

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Deep Neural Network Based

Multi-Objective Dispatcher

for Re-Entrant Manufacturing Lines

재유입 제조라인을 위한

심층신경망 기반 다중 목적 함수 디스패처

2019 년 2 월

서울대학교 대학원

산업공학과

허 재 석

Deep Neural Network Based

Multi-Objective Dispatcher

for Re-Entrant Manufacturing Lines

재유입 제조라인을 위한

심층신경망 기반 다중 목적 함수 디스패처

지도교수 박 종 헌

이 논문을 공학박사 학위논문으로 제출함

2018 년 12 월

서울대학교 대학원

산업공학과

허 재 석

허재석의 공학박사 학위논문을 인준함

2018 년 12 월

위 원 장 조 성 준 (인)

부위원장 박 종 헌 (인)

위 원 문 일 경 (인)

위 원 정 재 윤 (인)

위 원 김 관 호 (인)

Abstract

Deep Neural Network Based
Multi-Objective Dispatcher

for Re-Entrant Manufacturing Lines

Jaeseok Huh

Department of Industrial Engineering

The Graduate School

Seoul National University

A re-entrant manufacturing line (RML) is a manufacturing line in which parts make

several visits to the same stage before exiting the line. RMLs have intrigued interest

in both academia and industry with the recent emergence of semiconductor manu-

facturing and thin film transistor-liquid crystal display (LCD) manufacturing lines.

As small devices embedded with flash memory and LCD have grown in demand,

relevant research effort has been motivated to date.

This thesis aims to propose real-time dispatchers (RTD) based on deep neural

networks (DNN) that decrease flow time without deteriorating resource utilization

at the bottleneck stage for real-world RMLs. Frequent re-entrant parts between

multiple stages in RMLs make it challenging to achieve the dual goals of reducing

flow time and improving resource utilization. To be more specific, the level of resource

utilization can be kept high by simply providing a sufficiently large amount of work-

in-process (WIP) to maximize throughput. On the contrary, an excessive amount of

i

WIP leads to a longer waiting time for parts in the next operations, thus increasing

flow time for the parts.

This thesis suggests new methods as follows. First, a discrete event based sim-

ulator (DEBS) and monitoring tool are implemented to generate training data and

evaluate the performance of dispatching decisions. DEBS plays a role in imitating

real-world RMLs and generating training data used for DNNs. The monitoring tool

is in charge of presenting the state of an RML at the time of each dispatching de-

cision being made. Furthermore, it also provides the ability to observe changes in

various performance indicators over time.

Second, two deep neural network based RTDs with different decision-making

processes are presented by the thesis. In the training phase, the proposed RTDs

learn the preferences of each alternative when dispatching decisions are required ac-

cording to RML data generated by the application of the developed DEBS. Then, in

the real-time dispatching phase, RTDs perform dispatching decisions by considering

intentional delays. A preferred alternative records a higher value as the dispatching

decision is likely to reduce the part’s waiting time and decrease the idle time of the

resources in the bottleneck stage.

The thesis makes contributions and holds utilitarian significance in three ways.

First, it developed a monitoring tool that allows users to investigate each dispatching

decision. Second, the proposed approach is capable of generating training data used

for DNNs by merely performing a simulation while using the developed DEBS that

imitates real-world RMLs. Finally, the proposed RTDs are successful in decreasing

flow time while increasing resource utilization at the bottleneck stage by factoring

in intentional delays in RMLs.

ii

Keywords: Re-entrant manufacturing lines, Real-time dispatcher, Intentional de-

lay, Deep neural network, Flow time, Utilization, Discrete event based simulator,

Monitoring tool

Student Number: 2013-23211

iii

Contents

Abstract i

Contents vi

List of Tables vii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Background and motivation . 1

1.2 Objectives . 6

1.3 Thesis outline . 8

Chapter 2 Literature Review 9

2.1 Dispatching decisions in RMLs . 9

2.2 Neural network-based approaches to dispatching decisions 13

Chapter 3 Problem Definition 17

3.1 Multiple-chip product (MCP) assembly lines 17

3.2 Lot dispatching process in MCP assembly lines 21

iv

Chapter 4 Frameworks for Data Generation and Performance Eval-

uation 24

4.1 Discrete event-based simulator . 24

4.1.1 Purpose of implementation 24

4.1.2 Details of the structure . 25

4.2 Monitoring tool . 30

4.2.1 Purpose of implementation 30

4.2.2 Details of functions . 32

Chapter 5 Deep Neural Network Based Dispatcher 43

5.1 Real-time rule selection dispatcher 46

5.1.1 Dispatcher structure . 46

5.1.2 Training phase . 49

5.1.3 Real-time dispatching phase 52

5.2 Real-time lot selection dispatcher . 53

5.2.1 Dispatcher structure . 53

5.2.2 Training phase . 57

5.2.3 Real-time dispatching phase 58

Chapter 6 Experiments 60

6.1 Datasets . 60

6.2 Experiment settings . 61

6.3 Experiment results . 67

6.3.1 Performance comparison . 67

6.3.2 Performance differences according to weights 79

v

6.3.3 Robustness test . 87

Chapter 7 Conclusions 92

7.1 Summary and contributions . 92

7.2 Limitations and future research . 94

Appendices 96

Chapter A Performance comparison results 97

Chapter B Performance contour of RTRD with respect to λw and λl104

Chapter C Performance contour of RTLD with respect to λw, λl,

and λd 117

Bibliography 130

국문초록 146

vi

List of Tables

Table 2.1 Overview of previous research on dispatching decisions of RMLs. 11

Table 2.2 Overview of previous research on dispatching decisions using

neural networks. 14

Table 4.1 Descriptions on the event types for the event loop. 28

Table 5.1 Components of the state vector for Rq,s of RTRD. 48

Table 5.2 Dispatching rules used to generate the action vector for Rq,s

of RTRD. 50

Table 5.3 Components of the lot-DA assignment vector, for Li,k and Rq,s. 55

Table 6.1 Descriptions on the datasets used for the experiments. 62

Table 6.2 Problem description for experiments. 63

Table 6.3 Training results of the proposed dispatchers. 66

Table 6.4 ALT improvement rates of RTLD compared to the existing

methods and RTRD. 72

Table 6.5 Statistically significant differences in ALT between RTRDs

trained in different datasets. 89

Table 6.6 Statistically significant differences in ALT between RTLDs

trained in different datasets. 91

vii

List of Figures

Figure 1.1 Concept of re-entrant manufacturing line. 2

Figure 3.1 Lot flow of DA and WB stages in MCP production. 19

Figure 3.2 Candidate lots according to status and intentional delay. . . 21

Figure 3.3 Illustration of how the dispatcher assigns a lot to a DA resource. 23

Figure 4.1 Structure of DEBS (Discrete Event Based Simulator). 26

Figure 4.2 Main screen of the monitoring tool. 32

Figure 4.3 Resource view of the monitoring tool. 33

Figure 4.4 Decision window of the resource view. 35

Figure 4.5 Statistics view of the monitoring tool. 37

Figure 4.6 KPI view of the monitoring tool. 38

Figure 4.7 WIP charts of the monitoring tool. 40

Figure 4.8 Comparison page of the monitoring tool. 42

Figure 5.1 Overall structure of the proposed approach. 45

Figure 5.2 The structure of RTRD. 46

Figure 5.3 The structure of RTLD. 54

Figure 6.1 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 1. 68

viii

Figure 6.2 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 2. 69

Figure 6.3 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 7. 70

Figure 6.4 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 11. 71

Figure 6.5 WIP graphs of the proposed dispatchers, and SVR. 73

Figure 6.6 Gantt charts of the proposed dispatchers and SVR. 74

Figure 6.7 Utilization graphs of the proposed dispatchers and SVR. . . 75

Figure 6.8 Dispatching frequencies according to lot statuses over time. 76

Figure 6.9 Computation time of RTRD, RTLD, and SVR according to

the average number of operations. 78

Figure 6.10 Performances of RTRD against SVR depending on λw and

λl in dataset 4. 80

Figure 6.11 Performances of RTRD against SVR depending on λw and

λl in dataset 9. 81

Figure 6.12 Performances of RTRD against SVR depending on λw and

λl in dataset 10. 82

Figure 6.13 Performances of RTRD against SVR depending on λw and

λl in dataset 11. 83

Figure 6.14 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 3. 84

Figure 6.15 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 6. 85

ix

Figure 6.16 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 9. 86

Figure 6.17 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 12. 87

Figure A.1 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 1. 97

Figure A.2 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 2. 98

Figure A.3 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 3. 98

Figure A.4 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 4. 99

Figure A.5 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 5. 99

Figure A.6 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 6. 100

Figure A.7 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 7. 100

Figure A.8 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 8. 101

Figure A.9 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 9. 101

Figure A.10 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 10. 102

x

Figure A.11 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 11. 102

Figure A.12 AWT , AIT , and ALT results of the proposed dispatchers

and the existing methods for dataset 12. 103

Figure B.1 Performances of RTRD against SVR depending on λw and

λl in dataset 1. 105

Figure B.2 Performances of RTRD against SVR depending on λw and

λl in dataset 2. 106

Figure B.3 Performances of RTRD against SVR depending on λw and

λl in dataset 3. 107

Figure B.4 Performances of RTRD against SVR depending on λw and

λl in dataset 4. 108

Figure B.5 Performances of RTRD against SVR depending on λw and

λl in dataset 5. 109

Figure B.6 Performances of RTRD against SVR depending on λw and

λl in dataset 6. 110

Figure B.7 Performances of RTRD against SVR depending on λw and

λl in dataset 7. 111

Figure B.8 Performances of RTRD against SVR depending on λw and

λl in dataset 8. 112

Figure B.9 Performances of RTRD against SVR depending on λw and

λl in dataset 9. 113

Figure B.10 Performances of RTRD against SVR depending on λw and

λl in dataset 10. 114

xi

Figure B.11 Performances of RTRD against SVR depending on λw and

λl in dataset 11. 115

Figure B.12 Performances of RTRD against SVR depending on λw and

λl in dataset 12. 116

Figure C.1 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 1. 118

Figure C.2 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 2. 119

Figure C.3 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 3. 120

Figure C.4 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 4. 121

Figure C.5 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 5. 122

Figure C.6 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 6. 123

Figure C.7 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 7. 124

Figure C.8 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 8. 125

Figure C.9 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 9. 126

Figure C.10 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 10. 127

xii

Figure C.11 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 11. 128

Figure C.12 Performances of RTLD against SVR depending on λw, λl,

and λd in dataset 12. 129

xiii

Chapter 1

Introduction

1.1 Background and motivation

Re-entrant manufacturing lines (RML) have become at the center of attention

in both academia and industry since semiconductor manufacturing and thin film

transistor-liquid crystal display (LCD) manufacturing lines came along [1, 2, 3, 4, 5].

RMLs are systems where parts can visit the same stage several times before exiting

the line [6, 7, 8]. Research in this discipline has been motivated with an increas-

ing demand for small devices equipped with flash memory and LCD such as smart

phones and wearable devices [9, 10].

Figure 1.1 shows the concept of RML and the dashed line at the bottom of the

figure indicates the flow of parts which go back to the previous stage. There are two

types of stockers where parts stay temporarily. The first one at the top of the figure

is a place where parts, which have completed an operation at the previous stage,

wait before they enter the current one. The second at the bottom of the figure, called

a re-entrant stocker, illustrates a place where parts, which have completed the next

stage, wait for the re-entrance to the current one.

There are parallel resources that are responsible for processing parts at each

stage and assigning a part to a resource is referred to as the dispatching decision.

1

S
to

c
k
e
r

S
ta

g
e
 1

S
ta

g
e
 2

R
e
-
e
n
tr

a
n
t

s
to

c
k
e
r

S
ta

g
e
 3

S
ta

g
e
 4

R
e
-
e
n
tr

an
t

fl
o
w

R
e
s
o
u
rc

e

F
ig

u
re

1.
1:

C
o
n

ce
p

t
of

re
-e

n
tr

an
t

m
an

u
fa

ct
u

ri
n

g
li

n
e.

2

Furthermore, a typical type of RML may regard a stage as a bottleneck if its re-

source utilization is above 85% [11, 12, 13]. This value is considerably subjective.

In practice, it is maintained above 90% for semiconductor manufacturing lines [14].

Since the maximum throughput is determined by the bottleneck stage, it is essential

to maintain a high level of resource utilization in the bottleneck [15].

It is achievable to keep the resource utilization level high by simply providing

a sufficiently large amount of work-in-process (WIP). On the contrary, an excessive

amount of WIP leads to increase in the waiting time for parts in the next operations,

thus increasing flow time of parts [16]. Therefore, managing WIP levels properly

matters in order to resolve the multi-objective problem of reducing flow time of

parts and improving resource utilization [17].

Unfortunately, the re-entrant nature brings about a challenge to WIP level con-

trol [18]. Specifically, if newly arrived parts are frequently assigned to resources of

the non-bottleneck stage with re-entrant parts not into consideration, the WIP level

of the bottleneck stage will excessively increase. On the other hand, giving a high

priority level to re-entrant parts in the non-bottleneck stage can result in a lack of

WIP at the bottleneck stage, which decreases resource utilization in the bottleneck

stage [19, 20].

From the remark above, it is clear that RMLs require dispatching decisions that

differ from those performed in traditional manufacturing lines and flow shops [21, 22,

23]. For this reason, a number of scholars have presented methods for dispatching

decisions in RMLs using optimization, meta-heuristics, and dispatching rules [19,

22, 24, 25, 26, 27, 28, 29, 30].

On one hand, approaches with a long computation time to yield dispatching de-

3

cisions, such as optimization and meta-heuristics, are not proper to be applied to

real-world RMLs although they successfully improve objectives through an exhaus-

tive search over solution spaces [31]. This is because, from a practical standpoint,

a part has to be immediately assigned to a resource in the event that the resource

requests a part.

On the other hand, the benefits of the rule based methods include computational

efficiency and ease of implementation [32, 33]. However, the majority of previous dis-

patching rules are usually designed to address a sole objective, and have limitations

when addressing various characteristics of real-world RMLs [34, 35].

In the meantime, it should be noted herein that the previous studies have focused

mainly on selecting one among the waiting parts ready to be processed immediately.

That is, a resource becomes idle only when there are no waiting parts in the stockers.

Yet, it is well known that performance can be improved when an intentional delay

is made in resource usage by idling a resource even through there are parts waiting

for its processing [36, 37].

Motivated by the considerations above, this thesis attempts to suggest a dis-

patching method based on deep neural networks (DNNs) that decrease flow time

without loss in resource utilization of the bottleneck stage for real-world RMLs.

Whenever a dispatching decision is required, the proposed method choose the best

part by considering both cases: when parts are processed directly; and when parts

undergo an intentional delay in a resource. In other words, the proposed method

maintains a high level of resource utilization and minimizes flow time by continu-

ously prioritizing newly arrived parts and re-entrant parts according to the status

of the RML.

4

To achieve this, we use a simulator to generate training data that are used

to train the dispatcher. The main difference between the existing learning-based

methods and our efforts lies in the fact that the existing work requires training data

generated from optimal solutions which are difficult to obtain, while our method is

capable of generating training data by simply performing simulations with random

decision making. In detail, the performances of the decisions in randomly generated

simulation logs are measured by the proposed score generator, and the evaluated

simulation logs are used to train the DNN in the proposed dispatcher. In real-time

dispatching phase, the proposed method quantifies the degree of preference for each

decision with a numerical score and then completes the dispatching decision based

on the score.

As mentioned above, to learn dispatching decisions considering intentional delay,

we employ a DNN which is capable of capturing complex non-linear dynamics [38].

Furthermore, it is known that a DNN enables computational models to learn repre-

sentations of data through multiple levels of abstraction to understand the hidden

relationships among input features [39, 40]. Neural networks (NNs) have been suc-

cessfully applied to a variety of areas which involve decisions, including dispatching

and scheduling problems [41, 42, 43, 44, 45, 46, 47, 48].

5

1.2 Objectives

The objective of this thesis is to propose a real time dispatcher (RTD) for decreasing

flow time while maintaining a high level of resource utilization in real-world RMLs.

The thesis consists of two major studies to reach its goals. The first one focuses on

implementing an underlying environment for conducting research. Then, the second

one that deals with developing RTDs is sub-categorized into two parts according

to how decisions are made. The basic concepts and purposes of the studies are

summarized as follows.

First, a discrete event based simulator (DEBS) and monitoring tool are proposed

in Chapter 4. DEBS is designed to imitate the RML described in Chapter 3, and

calculate key performance indicators (KPIs) such as mean flow time and resource

utilization. Furthermore, a DEBS takes on generating training data used to train

a DNN. In addition to the functions of the existing Gantt chart, the monitoring

tool presents various information on RMLs at the time of a dispatching decision

being made. This feature is used to analyze the reason behind dispatching decision

making, which is helpful to improving performance in RTDs.

Second, two DNN based RTDs with different decision-making processes are sug-

gested in Chapter 5. RTDs are in charge of choosing the best part by considering

both cases: when parts are processed directly; and when parts undergo an inten-

tional delay in a resource at the non-bottleneck stage. To make that happen, we

utilize the DEBS developed in Chapter 4 to generate training data used for RTDs

in the training phase. In the real time dispatching phase, dispatching decisions can

be made quickly thanks to the calculation of using parameters of the trained RTDs.

In detail, each alternative of the dispatching decision for a resource is represented

6

in the form of a vector. The proposed method quantifies the degree of preference for

each vector with a numerical score, on which it completes the dispatching decision. A

preferred vector receives a higher value as the dispatching decision is likely to shorten

the part’s waiting time and reduce the idle time of resources in the bottleneck stage.

Finally, the effectiveness and efficiency of the proposed methods are demon-

strated through extensive experiments in Chapter 6. The performances of the pro-

posed RTDs are compared with the conventional dispatching methods in terms of

flow time and bottleneck resource utilization. Additionally, numerical experiments

are conducted to investigate the merits and demerits of the proposed two RTDs.

7

1.3 Thesis outline

This thesis is comprised of seven chapters and the remainder is organized as follows.

In Chapter 2, previous research on the dispatching methods for RMLs is examined

and DNN based techniques applied to the dispatching decision are reviewed. Chapter

3 describes the problem under consideration and defines the notations used in the

thesis. The features and functions of DEBS and monitoring tool are presented in

Chapter 4. The proposed approaches, consisting of two RTDs, a score generator,

and learning algorithm, is introduced in Chapter 5. Subsequently, the experimental

results are summarized and discussed in Chapter 6. Finally, we conclude this work

with contributions and future work of this thesis in Chapter 7.

8

Chapter 2

Literature Review

2.1 Dispatching decisions in RMLs

A considerable amount of literature has been published on dispatching methods in

RMLs. Previous research is classified according to their approaches and performance

metrics, as presented in Table 2.1.

Simulation-based studies have attempted to understand the characteristics of

part flows by executing tasks virtually in advance [49, 50]. Most studies utilized

simulation techniques to analyze or improve their objectives [51, 52, 53, 54]. On

the other hand, researchers in [55, 56] sought simulation methods that precisely

represent real-world RMLs and quickly process events.

Another line of research aims to perform dispatching decisions by utilizing dis-

patching rules [15, 57]. Publications on rule-based dispatching can be classified into

two categories. The first group proposes methods for selecting a dispatching rule

among the existing ones to obtain desired performance measures in a specific sit-

uation [14, 58, 59, 60]. To effectively cope with changes in the bottleneck stage,

algorithms to detect bottleneck stage are also to be applied in [14, 60].

The second category focuses mainly on improving objectives by developing their

own rule-based methods [61, 62, 63, 64]. In particular, Bard et al. [63] presented a

9

multi-stage approach consisting of three steps, which decides on the best resource-

tooling configurations and the way to assign parts to resources. They succeeded

in increasing weighted throughput in small-size problems. However, their method

requires a longer computation time as problems become as large as those in the real

world.

