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Abstract

The new wave of the technology revolution, named the fifth wireless systems, is

changing our daily life dramatically. These days, unprecedented services and applica-

tions such as driverless vehicles and drone-based deliveries, smart cities and factories,

remote medical diagnosis and surgery, and artificial intelligence-based personalized

assistants are emerging. Communication mechanisms associated with these new ap-

plications and services are way different from traditional communications in terms of

latency, energy efficiency, reliability, flexibility, and connection density. Since the cur-

rent radio access mechanism cannot support these diverse services and applications, a

new approach to deal with these relentless changes should be introduced.

This compressed sensing (CS) paradigm is very attractive alternative to the conven-

tional information processing operations including sampling, sensing, compression,

estimation, and detection. To apply the CS techniques to wireless communication sys-

tems, there are a number of things to know and also several issues to be considered. In

the last decade, CS techniques have spread rapidly in many applications such as med-

ical imaging, machine learning, radar detection, seismology, computer science, statis-

tics, and many others. Also, various wireless communication applications exploiting

the sparsity of a target signal have been studied. Notable examples include channel

estimation, interference cancellation, angle estimation, spectrum sensing, and symbol

detection. The distinct feature of this work, in contrast to the conventional approaches

exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to

improve the quality of the communication systems.

In the first part of the dissertation, we study the mapping data information into the

sparse signal in downlink systems. We propose an approach, called sparse vector cod-

ing (SVC), suited for the short packet transmission. In SVC, since the data information

is mapped to the position of sparse vector, whole data packet can be decoded by iden-
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tifying nonzero positions of the sparse vector. From our simulations, we show that the

packet error rate of SVC outperforms the conventional channel coding schemes at the

URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC

access by overlapping multiple SVC-based packets into the same resources. Using the

spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission

provides robustness against the co-channel interference and also provide comparable

performance than other non-orthogonal multiple access (NOMA) schemes. By using

the fact that SVC only identifies the support of sparse vector, we extend the SVC trans-

mission without pilot transmission, called pilot-less SVC. Instead of using the support,

we further exploit the magnitude of sparse vector for delivering additional information.

This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC

transmission scheme is to transform the small information into a sparse vector and map

the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can

be thought as a standing a few poles to the empty table. As long as the number of poles

is small enough and the measurements contains enough information to find out the

marked cell positions, accurate recovery of E-SVC packet can be guaranteed.

In the second part of this dissertation, we turn our attention to make sparsification

of the non-sparse signal, especially for the pilot transmission and channel estimation.

Unlike the conventional scheme where the pilot signal is transmitted without modi-

fication, the pilot signals are sent after the beamforming in the proposed technique.

This work is motivated by the observation that the pilot overhead must scale linearly

with the number of taps in CIR vector and the number of transmit antennas so that the

conventional pilot transmission is not an appropriate option for the IoT devices. Pri-

mary goal of the proposed scheme is to minimize the nonzero entries of a time-domain

channel vector by the help of multiple antennas at the basestation. To do so, we apply

the time-domain sparse precoding, where each precoded channel propagates via fewer

tap than the original channel vector. The received channel vector of beamformed pilots

ii



can be jointly estimated by the sparse recovery algorithm.

keywords: sparsity-aware, compressed sensing, 5G wireless communications, sparse

vector coding, sparse beamforming

student number: 2015-30204
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Chapter 1

INTRODUCTION

1.1 Background

The new wave of the technology revolution, named the fourth industrial revolution, is

changing the way we live, work, and communicate with each other. We are now wit-

nessing the emergence of unprecedented services and applications such as driverless

vehicles and drone-based deliveries, smart cities and factories, remote medical diagno-

sis and surgery, and artificial intelligence-based personalized assistants (see Fig. 1.1).

Communication mechanisms associated with these new applications and services are

way different from traditional human-centric communications in terms of latency, en-

ergy efficiency, reliability, flexibility, and connection density. Therefore, coexistence

of human-centric and machine-type services as well as hybrids of these will render

emerging wireless environments more diverse and complex. To address diversified

services and applications, International Telecommunication Union (ITU) has classi-

fied fifth generation (5G) services into three categories: ultra-reliable and low latency

communication (URLLC), massive machine-type communication (mMTC), and en-

hanced mobile broadband (eMBB) [46]. To cope with these new service categories,

various performance requirements such as massive connectivity, lower latency, higher

reliability, and better energy efficiency have been newly introduced. Since the cur-

1



Figure 1.1: Overview of 5G systems: deployment with eMBB, mMTC, and URLLC.

rent radio access mechanism and also conventional approach cannot support these re-

lentless changes, a new approach referred to as sparse processing has been studied

recently. The primary goal of sparse processing is to bring benefit by projecting the

non-sparse signal to the sparse signal that are not fully employed in the traditional 4G

systems. Before we proceed, we provide a brief overview of three service categories

in 5G, viz., eMBB, mMTC, and URLLC. Next, we discuss the fundamental of sparse

processing.

1.1.1 Three Key Services in 5G systems

eMBB is a service category related to high requirements for bandwidth, such as high-

resolution video streaming, virtual reality, and augmented reality. The main challenge

in 4G systems is to improve the system throughput (e.g., area, average, peak, per-

ceived, and cell-edge throughput). Physical layer technologies introduced to this end

include high order modulation transmission, carrier aggregation, cell densification via

2



heterogeneous network, and multiple-input multiple-output (MIMO) transmission. In

essence, the main goal of eMBB is in line with this direction. In order to achieve

100-fold capacity increase over the 4G systems, more aggressive physical layer tech-

nologies improving the spectral efficiency and exploiting the unexplored spectrum are

needed. Technologies under consideration include full-dimension and massive MIMO

[78], millimeter-wave communication [79], and spectrally-localized waveforms [47].

mMTC is a service category to support the access of a large number of machine-

type devices. mMTC-based services, such as sensing, tagging, metering, and monitor-

ing, require high connection density and better energy efficiency [49]. Over the years,

there have been some trials to support machine-type communications such as NB-IoT

in licensed band, SigFox and LoRa in unlicensed band [64]. These approaches are sim-

ilar in spirit but SigFox and LoRa technologies are suited for the stand alone services

while NB-IoT is a good fit for the standard compatible services. These approaches

offer some benefits, such as the low power consumption, low operation cost, and im-

proved coverage. However, in the scenario where devices significantly outnumber the

resources used for the transmission, an aggressive connection strategy violating the

orthogonal transmission principle is required. In recent years, approaches using non-

orthogonal spreading sequence or user-specific interleaving have been proposed to ac-

commodate more users than the traditional approach relying on orthogonal multiple

access [49].

URLLC is a service category to support the latency sensitive services such as re-

mote control, autonomous driving, and tactile internet [64]. Since the time it takes

for the human perception or reaction is in the order of tens of milliseconds (ms),

packet transmission time for the mission-critical applications needs to be in the order

of tens∼hundreds of microseconds (µs) [31]. While the latency of 4G LTE networks

has been significantly improved from 3G networks, the end-to-end latency is still in the

range of 30 ∼ 100 ms. This is because the backbone network typically uses the best-

effort delivery mechanism and hence is not optimized for the mission-critical service.
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To reduce the end-to-end latency, therefore, there should be fundamental changes in

both wireless link and backbone network. In the backbone link, software defined net-

work (SDN) and virtual network slicing can be used to construct the private connection

to the dedicated URLLC service [64]. Indeed, by using the dedicated network, latency

of the backbone link can be reduced significantly. Whereas, in the wireless link, over-

head should be reduced and the transmission mechanism needs to be streamlined. In

fact, since a large portion of the transmit latency is due to the control signaling (e.g.,

grant and pilot signal) and it takes almost 0.3 ∼ 0.4 ms per scheduling, it is not so

efficient to incorporate a low-latency packet transmission scheme in the current LTE

systems. For example, when we design a short packet with the transmission latency

being 0.5 ms, more than 60% of resources would be wasted for the control overhead.

To support URLLC, therefore, many parts of the physical layer should be re-designed.

1.1.2 Sparse Processing in Wireless Communications

Compressed sensing (CS) is a new paradigm to process or recover the sparse signals.

This new approach is very competitive option for information processing operations in-

cluding sampling, sensing, compression, estimation, and detection. Traditional way to

acquire and reconstruct analog signals from sampled signals is based on the Nyquist-

Shannon’s sampling theorem which states that the sampling rate should be at least

twice the bandwidth. While these fundamental principles works well, they might be

bottleneck of resource overhead and also complexity in a situation where signals are

sparse, meaning that the signals can be represented using a relatively small number

of nonzero coefficients. At the heart of the CS lies the fact that a sparse signal vector

can be recovered from the underdetermined linear system in a computationally effi-

cient way. In other words, a small number of linear measurements (projections) of the

signal contain enough information for its reconstruction. Main wisdom behind the CS

is that essential knowledge in the large dimensional signals is just handful, and thus

measurements with the size being proportional to the sparsity level of the input sig-
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Figure 1.2: Illustration of solver: l0, l1, and l2-norm minimization.

nal are enough to reconstruct the original signal. In the last decade, CS techniques

have spread rapidly in many disciplines such as medical imaging, machine learning,

radar detection, seismology, computer science, statistics, and many others. Also, vari-

ous wireless communication applications exploiting the sparsity of a target signal have

been proposed in recent years. Notable examples, among many others, include chan-

nel estimation, interference cancellation, direction estimation, spectrum sensing, and

symbol detection. To understand the principle of CS, we begin with a system given

y = Hs, (1.1)

where y ∈ Rm×1 is the measurement vector, H ∈ Rm×n is the system matrix (a.k.a.

the sensing matrix), and s ∈ Rn×1 is the desired signal vector. In the case of overde-

termined system (m ≥ n) and the system matrix is a full rank matrix, one can recover

s using a simple algorithm. However, when the system matrix is underdetermined,

finding solution is challenging and not straight-forward. When the desired vector s is

non-sparse signal, one can apply a solution minimizing the l2-norm of s. That is,

s∗ = arg min ‖s‖2 s.t. y = Hs, (1.2)
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and one can obtain the estimated desired signal s∗ as

s∗ = HT (HHT )−1y. (1.3)

When the desired signal is sparse signal, that is l0-norm of the desired signal s ‖s‖0 =

K where K < N , one can apply to find the l0-norm from the measurement vector.

s∗ = arg min ‖s‖0 s.t. y = Hs. (1.4)

Since the this solution counts the number of nonzero elements in s, one needs to search

all possible combinations which is not practical for a large N and K. Alternative ap-

proach suggested by [59] is to minimized l1-norm as follow:

s∗ = arg min ‖s‖1 s.t. y = Hs. (1.5)

Using l1-norm minimization, one can apply convex optimization for finding the solu-

tion. While the linear programing to solve l1-norm minimization problem is effective,

it requires substantial computational complexity and not feasible in the practical sce-

narios. Fig. 1.2. illustrates the difference between them. If the original vector is sparse,

while the l0 and l1-norm can find the optimal point, the l2-norm solution has no reason

to select the point on the coordinate axes. To overcome this problem, a greedy algo-

rithm has been proposed over the years. By this, one hopes to find the local optimal in

each iteration expecting to find the global optimal in the end. Most popular algorithm is

the orthogonal matching pursuit (OMP). In each iteration, a column maximally corre-

lated with the observation vector is chosen. Once the solve selects the correct columns,

now the system goes to the overdetermined system. There are three key observations

from CS recovery problem.

• When the sparse K is much smaller than the size of the desired signal vector,

one can find the support of s more accurately than s.
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• When the size of measurement vector m is given, one can recover the desired

signal vector more accurately as K decreases.

• When the fact that K < n is given to the solver, one can find more accurate s

than the solver without using the fact.

In this dissertation, we seek to find how we can use these observation for the wire-

less communication systems. That is, we seek to understand how to transform non-

sparse information and signal into the sparse signal. Motivated by this, we aim to

design a new sparse processing technique suitable for the data transmission in 5G and

beyond. We also discuss the practical benefits of sparse processing such as overhead,

throughput, and latency.

1.2 Contributions and Organization

In this dissertation, we introduce a new approach employing the sparse signal in the

transmission of data information. To be specific, we propose a transmission technique

to transform the information vector into the sparse vector to improve latency and reli-

ability. Next, we extend the proposed scheme in various applications including uplink

overlapping and pilot-less transmission. We also present the new beamforming (sparse

processing) technique to improve the channel estimation performance by minimizing

sparsity in channel (sparser than the original channel). Finally, we discuss joint ana-

log and quantized data transmission scheme to fully enjoy the benefit of estimation

performance in sparse recovery.

In Chapter 2, we focus on the downlink data transmission. As a solution for the

ultra-short packet transmission scenario, we propose a new type of short packet trans-

mission for URLLC that does not rely on the conventional channel coding principle.

Key idea behind the proposed technique, henceforth referred to as sparse vector coding

(SVC), is to transmit the short-sized information after the sparse vector transformation.

To be specific, by mapping the information into the sparse vector and then transmit-
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ting it after the random spreading, we obtain an underdetermined sparse system for

which the principle of compressed sensing can be applied [72]. It is now well-known

from the theory of compressed sensing that an accurate recovery of a sparse vector is

guaranteed with a relatively small number of measurements when the system matrix

(a.k.a. sensing matrix) is generated at random [59], which is achieved in our case via

the random spreading. In fact, since the sparsity of the input vector is guaranteed by

the sparse transformation, the SVC decoding is achieved by the sparse signal recov-

ery (more accurately, identification of nonzero positions in the transmit sparse vector).

Therefore, the proposed scheme is very simple to implement and can be applied to

wide variety of future wireless applications in which the amount of information to be

transmitted is sufficiently small.

In Chapter 3, we propose an enhanced SVC to support massive access scenario in

uplink transmission. Instead of using the sparsity of active user, we exploit the spar-

sity of information vector that is concatenated by massive user. We put forth an ap-

proach that directly exploits the sparsity of information vector to control the multiuser

interference. This, together with the fact that the symbol is spread using randomly

generated codebook controls the multiuser interference efficiently. Since the input is

a sparse vector and the system matrix is the composite of fading channel and random

spreading matrices, we can cast the symbol detection problem into the sparse support

recovery problem. In a nutshell, the proposed scheme is simple to implement, robust

to interference, and can be readily applied to various mMTC applications where the

size of transmit packet is small. From the numerical evaluations in realistic 3GPP

LTE-Advanced uplink access scenario, we demonstrate that the proposed technique is

very effective in the ultra-short packet transmission and outperforms the LTE physi-

cal uplink shared channel (PUSCH) [63] and LDS-based schemes in NOMA. We also

demonstrate that the SVC-encoded uplink access is effective in controlling multi-user

interference caused by the massive access.

In Chapter 4, we propose an improved SVC that does not require the pilot signal.
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A short packet transmission is one of the major operational modes for mission-critical

data in ultra reliable and low latency communications (URLLC) and control-type data

in massive machine-type communications (mMTC). The central challenge in the short

packet transmission is the excessive amount of overhead caused by the pilot signaling.

In this dissertation, we propose a novel scheme suitable for the short packet transmis-

sion without pilot signals, called pilot-less sparse vector coding (PL-SVC). Key feature

of PL-SVC is to map the input as a composite of the sparse vector and the fading chan-

nel and to perform decoding by finding out the nonzero positions of the sparse vector.

In this setting, the system matrix becomes a pseudo-random spreading matrix and the

input vector becomes a channel-scaled sparse vector so that the PL-SVC decoding

problem can be cast into the support detection problem in the compressed sensing. We

show from the numerical experiments in the 5G uplink scenario that PL-SVC is very

effective in the short packet transmission and outperforms conventional schemes.

In Chapter 5, we propose the pilot transmission technique that increases channel

estimation accuracy. Key idea behind the proposed technique is to transmit both analog

and quantized data using the sparse vector transformation. By mapping the quantized

data into positions of sparse vector and then setting the analog data as the magnitude

of nonzero elements, two different types of data can be jointly mapped to the sparse

vector. After spreading with sequences from multiple Zadoff-chu (ZC) sets, we obtain

an underdetermined sparse system and it is now well-known that the theory of com-

pressed sensing guarantees an accurate recovery of a sparse vector and minimize mean

square error of recovered vector with a relatively small number of measurement [59].

In fact, the decoding of quantized data is performed by the sparse signal recovery

(more accurately, identification of nonzero positions in the transmit sparse vector) and

the decoding of analog data is performed by the recovery of support value.

In Chapter 6, we look into sparse processing for pilot transmission and beam-

forming originated from the MIMO technology: full-dimension MIMO (FD-MIMO).

In Chapter 6, we present an overview FD-MIMO systems and how to beamform the
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pilot signal for capacity improvement. We then develop the novel beamforming tech-

nique named time-domain sparse beamforming to enhance throughput by minimizing

overhead in pilot transmission. By designing beamforming weight that minimize non-

zero element in time-domain channel impulse response (CIR) in time-domain of pilot

signal, the required pilot overhead can be minimized but user full diversity gain in

data transmission. Pilot beamforming and CSI acquisition strategy for IoT systems to

achieve reduction in the pilot overhead and enhancement in the channel estimation

quality are suggested. Key idea of the proposed method, referred to as time-domain

sparse beamforming (TDSB), is to sparsify the time-domain channel vector using

the preprocessing (beamforming) at the basestation. To be specific, using the delib-

erately designed antenna-domain beamforming, we sparsify the beamformed time-

domain channel vector. As a result, only a few samples are required to perform the

channel estimation and whole CSI can be acquired with partial pilot symbols in time

and frequency. From the numerical evaluations, we show that the proposed scheme

outperforms conventional channel estimation schemes [70-73] and achieves NT -fold

reduction in the pilot overhead.

Chapter 7 summaries the contributions of the dissertation and discuss the future

research directions based on studies of this dissertation.

1.3 Notation

This dissertation uses the following notation: transpose, hermitian, and inverse of a

matrix A are represented by AT , AH , and A−1, respectively. In addition, E[·] indi-

cates the expectation operator. For the matrix representation, In is the n × n identity

matrix, 0m,n indicates an m × n matrix consisting of all zeros, and 0n is used for a

zero vector of size n. Besides, 〈a,b〉 is the inner product between two vector a and b.

Cm×n, Rm×n, and CN (0, σ2) denote anm×nmatrix whose components are complex

values, an m × n matrix whose components are real values, and a complex Gaussian
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random variable with zero mean and variance σ2, respectively.
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Chapter 2

Sparse Vector Coding for Downlink Ultra-reliable and

Low Latency Communications

In this chapter, we propose a new type of short packet transmission for URLLC that

does not rely on the conventional channel coding principle. Key idea behind the pro-

posed technique, henceforth referred to as sparse vector coding (SVC), is to transmit

the short-sized information after the sparse vector transformation. To be specific, by

mapping the information into the sparse vector and then transmitting it after the ran-

dom spreading, we obtain an underdetermined sparse system for which the principle of

compressed sensing can be applied. Since the sparsity of the input vector is guaranteed

by the sparse transformation, the SVC decoding is achieved by the sparse signal recov-

ery (more accurately, identification of nonzero positions in the transmit sparse vector).

Therefore, the proposed scheme is very simple to implement and can be applied to

wide variety of future wireless applications in which the amount of information to be

transmitted is sufficiently small.

The work of Chapter 2 has been published in part in [53–55].
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2.1 Introduction

Ultra reliable and low latency communication (URLLC) is a newly introduced ser-

vice category in 5G to support delay-sensitive applications such as the tactile inter-

net, autonomous driving, factory automation, cyber-physical system, and remote robot

surgery [46]. In order to support this new service category, 3rd Generation Partnership

Project (3GPP) sets an aggressive requirement that a packet should be delivered with

10-5 packet error rate (PER) within 1 ms period [64]. One notable observation in these

applications is that the transmit information is control (command) type information

(e.g., move left/right, start/stop, rotate/shift, and speed up/down) so that the amount of

information to be delivered is tiny [47]. Since the current wireless transmission strat-

egy designed to maximize the coding gain by transmitting capacity achieving long

codeblock is not relevant to these URLLC scenarios, entirely new transmission strat-

egy to support the short packet transmission is required. While there have been some

efforts to improve the connection density, the medium access latency, and the relia-

bility of the re-transmission scheme for URLLC [6-9-32-49-50-65], not much work

has been done for the short-sized packet transmission except for the consideration of

advanced channel coding schemes (e.g., polar code) [48].

In the current 4G systems, reliability of the data transmission is mainly achieved by

the channel coding scheme [63]. Encoding at the basestation is done by the convolution

coding and the decoding at the mobile terminal is done by the maximum likelihood

decoding (MLD) or Turbo decoding. While this approach has shown to be effective

in 4G systems, use of this scheme in URLLC scenario would be problematic since

there is a stringent limitation on the packet length (and thus the parity size) yet the

required reliability (target PER = 10-5) is much higher than the current LTE-Advanced

and LTE-Advanced Pro systems (target PER = 10-2∼10-3) [48].

The purpose of this chapter is to propose a new type of short packet transmission

for URLLC that does not rely on the conventional channel coding principle. Key idea

behind the proposed technique, henceforth referred to as sparse vector coding (SVC),
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is to transmit the short-sized information after the sparse vector transformation. To

be specific, by mapping the information into the sparse vector and then transmitting it

after the random spreading, we obtain an underdetermined sparse system for which the

principle of compressed sensing can be applied [72]. It is now well-known from the

theory of compressed sensing that an accurate recovery of a sparse vector is guaranteed

with a relatively small number of measurements when the system matrix (a.k.a. sensing

matrix) is generated at random [59], which is achieved in our case via the random

spreading. In fact, since the sparsity of the input vector is guaranteed by the sparse

transformation, the SVC decoding is achieved by the sparse signal recovery (more

accurately, identification of nonzero positions in the transmit sparse vector). Therefore,

the proposed scheme is very simple to implement and can be applied to wide variety

of future wireless applications in which the amount of information to be transmitted is

sufficiently small.

