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Abstract

Deep Neural Network Based

Multi-Objective Dispatcher
for Re-Entrant Manufacturing Lines

Jaeseok Huh
Department of Industrial Engineering
The Graduate School

Seoul National University

A re-entrant manufacturing line (RML) is a manufacturing line in which parts make
several visits to the same stage before exiting the line. RMLs have intrigued interest
in both academia and industry with the recent emergence of semiconductor manu-
facturing and thin film transistor-liquid crystal display (LCD) manufacturing lines.
As small devices embedded with flash memory and LCD have grown in demand,
relevant research effort has been motivated to date.

This thesis aims to propose real-time dispatchers (RTD) based on deep neural
networks (DNN) that decrease flow time without deteriorating resource utilization
at the bottleneck stage for real-world RMLs. Frequent re-entrant parts between
multiple stages in RMLs make it challenging to achieve the dual goals of reducing
flow time and improving resource utilization. To be more specific, the level of resource
utilization can be kept high by simply providing a sufficiently large amount of work-

in-process (WIP) to maximize throughput. On the contrary, an excessive amount of



WIP leads to a longer waiting time for parts in the next operations, thus increasing
flow time for the parts.

This thesis suggests new methods as follows. First, a discrete event based sim-
ulator (DEBS) and monitoring tool are implemented to generate training data and
evaluate the performance of dispatching decisions. DEBS plays a role in imitating
real-world RMLs and generating training data used for DNNs. The monitoring tool
is in charge of presenting the state of an RML at the time of each dispatching de-
cision being made. Furthermore, it also provides the ability to observe changes in
various performance indicators over time.

Second, two deep neural network based RTDs with different decision-making
processes are presented by the thesis. In the training phase, the proposed RTDs
learn the preferences of each alternative when dispatching decisions are required ac-
cording to RML data generated by the application of the developed DEBS. Then, in
the real-time dispatching phase, RTDs perform dispatching decisions by considering
intentional delays. A preferred alternative records a higher value as the dispatching
decision is likely to reduce the part’s waiting time and decrease the idle time of the
resources in the bottleneck stage.

The thesis makes contributions and holds utilitarian significance in three ways.
First, it developed a monitoring tool that allows users to investigate each dispatching
decision. Second, the proposed approach is capable of generating training data used
for DNNs by merely performing a simulation while using the developed DEBS that
imitates real-world RMLs. Finally, the proposed RTDs are successful in decreasing
flow time while increasing resource utilization at the bottleneck stage by factoring

in intentional delays in RMLs.
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Chapter 1

Introduction

1.1 Background and motivation

Re-entrant manufacturing lines (RML) have become at the center of attention
in both academia and industry since semiconductor manufacturing and thin film
transistor-liquid crystal display (LCD) manufacturing lines came along [I}, 2} 3] 4], [5].
RMLs are systems where parts can visit the same stage several times before exiting
the line [6l [7, [8]. Research in this discipline has been motivated with an increas-
ing demand for small devices equipped with flash memory and LCD such as smart
phones and wearable devices [9, [10].

Figure shows the concept of RML and the dashed line at the bottom of the
figure indicates the flow of parts which go back to the previous stage. There are two
types of stockers where parts stay temporarily. The first one at the top of the figure
is a place where parts, which have completed an operation at the previous stage,
wait before they enter the current one. The second at the bottom of the figure, called
a re-entrant stocker, illustrates a place where parts, which have completed the next
stage, wait for the re-entrance to the current one.

There are parallel resources that are responsible for processing parts at each

stage and assigning a part to a resource is referred to as the dispatching decision.
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Furthermore, a typical type of RML may regard a stage as a bottleneck if its re-
source utilization is above 85% [11, [12], 13]. This value is considerably subjective.
In practice, it is maintained above 90% for semiconductor manufacturing lines [14].
Since the maximum throughput is determined by the bottleneck stage, it is essential
to maintain a high level of resource utilization in the bottleneck [15].

It is achievable to keep the resource utilization level high by simply providing
a sufficiently large amount of work-in-process (WIP). On the contrary, an excessive
amount of WIP leads to increase in the waiting time for parts in the next operations,
thus increasing flow time of parts [16]. Therefore, managing WIP levels properly
matters in order to resolve the multi-objective problem of reducing flow time of
parts and improving resource utilization [17].

Unfortunately, the re-entrant nature brings about a challenge to WIP level con-
trol [18]. Specifically, if newly arrived parts are frequently assigned to resources of
the non-bottleneck stage with re-entrant parts not into consideration, the WIP level
of the bottleneck stage will excessively increase. On the other hand, giving a high
priority level to re-entrant parts in the non-bottleneck stage can result in a lack of
WIP at the bottleneck stage, which decreases resource utilization in the bottleneck
stage [19) 20].

From the remark above, it is clear that RMLs require dispatching decisions that
differ from those performed in traditional manufacturing lines and flow shops [211, 22,
23]. For this reason, a number of scholars have presented methods for dispatching
decisions in RMLs using optimization, meta-heuristics, and dispatching rules [19]
99, [24), 25, 26, 27, 28, 29, [30].

On one hand, approaches with a long computation time to yield dispatching de-



cisions, such as optimization and meta-heuristics, are not proper to be applied to
real-world RMLs although they successfully improve objectives through an exhaus-
tive search over solution spaces [31]. This is because, from a practical standpoint,
a part has to be immediately assigned to a resource in the event that the resource
requests a part.

On the other hand, the benefits of the rule based methods include computational
efficiency and ease of implementation [32] [33]. However, the majority of previous dis-
patching rules are usually designed to address a sole objective, and have limitations
when addressing various characteristics of real-world RMLs [34] [35].

In the meantime, it should be noted herein that the previous studies have focused
mainly on selecting one among the waiting parts ready to be processed immediately.
That is, a resource becomes idle only when there are no waiting parts in the stockers.
Yet, it is well known that performance can be improved when an intentional delay
is made in resource usage by idling a resource even through there are parts waiting
for its processing [36, [37].

Motivated by the considerations above, this thesis attempts to suggest a dis-
patching method based on deep neural networks (DNNs) that decrease flow time
without loss in resource utilization of the bottleneck stage for real-world RMLs.
Whenever a dispatching decision is required, the proposed method choose the best
part by considering both cases: when parts are processed directly; and when parts
undergo an intentional delay in a resource. In other words, the proposed method
maintains a high level of resource utilization and minimizes flow time by continu-
ously prioritizing newly arrived parts and re-entrant parts according to the status

of the RML.



To achieve this, we use a simulator to generate training data that are used
to train the dispatcher. The main difference between the existing learning-based
methods and our efforts lies in the fact that the existing work requires training data
generated from optimal solutions which are difficult to obtain, while our method is
capable of generating training data by simply performing simulations with random
decision making. In detail, the performances of the decisions in randomly generated
simulation logs are measured by the proposed score generator, and the evaluated
simulation logs are used to train the DNN in the proposed dispatcher. In real-time
dispatching phase, the proposed method quantifies the degree of preference for each
decision with a numerical score and then completes the dispatching decision based
on the score.

As mentioned above, to learn dispatching decisions considering intentional delay,
we employ a DNN which is capable of capturing complex non-linear dynamics [38].
Furthermore, it is known that a DNN enables computational models to learn repre-
sentations of data through multiple levels of abstraction to understand the hidden
relationships among input features [39) 40]. Neural networks (NNs) have been suc-
cessfully applied to a variety of areas which involve decisions, including dispatching

and scheduling problems [41], 42 [43] [44], 45], [46], [47) [48].



1.2 Objectives

The objective of this thesis is to propose a real time dispatcher (RTD) for decreasing
flow time while maintaining a high level of resource utilization in real-world RMLs.
The thesis consists of two major studies to reach its goals. The first one focuses on
implementing an underlying environment for conducting research. Then, the second
one that deals with developing RTDs is sub-categorized into two parts according
to how decisions are made. The basic concepts and purposes of the studies are
summarized as follows.

First, a discrete event based simulator (DEBS) and monitoring tool are proposed
in Chapter @l DEBS is designed to imitate the RML described in Chapter [3| and
calculate key performance indicators (KPIs) such as mean flow time and resource
utilization. Furthermore, a DEBS takes on generating training data used to train
a DNN. In addition to the functions of the existing Gantt chart, the monitoring
tool presents various information on RMLs at the time of a dispatching decision
being made. This feature is used to analyze the reason behind dispatching decision
making, which is helpful to improving performance in RTDs.

Second, two DNN based RTDs with different decision-making processes are sug-
gested in Chapter [l RTDs are in charge of choosing the best part by considering
both cases: when parts are processed directly; and when parts undergo an inten-
tional delay in a resource at the non-bottleneck stage. To make that happen, we
utilize the DEBS developed in Chapter [4] to generate training data used for RTDs
in the training phase. In the real time dispatching phase, dispatching decisions can
be made quickly thanks to the calculation of using parameters of the trained RTDs.

In detail, each alternative of the dispatching decision for a resource is represented



in the form of a vector. The proposed method quantifies the degree of preference for
each vector with a numerical score, on which it completes the dispatching decision. A
preferred vector receives a higher value as the dispatching decision is likely to shorten
the part’s waiting time and reduce the idle time of resources in the bottleneck stage.

Finally, the effectiveness and efficiency of the proposed methods are demon-
strated through extensive experiments in Chapter [6] The performances of the pro-
posed RTDs are compared with the conventional dispatching methods in terms of
flow time and bottleneck resource utilization. Additionally, numerical experiments

are conducted to investigate the merits and demerits of the proposed two RTDs.
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1.3 Thesis outline

This thesis is comprised of seven chapters and the remainder is organized as follows.
In Chapter [2, previous research on the dispatching methods for RMLs is examined
and DNN based techniques applied to the dispatching decision are reviewed. Chapter
describes the problem under consideration and defines the notations used in the
thesis. The features and functions of DEBS and monitoring tool are presented in
Chapter [ The proposed approaches, consisting of two RTDs, a score generator,
and learning algorithm, is introduced in Chapter |5} Subsequently, the experimental
results are summarized and discussed in Chapter [6} Finally, we conclude this work

with contributions and future work of this thesis in Chapter [7]

2] 8

S Y |



Chapter 2

Literature Review

2.1 Dispatching decisions in RMLs

A considerable amount of literature has been published on dispatching methods in
RMLs. Previous research is classified according to their approaches and performance
metrics, as presented in Table

Simulation-based studies have attempted to understand the characteristics of
part flows by executing tasks virtually in advance [49, 50]. Most studies utilized
simulation techniques to analyze or improve their objectives [51) 52, 53, 54]. On
the other hand, researchers in [55, [56] sought simulation methods that precisely
represent real-world RMLs and quickly process events.

Another line of research aims to perform dispatching decisions by utilizing dis-
patching rules [15, [57]. Publications on rule-based dispatching can be classified into
two categories. The first group proposes methods for selecting a dispatching rule
among the existing ones to obtain desired performance measures in a specific sit-
uation [14] 58, (9L 60]. To effectively cope with changes in the bottleneck stage,
algorithms to detect bottleneck stage are also to be applied in [14] [60].

The second category focuses mainly on improving objectives by developing their

own rule-based methods [61] [62], 63, [64]. In particular, Bard et al. [63] presented a



multi-stage approach consisting of three steps, which decides on the best resource-
tooling configurations and the way to assign parts to resources. They succeeded
in increasing weighted throughput in small-size problems. However, their method
requires a longer computation time as problems become as large as those in the real
world.

To overcome the limitations of the dispatching rules, Ma et al. [65] investigated
a dynamic scheduling method based on support vector regression (SVR). Specifi-
cally, they proposed a composite dispatching rule - a linear combination of multiple
dispatching rules with a weight assigned to each rule. The scheduling model trained
with SVR determines the weights of the composite dispatching rule for a given pro-
duction line state. Their method outperformed simple dispatching rules in terms of
multiple performance measures such as flow time and resource utilization.