To overcome the limitations of the dispatching rules, Ma et al. [65] investigated

a dynamic scheduling method based on support vector regression (SVR). Specifi-

cally, they proposed a composite dispatching rule - a linear combination of multiple

dispatching rules with a weight assigned to each rule. The scheduling model trained

with SVR determines the weights of the composite dispatching rule for a given pro-

duction line state. Their method outperformed simple dispatching rules in terms of

multiple performance measures such as flow time and resource utilization.

Besides the rule-based methods, some studies investigating meta-heuristics have

been conducted to improve their particular objectives through an exhaustive search

over solution spaces [26]. Genetic algorithm (GA) based methods were popularly

used to decrease flow time and increase resource utilization [19, 29, 66]. In particular,

the work in [29, 66] utilized the heuristic algorithm as proposed in [73] to reduce

time spent on searching solution space.

Additionally, a Tabu search (TS) based algorithm, presented in [30], aims to

minimize tardiness. Kang et al. [30] introduced a rolling horizon method that limits

the area of unnecessary neighborhood solutions, thus decreasing computation time.

Although the existing studies of meta-heuristics attempted to reduce computation

time, it is difficult to introduce them into the real-world RMLs where dispatching

decisions are required to be made in a real-time manner.

10

Table 2.1: Overview of previous research on dispatching decisions of RMLs.

Approaches Performance metrics References

Simulation

Flow time [49], [50], [51], [52], [53]

Simulation cost [55], [56]

Tardiness [54], [52]

Throughput [52]

Dispatching rule

Flow time [14], [15], [57], [58], [59]

Tardiness [61], [62], [60]

Throughput [60], [63]

Utilization [58], [63], [64]

Support vector regression
Flow time

[65]
Utilization

Meta-heuristic

Flow time [19], [29], [66]

Tardiness [30]

Throughput [26]

Utilization [19], [31]

Case-based reasoning Utilization [34]

Mathematical programming

Flow time [27], [67]

Tardiness [68], [69]

Throughput [28]

Utilization [21], [25], [28]

Reinforcement learning
Flow time [70]

Throughput [23], [71], [72]

11

To resolve the disadvantages of meta-heuristics, such as a long computation time

to obtain solutions, Lim et al. [34] extended the earlier work in [31] using case-based

reasoning. Unfortunately, they failed to achieve as much resource utilization as the

existing method provides [31].

Studies were conducted to analyze dispatching decisions using the mathematical

formulation of part flow in RMLs [27, 68, 69]. To reduce complexity of the problem

of determining dispatching decisions, the works in [21, 25, 28, 67] divided RMLs

in different hierarchical layers. Furthermore, reinforcement learning based methods

also have been proposed to perform dispatching decisions in RMLs [71, 72, 23, 70].

These methods are characterized in that they attempted to improve the performance

of cumulative dispatching results rather than that of immediate dispatching results.

12

2.2 Neural network-based approaches to dispatching de-

cisions

Recently, there has been a considerable interest in using NNs for dispatching deci-

sions in various manufacturing domains [43, 74, 75]. Table 2.2 presents the summary

of the previous studies on dispatching decisions with the help of NNs. They are cat-

egorized into four cases according to subject.

The field of job shops have attracted attention among many researchers, and the

dispatching decision in the job shop system is traditionally known as a complex task

[47, 76]. Two NNs are proposed in order to decide different dispatching rules locally

for each resource [77]. Due to the structure of the developed NNs, the proposed

method was not robust to the number of resources.

An attempt was made to generate training datasets for NNs by using a GA,

which can obtain the optimal solution to job shop problems [44]. Although a trained

NN successfully yielded performances at the closest level to those of the GA, the

NN was designed solely to work for 6x6 job shop problems. Branke et al. [78] used

NNs to automatically design dispatching rules in a dynamic stochastic job shop

scenario. They also compared three different techniques for automated rule design:

NNs, a linear combination of attributes, and a tree representation. Their numerical

experiments indicated that NNs outperformed the rest for small-sized problems.

Meanwhile, a sensitivity analysis was conducted [47] in order to find which input

attributes of the NN has significant impact on the performance of dispatching results.

To be more specific, it measured the relative importance among the inputs of the

NN and illustrated how NN output is changed in response to variations in input.

A flow shop is different from the job shop in that all jobs follow the same process-

13

T
a
b

le
2
.2

:
O

v
er

v
ie

w
o
f

p
re

v
io

u
s

re
se

ar
ch

on
d

is
p

at
ch

in
g

d
ec

is
io

n
s

u
si

n
g

n
eu

ra
l

n
et

w
or

k
s.

S
u

b
je

c
t

R
e
fe

re
n

c
e
s

D
e
sc

ri
p

ti
o
n

J
ob

sh
o
p

[7
7]

T
w

o
N

N
s

th
at

d
ec

id
e

d
iff

er
en

t
d
is

p
at

ch
in

g
ru

le
s

lo
ca

ll
y

fo
r

ea
ch

re
so

u
rc

e

[4
4]

P
ri

or
it

iz
in

g
ea

ch
jo

b
u
si

n
g

N
N

an
d

G
A

[7
8]

A
u
to

m
at

ed
d
es

ig
n
in

g
d
is

p
at

ch
in

g
ru

le
s

th
ro

u
gh

n
et

w
or

k
re

p
re

se
n
ta

ti
on

[4
7]

C
on

d
u
ct

in
g

se
n
si

ti
v
it

y
an

al
y
si

s
of

th
e

eff
ec

ti
ve

n
es

s
of

th
e

in
p
u
t

va
ri

ab
le

s
of

N
N

F
lo

w
sh

op
[7

9]
A

d
ju

st
in

g
th

e
le

a
rn

in
g

ra
te

d
y
n
am

ic
al

ly
b
y

u
ti

li
zi

n
g

th
e

p
ro

p
os

ed
al

go
ri

th
m

[4
1]

D
et

er
m

in
in

g
th

e
w

ei
g
h
ts

of
th

e
N

N
w

it
h

th
e

d
ev

el
op

ed
S
A

F
M

S
[8

0]
A

ss
ig

n
in

g
d
iff

er
en

t
d
is

p
at

ch
in

g
ru

le
s

to
ea

ch
of

th
e

re
so

u
rc

es
u
si

n
g

se
lf

-o
rg

an
iz

in
g

m
ap

N
N

[8
1]

In
te

g
ra

ti
n
g

G
A

an
d

N
N

to
se

le
ct

th
e

op
ti

m
al

su
b
gr

ou
p

of
fe

at
u
re

s
fr

om
th

e
st

at
e

of
sy

st
em

R
M

L

[5
9]

S
el

ec
ti

n
g

d
is

p
a
tc

h
in

g
ru

le
s

w
h
en

d
es

ir
ed

p
er

fo
rm

an
ce

m
ea

su
re

s
ar

e
gi

v
en

[4
5]

A
p
p
ro

x
im

a
ti

n
g

th
e

o
p
ti

m
al

va
lu

e
fu

n
ct

io
n

u
si

n
g

N
N

[3
3]

D
y
n
am

ic
al

ly
d
et

er
m

in
in

g
th

e
p
ar

am
et

er
s

of
N

N
b
as

ed
on

re
al

-t
im

e
in

fo
rm

at
io

n
of

th
e

li
n
e

[8
2]

P
re

d
ic

ti
n
g

th
e

p
er

fo
rm

an
ce

of
th

e
d
is

p
at

ch
in

g
ru

le
se

le
ct

ed
b
y

d
ec

is
io

n
tr

ee

14

ing order [83]. Mouelhi-Chibani and Pierreval [41] suggested a NN based approach

for assigning the most suited dispatching rule to a resource each time the resource

becomes available. In their research, weights of the NN are determined with the

simulated annealing (SA) method rather than using training examples.

Unlike the flow shop, a hybrid flow shop (HFS) contains at least one stage that

consists of multiple resources [84]. The delta-bar-delta algorithm was developed to

further speed up the convergence of the weights of NNs in the HFS [79]. This algo-

rithm is tasked with adjusting the learning rate dynamically based on the variation

of training errors.

Some authors investigated how to use NNs in a flexible manufacturing system

(FMS) defined in [85]. On the one hand, Shiue and Guh [81] presented a hybrid

learning framework that integrates a NN and GA to select the optimal subgroup of

features from the state of the FMS. Although the performance of the framework is

superior to other machine learning methods, it takes an excessively long computation

time to discover the chromosomes and determine the learning parameters of the NN.

Meanwhile, Guh et al. [80] developed a method to assign different dispatching

rules in each of the resources using self-organizing map (SOM) NNs. In detail, the

proposed method determines appropriate multiple dispatching rules (MDRs) for a

specific period. The results showed that their method outperforms two alternatives

with the same dispatching rule in all resources.

Adding to this, many studies were carried out on the dispatching decisions using

NNs in RMLs [33, 45, 59, 82]. To take a closer look, Min and Yih [59] proposed an

approach for the selection of dispatching rules when desired performance measures

are given with the status of the RML. However, they made an unsuccessful effort

15

to obtain high quality datasets of dispatching decisions, which has been left to be

addressed.

In order to dynamically determine the parameters of a NN, Li et al. [33] devised

an adaptive dispatching rule (ADR) that takes into account real-time state informa-

tion of RMLs. They demonstrated that their method was superior to the existing

dispatching rules by doing numerical experiments on semiconductor fabrication fa-

cilities.

A hybrid knowledge discovery framework was developed to decide the most ap-

propriate dispatching rule using a decision tree and NN [82], which are responsible

for selecting one among the existing dispatching rules, and then predicting the per-

formance of the selected rule. In addition, Zhou et al. [45] attempted to approximate

the optimal value function by using a NN. More specifically, they presented a dy-

namic dispatching approach for RMLs by combining dynamic programming (DP)

with DNNs.

In spite of the fact that previous research successfully addresses the use of NNs for

dispatching decisions on various manufacturing systems, most conventional methods

can learn dispatching strategies only if training datasets are obtained from optimal

solutions. This only implies inefficiency as their methods necessitate a solver that

yields optimal solutions for given problems. Furthermore, as mentioned above, they

do not factor in intentional delay decisions, which can possibly improve performance

if they are done properly.

16

Chapter 3

Problem Definition

3.1 Multiple-chip product (MCP) assembly lines

We consider a multiple-chip products (MCPs) assembly line for semiconductor man-

ufacturing which is the most representative one of RMLs [17]. MCP production in-

volves complex and correlated assembly stages consisting of backlap, wafer sawing,

die attach (DA), wire bonding (WB), and molding [29, 61]. Especially, in the DA and

WB stages, wafers are grouped as a lot and processed by a resource. Here, assigning

a lot to a resource is referred to as the lot dispatching decision.

For producing the large capacity MCPs, frequently re-entrant lots between the

DA and WB stages are necessary to assemble multiple chips into one single pack-

aging module [61]. In particular, the capacity of MCP tends to be proportional to

the number of visits to these stages [31]. The WB stage is usually considered as a

bottleneck compared to the DA stage due to its extremely long processing time for

soldering a number of wires to each die [86]. To efficiently operate assembly lines,

maintaining high utilization of resources in the WB stage is essential.

To manage the WIP level, in an attempt to decrease the flow time without loss

in resource utilization of the bottleneck stage, in this thesis, we focus on controlling

the lot flow in the DA stage. This is because the lot dispatching decision in a non-

17

bottleneck stage has a significant impact on the WIP level of an assembly line [54, 86].

Furthermore, the utilization of the DA stage is not necessary to be kept high if that

of the WB stage does not decrease because the throughput of the assembly line is

determined by the bottleneck stage [15].

For lot dispatching in the bottleneck stage, a higher utilization rate of resources

can be achieved simply by processing lots primarily with longer processing time

[86, 87]. Therefore, the lot dispatching decisions of the WB stage in this thesis are

carried out by using the rule that assigns a high priority level to the lot which has

the longest processing time for a resource.

We are given a set of resource types, M = {Mq|q = 1, ..., NM}, where Mq is as-

sociated with nq resources, Rq,1, ..., Rq,nq . For each operation, its available resources

and processing time are determined according to the resource type. There is a set

of job types, J = {Ji|i = 1, ..., NJ}, where Ji consists of a sequence of operations

specified in a predetermined order. We represent the jth operation of Ji as Oi,j , and

A(Oi,j) indicates a set of resource types capable of processing Oi,j . The kth lot for Ji

is denoted as Li,k, k = 1, ..., ni, where ni is the number of lots of type Ji. Thus, Li,k

is processed according to the operation sequence corresponding to Ji, and I(Li,k)

returns the smallest index among those of the operations waiting to be processed.

Additionally, the processing time of a lot is to be proportional to the number of

chips in the lot.

Fig. 3.1 illustrates the lot flow of the MCP production process considered in this

thesis. Specifically, a lot is required to be processed in the DA stage prior to the

WB stage, and the final operation of a lot is to complete in the WB stage. The

dashed line at the bottom represents the flow of lots which revisit the DA stage

18

C
as

se
tte

st
oc

ke
r

R
es

ou
rc

e

bu
ffe

r

D
A

re
so

ur
ce

W
B

 r
es

ou
rc

e

W
B

st
oc

ke
r

D
A

st
oc

ke
r

Lo
t

N
ew

ly
 a

rr
iv

ed

T
o

D
A

 s
to

ck
er

T
o

W
B

 s
to

ck
er

T
o

W
B

re
so

ur
ce

 b
uf

fe
r

T
o

M
D

 s
ta

ge

T
o

D
A

re
so

ur
ce

 b
uf

fe
r

T
o

D
A

re
so

ur
ce

 b
uf

fe
r

D
A

 s
ta

g
e

W
B

 s
ta

g
e

F
ig

u
re

3
.1

:
L

ot
fl

ow
o
f

D
A

an
d

W
B

st
ag

es
in

M
C

P
p

ro
d

u
ct

io
n
.

19

after finishing the WB operation.

As shown in Fig. 3.1, there are three types of stockers, namely cassette, DA,

and WB stockers where lots stay temporarily. First, the cassette stocker provides

locations for where newly arrived lots wait for the first DA operation. Next, the DA

stocker is a re-entrant stocker where lots that have completed a WB operation wait

for the re-entrance to the next DA operation. Finally, the WB stocker is where lots

that have completed a DA operation wait before they enter their WB operation.

Lots in either the cassette or DA stockers are transported to the WB stocker after

DA operations are finished. This means that newly arrived and re-entrant lots are

located together in the WB stocker, which yields complex lot flows. For this reason,

it becomes challenging to manage the WIP level of the WB stocker at appropriate

level, which is highly likely to decrease the utilization of the WB resources or increase

the waiting time of lots in the WB stocker.

In front of each resource, there is a resource buffer in which a lot waits for

the operation until the resource becomes idle. The capacity of a resource buffer

is assumed to be one. A lot is not interrupted once its operation starts, and an

operation is carried out by one resource at a time. Additionally, it is assumed that

there is no setup time between lots of different job types.

Regarding MCP assembly lines under the characteristics described above, we

aim to minimize the waiting time of lots and the idle time of WB resources in order

to reduce the flow time while maintaining high utilization of the bottleneck stage.

This is due to the fact that the flow time consists of processing time, moving time,

and waiting time. Since the processing and moving time are necessary to complete

all operations of a lot, the reduction in flow time is mainly achievable by decreasing

20

To-DA-

Stocker

In-DA-

Stocker

At-WB-

Resource

Status

Intentional

delay
None Less More

Candidate lots

DA

stocker

Cassette

stocker

In-Cassette-

Stocker

Figure 3.2: Candidate lots according to status and intentional delay.

the waiting time. Furthermore, the average utilization rate of the resources increases

as resources perform operations with shorter idle periods [17].

3.2 Lot dispatching process in MCP assembly lines

A candidate lot refers to one that is assignable to a DA resource when its resource

buffer is empty. The types of a candidate lot according to its status are illustrated in

Fig. 3.2. A lot dispatching method determines the assignment between a candidate

lot, Li,k, and a DA resource with an empty resource buffer, Rq,s, based on the

decision policy if Mq ∈ A(Oi,I(Li,k)). Furthermore, once a lot is dispatched, it is

excluded from the candidate lots.

For a DA resource, a lot can be moved from the stocker to the DA resource

buffer immediately whenever a candidate lot whose status is In-Cassette-Stocker

or In-DA-Stocker is selected to be dispatched. Otherwise, in case that a candidate

lot whose status is either To-DA-Stocker or At-WB-Resource is selected, this results

in an intentional delay on the DA resource due to the additional time to carry out

21

the remaining WB operation and/or to arrive at a DA stocker. The details of how

the dispatcher assigns a lot to a DA resource are described in Figure 3.3. The bottom

part of the step 3 shows the time for each lot to arrive the DA resource after the lot

is selected by the dispatcher.

In particular, the flow time of a lot begins to be measured when the lot in the

cassette stocker is dispatched. This is a well-known practice in MCP assembly lines

where the product type of each lot is determined when the first operation of the lot

is performed. In other words, the time lots spend in the cassette stocker is not the

interest in terms of WIP management.

In the WB stage, intentional delays are not necessary since high utilization of

resources should be achieved. Accordingly, among the lots in the WB stocker, the lot

with longest processing time is assigned to a WB resource when its resource buffer

is empty.

22

Empty DA

resource buffer

Step 1: Occurrence of empty DA resource buffer

Step 2: Dispatcher-executed selection of one of the candidate lots

Step 3: Process of assigning the selected lots according to their status

(a) In-Cassette-
Stocker

(b) In-DA-Stocker

(c) To-DA-Stocker (d) At-WB-Resource

Moving time

(To resource buffer)

DA

stocker
DA

resource

WB

resource

DA

stocker
DA

resource
Stocker DA

resource

Moving time

(To DA stocker and resource buffer)

Processing time + Moving time

(To DA stocker and resource buffer)

(a)

(b)

(c)

(d)

Figure 3.3: Illustration of how the dispatcher assigns a lot to a DA resource.

23

Chapter 4

Frameworks for Data Generation and
Performance Evaluation

In this chapter, we present a DEBS and monitoring tool which are essential for

generating training data and evaluating the performance of dispatching decisions.

Python and JavaScript are adopted to implement DEBS and the monitoring tool,

respectively, as their programming language.

4.1 Discrete event-based simulator

4.1.1 Purpose of implementation

A discrete event simulation (DES) is a widely used approach to analyzing and un-

derstanding the dynamics of manufacturing lines. It is a highly flexible tool that can

evaluate different alternatives of system configurations and operation strategies to

determine decisions in the manufacturing lines [88]. Under this rational, the purpose

of implementing DEBS directly in this thesis can be summarized in three ways.

The first purpose is to simulate real-world RMLs where practical constraints and

various types of events exist. A DEBS is required to perform dispatching decisions

in the situation where resource types capable of processing an operation are deter-

mined. The resource buffer capacity and the physical path of the lot should also be

24

considered. Furthermore, implementation is carried out on an event with an empty

resource buffer as well as all events that change the state of the manufacturing line.

More importantly, the second aim is to generate training data used for DNNs.

When a lot dispatching decision is required, a DEBS has to extract desired informa-

tion from various parameters representing the status of RMLs. After all simulations

are completed, the extracted information is printed in the form of a vector suitable

for the input layer of the DNN.

Finally, KPIs such as waiting time, idle time, WIP level and resource utilization

are calculated by a DEBS. The KPI calculations are used to evaluate dispatching

results and compare the proposed method with the existing methods. In addition,

a DEBS is in charge of generating a text file used as input data of the monitoring

tool. The text file contains not only the information needed to illustrate the Gantt

chart but also the information captured at the time each dispatching decision being

made.

4.1.2 Details of the structure

Fig. 4.1 depicts the overall process of the proposed DEBS, which is a simulator where

state changes happen exclusively in discrete instances in time. In other words, not

any change in state occurs by the DEBS between two consecutive events [89]. The

description of each component of the DEBS is as follows.

Input

The input of the DEBS includes: (a) resource-related information that contains re-

source types, the number of resources, and operations that each resource can process;

25

In
it

ia
liz

at
io

n
N

o
E

ve
n

t
L

is
t

is

n
u

ll?

Y
es

E
ve

n
t

L
o

o
p

E
ve

n
t

Ty
p

e?

