
0.8% ™ 0.8 0 24
G 3 X
70 J | |
O|

N °
0410 \/66] 0.4} %
o)
\ ’ i &2 \
0.2 J / 0.2 \700 0
S -)
7 N2 \,J /
N e N
0 : . :

0 02 04 06 8 1 0 02 04 06 08 1
A A
w W
(a) AWT (b) AIT
s
% %
6 078 o %
08f\ X % © SN
%
%
NG PR
DA 5 3
S

0.4
)
4 oy
& [

0
0 0.2 0.4 0.6 0.8 1

Figure B.5: Performances of RTRD against SVR depending on A\, and)\; in dataset
5.

v A 8-t 8t

1 : : : 1 : : : :
9, 50
)6\ c%\0 700
08} \5’0 \\%‘) 08} 2
A (@}
> \ X 3

NN)

% Y
% o 0.2
7 06\)6\ 7s,
» 7
2 X 0 00— 005y
0 ‘ 0
0 02 04 06 08 1 0 02 04 06 08 1
A A
" W
(a) AWT (b) AIT
"o
1 9
\ <90 706‘
S <
0.8 > > 0
o s ‘5’0\\‘%\
S &
06 & © \\\‘g‘
)\I oA
% BN
0.4 ";%\ N
0\)@ 0 X
.
0-2 75\\:‘;\\ Sy
706? 93 > 70_,,J'\
0 &))
0 S —R
0 02 04 06 08 1
A
w
(c) ALT

Figure B.6: Performances of RTRD against SVR depending on A, and \; in dataset
6.

Rk AT

N o\
\ o \W &
[N
%\ \ k
\ S %\700
\x/m @\eom@o
- o,o\ 6\ s A

<
//\)@ox
\\)AO 5\70 7@0
- © © < o o
o c _ o o
~<

0.8

0.6

0.4

0.2

0.6 0.8

0.4

0.2

(b) AIT

(a) AWT

0.4

0.2

_ _ e
Q O 0 AT (\]
,»,%VO\QY\),XJ/W

N Q
Q2 S ~
QS N
7«,.90 N
(J
N
))o\
S
e
N
QO QO
\ IJ\O S\
o\eoo;@\o&oo
N N R

- 2 © ¥ & o

o OIO o
\A

0.8

0.6

(c) ALT

Figure B.7: Performances of RTRD against SVR depending on A\, and)\; in dataset

111

1 . ‘ . ‘
Q> AQ T ——
LN 770 720\ 900 \
0.8 400 \ : 0.8f
~, ,,0 AN
0.6 0.6} 2\
/\I /\I <2
00 \
0.4 0.4}]
\ \e \
0.2 N 021 % (27} o |
g "\\ J},/
200
L i ~200—
0 0.2 4 0 04 06 0
A A
" w
(a) AWT (b) AIT
1
7
TR AN
7
\\\@0
0.6 P
A 0\ % 2%
0.4 770\ \ 1
7 -
0.2 7‘9*’0 X 8¢
100
0 02 04 06 08 1
A
'
(c) ALT

8.

112

Figure B.8: Performances of RTRD against SVR depending on \,, and); in dataset

f ﬂil”ﬂlu.

& 0 7, \ 7.
ﬁ\ 0 % 7@0 . % 900 a%
0.8r® >< \ \; N 0.8 00 \ |
(=) % i)
%)
>
\ . % . \ \
0 > | L 7 2]
N 06 % A 06 © 2 By
| % | 2\ 2
%
0415 O 0.4 —
0 © 7
\\90 o © 900\ °
7 ~—_)] I 528
02K 0.2 %, 75, Z =
%
O 1 L 1 L L

7
v’>0 7 “?0 70 /

N v oL\ N 1%0\{4%
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

A A
w w
(a) AWT (b) AIT
1 N
20 % 5

7,
0.8} % \\Xf d
5 o
0619, % \\\00 ;\
A ’00\\\\ v
0.4 7

02\ 7% 7"0\\ E
S

770\ % 0\’J

0 (109 —

0 0.2 0.4 0.6 0.8 1

A
w

(c) ALT

Figure B.9: Performances of RTRD against SVR depending on A, and \; in dataset
9.

113 S B LT

I

1 1
) 2
< 2
4 L o Za
0.8 0.8 \"o
'\@/\ .
0.6] 0.6 & > -
] > ©
A > A »
| © |
0.4 , \/] 0.4 |
6
0 % X
0.2} o L 02\, XS
_&__@N lj\0 700 SO\J
\60 \
0 0 — 100 —
0 02 04 06 08 1 0 02 04 06 08 1
A A
w w
(a) AWT (b) AIT
1
7
PN
0 P
0.8} 0\\\ %
06 2 PN
° 2, >
)\l X >

DN

70, /
7. 0
0 [% \ 120
0 0.2 0.4 0.6 0.8 1
A
W
(c) ALT

Figure B.10: Performances of RTRD against SVR depending on A, and)\; in dataset
10.