Noting that the proposed SVC is conceptually similar to the index modulation (IM)

techniques [14-15] in which the indices of the building block of the communication

systems, such as transmit antennas at the basestation or subcarrier groups in OFDM

systems, are used to convey additional information bits. In the spatial modulation-

based IM technique, for example, by using part of transmit antennas in the informa-

tion transmission, additional information can be delivered. Our work is distinct from

these studies in that we fully utilize the physical resources in the data transmission so

that the loss, if any, caused by the underutilization of physical resources can be pre-

vented. Also, in contrast to the IM technique where the receiver processing consists of

two steps (the index recovery and symbol detection), decoding of the proposed SVC

scheme is achieved by the support identification which is in general much simpler

than the sparse recovery [72]. The distinction of SVC over the IM technique is fur-

ther strengthened by the fact that IM has no random sensing mechanism (e.g., random

spreading in SVC) so that the compression of the transmit vector is not possible.

From the performance analysis in terms of the decoding success probability and
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also numerical evaluations on the realistic setting, we demonstrate that the proposed

SVC technique is very effective in short-size packet transmission and outperforms the

4G LTE and LTE-Advanced physical downlink control channel (PDCCH) scheme by

a large margin in terms of reliability and transmission latency.

The rest of this chapter is organized as follows. In Section 2.2, we discuss the

key requirements for URLLC, and follows physical-layer of URLLC in Section 2.3. In

Section 2.4, we briefly explain the short-sized packet transmission in 4G LTE and LTE-

Advanced systems. In Section 2.5, we present the proposed SVC scheme and explain

the encoding and decoding operations. In Section 2.6, we analyze the success proba-

bility of SVC-encoded data transmission. Various implementation issues are discussed

in Section 2.7. In Section 2.8, we present simulation results to verify the performance

of the proposed scheme. We conclude the dissertation in Section 2.9.

2.2 URLLC Service Requirements

In order to come up with proper solutions to URLLC, it is necessary to understand the

key requirements first. In this section, we present the latency and reliability require-

ments and then discuss the requirement related to the coexistence of URLLC and other

services.

2.2.1 Latency

Physical layer latency TL can be divided into the following five components (see Fig.

2(a)):

TL = Tttt + Tprop + Tproc + Tretx + Tsig, (2.1)

• Tttt is the time-to-transmit latency which corresponds to the time to transmit a

packet.

• Tprop is the signal propagation time from the transmitter to the receiver.
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Figure 2.1: Physical layer downlink scenarios in URLLC service: a) illustration of la-
tency components; b) transmission of eMBB, mMTC, and URLLC packet in subframe
level, and scheduling of URLLC packet into eMBB packet in symbol level.
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• Tproc is the time to perform the encoding and decoding, and also the channel

estimation in the initial transmission.

• Tretx is the time caused by the re-transmission.

• Tsig is the pre-processing time for the signaling exchange such as connection

request, scheduling grant, channel training and feedback, and queuing delay.

In response to the ITU requirements, 3GPP decided that the average latency of URLLC

(from L2/L3 ingression to L2/L3 egression) should be less than 0.5 ms [48]. In order

to meet this stringent latency constraint, a packet transmission time Tttt should be in

the order of hundreds of microseconds. Since Tttt of the current 4G LTE systems is

1 ms period, a new frame structure reducing Tttt should be introduced. Also, since

the latency caused by the channel estimation and feedback would be a bottleneck for

the URLLC transmission, a transmission scheme that does not rely on the channel

information needs to be considered.

2.2.2 Ultra-High Reliability

In 4G LTE systems, typical reliability for a packet transmission is 0.99. Two key in-

gredients to achieve this goal are the channel coding (convolution and Turbo code) and

the partial re-transmission of erroneous transport block called hybrid automatic repeat

request (HARQ). URLLC services require much better performance, and in fact, the

target reliability within 1 ms period should be at least 0.99999 [48]. Further, in the

mission-critical applications such as autonomous driving and remote surgery, the reli-

ability should be as high as 1− 10−7 [64]. The first thing to do to meet these stringent

requirements is to improve the channel estimation accuracy. This is because the chan-

nel coding gain is small for the short packet so that the loss, if any, caused by the

channel estimation should be prevented as much as possible. This is done by adding

more resources to the pilot and using an advanced channel estimation technique. Even

in this case, the required URLLC performance might not be satisfied so that additional
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resources in the frequency, antenna, and spatial domains are required to improve the

reliability. Further, an advanced channel coding scheme suitable for the short packet

transmission should be employed.1. In case the slot length is very short, repetitive

transmission scheme using time-domain resources can also be a viable option.

2.2.3 Coexistence

When there is a URLLC service request, whether in the scheduling period or in the

middle of eMBB or mMTC transmission, the basestation should transmit the URLLC

packet immediately [47]. In other words, to support the URLLC packet transmission,

ongoing eMBB and mMTC packets should be stopped without notice. As illustrated

in the Fig. 2(b), when a transport block consisting of 3 codeblocks is transmitted

for the eMBB service, each codeblock is mapped sequentially to the scheduled time-

frequency resources. Thus, when the URLLC service is initiated in the middle of the

eMBB transport block, part of symbols in the third codeblock are replaced by the sym-

bols of the URLLC packet. Since this interrupt is not reported to the mobile devices

in use, reception quality of the eMBB and mMTC services will be degraded severely.

This problem, dubbed as a coexistence problem in the 3GPP NR discussion, is a se-

rious concern to the non-URLLC services so that a proper mechanism to protect the

ongoing services should be introduced.

2.3 URLLC Physical Layer in 5G NR

In contrast to the 4G LTE systems, latency, reliability, and throughput requirements

should be jointly considered in 5G NR so that there should be a fundamental change

in the physical layer architecture (packet, slot, and frame). Specifically, a latency-

sensitive packet structure for the fast decoding process and a flexible frame structure

to support the dynamic change of the resource grid based on the latency requirement
1In LTE systems, 12 or 24 resource elements are allocated for demodulation reference signal (DMRS)

per resource block (RB)
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are needed. Also, when the URLLC service is initiated, the URLLC packet should

be transmitted instantly without delay. To do so, a scheduling scheme minimizing the

transmit latency of the URLLC packet should be introduced. Further, since the latency

requirement might not be satisfied by the HARQ-based re-transmission unless TTI of

a packet is very short, a mechanism that significantly reduces the re-transmission la-

tency is required. Besides, an approach to use multiple radio interfaces to reduce the

latency can be employed. Basic idea of this approach is to choose the radio access

technology (RAT) providing the minimum latency among all possible options includ-

ing 4G LTE, 5G NR, WiFi, and other IEEE 802.x standards. Using this together with

the device-to-device (D2D) communications, the network layer latency can be reduced

substantially.

In this section, we put our emphasis on the physical layer solutions for URLLC

including packet and frame structure to minimize the latency, multiplexing schemes

to overlay the URLLC service into eMBB and mMTC services, and approaches to

deal with the coexistence problem. We note that the reliability improvement and the

latency reduction are equally important for the success of URLLC. However, there has

been a consensus in the 3GPP NR standard meeting that the latency reduction issue

should be considered by priority. This is because the reliability improvement can be

achieved by the elaboration of 4G techniques such as channel coding, antenna, space,

and frequency diversity schemes but such is not the case for the latency reduction

effort [32-33].

2.3.1 Packet Structure

The key issue in the URLLC packet design is to minimize the processing latency Tproc

and the time-to-transmit latency Tttt. Note that Tproc consists of the time to receive

packets, acquire channel information, extract control (scheduling) information, decode

data packets, and check errors. In LTE systems, a square-shaped packet structure is

popularly used for the efficient utilization of the spectrum under the channel fading.
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Whereas, in 5G NR systems, a non-square packet stretched in the frequency axis is

used as a baseline since this structure minimizes the transmission latency Tttt [34].

Furthermore, in order to reduce the latency Tproc, three components of a packet, (pilot,

control, and data part) should be grouped together to make a pipelined processing of

the channel acquisition, control channel decoding, and data detection (see Fig. 3(a)).

Another important issue to be considered is to use an advanced channel coding

scheme. In 4G systems, two types of approaches have been employed to ensure relia-

bility requirement. The first type is the channel coding scheme (Turbo and convolution

code) with cyclic redundancy check (CRC) attachment for the large-sized packet. The

second type is to use a simple code (the repetition and Reed-Muller code) without

CRC attachment for the small-sized packet. In 5G NR, Polar code and low density

parity check (LDPC) code have been adopted for the enhancement of control and data

channel, respectively. Over the years, many efforts have been made to improve the de-

coding performance and computational complexity (and hence processing latency) of

these codes such as successive cancellation list decoding of Polar code and non-binary

LDPC decoding [33].

2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes

One of the main goals in 5G NR is to design a unified frame structure to cover a wide-

range of frequency band and various service categories. To this end, flexible frame

structure and user scheduling mechanism have been introduced.

One direct option to reduce the time-to-transmit latency Tttt is to reduce the sym-

bol period (see Fig. 3(b)). When the frequency band above 6 GHz (millimeter-wave) is

used, due to the path loss, cell radius would be much smaller than that of conventional

cellular systems and so will be the channel delay spread. In this case, by controlling

the subcarrier spacing, we can reduce the symbol period (see Fig 3(c)). For instance,

the symbol length can be reduced by half (from 72 µs to 36 µs) by doubling the subcar-

rier spacing (from 15 kHz to 30 kHz). In doing so, the time to transmit one subframe
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Figure 2.2: Packet and frame structure for URLLC: (a) packet structure; (b) frame
structure; (c) supported numerologies for 5G NR.

can be reduced by half (from 1 ms to 0.5 ms). However, when the frequency band

below 6 GHz is used, this option might not be desirable due to the large delay spread.

In this case, one can alternatively consider reducing TTI of the packet. For example,

using mini-slot level (2∼3 symbols) and slot level (7 symbols) transmission, Tttt can

be reduced to 142, 241, and 500 µs, respectively. In short, by controlling the symbol

period and also the number of symbols in a packet, Tttt being smaller than 1 ms can be

achieved (see Table in Fig. 3(b)). Note that to support this flexible frame structure, an

advanced receiver equipped with fast tracking, quick synchronization, and simultane-

ous decoding functions is needed.

Since the URLLC packet is generated abruptly, how to schedule this into existing

services is an important issue in the system design. Two schemes adopted in 3GPP NR

standard are the instant scheduling and reservation-based scheduling [34].
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• Instant scheduling: Any ongoing data transmission is interrupted to initiate the

URLLC packet. This protocol is effective in reducing the URLLC access time

but causes a severe performance degradation. Therefore, an approach to mitigate

the performance degradation of ongoing services is needed (see Section IV. C).

• Reservation-based scheduling: In this scheme, URLLC resources are reserved

prior to the data scheduling. Two types of reservation schemes are semi-static

and dynamic reservations. In the semi-static reservation scheme, the basesta-

tion infrequently broadcasts the configuration of the frame structure such as fre-

quency numerology and service period. Whereas, in the dynamic reservation

scheme, information on the URLLC resource is updated frequently using the

control channel of a scheduled user. For example, if an eMBB packet consists of

14 symbols, then 10 symbols are used for the eMBB transmission and the rest

are reserved for the URLLC service. Drawback of this approach is that when

there is no URLLC transmission in the scheduled period, resources reserved for

the URLLC service will be wasted. When compared to the semi-static reserva-

tion, the dynamic reservation requires additional control overhead to indicate the

reservation information. Also, an overhead to ensure the reliability of the control

signaling itself is unavoidable.

2.3.3 Solutions to the Coexistence Problem

As mentioned, the holy grail of 5G NR is to support diverse service categories and

thus how to mitigate the performance degradation of interrupted services is an impor-

tant issue in the physical layer design. While the flexible frame structure may ease

off this problem, due to the implementation complexity and randomness of URLLC

packet arrival, a more deliberate solution is required in real deployment scenarios.

Two approaches discussed in the 5G NR standard meetings are reactive and proactive

strategies.

The main idea is to give a priority to the URLLC packet while ensuring the re-
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liability of the other channel interrupted by URLLC. Two approaches adopted in the

3GPP NR are as follows [47].

• Preemption indicator transmission: In this approach, the basestation indicates

which resources are used for the URLLC transmission. Recalling that the URLLC

packet is stretched in the frequency axis (see Fig. 3(a)), URLLC transmission

will interrupt the whole system bandwidth and thus degrade all data channels

in use. To notify this event to the scheduled users, the basestation broadcasts

a preemption indicator consisting of time and/or frequency information of the

interruption. This indicator helps users identify the reason for packet errors and

what part of the packet is safe from the interruption.

• Re-transmission of selected codeblocks: When the ongoing service is inter-

rupted by the URLLC transmission, part of the codebook affected by URLLC

is re-transmitted. By transmitting combining indicator or flush-out indicator,

the receiver can perform the soft symbol combining of the transmitted and re-

transmitted codeblocks. One can further achieve better coding gain by lowering

the code rate of the re-transmitted codeblock.

If the URLLC transmission occurs frequently, the efficiency of the reactive ap-

proach will be reduced due to the frequent re-transmissions. The main idea of the

proactive strategy is to ensure the reliability of ongoing services while supporting the

URLLC transmission. Specific schemes to support the proactive strategy include ro-

bustness improvement and service sharing.

• Robustness improvement: To reduce the initial packet error of non-URLLC

packets, the basestation intentionally lowers the code rate by adding extra parity

bits or employing outer error correction code to the non-URLLC packets [34].

Since the URLLC data transmission interferes non-URLLC packets, this ap-

proach can help reducing the packet error of non-URLLC packets.
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• Resource sharing: This strategy supports the ongoing data channel and the URLLC

data channel simultaneously. Multiple antenna or beam-domain techniques are

employed for this purpose. Basically, the spatial layer (rank) of the channel are

divided into two and then one part of the layers is used for eMBB and the other

is used for URLLC. If there is no extra spatial layer, then the power-domain

non-orthogonal transmission can be applied [49].

2.4 Short-sized Packet in LTE-Advanced Downlink

In this section, we briefly review the control-type data transmission (PDCCH of 4G

LTE systems) to illustrate the short-sized packet transmission in the conventional sys-

tems. PDCCH carries essential information for the mobile terminal when it tries to

transmit or receive the data. To be specific, PDCCH carries small-sized information

needed to decode the data channel (e.g., resource assignment, modulation order, code

rate). On top of these, cyclic redundancy check (CRC) is added to test the decoding er-

ror [16]. Since the CRC bit stream is scrambled with a user index (called radio network

temporary identifier), the only scheduled user can pass the CRC test.

After the channel coding and symbol mapping,2 the modulated symbol vector s ∈

CN×1 is transmitted. The corresponding received vector y ∈ Cm×1 is given by

y = HRs + v, (2.2)

where H ∈ Cm×m is the diagonal matrix whose diagonal entry hii is the channel

component for each resource, v ∼ CN (0, σ2
vI) is the additive Gaussian noise, and

R ∈ Cm×N is the matrix describing the mapping between the symbol and resource

element. For example, when one symbol is mapped to a single resource, R would be

the identity matrix (R = I). Whereas, if two resources are assigned to one symbol
2e.g., convolution coding with rate 1

3
and quadrature phase shift keying (QPSK) modulation are em-

ployed.
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for the transmit diversity, then R would be 2N × N matrix (e.g., if N = 2, then

R =
[

1 0 1 0

0 1 0 1

]T
).

When one tries to improve the reliability with a small modification of current PD-

CCH, one can think of three options. The first option is to achieve the better coding

gain by using lower code rate (i.e., r = b
2N < rpdcch = 1

3 ). This option is easy

and straightforward but when the coded symbol length N increases, transmission and

processing latency will also increase, resulting in the violation of the URLLC require-

ment. The second option is to use the multiple resources to achieve the diversity gain

(m > N ). By combining multiple versions of the same symbol at the receiver, re-

liability of the symbol can be improved. The problem of this approach is that a large

portion of wireless resources are consumed in achieving the diversity gain so that there

would be a severe degradation of the resource utilization efficiency. The third option

is to reduce the size of control information b. By removing some of the scheduling

parameters, resources used for the control channel can be saved. Even in this case, it

is not possible to remove essential information (e.g., CRC and user index) so that one

cannot expect a dramatic reduction of control information.

2.5 Sparse Vector Coding

2.5.1 SVC Encoding and Transmission

The key idea of the proposed SVC technique is to map the information into the po-

sitions of a sparse vector s. Figuratively speaking, SVC encoding can be thought as

marking a few dots to the empty table. As illustrated in Fig. 2.3, if we try to mark

dots to two cells out of 9, then there would be
(

9
2

)
= 36 choices in total. In general,

when we choose K out of N symbol positions, we can encode blog2

(
N
K

)
c bits of in-

formation. Example of one-to-one mapping between the information bit stream w and
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1 0 0 0 1 0 0 0 0

Figure 2.3: Metaphoric illustration of SVC encoding. Information is mapped into the
position of a sparse vector.

Table 2.1: Example of mapping between the information w and the sparse vector s

Input: (w)(10) s
Size of sparse vector N , 0 000011
information vector w 1 000101

Output: 2 000110
Sparse vector s 3 001001
a := 0 4 001010
for i = 2 to N do 5 001100
for j = 1 to i− 1 do 6 010001
if a = (w)(10) 7 010010
s :=

(
2i + 2j

)
(2)

8 010100
end if 9 011000
a := a+ 1 10 100001

end for :
end for :

Note: (w)(10) is decimal expression of binary vector w and (w)(2)

is binary expression of integer w.

transmit sparse vector s is (see example in Table I)

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1
...

1 1 1 1 1︸ ︷︷ ︸
b-bit information w(b=5)

←→

←→

←→
...

←→

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 1
...

1 0 0 0 0 0 0 0 1︸ ︷︷ ︸
K−sparse vector s (K=2)

.

After the sparse mapping, each nonzero element in s is spread into m resources

using the codeword (spreading sequence) in the spreading codebook C. While it is

possible to allocate resources either in time, frequency axis or hybrid of these, in this

work, we assume that they are allocated in the frequency axis (see Fig. 2.4(a)). This

choice will not affect the system model but minimizes the transmission latency. As a
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result of this spreading process called the multi-code spreading, the resource mapping

matrix R in (1) is replaced with the codebook matrix C = [c1 c2 · · · cN ] where

ci = [c1i c2i · · · cmi]T is the spreading sequence. For example, if the first and the

third element of s are nonzero, then the transmit vector after spreading is

x = Cs

= s1c1 + s3c3. (2.3)

Since the positions of nonzero elements are chosen at random, the codebook matrix

C should be designed such that the transmit vector x contains enough information

to recover the sparse vector s irrespective of the selection of the nonzero positions.

It has been shown that if entries of the codebook matrix C are generated at random,

e.g., sampled from Gaussian or Bernoulli distribution, then an accurate recovery of the

sparse vector is possible as long as m = O (K logN) [59]. Example of C for m = 5

and N = 10, when elements of ci are chosen from the Bernoulli distribution, is given

by

C =
1

α



1 1 1 1 −1 1 −1 1 −1 −1

1 −1 1 −1 1 −1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 1 1 −1 −1

−1 1 1 1 −1 −1 −1 −1 1 1


,

(2.4)

where α is the normalization factor depending on the modulated symbols (see Chapter

2.5.2). The corresponding received signal y is

y = Hx + v

=
[
Hc1 Hc3

]s1

s3

+ v. (2.5)
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In general, the received vector y is given by

y = HCs + v

=


h11

. . .

hmm


c1 . . . cN



s1

...

sN

+


v1

...

vm


.

(2.6)

It is worth mentioning that an accurate recovery of the sparse vector s is unnecessary

in SVC since the decoding of the information vector is achieved by the identification

of nonzero positions, not the actual values of this vector. The fact that the decoding

is done by the support3 identification greatly simplifies the decoding process and also

reduces the chance of decoding failure. The overall structure of the proposed SVC is

depicted in Fig. 2.4(b).

The benefits of SVC can be summarized as follows; First, the transmission power

of the data channel is concentrated on the nonzero elements of an information vector.

Thus, when compared to the conventional system in which the transmission power is

uniformly distributed across all symbols, effective transmit power per symbol is higher.

Second, the SVC decoding process achieved by the sparse recovery algorithm lends

itself to the test of decoding success/failure so that the CRC operation is unnecessary.

