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Abstract 

Exploring metal–gas chemistry  
for development of high-energy 

secondary batteries 

 
Hyeokjun Park 

Department of Materials Science and Engineering 

College of Engineering 

The Graduate School 

Seoul National University 
 

Nowadays, the demands for energy storage devices are explosively 

increasing with the market growth of energy storage applications including electric 

vehicles (EV) and large-scale energy storage systems (ESS). Li ion batteries are now 

regarded as the state-of-art energy storage chemistry owing to their high energy 

density and power density which satisfies requirements for the power sources of 

current portable electronic devices. However, current energy density of Li ion 

batteries is insufficient to be utilized in huge applications including EV and ESS 

because of the use of heavy transition metal compounds and limited storage 

capability of current cathode materials. Many research efforts have been devoted to 

discovery on next-generation energy storage chemistries (including Li–O2, Li–S, and 
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Na ion batteries etc.) which can outperform current Li ion batteries. Among them, 

Li–O2 batteries have attracted enormous attentions owing to the extraordinary high 

theoretical energy density with the absence of heavy elements. However, poor 

efficiency and reversibility in Li–O2 chemistry hinders the practical realization of 

Li–O2 batteries to date. 

In this thesis, I explore novel metal–gas chemistry for devising new 

rechargeable batteries. Coupling various gas-phase actve materials with counter 

metal electrode can be an alternative to develop highly efficient and reversible 

secondary batteies, taking knowledge from the historical background and 

fundamental understnading on the Li–O2 batteries. Here, I invent a new secondary 

battery chemistry by revisiting primary Li–SO2 systems and develop high-

performing Li–SO2 batteries based on in-depth understanding on the energy storage 

mechanism. In addition, I enlighten a superoxide chemistry in recent emerging Na–

O2 batteries by addressing the chemical behaviors of discharge products and develop 

highly durable Na–O2 batteries through the introduction of advanced electrolytes to 

control the discharge product. 

Chapter 2 shed a new light on old primary Li–SO2 battery chemistry as a 

way to devise a new secondary battery. Although primary Li–SO2 battery has been 

only believed as a primary battery due to the foramtion of solid discharge prodcuts, 

a rechargeability of Li–SO2 battery is demonstrated based on the reversible 

formation and decomposition of Li2S2O4 discharge product. Novel rechargeable Li–

SO2 battery with the operation voltage of ~2.8 V and capacity of 5,400 mA h g-1 

exhibits higher energy efficiency and cell reversibility compared to the Li–O2 
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chemistry. Based on in depth mechanism studies on the critical role of electrolytes 

properties, conventional carbonate-based electrolytes, which have been widely used 

for practical Li ion batteries but not for current Li–O2 battery, are exploited in Li–

SO2 rechargeable batteries. Li–SO2 battery with carbonate-based electrolytes 

presents superior electrochemical properties including high power and reversibility. 

Application of soluble catalysts into newly developed Li–SO2 battery is also 

demonstrated with achieving one of the most outstanding performances among 

previous Li–gas type batteries. 

Chapter 3 reveals the origin of discrepency in discharge products and 

underlying reaction mehcanism of Na–O2 batteries. NaO2 chemistry has recently 

attracted many interests owing to extremely low charge polarizations about 200 mV 

of Na–O2 batteries. It is unveiled that the spontaneous dissolution and ionization of 

primary discharge product NaO2 liberates the free O2
- in the electrolyte and promotes 

side reactions involving the formation of Na2O2·2H2O. The chemical phase 

transition results in higher polarization for charge process of Na–O2 batteries with 

severe deterioration of cell efficiency and reversibility. On the basis of the 

mechanism, rational tuning of electrolyte is addressed to prevent the dissolution of 

NaO2. The introduction of concentrated electrolytes with little amount of free 

solvents is verified to suppress chemical product transition from NaO2 to 

Na2O2·2H2O during storage period of Na–O2 batteries. Highly durable Na–O2 

batteries is developed for longer shelf-life through the stabilization of NaO2 with the 

use of concentrated electrolytes. 
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I believe that this thesis can open up a new research frontier of metal–gas 

type secondary high-energy battery and provide insights on the fundamental 

understanding of the energy storage mechanism of metal–gas batteries. The revisit 

study on Li–SO2 battery in this thesis can also offer an avenue to devise a new 

rechargeable battery chemistry. In addition, successful electrolytes design and 

catalysts engineering in this thesis also provide guidelines how to develop high-

performing metal–gas type rechargeable batteries. 

 

Keywords: Electrochemistry, Secondary batteries, Metal-air batteries, Sulfur 

dioxide, Superoxide, Electrolytes, Soluble Catalysts. 
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electrolytes. 

Figure 3.22. Full Raman spectra of discharged carbon electrodes. 

Figure 3.23. Enhanced storage properties of sodium–oxygen cells with 

concentrated electrolytes. (a) Charge/discharge profiles of sodium–

oxygen cells with various resting times from 6 to 24 h after discharge. 

(b) Pressure monitoring during discharge and (c) real-time gas 

profiles during charge of sodium–oxygen cells stored for 3 h. (d) 

Pressure monitoring during discharge and (e) real-time gas profiles 

during charge of sodium–oxygen cells stored for 24 h. The dotted 

lines are voltage profiles. (f) Electrochemical impedance spectra of 

discharged sodium–oxygen cells during storage for 24 h. (g) 

Capacity retention of sodium–oxygen cells with and without resting 

periods. 

Figure 3.24. Voltage profile of sodium–oxygen cells using (a) 2 M and (b) 3.5 M 

electrolytes with different resting condition. 

Figure 3.25. Voltage profiles of sodium–oxygen cells for individual cycle number. 

(a,b) Voltage profiles of sodium–oxygen cells for 0.5 M electrolytes 

(a) without and (b) with 12-h storage after discharge. (c,d) Voltage 

profiles of sodium–oxygen cells for 3 M electrolytes (c) without and 

(d) with 12-h storage after discharge. 

Figure 3.26. Investigation of Na metal stability of NaClO4 in DEGDME 

electrolytes with different concentrations using Na/Na symmetric 
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Chapter 1. Introduction 

1.1 Motivation and objectives 

Energy and environmental issues such as exhaustion of fossil fuels and 

global warming have been continued for a few decades and now considered as one 

of the most serious problems. In response to these problems, electric vehicles (EV) 

and energy storage system (ESS) have been suggested as the key solution, leading to 

accelerating the development of renewable energy sources and applications. Among 

several candidates for energy storage systems, Li based rechargeable batteries have 

been considered as the most promising system due to their excellent performances. 

In particular, Li ion batteries have been regarded as the state-of-the-art in the battery 

field due to high energy and power density, which has been already successfully 

commercialized to portable devices. The working mechanism of Li ion battery is 

reversible lithium ion insertion/extraction within crystal framework of electrode 

materials. However, there is a critical limitation in improving gravimetric energy 

density of conventional Li ion batteries because their cathode materials use heavy 

transition metal based crystal structure as a redox host for Li ion storage. Since huge 

applications including EV and ESS require batteries which have much higher energy 

density beyond current Li ion batteries, the development of a next-generation battery 

with high energy density lies at the heart of the emerging energy storage 

technologies.1-7  

Exploring a new metal-gas chemistry possesses an important key to open 
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the new possibility of ultra-high energy density battery since it offers exceptionally 

high energy density owing to the absence of heavy transition metals. Although it was 

previously conceived that a metal-gas system was only suitable for primary batteries, 

current Li–O2 system has now become one of the most promising candidates for 

next-generation secondary batteries.8 Despite intensive studies on the Li–O2 battery 

to date, poor efficiency and reversibility of Li–O2 chemistry impose a great huddle 

for realizing a practical commercialization of the batteries.9-11 In this light, the 

objective of the thesis is mainly discovering new redox materials couples in metal-

gas systems whose chemistry is highly reversible to devise a new battery that can 

realize both high energy density and efficiency as described in Figure 1.1. 
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Figure 1.1. (a) Schematic description of working concept for rechargeable metal–

gas battery. (b) Plots of theoretical voltage versus gravimetric energy density of 

several possible metal–gas compounds. 
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1.2 Introduction to metal–air battery 

Metal–air battery has been regarded as one of the most promising next-

generation energy storage devices owing to the highest theoretical energy density. 

Metal–air battery consists of metal anode and porous carbon cathode which offers 

reaction sites of electrochemically active gas phase materials separated by selective 

ion-conducting organic electrolytes. Based on the cell configuration, the battery is 

working based on the direct electrochemical reaction between metal and gas active 

materials without the need for heavy transition metals redox centers and crystal 

framework to store guest ion. Main energy conversion/storage mechanism of metal–

air battery stems from the electrochemical conversion of gas-phase active materials 

to solid-phase ionic compounds with the combination of alkali metal species. In 

general, the reactions can be simply described as below. 

(Anode)  AM(s) → 𝐴𝐴𝐴𝐴+ + 𝑒𝑒−    (1) 

(Cathode)  G(g) + 𝑒𝑒− → 𝐺𝐺−    (2) 

(Total)   xAM(s) + yG(g) → 𝐴𝐴𝐴𝐴𝑥𝑥𝐺𝐺𝑦𝑦(𝑠𝑠)  (3) 

(AM: Alkali metal, G: Gas-phase active materials, x, y: Stoichiometric index) 

Accordingly, electrochemical properties of metal–air batteries are primarily 

dependent on the electrochemical activity of gaseous active materials (Figure 1.2a) 

and the energetics of their intermediate species (Figure 1.2b). Finally, the phase of 

discharge product is defined based on the phase stability of the complex between 

alkali metal and gas species (Figure 1.2c). Besides, materials natures of the solid 
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discharge products including electric conductivity, phase stability as well as 

solubility heavily affect subsequent discharge and charge process of metal–air 

batteries (Figure 1.2d). Unique electrochemical behaviors of metal–air batteries have 

therefore been proposed depending on the combinations of metal and gas active 

species.12-22  

Among several kinds of metal–air batteries, Li–O2 battery, a most 

representative, has primarily received tremendous attention as it has the highest 

theoretical energy density (~3500 W h kg-1) at level unattainable by conventional Li 

ion battery due to the use of light element of lithium and oxygen. Total reaction of 

Li–O2 battery can be expressed as below. 

2Li(s) + O2(𝑔𝑔) → 𝐿𝐿𝐿𝐿2𝑂𝑂2(𝑠𝑠),𝐸𝐸𝑡𝑡ℎ° = 2.96 𝑉𝑉 (𝑣𝑣𝑠𝑠. 𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿+)  (4) 

Despite great attentions to rechargeable Li–O2 battery, there are also several 

problems in currently developed Li–O2 battery where unwanted side-reactions by 

reactive species take place during battery operation, which results in low energy 

efficiency and low cycle property. It has been revealed that highly reactive oxygen 

species (oxygen radicals or singlet oxygen etc.) generated during Li–O2 battery 

operation attack all of the battery components including carbon cathodes and 

electrolytes, which results in degradation and failure of the battery.23-27 Accordingly, 

many researchers have been focusing on suppressing the side-reactions by modifying 

carbon electrodes, developing robust electrolytes or applying catalysts to improve 

the electrochemical properties of Li–O2 battery.28-36 However, these approaches 

cannot reach ultimate solutions to overcome the intrinsic problems of reaction 
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chemistry of Li–O2 system. For the breakthrough of intrinsic reaction problems of 

Li–O2 battery, it is important to devise new chemistry based on metal and gas for 

high energy storing rechargeable battery system.  
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Figure 1.2. Schematic description of working principles for (a-c) discharge and (d) 

charge reaction of rechargeable metal–gas battery. 
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Chapter 2. Evolution of Li-SO2 secondary battery  

2.1 Revisiting Li-SO2 primary batteries for rechargeable 

systems  

(The essence of this chapter has been published in Angewandte Chemie. Reproduced 

with permission from [Lim, H.-D.† and Park, H.† et al., Angew. Chem. Int. Ed. 2015, 

54, 9663 –9667] Copyright (2015) WILEY-VCH) 

2.1.1 Research Background 

Primary Li-SO2 batteries offer a high energy density in a wide operating 

temperature range with exceptionally long shelf life and have thus been frequently 

used in military and aerospace applications. Although these batteries have never 

been demonstrated as a rechargeable system, in this communication, we show that 

the reversible formation of Li2S2O4, the major discharge product of Li-SO2 battery, 

is possible with a remarkably smaller charging polarization than that of a Li-O2 

battery without the use of catalysts. The rechargeable Li-SO2 battery can deliver 

approximately 5,400 mAh g-1 at 3.1 V, which is slightly higher than the performance 

of a Li-O2 battery. In addition, the Li-SO2 battery can be operated with the aid of a 

redox mediator, exhibiting an overall polarization of less than 0.3 V, which results 

in one of the highest energy efficiencies achieved for Li-gas battery systems.  
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Revisiting conventional primary batteries sometimes inspires new 

chemistry that can be adopted in rechargeable batteries. The recent rapid growth of 

the Li-O2 battery field is an example of the successful evolution from a primary 

battery to a secondary battery.1,2 Although it was previously conceived that a metal-

O2 system was only suitable for primary batteries, the current Li-O2 system has 

become one of the most promising candidates for next-generation secondary 

batteries, specifically considering that it can deliver an exceptionally high energy 

density at a level unattainable by conventional lithium-ion batteries.3-5 Exploring a 

new chemistry in metal-gas systems plays a key role in the development of ultra-

high energy density batteries, as it enables electrochemical energy storage without 

the use of a heavy transition metal redox host. Recent reports on various metal-gas 

rechargeable batteries, such as Na-O2, K-O2, Al-O2, and Li-CO2 systems, reveal their 

potential applicability as high-energy-storage media with unique electrochemical 

properties depending on the combination of metal and gas.6-12   
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2.1.2 Experimental Method 

2.1.2.1 Preparation of Li-SO2 cells  

The cathode was prepared from a mixture of Ketjen black (KB) and Kynar 

2801 as a binder at a ratio of 8:2. The mixture was pasted onto a Ni-mesh current 

collector. The individual cells were assembled in the sequence of Li metal (3/8 inch 

diameter), glass fiber separator (Whatman GF/D microfiber filter paper, 2.7 μm pore 

size), and prepared KB electrode in a Swagelok-type cell. The cathode was open to 

sulfur dioxide gas. Before the test, all the cells were stabilized for 30 min. The 

electrolyte consisted of 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in 

tetraethylene glycol dimethylether (TEGDME). In the catalyst-loaded electrolyte, 

0.05 M LiI was added to the solvent.  
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2.1.2.2 Electrochemical Characterization and Analyses  

The electrochemical performances of Li-SO2 cells were investigated using 

a potentio-galvanostat (WonA Tech, WBCS 3000, Korea). For the electrode 

characterization, X-ray diffractometry (XRD, Rigaku, D/MAX-RB diffractometer, 

Tokyo, Japan), X-ray photoelectron spectroscopy (XPS, Thermo VG Scientific, 

Sigma Probe, UK), and field-emission scanning electron microscopy (FE-SEM, 

Philips, XL 30 FEG, Eindhoven, Netherlands) were used. To measure the gas 

evolution in-situ, differential electrochemical mass spectroscopy (DEMS) was used. 

The DEMS system consisted of a mass spectrometer (MS) (HPR-20, Hiden 

Analytical) and a potentio-galvanostat (WonA Tech, WBCS 3000, Korea), as 

described in previous reports.13,14 After the discharge process, the cell was 

transferred to the DEMS cell. Then, the DEMS cell was fully relaxed for 12 h with 

argon gas flowing (10 cc min-1). The evolved gases were swept by argon gas to the 

MS chamber during the charge process. 
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2.1.3 Results and Discussions 

The concept of a primary Li-SO2 cell was first reported in the late 1960s.15,16 

It operates based on the reaction between lithium ions and sulfur dioxide, which 

produces Li2S2O4 (lithium dithionite) as a discharge product, delivering an energy 

density of ~ 330 Wh kg-1.17-19 The sulfur dioxide is initially dissolved or liquefied in 

the electrolyte of a sealed cell with lithium metal as the anode and porous carbon as 

the cathode. Earlier Li-SO2 systems needed to use a pressurized cell; however, recent 

works have successfully demonstrated that an ambient pressure cell is also 

achievable with the proper selection of an electrolyte that can dissolve a sufficiently 

large amount of sulfur dioxide.18 Although the Li-SO2 cell has never been 

demonstrated in rechargeable conditions with a gas inlet and outlet, the chemistry 

resembles that of the Li-O2 system in many ways. During discharging, the gas phase 

receives electrons from the electrode surface, which subsequently combine with 

lithium ions to finally form lithium-containing solid discharge products. The porous 

electrode accommodates a large amount of solid products to achieve a high capacity 

and gradually fill the pores, which results in an increase in the impedance of the cell 

and finally the end of the discharge. Herein, we demonstrate that the charging 

reaction is also feasible in Li-SO2 batteries, similar to Li-O2, which can be reversibly 

operated using an organic electrolyte through the formation/decomposition of 

Li2S2O4. The initial discharge capacity is as high as that of Li-O2 batteries (~5,400 

mAh g-1); however, the energy efficiency is significantly better without the use of 
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catalysts. The working mechanism of rechargeable Li-SO2 batteries can guide the 

development of a new metal-gas system and also aid in our understanding of the 

current limitation of the Li-O2 system.  

The working principle of a rechargeable Li-SO2 battery is described in 

Figure 2.1a. Unlike the primary battery setup, the cell design consists of an electrode 

that is open to a SO2 atmosphere using a Swagelok-type cell. During the discharge 

process, the porous carbon cathode enables an influx of SO2 gas and provides 

reaction sites for the lithium ions and SO2 to accommodate the discharge product, 

Li2S2O4. During the charging process, the discharge products are expected to be 

decomposed and evolve SO2 gas from the electrode. Figure 2.1b shows a typical 

discharge/charge profile of the Li-SO2 battery along with that of the reference Li-O2 

battery under the same operation conditions. The discharge potential and profile are 

in a good agreement with those of the primary cell, indicating that the SO2 reacted 

electrochemically with Li ions.20,21 It is notable that the charging process is possible 

with overall electrochemical profiles similar to those of Li-O2 cells. We observed 

that the charging process results in a significant amount of sulfur dioxide gas 

evolution, as demonstrated in Figure 2.1c. The in-situ DEMS experiment in Figure 

2.1c detected the evolution of sulfur dioxide throughout the charging process without 

other gases such as carbon dioxide, oxygen, or hydrogen. The absence of other gases 

implies a stable charging reaction in the cell, in contrast to conventional Li-O2 cells, 

which exhibit a detectable level of carbon monoxide or dioxide evolution resulting 

from the partial corrosion of the carbon electrode or decomposition of the 
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electrolyte.22 The discharge capacity is comparable to that of a Li-O2 cell; however, 

the voltage of the Li-SO2 cell is higher by approximately 300 mV because the 

formation of the Li2S2O4 discharge product yields a greater Gibbs free energy change 

in the reaction.23 Note that the charging polarization of the Li-SO2 cell is markedly 

lower than that of the Li-O2 cell even without a catalyst. The completion of the 

charging process could be done below 4 V. Consequently, the observed energy 

efficiency of the Li-SO2 system is significantly higher than that of the Li-O2 system. 

In Figure 2.1d, we used the galvanostatic intermittent titration technique (GITT) to 

determine the thermodynamic potential of the reaction. After full relaxations, the 

quasi-open circuit potential of each step is close to the theoretical voltage of Li2S2O4 

formation, which also supports the conclusion that the discharge/charge reaction 

mainly involves the formation/decomposition of Li2S2O4.  

Using ex-situ analyses, we attempted to verify that the charging process was 

the result of the electrochemical decomposition of Li2S2O4. Figure 2.2 presents ex-

situ X-ray diffraction (XRD) patterns of the cathode in the Li-SO2 battery at a few 

stages of discharge and charge. At each step, the cathode was carefully washed using 

the TEGDME solvent and dried before the test. All the procedures were performed 

in a glove box without air exposure. The results clearly demonstrate that the gradual 

formation and decomposition of Li2S2O4 occur on the cathode. Upon discharge to 

step 1, the XRD peaks begin to evolve at 33.5° and 35.4°, which correspond to the 

characteristic peaks observed for Li2S2O4. After further discharge, the peaks grow 

substantially with additional peaks appearing at 27.5° and 30.1°. However, the 
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intensities of these peaks decrease during charging and completely disappear at the 

end of the charge, suggesting that the decomposition of Li2S2O4 primarily occurs 

during charging. The relatively sharp peaks of Li2S2O4 appearing during a cycle are 

slightly different from those of the Li-O2 cell, where the XRD signature of lithium 

peroxide (Li2O2) is sometimes difficult to detect.24-27 This result hints at the relatively 

high crystallinity of the discharge product for the Li-SO2 battery. 