Besides the rule-based methods, some studies investigating meta-heuristics have
been conducted to improve their particular objectives through an exhaustive search
over solution spaces [26]. Genetic algorithm (GA) based methods were popularly
used to decrease flow time and increase resource utilization [19} 29] [66]. In particular,
the work in [29, [66] utilized the heuristic algorithm as proposed in [73] to reduce
time spent on searching solution space.

Additionally, a Tabu search (TS) based algorithm, presented in [30], aims to
minimize tardiness. Kang et al. [30] introduced a rolling horizon method that limits
the area of unnecessary neighborhood solutions, thus decreasing computation time.
Although the existing studies of meta-heuristics attempted to reduce computation
time, it is difficult to introduce them into the real-world RMLs where dispatching

decisions are required to be made in a real-time manner.
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Table 2.1: Overview of previous research on dispatching decisions of RMLs.

Approaches

Performance metrics

References

Simulation

Flow time
Simulation cost
Tardiness

Throughput

49], [B0l, b1, [52], 53]

Dispatching rule

Flow time
Tardiness
Throughput

Utilization

Z
z

ZEEEH HE
E EE

Support vector regression

Flow time

Utilization

Meta-heuristic

Flow time
Tardiness
Throughput

Utilization

E
E

Case-based reasoning

Utilization

Mathematical programming

Flow time
Tardiness
Throughput

Utilization

Reinforcement learning

Flow time

Throughput

HEEEEREEEREE BB EEEHEHEE
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To resolve the disadvantages of meta-heuristics, such as a long computation time
to obtain solutions, Lim et al. [34] extended the earlier work in [31] using case-based
reasoning. Unfortunately, they failed to achieve as much resource utilization as the
existing method provides [31].

Studies were conducted to analyze dispatching decisions using the mathematical
formulation of part flow in RMLs [27, [68), 69]. To reduce complexity of the problem
of determining dispatching decisions, the works in [21], 25, 28] 67] divided RMLs
in different hierarchical layers. Furthermore, reinforcement learning based methods
also have been proposed to perform dispatching decisions in RMLs [71], (72, 23] [70].
These methods are characterized in that they attempted to improve the performance

of cumulative dispatching results rather than that of immediate dispatching results.

12



2.2 Neural network-based approaches to dispatching de-

cisions

Recently, there has been a considerable interest in using NNs for dispatching deci-
sions in various manufacturing domains [43] [74, [75]. Table [2.2| presents the summary
of the previous studies on dispatching decisions with the help of NNs. They are cat-
egorized into four cases according to subject.

The field of job shops have attracted attention among many researchers, and the
dispatching decision in the job shop system is traditionally known as a complex task
[477, [76]. Two NNs are proposed in order to decide different dispatching rules locally
for each resource [77]. Due to the structure of the developed NNs, the proposed
method was not robust to the number of resources.

An attempt was made to generate training datasets for NNs by using a GA,
which can obtain the optimal solution to job shop problems [44]. Although a trained
NN successfully yielded performances at the closest level to those of the GA, the
NN was designed solely to work for 6x6 job shop problems. Branke et al. [78] used
NNs to automatically design dispatching rules in a dynamic stochastic job shop
scenario. They also compared three different techniques for automated rule design:
NNs, a linear combination of attributes, and a tree representation. Their numerical
experiments indicated that NNs outperformed the rest for small-sized problems.

Meanwhile, a sensitivity analysis was conducted [47] in order to find which input
attributes of the NN has significant impact on the performance of dispatching results.
To be more specific, it measured the relative importance among the inputs of the
NN and illustrated how NN output is changed in response to variations in input.

A flow shop is different from the job shop in that all jobs follow the same process-
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ing order [83]. Mouelhi-Chibani and Pierreval [41] suggested a NN based approach
for assigning the most suited dispatching rule to a resource each time the resource
becomes available. In their research, weights of the NN are determined with the
simulated annealing (SA) method rather than using training examples.

Unlike the flow shop, a hybrid flow shop (HFS) contains at least one stage that
consists of multiple resources [84]. The delta-bar-delta algorithm was developed to
further speed up the convergence of the weights of NNs in the HFS [79]. This algo-
rithm is tasked with adjusting the learning rate dynamically based on the variation
of training errors.

Some authors investigated how to use NNs in a flexible manufacturing system
(FMS) defined in [85]. On the one hand, Shiue and Guh [81] presented a hybrid
learning framework that integrates a NN and GA to select the optimal subgroup of
features from the state of the FMS. Although the performance of the framework is
superior to other machine learning methods, it takes an excessively long computation
time to discover the chromosomes and determine the learning parameters of the NN.

Meanwhile, Guh et al. [80] developed a method to assign different dispatching
rules in each of the resources using self-organizing map (SOM) NNs. In detail, the
proposed method determines appropriate multiple dispatching rules (MDRs) for a
specific period. The results showed that their method outperforms two alternatives
with the same dispatching rule in all resources.

Adding to this, many studies were carried out on the dispatching decisions using
NNs in RMLs [33], 45] [59) 82]. To take a closer look, Min and Yih [59] proposed an
approach for the selection of dispatching rules when desired performance measures

are given with the status of the RML. However, they made an unsuccessful effort
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to obtain high quality datasets of dispatching decisions, which has been left to be
addressed.

In order to dynamically determine the parameters of a NN, Li et al. [33] devised
an adaptive dispatching rule (ADR) that takes into account real-time state informa-
tion of RMLs. They demonstrated that their method was superior to the existing
dispatching rules by doing numerical experiments on semiconductor fabrication fa-
cilities.

A hybrid knowledge discovery framework was developed to decide the most ap-
propriate dispatching rule using a decision tree and NN [82], which are responsible
for selecting one among the existing dispatching rules, and then predicting the per-
formance of the selected rule. In addition, Zhou et al. [45] attempted to approximate
the optimal value function by using a NN. More specifically, they presented a dy-
namic dispatching approach for RMLs by combining dynamic programming (DP)
with DNNs.

In spite of the fact that previous research successfully addresses the use of NNs for
dispatching decisions on various manufacturing systems, most conventional methods
can learn dispatching strategies only if training datasets are obtained from optimal
solutions. This only implies inefficiency as their methods necessitate a solver that
yields optimal solutions for given problems. Furthermore, as mentioned above, they
do not factor in intentional delay decisions, which can possibly improve performance

if they are done properly.
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Chapter 3

Problem Definition

3.1 Multiple-chip product (MCP) assembly lines

We consider a multiple-chip products (MCPs) assembly line for semiconductor man-
ufacturing which is the most representative one of RMLs [I7]. MCP production in-
volves complex and correlated assembly stages consisting of backlap, wafer sawing,
die attach (DA), wire bonding (WB), and molding [29] 61]. Especially, in the DA and
WRB stages, wafers are grouped as a lot and processed by a resource. Here, assigning
a lot to a resource is referred to as the lot dispatching decision.

For producing the large capacity MCPs, frequently re-entrant lots between the
DA and WB stages are necessary to assemble multiple chips into one single pack-
aging module [61]. In particular, the capacity of MCP tends to be proportional to
the number of visits to these stages [31]. The WB stage is usually considered as a
bottleneck compared to the DA stage due to its extremely long processing time for
soldering a number of wires to each die [86]. To efficiently operate assembly lines,
maintaining high utilization of resources in the WB stage is essential.

To manage the WIP level, in an attempt to decrease the flow time without loss
in resource utilization of the bottleneck stage, in this thesis, we focus on controlling

the lot flow in the DA stage. This is because the lot dispatching decision in a non-
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bottleneck stage has a significant impact on the WIP level of an assembly line [54], 86].
Furthermore, the utilization of the DA stage is not necessary to be kept high if that
of the WB stage does not decrease because the throughput of the assembly line is
determined by the bottleneck stage [15].

For lot dispatching in the bottleneck stage, a higher utilization rate of resources
can be achieved simply by processing lots primarily with longer processing time
[86, 87]. Therefore, the lot dispatching decisions of the WB stage in this thesis are
carried out by using the rule that assigns a high priority level to the lot which has
the longest processing time for a resource.

We are given a set of resource types, M = {M,|qg =1, ..., Ny}, where M, is as-
sociated with n, resources, Ry 1, ..., Rgn,. For each operation, its available resources
and processing time are determined according to the resource type. There is a set
of job types, J = {J;]i = 1,...,N;}, where J; consists of a sequence of operations
specified in a predetermined order. We represent the j** operation of J; as 0, j, and
A(0O; ;) indicates a set of resource types capable of processing O; ;. The kth lot for J;
is denoted as L; i, k = 1, ...,n;, where n; is the number of lots of type J;. Thus, L;
is processed according to the operation sequence corresponding to J;, and I(L; )
returns the smallest index among those of the operations waiting to be processed.
Additionally, the processing time of a lot is to be proportional to the number of
chips in the lot.

Fig. illustrates the lot flow of the MCP production process considered in this
thesis. Specifically, a lot is required to be processed in the DA stage prior to the
WRB stage, and the final operation of a lot is to complete in the WB stage. The

dashed line at the bottom represents the flow of lots which revisit the DA stage
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after finishing the WB operation.

As shown in Fig. there are three types of stockers, namely cassette, DA,
and WB stockers where lots stay temporarily. First, the cassette stocker provides
locations for where newly arrived lots wait for the first DA operation. Next, the DA
stocker is a re-entrant stocker where lots that have completed a WB operation wait
for the re-entrance to the next DA operation. Finally, the WB stocker is where lots
that have completed a DA operation wait before they enter their WB operation.

Lots in either the cassette or DA stockers are transported to the WB stocker after
DA operations are finished. This means that newly arrived and re-entrant lots are
located together in the WB stocker, which yields complex lot flows. For this reason,
it becomes challenging to manage the WIP level of the WB stocker at appropriate
level, which is highly likely to decrease the utilization of the WB resources or increase
the waiting time of lots in the WB stocker.

In front of each resource, there is a resource buffer in which a lot waits for
the operation until the resource becomes idle. The capacity of a resource buffer
is assumed to be one. A lot is not interrupted once its operation starts, and an
operation is carried out by one resource at a time. Additionally, it is assumed that
there is no setup time between lots of different job types.

Regarding MCP assembly lines under the characteristics described above, we
alm to minimize the waiting time of lots and the idle time of WB resources in order
to reduce the flow time while maintaining high utilization of the bottleneck stage.
This is due to the fact that the flow time consists of processing time, moving time,
and waiting time. Since the processing and moving time are necessary to complete

all operations of a lot, the reduction in flow time is mainly achievable by decreasing
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In-Cassette- In-DA- To-DA- At-WB-
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Figure 3.2: Candidate lots according to status and intentional delay.

the waiting time. Furthermore, the average utilization rate of the resources increases

as resources perform operations with shorter idle periods [17].

3.2 Lot dispatching process in MCP assembly lines

A candidate lot refers to one that is assignable to a DA resource when its resource
buffer is empty. The types of a candidate lot according to its status are illustrated in
Fig. A lot dispatching method determines the assignment between a candidate
lot, L;%, and a DA resource with an empty resource buffer, R,,, based on the
decision policy if M, € A(O; 1z, ,))- Furthermore, once a lot is dispatched, it is
excluded from the candidate lots.

For a DA resource, a lot can be moved from the stocker to the DA resource
buffer immediately whenever a candidate lot whose status is In-Cassette-Stocker
or In-DA-Stocker is selected to be dispatched. Otherwise, in case that a candidate
lot whose status is either To-DA-Stocker or At-WB-Resource is selected, this results

in an intentional delay on the DA resource due to the additional time to carry out
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the remaining WB operation and/or to arrive at a DA stocker. The details of how
the dispatcher assigns a lot to a DA resource are described in Figure [3.3] The bottom
part of the step 3 shows the time for each lot to arrive the DA resource after the lot
is selected by the dispatcher.