O
p

er
at

io
n

 F
in

is
h

E
ve

n
t

M
o

ve
 T

o
 B

u
ff

er

F
in

is
h

 E
ve

n
t

S
or

tin
g

ev
en

t l
is

t b
y

tim
e

M
o

ve
 T

o
 S

to
ck

er

F
in

is
h

 E
ve

n
t

E
m

p
ty

 B
u

ff
er

E
ve

n
t

K
P

I &

G
an

tt
 c

h
ar

t

In
p

u
t

C
an

d
id

at
e

L
o

t

W
ai

ti
n

g
 E

ve
n

t

Id
le

 R
es

o
u

rc
e

W
ai

ti
n

g
 E

ve
n

t

W
ai

ti
n

g
 E

ve
n

t

P
ro

ce
ss

in
g

F
ig

u
re

4.
1:

S
tr

u
ct

u
re

o
f

D
E

B
S

(D
is

cr
et

e
E

ve
n
t

B
as

ed
S

im
u

la
to

r)
.

26

(b) job-related information, including job types, the operation sequence of each job

type, the number of lots assigned to each job type, and the number of chips in each

lot; and (c) physical constraints which determine processing and moving time for

lots, the capacity of a resource buffer, and whether pre-emption is allowed.

Initialization

Based on the input, the initialization step builds a set of variables for representing

the status of a RML and calculating the performance of dispatching decisions. These

variables are used to generate vectors for a DNN when a lot dispatching decision

is required. Furthermore, this step creates an event list and data structures for the

monitoring tool.

Another important role of the initialization step to play is to insert initial events

into the event list. As all resource buffers of the RML are empty, multiple lot dis-

patching decisions are required in this step. After lot dispatching decisions are de-

termined, each event corresponding to each decision is generated and added to the

event list.

Event loop

An event contains information of the lot and resource related to the event, and

timestamp. The timestamp indicates the time when the state changes due to the

processing of the event. In addition, the generation of an event leads to the deter-

mination of its type. There are six types of events as shown in Fig. 4.1.

An event loop is a loop that is terminated when all events on the event list

are exhausted. This loop repeatedly consumes and processes events on the list by

27

Table 4.1: Descriptions on the event types for the event loop.

Event Description
Generated
event

Operation-

Finish

Event triggered when a resource finishes
processing a lot

Move-To-

Stocker-Finish

Empty-Buffer
Event triggered when a resource buffer is
empty

Move-To-

Buffer-Finish

Move-To-

Buffer-Finish

Event triggered when a lot arrives at a
resource buffer

Empty-Buffer,
Operation-

Finish

Move-To-

Stocker-Finish

Event triggered when a lot arrives at a DA
or WB stocker

-

Candidate-Lot-

Waiting

Event waiting for candidate lots for a
resource with an empty resource buffer

Move-To-

Buffer-Finish

Idle-Resource-

Waiting

Event waiting for a resource to become idle
to process the lot in the resource buffer

Empty-Buffer,
Operation-

Finish

ascending order of timestamp among the rest. This process executes some code of

the DEBS to materialize an appropriate change in state, which is likely to result in

the generation of a new event. The details of events are summarized in Table 4.1.

If an Operation-Finish event is selected on the event list, a resource finishes

processing a lot and the status of the resource becomes idle. If the lot has remaining

operations, a DEBS sends the lot to the stocker for the next operation and generates

a Move-To-Stocker-Finish event.

An Empty-Buffer event is an event requiring a lot dispatching decision. When

this type of event is triggered, a DEBS creates a list of candidate lots for the resource

with an empty resource buffer. If there is no candidate lot for the resource, the

DEBS adds a Candidate-Lot-Waiting event whose timestamp is ∞ to the event

list. Otherwise, a lot dispatching decision is made via a lot dispatching method.

28

Once a lot is assigned to an empty resource buffer as a result of the lot dispatching

decision, a Move-To-Buffer-Finish event is generated.

When a Move-To-Buffer-Finish event is selected on the event list, a lot ar-

rives at a resource buffer. If the resource is processing the other lot, a DEBS adds

an Idle-Resource-Waiting event whose timestamp is ∞ to the event list. Oth-

erwise, the resource starts to process the lot in the resource buffer, which causes

Empty-Buffer and Operation-Finish events to be included on the event list.

A Move-To-Stocker-Finish event is triggered when a lot with remaining op-

erations arrives at the stocker for the next operation. This event is different from

other types of events in that it changes the state but does not generate a new event.

Since the timestamp of waiting events is∞, Candidate-Lot-Waiting and Idle-

Resource-Waiting events are not able to be selected in the event loop. Therefore,

for each iteration of the event loop, a DEBS performs waiting event processing after

any event with a finite timestamp is selected among the four events.

In the waiting event processing, for Candidate-Lot-Waiting events, a DEBS

searches for candidate lots of the resource associated with each Candidate-Lot-

Waiting event. If there is a candidate lot of any resource, the waiting event of the

resource is removed from the event list. Then, a lot dispatching decision is made

by a lot dispatching method, and a Move-To-Buffer-Finish event is added to the

event list.

Meanwhile, a DEBS checks out the idleness of each resource related to Idle-

Resource- Waiting events. If a resource is idle, the lot in the resource buffer starts to

be processed by the resource Consequently, Empty-Buffer and Operation- Finish

events are to be added to the event list. Then, the Idle-Resource-Waiting event

29

corresponding to that resource is removed from the event list.

KPI and Gantt chart

Once the event list is exhausted, KPIs such as waiting time, idle time, and resource

utilization are calculated by a DEBS. Furthermore, the DEBS yields the simulation

log containing the entire dispatching history, which is used to generate training

datasets for NNs.

For the monitoring tool, DEBS also writes a text file in JSON (JavaScript Object

Notation) format, which can be easily parsed in different programming languages

[90, 91]. Based on the text file, the monitoring tool illustrates a Gantt chart for the

sequence of dispatched lots of each resource. In addition, the text file contains the

information of the RML at the time each lot dispatching decision being made.

4.2 Monitoring tool

4.2.1 Purpose of implementation

Gantt chart is known as a basic schedule representation tool that displays each

resource’s operational status by changing the color or position of bars [92, 93]. A

few studies attempted to extend the basic Gantt chart. Jo et al. [94] proposed a

framework containing algorithms to explore the schedule of large-scale manufactur-

ing lines. An interface was also proposed by [95] to deal with specific disruptions in

resources and the historical analysis of manufacturing line performance.

Although the previous research successfully improved the basic Gantt chart, their

framework has limitations in performing the analysis of dispatching decision units.

Therefore, we propose a novel monitoring tool with additional functions needed

30

to monitor KPIs and analyze RTD performances. The purpose of developing the

monitoring tool is presented as follows.

One of the most important purposes is to display a variety of information about

RMLs at the time each lot dispatching decision being made. The monitoring tool is

required to present figures including all alternatives, the amount of WIP, the number

of resources in operation. Through examining these values, a user can analyze the

reason why the lot dispatching decisions were conducted. The results of the analysis

are based on improving the learning framework or the decision making method of

the proposed dispatchers.

The second purpose is to illustrate how various performance indicators change

over time. Since dispatching decisions occur sequentially, it is important to observe

indicators that change in value according to the decisions made. Therefore, the

proposed monitoring tool is essential to presenting time-dependent changes in indi-

cators such as the amount of WIP, resource utilization, and the number of lots that

complete all operations.

Finally, the monitoring tool is required to be designed to compare multiple dis-

patching results. As there are a few indicators that represent the performance of

dispatching decisions, it is challenging to simply compare and analyze multiple dis-

patching results. Accordingly, the proposed function provides the ability to compare

the performances of multiple RTDs with DNNs learned under different parameters

in a single screen.

31

(A)
(B) (C)

Figure 4.2: Main screen of the monitoring tool.

4.2.2 Details of functions

The main screen of the monitoring tool is presented in Fig. 4.2. A user can load

a DEBS-generated text file by pushing the ‘Choose file’ button on the upper left

side (A). When a text file is loaded, the ‘Time Lines’ tab (B) displays several views

in the bottom box. The ‘Compare Page’ (C) shows the performances of multiple

dispatching results on a page when text files are additionally loaded.

Resource view

Fig. 4.3 illustrates the resource view when a text file is loaded with the ‘Choose

file’ button pushed. This view differs from the existing Gantt chart. The idle periods

caused by intentional delays are shown differently from those by the lack of WIP. The

former is visualized in the form of a rectangle filled with diagonal stripe patterns;

32

Idle period caused by an Intentional delay

Idle period caused by the lack of WIP

Figure 4.3: Resource view of the monitoring tool.

while the latter is shown in the shape of simple white rectangles.

If a user selects any operation in the resource view, the screen switches to the

one shown in the Fig. 4.4. The selected operation is highlighted and surrounded by

a red line (A), and only the operations that belong to the lot corresponding to the

selected operation are displayed on the screen. The vertical red line (B) signifies the

decision time - the time at which the lot dispatching decision corresponding to the

selected operation was made.

Furthermore, a pop-up window shows up, elaborating the properties of the lot

and resource involved in the lot dispatching decision and the status of the RML at the

decision time. Specifically, the first column (C) shows lot-related information such

as the number of chips, operation type, and the start and end time of the operation

in the resource. The job and resource types of the lot and resource involved in the

33

lot dispatching decision are presented in the second column (D). The last column

(E) displays RML-related properties including the amount of WIP, the number of

resources in operation, and the number of lots that departed the cassette stocker at

the decision time.

Finally, the table at the bottom (F) represents alternatives, including the one

chosen as a result of the dispatching decision at the decision time. For each alter-

native, lot-related information and the scores marked in terms of waiting and idle

time are presented. In detail, lot-related information includes the operation type of

the lot and the location where the lot stays at the decision time, and the job type

of the lot.

34

(B
)

(A
)

(C
)

(D
)

(E
)

(F
)

F
ig

u
re

4
.4

:
D

ec
is

io
n

w
in

d
ow

of
th

e
re

so
u

rc
e

v
ie

w
.

35

Statistics view

The statistics view illustrates how the four performance indices change over time

as shown in Fig. 4.5. The upper left graph (A) shows the amount of WIP for DA

and WB stages, which means the numbers of lots in the DA and WB stockers,

respectively. The number of lots that departed the cassette stocker per day for each

job type is visualized in the upper right graph (B).

The bottom left graph (C) with the increasing trends indicates the number of

lots with all operations complete. Finally, the graph on the bottom right represents

the resource utilization at each stage. The values in the graph mean the number

of resources processing a lot for each stage that is divided by the total number of

resources in the corresponding stage.

36

(A
)

(C
)

(B
)

(D
)

F
ig

u
re

4
.5

:
S
ta

ti
st

ic
s

v
ie

w
of

th
e

m
on

it
or

in
g

to
ol

.

37

Figure 4.6: KPI view of the monitoring tool.

KPI view

As shown in Fig. 4.6, the KPI view shows the performances yielded after all dispatch-

ing decisions are completed. Unlike other views of the monitoring tool, this function

shows the overall performance rather than time-based changes or information on

dispatching decision units.

To be more specific, ‘Average WIP level’ is calculated as the average of the

number of WIPs that are recorded every time that of WIPs changes. ‘Total flow

time’ indicates the sum of the flow time of all lots while ‘Total waiting time’ means

the sum of the waiting time of all lots. Here, waiting time is the sum of the time

38

that a lot waits in stockers or resource buffers from the start of the first operation

to the completion of all operations.

The average utilization rate of resources is calculated separately for each stage.

‘DA resource utilization’ is calculated as the average of the utilization of DA re-

sources. The utilization of each resource is obtained by dividing the total processing

time of the operations assigned to the resource by the dispatching horizon which

represents a time period for which the lots necessary for satisfying production re-

quirements are dispatched. Similarly, the value of ‘WB resource utilization’ is also

obtained.

WIP charts

Fig. 4.7 visualizes the amount of WIP in more detail than the statistics view does.

In WIP charts, the number of graphs represented is twice that of job types which

appear on the assembly line. Specifically, a row is generated to illustrate how the

amount of WIP for each job type changes over time. The row is divided into two

columns, each of which contains a graph.

A graph in the left column (A) shows the amount of WIP for DA and WB

stages, which means the number of lots belonging to one job type in the DA and

WB stockers, respectively. On the other hand, a graph in the right column (B)

indicates the amount of WIP for each operation type, which means the number of

lots belonging to the corresponding operation type in stockers.

39

(A
)

(B
)

F
ig

u
re

4
.7

:
W

IP
ch

ar
ts

of
th

e
m

on
it

or
in

g
to

ol
.

40

Compare page

The ‘Compare page’ is activated when multiple text files are loaded, allowing a user

to compare multiple dispatching results on a single screen. As shown in Fig. 4.8, this

page lists KPI and statistics views for each text file in the vertical direction, and a

column in the same format is added whenever text files are additionally loaded.

41

F
ig

u
re

4
.8

:
C

om
p

ar
is

on
p

ag
e

of
th

e
m

on
it

or
in

g
to

ol
.

42

Chapter 5

Deep Neural Network Based Dispatcher

Fig. 5.1 depicts the overall process of the proposed approach. In the training phase,

we deploy a simulator that executes the DA and WB stages in MCP production

as shown in Fig. 3.1 to generate simulation logs. By utilizing the simulator, all lot

dispatching decisions of a problem are determined using a random decision generator

(RDG) which is responsible for randomly assigning one of the candidate lots to a DA

resource with an empty buffer. The performances of the decisions by RDG are then

measured, and the scored simulation logs will be used by a learning algorithm to

train the DNNs embedded in RTDs. In the real-time dispatching phase, for a given

test problem, the simulator calls the trained dispatcher whenever a lot dispatching

decision is required.

In this thesis, we propose two DNN based RTDs with different decision-making

processes. The first one is a real-time rule selection dispatcher (RTRD). It determines

the best dispatching rule among the existing ones at the time when a lot dispatching

decision is required. According to the determined rule, one of the candidate lots is

assigned to a DA resource with an empty resource buffer. Secondly, a real-time lot

selection dispatcher (RTLD) marks scores for all candidate lots and assigns the lot

with the highest score to the DA resource. The details of RTDs are described in the

43

following sections.

44

S
co

re

ge
ne

ra
to

r

Le
ar

ni
ng

al
go

rit
hm

R
ea

l-w
or

ld

as
se

m
bl

y
lin

e

R
ea

l t
im

e

di
sp

at
ch

er

T
es

t

pr
ob

le
m

T
ra

in
in

g
D

at
a

S
im

ul
at

io
n

lo
g

S
im

ul
at

or
T

ra
in

in
g

pr
ob

le
m

R
ep

ea
t N

tim
es

Deploy trained DNN to the proposed dispatcher

P
ro

bl
em

A
ss

em
bl

y
lin

e

M
at

ch
in

g
ve

ct
or

s

Lo
t d

is
pa

tc
hi

ng

R
an

do
m

de
ci

si
on

ge
ne

ra
to

r

M
at

ch
in

g
ve

ct
or

s

Lo
t d

is
pa

tc
hi

ng

D
ec

is
io

n
m

ak
er

R
ea

l t
im

e
di

sp
at

ch
in

g
ph

as
e

T
ra

in
in

g
ph

as
e

F
ig

u
re

5
.1

:
O

ve
ra

ll
st

ru
ct

u
re

of
th

e
p

ro
p

os
ed

ap
p

ro
ac

h
.

45

5.1 Real-time rule selection dispatcher

5.1.1 Dispatcher structure

Fig. 5.2 illustrates the architecture of RTRD which consists of five layers: an input

layer, three hidden layers, and an output layer. The input layer contains 37 nodes,

and the number of nodes in each hidden layer are 64, 32, and 16, respectively,

whereas the output layer has one node. The numbers of hidden layers and nodes

in the hidden layers are empirically determined to reduce the training error. The

rectified linear unit (ReLU), f(z) = max(0, z), is applied before each hidden layer

in order to provide a non-linear transformation, and all layers are fully connected

[96].

Output layer

Hidden layersInput layer

ReLUReLUState vector

Action vector

ReLU

Figure 5.2: The structure of RTRD.

The input layer can be divided into two groups: state and action vectors. The

former describes the status of an MCP assembly line when a particular DA resource,

46

Rq,s, has an empty resource buffer, while the latter indicates the dispatching rule

used to select the lot to be assigned to Rq,s. We propose the components of the state

vector, and then introduce dispatching rules for the action vector.

Table 5.1 presents the details of the state vector for Rq,s. From the state vector, a

RTRD is capable of capturing the characteristics of candidate lots and the flow of lots

in the assembly line. This is the basis on which the RTRD determines dispatching

rules for Rq,s. Specifically, the state vector contains 26 features that are categorized

into DA resource, statistics of candidate lots, and the distribution of lots as shown

in Table 5.1. First, a single feature associated with Rq,s indicates how much time

remains until Rq,s becomes idle.

Next, the 12 features associated with candidate lots represent the minimum,

maximum, and average values of the four attributes that each lot has. The four

attributes are: the time when the lot departed the cassette stocker, the number of

chips in the lot, the number of the remaining operations to be processed, and the

processing time on Rq,s. Other attributes of the lot were excluded since they are

not related to the performance measures that are considered in this thesis. RTRD

utilizes the statistics of all candidate lots rather than the characteristics of each

one because RTRD is not able to specify the lot to be assigned to Rq,s until the

dispatching rule is determined, which differentiates RTRD from RTLD.

Finally, each feature belonging to the lot distribution includes the number of lots

that correspond to one of the 13 different locations, covering all areas where a lot

can exist in assembly lines. With these features, the proposed dispatcher knows not

only the distribution of lots in the assembly line, but also the progress of the overall

processes.

47

Table 5.1: Components of the state vector for Rq,s of RTRD.

Categories Descriptions

DA resource The time remaining until Rq,s becomes idle

Statistics of
candidate lots

Earliest time when lots depart the cassette stocker

Latest time when lots depart the cassette stocker

Average time when lots depart the cassette stocker

Minimum number of chips in lots

Maximum number of chips in lots

Average number of chips in lots

Minimum number of remaining operations assigned to lots

Maximum number of remaining operations assigned to lots

Average number of remaining operations assigned to lots

Minimum processing time of lots on Rq,s

Maximum processing time of lots on Rq,s

Average processing time of lots on Rq,s

Lot
distribution

of lots in the cassette stocker

of lots being moved from the cassette stocker to DA resource buffers

of lots in DA resource buffers

of lots being processed on DA resources

of lots being moved from WB stocker to WB resource buffers

of lots in WB resource buffers

of lots being processed on WB resources

of lots being moved from WB resources to the DA stocker

of lots in the DA stocker

of lots being moved from the DA stocker to DA resource buffers

of lots being moved from DA resources to the WB stocker

of lots in the WB stocker

of lots that completed all operations

48

Table 5.2 summarizes dispatching rules used to generate the action vector for

Rq,s, and the manners in which each rule chooses one of candidate lots. Each rule was

modified to be used in the assembly line considered. Among the existing dispatching

rules, we chose the ones that affect the waiting time of lots and the utilization of

resource [62, 97]. STOCKER is a rule developed in this thesis according to the

assembly line considered herein.

When a lot dispatching decision is required, an 11-dimensional action vector

with zero values of all elements is generated. Then, if a specific dispatching rule is

selected, the value of 1 is assigned to the element corresponding to that rule in the

action vector. For example, in the case of MOR, the form of the action vector is

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) while LPT generates (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0).

The output layer represents the preference score of the input vector. All values

in each node are normalized to a range [0, 1] using the min-max normalization to

accommodate the inconsistencies of different units [98].

5.1.2 Training phase

In the training phase, each generated problem is solved multiple times by using

RDG which is responsible for randomly selecting one of dispatching rules presented

in Table 5.2. Once all lot dispatching decisions of each problem are determined by

RDG, the generated simulation log containing the entire dispatching history each

of which consists of a dispatched lot and an assigned DA resource, and their input

vector is sent to the score generator.

The score generator evaluates each lot dispatching decision based on the waiting

time of the dispatched lot and the idle time of the WB resource that processed the

49

T
ab

le
5.