This directly implies that the code rate of SVC can be made smaller than the rate of

PDCCH. Specifically, when the number of resources used for the data channel is m

and QPSK modulation is used, the code rate of SVC is rsvc = bi
2m (bi is the number of

information bits) and the code rate of PDCCH is rpdcch = (bi+bc)
2m

(
= 1

3

)
. If the number

of CRC bits is bc = βbi (β > 0), then m = 3
2(bi + bc) = 3

2(bi + βbi). Thus, the code

rate of SVC can be expressed in term of β as

rsvc =
bi

2m
=

1

3(1 + β)
<

1

3
= rpdcch. (2.7)

3Support is the set of nonzero elements. For example, if s = [0 0 1 0 0 1], the Ωs = {3, 6}.
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yŝ

Basestation encoding

Decoding at mobile station

(b)

Figure 2.4: SVC-based packet transmission: (a) packet structure of 4G (left) and the
URLLC packet (right) and (b) the block diagram for the proposed SVC technique.
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Table 2.2: PDCCH versus SVC technique

PDCCH SVC technique
Coding (en-
coding/decoding)

Convolution code ( 1
3

rate) /
Viterbi decoding

Sparse encoding / CS recovery
algorithm

Transmission Time/frequency mapping Spreading in frequency direc-
tion

User identification CRC scrambled with user index User codebook C

Resource overhead (L
repetitions, QPSK)

L 3b
2

Lm where m is the size of
spreading length

Third, when m is sufficiently large, the basestation can easily assign the distinct code-

book C for each user. This is because codebook matrices can be made near orthogonal

by using a properly designed codebook generation mechanism.4 For example, when

m = 42 and the codebook is generated by the Bernoulli distribution, then there are 242

different spreading sequences ci. Thus, if N = 96, then the basestation can support

maximally 235(≈ 242

96 ) devices. Last but not least important benefit of SVC is that the

implementation cost is small and the processing latency is low. Encoding is done via

a simple injective mapping and spreading, which can be realized by the look-up table

and addition/subtraction operations and the decoding is performed by the support de-

tection and demapping. In particular, since the sparsity K is small and also known to

the receiver, one can decode the SVC packet using a simple sparse recovery algorithm

such as orthogonal matching pursuit (OMP) [72].5 Comparisons of PDCCH and SVC

are summarized in Table. 2.2.

2.5.2 SVC Decoding

As mentioned, the SVC decoding is done by the identification of the support and any

sparse recovery algorithm can be employed for this purpose. In this work, we employ

the greedy sparse recovery algorithm in the decoding of the SVC-encoded packet. Af-
4The correlation between two distinct columns of random matrix decreases exponentially as the di-

mension of a column increases (see, e.g., [17, Theorem 1]).
5Most of CS algorithm finds out the solution without the prior knowledge of the sparsityK. However,

when K is known in advance, one can recover the sparse vector more accurately by using the sparse-
aware recovery technique [25].
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ter pre-multiplying the diagonal matrix constructed by the complex exponential ej]h,

the modified received vector can be expressed as

ỹ = diag [exp(j]h11) . . . exp(j]hmm)] y

= diag
[
h̃
]

Cs + ṽ

= H̃Cs + ṽ

= ΦCs + ṽ, (2.8)

where ]h is the angle of h, h̃ = [h11e
j]h11 . . . hmme

j]hmm ], H̃ = diag
[
h̃
]
, and

ṽ = [ṽ1, . . . , ṽm] is the modified noise vector where ṽi = vie
j]hii . Since s has K

nonzero elements, the modified received vector ỹ = H̃Cs + ṽ can be expressed as a

linear combination of K columns of Φ = H̃C perturbed by the noise. In view of this,

the main task of the SVC decoding is to identify the columns in Φ participating in the

modified received vector. In each iteration, greedy sparse recovery algorithm identifies

one column of Φ at a time using a greedy strategy. Specifically, a column of Φ that is

maximally correlated with the (modified) observation rj−1 is chosen. That is, an index

of the nonzero column of Φ chosen as j-th iteration is6

ωj = arg max
l
|<φl, r

j−1>|2, (2.9)

where rj−1 = ỹ − Φ
Ωj−1

s
ŝj−1 is the modified observation called the residual and

ŝj−1 = Φ†
Ωj−1

s
ỹ is the estimate of s at (j − 1)-th iteration.7

A better way to improve the decoding performance is to use the maximum likeli-

hood (ML) detection. Recalling that the sparsity K is known to both transmitter and

receiver, the ML detection problem for the system model in (2.9) is

s∗ = arg max
‖s‖0=K

Pr(ỹ|s, H̃,C), (2.10)

6If Ω = {1, 3}, then ΦΩ = [φ1 φ3].
7Φ† = (ΦTΦ)−1ΦT is the pseudo-inverse of Φ.
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Figure 2.5: Snapshot of the ratio between residual magnitude ‖rk‖22 and ‖ỹ‖22 as a
function of the number of iterations in the OMP algorithm. Signal-to-noise ratio (SNR)
is set to 0 dB and the sparsity K is set to 4.

where ‖s‖0 is the `0-norm of s counting the number of nonzero elements in s. Since

our goal is to find out the support of s, we alternatively have

Ω∗s = arg max
|Ωs|=K

Pr(ỹ|Ωs, H̃,C), (2.11)

where |Ωs| is the cardinality of the set Ωs.

To find out the ML solution, we need to enumerate all possible combinations of

candidate supports with cardinality K. Unfortunately, this exhaustive search would

not be feasible for most practical scenarios. In this work, we instead use the multipath

match pursuit (MMP) algorithm [18], a recently proposed near-ML sparse recovery

algorithm, as a baseline for the SVC decoding. In a nutshell, MMP performs an effi-

cient tree search to find out the near-ML solution to the original sparse vector. Unlike

the single-path search algorithm, MMP selects multiple promising indices in each it-
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eration. Specifically, each candidate chosen in an iteration brings forth multiple new

child candidates. After finishing K iterations, candidate s∗ having the smallest cost

function among all candidates is chosen as the final output (i.e., s∗ = arg min
ŝ
J (̂s)

where J (̂s) = ‖ỹ −ΦΩŝ
ŝ‖2). Due to the fact that many candidates are redundant and

hence counted only once, an actual number of candidates examined in MMP are quite

moderate [18].

One clear advantage of MMP, in the perspective of SVC decoding, is that it deteri-

orates the quality of incorrect candidate yet does not impose any estimation error to the

correct one. This is because the quality of incorrect candidates gets worse due to the

error propagation while no such behavior occurs to the correct one. In particular, since

nonzero values of an original sparse vector s are known to the receiver,8 no estimation

error will be introduced in the correct candidate. We note that the computational com-

plexity of the SVC decoding is marginal since the computational complexity of the

greedy sparse recovery algorithm is directly proportional to the sparsity K.9 Accord-

ingly, the processing latency of SVC decoding can also be made sufficiently small.

This is in contrast to the Viterbi or Turbo decoding algorithm in which the computa-

tional complexity is proportional to the length of a codeblock [19]. In Table 2.3 and

Fig. 2.6, we present the comparison of computational complexity [58]. As a metric, we

use the number of operation (e.g., add, multiplex) for decoding. Under the assumption

in practical regime, we clear see that SVC outperforms the conventional CC below

b = 25.

2.5.3 Identification of False Alarm

Overall, there are two kinds of false alarm events causing the decoding failure: 1) sup-

port detection when the basestation transmits information to the different user and 2)
8Since the goal of SVC decoding is to find out the nonzero positions of a sparse vector, we can

pre-define values of the nonzero elements in s.
9In each iteration, greedy sparse recovery algorithm performs three operations: support identifica-

tion, nonzero element estimation, and residual update. Since the nonzero values are fixed and known in
advance, estimation of the nonzero elements is unnecessary.

33



Table 2.3: Complexity of PDCCH and SVC technique

PDCCH (LTE CC (r, 1,M))
[58]

SVC technique

The number of opera-
tions (OP)

(r+ 7.5 + r2r−1 + 2M+1)(b+
TB)

Km(N + 1)

Comparison When r = 3,M = 7, TB =
15 than OP = 1000(b+ 15)

When K = 2, N = 2m than
OP = 64b2
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0
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O
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Figure 2.6: The number of operations as the function of information bit b

support detection when there is no transmission at the basestation. In order to pre-

vent these events, we need to examine the residual magnitude in each iteration. Firstly,

when a packet for the different user is received, the codebook between two distinct

users would be different from each other so that the magnitude of the correlation µij

between two codewords, each being chosen from two district codebooks would be

small. In this case, clearly, one cannot expect a substantial reduction in the residual

magnitude. Secondly, when there is no transmission, the received vector will measure

the noise only (i.e., ỹ = ṽ) and thus some column in Φ, say φl, will be added to the
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Table 2.4: The proposed MMP-based SVC decoding algorithm

Input:
Measurement ỹ, sensing matrix Φ = H̃C, sparsity K,
number of expansion L, max number of search candidate lmax,
stop threshold ε, detection threshold ε

Output:
Support set Ω̂

Initialization:
l := 0 (candidate order), ρ :=∞ (minimum magnitude of residual)

While: l < lmax and ε < ρ do
l := l + 1
r0 := ỹ
[p1, ... , pK ] := compute_pk(l, L) (compute layer order)
for k = 1 to K do (investigate l-th candidate)
ω̃ :=compute_ω(k, L) (choose L best indices)
Ωkl := Ωk−1

l ∪ {ω̃pk} (construct a path in k-th layer)
rk := ỹ −ΦΩk

l
sk (update residual)

Ω̂k := Ωkl (update support set)
end for
if ‖rK‖22 < ρ then (update the smallest residual)
ρ := ‖rK‖22
if ‖r

K‖22
‖y‖22

> 1− ε then (false-alarm identification)

Ω̂∗ := 0
end if

Ω̂∗ := Ω̂K

end if
end while
return Ω̂∗

function compute_pk(l, L)
t := l − 1
for k = 1 to K do
pk := mod (t, L) + 1
t := floor(t/L)

end for return [p1, ... , pK ]
end function
function compute_ω(k, L)
if k = odd then
return arg max

|π|=L
‖(<〈 φT

‖φ‖2
rk−1〉)π‖22

else
return arg max

|π|=L
‖(=〈 φT

‖φ‖2
rk−1〉)π‖22

end if
end function

residual in each iteration ri = ri−1−φlŝl (see Fig. 2.5). Based on these observations,

we declare the decoding failure when the residual magnitude is outside of the confi-
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dence interval of the pure noise contribution. We will say more about the selection of

confidence interval Chapter 2.7.5.

The proposed MMP-based SVC decoding algorithm is summarized in Table 2.4.

2.6 SVC Performance Analysis

In this section, we analyze the decoding success probability of the SVC technique.

As mentioned, decoding of the SVC-encoded packet is successful when all support

elements are chosen by the sparse recovery algorithm so that we analyze the probabil-

ity that the support is identified accurately. In our analysis, we assume that the greedy

sparse recovery algorithm is used in the decoding process and analyze the lower bound

of the success probability. For analytic simplicity, we initially consider K=2 scenario

and then extend to the general case. Without loss of generality, we assume that p and

q-th elements of s are nonzero (i.e., Ωs = {p, q}). Further, by setting the information

vector such that sp = 1 and sq = j, we can model the QPSK transmission.

Following lemmas will be useful in our analysis.

Lemma 1. Consider the vector ai (i = 1, · · · , N ) whose element is i.i.d. standard

Gaussian. Then, aTi aj
‖ai‖2 is standard Gaussian. That is, aTi aj

‖ai‖2 ∼ N (0, 1).

Proof. Let ui = ai
‖ai‖2 , then it is clear that ui is a random vector with zero mean

and unit variance. Also, let X =
aTi aj
‖ai‖2 , then X = uTi aj . One can easily show that

X conditioned on any realization of ui = u is a standard Gaussian. This is because

E[X|ui = u] = E[uTaj ] = uTE[aj ] = 0 and V ar(X|ui = u) = E[uTaja
T
j u] =

uTu = 1. Further,

fX(x) =

∫
u
fX|ui(x|u)fui(u)du

=
1√
2π

exp

(
−x

2

2

)∫
u
fui(u)du

=
1√
2π

exp

(
−x

2

2

)
, (2.12)
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which is the desired result.

Lemma 2. Consider the vector h̃ = [h̃11 h̃22 · · · h̃mm]T where h̃ii = hiie
j]hii . The

probability density function (PDF) of the ‖h̃‖22 is Chi-squared distribution with

f‖h̃‖22
(x) =

xm−1 exp (−x)

Γ(m)
, (2.13)

where Γ(m) = (m− 1)! is the Gamma function and E
[
‖h̃‖22

]
= m.

Proof. ‖h̃‖22 can be expressed as ‖h̃‖22 = ‖h‖22 =
∑m

i=1 |hii|2 =
∑m

i=1(<(hii)
2 +

=(hii)
2) where <(c) and =(c) are the real and imaginary part of c, respectively. Since

<(hii), =(hii)∼ N (0, σ
2
v
2 ), we can show after some manipulations that 2‖h̃‖22 follows

Chi-squared distribution with 2m DoF [24]. That is,

f2‖h̃‖22
(x) =

xm−1 exp
(
−x

2

)
2mΓ(m)

. (2.14)

Since fZ(z) = 2f2Z(2z), we have

f‖h̃‖22
(x) =

xm−1 exp (−x)

Γ(m)
. (2.15)

Let Sj be the success probability that the support element is chosen in the j-th

iteration. Since K = 2 and thus the required number of iterations to decode the infor-

mation vector is two, the probability that the SVC packet is successfully decoded can

be expressed as

Psucc = P(Ω∗s = Ωs)

= P
(
S1,S2

)
= P

(
S2|S1

)
P
(
S1
)
. (2.16)

37



Our main result in this section is as follows.

Theorem 1. The probability that the SVC-encoded packet is decoded successfully sat-

isfies

Psucc ≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)2N

,

(2.17)

where m is the number of measurements (resources), N is the size of sparse vectors,

σ2
v is the noise variance, and µ∗ = max

i 6=j
|µij | is the maximum absolute value of corre-

lation between two distinct columns of Φ.

When m is sufficiently large, we approximately have

Psucc &

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m)2N

.

(2.18)

Also, since the block error rate is PERsvc = 1− Psucc, the upper bound of PER is

PERsvc . 1−

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m)2N

.

(2.19)

In Fig. 2.6, we plot the PER performance of SVC as a function of SNR. To judge

the effectiveness of Theorem 1, we perform the empirical simulation for m = 42,

N = 96. From the empirical evaluations, we obtain that µ∗ ≈ 0.7. When we apply

this value to the upper bound in (2.19), we could observe that the obtained bound is

tight across the board. To better understand the performance of SVC, we plot the PER

as a function of µ∗, N, and m in Fig. 2.7, 2.8, and 2.9. First, when the maximum

correlation µ∗ decreases, we see that the PER gain increase sharply as shown in Fig.

2.7. For example, if µ∗ is reduced from 0.4 to 0.2, we can achieve 1.5 dB gain at the

target reliability point (PER = 10-5). Next, we test the PER performance for various

sparse vector dimensions in Fig. 2.8. Although the PER performance degrades with
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Figure 2.7: The exact PER and bound (m = 42, N = 96)

N , we see that the degradation is fairly graceful. Whereas, as shown in Fig. 2.9, the

PER performance is quite sensitive to the number of measurements.

As a first step to prove Theorem 1, we analyze the success probability P
(
S1
)

for

the first iteration.

Lemma 3. Consider the received signal ỹ = γΦs + ṽ where γ =
√
SNR
α , Φ =

[φ1 φ2 · · · φN ], and φi = [h̃11c1i h̃22c2i · · · h̃mmcmi]T . The probability that the

support element is chosen in the first iteration satisfies

P(S1) ≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)N−1

.

(2.20)

Proof. As shown in Table 2.3, N decision statistics φTl
‖φl‖2 rk−1 (l = 1, · · · , N ) are

computed in each iteration. For analytic simplicity, we take the real part of the decision

statistic in the first iteration and the imaginary part in the second iteration.10

10This choice is suboptimal but simplifies the analysis.
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In order to identify the support element in the first iteration, we should have∣∣∣<〈 φp
‖φp‖2 , r

0〉
∣∣∣ ≥ max

i

∣∣∣<〈 φi
‖φi‖2 , r

0〉
∣∣∣ and thus the success probability for a given

channel realization h is

P(S1|h) = P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ max

i

∣∣∣∣<〈 φi
‖φi‖2

, r0〉
∣∣∣∣)

=

N∏
i=1,i 6=p

P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣) , (2.21)

where 〈a,b〉 is the inner product between two vector a and b. First, noting that sp = 1

and sq = j, we have

〈 φp
‖φp‖2

, r0〉 = 〈 φp
‖φp‖2

,φpsp + φqsq + ṽ〉

= ‖h̃‖2 + j‖h̃‖2µqp +
φTl
‖φl‖2

ṽ, (2.22)
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where the equality follows from the followings:

Noting that φi = [h̃11c1i h̃22c2i · · · h̃mmcmi]T and µij =
φTi φj

‖h̃‖22
, we have

〈 φi
‖φi‖2

,φj〉 =
φTi φj
‖φi‖2

. (2.23)

Since ‖φi‖2 =
√
|h̃11c1i|2 + · · ·+ |h̃mmcmi|2 = ‖h̃‖2, we have

〈 φi
‖φi‖2

,φj〉 = ‖h̃‖2
φTi φj

‖h̃‖22
= ‖h̃‖2µij . (2.24)

In particular, i = j, µij = 1 and thus

〈 φi
‖φi‖2

,φi〉 = ‖h̃‖2. (2.25)

From (2.24) and (2.25), we have 〈 φi
‖φi‖2 ,φj〉 =


‖h̃‖2 for i = j

‖h̃‖2µij for i 6= j.

〈 φk
‖φk‖2

,φl〉 =


‖h̃‖2 for k = l

‖h̃‖2µkl for k 6= l
.

(2.26)

Let zp = <
(

φTp
‖φp‖2 ṽ

)
, then

<〈 φp
‖φp‖2

, r0〉 = ‖h̃‖2 + zp. (2.27)

In a similar way, we have

<〈 φi
‖φi‖2

, r0〉 = ‖h̃‖2µip + zi, (2.28)
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and hence

P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣)
= P

(∣∣∣‖h̃‖2 + zp

∣∣∣ ≥ ∣∣∣‖h̃‖2µil + zi

∣∣∣)
(a)
= P

(
‖h̃‖2 + zp >

∣∣∣‖h̃‖2µip + zi

∣∣∣)P
(
‖h̃‖2 + zp > 0

)
+P

(
−‖h̃‖2 − zp >

∣∣∣‖h̃‖2µip + zi

∣∣∣)P
(
‖h̃‖2 + zp < 0

)
≥ P

(
‖h̃‖2 + zp > ‖h̃‖2|µip|+ |zi|

)
P
(
‖h̃‖2 + zp > 0

)
≥ P

(
‖h̃‖2 + zp > µ∗‖h̃‖2 + |zi|

)
P
(
‖h̃‖2 + zp > 0

)
, (2.29)

where (a) follows from

P (|A| ≥ |B|) = P (A > |B|) P (A > 0) + P (−A > |B|) P (A < 0) .(2.30)

Since zi ∼ N (0, σ
2
v
2 ), the second term in (2.29) is lower bounded as

P
(
‖h̃‖2 + zp > 0

)
= P

(
zp > −‖h̃‖2

)
= 1−Q

(
−‖h̃‖2σv√

2

)

≥ 1− exp

(
−‖h̃‖

2
2

σ2
v

)
, (2.31)

where the last inequality follows from Q(x) ≤ exp
(
−x2

2

)
. In a similar way, the first

term in (2.29) is lower bounded as

P
(
‖h̃‖2 + zp > µ∗‖h̃‖2 + |zi|

)
= 1− P

(
|zi| − zp ≥ (1− µ∗)‖h̃‖2

)
= 1− P

(
zi − zp ≥ (1− µ∗)‖h̃‖2

)
P (zi > 0)

−P
(
−zi − zp ≥ (1− µ∗)‖h̃‖2

)
P (zi < 0)

(a)
= 1− 2P

(
zi − zp ≥ (1− µ∗)‖h̃‖2

)
P (zi > 0)
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(b)

≥ 1−Q

(
−‖h̃‖2(1− µ∗)

σv

)

≥ 1− exp

(
−‖h̃‖

2
2(1− µ∗)2

2σv2

)
, (2.32)

where (a) is because −zi ∼ N (0, σ
2
v
2 ) and (b) is because zi − zp ∼ N (0, σ2

v). By

plugging (2.31) and (2.32) into (2.29), we have

P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣)
≥

(
1− exp

(
−‖h̃‖

2
2(1− µ∗)2

2σv2

))(
1− exp

(
−‖h̃‖

2
2

σ2
v

))

≥ 1− exp

(
−‖h̃‖

2
2(1− µ∗)2

2σv2

)
− exp

(
−‖h̃‖

2
2

σ2
v

)
.

(2.33)

Note that P(S1|h) in (2.21) is the success probability in the first iteration for a

given channel realization h. In order to obtain the unconditional probability, we need

to take expectation with respect to the channel h. That is,

P(S1) =

∫
P(S1|h)fh(x)dx = Eh

[
P(S1|h)

]
. (2.34)

Thus,

P(S1)

= Eh

 N∏
i=1,i 6=p

P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣) | h


=

N∏
i=1,i 6=p

Eh

[
P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣) | h]

≥
N∏

i=1,i 6=p
Eh

[
1− exp

(
−‖h̃‖

2
2(1− µ∗)2

2σv2

)
− exp

(
−‖h̃‖

2
2

σ2
v

)
| h
]
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=
N∏

i=1,i 6=p

(
1− Eh

[
exp

(
−‖h̃‖

2
2(1− µ∗)2

2σv2

)
| h
]
− Eh

[
exp

(
−‖h̃‖

2
2

σ2
v

)
| h
])

.