In particular, the flow time of a lot begins to be measured when the lot in the
cassette stocker is dispatched. This is a well-known practice in MCP assembly lines
where the product type of each lot is determined when the first operation of the lot
is performed. In other words, the time lots spend in the cassette stocker is not the
interest in terms of WIP management.

In the WB stage, intentional delays are not necessary since high utilization of
resources should be achieved. Accordingly, among the lots in the WB stocker, the lot
with longest processing time is assigned to a WB resource when its resource buffer

is empty.
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Step 1: Occurrence of empty DA resource buffer
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Step 3: Process of assigning the selected lots according to their status
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DA
resource

Movin

g time
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(c) To-DA-Stocker
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(d) At-WB-Resource
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Processing time + Moving time
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Figure 3.3: Illustration of how the dispatcher assigns a lot to a DA resource.
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Chapter 4

Frameworks for Data Generation and
Performance Evaluation

In this chapter, we present a DEBS and monitoring tool which are essential for
generating training data and evaluating the performance of dispatching decisions.
Python and JavaScript are adopted to implement DEBS and the monitoring tool,

respectively, as their programming language.

4.1 Discrete event-based simulator
4.1.1 Purpose of implementation

A discrete event simulation (DES) is a widely used approach to analyzing and un-
derstanding the dynamics of manufacturing lines. It is a highly flexible tool that can
evaluate different alternatives of system configurations and operation strategies to
determine decisions in the manufacturing lines [88]. Under this rational, the purpose
of implementing DEBS directly in this thesis can be summarized in three ways.
The first purpose is to simulate real-world RMLs where practical constraints and
various types of events exist. A DEBS is required to perform dispatching decisions
in the situation where resource types capable of processing an operation are deter-

mined. The resource buffer capacity and the physical path of the lot should also be
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considered. Furthermore, implementation is carried out on an event with an empty
resource buffer as well as all events that change the state of the manufacturing line.

More importantly, the second aim is to generate training data used for DNNs.
When a lot dispatching decision is required, a DEBS has to extract desired informa-
tion from various parameters representing the status of RMLs. After all simulations
are completed, the extracted information is printed in the form of a vector suitable
for the input layer of the DNN.

Finally, KPIs such as waiting time, idle time, WIP level and resource utilization
are calculated by a DEBS. The KPI calculations are used to evaluate dispatching
results and compare the proposed method with the existing methods. In addition,
a DEBS is in charge of generating a text file used as input data of the monitoring
tool. The text file contains not only the information needed to illustrate the Gantt
chart but also the information captured at the time each dispatching decision being

made.

4.1.2 Details of the structure

Fig. depicts the overall process of the proposed DEBS, which is a simulator where
state changes happen exclusively in discrete instances in time. In other words, not
any change in state occurs by the DEBS between two consecutive events [89]. The

description of each component of the DEBS is as follows.

Input

The input of the DEBS includes: (a) resource-related information that contains re-

source types, the number of resources, and operations that each resource can process;
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(b) job-related information, including job types, the operation sequence of each job
type, the number of lots assigned to each job type, and the number of chips in each
lot; and (c) physical constraints which determine processing and moving time for

lots, the capacity of a resource buffer, and whether pre-emption is allowed.

Initialization

Based on the input, the initialization step builds a set of variables for representing
the status of a RML and calculating the performance of dispatching decisions. These
variables are used to generate vectors for a DNN when a lot dispatching decision
is required. Furthermore, this step creates an event list and data structures for the
monitoring tool.

Another important role of the initialization step to play is to insert initial events
into the event list. As all resource buffers of the RML are empty, multiple lot dis-
patching decisions are required in this step. After lot dispatching decisions are de-
termined, each event corresponding to each decision is generated and added to the

event list.

Event loop

An event contains information of the lot and resource related to the event, and
timestamp. The timestamp indicates the time when the state changes due to the
processing of the event. In addition, the generation of an event leads to the deter-
mination of its type. There are six types of events as shown in Fig.

An event loop is a loop that is terminated when all events on the event list

are exhausted. This loop repeatedly consumes and processes events on the list by
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Table 4.1: Descriptions on the event types for the event loop.

o s Generated
Event Description
event
Operation- Event triggered when a resource finishes Move-To-
Finish processing a lot Stocker-Finish
Empty-Buffer Event triggered when a resource buffer is Move—To—' .
empty Buffer-Finish

Empty-Buffer,

Move-To- Event triggered when a lot arrives at a .
.. Operation-

Buffer-Finish resource buffer a

Finish
Move-To- Event triggered when a lot arrives at a DA
Stocker-Finish or WB stocker
Candidate-Lot- Event waiting for candidate lots for a Move-To-
Waiting resource with an empty resource buffer Buffer-Finish

Empty-Buffer,
Operation-
Finish

Idle-Resource- Event waiting for a resource to become idle
Waiting to process the lot in the resource buffer

ascending order of timestamp among the rest. This process executes some code of
the DEBS to materialize an appropriate change in state, which is likely to result in
the generation of a new event. The details of events are summarized in Table

If an Operation-Finish event is selected on the event list, a resource finishes
processing a lot and the status of the resource becomes idle. If the lot has remaining
operations, a DEBS sends the lot to the stocker for the next operation and generates
a Move-To-Stocker-Finish event.

An Empty-Buffer event is an event requiring a lot dispatching decision. When
this type of event is triggered, a DEBS creates a list of candidate lots for the resource
with an empty resource buffer. If there is no candidate lot for the resource, the
DEBS adds a Candidate-Lot-Waiting event whose timestamp is oo to the event

list. Otherwise, a lot dispatching decision is made via a lot dispatching method.
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Once a lot is assigned to an empty resource buffer as a result of the lot dispatching
decision, a Move-To-Buffer-Finish event is generated.

When a Move-To-Buffer-Finish event is selected on the event list, a lot ar-
rives at a resource buffer. If the resource is processing the other lot, a DEBS adds
an Idle-Resource-Waiting event whose timestamp is co to the event list. Oth-
erwise, the resource starts to process the lot in the resource buffer, which causes
Empty-Buffer and Operation-Finish events to be included on the event list.

A Move-To-Stocker-Finish event is triggered when a lot with remaining op-
erations arrives at the stocker for the next operation. This event is different from
other types of events in that it changes the state but does not generate a new event.

Since the timestamp of waiting events is co, Candidate-Lot-Waiting and Idle-
Resource-Waiting events are not able to be selected in the event loop. Therefore,
for each iteration of the event loop, a DEBS performs waiting event processing after
any event with a finite timestamp is selected among the four events.

In the waiting event processing, for Candidate-Lot-Waiting events, a DEBS
searches for candidate lots of the resource associated with each Candidate-Lot-
Waiting event. If there is a candidate lot of any resource, the waiting event of the
resource is removed from the event list. Then, a lot dispatching decision is made
by a lot dispatching method, and a Move-To-Buffer-Finish event is added to the
event list.

Meanwhile, a DEBS checks out the idleness of each resource related to Idle-
Resource- Waiting events. If a resource is idle, the lot in the resource buffer starts to
be processed by the resource Consequently, Empty-Buffer and Operation- Finish

events are to be added to the event list. Then, the Idle-Resource-Waiting event
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corresponding to that resource is removed from the event list.

KPI and Gantt chart

Once the event list is exhausted, KPIs such as waiting time, idle time, and resource
utilization are calculated by a DEBS. Furthermore, the DEBS yields the simulation
log containing the entire dispatching history, which is used to generate training
datasets for NNs.

For the monitoring tool, DEBS also writes a text file in JSON (JavaScript Object
Notation) format, which can be easily parsed in different programming languages
[90, 91]. Based on the text file, the monitoring tool illustrates a Gantt chart for the
sequence of dispatched lots of each resource. In addition, the text file contains the

information of the RML at the time each lot dispatching decision being made.

4.2 Monitoring tool
4.2.1 Purpose of implementation

Gantt chart is known as a basic schedule representation tool that displays each
resource’s operational status by changing the color or position of bars [92], 93]. A
few studies attempted to extend the basic Gantt chart. Jo et al. [94] proposed a
framework containing algorithms to explore the schedule of large-scale manufactur-
ing lines. An interface was also proposed by [95] to deal with specific disruptions in
resources and the historical analysis of manufacturing line performance.

Although the previous research successfully improved the basic Gantt chart, their
framework has limitations in performing the analysis of dispatching decision units.

Therefore, we propose a novel monitoring tool with additional functions needed
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to monitor KPIs and analyze RTD performances. The purpose of developing the
monitoring tool is presented as follows.

One of the most important purposes is to display a variety of information about
RMLs at the time each lot dispatching decision being made. The monitoring tool is
required to present figures including all alternatives, the amount of WIP, the number
of resources in operation. Through examining these values, a user can analyze the
reason why the lot dispatching decisions were conducted. The results of the analysis
are based on improving the learning framework or the decision making method of
the proposed dispatchers.

The second purpose is to illustrate how various performance indicators change
over time. Since dispatching decisions occur sequentially, it is important to observe
indicators that change in value according to the decisions made. Therefore, the
proposed monitoring tool is essential to presenting time-dependent changes in indi-
cators such as the amount of WIP, resource utilization, and the number of lots that
complete all operations.

Finally, the monitoring tool is required to be designed to compare multiple dis-
patching results. As there are a few indicators that represent the performance of
dispatching decisions, it is challenging to simply compare and analyze multiple dis-
patching results. Accordingly, the proposed function provides the ability to compare
the performances of multiple RTDs with DNNs learned under different parameters

in a single screen.
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(A) Choose File | No file chosen

(B) Tmetlines  compare Page (C)

Figure 4.2: Main screen of the monitoring tool.

4.2.2 Details of functions

The main screen of the monitoring tool is presented in Fig. A user can load
a DEBS-generated text file by pushing the ‘Choose file’ button on the upper left
side (A). When a text file is loaded, the ‘Time Lines’ tab (B) displays several views
in the bottom box. The ‘Compare Page’ (C) shows the performances of multiple

dispatching results on a page when text files are additionally loaded.

Resource view

Fig. illustrates the resource view when a text file is loaded with the ‘Choose
file’ button pushed. This view differs from the existing Gantt chart. The idle periods
caused by intentional delays are shown differently from those by the lack of WIP. The

former is visualized in the form of a rectangle filled with diagonal stripe patterns;

32 !