2:
D

is
p

a
tc

h
in

g
ru

le
s

u
se

d
to

ge
n

er
at

e
th

e
ac

ti
on

ve
ct

or
fo

r
R

q
,s

of
R

T
R

D
.

R
u

le
s

H
o
w

to
se

le
c
t

o
n

e
a
m

o
n

g
c
a
n

d
id

a
te

lo
ts

F
IF

O
(F

ir
st

in
,

fi
rs

t
ou

t)
T

h
e

ol
d

es
t

lo
t

th
at

h
as

b
ee

n
d

is
p

at
ch

ed
fr

om
th

e
ca

ss
et

te
st

o
ck

er

L
O

R
(L

ea
st

op
er

at
io

n
re

m
ai

n
in

g)
T

h
e

lo
t

w
it

h
th

e
sm

al
le

st
n
u

m
b

er
of

su
cc

es
so

r
op

er
at

io
n

s

M
O

R
(M

o
st

op
er

at
io

n
re

m
ai

n
in

g)
T

h
e

lo
t

w
it

h
th

e
la

rg
es

t
n
u

m
b

er
of

su
cc

es
so

r
op

er
at

io
n

s

S
M

A
L

L
T

h
e

lo
t

w
it

h
th

e
sm

al
le

st
n
u

m
b

er
of

ch
ip

s

L
A

R
G

E
T

h
e

lo
t

w
it

h
th

e
la

rg
es

t
n
u

m
b

er
of

ch
ip

s

S
P

T
(S

h
or

te
st

p
ro

ce
ss

in
g

ti
m

e)
T

h
e

lo
t

w
it

h
th

e
sh

or
te

st
p

ro
ce

ss
in

g
ti

m
e

on
R

q
,s

L
P

T
(L

on
ge

st
p

ro
ce

ss
in

g
ti

m
e)

T
h

e
lo

t
w

it
h

th
e

lo
n

ge
st

p
ro

ce
ss

in
g

ti
m

e
on

R
q
,s

S
N

Q
(S

m
al

le
st

n
u

m
b

er
in

q
u

eu
e)

A
ft

er
gr

ou
p

in
g

lo
ts

w
it

h
th

e
sa

m
e
O

i,
I
(L

i,
k
),

se
le

ct
th

e
lo

t
of

th
e

gr
ou

p
w

it
h

th
e

sm
al

le
st

n
u

m
b

er
of

lo
ts

.

L
N

Q
(L

ar
ge

st
n
u

m
b

er
in

q
u

eu
e)

A
ft

er
gr

ou
p

in
g

lo
ts

w
it

h
th

e
sa

m
e
O

i,
I
(L

i,
k
),

se
le

ct
th

e
lo

t
of

th
e

gr
ou

p
w

it
h

th
e

la
rg

es
t

n
u

m
b

er
of

lo
ts

.

F
L

N
Q

(F
ew

es
t

lo
ts

at
th

e
n

ex
t

q
u

eu
e)

A
ft

er
gr

ou
p

in
g

lo
ts

w
it

h
th

e
sa

m
e
O

i,
I
(L

i,
k
)

in
th

e
W

B
st

o
ck

er
,

se
le

ct
th

e
lo

t
co

rr
es

p
on

d
in

g
to

th
e

gr
ou

p
w

it
h

th
e

sm
al

le
st

n
u

m
b

er
of

lo
ts

.

S
T

O
C

K
E

R
S

el
ec

t
on

e
of

lo
ts

in
th

e
ca

ss
et

te
or

D
A

st
o
ck

er
s

(T
h

e
lo

ts
in

q
u

es
ti

on
d

o
n

ot
ca

u
se

an
in

te
n
ti

on
al

d
el

ay
on

R
q
,s

).

50

lot. Here, the waiting time indicates the time during which a lot stays in the WB

stocker after being completed by a DA resource. In contrast, the idle time of WB

resource is calculated by subtracting the time at which its last operation ends from

the time at which it starts processing the lot.

For each dispatching decision, the score generator calculates score of the decision

in the range of [0, 1] according to the concept of min-max normalization [98]. The

formulas for calculating the waiting and idle scores are presented in Equations (5.1)

and (5.2), respectively. Here, w and l respectively stand for the waiting and idle time

related to a lot dispatching decision.

sw = max(−(
w − wmin

wmax − wmin
(smax − smin)) + smax, smin), (5.1)

sl = max(−(
l − lmin

lmax − lmin
(smax − smin)) + smax, smin), (5.2)

where wmin and wmax indicate the minimum and maximum values among all the

possible values of w. lmin and lmax stand for the minimum and maximum values

among all the possible values of l. Also, smin and smax refer to the minimum and

maximum values among the possible values of score.

In Equations (5.1) and (5.2), wmax and lmax are set to be twice the mean of

w and l values, respectively. This prevents a considerably high w and l from be-

ing converted to an unwanted positive score, which makes it possible to construct

well-balanced training data. This is reasonable because we do not focus on predict-

ing scores precisely; the primary aim is to determine the lot dispatching decision

expected to minimize the waiting and idle time.

51

Based on the training data generated by using two types of scores, sw and sl,

two DNNs, each of which correspond to each score, are trained to predict scores. As

a loss function, we used squared errors [99], defined as (sw − sprew)2 and (sl − sprel)2,

and the back-propagation training algorithm is used to minimize the loss function

[100]. Here, sw and sl are the calculated score values for a dispatching decision by

using Equation (5.1) and (5.2), respectively, and sprew and sprel mean the predicted

scores in terms of the waiting and idle time, respectively, for the decision in the

training phase.

The tth correction of the weights, denoted as θ, using the back-propagation

training algorithm, is described as

∆θt = −η ∂E

∂θt−1
+ α∆θt−1, (5.3)

where η means the learning rate, α is the momentum factor, and E is the total error

between the predicted score and the actual score and is expressed as

E =
1

2

Ns∑
i=1

(s(i)− spre(i))2 (5.4)

Here, s(i) and spre(i) are the actual and predicted scores for the ith training data,

respectively, and Ns is the total number of training data.

5.1.3 Real-time dispatching phase

In the real-time dispatching phase, when a DA resource buffer is empty, input vectors

of the number of dispatching rules presented in Table 5.2 are generated for the DA

resource. If multiple DA resource buffers are empty at the same time, this process

52

is performed on the first DA resource that is expected to be in the idle state.

The generated input vectors are given to RTRD as the input, and RTRD predicts

two types of scores for each vector. Then the final preference score of each input

vector is calculated by the following Equation (5.5).

totalscore = λw × sprew + λl × sprel , (5.5)

with λw + λl = 1. Value of λw is the weight or importance of the flow time of lots,

and λl is the weight or importance of resource utilization in the bottleneck stage. As

a result of the equation, the dispatching rule involved in the vector with the highest

totalscore is selected as the lot dispatching decision. Then, one of the candidate lots

is assigned to the DA resource according to the selected dispatching rule.

The proposed dispatcher is anticipated to reach a better lot dispatching decision

quickly compared to the conventional meta-heuristics through a simple calculation

using the weights predetermined during the training. Therefore, it is expected that

the proposed method can be introduced into the real-world assembly lines where lot

dispatching decisions are required to be determined in a real-time manner.

5.2 Real-time lot selection dispatcher

5.2.1 Dispatcher structure

Fig. 5.3 illustrates the architecture of RTLD with the same number of layers as

RTRD. The input layer contains 25 nodes, and the number of nodes in each hidden

layer are 64, 32 and 16, respectively, whereas the output layer has one node. As in

RTRD, the ReLU is applied before each hidden layer in order to provide a non-linear

53

transformation, and all layers are fully connected [96].

Output layer

Hidden layersInput layer

ReLUReLU

Lot-DA

assignment vector

ReLU

Figure 5.3: The structure of RTLD.

A pair of a lot among the candidate lots and a DA resource is represented as

a vector called a lot-DA assignment vector for the input to RTLD. Specifically,

Table 5.3 presents the components of the lot-DA assignment vector, for a particular

lot, Li,k, and a particular DA resource, Rq,s. The main difference between RTRD

and RTLD, when it comes to generating an input vector for DNN, is that RTRD

only utilizes information about the distribution of lots, while RTLD considers the

characteristics of each lot in the candidate lots.

Using the defined features of a lot-DA assignment vector, RTLD is capable of

predicting how long the lot waits in the WB stocker after it is processed by a DA

resource. Furthermore, the features provide a clue for estimating the idle time of the

WB resource that will process the lot involved in the vector. As a result, RTLD is

expected to be able to conduct lot dispatching decisions which reduce the waiting

54

T
a
b

le
5
.3

:
C

om
p

o
n

en
ts

o
f

th
e

lo
t-

D
A

as
si

gn
m

en
t

v
ec

to
r,

fo
r
L
i,
k

an
d
R

q
,s

.

C
a
te

g
o
ri

e
s

D
e
sc

ri
p

ti
o
n

s

C
on

fl
ic

ti
n
g

lo
ts

of
L
i,
k

#
of

co
n
fl
ic

ti
n
g

lo
ts

b
ei

n
g

m
ov

ed
fr

om
ca

ss
et

te
a
n
d

D
A

st
o
ck

er
s

to
D

A
re

so
u
rc

e
b
u
ff

er
s

#
of

co
n
fl
ic

ti
n
g

lo
ts

in
D

A
re

so
u
rc

e
b
u
ff

er
s

#
of

co
n
fl
ic

ti
n
g

lo
ts

b
ei

n
g

p
ro

ce
ss

ed
on

D
A

re
so

u
rc

es

#
of

co
n
fl
ic

ti
n
g

lo
ts

b
ei

n
g

m
ov

ed
fr

om
D

A
re

so
u
rc

es
to

a
W

B
st

o
ck

er

#
of

co
n
fl
ic

ti
n
g

lo
ts

w
ai

ti
n
g

in
th

e
W

B
st

o
ck

er

C
h
ar

ac
te

ri
st

ic
s

of
L
i,
k

#
of

ch
ip

s
in
L
i,
k

P
ro

g
re

ss
ra

te
o
f
J
i

(#
o
f

lo
ts

th
at

co
m

p
le

te
a
ll

o
p

er
at

io
n
s

a
ss

ig
n
ed

/
n
i)

T
h
e

sm
a
ll
es

t
in

d
ex

a
m

on
g

th
os

e
of

th
e

op
er

at
io

n
s

w
a
it

in
g

to
b

e
p
ro

ce
ss

ed
(I

(L
i,
k
))

#
of

W
B

re
so

u
rc

es
th

a
t

a
re

a
b
le

to
p
ro

ce
ss
L
i,
k

C
h
ar

ac
te

ri
st

ic
s

of
R

q
,s

T
h
e

re
m

a
in

in
g

ti
m

e
u
n
ti

l
R

q
,s

b
ec

om
es

id
le

P
ro

ce
ss

in
g

ti
m

e
o
f
L
i,
k

o
n
R

q
,s

D
el

ay
ti

m
e

T
h
e

in
te

rv
a
l

b
et

w
ee

n
th

e
ti

m
e

w
h
en

th
e

lo
t

d
is

p
at

ch
in

g
d
ec

is
io

n
is

m
ad

e
a
n
d

th
e

ti
m

e
w

h
en

L
i,
k

st
a
rt

s
b

ei
n
g

p
ro

ce
ss

ed
b
y
R

q
,s

L
ot

d
is

tr
ib

u
ti

on

#
of

lo
ts

in
th

e
ca

ss
et

te
st

o
ck

er

#
of

lo
ts

b
ei

n
g

m
ov

ed
fr

om
th

e
ca

ss
et

te
st

o
ck

er
to

D
A

re
so

u
rc

e
b
u
ff

er
s

#
of

lo
ts

in
D

A
re

so
u
rc

e
b
u
ff

er
s

#
of

lo
ts

b
ei

n
g

p
ro

ce
ss

ed
o
n

D
A

re
so

u
rc

es

#
of

lo
ts

b
ei

n
g

m
ov

ed
fr

om
W

B
st

o
ck

er
to

W
B

re
so

u
rc

e
b
u
ff

er
s

#
of

lo
ts

in
W

B
re

so
u
rc

e
b
u
ff

er
s

#
of

lo
ts

b
ei

n
g

p
ro

ce
ss

ed
o
n

W
B

re
so

u
rc

es

#
of

lo
ts

b
ei

n
g

m
ov

ed
fr

om
W

B
re

so
u
rc

es
to

th
e

D
A

st
o
ck

er

#
of

lo
ts

in
th

e
D

A
st

o
ck

er

#
of

lo
ts

b
ei

n
g

m
ov

ed
fr

om
th

e
D

A
st

o
ck

er
to

D
A

re
so

u
rc

e
b
u
ff

er
s

#
of

lo
ts

b
ei

n
g

m
ov

ed
fr

om
D

A
re

so
u
rc

es
to

th
e

W
B

st
o
ck

er

#
of

lo
ts

in
th

e
W

B
st

o
ck

er

#
of

lo
ts

th
at

co
m

p
le

te
d

a
ll

o
p

er
at

io
n
s

55

time of lots and the idle time of WB resources.

That is, the lot-DA assignment vector contains 25 features categorized into con-

flicting lots, the characteristics of the lot and DA resource, the delay time, and the

distribution of lots as shown in Table 5.3. First, the concept of conflicting lots is

introduced to represent lots that compete for WB resources. Lot, Li′,k′ , is called a

conflicting lot of Li,k if Li′,k′ and Li,k satisfy either of the conditions presented in

Equations (5.6) and (5.7).

A(Oi′,I(Li′,k′)
) ∩A(Oi,I(Li,k)+1) 6= ∅ (5.6)

A(Oi′,I(Li′,k′)+1) ∩A(Oi,I(Li,k)+1) 6= ∅ (5.7)

The five features corresponding to the conflicting lots of Li,k are presented in

Table 5.3 according to their status. Each feature represents the number of conflicting

lots that correspond to one of the five different states. RTLD is capable of capturing

the distribution of the lots by collectively using all these features.

Next, there are four features representing various characteristics of Li,k and two

for Rq,s. Features associated with Li,k include the number of chips in Li,k, the

progress rate of Ji, I(Li,k), and the number of WB resources capable of process-

ing Li,k. The last one is included as a feature to capture the degree of potential

conflict among the lots in the WB stage. In contrast to other features, this one

for Li,k has a fixed value according to its resource type required in the WB stage

regardless of the other lot dispatching decisions.

The first feature related to Rq,s is identical to that in the state vector of RTRD.

56

The second one is the processing time of Li,k on Rq,s, which indicates how long Li,k

will stays on Rq,s. The features corresponding to the lot distribution category have

the same meaning as those in the state vector of RTRD.

Finally, the delay time refers to how long it takes from the moment the lot

dispatching decision is made until Rq,s starts processing Li,k. If the status of Li,k is

In-Cassette-Stocker or In-DA-Stocker, the value of the delay time is calculated

as the sum of the time required for Li,k to move from the stocker to the buffer of Rq,s

and the time that Li,k spends in the buffer. Otherwise, the time required for Li,k

to move from the current location to DA stocker is added to the value mentioned

above. Through this feature, RTLD is capable of inferring whether or not Li,k causes

an intentional delay in Rq,s.

The output layer represents the preference score of the assignment vector. All

values in each node are normalized to a range [0, 1] using the min-max normalization

to accommodate the inconsistencies of different units [98].

5.2.2 Training phase

In the training phase, unlike in RTRD, RDG is responsible for randomly selecting

one among candidate lots. Accordingly, the distribution of candidate lots by status

is reflected in the probability that lot is selected by RDG. This leads to the result

that the generated simulation logs do not make a significant difference in terms of

performances when a problem is solved by RDG multiple times.

Therefore, to obtain various simulation logs in terms of the flow time and resource

utilization, for each simulation, the intentional delay level with a value between 0 and

1 is randomly selected. The intentional delay level close to one means a high prob-

57

ability of selecting lot whose status is To-DA-Stocker or At-WB-Resource, whereas

the intentional delay level close to zero indicates a high probability of selecting lot

whose status is in In-Cassette-Stocker or In-DA-Stocker.

Specifically, whenever a lot dispatching is required, a new random number with

a value between 0 and 1 is generated. If this random number does not exceed the

intentional delay level for that simulation, RDG makes a dispatching decision by

using only lots whose statuses are To-DA-Stocker or At-WB-Resource among can-

didates, to simulate the intentional delay by letting the DA resource associated with

the decision to be idle until the dispatched lot ready to be processed by the resource.

The remaining processes, after RDG completes all the lot dispatching decisions

of each problem, are identical to those in the training phase of RTRD.

5.2.3 Real-time dispatching phase

In the real-time dispatching phase, when a DA resource buffer is empty, lot-DA

assignment vectors for all the possible assignments between candidate lots and DA

resources are generated. The generated lot-DA assignment vectors are given to RTLD

as the input, and RTLD predicts the two types of scores, sprew and sprel , for each

vector.

Due to the fact that RTLD can evaluate individual lots unlike RTRD, another

score, called sd, is introduced to RTLD. The trained dispatchers are able to predict

the waiting time of the lots in the WB stocker. However, the time that lots spend

in the DA stocker can be easily overlooked. Although the DA stocker is not at a

bottleneck stage, the time during which a lot stays in the DA stocker has to be

addressed since the flow time naturally increases if lots stay in the DA stocker for a

58

long time. The formula for calculating sd is presented in Equation (5.8).

sd = max(−(
d− dmin

dmax − dmin
(smax − smin)) + smax, smin), (5.8)

where d represents the time during which a lot stays in the DA stocker after being

completed by a WB resource. Unlike sprew and sprel , the training phase for sd does

not have to be predicted since the value of sd is simply calculated by the simulator

when a lot dispatching decision is required.

Then, the final preference score of each input vector is calculated by the following

Equation (5.9).

totalscore = λw × sprew + λl × sprel + λd × sd, (5.9)

with λw + λl + λd = 1. The meanings of λw and λl are the same as those in RTRD

while a new term is added to Equation (5.5). The value of λd is the weight or

importance of lots’ waiting time in the DA stocker. Consequently, the lot and DA

resource involved in the vector with the highest totalscore are selected as the lot

dispatching decision. Then, the lot is assigned to the DA resource.

59

Chapter 6

Experiments

6.1 Datasets

To validate the proposed approaches, we prepared 12 datasets that correspond to

diverse configurations by varying the numbers of resources, job types, and lots, as

shown in Table 6.1. A lot is assigned a particular number uniformly distributed

between 100 and 750 when it comes to the number of chips it has. It is assumed that

dispatching practice is to satisfy as many production requirements as possible that

are given for the next 48 hours, as described in [34]. Production requirements for

the assembly line always exceed the line capacity and it takes more than 48 hours

to finish all the operations [31].

Datasets prepared for the experiments can be classified into four groups: datasets

1 to 3, 4 to 6, 7 to 9 and 10 to 12. Compared to datasets 1 to 6, datasets 7 to 12

represent the dispatching problems with the large number of job types. Furthermore,

the problems of datasets 4 to 6 have more resources than those of datasets 1 to 3,

and the same relationship goes with datasets 10 to 12 and datasets 7 to 9. The three

datasets in each group represent the different levels of difficulty for the dispatch-

ing problem of assembly lines. In this experiment, a level of difficulty is measured

in terms of the number of operations to complete the entire processing of lots. A

60

higher number of operations involved in a dataset leads to a greater computational

complexity in it because the number of decisions required to resolve problems in the

dataset increases proportionally.

In each dataset, 100 problems were generated by varying the quantity of the lots

and the total number of lots for each job type. Specifically, 30 and 20 problems were

used to train and validate, respectively, the proposed dispatcher, while, after it was

trained, the remaining problems were used to test the performance of the proposed

dispatchers. In the experiments, NM and NJ are set to be 6 and 8, respectively.

Specifically, for each problem, both the DA and WB stages have three different

resource types. For the problems with 16 resources, four and 12 resource are assigned

to DA and WB stages, respectively, and for the problems with 70 resources, 20 and

50 resources are assigned to DA and WB stages, respectively.