(2.35)

Since ‖h̃‖22 follows Chi-squared distribution with 2m DoF (see Lemma 2), we have

Eh̃

[
exp

(
−‖h̃‖

2
2

σv2

)
| h
]

=

∫ ∞
0

exp

(
− x

σv2

)
xm−1 exp (−x)

(m− 1)!
dx,

=
1(

1
σ2
v

+ 1
)m , (2.36)

where the equality follows from
∫∞

0 xn exp (−ax)dx = n!
an+1 for n = 0, 1, 2, ..., a >

0.

In a similar way, we have

Eh

[
exp

(
−‖h̃‖

2
2(1− µ∗)2

2σv2

)
| h
]

=

(
1 +

(1− µ∗)2

σ2
v

)−m
. (2.37)

Finally, by plugging (2.36) and (2.37) into (2.35), we obtain the lower bound of

P(S1) as

P(S1) = Eh

 N∏
i=1,i 6=p

P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣) | h


=
N∏

i=1,i 6=p

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)

≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)N−1

.

(2.38)

We now move to the success probability for the second iteration when the first

iteration is successful.
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Lemma 4. The probability that the support element is chosen at the second iteration

under the condition that the first iteration is successful satisfies

P
(
S2|S1

)
≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)N−2

.

(2.39)

Proof. When the first iteration is successful, the residual r1 can be expressed as

r1 = r0 −ΦΩ1
s
ŝ1

(a)
= r0 − φpsp

= φqsq + ṽ, (2.40)

where (a) is because the transmit symbols are known in advance (ŝ1 = sp). After

taking similar steps to Lemma 3, one can show that P
(
S2|S1

)
satisfies (we skip the

detailed steps for brevity)

P
(
S2|S1

)
= P

(∣∣∣∣=〈 φq
‖φq‖2

, r1〉
∣∣∣∣ ≥ max

i

∣∣∣∣=〈 φi
‖φi‖2

, r1〉
∣∣∣∣)

=
N∏

i=1,i 6=p,q
P

(∣∣∣∣=〈 φq
‖φq‖2

, r1〉
∣∣∣∣ ≥ ∣∣∣∣=〈 φi

‖φi‖2
, r1〉

∣∣∣∣)

≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)N−2

.

(2.41)

It is worth mentioning that the lower bounds of P
(
S1
)

and P
(
S2|S1

)
have the

same form except for the exponent. We are now ready to prove the main theorem.

Proof of Theorem 1. By combining Lemma 3 and 4, we can obtain the lower bound of

the success probability Psucc as

Psucc = P
(
S2|S1

)
P
(
S1
)
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= P

(∣∣∣∣=〈 φq
‖φq‖2

, r1〉
∣∣∣∣ ≥ max

i

∣∣∣∣=〈 φi
‖φi‖2

, r1〉
∣∣∣∣)

×P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ max

i

∣∣∣∣<〈 φi
‖φi‖2

, r0〉
∣∣∣∣)

=
N∏

i=1,i 6=p,q
P

(∣∣∣∣=〈 φq
‖φq‖2

, r1〉
∣∣∣∣ ≥ ∣∣∣∣=〈 φi

‖φi‖2
, r1〉

∣∣∣∣)

×
N∏

i=1,i 6=p
P

(∣∣∣∣<〈 φp
‖φp‖2

, r0〉
∣∣∣∣ ≥ ∣∣∣∣<〈 φi

‖φi‖2
, r0〉

∣∣∣∣)

≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)(N−2)+(N−1)

≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)2N

,

(2.42)

which completes the proof.

Finally, we present the decoding success probability bound for general sparsity K.

Theorem 2. The probability that the SVC-encoded packet can be successfully decoded

for a given K satisfies

Psucc &

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m)KN
.

(2.43)

Proof. The success probability Psucc is expressed as

Psucc = P
(
S1,S2, · · · ,SK

)
= P

(
SK |SK−1, · · · ,S1

)
· · ·P

(
S2|S1

)
P
(
S1
)

≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)(N−K)+···+(N−2)+(N−1)

≥

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m
−
(

1 +
1

σ2
v

)−m)KN
.

(2.44)

Since the proof is similar to the proof of Theorem 1, we skip the detailed steps.
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If m� 1, we approximately have

Psucc &

(
1−

(
1 +

(1− µ∗)2

σ2
v

)−m)KN
.

(2.45)

It is clear from (2.45) that the decoding success probability decreases when the infor-

mation vector is less sparse (i.e., K is large), which matches with our expectation.

2.7 Implementation Issues

In this section, we discuss the implementation issues including codebook design, high-

order modulation, diversity transmission, pilot-less transmission, and threshold selec-

tion to prevent the false alarm event.

2.7.1 Codebook Design

From our analysis in the previous section, we clearly see that codebook with small

correlation is important to improve the decoding success probability. As mentioned,

asm increases, the correlation between two randomly generated codewords decreases,

and thus we can basically use any kind of randomly generated sequence. For example,

if we use the Bernoulli random matrix, then the maximum correlation satisfies µ∗ ≤√
4m−1 ln N

δ with probability exceeding 1− δ2 [20].

Instead of relying on the random sequence, we can alternatively use the deter-

ministic sequences. Well-known deterministic sequences include chirps, BCH, DFT,

and second-order Reed-Muller (SORM) sequences [21]. For example, SORM is a se-

quence designed to generate low correlation sequences. SORM of length 2m is defined

as

φP,b(a) =
(−1)w(b)

√
2p

i(2b+Pa)T a, (2.46)

where P is a d × d binary symmetric matrix, a = [a0 a1 · · · ad−1]T and b =

[b0 b1 · · · bd−1]T are binary vectors in Zd2, and w(b) is the weight (number of ones)
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of b. The corresponding SORM matrix can be expressed as

Φrm =
[
UP1 UP2 · · · UP

2d(d−1)/2

]
, (2.47)

where UPj is the 2d×2d orthogonal matrix whose columns are the SORM sequences.

The maximum correlation ν∗ of the SORM sequence is

ν∗ =


1√
2l
, l = rank(Pi −Pj)

1√
m
, l = d

.

(2.48)

For example, if m = 64 and l = d, then ν∗ = 0.125. The benefit of using SORM

sequence is that the correlation between any two codewords is a constant and thus the

performance variation can be minimized.

2.7.2 High-order Modulation

Since the ensuring reliability is the top priority in URLLC, QPSK modulation would

be the popular option in practice. In order to use the QPSK modulation in SVC, we

set one of the nonzero entries in s to 1 and the other to j. For example, if the nonzero

positions are 5 and 7, then we set s = [0 0 0 0 1 0 j 0 0 0]T and thus the transmit

vector x can be expressed as

x = 1c5 + jc7. (2.49)

From (2.49), we can easily see that elements of the transmit vector x are mapped to

the QPSK symbol (i.e., xi ∈ {1+j, 1-j, -1+j, -1-j}). It is worth mentioning that one

additional bit can be encoded by differentiating two possible choices (i.e., [1, j] and

[j, 1]). However, this choice will increase the computational overhead of the decoding

algorithm and also degrade the performance little bit. When the higher sparsity is used,

this mapping can be readily extended to the high order modulation (e.g., K = 4 for

16-QAM and K = 6 for 64-QAM). Specifically, if K = 4, we map the element
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in x to the 16-QAM symbol by setting two of the nonzero entries to 1, 2 and the

remaining nonzero entries to j, 2j. In a similar way, if K = 6, then we can transmit

64-QAM symbols by setting three of the nonzero entries to 1, 2, 3 and the remaining

ones to j, 2j, and 3j. The normalization factor (α in (2.4)) corresponding M -QAM is

α =

√
2(M−1)

3 .

2.7.3 Diversity Transmission

One can easily integrate the diversity scheme to SVC to further improve the reliability.

The first option is to use the frequency diversity in which the SVC-encoded packet is

repeated L times in L distinct frequency bands. The benefit of the frequency diversity

is that the diversity gain can be achieved without increasing the transmission latency.

Specifically, by applying the maximal-ratio combining at the receiver for the same

symbol of the repeated packets, effective SNR can be increased and thus the PER

performance can be improved [67]. For example, when the SVC-encoded packet is

repeated for L = 8 times, due to the power gain of the combined symbol, the required

SNR to achieve the desired URLLC performance (e.g., 10-5 PER) can be reduced from

3 dB to 3 − 10 log10(L) = -6dB in AWGN environments. On top of the frequency

diversity, other diversity schemes such as time, antenna, and space diversity can also

be easily incorporated.

2.7.4 SVC without Pilot

When the channel is constant or channel variation is very small (i.e., h ≈ const.), which

is true for mobile devices under static or slowly moving environments, decoding of the

SVC packet can be performed without pilot transmission, resulting in a substantial

reduction of the resources, transmission power, receiver processing time, and also im-

plementation cost. In fact, since the packet length is smaller than channel coherence

time, this assumption hold true in many realistic scenarios. Pilot-less transmission is

done by slightly modifying the system model such that the system matrix equals the
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codebook C and the sparse vector contains the channel component (s
′

= hs). That is,

y = HCs + v

= Cs
′
+ v

=

c1 . . . cN



hs1

...

hsN

+


v1

...

vm


.

(2.50)

Recalling that the goal of the SVC decoding is to find out the nonzero positions of s
′

vector, we can perform the decoding without the channel knowledge. When the chan-

nel variation is flat in the frequency axis, tall packet structure (stretched in frequency

axis) is preferred. Whereas, if the channel variation is very small in time-domain, hor-

izontal packet (stretched in time axis) would be a good choice.

2.7.5 Threshold to Prevent False Alarm Event

To distinguish the false alarm event from the normal decoding process, we examine

the probability that the residual after the sparse recovery algorithm is not pure noise.

In fact, if the SVC decoding is finished successfully, the residual contains the noise

contribution only (rK = v) so that the residual power ‖rK‖22 can be readily modeled

as a Chi-squared random variable with 2m degree of freedom. Naturally, one can re-

ject this hypothesis if the residual power is too large and lies outside of the pre-defined

confidence interval. In other words, if ‖rK‖22 > F−1
‖v‖22

(1− Pth) where Pth is the pre-

defined probability threshold (e.g., Pth = 0.01) and F−1
‖v‖22

is the inverse cumulative

distribution function of Chi-squared random variable, then we declare the hypothesis

is not true (i.e., decoding is not successful) and discard the decoded packet. To eval-

uate the effectiveness of this thresholding approach, we simulate the probability of

false alarm as a function of SNR for the conventional 16-bit CRC and the proposed

residual-based thresholding. As is clear from Fig. 2.11, the residual-based thresholding

51



-2 0 2 4 6 8 10 12
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

Pr
ob

.o
ff

al
se

al
ar

m

With residual threshold
With 16-bit CRC

Figure 2.11: Decoding failure as a function of SNR (Pth = 10−5).

performs similarly to the CRC-based error checking.

2.8 Simulations and Discussions

2.8.1 Simulation Setup

In this section, we examine the performance of the proposed SVC technique. Our

simulation setup is based on the downlink OFDM system in the 3GPP LTE-Advanced

Rel.13 [63]. As a channel model, we use AWGN and realistic ITU channel models

including extended typical urban (ETU) and extended pedestrian-A (EPA) channel

model [63]. For comparison, we also investigate the performance of the conventional

PDCCH of LTE-Advanced system, polar code-based PDCCH of 5G systems [23], and

AWGN lower bound. We test the transmission of b bit information which consists of

information bit bi and CRC bit bc. In the conventional PDCCH method, the convolution

code with rate 1
3 with the 16-bit CRC is employed. Since the block size of the polar
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code is not flexible, we set the rate 1
4 to test similar conditions (b = 24 and m = 32).

In the proposed SVC algorithm, we set the random binary spreading codebook with

N = 96 and K = 2. To ensure the fair comparison, we use the same number of

resources (m = 42 with L = 8 repetitions) in the control packet transmission. As a

performance measure, we use PER of the code blocks.

2.8.2 Simulation Results

In Fig. 2.12(a), we investigate the PER performance of the proposed SVC method and

competing schemes under AWGN channel condition. We observe that the proposed

SVC technique outperforms the conventional PDCCH and polar code-based scheme,

achieving more than 4 dB gain over the conventional PDCCH and about 1.1 dB gain

over the polar code-based scheme at 10-5 PER point. Even in realistic scenarios such

as EPA and EVA channels in LTE-Advanced, we observe that the performance gain of

the proposed SVC scheme over competing schemes is maintained (see Fig. 2.12(b)).

In Fig. 2.13, we evaluate the PER performance of PDCCH and SVC as a func-

tion of SNR for various information bit size (bi = 12, 24, 48, and 96). These results

demonstrate that the proposed SVC technique can deliver more information bits than

the conventional PDCCH can support. For example, SVC can deliver twice more in-

formation than PDCCH in the low SNR region (for example, bi = 12 of PDCCH and

bi = 24 of SVC in Fig. 2.13). To further investigate this, we plot the minimum SNR

to achieve the target PER as a function of the information bit size in Fig. 2.14. For ex-

ample, to achieve 10-5 PER with b = 10, it requires -2.9 dB for PDCCH while -6.2 dB

SNR for SVC, resulting in 3.3 dB gain in performance. It is worth mentioning that the

coding gain of the conventional PDCCH improves with the codeblock size so that the

gap between the SVC and PDCCH diminishes gradually as the number of information

bits increases so that PDCCH outperforms SVC scheme (e.g., b > 160).

Next, we evaluate the latency performance of the SVC and PDCCH (see Fig. 2.15).

In this experiments, we plot the distribution of transmission latency to achieve 10-5
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Figure 2.12: PER performance as a function of SNR (bi = 12, bc = 16, m = 42,
L = 8, and N = 96) for (a) AWGN channel (upper) and (b) ETU and EPA channel
(lower).
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Figure 2.13: PER performance for various size of control information (L = 8).

PER when n-repetition scheme is employed. Transmission latency is defined as the

time from the initial transmission to the time that the packet is successfully decoded at

the mobile terminal.11 These results demonstrate that most of SVC packets satisfy the

URLLC requirement (1 ms latency).

Finally, we investigate the performance of SVC in the small cell scenarios where

the received signal contains a considerable amount of interference from adjacent bases-

tations. Note that densely deployed small cell (pico, femto, and micro) environments

will play a key role to enhance the cell throughput in 5G and how to manage the in-

terference is the key to the success of small cell networks. In our simulations, we set

the power level of interference to half of the desired cell signal. Since the SVC trans-

mission is based on the multi-code spreading and also the effective transmit power

per symbol is large, SVC can effectively manage the interference. Whereas, since the

conventional PDCCH has no such interference protection mechanism, error correction
11In our experiments, we ignored the decoding latency.
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Figure 2.14: Minimum required SNR for achieving 10-5 PER (m = 42, L = 8, and
N = 96)

capability of PDCCH is degraded significantly and thus the PDCCH performs very

poor as shown in Fig. 2.16.

2.9 Summary

In this paper, we have proposed the short packet transmission strategy for URLLC.

The key idea behind the proposed SVC technique is to transform an information vec-

tor into the sparse vector in the transmitter and to exploit the sparse recovery algo-

rithm in the receiver. Metaphorically, SVC can be thought as a marking dots to the

empty table. As long as the number of dots is small enough and the measurements

contain enough information to figure out the marked cell positions, accurate decoding

of SVC packet can be guaranteed. We showed from the numerical evaluations that the

proposed SVC scheme is very effective in URLLC scenarios. In this chapter, we re-

stricted our attention to the URLLC scenario but we believe that there are many other
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Figure 2.16: PER performance as a function of SINR (bi = 12, m = 42, L = 8,
N = 96, and interference power is half of the signal power).

applications that the SVC technique can be applied to. Also, there are many interesting

extensions and variations worth investigating, such as the information embedding in

nonzero positions, channel aware sparse vector coding, and combination of SVC and

error correction codes.
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Chapter 3

Sparse Vector Coding for Uplink Massive Machine-type

Communications

This chapter proposed the enhanced SVC in application of massive access scenario in

uplink transmission. Instead of using sparsity of active user, we exploit the sparsity of

information vector that is concatenated by massive user. I put forth an approach that

directly exploits the sparsity of information vector to control the multiuser interfer-

ence. This, together with the fact that the symbol is spread using randomly generated

codebook controls the multiuser interference efficiently. Since the input is a sparse

vector and the system matrix is the composite of fading channel and random spread-

ing matrices, I can cast the symbol detection problem into the sparse support recovery

problem. In a nutshell, the proposed scheme is simple to implement, robust to inter-

ference, and can be readily applied to various mMTC applications where the size of

transmit packet is small. I demonstrate that the proposed technique is very effective

in the ultra-short packet transmission and outperforms the LTE physical uplink shared

channel (PUSCH) [63] and LDS-based schemes in NOMA. I also demonstrate that the

SVC-encoded uplink access is effective in controlling multi-user interference caused

by the massive access.

This work of Chapter 3 has been published in [56].
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3.1 Introduction

Massive machine type communications (mMTC) is a new service category in 5G and

beyond to support Internet of Things (IoT), Internet of Everything (IoE), and Industry

4.0 [46]. mMTC has many distinct features over the conventional human-to-human

(H2H) communications. For example, communication traffic is uplink dominated and

machine-type devices transmit the low volume of information sporadically. Over the

years, various licensed and unlicensed technologies to support mMTC have been pro-

posed. Well-known examples include narrowband-IoT (NB-IoT) in the licensed band

and SigFox and LoRA in the unlicensed band. While primary goals in these approaches

are low-power and low-cost operation and enhanced coverage, not much work to sup-

port the ultra short packet transmission has been proposed [49]. One notable obser-

vation is mMTC is that the transmit information is either control type information

(e.g., move, shift, rotate, start, and stop) or sensing information (e.g., temperature,

moisture, air pressure, and wind speed) so that the amount of information is in gen-

eral very tiny. Since the information transmission principle of today, largely based on

Shannon’s channel coding theorem, requires long codeblock to maximize the coding

gain and hence is not adequate for ultra-short packet transmission, new transmission

strategy optimized for the mMTC scenario is required [50].

Further, since the massive number of users access to the networks simultaneously

in mMTC environments, a simple yet effective transmission scheme to control the

multiuser interference is needed [48]. In recent years, an approach to support a large

number of mMTC devices using a limited number of resources, collectively called

non-orthogonal multiple access (NOMA) technology, has been proposed [40–43]. For

example, in [40], an approach to use sparse spreading code, called low-density signa-

ture (LDS) has been proposed. In [41], an enhanced version of LDS technique referred

to as sparse code multiple access (SCMA) technique has been proposed. Also, variants

of SCMA technique have been proposed in [42-43]. Since these NOMA-based tech-

niques exploit the sparsity of codebook, multiuser interference can be controlled by the
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number and location of punctured elements in the codebook. In fact, due to the code-

book sparsity, NOMA tecniques enjoy reduced signal-to-interference ratio per symbol.

3.2 Uplink NOMA transmission for mMTC

In uplink multiple access scenario where the basestation receives data transmission

from active devices, the received signal at the basestation can be expressed as

y =
∑
i∈u

hisixi + v, (3.1)

where u is the set of active user index, y = [y1, . . . , yL]T is the received signal,L is the

number of resources for data transmission, xi ∈ X, hi ∈ C and si = [si,1, . . . , si,L]T ∈

CL are data symbol, the channel and codeword vector of ith device, and v ∈ CL is the

complex Gaussian noise vector (v ∼ CN (0, σ2I)), respectively. With LDS or SCMA

based access, the sparse codebook C(M,L) is designed to have a set of codes with L-

length and M codes (i.e., C(M,L) = [c1, · · · , cM ] ∈ CL×M , ci = [ci,1, · · · , ci,L]T ∈

CL, and M > L). Then, each user randomly selects si in the LDS codebook C(M,L).

Then, the received signal is given by

y(p) =

NT∑
i=1

hidipiψi + v(p) (3.2)

= D̃g + v(p), (3.3)

where D̃ = [p1d1, · · · , pNTdNT ] ∈ CKL×NT is uplink pilot signals (di ∈ CKL×1),

g = [h1ψ1, · · · , hNTψNT ]T ∈ CNT , ψi for i = 1, 2, · · · , NT is a logical variable

to indicate activity of user i, y(p) is received signal, and v(p) ∼ CN (0, σ2I) is noise

vector, respectively.

Since the number of active users is relatively smaller than the number of total

users, the vector g ∈ CNT becomes sparse. By the process of reconstructing the sparse
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vector, we obtain the indices of estimated active users. For the multiuser data detection,

NOMA uses the message passing algorithm (MPA). MPA can update message passing

factor graph by placing colliding users at the code node.

For all x ∈ X the message values (i.e., rRl→Un and qUn→Rl) between user node

and resource node at the i-th iteration are

riRl→Un(x) =
∑

x[l]∈X|ξl|

xn=x

Gl(x[l])
∏

n′∈ξl\n

qi−1
Un′→Rl

(xn′)

 (3.4)

qiUn→Rl(x) = γ
∏

l′∈ζn\l

riRl′→Un(x), (3.5)

where x[l] is the vector of symbols which contribute to yl, Gl(x[l]) is the probability

of yl given x[l], ξl is set of user index which contribute to resource element l, ζn is

set of resource index which user n spread its symbol on, and γ is normalizing factor

to satisfy
∑

x q
i
Un→Rl(x) = 1. The value qiUn→Rl(x) is the probability that symbol

xn has the value x, given the information obtained via resource elements other than

resource element l. i.e., p(xn = x|{y(d)
l′ } : l′ ∈ ζn \ l). The value riRl→Un(x) is the

probability that the value of resource element l is satisfied if symbol xn is considered

fixed at x. i.e., p(y(d)
l |xn = x).