Choose File | 255_learner... 57604300 ) . 7

Timelines  ComparePage | 255_leamer large s34s7sossrex  |ll@ penod caused by an Intentional de|ay I» ------ %

few isics Vie 2

Resource View  Statistics View  KPI  WIP CZZ"S ack of WIP I __________ L A
A7 T 21117 ,/5'

%

a0 Z
1501 117, — W
e R e

%
7
WB_RESO1

31D10024 0030000487 LOT5D1 LO124DILO107D! L0053D1 LOO9SD: LOOBD1 L0013D1005TDOBIL0039DE00S00D05BL0057D"  L00OADT

we_R
BRES02 (018011 20097E 0044000950 L0061D1.0078 LO031D1  L0033D1 1012301 LO106D L0059D1 LOOS5D1  LO056D1 LOOGADO3OL LO055D1 100120110019  L0O020D1 L0047D° L0046D1 L00GSDL 00390101050 00250

WB_RES03!
- L0061D1 L0036 L0051D1 L0002D1  LOT17D1 LOOGZDIDOA1 LOO06D1L0091I LOOIZD1 LO016D1LO109MD1320030C L0130D1 |LOOBADE0129010040D L0OOSDT  L0039D1L01270LO0SGANOGEE LO0GADT  LOOAGD1

WB_RES04
BRESO. [L0008D1  L0126D1  LO108D1L0098D1 L0062D110060D1L0002D110063D1  L0O053D1 L0056D1 L0034D1L010AB02A0aT1089IL0111D1L0099D" L0111DL0054L0107D1.01290612210090DL.0021D1  L0018D1  L0O21D1 1004301

WB_RES05:

WB_RES06!

o1

1003301  L0063DNO0TAIOOATD LO033D1LOT25D 1005201  LO031D1  L00S201  LOOASD1  LO0S3D1 L0059D1  LO012D1 L0038D1 L0020D10035  LOO4GD1  LOOG6D LOOOIDILOOATD' LO121D1  L0021D1
1005201 | L0120D1 LOGASDOOZZ007410063R004001QMOSL  LOTIZD1  LOO77D L0038DN0066093L0130D1 LOOAORO024 00660 0040D°  LOOT7D1  LOOS0D' L00S3D10092D1220A( LOTIID1  LOOOIDILO0SLDOSEDO50

WB_RES07
- 01128088030 011301006001 L0126D1 L0123D1  L00S6D1LO0TAL0016D1 L0049D1 | L000GD1LODBS LOOBADL00540 003200076006 400030(L 0047(130092ID08AD13ICLO0BSDR 131D  L0020D1  L002501.011801L0039D1)

Bttt B304 004506027 0112000 116} 360034088 0045 L0O0GD1 LO12501 LOOGZR00I006SL00G4D1  L0O1SD1  LO02BTID035L0042D LOOOTDT  LOOSGD1 LOOGATLO032000541 LOTISD1 | LOOOTDY L00SS00M1SD LO0Z2D1 LO13D1

WB_RES09/
. ioﬁummmmnmsmﬁal Lot2001  Lo0samons100230 LofGRo2LOAEAD1 LO1OODA 00100 00490 LOGKGDY  LOOZSDALOEROI  LONZSD1  LOWADOTSE Lo0OSDY LooAmHAOMSGD1  LooorD

e Bl 1010801100101 L0114D1  L000BD1L0051EL0061D1 Loo15D1 L0102D1.004200132.00Z087 L0032D1 LO126DL003¢ LOOOSDNOO3:  LOTISD1 LOOB00A7I  L0012D1 L0019 LOOBSDAOT0SD 1002901

WB_RESt1

WB_RES12
- 1L0114D1 LO0SBO8045I L0031D1  L0034D10069000620L002800044L0061D1 LOOZ8D1  L0128D1L01030 L0017D1 L0048DL00S7D1  LO0OTD1  LOOABDOOT30 LOO26D1 LOZ7NOSTI  LOWED1

Figure 4.3: Resource view of the monitoring tool.

while the latter is shown in the shape of simple white rectangles.

If a user selects any operation in the resource view, the screen switches to the
one shown in the Fig. [£.4] The selected operation is highlighted and surrounded by
a red line (A), and only the operations that belong to the lot corresponding to the
selected operation are displayed on the screen. The vertical red line (B) signifies the
decision time - the time at which the lot dispatching decision corresponding to the
selected operation was made.

Furthermore, a pop-up window shows up, elaborating the properties of the lot
and resource involved in the lot dispatching decision and the status of the RML at the
decision time. Specifically, the first column (C) shows lot-related information such
as the number of chips, operation type, and the start and end time of the operation

in the resource. The job and resource types of the lot and resource involved in the
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lot dispatching decision are presented in the second column (D). The last column
(E) displays RML-related properties including the amount of WIP, the number of
resources in operation, and the number of lots that departed the cassette stocker at
the decision time.

Finally, the table at the bottom (F) represents alternatives, including the one
chosen as a result of the dispatching decision at the decision time. For each alter-
native, lot-related information and the scores marked in terms of waiting and idle
time are presented. In detail, lot-related information includes the operation type of
the lot and the location where the lot stays at the decision time, and the job type

of the lot.
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Statistics view

The statistics view illustrates how the four performance indices change over time
as shown in Fig. The upper left graph (A) shows the amount of WIP for DA
and WB stages, which means the numbers of lots in the DA and WB stockers,
respectively. The number of lots that departed the cassette stocker per day for each
job type is visualized in the upper right graph (B).

The bottom left graph (C) with the increasing trends indicates the number of
lots with all operations complete. Finally, the graph on the bottom right represents
the resource utilization at each stage. The values in the graph mean the number
of resources processing a lot for each stage that is divided by the total number of

resources in the corresponding stage.
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bl AfEH \251_Iearner_._.3_262613.tx1
Time Lines Compare Page 251__learmner_large_833.262613.txt
Resource View Stafistics View KPI WIP Charts
KPI

Average WIP level: 7.90 (unit)
Makespan: 3494.8 (min)

Total flow time:1638.75 (hour)
Total waiting time: 641.14 (min)
DA resource utilization: 0.253 (%)
WB resource utilization: 0.961 (%)
Waiting time / Flow time: 0.391

Figure 4.6: KPI view of the monitoring tool.

KPI view

As shown in Fig. the KPI view shows the performances yielded after all dispatch-
ing decisions are completed. Unlike other views of the monitoring tool, this function
shows the overall performance rather than time-based changes or information on
dispatching decision units.

To be more specific, ‘Average WIP level’ is calculated as the average of the
number of WIPs that are recorded every time that of WIPs changes. ‘Total flow
time’ indicates the sum of the flow time of all lots while ‘Total waiting time’ means

the sum of the waiting time of all lots. Here, waiting time is the sum of the time
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that a lot waits in stockers or resource buffers from the start of the first operation
to the completion of all operations.

The average utilization rate of resources is calculated separately for each stage.
‘DA resource utilization’ is calculated as the average of the utilization of DA re-
sources. The utilization of each resource is obtained by dividing the total processing
time of the operations assigned to the resource by the dispatching horizon which
represents a time period for which the lots necessary for satisfying production re-
quirements are dispatched. Similarly, the value of ‘WB resource utilization’ is also

obtained.

WIP charts

Fig. [£.7 visualizes the amount of WIP in more detail than the statistics view does.
In WIP charts, the number of graphs represented is twice that of job types which
appear on the assembly line. Specifically, a row is generated to illustrate how the
amount of WIP for each job type changes over time. The row is divided into two
columns, each of which contains a graph.

A graph in the left column (A) shows the amount of WIP for DA and WB
stages, which means the number of lots belonging to one job type in the DA and
WB stockers, respectively. On the other hand, a graph in the right column (B)
indicates the amount of WIP for each operation type, which means the number of

lots belonging to the corresponding operation type in stockers.
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Compare page

The ‘Compare page’ is activated when multiple text files are loaded, allowing a user
to compare multiple dispatching results on a single screen. As shown in Fig. this
page lists KPI and statistics views for each text file in the vertical direction, and a

column in the same format is added whenever text files are additionally loaded.

41 : !;,‘ﬂ ki ]-H ."j]l- .T]II_



£ies

‘(007 Suriojruowt 91} Jo aged uostredwo)) :Q°F oINS

0.6 Asenuer
zus L nyL

o

oL

£4€°0 18w} Mol / sw B
(%) £26'0 :uone
(%) £92°0 :uonezin 831nossl yq

(uiw) 20889 s Bunem |ejoL

(unoy) £g°zreLiawn Mol [ejoL
(uiw) g'gege uedsexep

(nun) 91 188l dIM 8beseny
IdX

n 821081 GM

P4 GLzsvs 1eg 2bielJawea™ 09z

Aepad

13187 dImm

L

cles zuy L nyL

20 dowg —
10 dowe —

0.6 Aenuer

£€Z°0 18I MO|4 / 3L Buiepm
(%) p26°0 “uole
(%) 97’0 :uonez|nn 831n0sal ya
(uiw) 99+2e -swip Buniem |zjoL
(unoy) L0°96E 118 MOl [B10L

(uIw) 6'Zpoe (uedsexep

(Mun) zg'L 18N8l dIn ebeieay
Id%

IIn 82Inosal g

14°8r09.G ES obie Jawea 55T

Aep sad

18A87 dIM

) Lodos — =
10 dony — =
L0 domE — =
0 doWe — |- ¥
10 dowe —
0464 Aenuer
cud L nyL
0
H
o o
5
3
0z
16€°0 ‘awWi} Mol / swin Buntepp
(%) 196°0 :UoNEZINN 83IN0S8I GAA
(9%) £52°0 :uonezinn 831n0sal ya
(uiw) #1719 ‘8w Bupiem ejoL
(1noy) g2 '8e9l:BwWn Mol [BjOL
(uiw) 8'pepe uedsexep
(1un) 062 :19A8| dIM sbelsny
1d
pa'£L9z9z ee8 obue Jawes" 1oz
abeg aredwon Saur aunl

prclzsysL T Iswes 09z | BE BT

.""'..'L




Chapter 5

Deep Neural Network Based Dispatcher

Fig. depicts the overall process of the proposed approach. In the training phase,
we deploy a simulator that executes the DA and WB stages in MCP production
as shown in Fig. to generate simulation logs. By utilizing the simulator, all lot
dispatching decisions of a problem are determined using a random decision generator
(RDG) which is responsible for randomly assigning one of the candidate lots to a DA
resource with an empty buffer. The performances of the decisions by RDG are then
measured, and the scored simulation logs will be used by a learning algorithm to
train the DNNs embedded in RTDs. In the real-time dispatching phase, for a given
test problem, the simulator calls the trained dispatcher whenever a lot dispatching
decision is required.

In this thesis, we propose two DNN based RTDs with different decision-making
processes. The first one is a real-time rule selection dispatcher (RTRD). It determines
the best dispatching rule among the existing ones at the time when a lot dispatching
decision is required. According to the determined rule, one of the candidate lots is
assigned to a DA resource with an empty resource buffer. Secondly, a real-time lot
selection dispatcher (RTLD) marks scores for all candidate lots and assigns the lot

with the highest score to the DA resource. The details of RTDs are described in the
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following sections.
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5.1 Real-time rule selection dispatcher
5.1.1 Dispatcher structure

Fig. illustrates the architecture of RTRD which consists of five layers: an input
layer, three hidden layers, and an output layer. The input layer contains 37 nodes,
and the number of nodes in each hidden layer are 64, 32, and 16, respectively,
whereas the output layer has one node. The numbers of hidden layers and nodes
in the hidden layers are empirically determined to reduce the training error. The
rectified linear unit (ReLU), f(z) = max(0, 2), is applied before each hidden layer
in order to provide a non-linear transformation, and all layers are fully connected

[96].

-

-] O O O
State vector < ]| ReW Q ReLU Q ReLU Q
(] O O

O

Output layer

/
O

Action vector

] O O O
N - 2

Input layer Hidden layers

Figure 5.2: The structure of RTRD.

The input layer can be divided into two groups: state and action vectors. The

former describes the status of an MCP assembly line when a particular DA resource,
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R, s, has an empty resource buffer, while the latter indicates the dispatching rule
used to select the lot to be assigned to R, ;. We propose the components of the state
vector, and then introduce dispatching rules for the action vector.

Table presents the details of the state vector for R, ;. From the state vector, a
RTRD is capable of capturing the characteristics of candidate lots and the flow of lots
in the assembly line. This is the basis on which the RTRD determines dispatching
rules for R, s. Specifically, the state vector contains 26 features that are categorized
into DA resource, statistics of candidate lots, and the distribution of lots as shown
in Table First, a single feature associated with R, indicates how much time
remains until R, becomes idle.