114

L=

o A=t 8t

-

1 : | : : 1
7
(9) Ve
0.8+ (4 % 1 0.8} \
(% <30 750 \-"00
v
0.6 v 1 06N\ \ 1
A 8 . A 76\ P
| 8 % | 2 O3
04t "2 00 1 047 \ \“Q\\
\ 0 2
02l & 7] 02t ©) & 2 |
\QQ \700\%/
N
0 : ‘ ‘ : 0 : : ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
A A
' w
(a) AWT (b) AIT

04} 7

k%) 7 > \
. % < (] O M
0.2 76‘0 70 2 XQ
6)

Figure B.11: Performances of RTRD against SVR depending on \,, and)\; in dataset
11.

Rk AT

1 1 : . :
R

0.8[™60 1 0.8F >
X %

[6)8
0.6 S 1 061 2 \

3
/\I <‘> /\I S
%
0.4 / 04}]
60 J \

© [$2]

/\) 8
0.2 g J 0.2 7, %0 y

o
N
o
o
N
o
~
o
2]
o
[o2)
N

S 9 >
2 703 0\‘%

(c) ALT

Figure B.12: Performances of RTRD against SVR depending on A, and)\; in dataset
12.

. A 8-t 8t

Appendix C

Performance contour of RTLD with respect to \,,
)\la and)\d

117

0.9

02 03 0.4 0.5 06 07

0.1

03 04 0.5 06 0.7 08

02

(b) AIT

(a) AWT

02 03 0.4 0.5 06 07 0.8 09

0.1

(c) ALT

Figure C.1: Performances of RTLD against SVR depending on Ay, A;, and Ay in
118

dataset 1.

- QQ 0/;_,
oa /’?&/Q\g“g A\ 06
A, N /g‘ 1 s N
0.4
08/, - e
i © 03

00 e)%

09 ﬁo\/ \—//> 01
; 80 Y A0 0
0 01 02 03 04 05 06 07 08 09 1
AI
(c) ALT

Figure C.2: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 2.

119

09 ol‘ o /_ B
. 60
N e]
; 70 7o——"__ 0 0
0 01 02 03 04 05 06 07 08 09 1
A

(c) ALT

Figure C.3: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 3.

120

0.1
09 #
o N 0
1

0 0.1 02 03 0.4 0.5 06 07 08 0.9 1

A

|

(c) ALT

Figure C.4: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 4.

121

(c) ALT

Figure C.5: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 5.

122

(c) ALT

Figure C.6: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 6.

123

(c) ALT

Figure C.7: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 7.

124

(c) ALT

Figure C.8: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 8.

125

%v&\»___ue /\£ng

\ 0.1
09 \% \AS 3
N — A 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09 1
A|)\l
(a) AWT (b) AIT

(c) ALT

Figure C.9: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 9.

LELE

-

/ 0.4
06/ | G
8 S
e & 03
07 ,
8 02
08/ | = 2
8 0.4
09/ BN
AN X\ o
0.9 1 0 0.1 02 03 04 0.5 06 07 08 0.9 1
A
|
4
0
01 0.9
/oo
N\ 0.8
02/
% 0.7
03/ N
&
S5 4 0.6
0.4 8 A
05 ~d
05 :
II } 3 0.4
e § T \
&

(c) ALT

Figure C.10: Performances of RTLD against SVR depending on A, A\;, and A4 in

dataset 10.

127

08 g/%g P L g\
0s// o K\‘_/‘b g 0.1
. &7 20 7% 0
0 01 02 03 04 05 06 07 08 09 1
A

(c) ALT

Figure C.11: Performances of RTLD against SVR depending on A, A\;, and A4 in
dataset 11.

128

(c) ALT

Figure C.12: Performances of RTLD against SVR depending on A, A\;, and A4 in
dataset 12.

129

Bibliography

[1]

I. Sindicic, S. Bogdan, and T. Petrovic, “Resource allocation in free-choice
multiple reentrant manufacturing systems based on machine-job incidence ma-
trix,” IEEFE Transactions on Industrial Informatics, vol. 7, no. 1, pp. 105-114,

Feb. 2011.

J. Zhang and X. Wang, “Multi-agent-based hierarchical collaborative schedul-
ing in re-entrant manufacturing systems,” International Journal of Production

Research, vol. 54, no. 23, pp. 7043-7059, Dec. 2016.

H.-S. Choi, J.-S. Kim, and D.-H. Lee, “Real-time scheduling for reentrant
hybrid flow shops: A decision tree based mechanism and its application to a
TET-LCD line,” Ezpert Systems with Applications, vol. 38, no. 4, pp. 3514—

3521, Apr. 2011.

J. A. Ramirez-Hernandez and E. Fernandez, “Control of a re-entrant line man-
ufacturing model with a reinforcement learning approach,” in Sizth Interna-
tional Conference on Machine Learning and Applications (ICMLA 2007), Dec.