Consistent with the XRD results, the crystalline size of the discharge 

products was large after discharge, as observed in the SEM images in Figure 2.2. In 

the porous carbon electrode, the Li2S2O4 gradually grows into a nano-ribbon-like 

morphology from discharge steps 1 to 3. The nano-ribbon shape of the discharge 

product with a length of a few micrometers and a width of hundreds of nanometers 

differs from the toroid or film-like morphology of Li2O2
28,29 in Li-O2 cells or the 

cubic shape of NaO2
8,30 in Na-O2 cells. Because the morphology of the discharge 

products is closely related to the reaction mechanism involving the soluble 

intermediate discharge phase, a more detailed study will be required on this 

phenomenon.31,32 Upon full discharge to 2.0 V, the nano-ribbon fills up nearly all of 

the void spaces of the carbon electrode (step 3). During the charging process, the 

discharge product gradually disappears; after step 5 (charge to ~3.8 V), most of the 

ribbon-like discharge products cannot be observed, and the pristine state of the 

carbon electrode is recovered. Additional SEM images of the cathode at lower 

magnification are presented in Figure 2.3. 

The use of catalysts could further enhance the efficiency of the Li-SO2 cell 
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by further reducing the charging polarization. As a model catalyst, a lithium iodide 

(LiI) soluble catalyst was adopted in the system, which was recently demonstrated 

to be an efficient redox mediator in the decomposition of Li2O2 in Li-O2 

batteries.4,11,33 Figure 2.4a compares the electrochemical profiles of Li-SO2 cells with 

(blue) and without (red) the catalyst. The addition of the catalyst led to a clear and 

significant decrease of the polarization during the charging process. The overall 

charge polarization was reduced to less than 0.3 V, which leads to a significant 

enhancement of the energy efficiency. Note that the oxidized form of LiI (I2 or I3
-) 

effectively decomposes Li2S2O4 via a chemical reaction, similar to the reaction with 

Li2O2; however, it is more effective in the Li-SO2 system because the equilibrium 

potential of Li2S2O4 formation (~3.1 V) is closer to the redox potential of I-/I3- (or I-

/I2) (~3.4 V) than that of Li2O2 formation (~2.96 V). Therefore, the theoretical 

charging efficiency using LiI in Li-SO2 batteries can be as high as 91%, which is 

substantially higher than that in Li-O2 batteries. The ex-situ XRD analysis (Figure 

2.4b) demonstrates the reversible formation and decomposition of Li2S2O4 within a 

much narrower voltage range (2.0–3.2 V) using the catalyst, which indicates that LiI 

could effectively decompose the discharge product. The catalytic activity of LiI in 

Li-SO2 cells was also confirmed by in-situ DEMS analysis. The DEMS result in 

Figure 2.4c shows that sulfur dioxide (SO2) was solely evolved during the charging 

process without any other gas evolution. Cycling of the cell using LiI was thus 

possible, and under a capacity-limited condition of 500 mAhg-1, the cycling 

continued for more than 25 cycles, as demonstrated in Figure 2.4d.  
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The capacity retention was not remarkable at this stage, even though 

Li2S2O4 could be electrochemically decomposed as demonstrated above. Less than 

1,000 mAh g-1 could be retained after 10 cycles when operated without catalysts 

between 2.0–4.2 V, as shown in Figure 2.5. This performance level is only 

comparable to that of early Li-O2 batteries.34,35 To investigate the origin of the cycle 

degradation, we examined the cathode after the end of the cycling process using 

XRD, and the results are presented in Figure 2.6a. In addition to the main discharge 

product, Li2S2O4, a trace of the Li2SO4 phase could also be detected, which was 

observed to cover the surface of the cathode by SEM (inset of Figure 2.6a). It implies 

that the rapid deterioration of the cell is most likely due to the residual byproducts 

on the surface of the cathode. For a closer investigation of the formation of 

byproducts on the surface, the surface was characterized by X-ray photoelectron 

spectroscopy (XPS), as shown in Figure 2.6b–c. After the first discharge, two major 

peaks dominated, corresponding to Li2S2O4 and Li2SO3 in Figure 2.7 (S 2p XPS) 

with a trace of Li2SO4.18 Although the peak of Li2S2O4 disappears after charging, 

which again indicates the reversible decomposition of Li2S2O4 during the charging 

process, the peaks from Li2SO3 and Li2SO4 do not completely disappear (Figure 

2.6b). At the end of the cycling, residual amounts of Li2SO3 are still detected along 

with the unreacted Li2S2O4. It is presumed that the byproducts remaining after 

charging are gradually deposited onto the carbon surface during cycling. This 

passivation layer may block the active pores while also contributing to the decrease 

in the electrical conductivity of the cathode. Suppression or elimination of the 
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byproducts will be key to further enhancing the cyclability. 

Another practical barrier for the realization of a ‘rechargeable Li-SO2 

battery’ is the use of sulfur dioxide gas. Although sulfur dioxide is naturally released 

by volcanic activity and is widely used in winemaking as a preservative,36 it is 

inherently a harmful gas. The emission of the gas into the atmosphere will not be 

desirable when charging the battery. As an alternative, in this respect, the 

rechargeable Li-SO2 battery can be designed with a closed-cell type, where the 

circulation of the gas is confined within the cell. An interesting characteristic of SO2 

gas is that a substantially large amount of gas can be dissolved in the organic solvent, 

representing one of the highest solubilities among gases.37 In addition, with slight 

pressurization, the soluble amount can be significantly increased, which explains 

why pressurized Li-SO2 was one of the first systems to be commercialized in metal-

gas batteries. Even without pressurization, it is noteworthy that the recent finding on 

ionic liquids as an electrolyte in primary Li-SO2 could achieve a large amount of SO2 

gas dissolution at ambient pressure, resulting in a high energy density.18 This finding 

implies that closed-type rechargeable Li-SO2 batteries without the emission of 

harmful gases are feasible and that consideration of a smart cell design can make use 

of the high-energy rechargeable Li-SO2 chemistry.  
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Figure 2.1. (a) Schematic illustration of the concept of a rechargeable Li-SO2 battery 

during discharge and charge. (b) Comparison of the electrochemical profiles of Li-

O2 and Li-SO2 batteries at a current density of 0.2 mA cm-2. The theoretical formation 

potentials of Li2O2 and Li2S2O4 are 2.96 and 3.1 V vs. Li/Li+, respectively. (c) Gas 

evolution profile during charge process of Li-SO2 cell with limited capacity of 1 

mAh obtained using in-situ DEMS analysis. (d) Galvanostatic intermittent titration 

technique (GITT) voltage profile of Li-SO2 cell. The discharge capacities were 

calculated based on the cathode carbon weight.  
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Figure 2.2. Ex-situ XRD and SEM analysis of a Li-SO2 battery at each step. The 

dotted lines correspond to Li2S2O4, and the high intensity peaks near 44° and 52° 

correspond to the Ni mesh current collector. All of the figures were viewed under 

the same magnification. 
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 Figure 2.3. SEM images of cathode at low magnification (a-c) after the first 

discharge and (d-f) after re-charge (inset: SEM image of the as-prepared cathode).  
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Figure 2.4. (a) Comparison of the electrochemical profiles of the Li-SO2 cell without 

and with a catalyst. (b) XRD results of the Li-SO2 cell using a catalyst. (c) In-situ 

DEMS result; gas evolution as a function of time during the charge process of the 

Li-SO2 cell with LiI catalyst. (d) Cyclability of the Li-SO2 cell with the catalyst 

utilized up to 500 mAh g-1. 
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Figure 2.5. The cyclability of a Li-SO2 battery at a constant current rate of 0.2 

mA/cm2 between 2.0–4.2 V.  
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Figure 2.6. (a) XRD pattern of the cathode after cycling (inset: SEM image of the 

cathode after cycling). XPS spectra of S 2p: (b) after re-charge, and (c) at the end of 

cycling. The overall peaks are arranged based on the reference C-C bond at 284.5 

eV. 
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Figure 2.7. XPS spectra of S 2p after the first discharge. 
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2.1.4 Concluding Remarks 

In summary, a rechargeable Li-SO2 battery was demonstrated for the first 

time. The electrochemical formation and decomposition of Li2S2O4, the major 

discharge product of a Li-SO2 battery, was reversibly possible with a remarkably 

small charging polarization even without a catalyst. With the aid of a LiI redox 

mediator, it could exhibit a polarization lower than 0.3 V with one of the highest 

energy efficiencies achieved for Li-gas battery systems to date. The rechargeable Li-

SO2 battery could deliver approximately 5,400 mAh g-1 at 3.1 V, which is slightly 

higher than that of the Li-O2 battery. However, at this stage, the level of cycle 

performance is limited because of the formation of byproducts, which gradually 

deposit on the cathode and hinder the efficient cycling. Although a step forward has 

been made for the secondary Li-SO2 battery system, issues such as suppression of 

the byproducts to enhance the cyclability and the identification of an electrolyte 

capable of dissolving a large amount of SO2 gas to minimize the emission remain to 

be resolved. This report may provide an interesting new direction for designing 

rechargeable battery systems by applying a conventional primary battery chemistry 

to a viable secondary battery system. 
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2.2 High-efficiency and high-power rechargeable Li–SO2 

batteries exploiting conventional carbonate-based electrolytes 

(The essence of this chapter has been published in Nature Communications. 

Reproduced with permission from [Park, H. et al., Nat. Commun. 8, 18977 (2017)] 

Copyright (2017) Nature Publishing Group) 

2.2.1 Research Background 

To satisfy the growing demand on energy storage devices for emerging 

electric vehicles and grid-scale energy storage markets, recent efforts have been 

devoted to exploring a new battery chemistry that can outperform the current state-

of-the-art lithium-ion batteries (LIBs).1-3 Revisiting the conventional primary 

batteries can offer insight for developing a novel rechargeable chemistry by 

taking advantage of the recent advances in the fundamental understanding of 

battery science.4-6 One recent example is the development of rechargeable 

lithium–sulfur dioxide (Li–SO2) batteries. The primary lithium–sulfur dioxide 

battery offers a high energy density in a wide operating temperature range with 

exceptionally long shelf life and has thus been commercialized for military and 

aerospace applications since it was developed in the late 1960s.7-10. Recently, the 

lithium–sulfur dioxide chemistry was newly revisited and proposed as a 

promising rechargeable battery chemistry.11,12 Under an analogous cell 

configuration adopted from lithium–oxygen batteries, it was demonstrated that a 
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reversible electrochemical reaction between lithium and sulfur dioxide is possible 

with the formation and decomposition of lithium dithionite (Li2S2O4). Similar to 

lithium–oxygen and lithium–sulfur batteries6, the absence of heavy transition 

metals in the redox reaction can result in a high energy density reaching 1,132 

Wh/kg based on the mass of Li2S2O4. Moreover, the intrinsically smaller 

polarization and higher gas efficiency were observed to be advantageous 

compared with lithium–oxygen systems, making the lithium–sulfur dioxide 

battery a new potential metal–gas rechargeable battery chemistry.  

Recent studies have revealed that the properties of the electrolyte in metal–

gas batteries play a pivotal role in determining the nature of discharge products 

and the rechargeability of the system.13-19 The discharge mechanisms and nature 

of discharge products such as their morphology and stability can be significantly 

altered by the properties of the electrolyte, such as donor numbers or dielectric 

constants.20-25 The critical dependency on the electrolyte in the metal–gas system 

compared with conventional lithium/sodium-ion batteries is most likely due to the 

generation of gas radicals, which are an important intermediate for the discharge 

reaction. Depending on the stability of the electrolyte, the gas radicals can react 

with the electrolyte solvent rather than the desirable alkali ions, such as lithium or 

sodium, which can form rechargeable discharge products.15,26,27 Moreover, the 

stability of the intermediate alkali–radical complex is governed by the nature of 

the electrolyte and can thus alter the discharge paths.21-23 In the early development 

of rechargeable lithium–oxygen or sodium–oxygen batteries, the use of carbonate-
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based electrolytes yielded side reaction products; thus, an appropriate charging 

process could not be achieved.14,15,19 The organic carbonate was highly vulnerable 

to chemical attacks by the oxygen radicals generated during the discharge 

process.14,15,26,28 This finding led to the overall perception that carbonate-based 

electrolytes cannot be considered for metal–air batteries. Nevertheless, carbonate-

based electrolytes possess several benefits, including high ionic conductivity and 

wide electrochemical windows, which have made them a common electrolyte for 

the well-developed LIB technology.29,30 Moreover, the good lithium metal 

compatibility and chemical stability can be potential merits for lithium–air battery 

systems, which are expected to use lithium metal anodes and operate in an open 

system.  

   In this work, we evaluate the feasibility of implementing a conventional 

carbonate-based electrolyte in a lithium–sulfur dioxide battery and investigate 

how the electrochemical properties are affected. Although the stability of sulfur 

dioxide gas radicals during the discharge process is unknown, we observe that the 

chemical reactivity of SO2
- toward organic carbonates is both thermodynamically 

and kinetically prohibited according to density functional theory (DFT) 

calculations. It is also experimentally verified that a lithium–sulfur dioxide battery 

employing ethylene carbonate (EC) and dimethyl carbonate (DMC) as electrolytes 

can reversibly operate with the formation and decomposition of a Li2S2O4 

discharge product. Furthermore, it is revealed that the power capability and 

cycling properties of the lithium–sulfur dioxide batteries are remarkably 
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improved compared with those using an ether-based electrolyte because of its 

higher ionic conductivity and better compatibility with the lithium metal anode. 

By introducing a soluble catalyst, cycling over 450 cycles is demonstrated with a 

high energy efficiency, exhibiting an overall polarization of 0.2 V during cycling, 

which has not yet been achieved in either lithium–oxygen or lithium–sulfur 

dioxide batteries. This report is the first to demonstrate that conventional 

carbonate-based electrolytes can be successfully applied in rechargeable metal–

gas systems, opening up a new avenue toward high-efficiency rechargeable 

metal–gas batteries. 
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2.2.2 Experimental Method 

2.2.2.1 Computational details  

DFT calculations were performed using the Jaguar 8.9 software31 for 

molecular reaction energies under the PB implicit solvation condition. We used the 

exchange-correlation functional of B3LYP32,33 along with the Pople 6-311++G** 

basis set34. The ground electronic and geometric structures for molecular reaction 

intermediates were fully optimized for both gas and solution phases. Single-point 

solution-phase calculations without relaxing the gas phase structure were conducted 

only for the transition state obtained from a simple quasi-Newton method that 

searches for the transition state nearest to the input guessed geometry. The initial 

guess for the transition state search was obtained by scanning the most unstable 

geometry along the expected reaction coordinates, and the obtained transition states 

were validated by checking the number of imaginary frequency from vibrational 

modes. We also used the Vienna Ab initio Simulation Package (VASP)35 for the 

calculations of the cohesive energy of crystal structures with the exchange-

correlation function of Perdew–Burke–Ernzerhof (PBE)36. The electron–ion 

interaction was considered in the form of the projector augmented wave (PAW) 

method with a plane wave up to an energy of 400 eV. Gamma-centered k-point grids 

of 10 × 10 × 10 for lithium metal, 5 × 5 × 5 for Li2S2O4, and 4 × 6 × 4 for Li2SO4 

were generated. The ground electronic and geometric structures were fully optimized 

for the crystal and corresponding formula unit molecule for each crystal structure. 
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Further details including solvent parameters and hypothetical crystal structure are 

discussed in Table 2.1 and Figure 2.8, respectively.  
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Table 2.1. Parameters for Poisson–Boltzmann implicit solvation calculation. The 

dielectric constant (ε) and probe radii (R) for the electrolyte solvents were 

determined based on experimental literature values.  
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Figure 2.8. Simulated XRD pattern of theoretically optimized Li2S2O4 crystal 

structure based on Na2S2O4. The crystal structure for Li2S2O4 was hypothetically 

generated by substituting Na atoms with Li atoms based on the Na2S2O4 structure 

because there is no experimentally determined crystal structure (only available 

powder diffraction peak data, JCPDS #36-1101). The simulated XRD pattern 

indicates that the hypothetical Li2S2O4 crystal structure was reasonably selected. 
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2.2.2.2 Preparation and assembly of Li–SO2 cells 

For the preparation of carbon paste, Ketjen black carbon (EC 600JD, Ilshin 

Chemtech) was dispersed with polytetrafluoroethylene (PTFE, 60 wt% dispersion in 

H2O) binder in a mass ratio of 8:2 into a solution of isopropanol (IPA, >99.7%, 

Sigma-Aldrich) and N-methyl-2-pyrrolidone (NMP, 99.5%, anhydrous, Sigma-

Aldrich) with a volume ratio of 1:1. The carbon gas-electrode was fabricated by 

casting the carbon paste on the carbon paper current collectors (TGP-H030, Toray, 

Japan) and dried overnight at 120°C to evaporate the solvent and residual water. The 

average loading mass of the Ketjen black electrodes in a 1/2-inch diameter was 

approximately 0.8 ± 0.1 mg. Electrolytes of 1 M lithium hexafluorophosphate (LiPF6) 

dissolved in EC/DMC 1:1 vol% or TEGDME with water contents less than 20 ppm 

measured by Karl–Fisher titration were used. The lithium–sulfur dioxide cell was 

assembled using a Swagelok-type cell in a sequence of lithium metal (3/8-inch 

diameter), two sheets of Celgard 2400 separators (1/2-inch diameter), and the 

prepared carbon electrode (1/2-inch diameter) in an Ar-filled glove box (O2 level < 

1 ppm and H2O level < 1 ppm). The amount of electrolyte was 200 µL. For the 

electrolytes employing the soluble catalyst, 50 mM concentration of DMPZ was 

added to the prepared electrolytes. The gas-electrode of individual cells was open to 

the sulfur dioxide gas after the cell assembly and stabilized during a relaxation time 

of 0.5 h before the cell tests. 
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2.2.2.3 Characterization of Li–SO2 cells  

All the electrochemical tests for the lithium–sulfur dioxide cells were 

performed using a potentio-galvanostat (WBCS 3000, WonA Tech, Korea) between 

2.0 and 4.2 V at room temperature. For the lithium symmetric cell tests, a coin-type 

cell CR2032 was assembled with ½-inch diameter lithium foils as both the counter 

and working electrode and a slice of Celgard 2400 separator soaked with electrolytes. 