Next, the 12 features associated with candidate lots represent the minimum,
maximum, and average values of the four attributes that each lot has. The four
attributes are: the time when the lot departed the cassette stocker, the number of
chips in the lot, the number of the remaining operations to be processed, and the
processing time on R, . Other attributes of the lot were excluded since they are
not related to the performance measures that are considered in this thesis. RTRD
utilizes the statistics of all candidate lots rather than the characteristics of each
one because RTRD is not able to specify the lot to be assigned to R, until the
dispatching rule is determined, which differentiates RTRD from RTLD.

Finally, each feature belonging to the lot distribution includes the number of lots
that correspond to one of the 13 different locations, covering all areas where a lot
can exist in assembly lines. With these features, the proposed dispatcher knows not
only the distribution of lots in the assembly line, but also the progress of the overall

processes.
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Table 5.1: Components of the state vector for R, s of RTRD.

Categories

Descriptions

DA resource

The time remaining until R, s becomes idle

Statistics of
candidate lots

Earliest time when lots depart the cassette stocker

Latest time when lots depart the cassette stocker

Average time when lots depart the cassette stocker
Minimum number of chips in lots

Maximum number of chips in lots

Average number of chips in lots

Minimum number of remaining operations assigned to lots
Maximum number of remaining operations assigned to lots
Average number of remaining operations assigned to lots
Minimum processing time of lots on R

Maximum processing time of lots on R, ¢

Average processing time of lots on Ry s

Lot
distribution

# of lots in the cassette stocker

# of lots being moved from the cassette stocker to DA resource buffers
# of lots in DA resource buffers

# of lots being processed on DA resources

# of lots being moved from WB stocker to WB resource buffers

# of lots in WB resource buffers

# of lots being processed on WB resources

# of lots being moved from WB resources to the DA stocker

# of lots in the DA stocker

# of lots being moved from the DA stocker to DA resource buffers
# of lots being moved from DA resources to the WB stocker

# of lots in the WB stocker

# of lots that completed all operations
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Table summarizes dispatching rules used to generate the action vector for
R, s, and the manners in which each rule chooses one of candidate lots. Each rule was
modified to be used in the assembly line considered. Among the existing dispatching
rules, we chose the ones that affect the waiting time of lots and the utilization of
resource [62, 97]. STOCKER is a rule developed in this thesis according to the
assembly line considered herein.

When a lot dispatching decision is required, an 11-dimensional action vector
with zero values of all elements is generated. Then, if a specific dispatching rule is
selected, the value of 1 is assigned to the element corresponding to that rule in the
action vector. For example, in the case of MOR, the form of the action vector is
(0,0,1,0,0,0,0,0,0,0,0) while LPT generates (0,0,0,0,0,0,1,0,0,0,0).

The output layer represents the preference score of the input vector. All values
in each node are normalized to a range [0, 1] using the min-max normalization to

accommodate the inconsistencies of different units [98].

5.1.2 Training phase

In the training phase, each generated problem is solved multiple times by using
RDG which is responsible for randomly selecting one of dispatching rules presented
in Table Once all lot dispatching decisions of each problem are determined by
RDG, the generated simulation log containing the entire dispatching history each
of which consists of a dispatched lot and an assigned DA resource, and their input
vector is sent to the score generator.

The score generator evaluates each lot dispatching decision based on the waiting

time of the dispatched lot and the idle time of the WB resource that processed the
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lot. Here, the waiting time indicates the time during which a lot stays in the WB
stocker after being completed by a DA resource. In contrast, the idle time of WB
resource is calculated by subtracting the time at which its last operation ends from
the time at which it starts processing the lot.

For each dispatching decision, the score generator calculates score of the decision
in the range of [0, 1] according to the concept of min-max normalization [98]. The
formulas for calculating the waiting and idle scores are presented in Equations
and , respectively. Here, w and [ respectively stand for the waiting and idle time
related to a lot dispatching decision.

W — Wmin

Sw = mCLI(—( (Smax - Smm)) + Smaz, Smin)u (5'1)

Wmaxr — Wmin

l— lmm
S = max(—(i(smax - szn)) + Smax, Smin)a (52)

lmaz — lmin
where Wi and wpg, indicate the minimum and maximum values among all the
possible values of w. I, and 4, stand for the minimum and maximum values
among all the possible values of [. Also, Spmin and Spq. refer to the minimum and
maximum values among the possible values of score.

In Equations and , Wmazr a0 e are set to be twice the mean of
w and [ values, respectively. This prevents a considerably high w and [ from be-
ing converted to an unwanted positive score, which makes it possible to construct
well-balanced training data. This is reasonable because we do not focus on predict-
ing scores precisely; the primary aim is to determine the lot dispatching decision

expected to minimize the waiting and idle time.
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Based on the training data generated by using two types of scores, s, and s,
two DNNSs, each of which correspond to each score, are trained to predict scores. As
a loss function, we used squared errors [99], defined as (s,, — shy )% and (s, — s7")?,
and the back-propagation training algorithm is used to minimize the loss function
[T00]. Here, s, and s; are the calculated score values for a dispatching decision by
using Equation and , respectively, and sty and s mean the predicted
scores in terms of the waiting and idle time, respectively, for the decision in the
training phase.

The tth correction of the weights, denoted as 6, using the back-propagation

training algorithm, is described as

oE

A0 =5,

+ alAb;_1, (5.3)

where 7 means the learning rate, a is the momentum factor, and E is the total error

between the predicted score and the actual score and is expressed as

N

. . N2

E=; Z(s(z) — sP"¢(i)) (5.4)
i=1

Here, s(i) and sP™(i) are the actual and predicted scores for the ith training data,

respectively, and N is the total number of training data.

5.1.3 Real-time dispatching phase

In the real-time dispatching phase, when a DA resource buffer is empty, input vectors
of the number of dispatching rules presented in Table are generated for the DA

resource. If multiple DA resource buffers are empty at the same time, this process
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is performed on the first DA resource that is expected to be in the idle state.
The generated input vectors are given to RTRD as the input, and RTRD predicts
two types of scores for each vector. Then the final preference score of each input

vector is calculated by the following Equation (5.5)).

totalscore = Ay X shy® + Xy x 87", (5.5)

with Ay + A\; = 1. Value of A\, is the weight or importance of the flow time of lots,
and J); is the weight or importance of resource utilization in the bottleneck stage. As
a result of the equation, the dispatching rule involved in the vector with the highest
totalscore is selected as the lot dispatching decision. Then, one of the candidate lots
is assigned to the DA resource according to the selected dispatching rule.

The proposed dispatcher is anticipated to reach a better lot dispatching decision
quickly compared to the conventional meta-heuristics through a simple calculation
using the weights predetermined during the training. Therefore, it is expected that
the proposed method can be introduced into the real-world assembly lines where lot

dispatching decisions are required to be determined in a real-time manner.

5.2 Real-time lot selection dispatcher
5.2.1 Dispatcher structure

Fig. illustrates the architecture of RTLD with the same number of layers as
RTRD. The input layer contains 25 nodes, and the number of nodes in each hidden
layer are 64, 32 and 16, respectively, whereas the output layer has one node. As in

RTRD, the ReLU is applied before each hidden layer in order to provide a non-linear
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transformation, and all layers are fully connected [96].

e

] O O

] RelLU O RelLU O RelLU
on ssjpuissingisd

assignment vector N | O O O

O O

O

Output layer

O

] O O O
T e a—

Input layer Hidden layers

Figure 5.3: The structure of RTLD.

A pair of a lot among the candidate lots and a DA resource is represented as
a vector called a lot-DA assignment vector for the input to RTLD. Specifically,
Table presents the components of the lot-DA assignment vector, for a particular
lot, L; %, and a particular DA resource, R, . The main difference between RTRD
and RTLD, when it comes to generating an input vector for DNN, is that RTRD
only utilizes information about the distribution of lots, while RTLD considers the
characteristics of each lot in the candidate lots.

Using the defined features of a lot-DA assignment vector, RTLD is capable of
predicting how long the lot waits in the WB stocker after it is processed by a DA
resource. Furthermore, the features provide a clue for estimating the idle time of the
WB resource that will process the lot involved in the vector. As a result, RTLD is

expected to be able to conduct lot dispatching decisions which reduce the waiting
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time of lots and the idle time of WB resources.

That is, the lot-DA assignment vector contains 25 features categorized into con-
flicting lots, the characteristics of the lot and DA resource, the delay time, and the
distribution of lots as shown in Table First, the concept of conflicting lots is
introduced to represent lots that compete for WB resources. Lot, Ly j/, is called a

conflicting lot of L;y if Ly i and L;j satisfy either of the conditions presented in

Equations (5.6 and (5.7)).

AOp 1Ly ) VA 11, 4)+1) # 0 (5.6)

AOp 11y )+1) NV AO; 1(1, )+1) # 0 (5.7)

The five features corresponding to the conflicting lots of L;; are presented in
Table[5.3] according to their status. Each feature represents the number of conflicting
lots that correspond to one of the five different states. RTLD is capable of capturing
the distribution of the lots by collectively using all these features.

Next, there are four features representing various characteristics of L; ; and two
for R, s. Features associated with L;; include the number of chips in L;, the
progress rate of J;, I(L;}), and the number of WB resources capable of process-
ing L;j. The last one is included as a feature to capture the degree of potential
conflict among the lots in the WB stage. In contrast to other features, this one
for L;; has a fixed value according to its resource type required in the WB stage
regardless of the other lot dispatching decisions.

The first feature related to R, , is identical to that in the state vector of RTRD.
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The second one is the processing time of L; ;, on R, s, which indicates how long L; j,
will stays on R, s. The features corresponding to the lot distribution category have
the same meaning as those in the state vector of RTRD.

Finally, the delay time refers to how long it takes from the moment the lot
dispatching decision is made until R, s starts processing L; ;. If the status of L;, is
In-Cassette-Stocker or In-DA-Stocker, the value of the delay time is calculated
as the sum of the time required for L; ;, to move from the stocker to the buffer of R, s
and the time that L;j spends in the buffer. Otherwise, the time required for L;
to move from the current location to DA stocker is added to the value mentioned
above. Through this feature, RTLD is capable of inferring whether or not L; j, causes
an intentional delay in R, .

The output layer represents the preference score of the assignment vector. All
values in each node are normalized to a range [0, 1] using the min-max normalization

to accommodate the inconsistencies of different units [98].

5.2.2 Training phase

In the training phase, unlike in RTRD, RDG is responsible for randomly selecting
one among candidate lots. Accordingly, the distribution of candidate lots by status
is reflected in the probability that lot is selected by RDG. This leads to the result
that the generated simulation logs do not make a significant difference in terms of
performances when a problem is solved by RDG multiple times.

Therefore, to obtain various simulation logs in terms of the flow time and resource
utilization, for each simulation, the intentional delay level with a value between 0 and

1 is randomly selected. The intentional delay level close to one means a high prob-
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ability of selecting lot whose status is To-DA-Stocker or At-WB-Resource, whereas
the intentional delay level close to zero indicates a high probability of selecting lot
whose status is in In-Cassette-Stocker or In-DA-Stocker.

Specifically, whenever a lot dispatching is required, a new random number with
a value between 0 and 1 is generated. If this random number does not exceed the
intentional delay level for that simulation, RDG makes a dispatching decision by
using only lots whose statuses are To-DA-Stocker or At-WB-Resource among can-
didates, to simulate the intentional delay by letting the DA resource associated with
the decision to be idle until the dispatched lot ready to be processed by the resource.

The remaining processes, after RDG completes all the lot dispatching decisions

of each problem, are identical to those in the training phase of RTRD.

5.2.3 Real-time dispatching phase

In the real-time dispatching phase, when a DA resource buffer is empty, lot-DA
assignment vectors for all the possible assignments between candidate lots and DA
resources are generated. The generated lot-DA assignment vectors are given to RTLD
as the input, and RTLD predicts the two types of scores, sh, ¢ and sf "¢ for each
vector.