2007, pp. 330-335.

J. C. Chen, K. H. Chen, J. J. Wu, and C. W. Chen, “A study of the flexible job

shop scheduling problem with parallel machines and reentrant process,” The

130 !

[10]

International Journal of Advanced Manufacturing Technology, vol. 39, no. 3,

pp. 344-354, Oct. 2008.

P. R. Kumar, “Re-entrant lines,” Queueing Systems, vol. 13, no. 1, pp. 87-110,

Mar. 1993.

Y. Narahari and L. M. Khan, “Performance analysis of scheduling policies in
re-entrant manufacturing systems,” Computers € Operations Research, vol. 23,

no. 1, pp. 37-51, 1996.

M. C. Gomes, A. P. Barbosa-Pévoa, and A. Q. Novais, “Reactive scheduling
in a make-to-order flexible job shop with re-entrant process and assembly: a
mathematical programming approach,” International Journal of Production

Research, vol. 51, no. 17, pp. 5120-5141, Sep. 2013.

Y. H. Han and J. Y. Choi, “A GSPN-Based Approach to Stacked Chips
Scheduling Problem,” IEEE Transactions on Semiconductor Manufacturing,

vol. 23, no. 1, pp. 4-12, Feb. 2010.

F. He, D. Armbruster, M. Herty, and M. Dong, “Feedback control for prior-
ity rules in re-entrant semiconductor manufacturing,” Applied Mathematical

Modelling, vol. 39, no. 16, pp. 4655-4664, Aug. 2015.

J. C. Tyan, T. C. Du, J. C. Chen, and I. H. Chang, “Multiple response opti-
mization in a fully automated FAB: an integrated tool and vehicle dispatching
strategy,” Computers & Industrial Engineering, vol. 46, no. 1, pp. 121-139,

Mar. 2004.

131

[12]

[17]

K. Sourirajan and R. Uzsoy, “Hybrid decomposition heuristics for solving
large-scale scheduling problems in semiconductor wafer fabrication,” Journal

of Scheduling, vol. 10, no. 1, pp. 41-65, Feb. 2007.

H. Liu, Z. Jiang, and R. Y. K. Fung, “The infrastructure of the timed EOPNs-
based multiple-objective real-time scheduling system for 300 mm wafer fab,”
International Journal of Production Research, vol. 45, no. 21, pp. 5017-5056,

Nov. 2007.

H. Zhang, Z. Jiang, and C. Guo, “Simulation-based optimization of dispatching
rules for semiconductor wafer fabrication system scheduling by the response
surface methodology,” The International Journal of Advanced Manufacturing

Technology, vol. 41, no. 1, pp. 110-121, Mar. 2009.

C.-H. Tsai, Y.-M. Feng, and R.-K. Li, “A hybrid dispatching rules in wafer
fabrication factories,” International journal of the computer, the internet and

management, vol. 11, no. 1, pp. 64-72, 2003.

B. Lee, Y. H. Lee, T. Yang, and J. Ignisio, “A due-date based production
control policy using WIP balance for implementation in semiconductor fab-
rications,” International Journal of Production Research, vol. 46, no. 20, pp.

5515-5529, Oct. 2008.

J. Huh, I. Park, S. Lim, B. Paeng, J. Park, and K. Kim, “Learning to dispatch
operations with intentional delay for re-entrant multiple-chip product assembly

lines,” Sustainability, vol. 10, no. 11, pp. 4123-4143, 2018.

132 :

[18]

[20]

[21]

[22]

[23]

W. L. Pearn, Y. T. Tai, and J. H. Lee, “Statistical approach for cycle time
estimation in semiconductor packaging factories,” IEEE Transactions on Elec-

tronics Packaging Manufacturing, vol. 32, no. 3, pp. 198-205, Jul. 2009.

M. Liu and C. Wu, “Genetic algorithm using sequence rule chain for multi-
objective optimization in re-entrant micro-electronic production line,” Robotics

and Computer-Integrated Manufacturing, vol. 20, no. 3, pp. 225-236, Jun. 2004.

H. Jang, T. Y. Jung, K. Yeh, and J. H. Lee, “A model predictive control
approach for fab-wide scheduling in semiconductor manufacturing facilities,”

IFAC Proceedings Volumes, vol. 46, no. 24, pp. 493-498, Sep. 2013.

F. D. Vargas-Villamil and D. E. Rivera, “A model predictive control approach
for real-time optimization of reentrant manufacturing lines,” Computers in

Industry, vol. 45, no. 1, pp. 45-57, May 2001.

L. Danping and C. K. M. Lee, “A review of the research methodology for the
re-entrant scheduling problem,” International Journal of Production Research,

vol. 49, no. 8, pp. 2221-2242, Apr. 2011.