The electrolytes used for the lithium/lithium symmetric test were saturated with 

sulfur dioxide gas by bubbling in prepared electrolytes. Electrochemical impedance 

measurements were performed by using a potentio-galvanostat (VSP-300, Bio-Logic 

Science Instruments, France) at room temperature with a frequency range from 200 

kHz to 50 mHz. A Bruker D2-Phaser with Cu-Kα radiation (λ=1.5406 Å) was used 

to obtain XRD spectra of the cathodes under an Ar atmosphere with an air-locking 

holder. The morphology of the products in the electrode was examined using FE-

SEM (MERLIN Compact, ZEISS, Germany) after Pt coating. XPS (Thermo VG 

Scientific, Sigma Probe, UK) was used for the surface characterization of the 

cathodes in an Ar atmosphere without air exposure. For the in situ gas analyses, a 

DEMS instrument constructed with the combination of a mass spectrometer (MS; 

HPR-20, Hiden Analytical) and potentio-galvanostat was used, as described in our 

previous report.37 In situ gas analyses were conducted using argon carrier gas at a 

constant flow rate of 10 cc/min during the charge process after the full relaxation of 

the DEMS cell. Dielectric constants of prepared solutions were measured at 20 °C 
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by using Liquid Dielectric Constant Meter (Model 871, Nihon Rufuto, Japan). UV-

vis spectroscopy (Cary 5000, Agilent, United States) was used for sulfur dioxide 

solution characterizations. 
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2.2.3 Results and Discussions 

2.2.3.1 Theoretical investigation of Li–SO2 chemistry 

The basic principle of lithium–sulfur dioxide battery operation is based on 

the simple electrochemical reaction between lithium and sulfur dioxide gas, whose 

general discharge reaction is38,39: 

Anode:  Li (s) → Li+ + e-     (1) 

Cathode:  2SO2 (g) + 2e- → S2O4
2-    (2) 

Total:  2Li (s) + 2SO2 (g) → Li2S2O4 (s)  (3) 

Eº = 3.0 V (vs. Li/Li+) 

In the cathode reaction, the sulfur dioxide collects the electron from the electrode 

and forms the intermediate dithionite ion (S2O4
2-) before precipitating as solid 

Li2S2O4, the final discharge product. However, recent findings on O2
- in the 

lithium–oxygen chemistry suggest that the intermediate S2O4
2- may undergo 

chemical interactions with surrounding electrolyte molecules, which may lead to 

alternation in the discharge reaction path.21,22 To investigate this early stage of the 

discharge reaction, we used DFT calculations coupled with the Poisson–Boltzmann 

(PB) solvation model to explore the reaction thermodynamics of lithium–sulfur 

dioxide batteries. Moreover, similar calculations were performed under different 

electrolyte conditions to probe the effect of the surrounding electrolyte molecules 

on this discharge reaction. We selected two types of electrolyte: a conventional 

carbonate-based electrolyte (EC/DMC, 1:1 volume mixture) and ether-based electrolyte 



４９ 

(tetraethylene glycol dimethyl ether, TEGDME), both of which have been widely used 

for lithium-ion and lithium–air rechargeable batteries.40-43 Figure 2.9a shows the energy 

of the first electron transfer step starting from the sulfur dioxide molecule in a gas phase 

to SO2
- in the respective electrolyte solution. A slightly different energy trajectory of the 

electron transfer was observed in the two electrolyte systems, where the SO2
- in the 

EC/DMC is more stable by 0.30 eV than that in the TEGDME. The slightly different 

stabilization of the charged species is mainly attributed to the strong solvating ability of 

the carbonate-based electrolyte with the high dielectric constant (ε ~ 35).20,44  

  Under normal operation conditions, it is expected that the electrochemically 

reduced SO2
- would react with lithium ions, leading to the formation of solid 

discharge products. However, the SO2
- in lithium–sulfur dioxide cells may also 

undergo a chemical reaction with the carbonate-based electrolyte by nucleophilic 

attack, i.e., electrolyte decomposition similar to the behavior of O2
- in the electrolytes 

of lithium–oxygen batteries13,26. The plausibility of this chemical reaction can be 

determined by assessing the energetics of the initial complex formation (ICF) 

process involving the electrolyte molecule and SO2
-.20,26,27 Figure 2.9b presents 

the energy profile for the ICF processes involving EC molecules with the 

nucleophilic attack of SO2
- compared with that of the previously known case of 

O2
-. Consistent with earlier theoretical20,26 and experimental studies14, the ICF of 

EC–O2 (blue dotted line) is a energetically downhill process with a moderate 

activation barrier, which indicates the instability of the carbonate electrolyte upon 

exposure to O2
-. However, it is noted that the ICF of EC–SO2 (red dotted line) is 
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energetically unfavorable by 0.24 eV. Moreover, the activation energy that needs 

to be overcome is as high as 1.08 eV, indicating that it is also kinetically hindered. 

This finding implies that the electrochemically driven SO2
- molecule is likely to 

be stable in contact with the carbonate-based electrolyte without triggering severe 

degradation of the electrolyte.  

The initial discharge process was investigated in further detail by 

evaluating the energies of each elementary reaction step from the SO2
- molecule 

to the final Li2S2O4 product; however, the detailed electrochemical mechanism of 

lithium–sulfur dioxide batteries remains poorly understood to date. Figure 2.9c 

illustrates the most favorable discharge paths with each step denoted with energies 

in TEGDME (blue line) and EC/DMC (red line) electrolytes using the PB solvation 

model, where only the dielectric constant of the specific solvent is considered. Note that 

the dielectric constant of organic electrolytes can slightly alter with the addition 

of sulfur dioxide into the solvents as shown in Figure 2.10 and the measured 

dielectric constant of organic solutions dissolving sulfur dioxide was used for 

theoretical calculations in this study. Moreover, it should be noted that the energy 

profiles of elementary cathode reactions in Figure 2.9c are described without 

consideration of the energetics of the anode reaction and the total reaction energetics 

including the anodic part are summarized in Table 2.2. For TEGDME, which has a 

low dielectric constant (weak electrostatic interaction), the initial process 

proceeds with SO2
- combining with lithium ions, forming the neutral intermediate 

species of LiSO2. The additional chemical association of SO2
- and lithium ions to 
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LiSO2 results in the formation of the final product of Li2S2O4 during the 

continuous downhill energy process. In contrast, for EC/DMC with a relatively 

high dielectric environment (strong electrostatic interaction), SO2
- is prone to 

undergo a dimerization reaction, forming S2O4
2- rather than a neutral species with 

lithium ions, which is a well-known chemical equilibrium of 2SO2
- ↔ S2O4

2- in 

organic chemistry and biochemistry.45-47 In the subsequent reaction steps, two 

lithium ions are associated with S2O4
2-, forming LiS2O4

- and Li2S2O4, undergoing 

substantial uphill energy processes before the precipitation of the final product. 

The notably different initial discharge steps in the two electrolytes is attributed to 

their distinct solvating characters, where the high-dielectric solvent (EC/DMC) 

stabilizes the charged species such as S2O4
2- more effectively, preserving the 

strong solvation shell, and the low-dielectric solvent (TEGDME) fails to stabilize 

them, thus preferring to form a neutral species (LiSO2) in the reaction. This 

theoretical tendency is in accordance with the previous experimental findings that 

the chemical equilibrium constant of dimerization reaction to dithionite ion has a 

positive correlation with the dielectric constant of organic solvent media.47 It is 

noteworthy that the previously proposed discharge mechanism of the primary 

lithium–sulfur dioxide battery was based on the formation of S2O4
2- rather than 

SO2
- or LiSO2.39,45 It is our speculation that this finding is most likely due to the 

use of an acetonitrile-based electrolyte in most primary lithium–sulfur dioxide 

batteries8-10,39, which has a high dielectric constant (ε ~ 35.9)48,49 comparable to 

that of EC/DMC. Although the overall processes to attain the final product of 
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Li2S2O4 are thermodynamically favorable with identical energy change of overall 

reactions in both electrolytes as shown in Table 2.2, it should be noted that the 

energy profiles along the elementary reaction pathways for lithium–sulfur dioxide 

batteries were significantly different depending on the type of electrolyte. One 

energy profile consisted of a monotonous downhill process (TEGDME), and the 

other consisted of a mixed uphill and downhill process involving a significant 

energy barrier (EC/DMC). This difference in the reaction energetics is expected 

to affect the nature of the formation of solid discharge products for the lithium–

sulfur dioxide battery depending on the type of electrolyte, which will be 

discussed more in the experimental section. 
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Figure 2.9. DFT calculation of the reaction chemistry of lithium–sulfur dioxide 

batteries. (a) Energy diagrams for electrochemical reduction reaction of sulfur 

dioxide gas under EC/DMC and TEGDME. (b) Energy profiles for ICF of 

chemical EC decomposition reaction by O2
- (blue) and SO2

- (red). (c) Reaction 

pathway between SO2
- and lithium ions with corresponding energy profiles under 

EC/DMC (red) and TEGDME (blue). 
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Figure 2.10. Measurements of the dielectric constants of organic solvents with 

saturation of sulfur dioxide. Organic solutions containing sulfur dioxide were 

prepared through a simple saturation of sulfur dioxide gas to the organic solvents in 

a confined chamber under the pressure of 1 bar. 
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Table 2.2. Elementary reaction steps with corresponding energy changes under 

carbonate and ether electrolyte. 
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2.2.3.2 Feasibility of Li–SO2 chemistry in carbonate electrolytes 

Inspired by the theoretical findings, we constructed lithium–sulfur dioxide 

cells using the conventional carbonate electrolyte EC/DMC (1:1 volume ratio with 

1 M LiPF6) and examined the stability of the rechargeable lithium–sulfur dioxide 

chemistry. Figure 2.11a presents the galvanostatic voltage profile during the first 

cycle of the lithium–sulfur dioxide cell. The electrochemical profile at 0.2 mA/cm2 

resembles the typical profile of the lithium–sulfur dioxide cells using an ether-

based electrolyte in a previous study.37 To confirm the reversible electrochemical 

reactions, we performed several analyses of lithium–sulfur dioxide cells using the 

galvanostatic intermittent titration technique (GITT), differential electrochemical 

mass spectroscopy (DEMS), X-ray diffraction (XRD), and scanning electron 

microscopy (SEM). Figure 2.11b indicates that the equilibrium potentials 

measured by GITT are in an agreement with the thermodynamic potential of 

Li2S2O4 (~3 V)50, which supports the idea that the main reaction involves the 

formation and decomposition of Li2S2O4. Furthermore, the DEMS results in Figure 

2.11c indicate that the sulfur dioxide gas was solely detected without the evolution 

of other gases during the entire charge process, demonstrating the reversible and 

stable charge reaction occurring in the lithium–sulfur dioxide cell. Considering 

that the oxygen evolution during the charging of conventional lithium–oxygen 

cells is typically accompanied by the release of considerable amounts of carbon 

dioxide due to electrolyte decomposition15,17 and carbon deterioration51,52, the 

absence of carbon dioxide in this experiment supports the idea that the EC/DMC 
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electrolyte as well as the carbon electrode used for lithium–sulfur dioxide cells 

remain stable during the cell operation. In addition to the evidence on a gas phase 

evolution of sulfur dioxide through in situ gas analyses, the characterization of 

electrolytes after charge of the lithium–sulfur dioxide cells with UV-vis 

spectroscopy in Figure 2.12 clearly confirms the reversible evolution of sulfur 

dioxide from the electrolyte solution.53,54  

To further verify the electrochemical reaction, we carefully performed ex 

situ analyses on the gas-electrodes of lithium–sulfur dioxide cells at different states 

of charge or discharge, as shown in Figure 2.11a. The ex situ XRD spectra in 

Figure 2.11d reveal that characteristic peaks of Li2S2O4 appear and grow during 

discharge without any notable byproducts, followed by the reduction of these peaks 

during the charge and their complete disappearance after the end of the charge.38,55 

These results evidently confirm that the reversible formation and decomposition of 

Li2S2O4 is the major electrochemical reaction occurring in the lithium–sulfur 

dioxide system using an EC/DMC electrolyte, which is consistent with the DFT 

calculations. In addition, the formation and decomposition of Li2S2O4 can be 

directly probed by tracking the morphological evolution on the electrode in the ex 

situ SEM images in Figure 2.11e. It is apparent that two-dimensional plates begin 

to appear on the carbon gas-electrode upon discharge and grow up to 

approximately 5 µm in size, covering all the carbon surfaces at the end of discharge. 

Upon the charge process, Li2S2O4 gradually disappears; at the end of charge to 4.2 

V, no micron plate was observed in the electrode, and the porous structure of the 
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gas-electrode was well recovered to its pristine state, which is in a good agreement 

with the XRD results. Note that the morphological feature of the discharge product 

is slightly different from that of the Li2S2O4 formed using the TEGDME electrolyte 

in our previous study.37 As carefully compared in Figure 2.13, the Li2S2O4 initially 

forms needle-like precipitates and grows into numerous nanoribbons for the 

TEGDME electrolyte, in contrast to the micron-sized Li2S2O4 plate in the EC/DME 

electrolyte. Interestingly, the morphology of discharge products has recently been 

regarded as an important clue to understanding the discharge mechanism of metal–

oxygen batteries.21-23,56 In the lithium–oxygen battery system, for instance, highly 

solvating electrolytes with a high donor number or solvating additives promote the 

nucleation and growth of the crystalline toroidal Li2O2 with a typically large 

particle size by driving the solution-mediated process, whereas electrolytes with 

low donor numbers tend to form film-like discharge products on the surface of the 

electrode.21,22,57 According to the reaction pathways examined by the DFT 

calculations in Figure 2.9c, it is believed that the intermediate energy uphill 

processes in the EC/DMC electrolyte would play an important role in governing 

the nucleation of solid precipitates because of the critical energy barrier, in contrast 

to the case of TEGDME, where there is no energy barrier for the discharge process. 

Because the number of nuclei is generally inversely proportional to the nucleation 

energy barriers, we presumed that a small number of nuclei generated under highly 

solvating EC/DMC electrolyte yield to form the relatively well-grown micron-

sized discharge products of Li2S2O4. Further study must be performed to 
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understand the relationship between the discharge mechanism and the feature of 

the discharge products in the lithium–sulfur dioxide system.   
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Figure 2.11. Reversible chemistry of lithium–sulfur dioxide batteries under 

carbonate-based electrolyte. (a) Galvanostatic discharge/charge profile of 

lithium–sulfur dioxide cell at a current density of 0.2 mA cm-2. (b) GITT analysis 

result of lithium–sulfur dioxide cell. (c) In situ gas analysis during charge process 

of the lithium–sulfur dioxide cell by DEMS. (d) Ex situ XRD spectra of gas-

electrodes for lithium–sulfur dioxide cells. (e) Corresponding ex situ SEM images 

of the gas-electrodes of lithium–sulfur dioxide cells. (scale bar 300 nm (1,6)) 

(scale bar 5 µm (2-5)) 
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Figure 2.12. Reversible SO2 evolution in the electrolyte solutions. (a) Discharge 

profile of closed-type lithium-sulfur dioxide cells by using SO2 saturated EC/DMC 

electrolyte (Red) and charge profile of rebuilt cell with fresh electrolyte and pre-

discharged gas electrode (Blue). (b) UV-vis spectra of the electrolyte solution after 

charging the pre-discharged gas-electrode. 
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Figure 2.13. Comparison of morphological evolution of discharge products under 

carbonate and ether electrolytes. (a) Discharge profiles of lithium–sulfur dioxide 

cells with TEGDME electrolyte. (b) XRD pattern of discharged electrode of lithium–

sulfur dioxide cells. (c–f) SEM images of discharge products on the carbon cathodes 

with (c,d) ether electrolyte and (e,f) carbonate electrolyte. 
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2.2.3.3 Performance of Li–SO2 cells using carbonate electrolytes. 

Having confirmed the reversible Li2S2O4 formation in the carbonate-based 

electrolyte, the electrochemical properties of lithium–sulfur dioxide cells were 

comparatively investigated in EC/DMC and TEGDME electrolytes. Figure 2.14a 

and 2.14b compare the power capability of lithium–sulfur dioxide cells under 

current rates ranging from 0.2 to 5.0 mA cm-2 during discharge. Interestingly, a 

significantly higher rate capability is achievable with the cell employing the 

EC/DMC electrolyte for an identical cell configuration. Although similar discharge 

capacities are delivered at a low current rate of 0.2 mA cm-2 for the two cases, the 

cell with EC/DMC is capable of delivering more than 70% of the initial capacity 

even at 25 times higher current density; in contrast, the cell with TEGDME exhibits 

a negligible capacity at the same current rate. It is speculated that the facile ion 

transport in EC/DMC, which exhibits approximately 4 times higher ionic 

conductivity than TEGDME, as shown in Table 2.3, contributes to the high rate 

capability of the lithium–sulfur dioxide cell. To verify the reversible Li2S2O4 

formation/decomposition in such a high-rate operation, the ex situ analyses were 

performed again under the condition shown in Figure 2.15, which revealed 

identical results regardless of the applied current densities. In Figure 2.14c, the 

cycling properties of lithium–sulfur dioxide cells were comparatively investigated 

at a constant rate of 0.2 mA cm-2. The lithium–sulfur dioxide cell with EC/DMC 

stably operated over 80 cycles, whereas that with the TEGDME electrolyte 

maintained approximately 20 cycles, which is consistent with the previous report.37 
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Moreover, better cycle stability of the cell with EC/DMC was again confirmed 

with the larger capacity utilization of 1,000 mAh/g, as shown in Figure 2.16. Note 

that no special treatment such as nanoscale gas-electrode design or the use of a 

catalyst was applied during the test, under which conventional lithium–oxygen or 

sodium–oxygen batteries would exhibit significantly less cycle stability.58-61 Even 

at a higher current density of 1 mA cm-2, the Li–SO2 cell with EC/DMC could 

sustain a high cycle stability of approximately 50 cycles, as observed in Figure 2.17, 

supporting the idea that simply replacing the electrolyte could markedly enhance 

the cycling properties of lithium–sulfur dioxide cells. The superior cycling 

performance of the lithium–sulfur dioxide cell with EC/DMC is attributed to the 

stability of the carbonate-based electrolyte in the presence of the strongly solvated 

intermediate SO2
- product and the better chemical compatibility with the lithium 

anode, which will be discussed later.  

To examine the practical viability of the lithium–sulfur dioxide cells, it was 

attempted to further enhance the energy efficiency using an appropriate catalyst to 

promote the charging reaction. A soluble catalyst of 5,10-dimethylphenazine 

(DMPZ) was introduced into the electrolyte to decrease the charge polarization, 

which was recently reported as an efficient soluble catalyst for lithium–oxygen 

batteries.62 Figure 2.14d presents the characteristic discharge/charge profiles with 

the DMPZ catalysts for the two lithium–sulfur dioxide cells, which reveals 

substantial reduction in the charge overpotential. The charging voltage, i.e., the 

oxidation potential of DMPZ, in the TEGDME electrolyte was analogous to that 
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in our previous study in lithium–oxygen batteries.62 However, surprisingly, the cell 

with the DMPZ catalyst in the EC/DMC electrolyte could be recharged at a voltage 

plateau of approximately 3.0 V, which is almost identical to the thermodynamic 

potential of Li2S2O4. Thus, the overall polarization of the cells was only 0.2 V, 

resulting in an energy efficiency of ~93.3%, one of the highest values 

accomplished with lithium–gas-type batteries. This finding indicates that DMPZ is 

not only capable of chemically decomposing Li2S2O4, similar to the case of Li2O2 

in lithium–oxygen batteries, but also enables much a higher charging efficiency in 

the carbonate-based electrolyte. To confirm this unexpected dependency of the 

redox potential of DMPZ on the electrolyte species, the cyclic voltammetry test 

and galvanostatic charging in the inert atmosphere were performed again for the 

DMPZ dissolved in each electrolyte with the three-electrode configuration, as 

shown in Figure 2.18. DMPZ consistently exhibited a lower oxidation potential in 

EC/DMC than in TEGDME by approximately 0.2 V. The lower oxidation potential 

of DMPZ under the carbonate electrolyte might be attributed to the strong 

stabilization effect on the charged species of DMPZ+ due to the highly solvating 

environment offered by the carbonate electrolytes. The alternation in the redox 

potential of soluble catalysts depending on the electrolyte media was also observed 

in a recent study, where the redox potential of a LiI catalyst was notably different 

in dimethoxyethane (DME) than in TEGDME.63 Ex situ XRD analysis confirmed 

that the catalytic activity of DMPZ in decomposing Li2S2O4 could be maintained 

even with the lower redox potential of DMPZ in EC/DMC. Figure 2.14e shows 



６６ 

that characteristic diffraction patterns of Li2S2O4 were observed in the discharged 

electrode but disappeared after the charging, indicating the effective decomposition 

of the discharge product. Figure 2.19 further confirms the charging reaction based 

on the decomposition of Li2S2O4 by the DMPZ catalyst through X-ray 

photoelectron spectroscopy (XPS) and in situ gas analysis. Upon charging of the 

cell, the XPS signature of Li2S2O4 gradually fades away, which is accompanied by 

the evolution of sulfur dioxide without any other detectable gases, implying the 

efficient catalytic behavior of DMPZ for lithium–sulfur dioxide cells. 

We further investigated the electrochemical performance of the lithium–

sulfur dioxide cell employing the carbonate electrolyte with the DMPZ catalyst. 