After these message values have propagated a number of iterations, symbol deci-

sions are made by

x̂n = arg max
x
{
∏
l∈ζn

riRl→Un(x)}. (3.6)
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3.3 Sparse Vector Coding based NOMA for mMTC

3.3.1 System Model

In the uplink transmission of the conventional wireless systems, the transmit vector

x ∈ Cm×1 is generated after the channel coding and symbol mapping. The received

vector y ∈ Cm×1 for a single user (say user l) is given by

yl = Hlxl + v, (3.7)

where Hl ∈ Cm×m is the diagonal matrix whose diagonal element hii is the channel

corresponding to i-th resource, v ∼ CN (0, σ2
vI) is the additive Gaussian noise, xl =

Clsl is the transmit vector where Cl is the spreading codebook matrix describing the

mapping between the symbol and resource elements, and sl ∈ CN×1 is the modulated

symbol vector. When one symbol is mapped to a single resource, Cl is the square

matrix constructed from the spreading sequences (e.g., Walsh matrix).

The SVC encoding is achieved by the mapping of an information vector wl into

the position of the sparse vector sl. By way of analogy, SVC can be thought as placing

a few balls into the empty boxes. When we try to put K balls in N boxes, we have(
N
K

)
choices. This implies that b = blog2

(
N
K

)
c bits of information can be encoded by

this strategy. For example, when N = 9 and K = 2, we can encode 5 bit information.

The mapping between the information vector wl and the transmit sparse vector sl can
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be expressed as (see Table 3.1)

w5 w4 w3 w2 w1

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0
...

1 1 1 1 1︸ ︷︷ ︸
5-bit information wl

←→

←→

←→
...

←→

s9 s8 s7 s6 s5 s4 s3 s2 s1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0
...

1 1 0 0 0 0 0 0 0︸ ︷︷ ︸
K−sparse vector sl .

In order to transmit the compressed version of the sparse vector, we further apply the

random spreading to the sparse vector. As a result of sparse mapping and spreading, we

obtain an underdetermined sparse system (yl = HlClsl + v) for which the principle

of CS can be applied. In the spreading step, each nonzero element in s is spread into

m resources using the spreading codeword cli. Since the position of nonzero elements

in sl can be chosen at random, the codebook matrix Cl should be designed such that

the transmit vector x contains enough information to recover the sparse vector sl.

Toward this end, random spreading matrices (e.g., Gaussian, Bernoulli) are popularly

used. Also, to transmit the 2K-QAM modulated symbol, we set half of the nonzero

entries in s to 1 and the rest to j. Since the QPSK modulation (K = 2) is a typical

choice in the mMTC scenario, by assigning one nonzero entry to 1 and the other to

j, each element in the transmit vector xl is mapped to the QPSK symbol (i.e., xi ∈

α {1+j, 1-j, -1+j, -1-j}).

Based on the principle of CS, if entries of the codebook matrix Cl are generated

at random, then an accurate recovery of the sparse vector is possible as long as m =

O (K logN) [59]. From this fact, typical setting of the spreading sequence length (i.e.,

measurement vector size) m to ensure the robust recovery of the sparse vector can be
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Figure 3.1: The block diagram for the proposed SVC-encoded uplink transmission.

derived. To be specific, since 2b ≈
(
N
K

)
and K = 2, we approximately have

N ≈ 2
b+1

2 . (3.8)

As mentioned, the dimension of the measurement vector should satisfym = cK logN ,

which means

m = 2c log 2
b+1

2

= c(b+ 1). (3.9)

As a rule of thumb, c = 4 is commonly used as a ballpark number [59]. This means

that if the measurement m satisfies m ≥ 4(b+ 1), one can readily apply CS technique

at the receiver. In fact, in our simulation, we designed m based on (3) (e.g., b = 12

and m = 50).
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Table 3.1: One-to-one mapping between information and sparse vector s in increasing
order (K = 2)

Input:
Size of sparse vector N , information vector wl

Output:
Sparse vector sl

k := 0
for i = 2 to N do
for j = 1 to i− 1 do
if k =

(
wl
)

(10)

sl :=
(
2i + 2j

)
(2)

end if
k := k + 1
end for

end for
Note: (a)(10) is decimal expression of binary vector a and (a)(2) is
binary expression of integer a.

3.3.2 Joint Multiuser Decoding

The uplink system model after the spreading can be expressed as

ỹ =
∑
l∈U

Hlxl + v

=
∑
l∈U

HlClsl + v, (3.10)

where U is the index set of uplink accessing users. When L users are accessing simul-

taneously, the received vector can be expressed as the sum of a linear combination of

LN columns. That is,

ỹ =
[
H1C1 · · · HLCL

]
s1

...

sL

+ v

= Φs̃ + v, (3.11)

where Φ is a concatenation of HlCl and s̃ is the stacked vector of the sparse vector sl.

As mentioned, since the sparse vector for each user has only K nonzero elements, the
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stacked sparse vector s̃ has LK nonzero elements. In light of this, the main task of the

receiver is to identify LK columns in Φ participating in the received vector.

In a nutshell, greedy sparse recovery algorithm such as orthogonal matching pur-

suit (OMP) algorithm finds the support of s̃ in an iterative fashion.1 When columns

of Φ are approximately orthogonal, ŝ = ΦH
Ss̃

ỹ = ΦH
Ss̃

(Φs̃ + v) can be a reasonable

approximation of s̃. Based on this observation, OMP finds the support element one

at each iteration. To be specific, let ΦSj−1
s̃

be the submatrix of Φ that only contains

columns indexed by Sj−1
s̃ , then an index ωj chosen at the j-th iteration of the greedy

sparse recovery algorithm is given by2

ωj = arg max
l
|ΦH

l rj−1|2, (3.12)

where rj−1 = ỹ−ΦSj−1
s̃

ŝj−1 is the residual vector and ŝj−1 is either 1 or j. Between

these two, we choose the value that minimizes the residual magnitude.

As mentioned, one advantage of SVC is that an accurate recovery of the sparse

vector sl is unnecessary since the decoding is simply done by the identification of

nonzero positions of sl. Thus, by presetting the nonzero values, we can avoid effort to

find out actual values. Another advantage is that it requires low computational com-

plexity. Once K nonzero elements are detected in sl, the system matrix is updated by

removing all columns of user l (i.e., HlCl in Φ). This is because the sparsityK of sl is

known to the receiver, no further investigation on user l’s column is needed. In doing

so, the computation complexity of the decoding process can be reduced substantially.

The proposed CS-based joint receiver algorithm for SVC-encoded short packets is

summarized in Table 3.2.
1Support is the set of nonzero elements. For example, if sl = [0 0 1 0 0 1], the Ssl = {3, 6}.
2If S = {2, 5}, then ΦS = [Φ2 Φ5].
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Table 3.2: The proposed joint user detection algorithm

Input:
Measurement ỹ, sensing matrix Φ, sparsity LK, stop threshold ε
expansion size E, maximum candidate lmax, false-alarm threshold ε
Output:
Support set Ss̃

Initialization:
l := 0 (candidate order), ρ :=∞ (minimum magnitude of residual)

While: l < lmax and ε < ρ do
l := l + 1
r0 := y
[p1, ... , pLK ] := compute_pk(l, E) (compute layer order)
for k = 1 to LK do (investigate l-th candidate)
ω̃pk := arg max

|π|=E
‖(〈 ΦH

‖Φ‖2
rk−1〉)π‖22

Skl := Sk−1
l ∪ {ω̃pk} (construct a path in k-th layer)

rk := ỹ −ΦSk
l
ŝk (update residual)

Ŝk := Skl (update support set)
end for
if ‖rLK‖22 < ρ then (update the smallest residual)
ρ := ‖rLK‖22

if ‖r
LK‖22
‖y‖22

> 1− ε then (false-alarm identification)

Ŝ∗ := 0
end if
S∗s̃ := ŜLK

end if
end while
return S∗s̃
function compute_pk(l, E)
t := l − 1
for k = 1 to LK do
pk := mod (t, E) + 1
t := floor(t/E)

end for
return [p1, ... , pLK ]
end function

3.4 Simulations and Discussions

3.4.1 Simulation Setup

In this section, we examine the performance of the proposed SVC technique in grant-

based uplink access scenario. Our simulation setup is based on the OFDM system in

the 3GPP LTE-Advanced Rel.13 [63]. For comparison, we investigate the performance

of the PUSCH, an uplink data channel in LTE-Advanced system. PUSCH is encoded
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with the rate 1
3 Turbo code along with the 16-bit cyclic redundancy check (CRC).

In the proposed SVC algorithm, we set N = 96 and K = 2. To ensure the fair

comparison, we use the QSPK modulation and the same number of resources for all

schemes under test (m = 50
12b). We also assume that the channel coefficients are known

at the basestation. As a performance measure, we use the packet error rate (PER) of

the uplink transmissions.

3.4.2 Simulation Results

In Fig. 3.2, we evaluate the PER performance PUSCH and SVC as a function of SNR

for various information bit size (b = 12, 24, 48, and 96). We observe that the proposed

SVC technique outperforms the conventional PUSCH, achieving 3.2 dB gain when

the packet size is 12 bit. However, since the channel coding gain of the conventional

PUSCH improves with the codeblock size, the gap between the SVC and PUSCH is

reduced gradually as the number of information bits increases. For example, a gain of

the SVC is reduced to 2.1 dB at b = 24.

In order to test the capability to support the massive connection of machine de-

vices, we next consider the performance of overloading scenarios where the number

of users is larger than the number of resources. For example, 200% overloading means

than L users transmit packets using L
2 resources. In this test, we observe the perfor-

mance of PUSCH, LDS-based NOMA, and SVC. In LDS-based NOMA, we use L
2 ×L

sized LDS codebook for the packet transmission and the MPA decoding algorithm at

the basestation [45]. In the simulations, we observe the performance at the reference

PER point (around 10−1 PER) of uplink mMTC transmission. We observe from Fig.

3.3 that the SVC technique outperforms the conventional PUSCH and LDS, achiev-

ing 1.7 dB gain over LDS. As mentioned, since the sparse vector is transmitted af-

ter the random spreading, SVC is effective in controlling the multi-user interference.

Whereas, the conventional PUSCH has no such interference protection mechanism so

that the performance degradation is severe in high SNR.
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Figure 3.2: PER performance for various packet size for a single user transmission.
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Figure 3.3: PER performance for 200% overloading as a function of SNR (b = 48).
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3.5 Summary

In this chapter, we have proposed a new short packet transmission scheme called sparse

vector coding (SVC) for the mMTC uplink scenario. The key idea behind the proposed

SVC transmission scheme is to convert an information vector into the sparse vector and

use the support identification algorithm as a decoder in the receiver. The SVC trans-

mission scheme is easy to implement, robust to noise and multiuser interference, and

also scalable to the massive access scenario in mMTC. We showed from the simula-

tions in the LTE uplink scenario and massive access scenario in 5G that the proposed

SVC technique is very effective in short packet transmissions.
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Chapter 4

Pilot-less Sparse Vector Coding for Short Packet Trans-

mission

This chapter proposes SVC for short packet transmission without pilot symbols. A

short packet transmission is one of the major operational modes for mission-critical

data in ultra reliable and low latency communications (URLLC) and control-type data

in massive machine-type communications (mMTC). The central challenge in the short

packet transmission is the excessive amount of overhead caused by the pilot signaling.

In this chapter, we propose a novel scheme suitable for the short packet transmission

without pilot signals, called pilot-less sparse vector coding (PL-SVC). Key feature of

PL-SVC is to map the input as a composite of the sparse vector and the fading channel

and to perform decoding by finding out the nonzero positions of the sparse vector. In

this setting, the system matrix becomes a pseudo-random spreading matrix and the

input vector becomes a channel-scaled sparse vector so that the PL-SVC decoding

problem can be cast into the support detection problem in the compressed sensing. We

show from the numerical experiments in the 5G uplink scenario that PL-SVC is very

effective in the short packet transmission and outperforms conventional schemes.

This work of Chapter 4 has been submitted in part in [66]
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4.1 Introduction

These days, short packet transmission is becoming increasingly popular [46]. Short

packets are commonly used as a means to deliver sensor generated information (e.g.,

temperature, moisture, pressure, gas density), mission-critical data in ultra reliable and

low latency communications (URLLC), and control-type information (e.g., start, stop,

rotate, shift, turn left/right) in machine-type communications (MTC) [47]. The central

challenge in the short packet transmission is the excessive amount of overhead caused

by the pilot signaling. This issue has not been a serious concern of the conventional

systems since the amount of payload (data information) is much larger than the amount

of pilot signals [49–51]. However, when the packet size is short, pilot overhead is no

longer negligible in size so that the pilot overhead has become a major hindrance in

the short packet transmission.

In recent years, there have been some efforts to reduce pilot overhead in the short

packet transmission [51–53]. For example, a channel estimation technique exploiting

the most reliable data symbols as pilot signals has been proposed in [51]. In [52], an

algorithm to minimize the pilot overhead under the block length and error probability

constraints has been proposed. Recently, an approach to support a short packet trans-

mission based on the principle of compressed sensing, called sparse vector coding

(SVC), has been proposed [53]. The basic idea of SVC is that the data information is

mapped into the position of a sparse vector and then transmitted after the spreading.

The packet decoding is done by finding out the nonzero positions of the sparse vector. It

has been shown that the packet error rate (PER) of SVC outperforms the conventional

channel coding schemes for both single and multi-user transmission scenarios [53].

An aim of this study is to propose an approach to transmit the short packet with-

out pilot signals. The proposed technique, referred to as pilot-less SVC (PL-SVC),

performs the sparse vector conversion and random spreading at the encoder and the

support identification at the decoder. Key distinctive feature of the proposed PL-SVC

over the conventional SVC transmission is to map the input as a composite of the
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Figure 4.1: The block diagram for the proposed PL-SVC technique.

sparse vector and the fading channel. Under this formulation, the system matrix be-

comes a pseudo-random spreading matrix and the input vector becomes a channel-

scaled sparse information vector. Therefore, the PL-SVC decoding problem can be

cast into the sparse signal recovery (more accurately support detection) problem in the

compressed sensing (CS) [72]. Somewhat surprisingly, this is done without channel

information and with small computational complexity. This is because what we need

is the identification of nonzero positions of the sparse input vector, not the nonzero

value. This direction means that pilot transmission to acquire the channel estimation is

unnecessary. When multiple antennas at the basestation are available, the proposed PL-

SVC can improve the reliability by negligible computational overhead, which cannot

be easily obtained by the conventional transmission schemes. In a nutshell, the pro-

posed scheme is effective in various URLLC and MTC applications where the packet

size is very short (e.g., 10 ∼ 100 bytes).

From the numerical evaluations in URLLC and mMTC uplink transmission sce-

nario, we demonstrate that the proposed PL-SVC is effective in the short packet trans-

mission, achieving 1 dB gain at 10−4 PER point. In the scenario where the multiple

receiving antennas at the basestation available, PL-SVC achieves diversity gain (ap-

proximately 0.5 dB gain per antenna) over single antenna.
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4.2 Pilot-less Sparse Vector Coding Processing

4.2.1 SVC Processing with Pilot Symbols

We consider the uplink transmission of URLLC and mMTC scenarios where a user

uses m physical resources to transmit b-bit information. In the conventional wireless

systems, the transmit vector x ∈ Cm×1 is generated via the channel coding and symbol

mapping of data information. The received vector y ∈ Cm×1 is given by

y = Hx + v, (4.1)

where H = diag(h11, · · · , hmm) is the diagonal matrix where hii is the channel re-

sponse for the i-th resource, v ∼ CN (0, σ2
vI) is the additive Gaussian noise, x =[

(Cs)T pT
]T

is the transmit vector where C is the matrix describing the mapping

between the symbol and resource elements, s is the modulated symbol vector, and p

is the pilot vector.

In contrast, the transmit vector x of SVC is generated by two operational steps:

sparse mapping and pseudo-random spreading (see Fig. 4.1). First, an information

vector w is mapped to the position of the sparse vector s. For example, if 5-bit in-

formation vector is mapped into the m-dimensional sparse vector (m = 9) with the

sparsity K = 2, then

w = [0 0 0 0 0] −→ s = [0 0 0 0 0 0 0 1 1]

w = [0 0 0 0 1] −→ s = [0 0 0 0 0 0 1 1 0]

...

w = [1 1 1 1 1] −→ s = [1 1 0 0 0 0 0 0 0].

When we try to put K nonzero elements in N positions, we have
(
N
K

)
choices in total

and thus b = blog2

(
N
K

)
c bits information can be encoded by this sparse mapping (in

the example above, N = 9 and K = 2, and thus b = 5). In order to transmit the

75



compressed version of the sparse vector, we further spread the sparse vectors using

the pseudo-random codebook C. Note that since the position of nonzero elements in

s can be chosen at random, the codebook matrix C = [c1 c2 · · · cN ] should be

designed such that the transmit vector x contains enough information to recover the

sparse vector s. In this work, we consider the random Bernoulli sequences for the

codebook design for simplicity. Nevertheless, by using more sophisticated codebook

based on Reed-Muller or Zadoff-chu sequences, one can further improve the decoding

performance.

As a result of the sparse mapping and spreading, the overall system can be modeled

as an underdetermined sparse system given by

y = HCs + v. (4.2)

It has been shown from the theory of CS that if entries of the codebook matrix C

are generated at random, then an accurate recovery of the sparse vector is possible

with the measurement size (resource size) m being proportional to the sparsity K, i.e.,

m = O (K logN) [59].

4.2.2 Pilot-less SVC

When the channel is a constant or channel variation is very small (i.e., h ≈ const.),

which is true for mobile device under static or slowly varying environments, decod-

ing of the SVC packet can be performed without channel information, resulting in the

savings of the pilot resources, transmission power, receiver processing time and cost.

This scenario can also happen when the short packet is constructed in a narrowband

channel. In fact, when the packet size is short, the packet transmission time nTs (n is

the number of symbols in a packet and Ts is the symbol duration) is in general much

smaller than the channel coherence time Tc for the moderate mobility ν. (Tc � nTs).
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For example, when the carrier frequency fc = 3.5 GHz and the mobile speed is ν = 15

Km/h, then Tc = 9c
16πνfc

= 1.52 ms is much larger than Ts = 0.07 ms [67]1. Thus

the channel remains unchanged or at least channel variation is very marginal for short

packet (small n) and hence we can readily assume that H as H = diag(h, · · · , h).

Pilot-less transmission is done by slightly modifying the system model such that the

system matrix equals the codebook C and the sparse vector contains the channel com-

ponent as well as the sparse information vectors. To be specific,

y = Hx + v

=


h

. . .

h

x + v

= hCs + v

=
∑
i

(hsi) ci + v. (4.3)

Let š = [hs1 · · · hsN ]T , then

y = Cš + v. (4.4)

Recalling that the goal of the PL-SVC decoding is to identify the nonzero positions

of s vector (equivalently, š vector), we can perform the decoding without the channel

knowledge, which directly implies that the pilot transmission is unnecessary.

In the PL-SVC decoding, basically, any sparse signal recovery algorithm can be

used. In this work, we employ an orthogonal matching pursuit (OMP), most popu-

lar greedy sparse recovery algorithm [72]. In essence, the role of a decoding algo-

rithm is to identify the support Ω, locations of nonzero elements. For example, if

š = [0 0 hs3 0 hs5 0], then Ω = {3, 5}. When columns of C are approximately

orthogonal, ŝ = CH
Ω y = CH

Ω (Cš + v) can be a reasonable approximation of s̃. Based

1We use LTE symbol length, i.e., 14 symbols in 1 subframe (1 ms) [63]

77



on this observation, OMP finds the support element one at each iteration. To be spe-

cific, let CΩj be the submatrix of C that only contains columns indexed by the element

of Ωj (support of j-th iteration), then an index ωj+1 chosen at the j + 1-th iteration of

the OMP algorithm is

ωj+1 = arg max
l
|CH

l rj |2, (4.5)

where rj = y −CΩj ŝ
j is the residual vector and ŝj = C†

Ωj
y.

4.2.3 PL-SVC Decoding in Multiple Basestation Antennas

As discussed, an element of ŝj is hsi where h is the channel component and thus the

detection performance depends heavily on the power of h. When the channel is un-

der deep fading, therefore, the performance would not be satisfactory. When multiple

antennas are available at basestation, which is true for most of wireless systems, we

can achieve the diversity gain and therefore improve the reliability of the proposed

scheme.2 When multiple, say L, antennas are receiving the PL-SVC packet, a received

vector ỹ can be expressed as the sum of a linear combination of LN columns. That is,

ỹ =
[
y1 y2 · · · yL

]T

=


C

C

. . .

C


︸ ︷︷ ︸

C̃


h1s

h2s
...

hLs


︸ ︷︷ ︸

s̃

+


v1

v2

...

vL


︸ ︷︷ ︸

ṽ

, (4.6)

where yl is the received signal at the l-th antennas, hl is the channel response at the

l-th antenna, and vl is the corresponding noise vector. In order to exploit the block

sparsity of the aggregated sparse vector s̃, we rearrange the s̃ vector as [h1s · · · hLs]T

2Equivalently, by the cooperation of more than one reception points (e.g., basestation, radio remote
head, radio unit) in the decoding of PL-SVC, we can achieve the diversity gain and thus further improve
the performance.
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−→ [h1s1· · ·hLs1 · · · h1sL· · ·hLsL]T . Thus,

ỹ =


C̄(1)

C̄(2)

. . .