J. A. Ramirez-Hernandez and E. Fernandez, “Optimal job releasing and se-
quencing for a reentrant manufacturing line with finite capacity buffers,” in
Proceedings of the 45th IEEE Conference on Decision and Control, Feb. 2006,

pp. 6654-6659.

F. Dugardin, L. Amodeo, and F. Yalaoui, “Multiobjective scheduling of a
reentrant hybrid flowshop,” in 2009 International Conference on Computers

Industrial Engineering, Jul. 2009, pp. 193-195.

133 !

[25]

[26]

[28]

[30]

F. D. Vargas-Villamil, D. E. Rivera, and K. G. Kempf, “A hierarchical ap-
proach to production control of reentrant semiconductor manufacturing lines,”
IEEE Transactions on Control Systems Technology, vol. 11, no. 4, pp. 578-587,

Jul. 2003.

P. Y. Mok, “A decision support system for the production control of a semi-
conductor packaging assembly line,” Fxpert Systems with Applications, vol. 36,

no. 3, pp. 4423-4430, Apr. 2009.

Y. H. Lee and T. Kim, “Manufacturing cycle time reduction using balance
control in the semiconductor fabrication line,” Production Planning & Control,

vol. 13, no. 6, pp. 529-540, Aug. 2002.

F. D. Vargas-Villamil and D. E. Rivera, “Multilayer optimization and schedul-
ing using model predictive control: application to reentrant semiconductor
manufacturing lines,” Computers €& Chemical Engineering, vol. 24, no. 8, pp.

2009-2021, Sep. 2000.

J. T. Lin and C.-M. Chen, “Simulation optimization with GA and OCBA for
semiconductor back-end assembly scheduling,” in 2015 International Confer-
ence on Industrial Engineering and Operations Management (IEOM), Mar.

2015, pp. 1-8

Y.-H. Kang, S.-S. Kim, and H. J. Shin, “A scheduling algorithm for the reen-
trant shop: an application in semiconductor manufacture,” The International
Journal of Advanced Manufacturing Technology, vol. 35, no. 5, pp. 566-574,

Dec. 2007.

134

31]

[36]

B. S. Chung, J. Lim, I. B. Park, J. Park, M. Seo, and J. Seo, “Setup change
scheduling for semiconductor packaging facilities using a genetic algorithm
with an operator recommender,” IEEE Transactions on Semiconductor Man-

ufacturing, vol. 27, no. 3, pp. 377-387, Aug. 2014.

C. Pickardt, J. Branke, T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Gener-
ating dispatching rules for semiconductor manufacturing to minimize weighted
tardiness,” in Proceedings of the 2010 Winter Simulation Conference, Dec.

2010, pp. 2504-2515.

L. Li, Z. Sun, M. Zhou, and F. Qiao, “Adaptive dispatching rule for semicon-
ductor wafer fabrication facility,” IEEE Transactions on Automation Science

and Engineering, vol. 10, no. 2, pp. 354-364, Apr. 2013.

J. Lim, M. J. Chae, Y. Yang, I. B. Park, J. Lee, and J. Park, “Fast scheduling
of semiconductor manufacturing facilities using case-based reasoning,” IFEFE
Transactions on Semiconductor Manufacturing, vol. 29, no. 1, pp. 22-32, Feb.

2016.

K. Appleton-Day and L. Shao, “Real-time dispatch gets real-time results in
AMD’s fab 25,” in 1997 IEEE/SEMI Advanced Semiconductor Manufacturing

Conference and Workshop ASMC 97 Proceedings, Sep. 1997, pp. 444-447.

J. J. Kanet, “Tactically delayed versus non-delay scheduling: An experimental
investigation,” Furopean Journal of Operational Research, vol. 24, no. 1, pp.

99-105, Jan. 1986.

135

[37]

[38]

[41]

[42]

J. J. Kanet and V. Sridharan, “Scheduling with inserted idle time: Problem
taxonomy and literature review,” Operations Research, vol. 48, no. 1, pp. 99—

110, 2000.

O. Gholami and Y. N. Sotskov, “A neural network algorithm for servicing
jobs with sequential and parallel machines,” Automation and Remote Control,

vol. 75, no. 7, pp. 1203-1220, Jul. 2014

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436-444, May 2015.

P. Thomas and A. Thomas, “Multilayer perceptron for simulation models re-
duction: Application to a sawmill workshop,” Engineering Applications of Ar-

tificial Intelligence, vol. 24, no. 4, pp. 646-657, Jun. 2011.

W. Mouelhi-Chibani and H. Pierreval, “Training a neural network to select
dispatching rules in real time,” Computers & Industrial Engineering, vol. 58,

no. 2, pp. 249-256, Mar. 2010.

P. Priore, D. de la Fuente, J. Puente, and J. Parreno, “A comparison of
machine-learning algorithms for dynamic scheduling of flexible manufactur-
ing systems,” Engineering Applications of Artificial Intelligence, vol. 19, no. 3,

pp- 247-255, Apr. 2006.