Figure 2.14f shows the power capability of the cell for current densities ranging 

from 0.2 to 5.0 mA cm-2 under a controlled capacity of 0.5 mAh. Although the 

overall polarization systematically increased as the applied current increased, the 

charge processes of all the cells could be performed below 4 V without exceeding 

the voltage limit, demonstrating the fast kinetics of the Li2S2O4 formation and 

decomposition aided by DMPZ. It was observed that the efficient catalytic activity 

of the DMPZ could also lead to a remarkable enhancement in the cycling 

performance of lithium–sulfur dioxide cells. Figure 2.14g shows that the lithium–

sulfur dioxide cells employing EC/DMC with the DMPZ catalyst exhibit superior 

cycle stability of more than 450 cycles of 0.5 mAh, which has rarely been recorded 

for lithium–oxygen batteries with such a large absolute capacity. During 450 

cycles of the lithium–sulfur dioxide cells, the charging overpotential was only 
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slightly increased, maintaining the high energy efficiency of the cell, as observed 

in the inset of Figure 2.14g. This finding indicates that the catalytic activity of 

DMPZ is stably maintained and not consumed during the cell operations. All the 

electrochemical results support the idea that a battery with superior power, 

efficiency, and reversibility is achievable using the lithium–sulfur dioxide 

chemistry by employing a carbonate-based electrolyte and soluble catalyst.   
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Figure 2.14. Electrochemical performance of lithium–sulfur dioxide batteries. 

(a,b) Discharge rate capability of lithium–sulfur dioxide cell: (a) with carbonate 

electrolyte, (b) with ether electrolyte, (c) Cycle properties of lithium–sulfur dioxide 

cells at 0.2 mA cm-2. (d) Electrochemical profiles of lithium–sulfur dioxide cells 

with a soluble catalyst. (e) XRD spectra of discharged and recharged gas-electrode 

of lithium–sulfur dioxide cell with soluble catalyst. (f,g) Electrochemical 

performance of lithium–sulfur dioxide cells with soluble catalyst containing 

carbonate-based electrolyte: (f) Power capability of the cells under limited capacity 

of 0.5 mAh. (g) Cyclability of the cell at 1 mA cm-2. (inset: electrochemical profiles 

during 450 cycles.) 
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Table 2.3. Measured ionic conductivities of carbonate and ether electrolytes with 

and without saturated SO2 gas.  

 
 
  

σ
ion [mS cm-1] Without SO

2
 SO

2
 bubbled Reference 

1 M LiPF
6
 in EC/DMC 11.35 ± 0.37 11.84 ± 0.26 11.7 30 

1 M LiTFSi in TEGDME 2.91 ± 0.04 3.35 ± 0.01 2.72 64 

1 M LiPF
6
 in TEGDME 2.33 ± 0.01 2.70 ± 0.05 1.86 65 
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Figure 2.15. Identification of discharge products and corresponding morphological 

observations. (a) XRD patterns of discharged cathode of lithium–sulfur dioxide cells 

with different current densities. (b–e), Corresponding SEM images of discharged 

cathodes at (b) 3 mA/cm2, (c) 5 mA/cm2, (d) 7.5 mA/cm2, and (e) 10 mA/cm2. The 

high-intensity peaks at 44° correspond to the Ni mesh current collector. Ni mesh was 

used particularly for the rate capability tests to achieve a high electric conductivity 

for the current collecting substrate when applying a high current density. 
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Figure 2.16. Cycle properties under a capacity of 1,000 mAh/g of lithium-sulfur 

dioxide batteries with carbonate-based electrolytes.  
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Figure 2.17. Electrochemical properties of lithium–sulfur dioxide cells with 

carbonate electrolyte at high current density of 1 mA/cm2. (a) Galvanostatic 

discharge/charge profiles of lithium–sulfur dioxide cells at 1 mA/cm2 with voltage 

cut-offs of 2 and 4.5 V. (b) Electrochemical profiles of lithium–sulfur dioxide cells 

at 1 mA/cm2 with capacity cut-off of 500 mAh/g for 5 cycles. (c) Corresponding 

cyclability of lithium–sulfur dioxide cells. 

  



７３ 

 

Figure 2.18. Redox potentials of DMPZ soluble catalyst under different electrolytes. 

(a) Cycle voltammogram of 50 mM DMPZ dissolved in 1 M LiPF6 in EC/DMC at a 

scan rate of 100 mV/s with 3-electrode cell configuration. (working electrode: gold; 

counter electrode: platinum; reference electrode: 0.05 M Ag/AgNO3 in acetonitrile) 

(b) Galvanostatic charge profiles of 50 mM DMPZ dissolved in 1 M LiPF6 in 

EC/DMC and TEGDME at 0.2 mA/cm2 under Ar atmosphere with 2-electrode cell 

configuration. 
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Figure 2.19. Electrochemical activity of DMPZ soluble catalyst in lithium–sulfur 

dioxide cells with carbonate electrolyte. (a) Ex situ XPS results of discharged and 

charged cathodes for lithium–sulfur dioxide cells with DMPZ catalyst. (b) In situ gas 

analysis results of lithium–sulfur dioxide cells with DMPZ catalyst during charge 

through DEMS.  
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2.2.3.4 Discussion 

Despite the impressive cycle properties achieved with the catalyst, the origin 

of the cycle degradation should be understood for further development of lithium–

sulfur dioxide batteries. Given the improved cycle stability of the cell using the 

EC/DMC electrolyte, we attempted to comparatively elucidate how the different 

electrolytes affect the cycling performance by probing the respective degradation 

of the carbon gas-electrode and lithium metal anode in addition to the electrolyte 

stability itself.17,66 After the cell degradation in Figure 2.14c, the cells were 

disassembled and each electrode was collected; the cells were then rebuilt with a 

fresh counter electrode and new electrolyte. Figure 2.20a compares the cycling 

properties of two rebuilt cells based on EC/DMC: one with the cycled lithium 

anode (red) and the other with the cycled gas-electrode (blue). Interestingly, the 

lithium–sulfur dioxide cell with the cycled lithium metal anode could reproduce 

the original cyclability of approximately 80 cycles, which suggests that the lithium 

metal cycled in the EC/DMC electrolyte was not significantly degraded. Note that 

the experiment was performed without DMPZ catalysts; thus, the original cycle 

life was approximately 80 cycles in Figure 2.14c. However, the rebuilt cell with 

the cycled gas-electrode could not cycle stably. This finding clearly indicates that 

the degradation of the gas-electrode is the main cause of the overall cycle 

deterioration in lithium–sulfur dioxide cells using the EC/DMC electrolyte. In 

contrast, the opposite result was observed for the same experiments conducted for 

the cells employing the TEGDME electrolyte, as shown in Figure 2.20b. The 
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rebuilt cell with the cycled gas-electrode exhibited similar cycle properties of 

approximately 20 reversible cycles as the original cell in Figure 2.14c. However, 

the cell with the cycled lithium metal anode could not stably function, as observed 

in Figure 2.20b, indicating that the degraded lithium metal anode was the main 

cause of the rapid cycle deterioration of the lithium–sulfur dioxide cells using the 

TEGDME electrolyte. The severe degradation of lithium metal was again 

supported by an experiment in which the lithium metal anode was replaced 

multiple times, which led to a comparable cycling property as that of the rebuilt 

cell using the cycled gas-electrode, as shown in Figure 2.21. To confirm the higher 

stability of the lithium metal anode in EC/DMC, a lithium metal symmetric cell 

was constructed, as shown in Figure 2.20c. The usage of the carbonate electrolyte 

led to a much smaller polarization and longer operating time than those using the 

ether electrolyte, which is in a good agreement with previous studies.67,68 This 

finding supports the idea that the better cycling properties of the lithium–sulfur 

dioxide cells employing EC/DMC are partly attributable to the highly stable 

lithium metal interfaces because of better lithium metal compatibility with the 

carbonate electrolyte.  

For a more comprehensive understanding of the cycle degradation of 

lithium–sulfur dioxide cells employing the carbonate electrolyte, we examined the 

carbon gas-electrode after the cycling. The XRD patterns in Figure 2.20d reveal 

that after charging, the Li2S2O4 discharge product was hardly detectable; however, 

the characteristic peak of Li2SO4 began to appear appreciably even after 40 cycles, 
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and a substantial amount of Li2SO4 byproducts are detected at the end of the cycles. 

Although the expected discharge product, Li2S2O4, was clearly decomposed in the 

cycled cathodes, it is speculated that the gradual deposition of the insulating 

byproducts on the carbon gas-electrode would have a negative effect on the cycling 

behavior of lithium–sulfur dioxide cells. Moreover, examination of the 

morphology of the cycled gas-electrodes clearly revealed that all the active pores 

of the gas-electrodes were mostly blocked, as observed in Figure 2.20e. Energy-

dispersive X-ray spectroscopy (EDS) analysis revealed that the densely clogged 

pores of the cycled gas-electrode were mainly composed of sulfur and oxygen. The 

gradual deposition of insulating byproducts results in the significant increase of 

total impedances of lithium–sulfur dioxide cells, which is confirmed through the 

electrochemical impedance spectroscopy analyses with cycling the cells as shown 

in Figure 2.22. Consequently, the accumulation of inactive and insulating 

byproducts on the pores of the gas-electrode would restrict the active reaction sites 

and the transport of reactants, including lithium ions and sulfur dioxide gas, finally 

resulting in the cell failures. In previous studies on primary lithium–sulfur dioxide 

batteries, the formation of such byproducts has generally been attributed to the self-

decomposition of Li2S2O4 due to its thermodynamic instability.11,55,69 According to 

the XPS analysis of the surface of the cycled cathodes in Figure 2.20f, four different 

oxidation states of S were detected, including the residual discharge product, 

Li2S2O4, at 166.5 eV. The two major peaks at 168.7 and 169.8 eV are assigned to 

the sulfur from Li2SO3 and Li2SO4, respectively, which is consistent with our 
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previous study37. The presence of the Li2SO4 byproduct corresponds well to the 

XRD result in Figure 2.20d. Note that a trace amount of elemental sulfur (164.1 

eV) was detected in the XPS spectra, which hints at the formation mechanism of 

Li2SO4. According to the self-decomposition of Li2S2O4, which can occur 

spontaneously, as indicated by the DFT calculations in Table 2.4, it should 

accompany the generation of elemental sulfur, i.e., Li2S2O4 (s) → Li2SO4 (s) + S 

(s).  The presence of both elemental sulfur and Li2SO4 in the cycled gas-electrode 

strongly suggests that the self-decomposition of the discharge product can cause 

deterioration of the cycle performance. Conclusively, a strategy for improving the 

stability of discharge products and suppressing the formation of byproducts should 

be further explored to develop a better-performing lithium–sulfur dioxide battery. 
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Figure 2.20. Investigation of cycle degradation of lithium–sulfur dioxide batteries. 

(a,b) Cycle properties of rebuilt cells with cycled gas-electrode or cycled lithium 

anode: (a) under carbonate electrolyte. (b) under ether electrolyte. (c) Lithium 

symmetric cell test at a current density of 1 mA cm-2 with SO2-saturated EC/DMC 

(red) and TEGDME (blue). (d) XRD spectra of gas-electrode of lithium–sulfur 

dioxide cells at the middle and end of cycles. (e) SEM images (scale bar 500 nm) 

of gas-electrode at the end of cycle and elemental mapping by EDS (scale bar 50 

µm). (f) XPS S 2p spectra for gas-electrode after cycling of lithium–sulfur dioxide 

cell.  
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Figure 2.21. Cycle capability of carbon cathodes for lithium–sulfur dioxide cell with 

ether electrolyte. (a) Cycle properties of continuously rebuilt lithium–sulfur dioxide 

cells with fresh Li anode after cycling: (b) XRD pattern of cathodes after cycling of 

lithium–sulfur dioxide cell. 
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Figure 2.22. Electrochemical impedance spectroscopy results of lithium-sulfur 

dioxide cells with cycling. (a) Cyclability of lithium-sulfur dioxide cells under a 

limited capacity of 500 mAh/g. (b) Nyquist plots for the impedances of the cell with 

cycling. 

  



８２ 

Table 2.4. Theoretical reaction energy changes for possible formation pathways of 

byproduct Li2SO4 in lithium–sulfur dioxide cell atmosphere.  

 

  



８３ 

2.2.4 Concluding Remarks 

We successfully employed a conventional carbonate-based electrolyte in 

rechargeable lithium–sulfur dioxide batteries and validated the feasibility of the 

system through combined theoretical and experimental verifications. The 

chemical stability of the carbonate electrolyte against the reduced form of SO2 

allowed lithium–sulfur dioxide cells to be reversibly operated, unlike the 

conventional lithium–oxygen systems. The high ionic conductivity and chemical 

compatibility with the lithium metal anode led to a remarkable improvement of 

the lithium–sulfur dioxide cell performances, including the power capability and 

cycle stability. Furthermore, the application of a DMPZ catalyst yielded one of 

the highest efficiencies (~93.3%) and reversibilities (450 cycles) reported for 

metal–gas systems to date. Toward the realization of a practical rechargeable 

lithium–sulfur dioxide battery system, several issues still need to be addressed, 

including the lack of fundamental understanding and safety issues regarding the 

use of a toxic gas. In this regards, more quantifiable characterization techniques 

inclusive of pressure monitoring70,71 and chemical titration methodology22,72, 

currently introduced in the research of metal-air batteries, should be considered for 

the elucidation of precise gas efficiency or side-reaction mechanism of the 

lithium–sulfur dioxide chemistry in following studies. In addition, taking 

advantage of the commercialized primary lithium–sulfur dioxide battery 

technology, closed-type pressurized systems could be one of the practically 
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approachable models for the safe lithium–sulfur dioxide secondary battery with 

potential merits of the enhanced operation voltage and the reversibility obtained 

in our preliminary experiments as described in Figure 2.23 and Supplementary 

Note 2.1. Nevertheless, this study offers insights to the metal–air battery 

community regarding the importance of the electrolyte and its compatibility with 

the lithium or sodium metal electrode considering that the exceptionally high 

theoretical capacity of lithium/sodium–oxygen batteries is partly attributed to the 

use of a metallic lithium or sodium electrode. Thus, more studies should focus on 

how to rationally control the interaction between the electrolyte and metal anodes 

in metal–oxygen batteries. We hope that this report will pave the way for a new 

field of lithium–sulfur dioxide batteries as a promising next-generation battery 

system and spur vigorous discussions in the search for a robust electrolyte in the 

metal–air battery community.  
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Figure 2.23. Electrochemical properties of pressurized lithium-sulfur dioxide cells. 

(a) Discharge profiles for the 1st cycle of the ambient pressure cell and pressurized 

cell. (b) GITT analysis result of pressurized cells. (c) Cyclability of the ambient 

pressure cells and pressurized cells.  
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Supplementary Note 2.1  

We constructed the lithium–sulfur dioxide cells confined with high-pressure 

sulfur dioxide gas and examined the electrochemical performances of the cell by 

means of full discharge, GITT, and cycle tests. The cell with the pressure of 2.5 bar 

was investigated, which is the maximum pressure achievable in our lab-scale 

pressurized cell setup. Excessive pressurization with sulfur dioxide was avoided due 

to the safety concerns in this study. Figure 2.2.15a presents the discharge profile for 

the 1st cycle of the pressurized cell, showing that almost identical discharge capacity 

and voltage were obtained to those of the ambient pressure cell. The invariance of 

the discharge capacity regardless of the gas pressure is attributed to fact that the 

deliverable capacities of the current lithium–sulfur dioxide cells are limited by the 

gas-electrode surface area where the full accommodation of discharge products 

induces the rapid increase in the overpotential. In order to more closely examine the 

reaction voltage of the pressurized cells, GITT analysis was carried out to measure 

the quasi-equilibrium potentials of the cells. As shown in Figure 2.2.15b, a slightly 

increased open circuit potential of 3.2 V (vs. Li/Li+) was obtained in the pressurized 

cell compared with the value of 3.0 V (vs. Li/Li+) for ambient pressure cell. It is quite 

reasonable in thermodynamic aspects that the high activity of the gas from the 

increased pressure might result in a more negative value of the Gibbs free energy 

change of the total reaction, leading to an increase in the open-circuit potential of the 

pressurized cells. However, the simple estimation by using Nernst equation (∆E =
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𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛
𝑙𝑙𝑙𝑙 𝑎𝑎𝑆𝑆𝑆𝑆2 = 0.0235 V, where n equals to the number of electron transferred, 𝐹𝐹 

equals to Faraday constant, 𝑅𝑅 equals to gas constant, 𝑇𝑇 equals to the temperature, 

and 𝑎𝑎 equals to the activity) shows only 0.02V increase and cannot fully explain 

the increase of about 0.2 V, which has to be further studied with the careful 

consideration of total energies of other reactants and products involved in the 

reactions.  

Additionally, we examined the cyclability of the pressurized lithium–sulfur 

dioxide cells under a limited capacity mode in Figure 2.2.15c. Interestingly, the 

pressurized cell could exhibit better cycling behavior about 140 times compared to 

the number of cycles achievable in the ambient-pressure cell. Considering that the 

thermodynamic stability of Li2S2O4 discharge products have a vital role in the 

formation and accumulation of inactive byproducts including Li2SO4 as discussed in 

the manuscript, it is our speculation that the high pressure atmosphere might have a 

positive impact on the thermodynamic stability of Li2S2O4, probably leading to the 

enhancement of cycle stability by suppressing the self-decomposition of Li2S2O4. 

Even though the precise origin of the improved electrochemical properties is not 

fully addressed at the current stage, it has to be further investigated in the following 

study, and the pressure control of the cell might be one of the possible strategies 

toward the highly reversible lithium–sulfur dioxide batteries.   
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Chapter 3. Developing highly durable Na-O2 battery 

3.1 Chemical and electrochemical behaviors of NaO2 in Na–O2 

batteries 

(The essence of this chapter has been published in Nature Communications. 

Reproduced with permission from [Kim, J.† and Park, H.† et al., Nat. Commun. 7, 

10670 (2016)] Copyright (2016) Nature Publishing Group) 

3.1.1 Research Background 

To address the increasing use of renewable energy and launch of electric 

vehicles, the need for rechargeable batteries with high energy densities has been 

growing more rapidly than ever before1,2. Among the available battery chemistries, 

metal–oxygen systems offer the highest energy density with the largest theoretical 

capacities. Unlike conventional lithium-ion batteries (LIBs), the direct reaction 

between oxygen and light metals such as lithium and sodium in metal–oxygen 

systems circumvents the need for a heavy transition metal redox couple in their 

operation, thereby making a high gravimetric energy density achievable3-7. The most 

intensively studied metal–oxygen system to date is the lithium–oxygen (Li–O2) 

battery, which shares a similar lithium chemistry with LIBs. However, this system 

suffers from poor cycle stability and efficiency, which has retarded the feasibility of 

its use in practical systems8,9. In particular, the large charge overpotential over 1 V, 
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the main reason for the low efficiency, also accelerates the degradation of the 

electrode and electrolyte9. As an alternative, Na has been introduced to replace Li in 

Li–O2 batteries with a few important merits10. Despite the reduction of the energy 

density resulting from the lower redox potential of Na/Na+, Na resources are readily 

available, less expensive than Li, and can easily replace Li in the battery chemistry. 

It has been reported that the redox reactions in the Na–O2 battery result in an 

extremely low charge overpotential (~0.2 V) despite involving the formation of 

micrometer-sized sodium superoxide (NaO2) cubic crystallites11-14. This unique 

phenomenon supports the idea that this system is a promising alternative not only in 

terms of the cost of materials but also regarding the potential practical performance 

advantages. 

Notably, however, the reactions of Na–O2 cells appear to be more diverse 

than those of Li–O2 cells. Contrary to the initial report of NaO2 discharge products, 

some recent works could not reproduce either the formation of the discharge product 

NaO2 or the low charge overpotential15-17. It was reported that sodium peroxide 

(Na2O2)15-17 or sodium peroxide dihydrate (Na2O2·2H2O)18,19 were formed instead. 