Table 6.2 represents the operations for each job type and resource types that can

perform each operation. The odd-numbered operations of a job type are assumed to

be processed in the DA stage, whereas the even-numbered operations are processed

in the WB stage. The last column in Table 6.2 shows the processing time of each

operation per chip in the corresponding resource type. Additionally, it takes 900

seconds for a lot to move from the stocker to the resource buffer, and vice versa.

6.2 Experiment settings

In the training phase, we generated simulation logs by solving each problem 100

times using RDG. The scores of the generated simulation logs were calculated by

the score generator based on Equations (5.1) and (5.2). The performance of lot

dispatching is measured by means of the waiting time of lots and the idle time of

61

T
a
b

le
6
.1

:
D

es
cr

ip
ti

on
s

on
th

e
d

at
as

et
s

u
se

d
fo

r
th

e
ex

p
er

im
en

ts
.

D
at

a
se

t
N

o.
N

u
m

b
er

o
f

re
so

u
rc

es
A

v
g
.

n
u

m
b

er
s

of
lo

ts
of

ea
ch

jo
b

ty
p

e
A

v
g.

n
u

m
b

er
of

op
er

at
io

n
s

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

1
1
6

3
3.

99
-

2
4.

33
24

.7
8

-
24

.4
8

14
.2

0
-

52
4.

90

2
1
6

2
4.

16
-

2
4.

62
24

.2
9

-
24

.3
0

24
.6

-
58

6.
56

3
1
6

1
4.

72
-

2
4.

68
24

.9
0

-
25

.0
6

34
.9

2
-

65
7.

48

4
7
0

10
3.

41
-

74
.7

9
74

.3
4

-
74

.5
1

44
.9

3
-

16
09

.8
4

5
7
0

7
4.

38
-

7
4.

46
74

.7
8

-
74

.5
1

74
.9

0
-

17
91

.9
8

6
7
0

4
5.

12
-

7
4.

79
74

.7
6

-
75

.0
0

10
4.

57
-

19
75

.0
0

7
1
6

2
4.

26
24

.6
6

22
.8

1
17

.7
5

17
.8

4
12

.0
7

9.
91

11
.0

2
57

1.
30

8
1
6

1
7.

68
17

.3
4

17
.7

1
17

.0
7

17
.5

4
17

.6
7

17
.3

3
17

.5
4

66
4.

30

9
1
6

1
0.

39
10

.6
2

12
.4

8
17

.3
4

17
.4

8
22

.0
4

24
.3

8
24

.7
2

75
6.

26

1
0

70
64

.6
6

6
4.

51
5
9.

76
54

.7
3

49
.7

3
34

.6
3

33
.9

3
34

.4
8

16
70

.2
8

1
1

70
49

.5
2

4
9.

10
5
0.

01
49

.2
4

49
.2

6
49

.5
5

49
.7

4
49

.3
3

18
81

.1
4

1
2

70
29

.4
6

2
9.

21
3
4.

16
49

.9
9

49
.6

8
54

.4
2

69
.7

2
69

.3
6

20
91

.8
2

62

Table 6.2: Problem description for experiments.

Ji Oi,j Stages A(Oi,j) Processing time

J1
O1,1 DA (M1, M2, M3) (3, 3, 4.5)

O1,2 WB (M4, M5, M6) (16, 18, 18)

J2
O2,1 DA (M1, M2, M3) (3, 4.5, 4.5)

O2,2 WB (M5, M6) (20, 20)

J3

O3,1 DA (M1, M2, M3) (6, 7.5, 6)

O3,2 WB (M4, M5, M6) (26, 28, 28)

O3,3 DA (M1, M2, M3) (7.5, 7.5, 7.5)

O3,4 WB (M4, M5, M6) (26, 28, 28)

J4

O4,1 DA (M2, M3) (7.5, 6)

O4,2 WB (M4, M5, M6) (36, 36, 36)

O4,3 DA (M2, M3) (7.5, 7.5)

O4,4 WB (M4, M5, M6) (44, 46, 44)

J5

O5,1 DA (M1, M3) (6, 6)

O5,2 WB (M4, M6) (14, 20)

O5,3 DA (M1, M3) (6, 6)

O5,4 WB (M4, M6) (14, 20)

J6

O6,1 DA (M2, M3) (9, 9)

O6,2 WB (M4, M5, M6) (36, 36, 40)

O6,3 DA (M2, M3) (7.5, 7.5)

O6,4 WB (M4, M6) (40, 70)

O6,5 DA (M2, M3) (7.5, 7.5)

O6,6 WB (M5, M6) (46, 44)

J7

O7,1 DA (M1, M2, M3) (6, 6, 4.5)

O7,2 WB (M4, M5, M6) (56, 50, 50)

O7,3 DA (M1, M2) (6, 6)

O7,4 WB (M4, M5, M6) (40, 40, 24)

O7,5 DA (M1, M2) (4.5, 4.5)

O7,6 WB (M4, M5, M6) (40, 40, 24)

O7,7 DA (M1, M2, M3) (4.5, 4.5, 4.5)

O7,8 WB (M4, M5, M6) (40, 40, 24)

J8

O8,1 DA (M1, M2, M3) (6, 6, 4.5)

O8,2 WB (M4, M5) (50, 30)

O8,3 DA (M2, M3) (6, 6)

O8,4 WB (M4, M5) (50, 30)

O8,5 DA (M2, M3) (4.5, 4.5)

O8,6 WB (M4, M5) (30, 50)

O8,7 DA (M1, M2, M3) (4.5, 4.5, 4.5)

O8,8 WB (M4, M5, M6) (30, 50, 40)

63

the resources of the WB stage. The average waiting time of lots, AWT , is calculated

as:

AWT =

∑NJ
i=1

∑ni
k=1(ci,k − ri,k − ti,k)∑NJ

i=1 ni
, (6.1)

where ci,k and ri,k are the time that the last WB operation of Li,k is completed and

Li,k leaves the cassette stocker, respectively, and ti,k indicates the sum of processing

time of Li,k on resources.

Additionally, the average idle time of the WB resources, AIT , is defined as

follows:

AIT =

∑
∀q∈Ω

nq∑
s=1

(fq,s − tq,s)∑
∀q∈Ω

nq
, (6.2)

where fq,s represents the time at which Rq,s completes its last operation and tq,s is

the total processing time of the operations assigned to Rq,s between time 0 and fq,s,

and Ω is a set of indices of the resource types which belong to the WB stage.

Moreover, to collectively measure the overall performance in terms of AWT and

AIT , we used the average loss time, or ALT , which is the arithmetical mean of these

two values. However, in the real-world, the weights for the two performance measures,

AWT and AIT , depend on the characteristics of RMLs or the operators’ judgement.

For instance, when the capacity of stockers is sufficient or changes in demand are

insignificant, reducing AIT may be more important than reducing AWT . Therefore,

in section 6.3.2, we measured the change in the values of AWT , AIT , and ALT while

changing the weights in the Equations (5.5) and (5.9) for each dataset.

64

For comparison purpose, we implemented the conventional dispatching rules pre-

sented in Table 5.2, all of which are widely used to reduce the flow time or increase

resource utilization [62, 97, 101, 102]. Here, FIFO selects the oldest lot that has

been dispatched from the cassette stocker among the candidate lots. This rule ran-

domly dispatches the lot from the cassette stocker when the lots in the status of

In-Cassette-Stocker exist in the candidate lots only.

Furthermore, we also compared the proposed dispatchers with the composite

dispatching rule using SVR proposed by [65]. Among the dispatching rules presented

in Table 5.2, five rules including FIFO, MOR, LARGE, LNQ, and STOCK were used

to construct a linear combination of the composite dispatching rule. This is due to

the fact that the combination above yielded the best performance among all the

combinations of dispatching rules. The weight assigned to each rule is determined

by the model trained with SVR whenever a lot dispatching decision is required. The

feature set and the parameters of SVR used in the experiments are identical to those

in [65].

For each dataset, we trained two proposed dispatchers, RTRD and RTLD, using

generated training data. Table 6.3 presents the training results. In Table 6.3, valw

and vall represent the minimum values of the validation error in terms of the waiting

and idle time, respectively. In addition, iterw and iterl are the numbers of iteration

required to achieve the validation error for the waiting and idle time, respectively.

The dispatchers in each dataset use the DNNs obtained when the numbers of iter-

ation of the training process in terms of waiting and idle time reach the values of

iterw and iterl, respectively.

For RTRD, λw and λl are set to 1/2 and 1/2, respectively. For RTLD, λw, λl,

65

and λd are set to 1/3, 1/3 and 1/3, respectively.

Table 6.3: Training results of the proposed dispatchers.

Dataset No. Dispatchers valw vall iterw iterl

1
RTRD 0.0123 0.0988 35 150

RTLD 0.0122 0.0385 31 318

2
RTRD 0.0229 0.0942 23 112

RTLD 0.0155 0.0370 32 160

3
RTRD 0.0271 0.0898 41 76

RTLD 0.0196 0.0355 30 86

4
RTRD 0.0001 0.0853 59 229

RTLD 0.0151 0.0136 22 303

5
RTRD 0.0004 0.0876 10 283

RTLD 0.0158 0.0124 49 266

6
RTRD 0.0003 0.0873 3 112

RTLD 0.0162 0.0116 43 75

7
RTRD 0.0157 0.1064 17 80

RTLD 0.0129 0.0400 56 154

8
RTRD 0.0252 0.1000 12 95

RTLD 0.0149 0.0370 33 130

9
RTRD 0.0323 0.0925 27 119

RTLD 0.0188 0.0349 39 115

10
RTRD 0.0001 0.0839 14 280

RTLD 0.0127 0.0131 16 166

11
RTRD 0.0573 0.0616 11 130

RTLD 0.0157 0.0352 50 158

12
RTRD 0.0002 0.0828 7 190

RTLD 0.0163 0.0111 67 204

66

6.3 Experiment results

6.3.1 Performance comparison

The performance comparison results of the proposed dispatchers, SVR, and the ex-

isting dispatching rules are presented in Figures 6.1, 6.2, 6.3, and 6.4 which show the

results for datasets 1, 2, 7, and 11, respectively. The detailed results for each dataset

are presented in Appendix A. In terms of AWT , FIFO, LOR, SMALL, LARGE,

SPT, LPT, FLNQ, and, SNQ show the better performances than the proposed dis-

patchers for all the datasets.

In detail, FIFO assigns a low priority level to the lot whose status is In-Cassette

-Stocker, and LOR prefers the job type whose number of operations is small. As a

result, the waiting time of lots are reduced owing to the decrease in the number of

lots in the WB stocker. In the case of LARGE, SMALL, SPT, LPT, FLNQ, SNQ,

there is a high probability that lots preferred by each rule are repeatedly selected

until all operations of them are completed. The result is that lots in the status of

To-DA-Stocker or At-WB-Resource are selected, which makes it difficult for newly

arrived lots to enter the assembly line. Accordingly, the amount of WIP decreases

and the idle time of WB resources naturally increases.

Meanwhile, MOR, LNQ, and STOCK showed better performances in terms of

AIT than other dispatching rules. MOR tends to disallow resources from being idle

since this rule assigns a higher priority to a lot with a higher number of operations

to be processed. Since LNQ attempts to balance the number of lots as per their

operation types, lots corresponding to the first operation type for each job type are

mainly selected at an early stage with a low WIP level. This increases the amount of

67

Figure 6.1:AWT ,AIT , andALT results of the proposed dispatchers and the existing
methods for dataset 1.

WIP, leading to a shorter idle time of WB resources. STOCK only selects lots in the

status of To-DA-Stocker or At-WB-Resource when there is not any lot in cassette

or DA stockers. Because of this tendency, the lots that undergo an intentional delay

on DA resources are rarely selected.

In terms of ALT , the proposed dispatchers and SVR outperformed the other

methods in all datasets. While most existing methods tend to minimize only one

performance measure, the proposed dispatchers addressed both two measures at the

same time. Among the two proposed dispatchers, RTLD showed better performance

than RTRD. Although RTRD achieved a lower value of AIT than RTLD, AWT of

RTRD was more than twice that of RTLD for multiple datasets. This difference in

performance can be attributed to the fact that RTLD considers the time that lots

spend in the DA stocker due to the existence of scored.

SVR achieved a lower ALT than RTRD in some datasets (shown in Figures 6.3

68

Figure 6.2:AWT ,AIT , andALT results of the proposed dispatchers and the existing
methods for dataset 2.

and 6.4). However, it showed poorer performances than RTLD in terms of ALT for

all datasets. This is due to the lack of features that can represent the concept of

conflicting lots and candidate lots including ones with possible intentional delays on

a DA resource, although SVR attempts to choose a proper dispatching rule according

to a given assembly line state.

Based on the above observation, the proposed dispatchers successfully reduce

both AWT and AIT at the same time in contrast to the existing methods which

focus only on one performance measure. Therefore, the proposed dispatchers appear

to achieve a reduction in the flow time while maintaining high utilization of resources

in the bottleneck stage.

Table 6.4 highlights the improvement rate of RTLD over the other dispatching

methods in terms of ALT . Except for RTRD, RTLD has reduced ALT from at least

33% to 85% compared to the existing methods. To provide further analysis of the

69

Figure 6.3:AWT ,AIT , andALT results of the proposed dispatchers and the existing
methods for dataset 7.

effects of the lot dispatching decisions, we compared various performance indicators

between the dispatching methods for one problem belonging to dataset 2, which has

the greatest difference in performance between RTRD and RTLD. Figures 6.5–6.7

present WIP levels of each stage; the dispatching results of each resource over time;

and resource utilization of each stage obtained by using dataset 2, respectively. Here,

the values on the utilization graph represent the numbers of resources processing a

lot divided by the total number of resources.

According to Figures 6.5b and 6.5c, RTRD and SVR keep the WIP level of WB

stage close to zero while the WIP level of Figure 6.5a often reached a value of two

or above. However, the two dispatching methods, RTRD and SVR, failed to prevent

the WIP level of DA stage from increasing dramatically. This is because they are

not able to address the WIP level of the DA stocker. Therefore, even if the rules

such as SPT, which are known to minimize the flow time, are used in the RTRD’s

70

Figure 6.4:AWT ,AIT , andALT results of the proposed dispatchers and the existing
methods for dataset 11.

decision-making process, RTRD has a limitation in reducing the waiting time of lots

in the DA stage. On the other hand, it is seemed that RTLD is able to effectively

control the amount of WIP in the DA stocker due to the presence of sd.

The results in Figures 6.6a and 6.7a indicate that RTLD keeps the utilization of

WB resources around 100% at all times except the early stage. Figures 6.6b and 6.6c

present that RTRD and SVR often involve the WB resource idle state, which causes

fluctuations in WB resource utilization (shown in Figures 6.7b and 6.7c). This may

be because the two methods tend to excessively reduce the amount of WIP in the

WB stocker.

71

T
ab

le
6.

4:
A
L
T

im
p

ro
ve

m
en

t
ra

te
s

o
f

R
T

L
D

co
m

p
ar

ed
to

th
e

ex
is

ti
n

g
m

et
h

o
d

s
an

d
R

T
R

D
.

D
at

as
et

N
o.

R
an

d
om

F
IF

O
L

O
R

M
O

R
S

M
A

L
L

L
A

R
G

E
S

P
T

L
P

T
L

N
Q

F
L

N
Q

S
N

Q
S

T
O

C
K

S
V

R
R

T
R

D

1
80

%
85

%
8
0
%

7
0%

8
4%

80
%

76
%

72
%

65
%

82
%

82
%

65
%

4
5%

1
0%

2
80

%
85

%
8
1
%

7
4%

8
4%

81
%

76
%

74
%

69
%

82
%

80
%

66
%

5
2%

4
8%

3
80

%
83

%
7
9
%

7
5%

8
1%

77
%

73
%

71
%

67
%

81
%

80
%

64
%

5
8%

3
7%

4
67

%
78

%
7
0
%

4
9%

7
3%

64
%

56
%

51
%

45
%

73
%

73
%

47
%

3
7%

6
%

5
74

%
82

%
7
6
%

6
3%

7
8%

70
%

63
%

62
%

60
%

79
%

73
%

58
%

4
9%

1
1%

6
67

%
78

%
6
9
%

6
0%

7
2%

61
%

54
%

52
%

52
%

74
%

71
%

50
%

4
4%

1
3%

7
80

%
84

%
7
9
%

6
7%

8
3%

81
%

71
%

73
%

59
%

80
%

77
%

59
%

3
3%

3
5%

8
79

%
85

%
8
1
%

7
0%

8
4%

82
%

77
%

74
%

66
%

81
%

79
%

62
%

4
8%

3
9%

9
80

%
84

%
8
0
%

7
1%

8
2%

80
%

77
%

71
%

66
%

80
%

79
%

62
%

5
8%

3
9%

10
75

%
82

%
7
6
%

60
%

80
%

7
4%

58
%

6
5%

5
5%

78
%

75
%

58
%

33
%

7%

11
95

%
96

%
9
4
%

92
%

95
%

9
5%

93
%

9
2%

8
9%

94
%

94
%

89
%

34
%

35
%

12
74

%
84

%
8
0
%

66
%

82
%

7
7%

72
%

6
7%

6
4%

82
%

78
%

61
%

63
%

41
%

72

(a) RTLD

(b) RTRD

(c) SVR

Figure 6.5: WIP graphs of the proposed dispatchers, and SVR.

73

(a) RTLD

(b) RTRD

(c) SVR

Figure 6.6: Gantt charts of the proposed dispatchers and SVR.

74

(a) RTLD

(b) RTRD

(c) SVR

Figure 6.7: Utilization graphs of the proposed dispatchers and SVR.

75

(a) RTLD

(b) RTRD

(c) SVR

Figure 6.8: Dispatching frequencies according to lot statuses over time.

76

Additionally, we compared the lot dispatching decision patterns over time by the

proposed dispatchers and SVR. In Figure 6.8, heat maps visualize the frequency of

status of the lots dispatched by each dispatching method over time, where Figures

6.8a–c represent the results of RTLD, RTRD, and SVR, respectively. The value in

Figure 6.8 indicates the number of dispatched lots that correspond to each status

for the interval of three hours.

In Figure6.8a, RTLD appears to increase the utilization of WB resources by

dispatching lots in the status of In-Cassette-Stocker at an early stage with a low

WIP level. Subsequently, when the WIP level reaches a sufficient extent, it tends

to prevent the waiting time of lots from increasing by dispatching lots in the status

of In-DA-Stocker or At-WB-Resource. RTRD has a dispatching pattern similar

to that of RTLD while there are differences in the timing of selecting lots whose

status is In-DA-Stocker. As can be seen from Figure 6.8b, RTRD mainly focused

on selecting lots whose status is In-DA-Stocker only when the amount of WIP in

the DA stocker increases (shown in Figure 6.5b).

Compared to the proposed dispatchers, SVR gives a lower priority to the lots

whose status is In-Cassette-Stocker and a higher one to the lots whose status is

At-WB-Resource as presented in Figure 6.8c. This has contributed to the increase

in the amount of WIP in the DA stocker, causing the flow time of lots to rise.

Finally, an analysis was conducted on the computation time of the proposed

dispatchers and SVR. Figure 6.9 presents the computation time of the dispatching

methods spent processing given lots according to the number of operations. For

all of the average of the number of operations, the computation time of SVR is

always longer than that of the proposed dispatchers. Combined with the previous

77

400 600 800 1000 1200 1400 1600 1800 2000 2200
0

5

10

15

20

25

30

35
 RTRD
 RTLD
 SVR

Figure 6.9: Computation time of RTRD, RTLD, and SVR according to the average
number of operations.

experimental results, clearly, the proposed approaches excelled SVR in terms of

performance and computation time.

Meanwhile, according to Figure 6.9, RTLD involves a much larger increase in the

computation time when the number of operations increases compared to the RTRD.