C̄(N)




h̄s1

h̄s2

...

h̄sN

+


v̄1

v̄2

...

v̄N

 , (4.7)

where C̄(i) = diag(ci ci · · · ci) is a block diagonalization of i-th spreading sequence,

h̄ = [h1 h2 · · · hL]T is the stacked channel response, and v̄i = [v1(i) v2(i) · · · vN (i)]T

is the rearranged noise vector. One can easily see that the sparse recovery algorithm

exploiting the block sparsity (e.g., block OMP algorithm [72]) can be used to find a

nonzero block. The nonzero block selection rule of BOMP at (j + 1)-th iteration is

ωj+1 = arg max
l
‖C̄(l)r̄j‖22, (4.8)

where r̄j = ỹ − C̄(Ωj)ŝj is the residual vector.

When the channels among multiple antennas are independent, diversity gain pro-

portional to the number of antennas can be obtained. Note that the computational bur-

den to process this SIMO channel decoding is fairly small because the decoding oper-

ation is simply finished in K-th iteration regardless of the number of antennas. In fact,

since the sparsity K is known to the receiver, computational overhead to convert the

multiple measurement vector problem in (6) to the single measurement vector problem

in (7) is negligible. The proposed PL-SVC decoding algorithm is summarized in Table

4.1.

79



Table 4.1: The proposed PL-SVC decoding algorithm

Input:
Measurement ỹ, sensing matrix C̃, sparsity K, stop threshold ε
expansion size E, maximum candidate lmax

Output:
Support set Ss̃

Initialization:
l := 0 (candidate order)
ρ :=∞ (minimum magnitude of residual)

While: l < lmax and ε < ρ do
l := l + 1, r̄0 := ỹ
[p1, ... , pK ] := compute_pk(l, E) (compute layer order)
for k = 1 to K do (investigate l-th candidate)
ωpk := arg max

|π|=E
‖(〈C̄r̄k−1〉)π‖22

Skl := Sk−1
l ∪{ωpk} (construct a path in k-th layer)

ŝk := C̄(Skl )†ỹ

r̄k := ỹ − C̄(Skl )ŝk (update residual)
Ŝk := Skl (update support set)

end for
if ‖r̄K‖22 < ρ then (update the smallest residual)
ρ := ‖r̄K‖22
S∗s̃ := ŜK

end if
end while
return S∗s̃
function compute_pk(l, E)
t := l − 1
for k = 1 to K do
pk := mod (t, E) + 1 and t := floor(t/E)

end for
return [p1, ... , pK ]
end function

4.3 Simulations and Discussions

4.3.1 Simulation Setup

In this section, we examine the performance of the proposed PL-SVC technique in

5G uplink scenario. Our simulation setup is based on the OFDM systems in the New

Radio (NR). For comparison, we investigate the performance of the conventional SVC

with pilot transmission and physical uplink share channel (PUSCH) transmission in 4G
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LTE [63].3 In the SVC processing, we set N = 96 and K = 2. For the conventional

SVC transmission with pilot, m = 48 resources are occupied for spreading resource

and the remaining resources are used for pilot symbols so that r = 84 resources are

used in total. Whereas, in the PL-SVC transmission scheme, we set m = r = 42 and

m = r = 84 for the fair comparison. As a performance measure, we use the packet

error rate (PER).

4.3.2 Simulation Results

In Fig. 4.2, we evaluate the PER performance of PL-SVC, conventional SVC, and

PUSCH with and without pilot transmission as a function of SNR (b = 12). First, we

compare the performance of the conventional SVC and PUSCH (dotted lines in Fig.

4.2). We observe that SVC outperforms the conventional PUSCH, achieving more than

3 dB gain at 10−4 PER point. Second, we compare PER performance of PL-SVC and

PUSCH without pilot transmission. We observe that the PUSCH-based transmission

is simply not working while PL-SVC performs slightly worse than the conventional

SVC at PER = 10−4. Next, we compare performance of the conventional SVC and

PL-SVC. When the spreading lengths are equivalent (m = 42), the PER performance

of PL-SVC is degraded in low SNR regime but the performance gap decreases with

SNR. Meanwhile, when the same amount of resources is used (r = 84), PL-SVC

outperforms SVC, achieving more than 1 dB gain at PER = 10−4.

In order to test the performance of SVC in SIMO channel scenarios, we consider

the three distinct cases (i.e., number of received antennas is L = 1, 2, and 4. From

Fig. 4.3, when we observe that the performance of the PL-SVC technique improves

with L. For example, L = 4, we observe 1.5 dB gain over the case with L = 1. We

note that the conventional transmission scheme might achieve similar the performance

gain, but at the expense of large computational overhead caused by multiple channel

estimations.
3The information is encoded with the code rate 1

3
Turbo code.
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Figure 4.2: PER performance of PL-SVC and the conventional schemes (b = 12).

4.4 Summary

In this chapter, we proposed the pilot-less sparse vector coding (PL-SVC) suitable for

the short packet transmission in URLLC and mMTC scenarios. The key idea behind

the proposed PL-SVC is to transmit the location information in the form of a sparse

vector and then to decode the location information via the compressed sensing tech-

nique. The PL-SVC transmission scheme does not require pilot transmission, also very

easy to implement, and can be easily extended to the SIMO and MIMO configurations.

We show from the numerical experiments in the 5G OFDM uplink scenario that the

proposed PL-SVC is effective in the short packet transmission and outperforms the

conventional SVC and PUSCH transmission schemes.
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Figure 4.3: PER performance of PL-SVC for the SIMO channels as a function of SNR
(b = 12,m = r = 42).
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Chapter 5

Joint Analog and Quantized Feedback via Sparse Vec-

tor Coding

In this chapter, I explore a potential benefit of estimation accuracy in sparse recovery.

Key idea behind the proposed technique is to transmit both analog and quantized data

using the sparse vector transformation. By mapping the quantized data into positions

of sparse vector and then setting the analog data as the magnitude of nonzero elements,

two different types of data can be jointly mapped to the sparse vector. After spreading

with sequences from multiple Zadoff-chu (ZC) sets, we obtain an underdetermined

sparse system and it is now well-known that the theory of compressed sensing guar-

antees an accurate recovery of a sparse vector and minimize mean square error of

recovered vector with a relatively small number of measurement [59]. In fact, the de-

coding of quantized data is performed by the sparse signal recovery (more accurately,

identification of nonzero positions in the transmit sparse vector) and the decoding of

analog data is performed by the recovery of support value.

5.1 Introduction

Mission-critical machine type communications is one of service categories that newly

introduced in 5G systems to support various applications including factory automa-
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tions, unmanned vehicles, and smart cites [46]. One notable observation in these ap-

plications is that the transmit information of a packet is control (command) type in-

formation (e.g., on/off, open/close, move left/right, start/stop, rotate/shift, and speed

up/down) so that the amount of information to be delivered is much smaller than the

packet of 4G systems [64]. Since the current wireless transmission strategy designed

to maximize the coding gain by transmitting capacity achieving long codeblock is not

relevant to these scenarios, entirely new transmission strategy to support the ultra-short

packet is required [6-49-50].

Recently, sparse vector coding (SVC) has been proposed for transmitting ultra-

short packet which is suitable for compressed sensing (CS)-based decoding. Since the

data information is mapped into the position of sparse vector, whole data packet can

be decoded by detection of a few support. In [3], SVC-based packet is used for mMTC

transmission by overlapping multiple SVC-based packets into the same resource. Us-

ing multiuser CS decoding, SVC-based transmission has robustness against the co-

channel interference and also provide comparable performance than other NOMA

schemes. However, [2][3] are somewhat limited to use the position of sparse vector,

not the magnitude of the nonzero elements which has potential to transmit additional

information.

The purpose of this paper is to propose a new technique for transmitting ultra-short

packet called joint sparse vector coding (JSVC). Key idea behind the proposed tech-

nique is to map the transmit data into positions of sparse vector and set the analog side-

information as the magnitude of nonzero elements. By doing so, two different types of

information can be jointly mapped to the sparse vector. After spreading with multiple

sequences from non-square Zadoff-chu (ZC) codebook, we obtain an underdetermined

sparse system for which the principle of compressed sensing can be applied [72]. It is

now well-known that the theory of compressed sensing guarantees an accurate recov-

ery of a sparse vector with a relatively small number of measurement [59], which can

be achieved in our case via the ZC-based multi-sequence spreading. The decoding of
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JSVC is performed by the support recovery (more accurately, identification of nonzero

positions in the transmit sparse vector) and the estimation of analog side-information

is performed by the recovery of support values. Noting that the side-information is

used for various purpose such as improving the accuracy of information or indicating

the additional information. The proposed scheme is very simple to implement and can

be applied to wide variety of wireless environments. From the numerical evaluations

and decoder performance analysis, we demonstrate that the JSVC-based packet is very

effective in ultra-short packet transmission of 5G communications and outperforms the

conventional approaches by a large margin.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce

the system model of SVC-based data transmission. In Section 5.3, we present the pro-

posed SVC schemes for joint analog and quantized data and explain the operations of

transmission and reception. In Section 5.4, we analyze the performance of SVC-based

uplink transmission. In section 5.5, we explain three key applications for the proposed

scheme for supporting eMBB, URLLC, and mMTC. In section 5.6, we present simula-

tion results to verify the performance of the proposed scheme, and conclude our work

in Section 5.7.

5.2 System Model for Joint Spase Vector Coding

We consider the data transmission in orthogonal frequency division multiplexing (OFDM)

system. In the transmitter, data information is transmitted in a form of modulated sym-

bol vector x ∈ CN×1. The corresponding received vector y ∈ Cm×1 is given by

y = Hx + n, (5.1)

where H ∈ Cm×m is the diagonal matrix whose diagonal element hii is the channel

component for each resource, and n ∼ CN (0, σ2
vI) is the additive Gaussian noise.

In this work, we use joint encoding for data information with analog side-information,
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(a)

a1 0 0 0 a5 0 0 0 0

a1 a5

(b)

Figure 5.1: Illustration of JSVC encoding: (a) Basic SVC encoding where data is
mapped into the position of a sparse vector only; (b) JSVC encoding where trans-
mit data is mapped into the position of a sparse vector and additional side-information
is mapped to the magnitudes of support.

Figure 5.2: System model of proposed JSVC-based ultra-short packet transmission.
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referred as joint SVC encoding (JSVC). As illustrated in Fig. 5.1, the basic of the SVC

technique is to map the information into the positions of a sparse vector s. When we

choose K out of N symbol positions, we can encode bsvc = blog2

(
N
K

)
c bits of infor-

mation. The proposed JSVC is to extend SVC for using the height of dots in the boxes.

By using height information, one can open another dimension to deliver additional

data (bjsvc > bsvc).

The first step of JSVC encoding is mapped the transmit data atK nonzero positions

among N symbol vector s.

0 0 0 0 0

0 0 0 0 1
...

1 1 1 1 1︸ ︷︷ ︸
b-bit digital information(b=5)

←→

←→
...

←→

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 1
...

1 0 0 0 0 0 0 0 0 1︸ ︷︷ ︸
K−sparse vector s (K=2)

(5.2)

Next step is to map analog side-information as the magnitude of nonzero elements.

That is,

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 1
...

1 0 0 0 0 0 0 0 0 1︸ ︷︷ ︸
K−sparse vector s (K=2)

←→

←→
...

←→

0 0 0 0 0 0 0 0 a9 a10

0 0 0 0 0 0 0 a8 0 a10

...

a1 0 0 0 0 0 0 0 0 a10︸ ︷︷ ︸
JointK−sparse vector s (K=2)

(5.3)

where 0 < ai ≤ 1 for i = 0, ..., N .

After the sparse mapping, each nonzero element in s is spread into m resources

using the spreading codebook C. As a result of the multi-code spreading, the mod-

ulated symbol vector s in (5.1) is replaced with x = Cs the codebook matrix C =

[c1 c2 · · · cN ] where ci = [ci1 ci2 · · · cim]T is the spreading sequence.

For accurate recovery, we consider Zadoff-chu (ZC) sequence based codebook.

ZC is a complex-valued mathematical sequence where cyclically shifted versions of
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the sequence imposed on a signal result in zero correlation with one another. Also,

ZC provides low correlation between sequence from difference root set. Due to these

reason, ZC sequence is used for many uplink transmission including random access

signal, pilot signal, control channel, and data channel. Let Zq ∈ Cm×m be the ZC

sequence set with root number q, that is,

Zq = [z0
q · · · zm−1

q ], (5.4)

where zαq (n) = exp
(
−j πq(n+α)(n+1+α)

m

)
. Since Zq is a square matrix, the codebook

matrix C uses more than two root sequence sets having low correlation between sets

as follows:1

C = [Zq1 · · ·Zql ]. (5.5)

Using ZC based codebook, the system matrix provide approximately zero correlation

between columns and also recover the support accurately. For example, when K = 2

and f -th and g-th elements are non-zero, the received vector y is given by

y = h(cfaf + cgag) + n. (5.6)

In general, the received vector y is given by

y = HCs + v

=


h11

. . .

hmm



c11 · · · cNm

...
. . .

...

c1m · · · cNm



s1

...

sN

+


n1

...

nm


,

(5.7)

where the system matrix HC is the underdetermined system with m < N . Since
1Root number of ZC sequence should be a prime number. To use multiple root sequence set, one can

apply computational search for selecting root numbers as in 4G LTE systems.
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the transmitter is often power-limited due to heavy pathloss, we assume that trans-

mission bandwidth is narrow. Thus, the channel is constant or channel variation in

frequency-domain is small, which is true for mobile devices under static or slowly

moving environments (s
′

= hs) and thus we further have

y = hCs + n. (5.8)

Since the positions of nonzero elements are chosen at random, the codebook matrix

C should be designed such that the transmit vector x contains enough information to

recover the sparse vector s irrespective of the selection of the nonzero positions.

5.3 Sparse Recovery Algorithm and Performance Analysis

As mentioned, JSVC decoding is done by two step: the identification of the support and

estimation of supports. To this end, any sparse recovery algorithm can be employed

for this purpose. In this work, we employ the greedy sparse recovery algorithm in

the decoding of the JSVC-encoded packet. The received signal y can be modified by

multiplying hH

‖h‖22
and thus we have

ỹ =
hH

‖h‖22
y

= Cs + ñ, (5.9)

where ñ = hH

‖h‖22
n is modified noise vector. The modified received signal ỹ and the

system matrix Φ are decoupled into their real and imaginary parts.

<{ỹ}
= {ỹ}

 =

<{Φ} −={Φ}
= {Φ} < {Φ}

<{s}
= {s}

+

<{ñ}
= {ñ}

 , (5.10)
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where<{·} and={·} are the real and imaginary operations, respectively. Since={s} =

0, we further have <{ỹ}
= {ỹ}

 =

<{Φ}
= {Φ}

<{s}+

<{ñ}
= {ñ}

 ,
y̌ = Φ̌š + ň, (5.11)

where š is the real part of the transmit symbol vector. Since š has only K nonzero

elements, the modified received vector y̌ can be expressed as a linear combination of

K columns in Φ̌ perturbed by the modified noise. In view of this, main task of the

SVC decoding is to identify the columns in Φ̌ participating in the received vector. In

each iteration, greedy sparse recovery algorithm identifies the column of Φ̌ one at a

time using a greedy strategy. Specifically, let Φ̌
Ωj−1

s
be the submatrix of Φ̌ that only

contains columns indexed by Ω̌j−1
s , then the index ω̌j chosen at the j-th iteration of

the greedy algorithm is given by2

ωj = arg max
l
|Φ̌T

l rj−1|2, (5.12)

where rj−1 = y−Φ̌
Ωj−1

s
ŝj−1 is the residual vector and ŝj−1 = Φ̌†

Ωj−1
s

y is the estimate

of s at (j − 1)-th iteration.3

For analysis simplicity, we set K = 2 and then extend to the general case. Without

loss of generality, we assume that f and g-th elements of s are nonzero (i.e., Ωs =

{f, g}). Further, we set the information vector such that sl = 1 and sm = a (0 <

sm < sl). Let S1 and S2 be the success probability that the support element sf and sg

are chosen in the first and second iteration, respectively. The probability that the data

information is successfully decoded is expressed

Psucc = P(Ω∗s = Ωs)

2If Ω = {1, 3}, then ΦΩ = [φ1 φ3].
3Φ† = (ΦTΦ)−1ΦT is the pseudo-inverse of Φ.
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= P(S1,S2)

= P(S2|S1)P(S1). (5.13)

In each iteration, N decision statistics | φ̌
T
l
m rk−1| for l = 1, · · · , N are computed. In

order to identify the support element sf in the first iteration, we should have | φ̌
T
f

m r0| ≥

| φ̌
T
g

m r0|. Also, in order to identify the support element sg in the second iteration, we

should have | φ̌
T
g

m r1| ≥ max
l
| φ̌

T
l
m r1|. Thus the success probability for a given channel

realization h are

P(S1|h) = P

∣∣∣∣∣〈 φ̌fm , r0〉

∣∣∣∣∣
2

≥
∣∣∣∣〈 φ̌gm , r0〉

∣∣∣∣2
 ,

P(S2|S1, h) =

N∏
i=1,i 6=f

P

(∣∣∣∣〈 φ̌gm , r1〉
∣∣∣∣2 ≥ ∣∣∣∣〈 φ̌im , r1〉

∣∣∣∣2
)
, (5.14)

where 〈a,b〉 is the inner product between vector a and b. First, we consider the first

iteration. Noting that sf = 1 and sg = a, the left element in (13) can be expressed as

∣∣∣∣∣〈 φ̃fm , r0〉

∣∣∣∣∣ =

∣∣∣∣∣〈 φ̃fm , φ̃fsf + φ̃gsg + ñ〉

∣∣∣∣∣
=

∣∣∣∣∣cHf cf

m
xf +

cHf cg

m
xg +

φ̃Tf ň

m

∣∣∣∣∣ . (5.15)

Let
cHf cg

m = µfg and
φ̃Tf ñ

m = zf , we have

∣∣∣∣∣〈 φ̃fm , r0〉

∣∣∣∣∣ =
∣∣∣µff
m
xf +

µfg
m
xg + zf

∣∣∣
= |1 + µfga+ zf | , (5.16)

where µii = m for any i. In a similar way, we have∣∣∣∣∣〈 φ̃gm , r0〉

∣∣∣∣∣ = |a+ µgf + zg|. (5.17)

92



Since the cross-correlation between two ZC sequences is theoretically zero, (14) can

be approximated as

P

∣∣∣∣∣〈 φ̃fm , r0〉

∣∣∣∣∣
2

≥

∣∣∣∣∣〈 φ̃gm , r0〉

∣∣∣∣∣
2


u P
(
|1 + zf |2 ≥ |a+ zg|2

)
= P (1 + zf > |a+ zg|) P (1 + zf > 0)

+ P (−1− zf > |a+ zg|) P (1 + zf < 0)

> P (1 + zf > a+ zg) P (1 + zf > 0) P (a+ zg > 0) , (5.18)

Let zf ∼ N (0, cσ2
v) where c = 1

h2
r+h

2
i
, the first term in (18) is lower bounded as

P (1 + zf > a+ zg) = P (zf − zg > −(1− a))

= 1−Q
(
− 1− a√

2cσv

)
≥ 1− exp

(
−(1− a)2

4cσ2
v

)
. (5.19)

In a similar way, the second and third term are lower bounded as

P (1 + zf > 0) = P (zf > −1))

= 1−Q
(
−1√
cσv

)
≥ 1− exp

(
− 1

2cσ2
v

)
. (5.20)

P (a+ zg > 0) ≥ 1− exp
(
− a2

2cσ2
v

)
. (5.21)

By plugging (19), (20), and (21) into (14), we have

P

(∣∣∣∣〈φfm , r0〉
∣∣∣∣ ≥ ∣∣∣∣〈φgm , r0〉

∣∣∣∣ , h) (5.22)
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≥

(
1−e

−(1−a)2

4cσ2
v

)(
1− e−

1

2cσ2
v

)(
1− e−

a2

2cσ2
v

)
.

After taking exception with respect to the channel h, we have

P(S1) ≥ 1−
(

1 +
(1− a)2

2σ2
v

)−2

, (5.23)

where a is large and

P(S1) ≥ 1−
(

1 +
a2

σ2
v

)−2

, (5.24)

where a is small.

Next, we move to the success probability for the second iteration when the first

iteration is successful. Since sf is known to the receiver, the estimation of sf is not

required. Then, the residual r1 can be expressed as

r1 = r0 −ΦΩ1
s
ŝ1

= r0 − φfsf

= φgsg + ñ. (5.25)

After taking similar steps, we have that P(S2|S1) satisfies (we skip the detailed steps

for brevity)

P(S2|S1) =
N∏

i=1,i 6=f
P

(∣∣∣∣〈 φ̌gm , r1〉
∣∣∣∣2 ≥ ∣∣∣∣〈 φ̌im , r1〉

∣∣∣∣2
)

≥

(
1−
(

1 +
1

2σ2
v

)−2
)N−1

, (5.26)
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when a is large and

P(S2|S1) ≥

(
1−
(

1 +
a2

σ2
v

)−2
)N−1

, (5.27)

when a is small. Combining (23) and (26) and also (24) and (27), we have the success

probability of JSVC-based packet. That is,

Psucc ≥

(
1−
(

1 +
(1− a)2

2σ2
v

)−2
)(

1−
(

1 +
1

2σ2
v

)−2
)N−1

, (5.28)

for large a and we have

Psucc ≥

(
1−
(

1 +
a2

2σ2
v

)−2
)N

, (5.29)

for small a. This reveal that when a is small, the decoding performance is bounded

with the detection performance of nonzero element having smallest magnitude (sg).