In addition, these cells exhibited high overpotential during charge, similar to that 

observed in the Li–O2 system. Many groups have attempted to determine the reasons 

for these discrepancies; however, to date, the main cause of the divergence of 

reactions has not been identified. Janek et al. investigated the effect of different 

carbon electrodes; Guo et al. and Shao-Horn et al. addressed this issue but observed 

no critical differences among the cases12,20,21. 
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In this work, we demonstrate the interplay of the diverse reactions in Na–

O2 batteries involving a series of electrochemical and chemical reactions as a 

function of time. Under systematic control of the operating conditions, we observe 

that the galvanostatic charge/discharge profiles are sensitively affected by the 

conditions and durations of the electrochemical operations. It is also revealed that 

the electrochemically formed NaO2 is unstable and degrades into Na2O2·2H2O in the 

absence of an applied current. The spontaneous dissolution and ionization of NaO2 

liberates the free O2
− in the electrolyte and promotes side reactions involving the 

formation of Na2O2·2H2O. Based on these observations, we propose reaction 

mechanisms of Na–O2 batteries under various operating conditions. This report is 

the first to reveal the relationships among the different discharge products observed 

in Na–O2 batteries, which broadens our understanding of the electrochemical and 

chemical reactions in Na–O2 batteries. Furthermore, these discussions may offer 

insight and guidance to the metal–air battery community in terms of regulating the 

kinetics of the intertwined reactions. 
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3.1.2 Experimental Method 

3.1.2.1 Cell assembly and galvanostatic cycling of Na–O2 cells 

The carbon cathode was prepared by casting Ketjen Black carbon paste and 

polytetrafluoroethylene (PTFE) (60 wt% emersion in water, Sigma-Aldrich) with a 

mass ratio of 9:1 in a solution of isopropanol (IPA: >99.7%, Sigma-Aldrich) and N-

methyl-2-pyrrolidone (NMP: 99.5%, anhydrous, Sigma-Aldrich) with a volume ratio 

of 1:1 on Ni mesh current collectors. The carbon-coated Ni mesh was dried at 120 °C 

and heated at 400 °C for 4 h in Ar to completely remove any residual H2O impurities. 

All the procedures described below were performed in an Ar-filled glove 

box (O2 level < 0.5 ppm, H2O level < 0.5 ppm). The Na–O2 cells were assembled as 

a Swagelok-type cell with stacking of the Na metal anode, electrolyte-soaked 

separators, and carbon cathode, which was punched with a ½-inch diameter. The Na 

metal anode was carefully prepared by milling dry Na metal chunks (ACS Reagent, 

Sigma-Aldrich) after removing the contaminated surfaces. The electrolyte was 

prepared with diethylene glycol dimethyl ether (DEGDME, anhydrous, 99.5%, 

Sigma-Aldrich), which contains 0.5 M NaCF3SO3 (98%, Sigma-Aldrich). The 

solvent was dried using 3-Å molecular sieves for over one week, and the salt was 

also kept in a vacuum oven at 180 °C for the same time before use. The final water 

content in the electrolyte was less than 10 ppm according to a Karl-Fisher titration 

measurement. The amount of electrolyte used for the cell was 200 μL. Two sheets 

of Celgard 2400 were used as separators. Electrochemical battery tests of the Na–O2 
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cells were conducted using a potentio-galvanostat (WonA Tech, WBCS 3000, 

Korea). All the cells were relaxed under 770 torr of O2 pressure for 10 min before 

the tests. After being saturated with O2 gas, the cells were operated in the closed state 

with a limited capacity of 1 mAh, lower voltage cutoff of 1.6 V, and upper voltage 

cutoff of 4.2 V. Special protocol based on a pulsed current was applied during the 

charge to avoid dendritic failure of the Na metal anode. The on/off time ratio of the 

pulse charge was 1:4 (applying current for 0.5 s and relaxing for 2 s). More details 

about our charge protocol are provided in Figure 3.1 and following discussions in 

Supplementary Note 3.1. 
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Figure 3.1. SEM images and photographs of Na dendrites after the cycling of Na–

O2 cells. (a–c) SEM images of Na dendrites after the cycling of Na–O2 cells using 

direct currents; (d–f) pulse currents during the charge process. (g) Photographs of 

Na dendrites on the separators after cycling; (h) Na anode with the direct current. 

(i) surface of Na anode for the pulsed current.  



１０５ 

Supplementary Note 3.1  

In our galvanostatic cycling experiments of Na–O2 cells, the dendritic 

failure of the Na metal anode was frequently observed during the charge process. 

The SEM images of the separators collected after cycling with the direct currents are 

presented in Figure. 3.1a–c, which reveal that the Na metal clogged and penetrated 

the pores of the separators, resulting in the dendritic growth of the Na metal and 

failure of the cells. The Na dendrites were visually inspected, as shown in the 

photographs of the separators and anodes in Figure. 3.1g. These dendrites were 

critically damaged during the cycling process, resulting in short circuits and potential 

failures. To suppress and avoid the dendritic growth of Na metal, we applied special 

operating protocols based on pulse-charging, which is a common methodology in 

electroplating and deposition. Under these conditions, the stable electrochemical 

cycling of Na–O2 cells without any voltage fluctuations or sudden drops was possible. 

The SEM images in Figure. 3.1d–f also demonstrate the absence of dendritic Na 

metal penetrating or clogging the pores of the separators. In addition, the upper 

surface of the pulse-charged Na metal in Figure. 3.1i is seemingly much cleaner than 

that of the direct-current-charged Na metal. 
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3.1.2.2 Characterization of Na–O2 cells 

The discharged cathodes after the different rest times were collected from 

disassembled Na–O2 cells and washed with acetonitrile (anhydrous, 99.8%, Sigma-

Aldrich) in a glove box to remove any residual electrolyte. X-ray diffraction (XRD) 

spectra of the cathodes were obtained using a Bruker D2-Phaser (Cu Kα λ=1.5406 

Å) with the aid of a specially designed air-tight holder to prevent outer atmospheric 

contamination. Raman spectra were obtained using a Horiba Jobin-Yvon LabRam 

Aramis spectrometer (the 514 nm line of an Ar-ion laser was used as the excitation 

source). The scattered light of the Raman signal was collected in a backscattering 

geometry using the x50 microscope objective lens. Field-emission scanning electron 

microscopy (FE-SEM, MERLIN Compact, ZEISS, Germany) was used for the 

morphological observations after Pt coating. For electron spin resonance (ESR) 

characterization, the collected powder from the discharged cathodes after rinsing to 

remove the residual used electrolytes was soaked in fresh electrolyte. After 

immersing the powdery discharged cathodes, the ESR signal of the electrolytes was 

measured at room temperature using a JEOL JES-TE200 ESR spectrometer every 

10 min for 12 h using a liquid quartz-cell. The microwave X-band frequency was 

9.42 GHz at 1-mW power. 
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3.1.2.3 Theoretical calculations of solvation energy 

First-principles calculations were performed using the spin-polarized 

generalized gradient approximation (GGA). A continuum solvation model 

(VASPsol22,23 code) was used to evaluate the solvation energy of the alkali-metal 

superoxide/peroxide (MxO2, M: Li, Na, x = 1 or 2). The following equations were 

used considering both the (1) molecular and (2) ionized solvated states: 

∆Esol, mol = Esolvated(MxO2) - Ebulk(MxO2)    (1) 

∆Esol, ion = x∙Esolvated�M+� + Esolvated(O2
x–) - Ebulk(MxO2),  (2) 

where Esolvated(MxO2) and Ebulk(MxO2) are the total energies of the solvated and 

bulk MxO2 per formula unit, respectively. The solvated species (ions or molecules) 

were placed in a 13 Å × 13 Å × 13 Å cell as an isolated species. We used the plane-

wave basis with an energy cut-off of 550 eV and a Monkhorst–Pack 2×2×2 k-point 

mesh. Based on previous reports24,25 that stated that the solvation entropy term (TS) 

of polar molecules and ions in the standard state is less than 5% of the enthalpy term 

(H), we neglected the entropy effect of the solvation in these calculations. 
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3.1.3 Results and Discussions 

3.1.3.1 Electrochemical profile of Na–O2 batteries 

To address the previous conflicting results on the discharge products and 

overpotentials of Na–O2 cells, we carefully assessed the effects of operating 

parameters on the resulting electrochemical profiles. We observed that the 

charge/discharge profiles were most sensitively affected by the applied current and 

rest time between the discharge and charge, which was analogous to the report by 

Yadegari et al. as a function of discharge current or limited capacities19. Figure 3.2 

presents and compares the electrochemical profiles obtained under various 

conditions. Although the discharge profiles are similar, with a single plateau at ~2.1 

V, there are roughly three different charging plateaus observed at (i) ~2.5 V, (ii) ~3.0 

V, and (iii) 3.8 V, which agree with recent reports under certain settings19,20. 

However, the relative lengths of each plateau markedly vary under differing 

operating conditions. For the cases of controlled discharge currents followed by a 

constant current charging in Figure 3.2a, it was observed that the length of the lower 

plateau (~2.5 V) in the charge profiles was reduced as the applied discharge current 

decreased from 0.5 to 0.02 mA. However, the lengths of the plateaus at higher 

voltages, i.e., ~3.0 and 3.8 V, were substantially increased, resulting in an overall 

larger overpotential. Similar behaviors were observed in Figure 3.2b when varying 

the charge currents after a constant current discharge. With the lower applied charge 

currents, the cell exhibited a higher charging overpotential with shortened plateau 
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length at 2.5 V. This result contrasts with the general observation that slow 

charging/discharging of electrochemical cells results in a voltage close to the 

equilibrium potential, thereby resulting in smaller overpotentials. In addition, this 

result strongly indicates that the different discharge products might undergo the 

charging process at each case. Notably, the shapes of the electrochemical charge 

profiles provide important clues to determine the discharge products of Na–O2 

reactions19,26. Even though the discharge products should be identical for the cases 

of the same protocol of discharge, each charge profile was distinct with different 

charge currents. This finding implies that the initial discharge products are gradually 

transformed into other phases during the charge process via time-dependent 

reactions. To verify whether this transformation occurs via an electrochemical or 

chemical reaction, we also controlled the rest time between the discharge and charge 

processes. As observed in Figure 3.2c, the lowest voltage region in the charge 

profiles systematically decreases upon increasing the rest time from 0 to 12 h. The 

change in the electrochemical profile in the absence of the applied current clearly 

indicates that the time-dependent chemical reactions occurred during the rest period, 

affecting the subsequent charging. This behavior was also confirmed in similar tests 

for the higher charging currents with the resting time after the discharge, which 

revealed the growth of the charge polarizations upon increasing the rest time (Figure 

3.3). 

The time-dependent chemical reactions can be more clearly visualized by 

plotting all the voltage profiles as a function of the time. Fig. 3.2d–j illustrate the 
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voltage evolution of each cell after the completion of the discharge at different 

operating conditions. The first inflection points of the voltage profiles at charge 

(indicated with arrows) occur at approximately 10 h regardless of the rest or charge 

protocols. This result indicates that a specific time of ~10 h is required before 

observing a change of the profile, which hints at the kinetics of the chemical 

reactions. 
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Figure 3.2. Electrochemical charge/discharge profiles of Na–O2 cells under various 

operating conditions. (a) Discharge currents of 0.02, 0.1, and 0.5 mA; (b) rest times 

of 0, 4, 8, and 12 h; and (c) charge currents of 0.02, 0.1, and 0.5 mA. All the cells 

utilized a limited capacity of 1.0 mAh. (d–j) Representations of voltage profiles as a 

function of time corresponding to (a–c). The shaded area indicates that range of the 

first points of the polarized charge potentials. 
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Figure 3.3. Electrochemical characteristics of Na–O2 cells under high charge 

currents combined with rest time.  
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3.1.3.2 Time-resolved characterization of discharge products 

To confirm the time-dependent phase transformation of the discharge 

products via chemical reaction in Na–O2 cells, we characterized the discharge 

products in air electrodes as a function of the rest time. The highly crystalline NaO2 

was observed directly after the discharge with no other phases, as demonstrated in 

the X-ray diffraction (XRD) spectra (Figure 3.4a–b)11. However, after being aged 

for several hours, the NaO2 peak slowly diminished, whereas the characteristic peak 

of Na2O2·2H2O began to appear and grew. After 12 h of resting, the initial discharge 

product was completely transformed into Na2O2·2H2O. It should be noted that 

Na2O2·2H2O has often been regarded as a main discharge product in previous reports 

of Na–O2 batteries18-20. Recently, Ortiz-Vitoriano et al. reported that NaO2 could 

convert to Na2O2·2H2O upon exposure to the ambient air during the characterization 

at room temperature21. However, our data show that such transformation occurs in 

the electrochemical cells by the intrinsic dissolving characteristics of NaO2 in the 

electrolyte even without the exposure to the ambient atmosphere. Remarkably, the 

time taken for the discharge product to completely transform into Na2O2·2H2O 

coincides with the timeline of Figure 3.2d–j, which shows the inflection of the 

voltage rising after approximately 10 h. When we analyzed the phases of the 

discharge products as a function of the applied discharge currents (Figure 3.5), it was 

also observed that the NaO2/Na2O2·2H2O ratio decreased with the lower operating 
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current, which is consistent with the time-dependent transformation of the discharge 

products. 

Raman spectroscopy results confirmed that the initial NaO2 discharge 

products gradually transformed into Na2O2∙2H2O with resting. In Figure 3.4c, the 

two distinct peaks of NaO2 and Na2O2·2H2O are detected along with the 

characteristic bands (D/G) of the carbon electrode. The Raman signals at 1156 and 

1136 cm−1 are attributed to the O–O stretch bonding in NaO2 and Na2O2·2H2O, 

respectively21. The systematic change in the relative ratios of NaO2 and Na2O2·2H2O 

with time is clearly illustrated in Figure 3.4d, which agrees well with the results in 

Figure 3.4b. The phase transition of NaO2 to proton-containing Na2O2·2H2O 

indicates a source of protons in the electrochemical cell. Considering the low water 

content in the electrolyte used for the cell (< ~5 ppm), which is insufficient to form 

the phase21,27,28, the protons are likely delivered from other sources such as the 

electrolyte solvent. As we could expect, the rechargeability of Na-O2 cell was better 

for the highly biased electrochemical conditions coupled with the low polarized 

charge profile (Figure 3.6), which is attributed to the electrochemical formation and 

decomposition of NaO2 as shown in Figure 3.7. However, the electrochemical 

reversibility with the 3-steped charge profile shown from Na2O2·2H2O was relatively 

worse compared to the former conditions. The proposed transformation mechanism 

will be discussed in detail later. 
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Figure 3.4. Time-resolved characterization showing the phase transitions of the 

discharge products of the Na–O2 cells. (a,b) XRD spectra of the discharged cathodes 

of Na–O2 batteries with rest times of 0, 4, 8, and 12 h. (c,d) Raman spectra of the 

discharged cathodes of Na–O2 batteries with rest times of 0, 4, 8, and 12 h. 
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Figure 3.5. XRD spectra of the discharged cathodes of Na–O2 cells for different 

discharge currents with the full discharge capacity of 4 mAh. XRD analysis clearly 

demonstrates that a larger amount of NaO2 transformed into Na2O2∙2H2O during the 

discharge at the relatively smaller current of 0.02 mA because of the longer time 

exposure to the electrolyte. 
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Figure 3.6. Electrochemical characteristics of Na–O2 cells with the different voltage 

profiles over several cycles. (a) Cycling up to 5 cycles with a charge current of 0.1 

mA involving clear 3-step charge profiles. (b) Cycling up to 12 cycles with the 

charge current of 0.5 mA involving the lower flat charge profiles. 
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Figure 3.7. XRD analysis of the formation and decomposition of NaO2 after the 

discharge and charge. 
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3.1.3.3 Morphological change of discharge products over time 

To visualize the transition process, we examined the morphologies of the 

discharge products at different rest times within 12 h. In Figure 3.8a, well-defined 

micron-sized cubic NaO2 was observed immediately after the discharge, which 

agrees with the observation of Hartmann et al.11 However, the edges of the cubes 

became significantly dull, and the overall shapes of the cubes obtained were 

smudged during the rest period (Figure 3.8b–c). At the end of the rest period, the 

cubic crystallites completely disappeared, and rod-shaped microparticles began to 

appear, which resemble the Na2O2·2H2O in a previous report19. This morphological 

change suggests the disappearance of NaO2 and the subsequent appearance of 

Na2O2·2H2O in the cell during the rest period. Moreover, this finding implies that 

the transformation does not occur via a conventional solid-state or interfacial 

reaction between NaO2 and the electrolyte to form Na2O2·2H2O, which would not 

involve significant morphological change. Rather, it is likely to be a solution-

mediated process through dissolution and nucleation29-31. 
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Figure 3.8. Time-resolved examinations of the morphology of discharge products 

on the cathodes of Na–O2 cells. (a-d) Morphology of the discharge products of Na–

O2 cells (scale bar = 10 μm). (e-h) Corresponding magnified SEM micrographs 

(scale bar, 5 μm); (a,e) as-discharged, (b,f) 4-h rest after discharge, (c,g) 8-h rest 

after discharge, and (d,h) 12-h rest after discharge. 
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3.1.3.4 Dissolution and ionization of NaO2 

We investigated the possibility of the dissolution of the solid NaO2 phase 

in the electrolyte using electron spin resonance (ESR) spectroscopy, which is useful 

for detecting the magnetic responses of the unpaired electrons in radicals such as 

O2
−32. Surprisingly, as observed in Figure 3.9a, with the simple immersion of the pre-

discharged cathodes, the ESR signal evolved within 10 min from the fresh electrolyte, 

indicating the presence of O2
−. To avoid any effect of the remaining oxygen from the 

disassembled Na–O2 cells, the pre-discharged cathodes were washed with fresh 

electrolyte before the measurement, which led to an identical result. The calculated 

g-value of 2.0023 for the observed ESR signal corresponds well with the theoretical 

value of the unpaired electron in free O2
−33. The solubility of NaO2 in the electrolyte 

was roughly estimated about 187 mM, which is in the similar order with the report 

by Schechter et al.34, but has a relatively large discrepancy to the report by Hartmann 

et al35. This discrepancy might be mainly due to the additional chemical reactions 

involving the precipitation of solid Na2O2·2H2O. The detection of O2
− indicates that 

the NaO2 is soluble in the ether-based electrolytes, which was also expected from 

the literatures with the electrochemical determinations21,28,35. Furthermore, this 

behavior is analogous to highly soluble LiO2 in the solvatable conditions of Li–O2 

batteries27,36. More importantly, the dissolution can immediately lead to the 

ionization of NaO2, liberating O2
−, the consequences of which will be discussed later. 
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Figure 3.9b shows that the peak-widths of the ESR signals increased 

slightly with time. The broadening indicates the energy exchange of the spin with 

the local environments via spin–spin relaxation or spin–lattice relaxation32. This 

interaction supports the time-dependent chemical reactions associated with the 

dissolved O2
− with its neighboring electrolyte solvent. The intensity of the O2

− signal 

is the highest approximately 20 min after the immersion and exponentially decreases 

over time, indicating the instability of O2
− in the electrolyte37. From this behavior, 

we could derive that it was a pseudo-first order reaction which mainly relates with 

the concentration of O2
−. Based on the exponential fitting of the relative intensity of 

ESR signals, the pseudo-first order rate constant of H+-abstraction was obtained as 

about k´ ≈ 0.560, and its corresponding half-life was estimated as about t1/2 = ln (2) 

/ k´ ≈ 1.24 h, the detailed derivation is in Supplementary Note 3.2. Figure 3.9c reveals, 

however, that the time-dependent decay of the intensity is relatively sluggish 

compared with the intrinsic lifetime of normal O2
−. Typically, the half-life of O2

− is 

approximately 1–15 min because of its high reactivity and instability38. The 

abnormally long half-life in the electrolyte (~1.24 h) in our case is believed to occur 

because O2
− is continuously generated with the dissolution of NaO2. The ESR signal 

completely vanished after approximately 8 h, which is slightly faster than the time 

required for the formation of Na2O2·2H2O in Figure 3.4. Despite the evolution of O2
−, 

the overall signal decay might be induced from the relatively dominant H+-

abstraction due to the reactivity of O2
−. This gap in the kinetics might originate from 

the time required to form the Na2O2·2H2O phase from the O2
−. 
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To understand the dissolution and ionization behavior of NaO2, the 

solvation energies of various alkali metal superoxides and peroxides were calculated 

for comparison using first-principle calculations with the series of dielectric constant 

from 7~30. Figure 3.9d reveals that generally, the superoxide exhibits a lower 

solvation energy than the peroxide for both lithium and sodium compounds. This 

result is consistent with our result of NaO2 dissolution and the recent experimental 

findings for Li–O2 batteries, which indicated that LiO2 is found mostly as soluble 

intermediates in the electrolyte in contrast to the solid phase of Li2O2
27,36. In addition, 

it is notable that the solvation energy of the sodium phases was significantly lower 

than that of the lithium phases, which is attributed to the weaker Lewis acidity of the 