A. K. Gupta and A. I. Sivakumar, “Job shop scheduling techniques in semicon-
ductor manufacturing,” The International Journal of Advanced Manufacturing

Technology, vol. 27, no. 11, pp. 1163-1169, Feb. 2006.

136

[44]

[45]

[48]

[49]

G. R. Weckman, C. V. Ganduri, and D. A. Koonce, “A neural network job-shop
scheduler,” Journal of Intelligent Manufacturing, vol. 19, no. 2, pp. 191-201,

Apr. 2008.

F. Zhou, C. Wu, and C. Yu, “Dynamic dispatching for re-entrant produc-
tion lines — A deep learning approach,” in 2017 15th IEEE Conference on

Automation Science and Engineering (CASE), Aug. 2017, pp. 1026-1031.

Z. Hammami, W. Mouelhi, and L. Ben Said, “On-line self-adaptive frame-
work for tailoring a neural-agent learning model addressing dynamic real-time
scheduling problems,” Journal of Manufacturing Systems, vol. 45, pp. 97-108,

Oct. 2017.

D. Golmohammadi, “A neural network decision-making model for job-shop
scheduling,” International Journal of Production Research, vol. 51, no. 17, pp.

5142-5157, Sep. 2013.

D.-Y. Liao and C.-N. Wang, “A neural-network approach to delivery time
estimation for 300mm automatic material handling operations,” in Proceedings
of the 2008 International Conference on Machine Learning and Cybernetics

(IEEE Cat. No.03EX693), vol. 2, Nov. 2003, pp. 1073-1079 Vol.2.

J. Domaschke, S. Brown, J. Robinson, and F. Leibl, “Effective implementation
of cycle time reduction strategies for semiconductor back-end manufacturing,”
in Proceedings of the 30th Conference on Winter Simulation, ser. WSC *98.

IEEE Computer Society Press, 1998, pp. 985-992.

137 !

[50]

[52]

[53]

A. 1. Sivakumar and C. S. Chong, “A simulation based analysis of cycle time
distribution, and throughput in semiconductor backend manufacturing,” Com-

puters in Industry, vol. 45, no. 1, pp. 59-78, May 2001.

S. Werner, S. Horn, G. Weigert, and T. Jahnig, “Simulation based scheduling
system in a semiconductor backend facility,” in Proceedings of the 38th Con-
ference on Winter Simulation, ser. WSC ’06. Winter Simulation Conference,

2006, pp. 1741-1748.

H. Zhang, Z. Jiang, and C. Guo, “Simulation based real-time scheduling
method for dispatching and rework control of semiconductor manufacturing
system,” in 2007 IEEFE International Conference on Systems, Man and Cy-

bernetics, Oct. 2007, pp. 2901-2905.

Y.-F. Hung and I.-R. Chen, “A simulation study of dispatch rules for reduc-
ing flow times in semiconductor wafer fabrication,” Production Planning &

Control, vol. 9, no. 7, pp. 714-722, Jan. 1998.

J. Potoradi, O. S. Boon, and S. J. Mason, “Using simulation-based schedul-
ing to maximize demand fulfillment in a semiconductor assembly facility,” in
Proceedings of the Winter Simulation Conference, vol. 2, Dec. 2002, pp. 1857—

1861.

M. Y. H. Low, K. W. Lye, P. Lendermann, S. J. Turner, R. T. W. Chim, and
S. H. Leo, “An agent-based approach for managing symbiotic simulation of
semiconductor assembly and test operation,” in Proceedings of the Fourth In-

ternational Joint Conference on Autonomous Agents and Multiagent Systems,

ser. AAMAS '05. ACM, 2005, pp. 85-92.

138 !

[56]

[61]

T. J. Chua, T. X. Cai, and X. F. Yin, “A heuristic approach for schedul-
ing multi-chip packages for semiconductor backend assembly,” in 2007 IEEE
Conference on Emerging Technologies and Factory Automation (EFTA 2007),

Sep. 2007, pp. 1024-1030.

Y.-F. Hung and C.-B. Chang, “Dispatching rules using flow time predictions
for semiconductor wafer fabrications,” Journal of the Chinese Institute of In-

dustrial Engineers, vol. 19, no. 1, pp. 67-75, Jan. 2002.

Y. Li, J. Li, J. Yao, and Y. Ni, “Development of an integrated real time dis-
patching system: A case study at a semiconductor assembly and test factory,”
Journal of Manufacturing Technology Management, vol. 25, no. 7, pp. 980997,

Aug. 2014.

H.-S. Min and Y. Yih, “Selection of dispatching rules on multiple dispatching
decision points in real-time scheduling of a semiconductor wafer fabrication
system,” International Journal of Production Research, vol. 41, no. 16, pp.

3921-3941, Jan. 2003.