This result can be explained by the difference in the number of alternatives between

the two dispatchers when a dispatching decision is required. In detail, although the

scale of the RMLs becomes large, the number of alternatives of RTRD is always

equal to that of dispatching rules used in the training phase while RTLD has the

same number of alternatives as the number of candidate lots. Because of this, as the

number of operations increases, the difference is likely to be larger in the computation

time between the two dispatchers.

78

6.3.2 Performance differences according to weights

In this section, experiments were carried out to investigate how the performances of

RTRD and RTLD change according to the values of weights in Equations (5.5) and

(5.9). In Figures 6.10, 6.11, 6.12, and 6.13, contour lines visualize the performances

of RTRD against SVR depending on values of λw and λl in datasets 4, 9, 10, and

11, respectively. The detailed results for each dataset are presented in Appendix B.

The value in each figure means the performance measure of RTRD divided that of

SVR marked in percentage. Specifically, values less than 100 indicate that RTRD

outperforms SVR, and values greater than 100 represent the opposite. The X symbol

indicates the minimum value of the performance measure.

For most datasets, the minimum values of AWT and AIT were observed at the

lower right and upper left, respectively. This result is in line with our expectation

that the larger the value of λw is, the more likely it is to make a decision for reducing

the waiting time, and the larger the value of λl, the more likely it is to make a

decision for decreasing the idle time. However, in datasets 4, 9, 10, and 11, the

minimum value of AIT was obtained when the value of λw was close to 1 (shown

in Figures 6.10b, 6.11b, 6.12b, and 6.13b). Furthermore, according to Figure 6.11a,

the minimum value of AWT was achieved when the value of λl was close to 1. This

rather contradictory result might be explained by the fact that there exists some

room for improvement in terms of the waiting time.

From a viewpoint of ALT , the X symbol of each dataset was observed at different

locations. In addition, the locations, where the performance of RTRDs was worse

than that of SVR, were found according to the values of λw and λl. These findings

suggest that setting weight values according to the characteristics of the problem is

79

(a) AWT (b) AIT

(c) ALT

Figure 6.10: Performances of RTRD against SVR depending on λw and λl in dataset
4.

crucial to the performances of RTRD.

In Figures 6.14, 6.15, 6.16, and 6.17, contour lines visualize the performances

of RTLD against SVR depending on λw, λl, and λd in datasets 3, 6, 9, and 12,

respectively. The detailed results for each dataset are presented in Appendix C.

80

(a) AWT (b) AIT

(c) ALT

Figure 6.11: Performances of RTRD against SVR depending on λw and λl in dataset
9.

The value in each Figure means the performance measure of RTLD divided that of

SVR marked in a percentage. Specifically, values less than 100 indicate that RTLD

outperforms SVR, and values greater than 100 represent the opposite. The X symbol

indicates the minimum value of the performance measure.

81

(a) AWT (b) AIT

(c) ALT

Figure 6.12: Performances of RTRD against SVR depending on λw and λl in dataset
10.

For most datasets, the minimum values of AWT were mostly observed at the top

of the triangle where the value of λd is close to 1. This result suggests that scored is

a key factor in the difference of AWT between RTRD and RTLD. In Figure 6.17a,

X symbol is observed at the lower right corner where the value of λl is larger and

82

(a) AWT (b) AIT

(c) ALT

Figure 6.13: Performances of RTRD against SVR depending on λw and λl in dataset
11.

the values of λw and λd are smaller. This finding was an unexpected result, but the

minimum value of this location is approximately identical to the value at the top of

the triangle.

On the other hand, the minimum values of AIT were observed at the mid-bottom

83

(a) AWT (b) AIT

(c) ALT

Figure 6.14: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 3.

(λw = 0.5 and λl = 0.5), the middle of the right side (λd = 0.5 and λl = 0.5),

and the lower right corner (λl = 1). Judging from this result, it can be seen that

the minimization of AIT is achieved by dispatching decisions considering both the

waiting and idle time depending on the datasets.

84

(a) AWT (b) AIT

(c) ALT

Figure 6.15: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 6.

In terms of ALT , the X symbol of each dataset was observed at different locations

as in RTRD. A few locations where the performance of RTLDs was lower than that of

SVR were revealed according to the values of λw and λl. Surprisingly, the minimum

value in Figure 6.16c was yielded on the mid-left side of the triangle (λw = 0.5 and

85

(a) AWT (b) AIT

(c) ALT

Figure 6.16: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 9.

λd = 0.5). This result may be explained by the fact that dataset 9 has the larger

number of operations per resource than other datasets. Because of this, in dataset

9, the waiting time increases greatly in order to reduce the idle time. As shown in

the experiments on RTRD, the combination of findings implies the importance of

86

(a) AWT (b) AIT

(c) ALT

Figure 6.17: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 12.

setting weight values according to the characteristics of the dataset.

6.3.3 Robustness test

For the purpose of evaluating the robustness in performances of the proposed dis-

patchers, we applied the RTDs generated by training data of each dataset to the

87

real-time dispatching phase of the dispatching problems that belong to different

datasets. Table 6.5 shows statistically significant differences in ALT between RTRDs

trained in different datasets by using the t-test at the 5% level presented. Each cell

presents the result of applying dispatching methods to the dataset corresponding to

the column which contains the cell. For example, for the first row, the problems of

datasets 2 to 12 were solved with the use of the RTRD generated from the dataset 1.

The calculated performances were then compared to those of the RTRDs generated

from datasets 2 to 12.

In detail, the bottom value in the Table 6.5 indicates the corresponding p-value.

The shaded cells signify that there is no statistically significant difference in perfor-

mance between the two RTRDs corresponding to each cell. The top value in each

cell means the ALT of RTRD generated from the dataset corresponding to the row

divided that of SVR marked in percentage. Specifically, values less than 100 indicate

that the RTRD generated from the dataset corresponding to the row outperforms

SVR, and values greater than 100 with an asterisk (*) mean the opposite.

As specified in Table 6.5, the RTRDs generated from datasets 11 and 12 show

the best performance in terms of robustness, and RTRDs generated from datasets 4

to 7 were robust for one dataset only. Surprisingly, although the RTRDs generated

from datasets 5 and 6 did not achieve robustness successfully, they outperformed

the others generated from datasets and SVR in terms of ALT . These results did not

provide any obvious trends in terms of robustness between datasets. It is difficult to

explain the results, suggesting that there might be other important characteristics

in classifying problems except for the criteria considered in this thesis.

88

T
ab

le
6.

5:
S

ta
ti

st
ic

a
ll

y
si

g
n
ifi

ca
n
t

d
iff

er
en

ce
s

in
A
L
T

b
et

w
ee

n
R

T
R

D
s

tr
ai

n
ed

in
d

iff
er

en
t

d
at

as
et

s.

D
a
ta

se
t

N
o
.

D
at

as
et

N
o.

1
2

3
4

5
6

7
8

9
10

11
12

1
76

.1
2

7
5
.9

1
71

.6
57

.4
3

63
.7

9
65

.1
8

84
.3

1
7
8.

41
73

.1
4

71
.2

6
78

.5
5

60
.2

7

-
5.

25
E

-1
3

2
.3

8E
-0

2
4.

22
E

-0
7

2.
06

E
-0

3
3.

83
E

-0
1

5.
87

E
-0

7
7
.8

1
E

-0
3

9.
78

E
-0

1
8.

81
E

-0
4

1.
04

E
-0

8
7.

13
E

-0
1

2
10

5
.6

7
*

10
4
.8

*
87

.5
72

.9
89

.5
9

80
.9

9
11

3
.9

2
*

99
.4

7
8
2.

9
7

9
5.

65
99

.5
4

69
.1

3

1.
0
5
E

-1
0

-
7.

12
E

-0
4

5.
11

E
-0

1
6.

71
E

-2
0

5.
00

E
-1

0
3.

22
E

-0
1

4.
65

E
-0

5
2
.4

5E
-0

5
3
.8

1E
-0

2
9.

95
E

-0
1

4.
27

E
-0

8

3
98

.6
4

8
7
.2

7
7
8.

3
5

57
.6

2
67

.8
4

67
.0

9
12

5.
82

*
1
02

.7
1*

78
.1

6
8
7.

85
8
6.

81
63

.6
9

1.
22

E
-0

5
4.

7
1E

-0
6

-
1
.1

0E
-0

8
1.

77
E

-0
5

8.
39

E
-0

1
3.

60
E

-0
3

1.
12

E
-0

6
4.

30
E

-0
2

5.
89

E
-0

1
4.

79
E

-0
4

1.
51

E
-0

1

4
11

1
.5

2
*

1
06

.9
2
*

91
.7

7
75

.1
9

75
.3

8
73

.1
5

12
4.

38
*

10
7
.8

6*
82

.8
1

10
8
.9

2*
10

1.
45

*
61

.5
6

3.
53

E
-1

3
5.

9
6E

-0
1

2
.9

6E
-0

5
-

2.
83

E
-1

2
1.

41
E

-0
3

1.
73

E
-0

3
1.

89
E

-0
9

1.
1
7E

-0
4

6.
09

E
-0

6
5.

71
E

-0
1

6.
60

E
-0

1

5
72

.3
2

6
8.

0
6

5
8.

66
52

.6
7

57
.5

1
57

.5
8

77
.0

4
70

.7
6

57
.5

3
65

.3
68

.6
2

46
.6

4

3
.5

4
E

-0
1

4.
46

E
-1

7
2.

64
E

-1
2

2.
93

E
-1

1
-

1.
39

E
-0

5
3.

31
E

-1
0

2.
77

E
-0

6
5.

18
E

-1
0

3.
76

E
-0

6
2.

47
E

-1
3

1.
89

E
-1

3

6
86

.4
4

8
4
.1

2
73

.8
8

67
.4

71
.5

1
66

.5
5

89
.5

2
76

.9
1

66
.3

8
72

.7
2

74
.3

1
5
3.

1

7.
3
4
E

-0
3

2
.3

7
E

-0
7

6.
12

E
-0

2
6.

10
E

-0
3

5.
87

E
-1

1
-

3.
99

E
-0

6
5.

9
7E

-0
4

4.
5
8E

-0
4

2.
00

E
-0

4
1.

34
E

-1
7

4.
00

E
-1

0

7
11

5
.4

2
*

1
0
8.

9
5*

93
.9

8
85

.1
8

94
.4

5
85

.3
2

10
8
.8

4
*

1
04

.4
5*

86
.4

2
98

.0
7

10
9.

1
2*

71
.2

9

5
.2

1
E

-1
7

2.
5
2E

-0
1

2
.2

8E
-0

8
6.

14
E

-0
4

1.
03

E
-3

7
5.

85
E

-1
7

-
2.

27
E

-0
8

1
.0

2
E

-0
9

1.
35

E
-0

4
1.

68
E

-0
4

1.
6
0E

-1
3

8
91

.5
7

9
0
.5

5
89

.6
66

.5
2

73
.9

3
78

.5
2

93
.3

86
.7

2
76

.2
3

8
1.

85
8
4.

57
5
7.

61

1.
58

E
-0

4
8.

8
7E

-0
5

6
.0

8E
-0

4
2.

03
E

-0
3

5.
99

E
-1

6
4.

11
E

-0
5

5.
52

E
-0

5
-

1.
33

E
-0

1
2.

62
E

-0
1

1.
02

E
-0

8
6.

18
E

-0
3

9
98

.6
9

9
4
.6

1
81

.7
0

67
.9

5
76

.2
2

72
.7

5
10

0.
52

*
90

.5
9

73
.2

1
73

.2
9

82
.2

7
57

.1
6

2
.3

0
E

-0
8

3.
75

E
-0

3
1.

90
E

-0
1

9.
36

E
-0

3
1.

70
E

-1
6

7.
37

E
-0

4
3.

75
E

-0
2

1.
36

E
-0

1
-

1
.5

8E
-0

4
1.

27
E

-1
0

1.
19

E
-0

3

1
0

9
9
.9

3
1
1
4.

9
8*

1
16

.8
3*

79
.1

0
10

0.
36

*
10

0.
26

*
91

.2
6

10
4
.0

9
*

10
7.

66
85

.4
7

96
.5

2
78

.0
9

3.
30

E
-0

7
1.

2
0E

-0
2

8
.3

9E
-1

5
1.

91
E

-0
1

1.
41

E
-2

0
6.

58
E

-1
2

7.
08

E
-0

5
2.

35
E

-0
5

6.
48

E
-1

3
-

4.
03

E
-0

1
3.

24
E

-0
8

1
1

1
0
0.

4
7*

88
.7

8
81

.0
0

76
.4

8
89

.0
9

74
.5

4
95

.1
8

82
.5

0
73

.6
3

92
.6

6
99

.5
6

78
.1

8

5.
8
1
E

-0
9

2
.7

6
E

-0
5

3.
64

E
-0

1
6.

70
E

-0
1

1.
44

E
-1

6
2.

99
E

-0
2

7.
53

E
-0

4
9
.3

4E
-0

2
8.

81
E

-0
1

3.
49

E
-0

2
-

3.
91

E
-0

4

1
2

1
1
1.

1
9*

1
0
3.

9
9*

95
.7

3
79

.4
8

90
.3

9
80

.6
6

10
4
.0

9
*

98
.0

9
8
4.

8
4

8
9.

70
9
1.

49
6
0.

83

3.
00

E
-1

4
8.

2
2E

-0
1

3
.0

4E
-0

7
1.

45
E

-0
1

2.
68

E
-2

3
4.

79
E

-0
7

2.
41

E
-0

1
7.

24
E

-0
5

7
.1

8E
-0

6
2.

19
E

-0
1

2.
85

E
-0

3
-

89

Table 6.6 contains the results when the same test as in Table 6.5 was carried out

on RTLDs, and the meaning of each value in this table is the same as Table 6.5.

Unlike the results for RTRD, RTLD generated from dataset 7 showed robustness in

terms of ALT for most datasets. Although RTLD generated from dataset 1 failed to

achieve robustness, it excelled SVR and RTLDs generated from each dataset except

datasets 2 and 12.

Although RTLD generated from dataset 6 achieved robustness for datasets 7, 8,

and 9, it resulted in lower performances for datasets 10 and 11 than SVR. However,

except for these cases, the values of ALT yielded in all other cases were smaller

than those of SVR. Furthermore, the number of shaded cells in Table 6.6 is 28%

greater than that of the shaded cells in Table 5.1. These results show that RTLD

was superior to RTRD in terms of both performance and robustness.

90

T
a
b

le
6
.6

:
S

ta
ti

st
ic

al
ly

si
g
n
ifi

ca
n
t

d
iff

er
en

ce
s

in
A
L
T

b
et

w
ee

n
R

T
L

D
s

tr
ai

n
ed

in
d

iff
er

en
t

d
at

as
et

s.

D
at

as
et

N
o.

D
at

as
et

N
o.

1
2

3
4

5
6

7
8

9
10

1
1

1
2

1
53

.8
6

51
.4

1
39

.4
1

46
.6

1
48

.6
3

42
.2

7
60

.0
2

4
9.

8
0

35
.3

1
6
1.

0
1

61
.2

7
3
9.

11

-
1.

96
E

-0
2

3.
4
3E

-0
2

1
.4

9
E

-1
4

1.
84

E
-0

4
5.

80
E

-3
1

1.
68

E
-0

2
1.

1
9E

-0
2

1.
11

E
-0

4
5.

5
1E

-0
3

9.
19

E
-0

4
2.

3
9E

-0
1

2
52

.1
0

46
.9

8
4
0.

62
50

.8
7

50
.3

0
44

.3
6

5
6.

4
0

45
.5

9
3
1.

9
5

61
.9

3
5
7.

03
33

.9
8

3.
37

E
-0

1
-

3.
1
2E

-0
1

3.
19

E
-1

3
1.

64
E

-0
3

3.
67

E
-3

0
6.

14
E

-0
5

7.
64

E
-0

6
1.

10
E

-0
6

1
.2

6E
-0

2
3.

9
9E

-1
2

1
.2

2E
-0

6

3
50

.0
7

51
.5

1
42

.1
5

52
.1

9
59

.4
6

50
.1

0
70

.7
4

50
.0

0
37

.2
7

65
.9

7
6
1.

88
34

.6
5

3.
71

E
-0

2
6.

74
E

-0
3

-
9.

2
4E

-1
3

7.
59

E
-0

1
5.

29
E

-2
5

2.
20

E
-0

1
3.

6
2E

-0
2

1.
76

E
-0

3
6.

0
0E

-0
1

1
.8

9
E

-0
3

4.
3
9E

-0
5

4
69

.1
8

68
.9

2
55

.8
6

95
.2

0
91

.3
5

71
.4

8
7
6.

7
1

64
.1

9
45

.0
8

9
3.

74
7
3.

38
42

.1
6

7.
58

E
-0

5
1.

05
E

-0
6

1.
11

E
-0

3
-

2.
92

E
-0

6
1.

18
E

-0
1

2.
91

E
-0

2
2
.0

6E
-0

2
8.

67
E

-0
1

3.
39

E
-0

6
7.

8
2E

-0
2

3
.8

8
E

-0
2

5
62

.0
3

68
.1

6
67

.8
9

54
.7

2
60

.3
6

69
.5

8
61

.4
4

53
.2

9
41

.3
0

89
.3

1
88

.4
9

53
.9

9

1.
38

E
-0

2
2.

73
E

-1
0

7.
04

E
-1

0
7
.7

7
E

-1
2

-
6.

34
E

-0
3

3.
93

E
-0

2
6
.9

7
E

-0
1

1
.2

0
E

-0
1

1.
28

E
-1

1
1
.6

2
E

-1
0

1.
58

E
-1

2

6
71

.0
2

63
.0

8
55

.2
2

85
.1

3
90

.8
5

79
.6

4
68

.2
9

55
.5

2
43

.3
0

11
1.

17
*

10
4.

12
*

5
8.

36

2.
09

E
-0

7
1.

55
E

-0
5

3.
54

E
-0

5
4
.5

3
E

-0
2

9.
42

E
-1

2
-

6.
81

E
-0

1
5
.7

2
E

-0
1

4
.2

9
E

-0
1

2.
88

E
-2

7
7
.8

3
E

-1
5

3.
31

E
-1

4

7
51

.2
6

48
.3

8
4
2.

5
7

49
.0

4
54

.3
7

47
.2

3
66

.9
3

55
.0

1
38

.3
8

6
8.

58
65

.3
2

36
.2

7

1.
05

E
-0

1
4.

08
E

-0
1

7.
6
6E

-0
1

8.
24

E
-1

4
5.

71
E

-0
2

1.
07

E
-2

7
-

6
.1

5
E

-0
1

5.
0
1E

-0
3

4.
3
3E

-0
1

3.
3
6E

-0
1

2
.0

7
E

-0
2

8
47

.5
3

43
.7

0
35

.4
7

51
.8

0
49

.0
5

40
.8

5
67

.0
1

54
.2

1
36

.3
8

80
.9

3
86

.2
4

4
6.

13

1.
75

E
-0

4
3.

36
E

-0
2

2.
20

E
-0

6
6
.7

4
E

-1
3

3.
46

E
-0

4
1.

10
E

-3
1

9.
79

E
-0

1
-

5.
56

E
-0

4
4
.2

5
E

-0
6

1.
69

E
-1

7
1
.1

2
E

-1
2

9
49

.0
2

50
.0

8
3
9.

8
9

54
.4

0
62

.6
1

52
.5

8
84

.7
8

58
.4

7
45

.5
9

71
.7

9
69

.1
6

41
.0

4

1.
33

E
-0

2
1.

15
E

-0
1

1.
8
2E

-0
1

5.
17

E
-1

2
4.

69
E

-0
1

1.
78

E
-2

3
4.

4
5E

-0
6

5
.1

7
E

-0
2

-
2.

42
E

-0
2

1.
4
2E

-0
1

2
.5

1
E

-0
3

10
69

.2
9

57
.1

2
48

.5
3

57
.8

3
52

.8
7

42
.1

4
65

.7
1

48
.4

8
36

.8
3

67
.0

2
61

.1
0

3
7.

0
6

2.
39

E
-0

5
9.

98
E

-0
4

2.
64

E
-0

2
2
.3

9
E

-1
0

4.
11

E
-0

2
2.