Na cation compared with that of the Li cation in the polar solvent39,40. However, for 

the solvents with substantially lower dielectric constant (ε = ~ 7), the dissolution is 

unfavorable even in NaO2. Molecular dissolution energies of NaO2 in model solvents 

are ~0.6 eV, which roughly corresponds to 1 molecule dissolution among 1010 

formula units of NaO2. On the other hand, it markedly diminishes to 0.17 eV (1 

molecule among 103 formula units of NaO2) in ε = 30. Note that for the low dielectric 

constant solvents, dielectric constant of the solution sensitively increases with 

containing higher salt concentration, which can result in higher solution dielectric 

constant than that of the pure solvent41. Therefore, it is expected that the dissolution 

of NaO2 can occur when salts are present in the electrolyte, which is consistent with 

the observation of O2
− in the ESR analysis. It is noted that even with the dissolving 

characteristics of NaO2, the crystallization of NaO2 is possible in the normal 
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discharging conditions with the supersaturation of localized reactants such as Na+ 

and O2
− 21,35,42,43. In the other case where the supply of the reactants such as Na+ are 

limited, for example, in the absence of the applied voltage, the dissolution and 

ionization might dominate giving rise to the formation of Na2O2·2H2O as a discharge 

product. 
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Figure 3.9. ESR analysis and theoretical calculations of the dissolution and 

ionization of NaO2 into the electrolyte. (a) Time-dependent ESR measurements for 

the fresh electrolytes (0.5 M NaCF3SO3 in DEGDME) with soaking of the pre-

discharged cathode without any aging. (b) Maximum, minimum, and average values 

of ESR signals as a function of time. (c) Exponential decay of ESR signals and the 

common trend line of O2
−. (d) Calculations of the solvation energy for several alkali-

metal superoxides and peroxides with the various dielectric constants (ε = 7~30).  
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Supplementary Note 3.2  

In principle, the ESR reaction in Figure 3.9a–c was a second-order reaction 

which is determined by the concentrations of two reactants such as O2
− and the 

electrolyte solvent. As we investigated, the electrolyte solvent might be decomposed 

by nucleophilic attack of O2
−. However, the concentrations of both reactants 

differentiated simultaneously, so it is rather challenging to exactly determine the 

reaction rate of the second-order. Nevertheless, the concentration of electrolyte 

solvent molecule was relatively excessive enough compared to that of O2
−, so we 

could approximately ignore the concentration difference of solvent. Then, we can 

estimate this reaction as a pseudo-first order reaction. The reaction rate of H+-

abstraction can be expressed as 

r = −d[HO2]/dt = k[H(HA)
+][O2

−] = k´[O2
−], k´ = k[H(HA)

+] 

Based on the exponential fitting of the relative intensity of ESR signals, the pseudo-

first order rate constant of H+-abstraction was obtained as about k´ ≈ 0.560, and its 

corresponding half-life was estimated as about t1/2 = ln (2) / k´ ≈ 1.24 h. 
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3.1.3.5 Proposed mechanism of Na–O2 batteries 

Based on the previous reports and our new findings, we propose a 

mechanism that describes the electrochemical and chemical reactions in Na–O2 

systems in Figure 3.10. The well-established discharge process11 can be illustrated 

with the reduction of an O2 molecule into O2
−, which reacts with Na+ to form NaO2 

(Reaction 1), and the charge process is the reverse reaction (Reaction 2). After or 

during the discharge, the NaO2 is prone to dissolution and ionization into the 

electrolyte based on the solvating energy (ΔGsol) in the solvent (Reaction 3)36. The 

dissolution of NaO2 generates O2
−, which can degrade the surrounding molecules 

because of its chemical instability. Typically, the liberated O2
− is a strong reagent for 

the abstraction of H+ from the electrolyte solvents (Reaction 4)9, and the degree of 

H+ abstraction44,45 is determined by the acid-dissociation constant (pKa) of the 

solvent. Some hydroperoxyl radicals (HO2) might be formed during this process, 

resulting in the nucleophilic attack of the H+-lost solvent (Reaction 5)46. However, 

the evolution of HO2 can be helpful to promote the solution-mediated 

discharge/charge process as recently reported by Xia et al.28. Nevertheless, in a 

circumstance where the dissolution/ionization of NaO2 is dominant, the liberation of 

O2
− is overwhelmingly larger than a possible HO2 formation inducing the H+-

abstraction from the neighboring electrolyte solvent. Meanwhile, the solvent 

undergoes oxidative decompositions to produce byproducts such as carbon dioxide 

(CO2), water (H2O), and hydroxyl anions (OH−) (Reaction 6)9. It is also possible that 
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the coupling of HO2 leads to disproportionation into hydrogen peroxide (H2O2) and 

O2 (Reaction 7)47. In the presence of both Na+ and OH−, which is effectively the 

dissolution state of sodium hydroxide (NaOH), a solid crystallite of NaOH can 

precipitate with a higher concentration of OH− produced. Further reaction between 

NaOH and H2O2 from Reaction 7 leads to the formation of Na2O2·2H2O via peroxo-

hydroxylation, whose reverse reaction is well known (Reaction 8)48. In order to 

support our proposed reaction mechanism, we chose several intermediate reactions 

which should be verified according to the reaction model. Figure 3.11 and Figure 

3.12 demonstrate that O2
− plays an important role after the dissolution of NaO2 in 

converting the discharge product to Na2O2·2H2O via degradation of the electrolyte 

involving OH− and H2O2. These identifications strongly support the proposed 

mechanism of competing electrochemical and following chemical reactions in Na–

O2 batteries. The detailed discussions are provided in Supplementary Note 3.3. The 

reaction equations are summarized below: 

 

Discharge/Charge:  Na+ + O2 + e− ↔ NaO2          (1) 

Dissolution/Ionization:  NaO2 → Na+ + O2
−       (2) 

Proton abstraction:  HA + O2
− → A− + HO2       (3) 

Disproportionation:  2 HO2 → H2O2 + O2       (4) 

Oxidative decomposition:  A− + HO2 → CO2, H2O, OH−      (5) 

Peroxo-hydroxylation:  2 Na+ + 2 OH− + H2O2 → Na2O2·2H2O   (6) 
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It is noteworthy that a similar behavior has been recently reported for 

reactions in Li–O2 batteries. The solvating environment was demonstrated to alter 

the stability of the intermediates, such as a lithium superoxide (LiO2), thus affecting 

the overall reaction paths27,36. LiO2 is a precedent phase with the direct reaction of a 

Li cation and superoxide anion (O2
−), which readily decomposes into lithium 

peroxide (Li2O2) via either an electrochemical surface reaction or 

disproportionation27,36. Although LiO2 is known to be unstable49,50, it was recently 

demonstrated that LiO2 might be dissolved into the electrolyte and aid in the 

formation of the toroidal Li2O2 via a solution reaction under highly solvating 

conditions27. NaO2 shares this dissolving nature with LiO2 even though the 

thermodynamic stability of NaO2 warrants its formation as a discharge product. The 

significant dissolution of NaO2 supports the conclusion that the dominant reaction in 

Na–O2 batteries relies on the solution-mediated reactions of nucleation and growth 

of NaO2
21,28,35 and implies that the capacities and morphology of the reaction 

products would be greatly affected by the energetics of NaO2 under various 

conditions (such as different electrolytes and current rates). This is also 

supplemented with the recently reported observations21,35 and operating mechanism28 

in terms of the various states of electrochemical and chemical reactions. 
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Figure 3.10. Schematic of the proposed mechanism illustrating the electrochemical 

and chemical reactions under various operating conditions. For the electrochemical 

reaction, NaO2 is formed and decomposed during discharge/charge (Reaction 1, 2). 

For the chemical reaction, NaO2 is dissolved and ionized into the electrolyte 

(Reaction 3), which promotes the undesired degradation of the electrolyte (Reaction 

4–6). Na2O2·2H2O is formed during the subsequent chemical reactions (Reactions 7, 

8). 
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Figure 3.11. (a) Symmetric cell configuration to generate O2
−. The electrolyte was 

used with 10 mM TBAClO4 in DEGDME and the electrode was used with 

commercial carbon GDL. (b) The electrochemical profile of simulated ORR 

experiment with the symmetric cell. The applied current was 0.1 mA and the 

controlled capacity was 5 mAh. (c) FTIR spectra and (d) Iodometric determinations 

of the electrolyte with simulated ORR. 
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Figure 3.12. XRD pattern of the chemically synthesized Na2O2·2H2O according to 

the proposed mechanism. All the synthesis and characterizations were carried out in 

the Ar-filled glovebox.  
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Supplementary Note 3.3  

To experimentally simulate Reaction 4-6 in Figure 3.10, firstly, we 

generated O2
− in the electrolyte composed with 10 mM TBAClO4 in DEGDME in 

the symmetric cell as shown in Figure 3.11a and Figure 3.11b. The simulated 

coulomb was 5 mAh, which is 5-fold excess amount of electrochemically formed 

NaO2 with the discharge. If we exclude the shuttle effect during the discharge, the 

concentration of O2
− is approximately 0.93 M compared to the volume of injected 

electrolyte (200 μl). 

  After allowing the relaxation of O2
− generated in the presence of the 

electrolyte, the electrolyte was examined by FTIR in Figure 3.11c to identify the 

chemical reactions triggered by O2
−. As compared to the as-prepared electrolyte, it 

was observed that the broad peak at about 3400 cm−1 evolves, which corresponds to 

νO–H stretch. This indicates the formation of free OH− with the chemical reaction 

of O2
− with the electrolyte. Furthermore, it was found that a small δO–H band and 

νC=O stretch at around 1625 cm−1 and 1728 cm−1, respectively. The former signal 

also corresponds to the formation of the free OH−, and the latter could be attributed 

to the trace amount of carboxylic functional groups (–COOH) in the byproduct. The 

presence of H2O2 was difficult to confirm from the FTIR due to the overlaps of 

signatures with DEGDME. The identification of νO–H, δO–H, νC=O band in the 

electrolyte strongly support the Reaction 6. 
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  We carried out the iodometric determinations to supplement the FTIR 

results above and verify the presence of H2O2 as shown in Figure 3.11d. When the 

electrolyte exposed to O2
− was added to the basis of 1 M KI aqueous solutions, which 

were initially transparent, the color of the solution was immediately changed to 

yellow. It indicates the oxidation of iodide ion (I−) to triiodide ion (I3
−), which was 

induced by the presence of H2O2 via the reacttion (2 I− + 2 H+ + H2O2 → I3
− + 2 H2O). 

Rest of the chemical additives such as as-prepared electrolyte or CH3COOH do not 

change the color of the iodide solution. This observation supports that H2O2 was 

formed after the chemical reactions coupled with ORR, and validates Reaction 7. 

  On the basis of byproducts from Reaction 6 and 7, we attempted to simulate 

the formation of Na2O2·2H2O as proposed in Reaction 8 (2 NaOH + H2O2 → 

Na2O2·2H2O). 0.5 M H2O2 aqueous solution was added dropwise to the anhydrous 

ethanol solution of 1 M NaOH. Because NaOH is insoluble in ether-based solvents, 

the solvent was used with the anhydrous ethanol to reproduce the effectively 

dissolved state of NaOH. After the mixing, it was found that the white precipitates 

were immediately formed. The retrieved precipitates were examined by XRD after 

drying under vacuum for 30 min. Figure 3.12 identifies that the main phase of 

precipitates were Na2O2·2H2O with a trace amount of other phases that might be 

formed during the process. The formation of Na2O2·2H2O strongly supports the 

proposed Reaction 8. 
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3.1.4 Concluding Remarks 

We successfully demonstrated the interplay of the diverse competing 

reactions in Na–O2 batteries. The time-dependent chemical reactions were identified 

as being triggered from the dissolution and ionization of the electrochemically 

formed NaO2 in the electrolyte. The liberated O2
− reacts with the electrolyte solvent 

to form Na2O2·2H2O following a series of intermediate steps. The Na2O2·2H2O in 

the air electrode requires a higher energy for the decomposition, which leads to the 

increased charge overpotential and irreversibility of Na–O2 cells. This report is the 

first to correlate the electrochemical and chemical reactions with the operating 

conditions in Na–O2 batteries, and our findings concerning the relationships among 

different phases resolve the conflicting observations of different discharge products 

in previous Na–O2 batteries. To prepare a better performing Na–O2 battery, a strategy 

to prevent the transformation of NaO2 into Na2O2·2H2O while still allowing the 

solution-mediate discharge reaction is necessary. We hope that the findings of this 

study can provide a basis for researchers to navigate and direct the reactions in Na–

O2 batteries to achieve high efficiency and rechargeability. 
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3.2 Highly durable and stable NaO2 in concentrated 

electrolytes for Na–O2 batteries 

(The essence of this chapter has been published in Advanced Energy Materia

ls. Reproduced with permission from [Park, H. et al., Adv. Energy Mater. 2

018, 8, 1801760] Copyright (2018) WILEY-VCH) 

3.2.1 Research Background 

Since the first report of rechargeable sodium–oxygen batteries by 

Hartmann et al. in 2012, these systems have attracted great attention because they 

exhibit the highest theoretical energy density (~1100 Wh kg−1 based on NaO2 as 

a discharge product) among available sodium rechargeable battery chemistries 

while also offering the advantages of elemental earth abundance and potential cost 

efficiency.1 In particular, their intrinsically high energy efficiency and 

reversibility make sodium–oxygen batteries strong candidates for next-generation 

rechargeable batteries.1,2 Unlike lithium–oxygen batteries, for which a peroxide 

phase is commonly formed as the main discharge product rather than a superoxide 

phase3, the thermodynamic stability of sodium superoxide and its facile 

dissociation enable its reversible formation as a main product in sodium–oxygen 

batteries.1,2,4-7 The promising electrochemical properties of sodium–oxygen 

batteries have been attributed to the formation of sodium superoxide, which 

exhibits substantial solubility in electrolytes and thus drives solution-based 
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reactions as a dominant pathway. The finding of a proton as a phase-transfer 

catalyst8 and the critical role of electrolyte solvation in the discharge process9 also 

strongly support the dominant solution reaction mechanisms in sodium–oxygen 

batteries, which have been confirmed by experimental evidence of soluble 

superoxide species7,10,11 and the low solvation energy of the sodium superoxide 

estimated in a previous computational study.12 These intrinsic solution chemistries 

enable the achievement of high capacity and low polarization for sodium–oxygen 

batteries without the need for redox mediators or soluble catalysts, which are 

believed to be necessary for the development of highly reversible lithium–

oxygen13-19 or lithium–gas (SO2, CO2…)20-22 batteries.  

Despite the thermodynamic stability of sodium superoxide in sodium–

oxygen batteries, recent studies have reported the chemical instability of sodium 

superoxide in ether-based electrolytes, in which undesirable self-decomposition 

occurs. In our previous study, time-resolved characterizations revealed that 

sodium superoxide transforms into byproducts, mainly sodium peroxide dihydrate 

(Na2O2·2H2O), within 12 h of exposure to diethylene glycol dimethyl ether 

(DEGDME) electrolytes; we proposed the idea that the side reactions were 

triggered by spontaneous dissolution of sodium superoxide and subsequent proton 

abstraction of the electrolytes by the superoxide anion.7 Shao-horn et al. also 

observed an identical phase transition from sodium superoxide to sodium peroxide 

dihydrate within a few days in DME electrolytes.23,24 In addition, recent work by 

Sun et al. showed the consistent change of the discharge product within a similar 



１４５ 

time scale (~13 h) based on in-line X-ray diffraction measurements.25 Slightly 

different reaction pathways have also been suggested, including the formation of 

sodium peroxide octahydrate (Na2O2·8H2O) reported by Nazar et al.26 and 

superoxide (O2
−) migration reported by Janek et al.27 There are minor 

discrepancies in the details of the observations and proposed reactions in previous 

studies, partly due to the variations in the cell configurations and experimental 

conditions, which are summarized in Table 3.1. However, all the aforementioned 

studies consistently raised the issue of the chemical stability of sodium superoxide 

in sodium–oxygen batteries. Byproducts other than sodium superoxide require 

higher polarization to be recharged, and their decomposition reactions have not 

been shown to involve reversible oxygen evolution, which subsequently leads to 

serious degradation of the efficiency and reversibility of the batteries.27 These 

phenomena should be closely linked to the storage properties or shelf-life of the 

batteries, as the remarkable shelf-life of potassium–oxygen batteries resulting 

from the high stability of potassium superoxide in ethereal electrolytes was 

recently reported.28 Despite sharing similar electrochemistry between sodium– 

and potassium–oxygen batteries, the potassium superoxide is robust against the 

spontaneous disproportionation to peroxide unlike sodium superoxide, enabling 

markedly long shelf-life of potassium–oxygen battery as 30 days. The detrimental 

effects of storage after discharge in sodium–oxygen batteries may be amplified 

for the batteries used in electric vehicles (EVs) as EVs may not always be 

immediately recharged. Therefore, appropriate strategies to overcome the sodium 
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superoxide stability issue are indispensable for the future development of sodium–

oxygen batteries. 

We previously reported that the parasitic reactions are triggered by the 

dissolution of sodium superoxide, followed by subsequent proton abstraction of 

electrolytes by the superoxide anion.7 Dissolution of a solid material in a liquid 

medium involves a solvating process and is mainly governed by the solvating 

capability of the free solvent molecules to break the internal bonding of the solid 

material.29-32 In this respect, the elimination of free solvents in electrolytes can 

effectively stabilize the solid materials by decreasing the probability for interactions 

with free solvents.33-35 Recently, it was successfully demonstrated that super-

concentrated electrolytes without free solvents can effectively suppress the 

dissolution of polysulfides in lithium–sulfur batteries.35-37 Additionally, it was 

observed that the full pairing of solvents with solutes can also remarkably improve 

the chemical and electrochemical stabilities of the solvents.38-42 This finding resulted 

in the realization of a new class of electrolytes that can even use an aqueous solvent 

in a high-voltage battery or lithium/sodium metal battery systems, which are now 

categorized as “water-in-salt” or “solvent-in-salt” electrolytes.35,38,39,43-46. We 

decided, herein, to explore the use of these high-concentration electrolytes to 

suppress the parasitic reactions promoted by the dissolution of sodium superoxide in 

sodium–oxygen batteries. The solvation structures of the electrolytes are 

systematically examined with controlled salt concentrations using Raman 
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spectroscopy, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. 