Due to the fact that RTLD can evaluate individual lots unlike RTRD, another
score, called sg4, is introduced to RTLD. The trained dispatchers are able to predict
the waiting time of the lots in the WB stocker. However, the time that lots spend
in the DA stocker can be easily overlooked. Although the DA stocker is not at a
bottleneck stage, the time during which a lot stays in the DA stocker has to be

addressed since the flow time naturally increases if lots stay in the DA stocker for a
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long time. The formula for calculating sy is presented in Equation ([5.8)).

d— dmln

%= mam(_(dmaa} - dmzn

(Smax - szn)) + Smaz; Smin)a (58)

where d represents the time during which a lot stays in the DA stocker after being
completed by a WB resource. Unlike sb ¢ and sf "¢ the training phase for sy does
not have to be predicted since the value of s4 is simply calculated by the simulator
when a lot dispatching decision is required.

Then, the final preference score of each input vector is calculated by the following

Equation (/5.9)).

totalscore = Ay X sb¢ + X X 87" + Xg X s4, (5.9)
with Ay, + A; + Ag = 1. The meanings of A, and ); are the same as those in RTRD
while a new term is added to Equation (5.5). The value of A4 is the weight or
importance of lots’ waiting time in the DA stocker. Consequently, the lot and DA
resource involved in the vector with the highest totalscore are selected as the lot

dispatching decision. Then, the lot is assigned to the DA resource.
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Chapter 6

Experiments

6.1 Datasets

To validate the proposed approaches, we prepared 12 datasets that correspond to
diverse configurations by varying the numbers of resources, job types, and lots, as
shown in Table A lot is assigned a particular number uniformly distributed
between 100 and 750 when it comes to the number of chips it has. It is assumed that
dispatching practice is to satisfy as many production requirements as possible that
are given for the next 48 hours, as described in [34]. Production requirements for
the assembly line always exceed the line capacity and it takes more than 48 hours
to finish all the operations [31].

Datasets prepared for the experiments can be classified into four groups: datasets
1to 3,4 to6,7to9 and 10 to 12. Compared to datasets 1 to 6, datasets 7 to 12
represent the dispatching problems with the large number of job types. Furthermore,
the problems of datasets 4 to 6 have more resources than those of datasets 1 to 3,
and the same relationship goes with datasets 10 to 12 and datasets 7 to 9. The three
datasets in each group represent the different levels of difficulty for the dispatch-
ing problem of assembly lines. In this experiment, a level of difficulty is measured

in terms of the number of operations to complete the entire processing of lots. A
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higher number of operations involved in a dataset leads to a greater computational
complexity in it because the number of decisions required to resolve problems in the
dataset increases proportionally.

In each dataset, 100 problems were generated by varying the quantity of the lots
and the total number of lots for each job type. Specifically, 30 and 20 problems were
used to train and validate, respectively, the proposed dispatcher, while, after it was
trained, the remaining problems were used to test the performance of the proposed
dispatchers. In the experiments, Nj; and N are set to be 6 and 8, respectively.
Specifically, for each problem, both the DA and WB stages have three different
resource types. For the problems with 16 resources, four and 12 resource are assigned
to DA and WB stages, respectively, and for the problems with 70 resources, 20 and
50 resources are assigned to DA and WB stages, respectively.

Table [6.2] represents the operations for each job type and resource types that can
perform each operation. The odd-numbered operations of a job type are assumed to
be processed in the DA stage, whereas the even-numbered operations are processed
in the WB stage. The last column in Table [6.2] shows the processing time of each
operation per chip in the corresponding resource type. Additionally, it takes 900

seconds for a lot to move from the stocker to the resource buffer, and vice versa.

6.2 Experiment settings

In the training phase, we generated simulation logs by solving each problem 100
times using RDG. The scores of the generated simulation logs were calculated by
the score generator based on Equations (.1) and (5.2]). The performance of lot

dispatching is measured by means of the waiting time of lots and the idle time of
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Table 6.2: Problem description for experiments.

J; 0 ; Stages A(O; ;) Processing time
L O DA (My, My, My) (3, 3, 4.5)
! O12  WB  (My, Ms, Mg) (16, 18, 18)
o Ou DA (M, My, My) (3, 4.5, 4.5)
> 0,5 WB (Ms, Mg) (20, 20)

Os1 DA (My, My, Ms) (6, 7.5, 6)

5 Os2 WB(My M, M) (26, 28, 28)
Oss DA (My, My, M)  (7.5,7.5, 7.5)
Osy WB  (My, Ms, M) (26, 28, 28)
Os1 DA (M, Ms) (7.5, 6)

5 Os WB (M, M, M) (36, 36, 36)
O3 DA (M, Ms) (7.5, 7.5)
Ows  WB (M, Ms, M) (44, 46, 44)
Os1 DA (M, Ms) (6, 6)

i Os2 WB (My, Mg) (14, 20)
Oss DA (M, Ms) (6, 6)
Os.4 WB (My, Mg) (14, 20)
Os: DA (M, Ms) 9, 9)
Osa WB (M, Ms, Ms) (36, 36, 40)

s Oss DA (M My (7.5, 7.5)
Oss WB  (My, M) (40, 70)
Oss DA (M, Ms) (7.5, 7.5)
Os 6 WB (M5, M) (46, 44)
Or1 DA (My, My, Ms) (6, 6, 4.5)
Ora  WB (M, Ms, Ms) (56, 50, 50)
Or5 DA (M, M) (6, 6)

s Ona WB(My M, My) (40, 40, 24)
O75 DA (M, Mo) (4.5, 4.5)
Ors  WB (M, Ms, Ms) (40, 40, 24)
Or7 DA (My, My, Ms) (4.5, 4.5, 4.5)
Ors WB (M, Ms, Mg) (40, 40, 24)
08,1 DA (Ml, Mo, Mg) (6, 6, 4.5)
Osa WB (M, Ms) (50, 30)
08,3 DA (MQ, Mg) (6, 6)

5 Osa  WB (M, M) (50, 30)
Oss DA (M, Ms) (4.5, 4.5)
Os¢ WB (M, Ms) (30, 50)
Os; DA (My, My, Ms) (4.5, 4.5, 4.5)
Oss WB (M, Ms, Ms) (30, 50, 40)




the resources of the WB stage. The average waiting time of lots, AWT, is calculated

as:

SN S (eige — Tik — tig)
ZzNle g ’

where ¢; j, and 7; ;, are the time that the last WB operation of L; j, is completed and

AWT =

(6.1)

L; j, leaves the cassette stocker, respectively, and ¢; ;, indicates the sum of processing
time of L; j, on resources.
Additionally, the average idle time of the WB resources, AIT, is defined as

follows:

Z % (fq,s - tq,S)

VgeN s=1

> Ng 7

VqeQ

AIT = (6.2)

where f, s represents the time at which R, completes its last operation and t, , is
the total processing time of the operations assigned to R, s between time 0 and f s,
and € is a set of indices of the resource types which belong to the WB stage.
Moreover, to collectively measure the overall performance in terms of AWT and
AIT, we used the average loss time, or ALT, which is the arithmetical mean of these
two values. However, in the real-world, the weights for the two performance measures,
AWT and AIT, depend on the characteristics of RMLs or the operators’ judgement.
For instance, when the capacity of stockers is sufficient or changes in demand are
insignificant, reducing AIT may be more important than reducing AWT. Therefore,
in section[6.3.2] we measured the change in the values of AWT, AIT, and ALT while

changing the weights in the Equations (5.5)) and (5.9)) for each dataset.
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For comparison purpose, we implemented the conventional dispatching rules pre-
sented in Table all of which are widely used to reduce the flow time or increase
resource utilization [62] 97, 101, 102]. Here, FIFO selects the oldest lot that has
been dispatched from the cassette stocker among the candidate lots. This rule ran-
domly dispatches the lot from the cassette stocker when the lots in the status of
In-Cassette-Stocker exist in the candidate lots only.

Furthermore, we also compared the proposed dispatchers with the composite
dispatching rule using SVR proposed by [65]. Among the dispatching rules presented
in Table[5.2] five rules including FIFO, MOR, LARGE, LNQ, and STOCK were used
to construct a linear combination of the composite dispatching rule. This is due to
the fact that the combination above yielded the best performance among all the
combinations of dispatching rules. The weight assigned to each rule is determined
by the model trained with SVR whenever a lot dispatching decision is required. The
feature set and the parameters of SVR used in the experiments are identical to those
in [65].

For each dataset, we trained two proposed dispatchers, RTRD and RTLD, using
generated training data. Table presents the training results. In Table [6.3} valy,
and val; represent the minimum values of the validation error in terms of the waiting
and idle time, respectively. In addition, iter,, and iter; are the numbers of iteration
required to achieve the validation error for the waiting and idle time, respectively.
The dispatchers in each dataset use the DNNs obtained when the numbers of iter-
ation of the training process in terms of waiting and idle time reach the values of
iter,, and iter;, respectively.

For RTRD, A\, and \; are set to 1/2 and 1/2, respectively. For RTLD, \,, A;,
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and Ay are set to 1/3, 1/3 and 1/3, respectively.

Table 6.3: Training results of the proposed dispatchers.

Dataset No. Dispatchers  wval,, val; itery, iter;

RTRD 0.0123 0.0988 35 150
RTLD 0.0122 0.0385 31 318

1

RTRD 0.0229 0.0942 23 112

’ RTLD 0.0155 0.0370 32 160
5 RTRD 0.0271 0.0898 41 76
RTLD 0.0196 0.0355 30 86
4 RTRD 0.0001 0.0853 59 229
RTLD 0.0151 0.0136 22 303
5 RTRD 0.0004 0.0876 10 283
RTLD 0.0158 0.0124 49 266
6 RTRD 0.0003 0.0873 3 112
RTLD 0.0162 0.0116 43 75
. RTRD 0.0157 0.1064 17 80
RTLD 0.0129 0.0400 56 154
g RTRD 0.0252 0.1000 12 95
RTLD 0.0149 0.0370 33 130
9 RTRD 0.0323 0.0925 27 119
RTLD 0.0188 0.0349 39 115
10 RTRD 0.0001 0.0839 14 280
RTLD 0.0127 0.0131 16 166
. RTRD 0.0573 0.0616 11 130
RTLD 0.0157 0.0352 50 158
19 RTRD 0.0002 0.0828 7 190

RTLD 0.0163 0.0111 67 204
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6.3 Experiment results
6.3.1 Performance comparison

The performance comparison results of the proposed dispatchers, SVR, and the ex-
isting dispatching rules are presented in Figures and [6.4] which show the
results for datasets 1, 2, 7, and 11, respectively. The detailed results for each dataset
are presented in Appendix [A] In terms of AWT, FIFO, LOR, SMALL, LARGE,
SPT, LPT, FLNQ, and, SNQ show the better performances than the proposed dis-
patchers for all the datasets.

In detail, FIFO assigns a low priority level to the lot whose status is In-Cassette
-Stocker, and LOR prefers the job type whose number of operations is small. As a
result, the waiting time of lots are reduced owing to the decrease in the number of
lots in the WB stocker. In the case of LARGE, SMALL, SPT, LPT, FLNQ, SNQ,
there is a high probability that lots preferred by each rule are repeatedly selected
until all operations of them are completed. The result is that lots in the status of
To-DA-Stocker or At-WB-Resource are selected, which makes it difficult for newly
arrived lots to enter the assembly line. Accordingly, the amount of WIP decreases
and the idle time of WB resources naturally increases.