Y. F. Lee, Z. B. Jiang, and H. R. Liu, “Multiple-objective scheduling and real-
time dispatching for the semiconductor manufacturing system,” Computers &

Operations Research, vol. 36, no. 3, pp. 866—884, Mar. 2009.

S. J. Lee and T. E. Lee, “Scheduling a multi-chip package assembly line with
reentrant processes and unrelated parallel machines,” in 2008 Winter Simula-

tion Conference, Dec. 2008, pp. 2286—2291.

139 !

[62]

[63]

[66]

[67]

D. M. Chiang, R.-S. Guo, and F.-Y. Pai, “Improved customer satisfaction with
a hybrid dispatching rule in semiconductor back-end factories,” International

Journal of Production Research, vol. 46, no. 17, pp. 4903-4923, Sep. 2008.

J. F. Bard, Z. Gao, R. Chacon, and J. Stuber, “Daily scheduling of multi-
pass lots at assembly and test facilities,” International Journal of Production

Research, vol. 51, no. 23, pp. 7047-7070, Nov. 2013.

F. Tovia, S. J. Mason, and B. Ramasami, “A scheduling heuristic for maxi-
mizing wirebonder throughput,” IEEFE Transactions on FElectronics Packaging

Manufacturing, vol. 27, no. 2, pp. 145-150, Apr. 2004.

Y. Ma, F. Qiao, F. Zhao, and J. W. Sutherland, “Dynamic scheduling of a
semiconductor production line based on a composite rule set,” Applied Sci-

ences, vol. 7, no. 10, p. 1052, 2017.

J. T. Lin and C.-M. Chen, “Simulation optimization approach for hybrid flow
shop scheduling problem in semiconductor back-end manufacturing,” Simula-

tion Modelling Practice and Theory, vol. 51, pp. 100-114, Feb. 2015.

M. K. E. Adl, A. A. Rodriguez, and K. S. Tsakalis, “Hierarchical modeling and
control of re-entrant semiconductor manufacturing facilities,” in Proceedings
of 35th IEEE Conference on Decision and Control, vol. 2, Dec. 1996, pp. 1736—

1742 vol.2.

Y. Deng, J. F. Bard, G. R. Chacon, and J. Stuber, “Scheduling back-end opera-
tions in semiconductor manufacturing,” IEEE Transactions on Semiconductor

Manufacturing, vol. 23, no. 2, pp. 210-220, May 2010.

140 :

[69]

[70]

[71]

[74]

M. Fu, R. Askin, J. Fowler, M. Haghnevis, N. Keng, J. S. Pettinato, and
M. Zhang, “Batch production scheduling for semiconductor back-end opera-
tions,” IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 2,

pp- 249-260, May 2011.

J. A. Ramirez-Hernandez and E. Fernandez, “A case study in scheduling reen-
trant manufacturing lines: Optimal and simulation-based approaches,” in Pro-
ceedings of the 44th IEEE Conference on Decision and Control, Dec. 2005, pp.

2158-2163.

C.-C. Liu, H.-Y. Jin, Y. Tian, and H.-B. Yu, “Reinforcement learning approach
to re-entrant manufacturing system scheduling,” in 2001 International Con-
ferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX}79), vol. 3,

2001, pp. 280-285 vol.3.

J. A. Ramirez-Hernandez and E. Fernandez, “An approximate dynamic pro-
gramming approach for job releasing and sequencing in a reentrant manufac-
turing line,” in 2007 IEEE International Symposium on Approrimate Dynamic

Programming and Reinforcement Learning, Apr. 2007, pp. 201-208.

C.-H. Chen, J. Lin, E. Yiicesan, and S. E. Chick, “Simulation budget allocation
for further enhancing the efficiency of ordinal optimization,” Discrete Event

Dynamic Systems, vol. 10, no. 3, pp. 251-270, 2000.

C. H. Dagli, Artificial Neural Networks for Intelligent Manufactur-
ng. Springer Science & Business Media, Dec. 2012, google-Books-1D:

K4ftCAAAQBAJ.

141

[75]

[76]

[79]

[80]

P. Priore, A. Gémez, R. Pino, and R. Rosillo, “Dynamic scheduling of man-
ufacturing systems using machine learning: An updated review,” Al EDAM,

vol. 28, no. 01, pp. 83-97, 2014.

I. Moon, S. Lee, and H. Bae, “Genetic algorithms for job shop scheduling prob-
lems with alternative routings,” International Journal of Production Research,

vol. 46, no. 10, pp. 2695-2705, May 2008.

A. El-Bouri and P. Shah, “A neural network for dispatching rule selection in a
job shop,” The International Journal of Advanced Manufacturing Technology,

vol. 31, no. 3-4, pp. 342-349, Nov. 2006.

J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic Evolution
of Dispatching Rules: A Comparison of Rule Representations,” Fvolutionary

Computation, vol. 23, no. 2, pp. 249-277, Jun. 2014.