After detecting all nonzero elements, one can estimate analog side-information vector

â as

â = Φ̌†Ωŝ
y. (5.30)

5.4 Applications

In this section, we present three examples for using JSVC transmission. In each exam-

ple, analog side-information is used exclusively. In the first example, side-information

is used for minimize quantization error. The second one, side-information is used to

indicate coefficient of operating function. The last one, side-information is to indicate

how to interpret the data information.
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5.4.1 Linear Interpolation of Sensing Information

In this example, the analog side-information is used for recovering the data informa-

tion. This can be used for IoT applications reporting the sensing information (e.g.,

temperature, pressure, wind speed, and traffic load) and also device’s status reports

(e.g., pathloss, buffer status, and power margin). For example, when the device re-

ports 2.45 degree of Celsius temperature scale with quantization level of 2 degree (0,

2, 4 degrees), the information vector is mapped to indicate 4 degree with 2 nonzero

support Ωb. In addition, by setting analog side-information a1 = 1 and a2 = 0.775,

the receiver can interpolate the sensing information using the side-information (e.g.,

2.45 = 2 + 2× (a1 − a2)).

5.4.2 Linear Combined Feedback

The analog side-information can be used to indicate how to combine multiple informa-

tion vectors. When there are two dominant paths between the transmitter and receiver,

the channel vector h can be feedback with indicating two directions θ1 and θ2. To feed

these angles, information vectors bi = f(θi) are mapped to the support where f(·) is

mapping function between angle to codebook. Using analog side-information a1 = 1

and a2 = a, the channel vector h = 1
1+a2

f−1(b1) + a2
1+a2

f−1(b2) where the function

f−1 is remapping function can be reconstructed. Instead of transmitting one dominant

precoder index b1 in 4G systems, multiple indexes (b1,b2) can be reported as in LTE-

Advanced Pro systems and provide combining weights of reported indexes through the

analog side-information.

5.4.3 One-shot Packet Transmission

By using relative magnitude of analog side-information, one can control the detection

order of non-zero element. Let f -th and g-th elements be the nonzero elements having

af > ag, the receiver would detect f -th element first. There are two options for using

the detecting order. The first option is to use one-shot packet where pilot and data
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symbols are superposed and transmitted together. When the pilot symbols are mapped

to the f -th element with larger magnitude than g-th element, (8) can be expressed as

y = Chs + n

= Cu + n (5.31)

where u = [0 · · · 0 h 0 · · · 0 hag 0 · · · 0] where af = 1, ag < 1. In this case, at the first

iteration, the j-th indexed nonzero element can be detected firstly with high probability

and thus ĥ can be estimated. Then, the residual r1 can be expressed as

r1 = r0 − ĥφf

= ĥφgag + n. (5.32)

Since the channel is estimated in the first iteration, detection performance in each

iteration would be enhanced than the case without knowing the channel coefficient.

5.5 Simulations

5.5.1 Assumptions

In this section, I examine the performance of the proposed JSVC technique. Our sim-

ulation setup is based on the downlink OFDM system in the 3GPP LTE-Advanced

Rel.13 [63] under AWGN channel. For comparison, we also investigate the perfor-

mance of the repetition code. I test the transmission of b bit information which consists

of quantizing the original information using b bit level. In the conventional repetition

coding, the information block is repeated before resource mapping. Since the block

size of the repetition code is not flexible, we set the rate 1
2 and 1

3 to test similar condi-

tions. In the proposed JSVC algorithm, I set the ZC spreading codebook withN = 12,

m = 12 and K = 2. To ensure the fair comparison, I use the same number of re-

sources (m = 12) in the ultra short packet transmission. As a performance measure, I
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use PER of the code blocks and mean square error of the original information. Also,

the effective throughput is compared in the function of SNR.

5.5.2 Results and Discussions

In order to observe the performance of JSVC, we test PER performance as depicted

in Fig. 5.3. As the conventional short packet transmission, 1
2 and 1

3 rate of repetition

code are used. That is, 12 and 8 bits of information is transmitted over 12 resources,

respectively. In case of JSVC, 9 bit of information is encoded intoK = 2 sparse vector

and transmitted over 12 resources and side information is mapped to the magnitude of

sparse vector. Interestingly, we observed that PER performance is comparable to the

conventional short packet transmission.

To confirm the effectiveness of JSVC, we test MSE performance of original infor-

mation in Fig. 5.4. As shown in the results, the MSE performance of JSVC is improved

as SNR while the conventional approaches are same. The benefit of JSVC can be bet-

ter understood by observing the effective throughput. In Fig. 5.5. we plot the effective

throughput as a function of SNR. In this case, we plot throughput as function MSE

that can be achieved by each transmission scheme. When SNR is higher than 3 dB, the

effective throughput of JSVC is higher than the conventional approaches for transmit-

ting short packet. This is because the MSE of the original information is improved so

that dense quantization level can be used for the proposed scheme.

5.6 Summary

In this chapter, we have proposed a new data transmission strategy for the ultra-shot

packet by transmitting side (analog) information. The key idea behind the proposed

JSVC transmission scheme is to transform the small information into a sparse vector

and map the side-information into a magnitude of the sparse vector. Metaphorically,

JSVC can be thought as a standing a few poles to the empty table and measure the
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Figure 5.3: PER performance of joint SVC (K = 2, N = 24,m = 12, bSV C = 8).

height of pole at the receiver. As long as the number of poles is small enough and

the measurements contains enough information to find out the marked cell positions,

accurate recovery of JSVC packet can be guaranteed. I showed from the numerical

evaluations and analysis of decoding performance that the proposed JSVC scheme

is very effective in ultra-short packet transmission such as analog feedback, MIMO

feedback, and control-type channel.
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Chapter 6

Sparse Beamforming for Enhanced Mobile Broadband

Communications

In this Chapter, I propose the novel beamforming technique named time-domain sparse

beamforming to enhance throughput by minimizing overhead in pilot transmission. By

designing beamforming weight that minimize non-zero element in time-domain chan-

nel impulse response (CIR) in time-domain of pilot signal, the required pilot overhead

can be minimized but user full diversity gain in data transmission. Pilot beamforming

and CSI acquisition strategy for IoT systems to achieve reduction in the pilot overhead

and enhancement in the channel estimation quality are suggested. Key idea of the pro-

posed method, referred to as time-domain sparse beamforming (TDSB), is to sparsify

the time-domain channel vector using the preprocessing (beamforming) at the basesta-

tion. To be specific, using the deliberately designed antenna-domain beamforming, we

sparsify the beamformed time-domain channel vector. As a result, only a few samples

are required to perform the channel estimation and whole CSI can be acquired with

partial pilot symbols in time and frequency. From the numerical evaluations, we show

that the proposed scheme outperforms conventional channel estimation schemes [70-

73] and achieves NT -fold reduction in the pilot overhead. .

The work of Chapter 6 has been published in part in [81]
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6.1 Introduction

In this section, we discuss key features of FD-MIMO systems. These include a large

number of basestation antennas, 2D active antenna array, 3D channel propagation, and

new pilot transmission with CSI feedback. In what follows, we will use LTE termi-

nology exclusively: enhanced node-B (eNB) for basestation, user equipment (UE) for

the mobile terminal, and reference signal (RS) for pilot signal.

6.1.1 Increase the number of transmit antennas

One of the main features of FD-MIMO systems distinct from the MIMO systems of

the current LTE and LTE-Advanced standards is to use a large number of antennas at

eNB. In theory, as the number of eNB antennas NT increases, cross-correlation of two

random channel realizations goes to zero [82] so that the inter-user interference in the

downlink can be controlled via a simple linear precoder. Such benefit, however, can be

realized only when the perfect CSI is available at the eNB. While the CSI acquisition in

time division duplex (TDD) systems is relatively simple due to the channel reciprocity,

such is not the case for frequency division duplex (FDD) systems. Note that in the

FDD systems, time variation and frequency response of the channel are measured via

the downlink RSs and then sent back to the eNB after the quantization. Even in TDD

mode, one cannot solely rely on the channel reciprocity because the measurement at

the transmitter does not capture the downlink interference from neighboring cells or

co-scheduled UEs. As such, downlink RSs are still required to capture the channel

quality indicator (CQI) for the TDD mode, and thus the downlink RS and the uplink

CSI feedback are essential for both duplex modes. Identifying the potential issues of

CSI acquisition and developing the proper solutions are, therefore, of great importance

for the successful commercialization of FD-MIMO systems. Before we go into detail,

we briefly summarize two major problems related to the CSI acquisition.

• Degradation of CSI accuracy: One well-known problem for the MIMO sys-
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tems, in particular for FDD-based systems, is that the quality of CSI is affected

by the limitation of feedback resources. As the CSI distortion increases, quality

of the multiuser MIMO (MU-MIMO) precoder to control the inter-user interfer-

ence is degraded and so will be the performance of the FD-MIMO systems. In

general, the amount of CSI feedback, determining the quality of CSI, needs to

be scaled with NT to control the quantization error so that the overhead of CSI

feedback increases in FD-MIMO systems.

• Increase of pilot overhead: An important problem related to the CSI acquisi-

tion at eNB, yet to be discussed separately, is the pilot overhead problem. UE

performs the channel estimation using the RS transmitted from the eNB. Since

RSs need to be assigned in an orthogonal fashion, RS overhead typically grows

linearly withNT . For example, ifNT = 64, RS will occupy approximately 48%

of resources, eating out substantial amount of downlink resources for the data

transmission.

6.1.2 2D active antenna system (AAS)

Another interesting feature of the FD-MIMO system is an introduction of the active

antenna with 2D planar array. In the active antenna-based systems, gain and phase are

controlled by the active components, such as power amplifier (PA) and low noise am-

plifier (LNA), attached to each antenna element. In the 2D structured antenna array,

one can control the radio wave on both vertical (elevation) and horizontal (azimuth)

direction so that the control of the transmit beam in 3D space is possible. This type

of wave control mechanism is also referred to as the 3D beamforming. Another im-

portant benefit of 2D AAS is that it can accommodate a large number of antennas

without increasing the deployment space. For example, when 64 linear antenna arrays

are deployed in a horizontal direction, under the common assumption that the antenna

spacing is half wavelength (λ2 ) and the system is using LTE carrier frequency (2 GHz),

it requires a horizontal room of 3m. Due to the limited space on a rooftop or mast, this

103



space would be burdensome for most of the cell sites. In contrast, when antennas are

arranged in a square array, relatively small space is required for 2D antenna array (e.g.,

1.0 × 0.5m with dual-polarized 8 × 8 antenna array).

6.1.3 3D channel environment

When basic features of the FD-MIMO systems are determined, the next step is to

design a system maximizing performance in terms of throughput, spectral efficiency,

and peak data rate in the realistic channel environment. There are various issues to

consider in the design of practical systems, such as investigation and characterization

of the realistic channel model for the performance evaluation. While the conventional

MIMO systems consider the propagation in the horizontal direction only, FD-MIMO

systems employing 2D planar array should consider the propagation in both vertical

and horizontal direction. To do so, geometric structure of the transmitter antenna array

and propagation effect of the 3D positions between the eNB and UE should be reflected

in the channel model. Main features of 3D channel propagation obtained from real

measurement are as follows [86]:

• Height and distance-dependent line-of-sight (LOS) channel condition: LOS prob-

ability between eNB and UE increases with the UE’s height and also increases

when the distance between eNB and UE decreases.

• Height-dependent pathloss: UE experiences less pathloss on a higher floor (e.g.,

0.6dB/m gain for macro cell and 0.3dB/m gain for micro cell).

• Height and distance-dependent elevation spread of departure angles (ESD): When

the location of eNB is higher than the UE, ESD decreases with the height of the

UE. It is also observed that the ESD decreases sharply as the UE moves away

from the eNB.
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Figure 6.1: MIMO evaluation: (a) RS evolution in LTE systems, (b) uplink feedback
overhead (SNR=10dB [88]), (c) MU-MIMO capacity with considering CSI-RS over-
head (ideal CSI and ZFBF MU-precoding with 10 UEs and SNR=10dB).
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6.1.4 RS transmission for CSI acquisition

From the LTE to LTE-Advanced, there has been substantial improvement in the RS

scheme for MIMO systems (see Fig. 6.1(a)). From the common RS (CRS) to the chan-

nel state information RS (CSI-RS), various RSs to perform the CSI acquisition have

been introduced. While these are common to all users in a cell and thus un-precoded,

the demodulation RS (DM-RS) is UE-specific (i.e., dedicated to each UE) so that it is

precoded by the same weight applied for the data transmission. Since the DM-RS is

present only on time/frequency resources where the UE is scheduled, this cannot be

used for CSI measurements [87].

One of the new features of the FD-MIMO systems is to use a beamformed RS,

called beamformed CSI-RS, for the CSI acquisition. Beamformed RS transmission is

a channel training technique that uses multiple precoding weights in spatial domain.

In this scheme, UE picks the best weight among transmitted and then feeds back its

index. This scheme provides many benefits over non-precoded CSI-RS, in particular

when NT is large. Some of the benefits are summarized as follows:

• Less uplink feedback overhead: In order to maintain a rate comparable to the

case with perfect CSI, feedback bits used for the channel vector quantization

should be proportional to NT [88]. Whereas, the amount of feedback for the

beamformed CSI-RS scales logarithmic with the number of RSs NB since this

scheme only feeds back an index of the best beamformed CSI-RS. Thus, as

depicted in Fig. 6.1(b), the benefit of beamformed CSI-RS is pronounced when

NT is large.

• Less downlink pilot overhead: When the non-precoded CSI-RS is used, pilot

overhead increases with NT , resulting in a substantial loss of the sum capacity

in the FD-MIMO regime (see Fig. 6.1(c)). Whereas, pilot overhead of the beam-

formed CSI-RS is proportional to NB and independent of NT so that the rate

loss of the beamformed CSI-RS is marginal even when NT increases.
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• Higher quality in RS: If the transmit power is P watt, P/NT watt is needed

for each non-precoded CSI-RS transmission, while P/NB watt is used for the

beamformed CSI-RS. For example, when NT = 32 and NB = 12, beamformed

CSI-RS provides 4.3dB gain in signal power over the non-precoded CSI-RS.1

In order to support the beamformed CSI-RS scheme, new transmitter architecture

called transceiver unit (TXRU) architecture has been introduced. By TXRU architec-

ture, we mean a hardware connection between the baseband signal path and antenna

array elements. Since this architecture facilitates the control of phase and gain in both

digital and analog domain, more accurate control of the beamforming direction is pos-

sible. One thing to note is that the conventional codebook cannot measure the CSI of

the beamformed transmission so that a new channel feedback mechanism supporting

the beamformed transmission is required.

6.2 System Design and Standardization of FD-MIMO Sys-

tems

The main purpose of the Rel. 13 study item is to identify key issues to support up

to 64 transmit antennas placed in the form of a 2D antenna array. Standardization of

the systems supporting up to 16 antennas is an initial target of Rel. 13 and issues to

support more than 16 antennas will be discussed in subsequent releases. In the study

item phase, there has been extensive discussion to support 2D array antennas, elab-

orated TXRUs, enhanced channel measurement and feedback schemes, and also an

increased number of co-scheduled users (up to eight users). Among these, an item

tightly coupled to the standardization is the CSI measurement and feedback mecha-

nism. In this subsection, we discuss the deployment scenarios, antenna configurations,

TXRU structure, new RS strategy, and feedback mechanisms.
1In 3D channel model, the typical number of multi-paths (clusters) is 12 [86].
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6.2.1 Deployment scenarios

For the design and evaluation of FD-MIMO systems, a realistic scenario in which an-

tenna array and UEs are located in different height is considered. To this end, two

typical deployment scenarios, viz., 3D urban macro scenario (3D-UMa) and 3D urban

micro (3D-UMi), are introduced (see Fig. 6.2). In the former case, transmit antennas

are placed over the rooftop, and in the latter case, they are located below the rooftop.

In case of 3D-UMa, diffraction over the rooftop is a dominant factor for the propa-

gation so that down-tilted transmission in the vertical direction is desirable (see Fig.

6.2(b)). In fact, by transmitting beams with different steering angles, eNB can separate

channels corresponding to multiple UEs. In the 3D-UMi scenario, on the other hand,

the location of users is higher than the height of the antenna so that direct signal path

is dominant (see Fig. 6.2(c)). In this scenario, both up and down-tilting can be used to

schedule UEs in different floors. Since the cell radius of the 3D-UMi scenario is typ-

ically smaller than that of 3D-UMa, LOS channel condition is predominant, and thus

more UEs can be co-scheduled without increasing the inter-user interference [86]. Al-

though not as strong as the 3D-UMi scenario, LOS probability in the 3D-UMa scenario

also increases when the distance between eNB and UE decreases.

6.2.2 Antenna configurations

Unlike the conventional MIMO systems relying on the passive antenna, systems based

on the active antenna can dynamically control the gain of an antenna element by ap-

plying the weight of low-power amplifiers attached to each antenna element. Since

the radiation pattern depends on the antenna arrangement, such as the number of the

antenna elements and antenna spacing, the antenna system should be modeled in an

element-level. As shown in Fig. 6.3(a), there are three key parameters characterizing

the antenna array structure (M,N,P ): the number of elements M in vertical direc-

tion, the number of elements N in horizontal direction, and the polarization degree P

(P = 1 is for co-polarization and P = 2 is for dual-polarization). As a benchmark set-
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ting, 2D planar array using dual polarized antenna (P = 2) configuration with M = 8

(0.8λ spacing in vertical direction) and N = 4 (0.5λ spacing in horizontal direction)

is suggested.2 In this setting, null direction, an angle to make the magnitude of beam

pattern to zero, for the elevation beam pattern is 11◦ and that for the horizontal beam

pattern is 30◦ (see Fig. 6.3(c)). Since the null direction in the vertical domain is much

smaller than that of the horizontal domain, scheduling UEs in the vertical domain is

more effective in controlling the inter-user interference. Also, a tall or fat array struc-

ture (M � N or M � N ) is favorable since it will generate a sharp beam but it

might be less flexible in the situation where the surrounding environment is changed.

Further, large antenna spacing is not always a desirable option since it can increase

the inter-cell interference due to the narrow beamforming for cell edge UEs (this phe-

nomenon is called flash-light effect). For this reason, in a real deployment scenario,

the design parameters should be carefully chosen by considering various factors, such

as user location, cell radius, building height, and antenna height.

6.2.3 TXRU architectures

As mentioned, one interesting feature of the active antenna systems is that each TXRU

contains PA and LNA so that eNB can control the gain and phase of an individual

antenna element. In order to support this, a power feeding network between TXRUs

and antenna elements called TXRU architecture is introduced [90]. TXRU architec-

ture consists of three components: TXRU array, antenna array, and radio distribution

networks (RDN). A role of the RDN is to deliver the transmit signal from PA to an-

tenna array elements and the received signal from antenna array to LNA. Depending

on the CSI-RS transmission and feedback strategy, two representative options, array

partitioning and array connected architecture, are suggested. The former is for the con-
2Note that the total number of antenna elements in this setup is the same as that of 8Tx antennas in

conventional systems and thus FD-MIMO eNB can provide backward compatibility [89]. The vertical
configuration is to ensure the same cell coverage and the horizontal configuration is for the conventional
MIMO operation for LTE.
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Figure 6.2: FD-MIMO deployment scenarios: (a) 3D macro cell site (placed over the
rooftop) and 3D micro cell site (placed below the rooftop) with small cell, (b) beam-
forming for 3D macro cell, and (c) beamforming in 3D micro cell.

ventional codebook scheme and the latter is for the beamforming scheme.

In the array partitioning architecture, antenna elements are divided into multiple

groups and each TXRU is connected to one of them (see Fig. 6.3(d)). Whereas, in the

array connected structure, RDN is designed such that RF signals of multiple TXRUs

are delivered to the single antenna element. To mix RF signals from multiple TXRUs,

additional RF combining circuitry is needed as shown in Fig. 6.3(e). The difference

between the two can be better understood when we discuss the transmission of the CSI-

RS. In the array partitioning architecture, NT antenna elements are partitioned into L

groups of TXRU and orthogonal CSI-RS is assigned for each group. Each TXRU

transmits its own CSI-RS so that the UE measures the channel h from the CSI-RS

observation y = hx+ n. In the array connected architecture, each antenna element is

connected to L
′

(out of L) TXRUs and orthogonal CSI-RS is assigned for each TXRU.

Denoting h ∈ C1×Nc as the channel vector and v ∈ CNc×1 as the precoding weight

(NT
L
′

L = Nc) for each beamformed CSI-RS, the beamformed CSI-RS observation

is y = hvx + n and the UE measures the precoded channel hv from this. Due to
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Figure 6.3: FD-MIMO systems: (a) concept of FD-MIMO systems, (b) 2D array an-
tenna configuration, (c) vertical and horizontal beamforming patterns, (d) array par-
titioning architecture with the conventional CSI-RS transmission, and (e) array con-
nected architecture with beamformed CSI-RS transmission.
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the narrow and directional CSI-RS beam transmission with a linear array, SNR of the

precoded channel is maximized at the target direction.3

6.2.4 New CSI-RS transmission strategy

In the standardization process, two CSI-RS transmission strategies, i.e., extension of

the conventional non-precoded CSI-RS and the beamformed CSI-RS, are suggested.