Meanwhile, MOR, LNQ, and STOCK showed better performances in terms of
AIT than other dispatching rules. MOR tends to disallow resources from being idle
since this rule assigns a higher priority to a lot with a higher number of operations
to be processed. Since LNQ attempts to balance the number of lots as per their
operation types, lots corresponding to the first operation type for each job type are

mainly selected at an early stage with a low WIP level. This increases the amount of
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Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure 6.1: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 1.

WIP, leading to a shorter idle time of WB resources. STOCK only selects lots in the
status of To-DA-Stocker or At-WB-Resource when there is not any lot in cassette
or DA stockers. Because of this tendency, the lots that undergo an intentional delay
on DA resources are rarely selected.

In terms of ALT, the proposed dispatchers and SVR outperformed the other
methods in all datasets. While most existing methods tend to minimize only one
performance measure, the proposed dispatchers addressed both two measures at the
same time. Among the two proposed dispatchers, RTLD showed better performance
than RTRD. Although RTRD achieved a lower value of AIT than RTLD, AWT of
RTRD was more than twice that of RTLD for multiple datasets. This difference in
performance can be attributed to the fact that RTLD considers the time that lots
spend in the DA stocker due to the existence of scorey.

SVR achieved a lower ALT than RTRD in some datasets (shown in Figures
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Figure 6.2: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 2.

and . However, it showed poorer performances than RTLD in terms of ALT for
all datasets. This is due to the lack of features that can represent the concept of
conflicting lots and candidate lots including ones with possible intentional delays on
a DA resource, although SVR attempts to choose a proper dispatching rule according
to a given assembly line state.

Based on the above observation, the proposed dispatchers successfully reduce
both AWT and AIT at the same time in contrast to the existing methods which
focus only on one performance measure. Therefore, the proposed dispatchers appear
to achieve a reduction in the flow time while maintaining high utilization of resources
in the bottleneck stage.

Table highlights the improvement rate of RTLD over the other dispatching
methods in terms of ALT. Except for RTRD, RTLD has reduced ALT from at least

33% to 85% compared to the existing methods. To provide further analysis of the
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Figure 6.3: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 7.

effects of the lot dispatching decisions, we compared various performance indicators
between the dispatching methods for one problem belonging to dataset 2, which has
the greatest difference in performance between RTRD and RTLD. Figures [6.5H6.7]
present WIP levels of each stage; the dispatching results of each resource over time;
and resource utilization of each stage obtained by using dataset 2, respectively. Here,
the values on the utilization graph represent the numbers of resources processing a
lot divided by the total number of resources.

According to Figures and [6.5k, RTRD and SVR keep the WIP level of WB
stage close to zero while the WIP level of Figure often reached a value of two
or above. However, the two dispatching methods, RTRD and SVR, failed to prevent
the WIP level of DA stage from increasing dramatically. This is because they are
not able to address the WIP level of the DA stocker. Therefore, even if the rules

such as SPT, which are known to minimize the flow time, are used in the RTRD’s

70



14000

" DAWTEAITEALT] |

12000

10000

8000

min

6000

4000

2000

oy I I O I I I [1

Random FIFO LOR MOR SiALLLXRGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure 6.4: AWT, AIT, and ALT results of the proposed dispatchers and the existing
methods for dataset 11.

decision-making process, RTRD has a limitation in reducing the waiting time of lots
in the DA stage. On the other hand, it is seemed that RTLD is able to effectively
control the amount of WIP in the DA stocker due to the presence of sg.

The results in Figures and indicate that RTLD keeps the utilization of
WB resources around 100% at all times except the early stage. Figures and
present that RTRD and SVR often involve the WB resource idle state, which causes
fluctuations in WB resource utilization (shown in Figures and [6.7¢). This may
be because the two methods tend to excessively reduce the amount of WIP in the

WB stocker.
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Figure 6.5: WIP graphs of the proposed dispatchers, and SVR.
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Figure 6.7: Utilization graphs of the proposed dispatchers and SVR.
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Additionally, we compared the lot dispatching decision patterns over time by the
proposed dispatchers and SVR. In Figure heat maps visualize the frequency of
status of the lots dispatched by each dispatching method over time, where Figures
[6.8h—c represent the results of RTLD, RTRD, and SVR, respectively. The value in
Figure indicates the number of dispatched lots that correspond to each status
for the interval of three hours.

In Figurd6.8h, RTLD appears to increase the utilization of WB resources by
dispatching lots in the status of In-Cassette-Stocker at an early stage with a low
WIP level. Subsequently, when the WIP level reaches a sufficient extent, it tends
to prevent the waiting time of lots from increasing by dispatching lots in the status
of In-DA-Stocker or At-WB-Resource. RTRD has a dispatching pattern similar
to that of RTLD while there are differences in the timing of selecting lots whose
status is In-DA-Stocker. As can be seen from Figure [6.8b, RTRD mainly focused
on selecting lots whose status is In-DA-Stocker only when the amount of WIP in
the DA stocker increases (shown in Figure [6.5p).

Compared to the proposed dispatchers, SVR gives a lower priority to the lots
whose status is In-Cassette-Stocker and a higher one to the lots whose status is
At-WB-Resource as presented in Figure [6.8c. This has contributed to the increase
in the amount of WIP in the DA stocker, causing the flow time of lots to rise.

Finally, an analysis was conducted on the computation time of the proposed
dispatchers and SVR. Figure presents the computation time of the dispatching
methods spent processing given lots according to the number of operations. For
all of the average of the number of operations, the computation time of SVR is

always longer than that of the proposed dispatchers. Combined with the previous
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experimental results, clearly, the proposed approaches excelled SVR in terms of
performance and computation time.

Meanwhile, according to Figure RTLD involves a much larger increase in the
computation time when the number of operations increases compared to the RTRD.
This result can be explained by the difference in the number of alternatives between
the two dispatchers when a dispatching decision is required. In detail, although the
scale of the RMLs becomes large, the number of alternatives of RTRD is always
equal to that of dispatching rules used in the training phase while RTLD has the
same number of alternatives as the number of candidate lots. Because of this, as the
number of operations increases, the difference is likely to be larger in the computation

time between the two dispatchers.
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6.3.2 Performance differences according to weights

In this section, experiments were carried out to investigate how the performances of

RTRD and RTLD change according to the values of weights in Equations (5.5)) and

(5.9). In Figures|6.10} (6.11}]6.12} and [6.13] contour lines visualize the performances

of RTRD against SVR depending on values of A\, and ); in datasets 4, 9, 10, and
11, respectively. The detailed results for each dataset are presented in Appendix [B]
The value in each figure means the performance measure of RTRD divided that of
SVR marked in percentage. Specifically, values less than 100 indicate that RTRD
outperforms SVR, and values greater than 100 represent the opposite. The X symbol
indicates the minimum value of the performance measure.

For most datasets, the minimum values of AWT and AIT were observed at the
lower right and upper left, respectively. This result is in line with our expectation
that the larger the value of )\, is, the more likely it is to make a decision for reducing
the waiting time, and the larger the value of );, the more likely it is to make a
decision for decreasing the idle time. However, in datasets 4, 9, 10, and 11, the

minimum value of AIT was obtained when the value of \,, was close to 1 (shown

in Figures|6.10p, [6.11p, [6.12b, and |6.13p). Furthermore, according to Figure |6.11f,

the minimum value of AWT was achieved when the value of \; was close to 1. This
rather contradictory result might be explained by the fact that there exists some
room for improvement in terms of the waiting time.

From a viewpoint of ALT, the X symbol of each dataset was observed at different
locations. In addition, the locations, where the performance of RTRDs was worse
than that of SVR, were found according to the values of A,, and \;. These findings

suggest that setting weight values according to the characteristics of the problem is
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Figure 6.10: Performances of RTRD against SVR depending on A, and ); in dataset
4.

crucial to the performances of RTRD.

In Figures [6.14] [6.15], [6.16] and contour lines visualize the performances

of RTLD against SVR depending on Ay, A;, and Az in datasets 3, 6, 9, and 12,

respectively. The detailed results for each dataset are presented in Appendix [C]
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9.

The value in each Figure means the performance measure of RTLD divided that of
SVR marked in a percentage. Specifically, values less than 100 indicate that RTLD
outperforms SVR, and values greater than 100 represent the opposite. The X symbol

indicates the minimum value of the performance measure.
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Figure 6.12: Performances of RTRD against SVR depending on A, and A; in dataset

10.

For most datasets, the minimum values of AWT were mostly observed at the top

of the triangle where the value of \; is close to 1. This result suggests that scorey is

a key factor in the difference of AWT between RTRD and RTLD. In Figure [6.17h,

X symbol is observed at the lower right corner where the value of )\; is larger and
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Figure 6.13: Performances of RTRD against SVR depending on A, and ); in dataset

11.

the values of A\, and Ay are smaller. This finding was an unexpected result, but the

minimum value of this location is approximately identical to the value at the top of

the triangle.

On the other hand, the minimum values of AIT were observed at the mid-bottom
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Figure 6.14: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 3.
(Aw = 0.5 and A; = 0.5), the middle of the right side (\; = 0.5 and A\; = 0.5),
and the lower right corner (A\; = 1). Judging from this result, it can be seen that
the minimization of AIT is achieved by dispatching decisions considering both the

waiting and idle time depending on the datasets.

84 ; -"{ﬂ _.:_i_ ]_” if-'-lr' T]nl_
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Figure 6.15: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 6.

In terms of ALT', the X symbol of each dataset was observed at different locations
asin RTRD. A few locations where the performance of RTLDs was lower than that of
SVR were revealed according to the values of A\, and A;. Surprisingly, the minimum

value in Figure was yielded on the mid-left side of the triangle (A, = 0.5 and
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Figure 6.16: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 9.

Ag = 0.5). This result may be explained by the fact that dataset 9 has the larger
number of operations per resource than other datasets. Because of this, in dataset
9, the waiting time increases greatly in order to reduce the idle time. As shown in

the experiments on RTRD, the combination of findings implies the importance of
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Figure 6.17: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 12.

setting weight values according to the characteristics of the dataset.

6.3.3 Robustness test

For the purpose of evaluating the robustness in performances of the proposed dis-

patchers, we applied the RTDs generated by training data of each dataset to the

i Rk AL

e



real-time dispatching phase of the dispatching problems that belong to different
datasets. Table[6.5]shows statistically significant differences in ALT between RTRDs
trained in different datasets by using the ¢-test at the 5% level presented. Each cell
presents the result of applying dispatching methods to the dataset corresponding to
the column which contains the cell. For example, for the first row, the problems of
datasets 2 to 12 were solved with the use of the RTRD generated from the dataset 1.
The calculated performances were then compared to those of the RTRDs generated
from datasets 2 to 12.

In detail, the bottom value in the Table indicates the corresponding p-value.
The shaded cells signify that there is no statistically significant difference in perfor-
mance between the two RTRDs corresponding to each cell. The top value in each
cell means the ALT of RTRD generated from the dataset corresponding to the row
divided that of SVR marked in percentage. Specifically, values less than 100 indicate
that the RTRD generated from the dataset corresponding to the row outperforms
SVR, and values greater than 100 with an asterisk (*) mean the opposite.

As specified in Table the RTRDs generated from datasets 11 and 12 show
the best performance in terms of robustness, and RTRDs generated from datasets 4
to 7 were robust for one dataset only. Surprisingly, although the RTRDs generated
from datasets 5 and 6 did not achieve robustness successfully, they outperformed
the others generated from datasets and SVR in terms of ALT'. These results did not
provide any obvious trends in terms of robustness between datasets. It is difficult to
explain the results, suggesting that there might be other important characteristics

in classifying problems except for the criteria considered in this thesis.
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Table [6.6] contains the results when the same test as in Table [6.5 was carried out
on RTLDs, and the meaning of each value in this table is the same as Table
Unlike the results for RTRD, RTLD generated from dataset 7 showed robustness in
terms of ALT for most datasets. Although RTLD generated from dataset 1 failed to
achieve robustness, it excelled SVR and RTLDs generated from each dataset except
datasets 2 and 12.