We find that the physicochemical properties of the electrolytes are drastically altered, 

and consequently, sodium superoxide is stably maintained with five-times-longer 

lifetime in concentrated electrolytes than in conventional electrolytes. Finally, we 

apply the high-concentration electrolytes in sodium–oxygen batteries and 

demonstrate that the energy efficiency and cell reversibility are well conserved even 

with a resting period of 1 day every cycle. This study is the first to successfully 

improve the chemical stability and lifetime of sodium superoxide by simple tuning 

of the electrolyte in sodium–oxygen batteries. This discovery is complementary to 

the previous understanding of the solution chemistry of sodium–oxygen batteries, 

highlighting the importance of the role of electrolytes in the metal–oxygen chemistry. 
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Table 3.1. Summary of experimental details, proposed reaction pathway, and 

characterization methods used in previous studies on the instability of sodium 

superoxide. 
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3.2.2 Experimental Method 

3.2.2.1 Materials and cell assembly 

  Sodium perchlorate (NaClO4, anhydrous, 98.0%–102.0%) was purchased 

from Alfa Aesar, and diethylene glycol dimethyl ether (DEGDME, anhydrous, 

99.5%) was purchased from Sigma Aldrich. The salt was used as received, and the 

solvent was dried using activated molecular sieves (3 Å) for 1 week before use. The 

final water content of all the electrolytes was approximately 30 ppm based on Karl 

Fisher titration measurements. The sodium metal electrode was prepared by rolling 

a sodium cube (Na, contains mineral oil, 99.9%) into a sheet after removing the 

contaminated surface. Avcarb P50 carbon paper was obtained from Fuel Cell Earth 

and dried at 120 °C for 24 h before use. Both the sodium metal electrode and P50 

carbon electrode were punched in a 1/2-inch diameter. The sodium–oxygen cell was 

assembled in the sequence of a sodium metal electrode, separators soaked with 

electrolytes, and a P50 carbon electrode using a Swagelok-type cell in an Ar-filled 

glove box (O2 level <0.1 ppm and H2O level <0.1 ppm). The amount of electrolyte 

for the cell was 200 μL. Two sheets of QM-A grade glass fiber were used as a 

separator for the cell. All the assembled sodium–oxygen cells were stored under 

flowing O2 atmosphere at 1.5 bar pressure for 5 min. Before the cell tests, all the 

cells were stabilized with relaxation of 30 min and operated in the closed state. Deep 

discharge property of the cells using P50 carbon electrodes with such dimension is 

presented in Figure 3.13 for a precise and fair comparison of electrochemical 
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properties. A coin-type CR2032 cell was assembled in the same sequence, 

particularly for DEMS with pressure monitoring tests. The amount of electrolyte usef 

for a coin-type CR2032 cell was 100 μL. For the sodium symmetric cell tests, a coin-

type cell CR2032 was assembled with ½-inch diameter sodium foils as both the 

counter and working electrode and two slices of QM-A grade glass fiber separator 

soaked with the electrolytes.  
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Figure 3.13. Deep discharge profiles of sodium–oxygen battery using electrolytes 

with different concentration. The cell with 0.5 M electrolyte (red line) could deliver 

approximately 4.4 mAh discharge capacity at absolute current of 0.1 mA, which 

corresponds to the areal capacity of 3.47 mAh/cm2, whereas slightly lower capacity 

of 3.7 mAh (2.93 mAh/cm2) was obtained for that with 3 M electrolyte (blue line).  
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3.2.2.2 Characterization of Na–O2 cells 

All the electrochemical tests for the sodium–oxygen cells were performed 

using a potentio-galvanostat (WonA Tech, WBCS 3000, Korea) between 1.5 and 

3.0 V at room temperature. A DEMS instrument combined with a BioLogic SP-

300 potentio-galvanostat (Knoxville, TN), a pressure transducer (Omega 

Engineering Inc., PX419, Stamford, CT), and a mass spectrometer (Stanford 

Research System, RGA200, Sunnyvale, CA) were used for the gas analyses and 

pressure monitoring.47-49 During discharge, the DEMS cell was operated in a 

closed state filled with O2 gas while connected to the pressure transducer. During 

charge, the DEMS cell was open to the mass spectrometer chamber and swept by 

Ar carrier gas. Electrochemical impedance measurements were performed using 

a potentio-galvanostat (VSP-300, Bio-Logic Science Instruments, France) at room 

temperature with a frequency range from 200 kHz to 50 mHz. An X-ray 

diffractometer (Bruker D2 Phaser) with Cu-Kα radiation (λ=1.5406 Å), field-

emission scanning electron microscope (MERLIN Compact, ZEISS, Germany), 

and Raman spectrometer (LabRAM HV Evolution, HORIBA, Japan) were used 

for discharge product characterizations. To simulate the storage circumstances 

within the cell environments, we used the same amount (~200 µL) of electrolytes 

for every storage experiment. Residual electrolytes on the electrodes were washed 

by distilled 1,2-dimethoxyethane (DME, anhydrous, 99.5%., Sigma Aldrich) 

before characterizations. XRD and Raman spectra of the electrodes were recorded 
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under an Ar atmosphere with the aid of air-blocking holders. For structural 

characterization of the electrolytes, Raman spectra were obtained using a capillary 

tube. A Fourier-transform infrared spectrometer (FT-IR-4200, JASCO, Japan) 

equipped with an attenuated total reflectance (ATR) accessory was used to 

investigate the chemical bonding nature of the electrolytes. 23Na NMR spectra 

were recorded using an NMR spectrometer (Avance 600, Bruker, Germany) at 

room temperature using a liquid NMR tube. NMR spectra were measured at a 

23Na frequency of 158.7 MHz with an accumulation of 256 transients, and the 

repetition time of each sample was set to 1.45 s (acquisition time of 0.45 s and 

relaxation delay of 1 s) for complete relaxation. All the chemical shifts of 23Na 

NMR spectra were referenced to a standard solution of 1 M NaCl aqueous solution. 

The electrolyte properties were measured using a viscometer (SV-10, A&D 

Company Ltd. Japan) and a waterproof portable conductivity meter (Model CON 

610, Oakton, Singapore) at 20 °C. 

  



１５４ 

3.2.3 Results and Discussions 

3.2.3.1 Chemical instability of NaO2 on electrochemistry 

We scrutinized the electrochemical charging responses of sodium–oxygen 

batteries with systematic variations of storage times after discharge to confirm the 

chemical stability of sodium superoxide in electrolytes for sodium–oxygen batteries. 

The applied current and discharge capacity in the present study were set to 0.1 mA and 

0.25 mAh, respectively, with a cut-off voltage of 3.0 V (vs. Na/Na+).50,51 The storage 

time was controlled from 6 to 24 h after discharge. Figure 3.14a presents subsequent 

charge profiles of sodium–oxygen cells after the respective storage times. Typical 

voltage profiles were obtained for charging the cell without any pauses, in agreement 

with reports in the literature1,4,7,8, showing a single plateau at 2.4 V, which corresponds 

to the electrochemical decomposition of sodium superoxide followed by a rapid 

voltage increase at the end of charge (top panel in Figure 3.14a). Approximately 80% 

of the capacity was reversibly charged with a small polarization (~ 200 mV) within the 

voltage window. With increasing storage time, however, the reversible charge capacity 

gradually decreased to 50% (6 h), 40% (12 h), 20% (18 h), and 15% (24 h), which is 

consistent with the observations in previous reports.7,24,27 This finding strongly suggests 

that certain chemical events occur within the cells during storage and that these events 

affect the nature of the discharged product, sodium superoxide. A higher voltage limit 

for the charge process (~4 V) produced similar results, indicating that the deliverable 

charge capacity is systematically reduced with a larger polarization as the resting time 
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increases, as shown in Figure 3.15. This finding confirms the detrimental effect of 

aging/storage of a sodium–oxygen cell on its efficiency and reversibility.  

Differential electrochemical mass spectroscopy (DEMS) with pressure 

monitoring was used to assess the oxygen efficiency during charging of cells with 

different storage periods to examine the reversibility of the sodium–oxygen reaction in 

each case. The shortest storage time was 3 h after discharge because there was a 

minimum required processing time for gas exchange from oxygen to argon in our 

DEMS system. Figure 3.14b–e show the pressure variations of oxygen gas during 

discharge (3.14b and 3.14d) and present gas evolution profiles during charge (3.14c 

and 3.14e) for two representative cases of cells stored for 3 and 24 h, respectively. 

Figure 3.14b shows that the oxygen consumption rate for the entire discharge process 

nearly coincides to the ideal e/O2 ratio of 1.00, which means that the one-electron 

reaction of sodium superoxide formation occurred in the cell. During the charge 

process of the 3-h-storage cell in Figure 3.14c, the oxygen efficiency was also close to 

1.00 e/O2, particularly at the 2.4-V plateau; however, it significantly deviated from the 

ideal value during the charge process at a voltage above 3 V, with carbon dioxide and 

hydrogen being detected.8,27 The overall oxygen evolution/consumption efficiency 

(OER/ORR) was 66% for the 3-h-rested cell; the details are summarized in Table 3.2. 

It is worth mentioning that the charge capacity obtained above 3 V is mainly attributed 

to the irreversible reaction, and, correspondingly, the reduction of the length of the 2.4-

V plateau accompanies the decrease in the oxygen efficiency. Figure 3.14e shows that 

the evolution of oxygen gas markedly decreased for the 24-h-rested cell and that a 
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significantly reduced charge capacity was delivered below 3 V, even though a similar 

oxygen consumption rate was observed for the discharge process in Figure 3.14d. The 

oxygen efficiency for the cell stored for 24 h was measured to be only 25%. The strong 

correlation between the reversible charge capacity and measured oxygen efficiency 

indicates that the charging reaction beyond 3 V likely results from the electrochemical 

decomposition of byproducts rather than of sodium superoxide. In addition, this 

correlation also suggests that the detrimental effect of resting on the cell reversibility 

originates from the instability of sodium superoxide, the evidence of which will be 

provided in detail later.  

The electrochemical impedance spectroscopy (EIS) spectra in Figure 3.14f 

illustrate that the cell impedance gradually increased during storage after discharge, 

which is consistent with the larger charging overpotentials for cells with longer rest 

periods observed in Figure 3.14a. The initial impedance of the sodium–oxygen cell 

was 2,500 Ω; however, it simply increased to 3,200 and 4,500 Ω with 12-h and 24-h 

resting, respectively. Based on our previous work, we believe that this increase can be 

attributed to the formation of sodium peroxide dihydrate and corresponding byproducts 

from electrolyte degradation; the insulating nature of this product increases the cell 

impedance.7 The detrimental effects of aging on the cell impedance also affected the 

cycle stabilities. Figure 3.14g shows that without any pause between discharge and 

charge, consecutive cycling of the cells for up to approximately 80 times could be 

performed under a limited capacity of 0.25 mAh; however, by inserting a 12-h storage 

time after every discharge, the cell reversibility notably deteriorated. The inferior cycle 
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performance of only approximately 30% compared with that the reference cell 

highlights the seriously reduced cell reversibility and poor shelf-life of sodium–

oxygen cells.  
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Figure 3.14. Detrimental effect of resting periods on the electrochemical 

properties of sodium–oxygen cells with conventional electrolytes. (a) 

Charge/discharge profiles of sodium–oxygen cells with various resting times from 

6 to 24 h after discharge. (b) Pressure monitoring during discharge and (c) real-

time gas profiles during charge of sodium–oxygen cells stored for 3 h. (d) Pressure 

monitoring during discharge and (e) real-time gas profiles during charge of 

sodium–oxygen cells stored for 24 h. The dotted lines are voltage profiles. (f) 

Electrochemical impedance spectra of discharged sodium–oxygen cells during 

storage for 24 h. (g) Capacity retention of sodium–oxygen cells with and without 

resting periods.  
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Figure 3.15. Electrochemical profiles of sodium–oxygen batteries containing 0.5 M 

electrolytes as a function of storage time up to 48 h with an upper voltage cut-off of 

4 V.  
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Table 3.2. Detailed values used for calculating the oxygen efficiency from pressure 

monitoring and DEMS results. 
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3.2.3.2 Physicochemical properties of concentrated electrolytes 

In our attempt to enhance the stability of sodium superoxide by exploiting 

high-concentration electrolytes, the nature of concentrated electrolytes was first 

examined to obtain information on the solvation structures and presence of free 

solvents in electrolytes as a function of concentration. Sodium perchlorate (NaClO4) 

was selected as a model Na+ conducting salt because of its sufficiently high 

solubility (>3 M) in conventional DEGDME-based electrolytes (Figure 3.16). The 

concentration of salts varied from 0 to 3 M, and corresponding Raman spectra are 

presented in Figure 3.17a and Figure 3.18a. The strong linearity between the salt 

concentration and characteristic peak intensity of the Cl–O bond from the ClO4
− 

anion at approximately 945 cm−1 in Figure 3.18b indicates that the electrolytes 

were well prepared for each targeted composition. The variation in C–O–C 

stretching vibration, a main functional bond of DEGDME solvents, with increasing 

salt concentration is shown in Figure 3.17a along with the deconvolutions of the 

corresponding peaks. As reported in previous Raman studies and as shown in 

Figure 3.18c–d, the two major bonding modes at 807 and 849 cm−1 along with an 

additional minor peak at 824 cm−1 are assigned to DEGDME free solvent (blue 

line), and those at 837 and 866 cm−1 correspond to the coordinated C–O–C 

vibrational modes with alkali metal ions, which are denoted by a red line.52-54 

Figure 3.17a shows that with increasing electrolyte concentration from 0.1 to 1 M, 

the peaks of the coordinated bonding modes grew remarkably at the expense of 

those from the free solvent. The coordinated bonding modes started to become 
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dominant in the overall spectra for the electrolytes for concentrations of 2 M or 

greater, which indicates that the majority of the solvents are Na+-coordinated in 

these electrolyte systems. The solvation structure of the 3 M electrolytes was 

mostly composed of coordinated solvents with a only negligible amount of free 

solvents.34,35,40,46,53 An infrared spectroscopy study provided consistent evidence of 

the evolution of the coordinated structures in high-concentration electrolytes, as 

shown in Figure 3.17b and Figure 3.19. The spectra of the DEGDME free solvent 

in the figure are typically composed of three vibrational modes, including major 

C–O–C bonding at 853 cm−1.55,56 However, similar to the Raman spectra, a drastic 

change was observed in the spectra of the >2 M electrolytes with two new 

characteristic peaks emerging at 837 and 862 cm−1 and those from the freesolvents 

disappearing, supporting the dominant formation of a Na+–DEGDME solvated 

complex with negligible free solvents. Additionally, 23Na nuclear magnetic 

resonance (NMR) spectra were recorded to probe the change in local environments 

around Na+ ions in the NaClO4/DEGDME electrolytes and to visualize the solvating 

structures.9,57-61 Figure 3.17c shows the chemical shifts of 23Na in the electrolytes as 

a function of concentration, which reflects the interactions of Na+ cations with either 

solvated molecules or counter anions in solutions of specific concentrations. The 

23Na chemical shift for 0.1 M was measured to be −8.12 based on the standard 23Na 

resonance in 1 M NaCl aqueous solution. A positive shift to −7.65 was observed for 

the 23Na NMR peak for the 0.5 M electrolytes, and larger shifts were recorded upon 

increasing the concentrations to 1 M, 2 M, and 3 M (−7.55, −7.35 and −7.28, 
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respectively). Such variation of the 23Na chemical shift is indicative of systematic 

changes in the coordination nature around the Na+ cations with increasing 

concentration.62 It has been suggested that the replacement of solvent molecules by 

counter anions leads to notable changes in the 23Na NMR resonance, and, if the 

counter anion is a weak electron donor and thus possesses a poor solvating 

capability to the cations, the 23Na cation is prone to de-shielding, which results in 

downfield 23Na resonance with a higher chemical shift value.57,60 Considering the 

lower donor number (DN) of the ClO4
− anion (DN = 8.44)63 compared with that of 

DEGDME (DN = 18)9,64, a positive 23Na shift can be attributed to the incorporation 

of weakly solvating ClO4
− (lower DN) in the solvation shell via the formation of a 

contact-ion-pair (CIP) in concentrated electrolytes, which is in accordance with 

previous 23Na NMR observations for NaClO4 solutions.57-60 The combined Raman, 

infrared, and 23Na NMR spectra verify the evolution of unique solvation structures 

as well as the elimination of uncoordinated free solvents in the concentrated 

electrolytes. 

To quantitatively understand the solvation characteristics in concentrated 

electrolytes, the molar ratio between the DEGDME solvent and Na+ was estimated 

as a function of the concentration, as shown in Figure 3.17d. The solvent-to-salt 

ratio exponentially decreased with increasing concentration: 69.8 (0.1 M), 13.96 

(0.5 M), 6.98 (1 M), 3.49 (2 M), and 2.33 (3 M). It is worth noting that the O 

coordination number of Na+ with ether functional groups has been suggested to be 

in the range of 4 to 6, and considering the three C–O–C bonds in a single DEGDME 
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molecule, the molar ratio between DEGDME and Na+ for fully coordinated 

solutions is believed to be approximately 2.9,65 Thus, in 3 M solution, it is speculated 

that most of the solvents (2/2.33 ~85.8%) are coordinated with Na+ assuming the 

maximum Na+ coordination, whereas approximately 14.2% would remain as free 

solvents, which might be related to the detectable amount of free solvents in Figure 

3.17a and b. The ratios between free and solvated solvents can also be 

experimentally estimated from Raman spectra, as shown in Figure 3.17e. Based on 

the intensity comparison, the number of solvating solvents in a 3 M electrolyte is 

likely to be 2.5 times larger than that of a free solvent, which translates to 71.4% of 

solvating solvents in the electrolyte. We observed that this finding is also consistent 

with our hypothetical solvation structures of high-concentration electrolytes shown 

in Figure 3.20, which suggests that the concentrated electrolytes are composed of 

agglomerates of five-oxygen-coordinated Na+, involving a DEGDME molecule and 

perchlorate anion, and a small amount of uncoordinated DEGDME solvents.  

We also analyzed the physical properties of the concentrated electrolytes 

related to ionic conductivity, as the high viscosity of concentrated electrolytes has 

generally been perceived as one of their main demerits in terms of ionic transport 

properties.33,66 Figure 3.17f displays the viscosity change of electrolytes with 

different concentrations of Na salts. The viscosity of the pure DEGDME was 

measured to be 0.9 cP; however, it gradually increased upon increasing the 

concentration to 2 M (8.52 cP) and drastically surged to 25.4 cP at a concentration 

of 3 M. It is clear that strong Na+ ion–dipole interactions in high-concentration 
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systems induce higher friction against movement, leading to an increase in the 

viscosity of the solutions. Figure 3.17g shows the ionic conductivities of 

NaClO4/DEGDME electrolytes as a function of concentration. Although a higher 

concentration resulted in an increase in ionic conductivity up to a concentration of 

2 M (8.06 mS cm−1), most likely because of the increase in the number of charge 

carriers, the unusually high viscosity in the 3 M electrolyte resulted in a considerable 

decrease in the ionic conductivity to 4.65 mS cm−1. Nevertheless, it is worthwhile 

to note that the ionic conductivities of the concentrated electrolytes (~3 M) were 

comparable to those of the 0.5 M electrolytes (3.09 mS cm−1), which is the most 

commonly used electrolyte system in sodium–oxygen batteries.1,2,6,7,23,26,67 
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Figure 3.16. Photograph of electrolyte solutions with target concentration of 3 M, 

3.5 M, and 4 M NaClO4 dissolved in DEGDME. While electrolytes of 3 M and 3.5 

M concentration exhibit clear and transparent solutions, the visual inspection of 4 M 

stale solution indirectly indicates that it is beyond the solubility limit. 
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Figure 3.17. Solvation structures and physicochemical properties of concentrated 

electrolytes. (a) Raman spectra, (b) infrared spectra, and (c) NMR spectra of 

electrolytes (NaClO4 in DEGDME) for different concentrations (0 to 3 M). (d) 

Estimated molar ratio of DEGDME molecules to sodium ions for different 

concentrations. (e) Intensity ratio of Raman peak between solvated solvent (866 cm−1) 

to free solvent (850 cm−1). (f) Viscosity and (g) ionic conductivity of electrolytes as 

a function of concentration.  
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Figure 3.18. Raman spectra for concentrated electrolytes. (a) Full Raman spectra of 

NaClO4 in DEGDME electrolytes within Raman shift from 500 to 4000 cm−1 as a 

function of concentration. (b) Linearity relation between salt concentration and Cl–

O bond intensity at ~945 cm−1. (c) Raman spectra of linear ether family (DME, 

DEGDME, and TEGDME). (d) Magnified Raman spectra for the Raman shift within 

the range of 780–900 cm−1. 
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Figure 3.19. Full infrared spectra of NaClO4 in DEGDME electrolytes for 

wavenumbers from 750 to 3250 cm−1 as a function of concentration. 
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Figure 3.20. Schematic illustration of hypothetical solvation structures of NaClO4 

in DEGDME electrolytes. (a) SSIP structure in dilute (0.5 mol dm−3) electrolytes. (b) 

CIP structure in concentrated (3 mol dm−3) electrolytes. (Dark gray – C, Gray – H, 

Red – O, Purple – Na, Green – Cl) Figure 3.20 presents solvated Na+ structures in 

two representative electrolyte systems (0.5 and 3 M), which show that Na+ ions are 

in six O coordination of solvent-separate ion pair (SSIP) in a dilute solution and have 

five C–O–C bonds by contact ion pair (CIP) in a high-concentration system. Notably, 

the ratio of coordinating solvents in the high-concentration systems is approximately 

72% for the 3 M system, which coincides with the value estimated from the Raman 

spectra in the Figure 3.17a. 
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3.2.3.3 Prolonged lifetimes of sodium superoxide in concentrated 

electrolytes 

Having revealed the substantial elimination of free solvents in concentrated 

electrolytes, we examined the effect of this change on the chemical durability of 

sodium superoxide in sodium–oxygen batteries through time-dependent 

characterizations. We discharged the sodium–oxygen cells with a capacity of 1 

mAh to produce sodium superoxide on the electrodes and retrieved the discharge 

product from disassembled cells. After washing away the residual electrolytes, we 

stored the electrodes in electrolytes of different concentrations in Ar atmosphere at 

room temperature and monitored the phase evolution for several days. As shown in 

the X-ray diffraction (XRD) patterns of the as-discharged electrodes in conventional 

0.5 M electrolytes (Figure 3.21a), the primary discharge product was identified to 

be solely sodium superoxide. However, the characteristic diffraction patterns of 

sodium superoxide diminished within 1 day of storage, whereas new peaks 

indicating the presence of sodium peroxide dihydrate dominantly evolved.7,23-25 

Within 2 days of storage in the conventional electrolyte, all the characteristic peaks 

of sodium superoxide disappeared. This phase transition was also supported by the 

scanning electron microscope (SEM) observations. The well-grown cubic 

morphologies of sodium superoxide were observed on the carbon electrode directly 

after discharge (Figure 3.21b), whereas almost all the products transformed into 

nano-rod particles, which is the typical morphology of sodium peroxide dihydrate, 
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after 1 day of storage in the conventional electrolyte, as shown in Figure 3.21c.  