L. Tang, W. Liu, and J. Liu, “A neural network model and algorithm for the
hybrid flow shop scheduling problem in a dynamic environment,” Journal of

Intelligent Manufacturing, vol. 16, no. 3, pp. 361-370, Jun. 2005.

R.-S. Guh, Y.-R. Shiue, and T.-Y. Tseng, “The study of real time scheduling by
an intelligent multi-controller approach,” International Journal of Production

Research, vol. 49, no. 10, pp. 2977-2997, May 2011.

Y.-R. Shiue and R.-S. Guh, “Learning-based multi-pass adaptive schedul-
ing for a dynamic manufacturing cell environment,” Robotics and Computer-

Integrated Manufacturing, vol. 22, no. 3, pp. 203-216, Jul. 2006.

142 4

[82]

[36]

[87]

K.-J. Wang, J. C. Chen, and Y.-S. Lin, “A hybrid knowledge discovery model
using decision tree and neural network for selecting dispatching rules of a
semiconductor final testing factory,” Production Planning & Control, vol. 16,

no. 7, pp. 665-680, Oct. 2005.

J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated Design of
Production Scheduling Heuristics: A Review,” IEEE Transactions on Evolu-

tionary Computation, vol. 20, no. 1, pp. 110-124, Feb. 2016.

R. Linn and W. Zhang, “Hybrid flow shop scheduling: A survey,” Computers

& Industrial Engineering, vol. 37, no. 1, pp. 57-61, Oct. 1999.

M. MONTAZERI and L. N. V. WASSENHOVE, “Analysis of scheduling rules
for an FMS,” International Journal of Production Research, vol. 28, no. 4, pp.

785-802, Apr. 1990.

D. Quadt, “Simulation-based scheduling of parallel wire-bonders with limited

)

clamp&paddles,” in Proceedings of the 38th Conference on Winter Simulation,

ser. WSC ’06. Winter Simulation Conference, 2006, pp. 1887-1892.

A. 1. Sivakumar, “Optimization of a cycle time and utilization in semiconduc-
tor test manufacturing using simulation based, on-line, near-real-time schedul-
ing system,” in Proceedings of the 31st Conference on Winter Simulation: Sim-
ulation—a Bridge to the Future - Volume 1, ser. WSC ’99. ACM, 1999, pp.

T727-735.

143

[83]

[90]

[92]

[94]

A. Negahban and J. S. Smith, “Simulation for manufacturing system design
and operation: Literature review and analysis,” Journal of Manufacturing Sys-

tems, vol. 33, no. 2, pp. 241-261, Apr. 2014.

A. Varga, “Discrete event simulation system,” in Proc. of the European Sim-

ulation Multiconference (ESM’2001), 2001.

E. Red, G. Jensen, D. French, and P. Weerakoon, “Multi-user architectures for
computer-aided engineering collaboration,” in 2011 17th International Confer-

ence on Concurrent Enterprising, Jun. 2011, pp. 1-10.

W. Han and M. Jochum, “Near real-time satellite data quality monitoring
and control,” in 2016 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), Jul. 2016, pp. 206-209.

A. Pritsker and K. Snyder, “Production scheduling using factor,” in The Plan-

ning and Scheduling of Production Systems. Springer, 1997, pp. 337-358.

S. H. Lee, F. Pena-Mora, and M. Park, “Dynamic planning and control
methodology for strategic and operational construction project management,”

Automation in construction, vol. 15, no. 1, pp. 84-97, 2006.

J. Jo, J. Huh, J. Park, B. Kim, and J. Seo, “LiveGantt: Interactively Visual-
izing a Large Manufacturing Schedule,” IEEE Transactions on Visualization

and Computer Graphics, vol. 20, no. 12, pp. 2329-2338, Dec. 2014.

P. Xu, H. Mei, L. Ren, and W. Chen, “Vidx: Visual diagnostics of assembly
line performance in smart factories,” IEEFE transactions on visualization and

computer graphics, vol. 23, no. 1, pp. 291-300, 2017.

144

[96]

[100]

[101]

[102]

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve

9

neural network acoustic models,” in Proc. icml, vol. 30, no. 1, June 2013, p. 3.

R. Haupt, “A survey of priority rule-based scheduling,” Operations-Research-

Spektrum, vol. 11, no. 1, pp. 3-16, Mar. 1989.

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Else-

vier, 2011.

J. Weston, O. Chapelle, V. Vapnik, A. Elisseeff, and B. Schélkopf, “Kernel de-
pendency estimation,” in Advances in neural information processing systems,

2003, pp. 897-904.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.

J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic evolution
of dispatching rules: A comparison of rule representations,” Fvolutionary com-

putation, vol. 23, no. 2, pp. 249-277, 2015.