Although RTLD generated from dataset 6 achieved robustness for datasets 7, 8,
and 9, it resulted in lower performances for datasets 10 and 11 than SVR. However,
except for these cases, the values of ALT yielded in all other cases were smaller
than those of SVR. Furthermore, the number of shaded cells in Table is 28%
greater than that of the shaded cells in Table These results show that RTLD

was superior to RTRD in terms of both performance and robustness.

90

M E ) 8k o
I . I "



- T0-H68'G ¢0-U8L'€ T0-HeS¥ T0-HIRC <¢0-HO9'® 91-HE6'9 TO-HUST'T <¢I-H9¢'€ 90-U8F'¢ LO-HIT'T  90-H6V'€ ,,l..

90°'8€ ¢9'99 Y9 1L SVEV E€T°LS 1G°€L L8°LY L6°€S 9.°¢S 868G 19°29 ¥6°89 ol |
G0-H29°6 - TO-HET'T  ¢0-HL0'T  90-HIO'T  GO0-H6L'T 61-d¥6'Cc T0-HL9C <CI-H60'€ TO-HeC'IT FO-HVO'E  T0-HLA9T I.I.

€1'ey 0999 67°0L 6G°8€ 18°GY €€°99 9294 2699 GL'ES v vy 97°€S (4 t ....”.....-_
T10-H90°€ ¥0-HCE'C - €0-HC6'T  €0-He88  T0-HGL'9 ¢E-H6C'C COHITY OI-H6E'C ¢0-d¥9'c V0-H86'6  G0-H6E'C .!._“-..

90°L€ 01’19 ¢0'L9 £€8°9¢ V'8V TL°G9 v1i'ev 18°CS €8°LG €487 cr'LS 6269 o ~,
€0-HIS¢'¢ T0-Hev'I  ¢0-Hcv'e - CO-HLT'G  90-HSY'V €CH8L'T T0-H69¥ ¢CI-HAT'GS TO-HE8'T TO-HSI'T cO-HEE'T

V0’1V 91°69 6L°TL 64°GY L7784 8L18 864 19°¢9 0¥ ¥S 68°6¢ 8009 067 0
CI-HCT'T  LT-H69'T  90-HSC'V  ¥0-HIG'G - T10-H6L°6  TE€HOL'T VO-HIV'E E1-HPL9 90-HOZ'C <C0-HIE'E  ¥O-HGL'T

ET'9Y ¥¢'98 £€6°08 8¢'9¢ 1874 10°29 g8'0v G067 081G LV'GE 0L€V 4LV i
¢0-H20'c  T0-H9E'€ T0-HEEV €0-HIOG  TO-HST9 - L8-HL0'T  €0-HIL'G PI-UPE'8  T0-H99Z T0-H80F  TO-HSO'T

L8°9€ cE'99 8G'89 8¢'8¢ 10°69 £€6'99 €CLY LEVS ¥0°67 LGcy 8¢"8Y 9¢'1G -
VI-HIE' S  GT-HERL  LE-U88'C  TO0-H6CT  T0-HGL'S TO-HIS'9 - GI-Hev'6 ¢O0-desy G0-HPSe'€  C0-HSS'T  L0-H60°C

9¢°8¢ *GLV0T LT TTT 0€°€V 4R 6289 ¥9°6L G806 €1'e8 [ 80°€9 c0'1L ? =
CI-H8S'T  0T-He9'T T1-U8C'T TO-HOGT TO-HL6'9 <CO-HEG'E €O0-UVE9 - CI-HLL L OT-HVO’L  OT-HELC CO-HSE'T

66°€S 67°88 1€°68 0€'T¥ 6¢€S Y719 8469 9£°09 CLYS 6829 9189 €09 ¢
CO-H88'¢ ¢0-He8'L 90-H6E€ T0-HL98  ¢0-H90'C <¢O-HI6'C TO-UST'T 90-HT6'C - €O-UIT'T  90-HSGO'T  GO-U8G'L

9l'cv 8€°€L V166 80°G¥ 6179 1,792 V1L Ge'16 0¢"S6 986G G689 81°69 ’
GO-H6EY  €0-H68'T  T0-HO09 €0-HIL'T ¢0-Hc9'€ T0-HOG'C G¢-U6c'S TO-H6S L €E1-HVE6 - €0-UVL9  C0-HILE

997E 8819 26769 L2°LE 0009 ¥2°0L 0109 9¥°6G 61°¢S qlev 16°19 20709 £
90-Hc¢e’' T ¢I-H66'€ <¢0-H9¢'T 90-HOT'T  90-HP9'L  GO-HFVT'9 0€-HLIE €0-HPI'T €I-U6T'E TO-HCI'E - T0-HLE°€

86°¢¢ €0°LG €6'19 96°'1€ 6941 0799 9E TV 0€°09 1809 ¢c9°0v 8697 0Tcs ¢
10-H6€'¢  ¥0-H6T°6 €0-HIS'S PFO-HIT'T <O0-H6T'T <CO-U89T TE€HOR8SG TO-HPST PI-H6V'T <CO-HEV'E CO-HIG'T -

11°6€ L2819 1019 1€°6¢ 0867 c009 Yxaay €987 19°9% 17°6€ 1719 98°¢4 !

¢l 1T 01 6 8 L 9 g % € 4 ! N
"'ON j9seje(] jesere(

"S19sR)RP JUOIOPIP Ul pourel) S(ITIA UWeomjaq /T Ul SOOUSISJIP JurOYIUSIS A[[edo1)sijels :9°g a[qel,



Chapter 7

Conclusions

7.1 Summary and contributions

RML is the manufacturing line where parts can make several visits to the same stage
before the parts complete all operations assigned. Recently, with the emergence of
semiconductor manufacturing and thin film transistor-liquid crystal display (LCD)
manufacturing lines, RMLs causes wide concern in both academia and industry. Due
to the frequently re-entrant parts between multiple stages in RMLs, it is challenging
to achieve both goals of reducing the flow time and increasing the utilization of
resources at the same time.

In order to decrease the flow time without loss in resource utilization of the
bottleneck stage for real-world RMLs, this thesis proposes a novel approach for DNN
based RTDs. First, the DEBS and monitoring tool were implemented to generate
training data and evaluate the performance of dispatching decisions. In addition to
imitating real-world RMLs, DEBS is in charge of generating simulation logs to be
converted into the training data for RTDs. The monitoring tool was designed to
display a variety of information about RML at the time each dispatching decision
being made. It provides not only the functionality of the existing Gantt chart, but

also the ability to show various performance indicators over time.
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Second, the thesis proposes two DNN based RTDs with different decision-making
processes, called RTRD and RTLD. Whenever a dispatching decision is required,
RTRD determines the best among the existing dispatching rules while RTLD calcu-
lates scores on all candidate parts and assigns the part with the highest score to a
resource.

To learn an efficient dispatching policy in RMLs considering intentional delays,
we employed DNN which has the ability to capture complex non-linear dynamics.
In the training phase, in order to obtain training data used for RTDs, all dispatch-
ing decisions of each training problem are executed randomly. The performances of
decisions are then measured by the score generator, and the scored simulation logs
are used by a learning algorithm to train DNNs embedded in RTDs.

The experimental results demonstrate that the proposed RTDs are successful
in decreasing flow time and increasing the utilization of bottleneck resources at
the same time. RTLD outperforms the existing dispatching methods in terms of
the average loss time for all datasets considered. Meanwhile, through the weight
adjustment experiments and robustness test, we confirmed the direction in which
the proposed approaches could be further developed.

This thesis has made contributions as follows. First, it developed the monitor-
ing tool that ensures the ability to investigate each dispatching decision, which is
independent from the programming language used to implement the simulator. Sec-
ond, a proposal was made regarding a novel method for generating training data for
DNNs without a verified solver. Lastly, the proposed RTDs can perform effective

dispatching decisions considering intentional delays in RMLs.
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7.2 Limitations and future research

Although satisfactory results were obtained through this thesis, there exist some
room for further improvement. First, RTRD is required to reduce the time parts
spend in the re-entrant stocker while RTLD is supposed to improve in terms of
decreasing computation time. If the concept of conflicting lots is introduced into
RTRD, the performance of RTRD is highly likely to be improved. However, this
attempt is less likely to be successful due to the nature of the RTRD’s decision-
making manner of not being able to specify a lot.

Second, we plan to investigate a reinforcement learning (RL) algorithm which is
capable of finding a policy that maximizes global rewards in order to enable more
intelligent dispatching decisions that minimize both the waiting and idle time. The
dispatching rules representing the action vector of RTRD can be used to define the
action space of the Q-learning which is the most representative of the RL. However,
it is essential to design an immediate reward between the current state and next
state, since the preference scores indicating the value of dispatching decisions are
calculated only after all simulations are completed.

Lastly, further studies are needed to improve the robustness of the proposed
dispatchers to the type of datasets such as the numbers of job types, resources,
and operations. Furthermore, it is necessary to investigate a learning method for
determining the weights between the flow time and resource utilization according to
the characteristics of RMLs.

Meanwhile, the proposed method is applicable to the resource allocation problem
in a cloud computing environment where it is required to efficiently assign jobs

of different complexities to computing resources. The goal of the cloud computing
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environment is similar to the objective function addressed by RTDs in that the
completion time of each job is minimized and the utilization of computing resources
is maximized. Therefore, if the computation time of RTDs is reduced and the suitable
network structure for the cloud computing environment is studied, the proposed

method will be able to achieve superior performance even in the new environment.
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Appendix A

Performance comparison results
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Figure A.1: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 1.
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Figure A.2: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 2.

| \DAWT .AIT .‘ALT\ |

min

-.II : Hl

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.3: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 3.
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Figure A.4: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 4.
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Figure A.5: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 5.

| [AWTEAITRALT] |

99

SNQ STOCK SVR RTRD RTLD

L = | I I [l I ‘ ‘ I I

Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ




3500

[JAWTEAITEALT] |

3000

2500

2000

min

1500

1000

o
Random FIFO LOR MOR SMALL LARGE SPT LPT LNQ FLNQ SNQ STOCK SVR RTRD RTLD

Figure A.6: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 6.
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Figure A.7: AWT, AIT, and ALT results of the proposed dispatchers and the ex-

isting methods for dataset 7.
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Figure A.8: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 8.
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Figure A.9: AWT, AIT, and ALT results of the proposed dispatchers and the ex-
isting methods for dataset 9.
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Figure A.10: AWT, AIT, and ALT results of the proposed dispatchers and the
existing methods for dataset 10.
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Figure A.11: AWT, AIT, and ALT results of the proposed dispatchers and the
existing methods for dataset 11.
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Figure A.12: AWT, AIT, and ALT results of the proposed dispatchers and the
existing methods for dataset 12.
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Appendix B

Performance contour of RTRD with respect to )\,
and )\
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Appendix C

Performance contour of RTLD with respect to \,,
)\la and )\d
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Figure C.1: Performances of RTLD against SVR depending on Ay, A;, and Ay in
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Figure C.2: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 2.
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Figure C.3: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 3.
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Figure C.4: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 4.
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Figure C.5: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 5.
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Figure C.6: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 6.
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Figure C.7: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 7.
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Figure C.8: Performances of RTLD against SVR depending on Ay, A;, and Ay in
dataset 8.
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Figure C.10: Performances of RTLD against SVR depending on A, A\;, and A4 in

dataset 10.
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Figure C.11: Performances of RTLD against SVR depending on A, A\;, and A4 in
dataset 11.
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Figure C.12: Performances of RTLD against SVR depending on A, A\;, and A4 in
dataset 12.
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