Similar characterizations were also performed for the concentrated 

electrolytes. Figure 3.21d demonstrates that the stability of the sodium superoxide 

phase was significantly improved in the concentrated electrolytes. Contrary to the 

rapid degradation in conventional electrolytes, the characteristic pattern of sodium 

superoxide was detectable even after prolonged aging for 5 days in the concentrated 

electrolytes. Although the signature of sodium peroxide dihydrate was 

simultaneously detected, its evolution rate was markedly retarded compared with 

that for the storage experiments in the conventional electrolytes. The delayed phase 

transition in the concentrated electrolyte was confirmed by the Raman spectra, as 

shown in Figure 3.21e and Figure 3.22. The characteristic Raman shift of sodium 

superoxide at 1156 cm−1 was stably maintained even after 5 days, and a new peak 

at 1136 cm−1 attributable to sodium peroxide dihydrate began to appear after 2 

days.27,68 The prolonged lifetime of sodium superoxide was further verified by 

analyzing the morphology evolution of the discharged products. The SEM images 

in Figure 3.21f–j clearly demonstrate that the initial cubic-shaped sodium 

superoxide was relatively well preserved even after 2-day and 3-day storage. 

Consistent with the XRD patterns and Raman spectra, the cubic-shaped sodium 

superoxide can also be observed in the 5-day-stored carbon electrodes in Figure 

3.21j; however, the surface of the product mostly transformed into rod-shaped 

sodium peroxide dihydrate.   
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Figure 3.21. Time-resolved characterizations of discharged electrode immersed in 

different electrolytes. (a) Ex situ XRD patterns of discharged electrodes retrieved 

from sodium–oxygen cells with aging in conventional electrolytes. (b) SEM images 

of as-discharged electrodes and (c) discharged electrodes stored for 1 day in 

conventional electrolytes. (d) Ex situ XRD patterns and (e) Raman spectra of 

discharged electrodes retrieved from sodium–oxygen cells with aging in 

concentrated electrolytes. (f) SEM images of as-discharged electrodes and (g–j) 

discharged electrodes stored for (g) 2 days, (h) 3 days, (i) 4 days, and (j) 5 days in 

concentrated electrolytes. 
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Figure 3.22. Full Raman spectra of discharged carbon electrodes.  
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3.2.3.4 Reversibility of Na–O2 batteries  

Inspired by the enhanced durability of sodium superoxide, we employed 

concentrated electrolytes in sodium–oxygen cells and investigated the 

electrochemical properties as a function of storage period using electrochemical 

protocols analogous to those used in Figure 3.14a. Figure 3.23a presents the 

electrochemical profiles of sodium–oxygen cells with concentrated electrolytes 

(solid line) as a function of storage time compared with those using conventional 

electrolytes (dotted line). In contrast to the rapid fade of the charging capacities 

with longer storage time for the cells containing conventional electrolytes, the 

charging capacities were remarkably well preserved for the cells containing 

concentrated electrolytes (Figure 3.23a). Even for the storage time of 24 h, almost 

80% of the charging capacity compared with the case without the rest could be 

deliverable, which contrasts with the less than 20% capacity for the conventional 

electrolytes for the same storage time. These findings support the belief that the 

introduction of concentrated electrolytes enhances the reversibility of sodium–

oxygen chemistry by effectively obstructing side reactions involving sodium 

superoxide during storage. Additional storage experiments performed for different 

electrolyte concentrations are provided in Figure 3.24 of Supporting information. 

DEMS analyses more clearly demonstrated that the use of concentrated 

electrolytes successfully conserves the oxygen efficiency and reversibility of 

sodium–oxygen batteries even after a long storage time. Figure 3.23b–e display 

oxygen consumption and evolution profiles of 3-h and 24-h stored sodium–oxygen 
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cells using concentrated electrolytes. The pressure variations during discharge in 

Figure 3.23b and 3.23d indicate that the ideal electron-to-oxygen ratio and one-

electron sodium superoxide formation reaction are followed. For the charge 

process in Figure 3.23c (3-h stored cell), it was also observed that the oxygen gas 

solely evolved during the charge process below 3 V, keeping the oxygen evolution 

rate close to the theoretical value of the electron-to-oxygen ratio. More importantly, 

the oxygen gas profile for charging of 24-h stored cells is nearly identical to those 

of cells without aging in Figure 3.23e. This result clearly contrasts with that for the 

sodium–oxygen cell using conventional electrolytes, which show a substantial 

reduction in the oxygen evolution after the same storage period in Figure 3.14c. 

This finding validates the idea that the enhanced stability of sodium superoxide in 

the electrolyte is the key to the higher efficiency and reversibility of sodium–

oxygen cells with resting periods. There was a slight reduction of the oxygen 

efficiency from 71% to 64% with 1 day of storage for concentrated electrolytes 

(Table S2), which is attributable to the small fraction of the phase transition even 

in the concentrated electrolytes. Nevertheless, the value remains high and 

comparable to that of non-aged sodium–oxygen cells using conventional 

electrolytes.  

Additionally, we examined the effect of concentrated electrolytes on the cell 

impedance of sodium–oxygen cells during the storage period. Nyquist plots 

recorded every 2 h during the storage are presented in Figure 3.23f. The initial cell 

impedance immediately after the discharge was approximately 1,500 Ω, and the 
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total impedance only slightly increased to 2,000 Ω after 24 h, which contrasts with 

the significant rise in the impedance for the cells using conventional electrolytes, 

as shown in Figure 3.14f. This observation is also consistent with the smaller 

charging overpotential increases observed in Figure 3.23a. Whereas the charging 

overpotential of the cells using the conventional electrolytes became markedly 

larger with longer storage, the charging overpotential remained relatively constant 

regardless of the storage time for the cells using concentrated electrolytes because 

of the suppressed formation of byproducts.  

The higher durability of the system was finally confirmed by using 

electrochemical cycling tests with repeated resting periods. Figure 3.23g shows the 

capacity retention capability of the cells using concentrated electrolytes with a 

storage time of 0 or 12 h introduced every cycle. The cells could sustain a high 

cyclic stability even with 12-h rest after every discharge process, which 

corresponds to approximately 60% of the original cycle reversibility for non-aged 

cells, as shown in Figure 3.23g and Figure 3.25. This is a remarkable improvement 

in the cyclability compared with that of the cells using conventional electrolytes, 

which maintained only 30% of the original cycle reversibility for the same storage 

time. It is also noteworthy that the cycle performance of the cells without storage 

was also improved by employing concentrated electrolytes. This improvement is 

believed to be due to the suppression of other parasitic reactions involving the free 

solvent in the electrolyte and the improved anodic stability in the high-

concentration systems (Figure 3.26).  
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The fact that the concentrated electrolytes used in present study could not 

completely prevent the cycle-life decay over the storage period might be attributed 

to parasitic reactions with trace amounts of free solvents that were not completely 

removed, as discussed in the electrolyte structure analyses. Nevertheless, this study 

clearly verifies that the chemical stability of sodium superoxide could be 

significantly improved through electrolyte engineering, and we expect that further 

electrolyte design might provide a potential route to achieve much longer stability 

of sodium superoxide and better durability of sodium–oxygen batteries.  
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Figure 3.23. Enhanced storage properties of sodium–oxygen cells with concentrated 

electrolytes. (a) Charge/discharge profiles of sodium–oxygen cells with various 

resting times from 6 to 24 h after discharge. (b) Pressure monitoring during discharge 

and (c) real-time gas profiles during charge of sodium–oxygen cells stored for 3 h. 

(d) Pressure monitoring during discharge and (e) real-time gas profiles during charge 

of sodium–oxygen cells stored for 24 h. The dotted lines are voltage profiles. (f) 

Electrochemical impedance spectra of discharged sodium–oxygen cells during 

storage for 24 h. (g) Capacity retention of sodium–oxygen cells with and without 

resting periods. 
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Figure 3.24. Voltage profile of sodium–oxygen cells using (a) 2 M and (b) 3.5 M 

electrolytes with different resting condition.  
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Figure 3.25. Voltage profiles of sodium–oxygen cells for individual cycle number. 

(a,b) Voltage profiles of sodium–oxygen cells for 0.5 M electrolytes (a) without and 

(b) with 12-h storage after discharge. (c,d) Voltage profiles of sodium–oxygen cells 

for 3 M electrolytes (c) without and (d) with 12-h storage after discharge. 

 

  



１８２ 

 

 

Figure 3.26. Investigation of Na metal stability of NaClO4 in DEGDME electrolytes 

with different concentrations using Na/Na symmetric cell tests under a current 

density of 0.1 mA for 2.5 h within ±1.5 V.    
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3.2.4 Concluding Remarks 

We addressed the issue of the chemical stability of sodium superoxide in 

sodium–oxygen batteries and successfully exploited concentrated electrolytes to 

improve the chemical durability and stability of sodium–oxygen batteries. The 

degradation of the oxygen efficiency and cell reversibility was shown to be caused 

by the poor chemical stability of sodium superoxide stored in conventional 

electrolytes. As a key solution, we adopted a new high-concentration electrolyte 

containing a significantly decreased amount of free solvents based on our 

understanding of the solvation structures formed in the electrolyte by tailoring the 

salt concentrations. The chemical stability of sodium superoxide was shown to be 

greatly enhanced in the concentrated electrolytes, which led to a prolonged 

lifetime of sodium superoxide. The use of concentrated electrolytes subsequently 

resulted in a markedly long shelf-life for sodium–oxygen batteries, which could 

preserve their intrinsic high efficiency and reversibility even with repeated storage 

periods. This work is the first to successfully improve the chemical stability of 

sodium superoxide for a better performing sodium–oxygen battery. We believe 

that our findings demonstrate the importance of the storage characteristics of 

metal–oxygen batteries with respect to the chemical stability of discharge products 

and offer general insights into the role of electrolyte properties in the chemistry 

of metal–oxygen batteries. 
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Chapter 4. Conclusion 

Search for new battery chemistry which can outperform current state-of-

the-art Li ion battery technilogies has been vigorously deveoted to satisfying ongoing 

increasing demands for energy storage deviecs to be adpoted in electric vehicles and 

grid-scale energy stroage systems. Although a Li–O2 battery, the most representative 

metal–gas system, has been extensively studied as a promising candidate for future 

high-energy storage devices, intrinsically poor efficiency and reversibility of Li–O2 

chemistry hinders the developments of practical commercializations. In this thesis, 

electrochemical couplings of metal–gas have been examined to develop high-

energy-density batteries, taking advantage of the use of light metal and gas.  

Primary Li–SO2 batteries, which can offer high energy/power density and 

exceptionally long shelf-life, have been believed only as a primary battery not a 

rechargeable battery due to the formation of solid products. Taking inspiration from 

the electrochemically decomposable property of solid Li2O2 in Li–O2 battery, 

however, I shed a new light on primary Li–SO2 battery by adopting Li–O2 cell 

configuration in Chapter 2. I proved a reversible decomposition of solid Li2S2O4 

accompanying clear evolution of SO2 gas during the charge of Li–SO2 battery and 

thus successfully proposed a new promising rechargeable Li–SO2 chemistry. In-

depth study through combined calculations and experiments revealed that underlying 

reaction mechanism and battery performance of Li–SO2 chemistry are critically 

affected by the electrolyte solvating properties. Although commercial carbonate-

based electrolytes for Li ion batteries have not been considered for current metal-gas 
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type rechargeable batteries due to the occurrence of serious side reactions, I 

succeeded in exploiting commercial carbonate-based electrolytes into Li–SO2 

battery with significantly boosting battery performances. To be much practically 

feasible, I proposed a novel class of Li–SO2 chemistry as a high performance 

rechargeable battery by introducing soluble catalysts, achieving one of the highest 

energy efficiencies, power capabilities, and cycle stabilities.  

Na–O2 chemistry has also been recently proposed as a promising candidate 

for next-generation battery owing to intrinsically high energy density and efficiency. 

However, conflicting observations concerning Na–O2 reactions with different 

discharge products have inhibited the understanding of the precise reactions 

occurring in the battery. By addressing the issue of discrepancy on discharge 

products, I verified that the origin of different discharge products is due to the phase 

transition of NaO2 material to the other product of Na2O2·2H2O triggered by its 

dissolution property in the electrolyte in Chapter 3. It was also found that the 

formation of byproducts leads to lower cell efficiency and oxygen reversibility of 

the cells. Based on the understanding of reaction mechanism in Na–O2 batteries, I 

proposed a strategy to prevent dissolution of NaO2 by a rational tuning of electrolytes. 

I explored concentrated electrolytes which have significantly small number of free 

solvents to suppress the dissolution of NaO2 in Na–O2 batteries. I found out that solid 

NaO2 stored in concentrated electrolytes exhibit markedly prolonged chemical 

stability and thus could demonstrate the enhanced durability and storage properties 

of Na–O2 batteries with the introduction of concentrated electrolytes.. 
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In summary, I proposed a new design strategy of metal–gas rechargeable 

batterise, addressed the fundamenatl understanding on the reaction mechanism of the 

batteris and attempted to develop high-performing metal–gas batterises. Although 

the research on the metal–gas battery is at the infant stage, I expect that all the efforts 

and approaches in this thesis contribute to open up a new battery chemistry and 

enrich scientific understanding on metal–air electrochemistry.  
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Chapter 5. Abstract in Korean 

초   록 

 최근 전기자동차 등의 에너지 저장 기술 기반 시장의 성장과 

함께 에너지 저장 장치에 대한 수요가 폭발적으로 증가하고 있다. 현재 

최첨단 에너지 저장 기술로 여겨지는 리튬이온전지는 높은 에너지 

밀도와 출력을 바탕으로 다양한 소형 전자기기의 전력 공급원으로 

사용되고 있다. 하지만 전지의 양극 소재 내 무거운 전이 금속과 제한된 

저장 용량으로 인해, 현재 리튬이온전지의 에너지 밀도는 전기자동차와 

같은 대형 에너지 저장 기술에 적용되기에 부족하다. 이에 

리튬이온전지의 성능을 뛰어 넘는 차세대 전지 화학(리튬-공기, 리튬-황, 

소듐 전지 등)을 개발하기 위한 많은 연구들이 진행되어 왔다. 그 중 

리튬-공기 전지는 무거운 원소를 활용하지 않으며 매우 높은 이론 

에너지 밀도를 갖고 있어 차세대 전지로 상당한 주목을 받고 있다. 

하지만, 리튬과 산소의 화학 반응의 낮은 효율과 가역성으로 인해 실제 

상용 전지로서 차세대 리튬-공기 전지의 개발에 어려움을 겪고 있다. 

 본 논문에서는, 새로운 금속과 기체의 전지 화학을 탐구하여 

차세대 대용량 이차 전지를 개발하는 방법을 제시한다. 기존 리튬-공기 

전지의 개발 배경과 원론적인 이해를 바탕으로, 전기화학 활성을 

나타내는 다양한 기체 활물질을 알칼리 금속과 조합하여 전기화학 

전지를 구성하면 높은 효율과 가역성의 전지를 개발하는 한 방법이 될 

수 있다. 본 논문에서 기존 일차 리튬-이산화황 일차전지를 재조명하여 

새로운 이차 전지를 제안하고, 에너지 저장 기작 규명과 함께 고성능의 

리튬-이산화황 전지를 개발했다. 또한, 최근 각광 받고 있는 나트륨-공기 

전지의 초과산화물 반응 기작을 밝혀내고, 반응 생성물을 제어할 수 
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있는 전해질을 도입하여 화학적으로 안정성이 높은 나트륨-공기 전지 

시스템을 개발했다. 

 2장에서는, 새로운 이차 전지를 개발하기 위해 기존 리튬-

이산화황 일차전지를 재조명한다. 리튬-이산화황 전지는 고체 방전 

산물의 생성으로 인해 재충전이 불가능하다고 여겨졌으나 본 연구에서 

아이티온산리튬의 가역적인 생성과 분해를 통한 리튬-이산화황 전지의 

충전 가능성을 증명했다. 리튬-이산화황 이차 전지는 약 2.8 V의 반응 

전압과 5,400 mA h g-1의 용량을 발현하며, 기존 리튬-공기 전지 보다 높은 

에너지 효율과 전지 가역성을 나타냈다. 메커니즘에 대한 심도 있는 

연구를 바탕으로 리튬이온전지에 사용되는 상용 탄산염계 전해질을 

리튬-이산화황 전지에 도입해냈다. 탄산염계 전해질을 사용한 전지는 

출력과 가역성 등에서 우수한 성능을 나타냈다. 액상 촉매 또한 

적용되어 리튬-기체 형태 전지들 중 가장 우수한 수준의 전지 성능을 

보이는 리튬-이산화황 전지를 개발했다. 

 3장에서는, 나트륨-공기 전지에서 발견되는 이종 반응 산물의 

원인과 그 메커니즘에 대해 밝혀냈다. 매우 낮은 충전 과전압으로 

충전이 가능하기 때문에 나트륨초과산화물 기반 전지는 최근 많은 

관심을 받고 있다. 본 연구에서 나트륨초과산화물이 전해질 내 용해 및 

해리되어 자유 산소 라디칼을 발생시키고 수화된 나트륨과산화물을 

형성하는 부반응을 촉진한다는 것을 밝혀냈다. 이러한 부반응은 충전 시 

높은 과전압을 요하며 전지 성능의 급격한 열화를 초래한다. 이에 

메커니즘에 대한 이해를 바탕으로 나트륨초과산화물의 용해를 막기 위한 

전해질을 탐색했다. 고농도의 전해질을 도입하여 나트륨초과산화물의 

부반응을 억제할 수 있음을 규명해냈고, 높은 저장 수명을 나타내는 

높은 화학 안정성의 나트륨-공기 전지를 개발해냈다. 

 본 논문은 금속-기체 타입의 새로운 이차전지라는 연구 방향을 제시해 
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줄 뿐만 아니라 에너지 저장 메커니즘을 이해하는데 영감을 줄 수 있을 

것으로 기대된다. 또한 본 연구에서 기존 전지에 대해 재조명한 연구 

방식은 새로운 이차 전지를 개발하는 하나의 방안을 제시해주며, 전해질 

및 촉매 개발 등의 연구는 금속-기체 전지 성능 향상을 위한 연구 

방향을 제시해 줄 것으로 기대된다.  

 

주요어: 전기화학, 이차 전지, 금속-공기 전지, 이산화황, 초과산화물, 
전해질, 액상 촉매. 
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