S. C. Sarin, A. Varadarajan, and L. Wang, “A survey of dispatching rules
for operational control in wafer fabrication,” Production Planning € Control,

vol. 22, no. 1, pp. 424, Jan. 2011.

145

i

Lon pud

o

.
=3

%)

171747 2zo] ot

S

AME shtel AlEe &4

1

a_o

=
o] HrEA]

Al

=

Fo =)
A o 2] et

A

—

Sh

[¢)

H

=

I
=

229 RE W] 9l 2o

oretaat @

Al

=
=

AJZE T 21l #]

Al
=

Azl e of 2] A §

o
7<)

A

o},

B
fife]
Ho
ol

b1 Ststod

o)

o g Hehst

oy
N

A

]_

glojet. FAHH o=,

B
0|
L

17

o %7}

o] oFo] AL}z

HAIRE A5

o

Hlo] FHEES Be FEOR 44T 4 9t

2% B SHA

s
=

AN HES| th7] Azbe] LojA B PEEY

St

o

A

s Hlolel &

A,

i} 2t

) o4} AR A5t Al B o] El9} A7} =

9

171 <

H7}s

o=

7F AT E AT o]t AR Z|HE Alg e oE = A &

L 7%t A

g

x4

Bk

&

9

|

2 o] Ajzte

%

o] 4

%

CES

R ESI

]

dlolEle] 9

= AlE

AT A

5 TAlelA, o

S}
ol

A7} A2 Qe

Ea

146

= Al

Jaragol a7

=]

2

£ o]gste] o

glolH

el
N

__ov

A, A8

i
g 4 9tk 3

E
o}

o =4, Al

Gl

Tk

N7 BT

=Ll
S=

ar
o

Al

]

o
It} opx|eto 2, AQhH

I o)At A 718t A B o]E S

<]

kS

AFES

Al
=

F@ol: 69 Axeel, AAZE PARA, oA

H] 158, AlBolE, 78 B1

H: 2013-23211

ka3
o}

147

	1. Introduction
	1.1 Background and motivation
	1.2 Objectives
	1.3 Thesis outline

	2. Literature Review
	2.1 Dispatching decisions in RMLs
	2.2 Neural network-based approaches to dispatching decisions

	3. Problem Definition
	3.1 Multiple-chip product (MCP) assembly lines
	3.2 Lot dispatching process in MCP assembly lines

	4. Frameworks for Data Generation and Performance Evaluation
	4.1 Discrete event-based simulator
	4.1.1 Purpose of implementation
	4.1.2 Details of the structure

	4.2 Monitoring tool
	4.2.1 Purpose of implementation
	4.2.2 Details of the structure

	5. Deep Neural Network Based Dispatcher
	5.1 Real-time rule selection dispatcher
	5.1.1 Dispatcher structure
	5.1.2 Training phase
	5.1.3 Real-time dispatching phase

	5.2 Real-time lot selection dispatcher
	5.1.1 Dispatcher structure
	5.1.2 Training phase
	5.1.3 Real-time dispatching phase

	6. Experiments
	6.1 Datasets
	6.2 Experiment settings
	6.3 Experiment results
	6.3.1 Performance comparison
	6.3.2 Performance difference according to weights
	6.3.3 Robustness test

	7. Conclusions
	7.1 Summary and contributions
	7.2 Limitations and future research

	Appendices
	Bibliography
	Abstract (in Korean)

<startpage>17
1. Introduction 1
 1.1 Background and motivation 1
 1.2 Objectives 6
 1.3 Thesis outline 8
2. Literature Review 9
 2.1 Dispatching decisions in RMLs 9
 2.2 Neural network-based approaches to dispatching decisions 13
3. Problem Definition 17
 3.1 Multiple-chip product (MCP) assembly lines 17
 3.2 Lot dispatching process in MCP assembly lines 21
4. Frameworks for Data Generation and Performance Evaluation 24
 4.1 Discrete event-based simulator 24
 4.1.1 Purpose of implementation 24
 4.1.2 Details of the structure 25
 4.2 Monitoring tool 30
 4.2.1 Purpose of implementation 30
 4.2.2 Details of the structure 32
5. Deep Neural Network Based Dispatcher 43
 5.1 Real-time rule selection dispatcher 46
 5.1.1 Dispatcher structure 46
 5.1.2 Training phase 49
 5.1.3 Real-time dispatching phase 52
 5.2 Real-time lot selection dispatcher 53
 5.1.1 Dispatcher structure 53
 5.1.2 Training phase 57
 5.1.3 Real-time dispatching phase 58
6. Experiments 60
 6.1 Datasets 60
 6.2 Experiment settings 61
 6.3 Experiment results 67
 6.3.1 Performance comparison 67
 6.3.2 Performance difference according to weights 79
 6.3.3 Robustness test 87
7. Conclusions 92
 7.1 Summary and contributions 92
 7.2 Limitations and future research 94
Appendices 96
Bibliography 130
Abstract (in Korean) 146
</body>