29
E

-3
2

6.
75

E
-0

1
8.

8
2E

-0
3

1.
92

E
-0

3
-

2.
32

E
-0

4
3.

06
E

-0
1

11
55

.1
2

53
.4

6
4
4.

4
0

53
.7

5
56

.9
7

56
.2

6
56

.3
3

4
5.

8
1

38
.5

9
7
0.

49
66

.6
0

42
.1

3

4.
67

E
-0

1
3.

04
E

-0
4

1.
2
2E

-0
1

3.
09

E
-1

2
2.

67
E

-0
1

2.
94

E
-1

9
1.

7
9E

-0
5

1.
01

E
-0

6
1.

07
E

-0
2

1.
1
3E

-0
1

-
9
.6

2
E

-0
5

12
68

.9
4

67
.6

1
58

.5
8

52
.7

6
53

.9
7

47
.2

7
73

.5
1

57
.1

3
43

.4
5

7
1.

64
65

.6
2

38
.0

6

3.
49

E
-0

6
1.

16
E

-0
7

2.
48

E
-0

6
3
.2

6
E

-1
2

1.
18

E
-0

1
6.

92
E

-1
6

8.
60

E
-0

2
2
.8

1
E

-0
1

4
.5

2
E

-0
1

3.
78

E
-0

2
5.

8
9E

-0
1

-

91

Chapter 7

Conclusions

7.1 Summary and contributions

RML is the manufacturing line where parts can make several visits to the same stage

before the parts complete all operations assigned. Recently, with the emergence of

semiconductor manufacturing and thin film transistor-liquid crystal display (LCD)

manufacturing lines, RMLs causes wide concern in both academia and industry. Due

to the frequently re-entrant parts between multiple stages in RMLs, it is challenging

to achieve both goals of reducing the flow time and increasing the utilization of

resources at the same time.

In order to decrease the flow time without loss in resource utilization of the

bottleneck stage for real-world RMLs, this thesis proposes a novel approach for DNN

based RTDs. First, the DEBS and monitoring tool were implemented to generate

training data and evaluate the performance of dispatching decisions. In addition to

imitating real-world RMLs, DEBS is in charge of generating simulation logs to be

converted into the training data for RTDs. The monitoring tool was designed to

display a variety of information about RML at the time each dispatching decision

being made. It provides not only the functionality of the existing Gantt chart, but

also the ability to show various performance indicators over time.

92

Second, the thesis proposes two DNN based RTDs with different decision-making

processes, called RTRD and RTLD. Whenever a dispatching decision is required,

RTRD determines the best among the existing dispatching rules while RTLD calcu-

lates scores on all candidate parts and assigns the part with the highest score to a

resource.

To learn an efficient dispatching policy in RMLs considering intentional delays,

we employed DNN which has the ability to capture complex non-linear dynamics.

In the training phase, in order to obtain training data used for RTDs, all dispatch-

ing decisions of each training problem are executed randomly. The performances of

decisions are then measured by the score generator, and the scored simulation logs

are used by a learning algorithm to train DNNs embedded in RTDs.

The experimental results demonstrate that the proposed RTDs are successful

in decreasing flow time and increasing the utilization of bottleneck resources at

the same time. RTLD outperforms the existing dispatching methods in terms of

the average loss time for all datasets considered. Meanwhile, through the weight

adjustment experiments and robustness test, we confirmed the direction in which

the proposed approaches could be further developed.

This thesis has made contributions as follows. First, it developed the monitor-

ing tool that ensures the ability to investigate each dispatching decision, which is

independent from the programming language used to implement the simulator. Sec-

ond, a proposal was made regarding a novel method for generating training data for

DNNs without a verified solver. Lastly, the proposed RTDs can perform effective

dispatching decisions considering intentional delays in RMLs.

93

7.2 Limitations and future research

Although satisfactory results were obtained through this thesis, there exist some

room for further improvement. First, RTRD is required to reduce the time parts

spend in the re-entrant stocker while RTLD is supposed to improve in terms of

decreasing computation time. If the concept of conflicting lots is introduced into

RTRD, the performance of RTRD is highly likely to be improved. However, this

attempt is less likely to be successful due to the nature of the RTRD’s decision-

making manner of not being able to specify a lot.

Second, we plan to investigate a reinforcement learning (RL) algorithm which is

capable of finding a policy that maximizes global rewards in order to enable more

intelligent dispatching decisions that minimize both the waiting and idle time. The

dispatching rules representing the action vector of RTRD can be used to define the

action space of the Q-learning which is the most representative of the RL. However,

it is essential to design an immediate reward between the current state and next

state, since the preference scores indicating the value of dispatching decisions are

calculated only after all simulations are completed.

Lastly, further studies are needed to improve the robustness of the proposed

dispatchers to the type of datasets such as the numbers of job types, resources,

and operations. Furthermore, it is necessary to investigate a learning method for

determining the weights between the flow time and resource utilization according to

the characteristics of RMLs.

Meanwhile, the proposed method is applicable to the resource allocation problem

in a cloud computing environment where it is required to efficiently assign jobs

of different complexities to computing resources. The goal of the cloud computing

94

environment is similar to the objective function addressed by RTDs in that the

completion time of each job is minimized and the utilization of computing resources

is maximized. Therefore, if the computation time of RTDs is reduced and the suitable

network structure for the cloud computing environment is studied, the proposed

method will be able to achieve superior performance even in the new environment.

95

Appendices

96

Appendix A

Performance comparison results

Figure A.1: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 1.

97

Figure A.2: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 2.

Figure A.3: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 3.

98

Figure A.4: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 4.

Figure A.5: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 5.

99

Figure A.6: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 6.

Figure A.7: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 7.

100

Figure A.8: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 8.

Figure A.9: AWT , AIT , and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 9.

101

Figure A.10: AWT , AIT , and ALT results of the proposed dispatchers and the
existing methods for dataset 10.

Figure A.11: AWT , AIT , and ALT results of the proposed dispatchers and the
existing methods for dataset 11.

102

Figure A.12: AWT , AIT , and ALT results of the proposed dispatchers and the
existing methods for dataset 12.

103

Appendix B

Performance contour of RTRD with respect to λw
and λl

104

(a) AWT (b) AIT

(c) ALT

Figure B.1: Performances of RTRD against SVR depending on λw and λl in dataset
1.

105

(a) AWT (b) AIT

(c) ALT

Figure B.2: Performances of RTRD against SVR depending on λw and λl in dataset
2.

106

(a) AWT (b) AIT

(c) ALT

Figure B.3: Performances of RTRD against SVR depending on λw and λl in dataset
3.

107

(a) AWT (b) AIT

(c) ALT

Figure B.4: Performances of RTRD against SVR depending on λw and λl in dataset
4.

108

(a) AWT (b) AIT

(c) ALT

Figure B.5: Performances of RTRD against SVR depending on λw and λl in dataset
5.

109

(a) AWT (b) AIT

(c) ALT

Figure B.6: Performances of RTRD against SVR depending on λw and λl in dataset
6.

110

(a) AWT (b) AIT

(c) ALT

Figure B.7: Performances of RTRD against SVR depending on λw and λl in dataset
7.

111

(a) AWT (b) AIT

(c) ALT

Figure B.8: Performances of RTRD against SVR depending on λw and λl in dataset
8.

112

(a) AWT (b) AIT

(c) ALT

Figure B.9: Performances of RTRD against SVR depending on λw and λl in dataset
9.

113

(a) AWT (b) AIT

(c) ALT

Figure B.10: Performances of RTRD against SVR depending on λw and λl in dataset
10.

114

(a) AWT (b) AIT

(c) ALT

Figure B.11: Performances of RTRD against SVR depending on λw and λl in dataset
11.

115

(a) AWT (b) AIT

(c) ALT

Figure B.12: Performances of RTRD against SVR depending on λw and λl in dataset
12.

116

Appendix C

Performance contour of RTLD with respect to λw,
λl, and λd

117

(a) AWT (b) AIT

(c) ALT

Figure C.1: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 1.

118

(a) AWT (b) AIT

(c) ALT

Figure C.2: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 2.

119

(a) AWT (b) AIT

(c) ALT

Figure C.3: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 3.

120

(a) AWT (b) AIT

(c) ALT

Figure C.4: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 4.

121

(a) AWT (b) AIT

(c) ALT

Figure C.5: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 5.

122

(a) AWT (b) AIT

(c) ALT

Figure C.6: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 6.

123

(a) AWT (b) AIT

(c) ALT

Figure C.7: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 7.

124

(a) AWT (b) AIT

(c) ALT

Figure C.8: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 8.

125

(a) AWT (b) AIT

(c) ALT

Figure C.9: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 9.

126

(a) AWT (b) AIT

(c) ALT

Figure C.10: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 10.

127

(a) AWT (b) AIT

(c) ALT

Figure C.11: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 11.

128

(a) AWT (b) AIT

(c) ALT

Figure C.12: Performances of RTLD against SVR depending on λw, λl, and λd in
dataset 12.

129

Bibliography

[1] I. Sindicic, S. Bogdan, and T. Petrovic, “Resource allocation in free-choice

multiple reentrant manufacturing systems based on machine-job incidence ma-

trix,” IEEE Transactions on Industrial Informatics, vol. 7, no. 1, pp. 105–114,

Feb. 2011.

[2] J. Zhang and X. Wang, “Multi-agent-based hierarchical collaborative schedul-

ing in re-entrant manufacturing systems,” International Journal of Production

Research, vol. 54, no. 23, pp. 7043–7059, Dec. 2016.

[3] H.-S. Choi, J.-S. Kim, and D.-H. Lee, “Real-time scheduling for reentrant

hybrid flow shops: A decision tree based mechanism and its application to a

TFT-LCD line,” Expert Systems with Applications, vol. 38, no. 4, pp. 3514–

3521, Apr. 2011.

[4] J. A. Ramirez-Hernandez and E. Fernandez, “Control of a re-entrant line man-

ufacturing model with a reinforcement learning approach,” in Sixth Interna-

tional Conference on Machine Learning and Applications (ICMLA 2007), Dec.

2007, pp. 330–335.

[5] J. C. Chen, K. H. Chen, J. J. Wu, and C. W. Chen, “A study of the flexible job

shop scheduling problem with parallel machines and reentrant process,” The

130

International Journal of Advanced Manufacturing Technology, vol. 39, no. 3,

pp. 344–354, Oct. 2008.

[6] P. R. Kumar, “Re-entrant lines,” Queueing Systems, vol. 13, no. 1, pp. 87–110,

Mar. 1993.

[7] Y. Narahari and L. M. Khan, “Performance analysis of scheduling policies in

re-entrant manufacturing systems,” Computers & Operations Research, vol. 23,

no. 1, pp. 37–51, 1996.

[8] M. C. Gomes, A. P. Barbosa-Póvoa, and A. Q. Novais, “Reactive scheduling

in a make-to-order flexible job shop with re-entrant process and assembly: a

mathematical programming approach,” International Journal of Production

Research, vol. 51, no. 17, pp. 5120–5141, Sep. 2013.

[9] Y. H. Han and J. Y. Choi, “A GSPN-Based Approach to Stacked Chips

Scheduling Problem,” IEEE Transactions on Semiconductor Manufacturing,

vol. 23, no. 1, pp. 4–12, Feb. 2010.

[10] F. He, D. Armbruster, M. Herty, and M. Dong, “Feedback control for prior-

ity rules in re-entrant semiconductor manufacturing,” Applied Mathematical

Modelling, vol. 39, no. 16, pp. 4655–4664, Aug. 2015.

[11] J. C. Tyan, T. C. Du, J. C. Chen, and I. H. Chang, “Multiple response opti-

mization in a fully automated FAB: an integrated tool and vehicle dispatching

strategy,” Computers & Industrial Engineering, vol. 46, no. 1, pp. 121–139,

Mar. 2004.

131

[12] K. Sourirajan and R. Uzsoy, “Hybrid decomposition heuristics for solving

large-scale scheduling problems in semiconductor wafer fabrication,” Journal

of Scheduling, vol. 10, no. 1, pp. 41–65, Feb. 2007.

[13] H. Liu, Z. Jiang, and R. Y. K. Fung, “The infrastructure of the timed EOPNs-

based multiple-objective real-time scheduling system for 300 mm wafer fab,”

International Journal of Production Research, vol. 45, no. 21, pp. 5017–5056,

Nov. 2007.

[14] H. Zhang, Z. Jiang, and C. Guo, “Simulation-based optimization of dispatching

rules for semiconductor wafer fabrication system scheduling by the response

surface methodology,” The International Journal of Advanced Manufacturing

Technology, vol. 41, no. 1, pp. 110–121, Mar. 2009.

[15] C.-H. Tsai, Y.-M. Feng, and R.-K. Li, “A hybrid dispatching rules in wafer

fabrication factories,” International journal of the computer, the internet and

management, vol. 11, no. 1, pp. 64–72, 2003.

[16] B. Lee, Y. H. Lee, T. Yang, and J. Ignisio, “A due-date based production

control policy using WIP balance for implementation in semiconductor fab-

rications,” International Journal of Production Research, vol. 46, no. 20, pp.

5515–5529, Oct. 2008.

[17] J. Huh, I. Park, S. Lim, B. Paeng, J. Park, and K. Kim, “Learning to dispatch

operations with intentional delay for re-entrant multiple-chip product assembly

lines,” Sustainability, vol. 10, no. 11, pp. 4123–4143, 2018.

132

[18] W. L. Pearn, Y. T. Tai, and J. H. Lee, “Statistical approach for cycle time

estimation in semiconductor packaging factories,” IEEE Transactions on Elec-

tronics Packaging Manufacturing, vol. 32, no. 3, pp. 198–205, Jul. 2009.

[19] M. Liu and C. Wu, “Genetic algorithm using sequence rule chain for multi-

objective optimization in re-entrant micro-electronic production line,” Robotics

and Computer-Integrated Manufacturing, vol. 20, no. 3, pp. 225–236, Jun. 2004.

[20] H. Jang, T. Y. Jung, K. Yeh, and J. H. Lee, “A model predictive control

approach for fab-wide scheduling in semiconductor manufacturing facilities,”

IFAC Proceedings Volumes, vol. 46, no. 24, pp. 493–498, Sep. 2013.

[21] F. D. Vargas-Villamil and D. E. Rivera, “A model predictive control approach

for real-time optimization of reentrant manufacturing lines,” Computers in

Industry, vol. 45, no. 1, pp. 45–57, May 2001.

[22] L. Danping and C. K. M. Lee, “A review of the research methodology for the

re-entrant scheduling problem,” International Journal of Production Research,

vol. 49, no. 8, pp. 2221–2242, Apr. 2011.

[23] J. A. Ramirez-Hernandez and E. Fernandez, “Optimal job releasing and se-

quencing for a reentrant manufacturing line with finite capacity buffers,” in

Proceedings of the 45th IEEE Conference on Decision and Control, Feb. 2006,

pp. 6654–6659.

[24] F. Dugardin, L. Amodeo, and F. Yalaoui, “Multiobjective scheduling of a

reentrant hybrid flowshop,” in 2009 International Conference on Computers

Industrial Engineering, Jul. 2009, pp. 193–195.

133

[25] F. D. Vargas-Villamil, D. E. Rivera, and K. G. Kempf, “A hierarchical ap-

proach to production control of reentrant semiconductor manufacturing lines,”

IEEE Transactions on Control Systems Technology, vol. 11, no. 4, pp. 578–587,

Jul. 2003.

[26] P. Y. Mok, “A decision support system for the production control of a semi-

conductor packaging assembly line,” Expert Systems with Applications, vol. 36,

no. 3, pp. 4423–4430, Apr. 2009.

[27] Y. H. Lee and T. Kim, “Manufacturing cycle time reduction using balance

control in the semiconductor fabrication line,” Production Planning & Control,

vol. 13, no. 6, pp. 529–540, Aug. 2002.

[28] F. D. Vargas-Villamil and D. E. Rivera, “Multilayer optimization and schedul-

ing using model predictive control: application to reentrant semiconductor

manufacturing lines,” Computers & Chemical Engineering, vol. 24, no. 8, pp.

2009–2021, Sep. 2000.

[29] J. T. Lin and C.-M. Chen, “Simulation optimization with GA and OCBA for

semiconductor back-end assembly scheduling,” in 2015 International Confer-

ence on Industrial Engineering and Operations Management (IEOM), Mar.

2015, pp. 1–8.

[30] Y.-H. Kang, S.-S. Kim, and H. J. Shin, “A scheduling algorithm for the reen-

trant shop: an application in semiconductor manufacture,” The International

Journal of Advanced Manufacturing Technology, vol. 35, no. 5, pp. 566–574,

Dec. 2007.

134

[31] B. S. Chung, J. Lim, I. B. Park, J. Park, M. Seo, and J. Seo, “Setup change

scheduling for semiconductor packaging facilities using a genetic algorithm

with an operator recommender,” IEEE Transactions on Semiconductor Man-

ufacturing, vol. 27, no. 3, pp. 377–387, Aug. 2014.

[32] C. Pickardt, J. Branke, T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Gener-

ating dispatching rules for semiconductor manufacturing to minimize weighted

tardiness,” in Proceedings of the 2010 Winter Simulation Conference, Dec.

2010, pp. 2504–2515.

[33] L. Li, Z. Sun, M. Zhou, and F. Qiao, “Adaptive dispatching rule for semicon-

ductor wafer fabrication facility,” IEEE Transactions on Automation Science

and Engineering, vol. 10, no. 2, pp. 354–364, Apr. 2013.

[34] J. Lim, M. J. Chae, Y. Yang, I. B. Park, J. Lee, and J. Park, “Fast scheduling

of semiconductor manufacturing facilities using case-based reasoning,” IEEE

Transactions on Semiconductor Manufacturing, vol. 29, no. 1, pp. 22–32, Feb.

2016.

[35] K. Appleton-Day and L. Shao, “Real-time dispatch gets real-time results in

AMD’s fab 25,” in 1997 IEEE/SEMI Advanced Semiconductor Manufacturing

Conference and Workshop ASMC 97 Proceedings, Sep. 1997, pp. 444–447.

[36] J. J. Kanet, “Tactically delayed versus non-delay scheduling: An experimental

investigation,” European Journal of Operational Research, vol. 24, no. 1, pp.

99–105, Jan. 1986.

135

[37] J. J. Kanet and V. Sridharan, “Scheduling with inserted idle time: Problem

taxonomy and literature review,” Operations Research, vol. 48, no. 1, pp. 99–

110, 2000.

[38] O. Gholami and Y. N. Sotskov, “A neural network algorithm for servicing

jobs with sequential and parallel machines,” Automation and Remote Control,

vol. 75, no. 7, pp. 1203–1220, Jul. 2014.

[39] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, May 2015.

[40] P. Thomas and A. Thomas, “Multilayer perceptron for simulation models re-

duction: Application to a sawmill workshop,” Engineering Applications of Ar-

tificial Intelligence, vol. 24, no. 4, pp. 646–657, Jun. 2011.

[41] W. Mouelhi-Chibani and H. Pierreval, “Training a neural network to select

dispatching rules in real time,” Computers & Industrial Engineering, vol. 58,

no. 2, pp. 249–256, Mar. 2010.

[42] P. Priore, D. de la Fuente, J. Puente, and J. Parreño, “A comparison of

machine-learning algorithms for dynamic scheduling of flexible manufactur-

ing systems,” Engineering Applications of Artificial Intelligence, vol. 19, no. 3,

pp. 247–255, Apr. 2006.

[43] A. K. Gupta and A. I. Sivakumar, “Job shop scheduling techniques in semicon-

ductor manufacturing,” The International Journal of Advanced Manufacturing

Technology, vol. 27, no. 11, pp. 1163–1169, Feb. 2006.

136

[44] G. R. Weckman, C. V. Ganduri, and D. A. Koonce, “A neural network job-shop

scheduler,” Journal of Intelligent Manufacturing, vol. 19, no. 2, pp. 191–201,

Apr. 2008.

[45] F. Zhou, C. Wu, and C. Yu, “Dynamic dispatching for re-entrant produc-

tion lines — A deep learning approach,” in 2017 13th IEEE Conference on

Automation Science and Engineering (CASE), Aug. 2017, pp. 1026–1031.

[46] Z. Hammami, W. Mouelhi, and L. Ben Said, “On-line self-adaptive frame-

work for tailoring a neural-agent learning model addressing dynamic real-time

scheduling problems,” Journal of Manufacturing Systems, vol. 45, pp. 97–108,

Oct. 2017.

[47] D. Golmohammadi, “A neural network decision-making model for job-shop

scheduling,” International Journal of Production Research, vol. 51, no. 17, pp.

5142–5157, Sep. 2013.

[48] D.-Y. Liao and C.-N. Wang, “A neural-network approach to delivery time

estimation for 300mm automatic material handling operations,” in Proceedings

of the 2003 International Conference on Machine Learning and Cybernetics

(IEEE Cat. No.03EX693), vol. 2, Nov. 2003, pp. 1073–1079 Vol.2.

[49] J. Domaschke, S. Brown, J. Robinson, and F. Leibl, “Effective implementation

of cycle time reduction strategies for semiconductor back-end manufacturing,”

in Proceedings of the 30th Conference on Winter Simulation, ser. WSC ’98.

IEEE Computer Society Press, 1998, pp. 985–992.

137

[50] A. I. Sivakumar and C. S. Chong, “A simulation based analysis of cycle time

distribution, and throughput in semiconductor backend manufacturing,” Com-

puters in Industry, vol. 45, no. 1, pp. 59–78, May 2001.

[51] S. Werner, S. Horn, G. Weigert, and T. Jähnig, “Simulation based scheduling

system in a semiconductor backend facility,” in Proceedings of the 38th Con-

ference on Winter Simulation, ser. WSC ’06. Winter Simulation Conference,

2006, pp. 1741–1748.

[52] H. Zhang, Z. Jiang, and C. Guo, “Simulation based real-time scheduling

method for dispatching and rework control of semiconductor manufacturing

system,” in 2007 IEEE International Conference on Systems, Man and Cy-

bernetics, Oct. 2007, pp. 2901–2905.

[53] Y.-F. Hung and I.-R. Chen, “A simulation study of dispatch rules for reduc-

ing flow times in semiconductor wafer fabrication,” Production Planning &

Control, vol. 9, no. 7, pp. 714–722, Jan. 1998.

[54] J. Potoradi, O. S. Boon, and S. J. Mason, “Using simulation-based schedul-

ing to maximize demand fulfillment in a semiconductor assembly facility,” in

Proceedings of the Winter Simulation Conference, vol. 2, Dec. 2002, pp. 1857–

1861.

[55] M. Y. H. Low, K. W. Lye, P. Lendermann, S. J. Turner, R. T. W. Chim, and

S. H. Leo, “An agent-based approach for managing symbiotic simulation of

semiconductor assembly and test operation,” in Proceedings of the Fourth In-

ternational Joint Conference on Autonomous Agents and Multiagent Systems,

ser. AAMAS ’05. ACM, 2005, pp. 85–92.

138

[56] T. J. Chua, T. X. Cai, and X. F. Yin, “A heuristic approach for schedul-

ing multi-chip packages for semiconductor backend assembly,” in 2007 IEEE

Conference on Emerging Technologies and Factory Automation (EFTA 2007),

Sep. 2007, pp. 1024–1030.

[57] Y.-F. Hung and C.-B. Chang, “Dispatching rules using flow time predictions

for semiconductor wafer fabrications,” Journal of the Chinese Institute of In-

dustrial Engineers, vol. 19, no. 1, pp. 67–75, Jan. 2002.

[58] Y. Li, J. Li, J. Yao, and Y. Ni, “Development of an integrated real time dis-

patching system: A case study at a semiconductor assembly and test factory,”

Journal of Manufacturing Technology Management, vol. 25, no. 7, pp. 980–997,

Aug. 2014.

[59] H.-S. Min and Y. Yih, “Selection of dispatching rules on multiple dispatching

decision points in real-time scheduling of a semiconductor wafer fabrication

system,” International Journal of Production Research, vol. 41, no. 16, pp.

3921–3941, Jan. 2003.

[60] Y. F. Lee, Z. B. Jiang, and H. R. Liu, “Multiple-objective scheduling and real-

time dispatching for the semiconductor manufacturing system,” Computers &

Operations Research, vol. 36, no. 3, pp. 866–884, Mar. 2009.

[61] S. J. Lee and T. E. Lee, “Scheduling a multi-chip package assembly line with

reentrant processes and unrelated parallel machines,” in 2008 Winter Simula-

tion Conference, Dec. 2008, pp. 2286–2291.

139

[62] D. M. Chiang, R.-S. Guo, and F.-Y. Pai, “Improved customer satisfaction with

a hybrid dispatching rule in semiconductor back-end factories,” International

Journal of Production Research, vol. 46, no. 17, pp. 4903–4923, Sep. 2008.

[63] J. F. Bard, Z. Gao, R. Chacon, and J. Stuber, “Daily scheduling of multi-

pass lots at assembly and test facilities,” International Journal of Production

Research, vol. 51, no. 23, pp. 7047–7070, Nov. 2013.

[64] F. Tovia, S. J. Mason, and B. Ramasami, “A scheduling heuristic for maxi-

mizing wirebonder throughput,” IEEE Transactions on Electronics Packaging

Manufacturing, vol. 27, no. 2, pp. 145–150, Apr. 2004.

[65] Y. Ma, F. Qiao, F. Zhao, and J. W. Sutherland, “Dynamic scheduling of a

semiconductor production line based on a composite rule set,” Applied Sci-

ences, vol. 7, no. 10, p. 1052, 2017.

[66] J. T. Lin and C.-M. Chen, “Simulation optimization approach for hybrid flow

shop scheduling problem in semiconductor back-end manufacturing,” Simula-

tion Modelling Practice and Theory, vol. 51, pp. 100–114, Feb. 2015.

[67] M. K. E. Adl, A. A. Rodriguez, and K. S. Tsakalis, “Hierarchical modeling and

control of re-entrant semiconductor manufacturing facilities,” in Proceedings

of 35th IEEE Conference on Decision and Control, vol. 2, Dec. 1996, pp. 1736–

1742 vol.2.

[68] Y. Deng, J. F. Bard, G. R. Chacon, and J. Stuber, “Scheduling back-end opera-

tions in semiconductor manufacturing,” IEEE Transactions on Semiconductor

Manufacturing, vol. 23, no. 2, pp. 210–220, May 2010.

140

[69] M. Fu, R. Askin, J. Fowler, M. Haghnevis, N. Keng, J. S. Pettinato, and

M. Zhang, “Batch production scheduling for semiconductor back-end opera-

tions,” IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 2,

pp. 249–260, May 2011.

[70] J. A. Ramirez-Hernandez and E. Fernandez, “A case study in scheduling reen-

trant manufacturing lines: Optimal and simulation-based approaches,” in Pro-

ceedings of the 44th IEEE Conference on Decision and Control, Dec. 2005, pp.

2158–2163.

[71] C.-C. Liu, H.-Y. Jin, Y. Tian, and H.-B. Yu, “Reinforcement learning approach

to re-entrant manufacturing system scheduling,” in 2001 International Con-

ferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479), vol. 3,

2001, pp. 280–285 vol.3.

[72] J. A. Ramirez-Hernandez and E. Fernandez, “An approximate dynamic pro-

gramming approach for job releasing and sequencing in a reentrant manufac-

turing line,” in 2007 IEEE International Symposium on Approximate Dynamic

Programming and Reinforcement Learning, Apr. 2007, pp. 201–208.

[73] C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick, “Simulation budget allocation

for further enhancing the efficiency of ordinal optimization,” Discrete Event

Dynamic Systems, vol. 10, no. 3, pp. 251–270, 2000.

[74] C. H. Dagli, Artificial Neural Networks for Intelligent Manufactur-

ing. Springer Science & Business Media, Dec. 2012, google-Books-ID:

K4ftCAAAQBAJ.

141

[75] P. Priore, A. Gómez, R. Pino, and R. Rosillo, “Dynamic scheduling of man-

ufacturing systems using machine learning: An updated review,” AI EDAM,

vol. 28, no. 01, pp. 83–97, 2014.

[76] I. Moon, S. Lee, and H. Bae, “Genetic algorithms for job shop scheduling prob-

lems with alternative routings,” International Journal of Production Research,

vol. 46, no. 10, pp. 2695–2705, May 2008.

[77] A. El-Bouri and P. Shah, “A neural network for dispatching rule selection in a

job shop,” The International Journal of Advanced Manufacturing Technology,

vol. 31, no. 3-4, pp. 342–349, Nov. 2006.

[78] J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic Evolution

of Dispatching Rules: A Comparison of Rule Representations,” Evolutionary

Computation, vol. 23, no. 2, pp. 249–277, Jun. 2014.

[79] L. Tang, W. Liu, and J. Liu, “A neural network model and algorithm for the

hybrid flow shop scheduling problem in a dynamic environment,” Journal of

Intelligent Manufacturing, vol. 16, no. 3, pp. 361–370, Jun. 2005.

[80] R.-S. Guh, Y.-R. Shiue, and T.-Y. Tseng, “The study of real time scheduling by

an intelligent multi-controller approach,” International Journal of Production

Research, vol. 49, no. 10, pp. 2977–2997, May 2011.

[81] Y.-R. Shiue and R.-S. Guh, “Learning-based multi-pass adaptive schedul-

ing for a dynamic manufacturing cell environment,” Robotics and Computer-

Integrated Manufacturing, vol. 22, no. 3, pp. 203–216, Jul. 2006.

142

[82] K.-J. Wang, J. C. Chen, and Y.-S. Lin, “A hybrid knowledge discovery model

using decision tree and neural network for selecting dispatching rules of a

semiconductor final testing factory,” Production Planning & Control, vol. 16,

no. 7, pp. 665–680, Oct. 2005.

[83] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated Design of

Production Scheduling Heuristics: A Review,” IEEE Transactions on Evolu-

tionary Computation, vol. 20, no. 1, pp. 110–124, Feb. 2016.

[84] R. Linn and W. Zhang, “Hybrid flow shop scheduling: A survey,” Computers

& Industrial Engineering, vol. 37, no. 1, pp. 57–61, Oct. 1999.

[85] M. MONTAZERI and L. N. V. WASSENHOVE, “Analysis of scheduling rules

for an FMS,” International Journal of Production Research, vol. 28, no. 4, pp.

785–802, Apr. 1990.

[86] D. Quadt, “Simulation-based scheduling of parallel wire-bonders with limited

clamp&paddles,” in Proceedings of the 38th Conference on Winter Simulation,

ser. WSC ’06. Winter Simulation Conference, 2006, pp. 1887–1892.

[87] A. I. Sivakumar, “Optimization of a cycle time and utilization in semiconduc-

tor test manufacturing using simulation based, on-line, near-real-time schedul-

ing system,” in Proceedings of the 31st Conference on Winter Simulation: Sim-

ulation—a Bridge to the Future - Volume 1, ser. WSC ’99. ACM, 1999, pp.

727–735.

143

[88] A. Negahban and J. S. Smith, “Simulation for manufacturing system design

and operation: Literature review and analysis,” Journal of Manufacturing Sys-

tems, vol. 33, no. 2, pp. 241–261, Apr. 2014.

[89] A. Varga, “Discrete event simulation system,” in Proc. of the European Sim-

ulation Multiconference (ESM’2001), 2001.

[90] E. Red, G. Jensen, D. French, and P. Weerakoon, “Multi-user architectures for

computer-aided engineering collaboration,” in 2011 17th International Confer-

ence on Concurrent Enterprising, Jun. 2011, pp. 1–10.

[91] W. Han and M. Jochum, “Near real-time satellite data quality monitoring

and control,” in 2016 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), Jul. 2016, pp. 206–209.

[92] A. Pritsker and K. Snyder, “Production scheduling using factor,” in The Plan-

ning and Scheduling of Production Systems. Springer, 1997, pp. 337–358.

[93] S. H. Lee, F. Pena-Mora, and M. Park, “Dynamic planning and control

methodology for strategic and operational construction project management,”

Automation in construction, vol. 15, no. 1, pp. 84–97, 2006.

[94] J. Jo, J. Huh, J. Park, B. Kim, and J. Seo, “LiveGantt: Interactively Visual-

izing a Large Manufacturing Schedule,” IEEE Transactions on Visualization

and Computer Graphics, vol. 20, no. 12, pp. 2329–2338, Dec. 2014.

[95] P. Xu, H. Mei, L. Ren, and W. Chen, “Vidx: Visual diagnostics of assembly

line performance in smart factories,” IEEE transactions on visualization and

computer graphics, vol. 23, no. 1, pp. 291–300, 2017.

144

[96] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve

neural network acoustic models,” in Proc. icml, vol. 30, no. 1, June 2013, p. 3.

[97] R. Haupt, “A survey of priority rule-based scheduling,” Operations-Research-

Spektrum, vol. 11, no. 1, pp. 3–16, Mar. 1989.

[98] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Else-

vier, 2011.

[99] J. Weston, O. Chapelle, V. Vapnik, A. Elisseeff, and B. Schölkopf, “Kernel de-

pendency estimation,” in Advances in neural information processing systems,

2003, pp. 897–904.

[100] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.

[101] J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic evolution

of dispatching rules: A comparison of rule representations,” Evolutionary com-

putation, vol. 23, no. 2, pp. 249–277, 2015.

[102] S. C. Sarin, A. Varadarajan, and L. Wang, “A survey of dispatching rules

for operational control in wafer fabrication,” Production Planning & Control,

vol. 22, no. 1, pp. 4–24, Jan. 2011.

145

국문초록

재유입 제조라인에서는 하나의 제품을 완성하기까지 부품이 다수의 공정을 여러 번

반복하는 과정이 반드시 발생한다. 반도체와 액정 디스플레이 제조공정의 등장으로 재

유입 제조라인은 학계와 산업계의 주목을 모두 받게 되었다. 최근에 플래시 메모리와

액정디스플레이가내장된소형전자기기의수요가증가함에따라관련연구가활발히

진행되고 있다.

본논문에서는재유입제조라인의병목단계의설비가동률을저하시키지않으면서

플로우 타임을 감소시키기 위한 심층신경망 기반의 실시간 디스패처를 제안하고자 한

다.재유입 제조라인의여러 단계에 반복하여 진입하는 부품들은 플로우 타임을줄이고

설비 가동률을 향상시키는 두 가지 목표를 동시에 달성하는 것을 어렵게 만드는 주요

인이다. 구체적으로, 산출물의 양을 최대화하기 위하여 충분한 양의 재공을 공급하면

설비의 가동률을 높은 수준으로 유지할 수 있다. 하지만 재공의 양이 지나치게 많으면

다음 공정에서 부품들의 대기 시간이 길어지므로 부품들의 플로우 타임이 증가하게

된다.

논문에서 제안하는 새로운 방법론들은 다음과 같다. 첫째, 학습 데이터를 생성하고

디스패칭 의사결정의 성능을 평가하기 위해 이산 사건 기반 시뮬레이터와 시각화 도구

가개발되었다.이산사건 기반 시뮬레이터는 실제 현장의재유입제조라인을 모방하고

심층 신경망을 학습시키기 위한 데이터를 생성하는 역할을 담당한다. 시각화 도구는

디스패칭 의사결정이 수행될 때의 제조라인의 상태를 표현하는 기능과 시간의 경과에

따른 다양한 성능 지표의 변화를 관찰할 수 있는 기능을 함께 제공한다.

둘째, 서로 다른 의사결정 과정을 수행하는 두 종류의 심층신경망 기반 실시간 디

스패처가 제안되었다. 학습 단계에서, 디스패처는 시뮬레이터에 의해 생성된 제조라인

146

데이터를 이용하여 디스패칭 의사결정이 요구되는 시점의 각 대안의 선호도를 학습한

다. 그 후 실시간 디스패칭 단계에서, 디스패처는 의도적인 지연을 고려하여 디스패칭

의사결정을 수행한다. 이 때, 부품의 대기 시간을 줄이면서 병목 단계의 유휴 시간을

감소시킬 것으로 기대되는 대안이 높은 점수를 받게 된다.

본 논문의 기여와 실용적인 의미는 다음의 세 가지로 요약될 수 있다. 첫째, 사용자

에게 디스패칭 의사결정 분석 기능을 제공하는 시각화 도구를 개발했다. 둘째, 제안된

방법론은 실제 현장의 재유입 제조라인을 모방하는 이산 사건 기반 시뮬레이터를 이

용하여 심층신경망의 학습에 사용되는 데이터를 생성할 수 있다. 마지막으로, 제안된

실시간 디스패처는 재유입 제조라인의 의도적인 지연을 고려하여 병목 단계의 설비

가동률을 높이면서 플로우 타임을 감소시킬 수 있음이 성공적으로 검증되었다.

주요어: 재유입 제조라인, 실시간 디스패처, 의도적인 지연, 심층신경망, 플로우 타임,

설비 가동률, 시뮬레이터, 시각화 도구

학번: 2013-23211

147

	1. Introduction
	1.1 Background and motivation
	1.2 Objectives
	1.3 Thesis outline

	2. Literature Review
	2.1 Dispatching decisions in RMLs
	2.2 Neural network-based approaches to dispatching decisions

	3. Problem Definition
	3.1 Multiple-chip product (MCP) assembly lines
	3.2 Lot dispatching process in MCP assembly lines

	4. Frameworks for Data Generation and Performance Evaluation
	4.1 Discrete event-based simulator
	4.1.1 Purpose of implementation
	4.1.2 Details of the structure

	4.2 Monitoring tool
	4.2.1 Purpose of implementation
	4.2.2 Details of the structure

	5. Deep Neural Network Based Dispatcher
	5.1 Real-time rule selection dispatcher
	5.1.1 Dispatcher structure
	5.1.2 Training phase
	5.1.3 Real-time dispatching phase

	5.2 Real-time lot selection dispatcher
	5.1.1 Dispatcher structure
	5.1.2 Training phase
	5.1.3 Real-time dispatching phase

	6. Experiments
	6.1 Datasets
	6.2 Experiment settings
	6.3 Experiment results
	6.3.1 Performance comparison
	6.3.2 Performance difference according to weights
	6.3.3 Robustness test

	7. Conclusions
	7.1 Summary and contributions
	7.2 Limitations and future research

	Appendices
	Bibliography
	Abstract (in Korean)

<startpage>17
1. Introduction 1
 1.1 Background and motivation 1
 1.2 Objectives 6
 1.3 Thesis outline 8
2. Literature Review 9
 2.1 Dispatching decisions in RMLs 9
 2.2 Neural network-based approaches to dispatching decisions 13
3. Problem Definition 17
 3.1 Multiple-chip product (MCP) assembly lines 17
 3.2 Lot dispatching process in MCP assembly lines 21
4. Frameworks for Data Generation and Performance Evaluation 24
 4.1 Discrete event-based simulator 24
 4.1.1 Purpose of implementation 24
 4.1.2 Details of the structure 25
 4.2 Monitoring tool 30
 4.2.1 Purpose of implementation 30
 4.2.2 Details of the structure 32
5. Deep Neural Network Based Dispatcher 43
 5.1 Real-time rule selection dispatcher 46
 5.1.1 Dispatcher structure 46
 5.1.2 Training phase 49
 5.1.3 Real-time dispatching phase 52
 5.2 Real-time lot selection dispatcher 53
 5.1.1 Dispatcher structure 53
 5.1.2 Training phase 57
 5.1.3 Real-time dispatching phase 58
6. Experiments 60
 6.1 Datasets 60
 6.2 Experiment settings 61
 6.3 Experiment results 67
 6.3.1 Performance comparison 67
 6.3.2 Performance difference according to weights 79
 6.3.3 Robustness test 87
7. Conclusions 92
 7.1 Summary and contributions 92
 7.2 Limitations and future research 94
Appendices 96
Bibliography 130
Abstract (in Korean) 146
</body>