In the first strategy, UE observes the non-precoded CSI-RS transmitted from each of

partitioned antenna arrays (see Fig.6.3(d)). By sending the precoder maximizing the

properly designed performance criterion to the eNB, UE can adapt to the channel vari-

ation. In the second strategy, eNB transmits multiple beamformed CSI-RS (we call it

beam for simplicity) using connected arrays architecture. Among these, UE selects the

preferred beam and then feeds back its index. When the eNB receives the beam index,

the weight corresponding to the selected beam is used for the data transmission.

Overall downlink precoder for data transmission Wdata and CSI-RS transmission

Wrs can be expressed as

Wdata = WTWrs and Wrs = WPWU , (6.1)

where WT ∈ CNT×L is the precoder between TXRU and the antenna element, WP ∈

CL×NP is the precoder between the CSI-RS port and the TXRU (NP is the number of

antenna ports), and WU ∈ CNP×r is the precoder between data channel to CSI-RS

port.

In the following, we summarize details of two strategies.

• Conventional CSI-RS transmission: One option to maximize the capacity is to

do one-to-one mapping of the TXRU and the CSI-RS resource (i.e., WP =

INTXRU ). To achieve the same coverage for each CSI-RS resource, an identical

3SNR = |hv(φ)|2
σ2 , where φ is the beam direction and σ2 is the noise power.

112



weight v is applied to L groups.4 Each UE measures the CSI-RS resources and

then chooses the preferred codebook index i∗ maximizing the channel gain for

each subband:

i∗ = arg max
i
‖h̄HWi

U‖22, (6.2)

where ‖a‖2 =
√∑

i
|ai|2 and h̄ = h/‖h‖2 is the estimated channel direction

vector, and Wi
U is the ith precoder between the data channel and CSI-RS ports.

This scheme is called class-A CSI feedback.

• Beamformed CSI-RS transmission: In order to acquire the spatial angle between

the eNB and UE, eNB transmits multiple beamformed CSI-RSs. Let NB be the

number of CSI-RSs, then we have WT = [v1v2 . . .vNB ] where vi ∈ CNT×1

is the 3D beamforming weight for the ith beam. For example, when the rank-

1 beamforming is applied, we have WP = 1NB and WU = 1. Among all

possible beams v1, ...,vNB , UE selects and feeds back the best beam index j∗

maximizing the received power:

j∗ = arg max
j
|h̄Hvj |2. (6.3)

This scheme is called class-B CSI feedback. Under the rich scattering envi-

ronment, dominant paths between eNB and UE depend on the direction and

width of the transmit signal. In the multiple-input single-output (MISO) chan-

nel, for example, the channel vector in an angular domain is expressed as h =∑
i eret(φi)

∗, where er = 1 and et(φi) = [1 e−j2πγφi ... e−j2π(NT−1)γφi ]T

is the spatial signature of the transmitter (φi is direction of ith path and γ is

normalized antenna spacing) [91]. When the RS is transmitted in a direction

φj , the beamforming weight would be v = et(φj) so that the resulting beam-

4In this section, we assume that discrete Fourier transform (DFT) weights are used as WT for
mapping between TXRU and antenna elements for simplicity. For example, WT can be expressed as
WT = [v v; v v] in Fig. 6.3(d).
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Table 6.1: Comparison between CSI-RS transmission and CSI feedback classes

Category Class-A CSI feedback (Con-
ventional CSI-RS)

Class-B CSI feedback (Beam-
formed CSI-RS)

Feedback design Need to design codebook for
2D antenna layout and feedback
mechanism for adapting chan-
nel variation

Need to devise a method to feed
back beam index for adapting
both weight changes and chan-
nel variation

UL Feedback overhead Depend on resolution of code-
book and the number of anten-
nas

Depend on the number of oper-
ating beam NB

CSI-RS overhead Require NT CSI-RS resources Scale linearly with the number
of beam NB

Backward compatibility Supportable with virtualization
between

Supportable with vertical 1D
beamforming

TXRUs and antenna ports weight
Forward compatibility Scalable to larger TXRU sys-

tem if CSI-RS resources are al-
lowed

Scalable to larger TXRU sys-
tem if long-term channel statis-
tics are acquired

formed channel is readily expressed as one or at most a few dominant taps

(et(φi)Tet(φi) ≈ 0 when i 6= j). In fact, by controlling the weight applied

to CSI-RS, the effective dimension of the channel vector can be reduced so that

the feedback overhead can be reduced substantially.

In Table 6.1, we summarize two CSI-RS transmission schemes discussed in the FD-

MIMO.

6.2.5 CSI feedback mechanisms for FD-MIMO systems

In the study item phase, various RS transmission and feedback schemes have been

proposed. As shown in Fig. 6.1, capacity and overhead of class-A and class-B feedback

schemes are more or less similar in the initial target range (Nt = 16) so that Rel.

13 has decided to support both classes. In this subsection, we briefly describe the

CSI feedback schemes associated with TXRU architectures. Among various schemes,

composite codebook and beam index feedback have received much attention as main

ingredients for class-A and class-B CSI feedback. The rest will be considered in a

future release.
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Composite codebook: In this scheme, overall codebook is divided into two (verti-

cal and horizontal codebooks) and thus the channel information is separately delivered

to the eNB. By combining two codebooks (e.g., Kronecker product of two codebooks

WU = WU,V ⊗WU,H ), eNB reconstructs whole channel information. Considering

that the angular spread of the vertical direction is smaller than that of the horizontal

direction, one can reduce the feedback overhead by setting a relatively long reporting

period to the vertical codebook.

Beam index feedback: To obtain the UE’s channel direction information (CDI)

from beamformed CSI-RSs, eNB needs to transmit multiple beamformed CSI-RSs.

When the channel rank is one, feedback of a beam index and corresponding CQI is

enough. Whereas, when the channel rank is two with dual-polarized antennas, co-

phase information is additionally required for adapting channel orthogonalization be-

tween layers. For example, once eNB obtains the CDI, this can be used for the beam-

forming vector of two-port CSI-RS and each CSI-RS port is mapped to the different

polarized antennas. UE then estimates and feeds back short-term co-phase information

between two ports.

Other CSI feedback schemes: In the partial CSI-RS transmission, CSI-RS over-

head can be reduced by partitioning the 2D antenna array into horizontal and vertical

ports, say NH ports in the row and NV ports in the column. In doing so, the total

number of CSI-RS can be reduced from NH ×NV to NH +NV . Overall channel in-

formation can be reconstructed by exploiting spatial and temporal correlation among

antenna elements [92]. In the adaptive CSI feedback scheme, benefits of the beam-

formed and non-precoded CSI-RS transmission can be combined. First, in order to ac-

quire long-term channel information, eNB transmitsNT non-precoded CSI-RSs. After

receiving sufficient long-term channel statistics from UE, eNB determines spatial di-

rection roughly and then transmits the beamformed CSI-RSs used for short-term and

subband feedbacks. The flexible codebook scheme can support various 2D antenna

layouts without increasing the number of codebooks. In this approach, one master
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codebook is designed for a large number of TXRUs, say 16 TXRUs, and the specific

codebook (e.g., (2× 8), (4× 4), or (1× 16)) is derived based on this. To support this,

the eNB needs to send the layout information via separate signaling.

6.3 System Model

6.3.1 Basic System Model

We consider the downlink IoT systems with NT antennas at the FD-MIMO bases-

tation and a single antenna at the IoT device. Typically, small portion of the system

bandwidth, say Bu [Hz] out of Bs [Hz] (Bu � Bs), is assigned for each IoT device.

For examples, 1.4 MHz out of 20 MHz bandwidth is assigned to each device in eMTC

standard and 180 kHz bandwidth in NB-IoT standard [74]. In the OFDM-based sys-

tem, pilot signals are inserted in the time-frequency resource. Pilot signals are used

for the channel estimation, data demodulation, and channel state information (CSI)

feedback.

Let yin ∈ CNP×1 be the received pilot vector in the frequency domain extracted

from the nth time-symbol and ith antenna (see Fig. 1(b)). Then yin is expressed as

yin = diag
(
pin
)
Φi
ng

i
n + zin, (6.4)

where pin ∈ CNP×1 is the vector constructed from the pilot symbols, Φi
n ∈ RNP×NF

is the selection matrix containing only one element being one in each row and rest

being zero5, gin ∈ CNF×1 is the frequency-domain channel vector, and zin ∈ CNP×1

is the additive white Gaussian noise (zin ∼ CN (0, σ2
wINP )). The relationship between

the frequency-domain channel vector gin and the time-domain channel vector hin =

[hin,1, ..., h
i
n,NF

] ∈ CNF×1 is

gin = Fhin, (6.5)

5For example, if the 1st and 3rd subcarriers are used for pilot, then Φi
n =

[
1 0 0 0 ...
0 0 1 0 ...

]
and

NF is the number of subcarriers.
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where F ∈ CNF×NF is the DFT matrix. From (6.4) and (6.5), we have

yin = diag
(
pin
)
Φi
nFhin + zin. (6.6)

In characterizing the channel vector h, we assume that there areK clusters andNsp

sub-paths for each cluster. When the basestation antennas have a linear array structure

(e.g., 1D linear array or 2D uniform planner array) and the receiver has a single an-

tenna, the channel for each antenna can be expressed in terms of the angle of departure

(AoD). A time-varying channel tap him of the ith antenna and delay binm is expressed

as

him =
1

NT

Nsp∑
l=1

√
h1
m

Nsp
ejφmejκ(i−1) sin θm,l , (6.7)

where κ = 2π
λ is the wavenumber, φm is the random phase of mth element, and

θm,l = θm +∆θl is AoD of sub-paths in mth cluster where ∆θl ∼ N (0, σ2
m), and σm

is standard deviation of angular spread for m = 1, ...,K [75-76].

In this work, we assume that the support of the channel vector hi is common for

all antennas. In fact, supp(hi) = supp(hj) for i and j = 1, ..., NT . Note that the

scale of the antennas at the basestation is much smaller than the signal transmission

distance in typical multi-antenna geometry so that channels associated with different

transmit-receive antenna pairs usually share the common support [77].

6.3.2 Beamformed Pilot Transmission

When the number of transmit antennas is large, orthogonal pilot transmission cannot

be a desirable option due to the pilot overhead and computation complexity of signal

processing operations. One viable approach to reduce the pilot overhead is to transmit

multiple beamformed pilots (we henceforth call it beam [78]). Main idea of this ap-

proach is to transmit the pilot signals after applying the predefined beam patterns. In

doing so, multiple beams having different beam directions can be transmitted simulta-

neously (e.g., AoD of line-of-sight path in [79] and angular separation in [80]). Since
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Figure 6.4: Beamforming of the proposed TDSB scheme.

the effective dimension of the channel vector (cardinality of h) can be reduced, pilot

and feedback overhead are also reduced substantially.

When the pilot signal is transmitted without any modification, the channel vector in

an angular domain is expressed as [h1 ... hNT ]T =
∑

iwrht(φi)
∗, where wr = 1 and

ht(φi) = [1 e−j2πκφi ... e−j2π(NT−1)κφi ]T is the spatial signature of the transmitter

(φi is direction of ith path). When the pilot signal is transmitted in a direction φj , we

set the beamforming weight to w = ht(φj) so that the resulting beamformed channel

can be readily expressed as one or at most a few dominant taps (wt(φj)
Tht(φi) ≈ 0

for i 6= j). In fact, key idea of the proposed scheme is to design the beamforming

weight to sparsify the beamformed channel vector h̃.

6.4 Sparsification of Pilot Beamforming

Unlike the conventional scheme where the pilot signal is transmitted without modifica-

tion (e.g., common and channel state information reference signal in LTE-Advanced),

the pilot signals are sent after the beamforming in the proposed TDSB technique (see

Fig. 6.4). Primary goal of the proposed TDSB scheme is to minimize the nonzero

entries of a time-domain channel vector by the help of multiple antennas at the bases-

tation. In our work, we assume that the nonzero tap information is available at the
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basestation via the channel feedback or channel reciprocity.

6.4.1 Time-domain System Model without Pilot Beamforming

Let hin = [hin,1, ..., h
i
n,Ncir

]T be the time-domain CIR vector associated with ith an-

tenna. The pilot observation yin for the conventional wireless systems is

yin = diag
(
pin
)
Φi
ng

i
n + zin

= diag
(
pin
)
Φi
nF

 hin

0NF−Ncir

+ zin

= diag
(
pin
)
Φi
nFΠhin + zin,

(6.8)

where Π ∈ RNF×NC is the selection matrix containing only one element being one in

each column and rest being zero.6 Let Ui
n = diag

(
pin
)
Φi
nFΠ, then we have

yin = Ui
nh

i
n + zin. (6.9)

In many wireless environments, the channel can be readily expressed using a small

number of taps (say K). That is, K is much smaller than the length of CIR vector

Ncir (i.e., K � Ncir). Since hin is a sparse vector, one can recover it using only small

number of measurements via the CS technique [72]. The drawback of CS-based ap-

proaches, in the perspective of multiple antenna systems, is that the channel estimation

is performed per antenna so that the pilot overhead and computational complexity in-

crease linearly with the number of transmit antenna NT . When NT is large, therefore,

this scheme might not be a good fit for IoT systems.

6If the first two taps are nonzero elements, then Π =

[
1 0 0 ...
0 1 0 ...
0 0 0 ...
... ... ... ...

]
.
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6.4.2 Pilot Beamforming

When the beamforming weight wn(k) = [w1
n(k)...wNTn (k)]T is applied, the beam-

formed (scalar) channel for k-th subcarrier is

g̃n(k) = wT
n (k)


g1
n(k)

...

gNTn (k)

 . (6.10)

Then the received vector ỹn ∈ CÑP×1 after aggregating all subcarriers can be ex-

pressed as

ỹn = diag (p̃n) Φ̃n


g̃n(1)

...

g̃n(NF )

+ z̃n

= diag (p̃n) Φ̃ndiag (WnGn) + z̃n

= diag (p̃n) Φ̃nF

 h̃in

0NF−Ncir

+ z̃n,

(6.11)

where h̃in = [h̃in,1, ..., h̃
i
n,Ncir

]T is the time-domain CIR vector after the beamform-

ing, p̃n ∈ CÑP×1 is the pilot symbol vector, Φ̃n ∈ RÑP×NF is the selection matrix,

and z̃j ∈ CÑP×1 is the additive white Gaussian noise (z̃n ∼ CN (0, σ2
wIÑP )). Also,

Gn =
[
g1
n ... g

NT
n

]T ∈ CNT×NF is the matrix consisting of frequency-domain chan-

nel vectors of NT antennas, and Wn = [wn(1) ... wn(NF )]T ∈ CNF×NT is the

matrix constructed by stacking beamforming vectors of all subcarriers.

The beamforming matrix Wn is designed to minimize the cardinality of beam-
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formed channel vector h̃n. That is,

Wn = arg min
W̃n

∥∥∥h̃n∥∥∥
0

= arg min
W̃n

∥∥∥∥ 1

NF
F∗diag

(
W̃nGn

)∥∥∥∥
0

.

(6.12)

Using the deliberately designed beamforming, we can sparsify the (precoded) time-

domain channel vector. For example, suppose the support (index of nonzero elements)

of hin is Γ = {n1, n2, n3} and the number of antennas NT is 4. Then the frequency-

domain channel for the i-th antenna and k-th subcarrier is

gin(k) =

NF∑
n=1

hin,ne
j

2πk(n−1)
NF

=
[
hin,n1

hin,n2
hin,n3

]
e
j

2πkn1
NF

e
j

2πkn2
NF

e
j

2πkn3
NF

 .
(6.13)

As mentioned in Section II.A, the channel gain of the i-th antenna can be expressed in

terms of h1 (i.e., hi = h1ej(i−1)κ sin θn) and thus
g1
n(k)

g2
n(k)

g3
n(k)

g4
n(k)

 =


1 1 1

ejκ sin θn1 ejκ sin θn2 ejκ sin θn3

ej2κ sin θn1 ej2κ sin θn2 ej2κ sin θn3

ej3κ sin θn1 ej3κ sin θn2 ej3κ sin θn3



h1
n,n1

e
j
2πkn1
NF

h1
n,n2

e
j
2πkn2
NF

h1
n,n3

e
j
2πkn3
NF

. (6.14)

Let ğn(k) =
[
g1
n(k) g2

n(k) g3
n(k) g4

n(k)

]T
, Ω(k) =


1 1 1

ejκ sin θn1 ejκ sin θn2 ejκ sin θn3

ej2κ sin θn1 ej2κ sin θn2 ej2κ sin θn3

ej3κ sin θn1 ej3κ sin θn2 ej3κ sin θn3


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and h̄n =


h1
n,n1

e
j
2πkn1
NF

h1
n,n2

e
j
2πkn2
NF

h1
n,n3

e
j
2πkn3
NF

, then we have

ğn(k) = Ω(k)h̄n. (6.15)

After the beamforming using wi
n(k), the beamformed channel g̃(k) is given by

g̃n(k) = wT
n (k)ğn(k)

= wT
n (k)Ω(k)h̄n.

(6.16)

In this case, by setting the beamforming vector wT
n (k) as

wT
n (k) =

[
1 0 0

]
Ω†(k), , (6.17)

where Ω† = (ΩTΩ)−1ΩT is the pseudo-inverse of Ω7, we can annihilate all taps

of hin except for n1-th position. After the beamforming, we obtain the beamformed

frequency-domain (scalar) channel g̃n(k) as

g̃n(k) =
[
1 0 0

]
Ω†(k)Ω(k)h̄n

= h1
n,n1

e
j

2πkn1
NF .

(6.18)

From (6.18), one can observe that the channel g̃n(k) for the subcarrier k is a function

7Since the dimension of matrix Ω(k) is NT × K and Ω(k)is a full rank matrix, one can obtain
the pseudo-inverse as long as the number of antenna NT is larger than or equal to K. Other than IoT
scenarios, this condition is also well suited for millimeter wave communication scenarios.
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of only h1
n,n1

. Thus, one can show that


g̃n(1)

...

g̃n(NF )

 = F



0

...

0

h1
n,n1

0

...

0


. (6.19)

Without loss of generality, to select k taps out of K taps, we can use binary vector

e for selecting taps for channel sparsification.

wT
n (k) = eTΩ†(k). (6.20)

It is worth mentioning that one can further improve the performance by transmit-

ting multiple beams simultaneously and then choosing the beam with the best quality.

When the number of beam is J , the aggregated time-domain channel vectors of beams

can be expressed as

[
h̃1
n ... h̃

J
n

]
=

1

NF
F∗
[
diag

(
W1

nGn

)
... diag

(
WJ

nGn

)]

=
1

NF
F∗


[w1

n(1) ... wJ
n(1)]Ω(1)h̄n
...

[w1
n(NF ) ... wJ

n(NF )]Ω(NF )h̄n

 .
(6.21)

In each subcarrier k, the precoding weights are expressed as

[w1
n(k) ... wJ

n(k)] = EΩ(k)† for K ≤ NT . (6.22)
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where E = [e1 ... eJ ]T . For example, by setting

supp
{
ei
}
6= supp

{
ej
}

for i, j = 1, ..., J., (6.23)

J beamforming pilots can exploit orthogonal taps from the original time-domain chan-

nel vector h. This setting has benefit when IoT device performs channel estimation for

multiple beamformed pilot jointly. Since the receiver has prior knowledge of non-

overlapped tab location between beams, the estimation complexity can be reduce sig-

nificantly.

6.5 Channel Estimation of Beamformed Pilots

6.5.1 Recovery using Multiple Measurement Vector

The received vector of the beamformed pilot signals ỹn is

ỹn = diag (p̃n) Φ̃nF

 h̃n

0NF−Ncir

+ z̃n

= Ũnh̃n + z̃n,

(6.24)

where Ũn = diag (p̃n) Φ̃nFΠ. In estimating the channel h̃n, we use the sparse re-

covery algorithm (such as an orthogonal matching pursuit). In many IoT scenarios,

the position of dominant components in the CIR vector remain unchanged during the

coherence time so that we can use multiple observations to estimate the beamformed

sparse channel. Let L be the number of pilot observations in a local block, then the
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stacked vector ȳn = [ỹn−L... ỹn]T of beamformed observations is expressed


ỹn−L

...

ỹn


︸ ︷︷ ︸

ȳn

=


Ũn−L

. . .

Ũn


︸ ︷︷ ︸

Ūn


h̃n−L

...

h̃n


︸ ︷︷ ︸

h̄n

+


z̃n−L

...

z̃n


︸ ︷︷ ︸

z̄n

. (6.25)

After rearranging columns of h̄n, we have

ȳn = Ū
′
nh̄
′
n + z̄

′
n, (6.26)

where h̄
′
n = [h̃n−L(1) ... h̃n(1)h̃n−L(2) ... h̃n(2) ... h̃n(Ncir)]

T and Ū
′
n = [Ũn−L(:

, 1) ... Ũn(:, 1)Ũn−L(:, 2) ... Ũn(:, 2) ... Ũn(:, Ncir)].

Let dn,k = [h̃n−L(k) ... h̃n(k)]T and Σn,k = [Ũn−L(:, k) ... Ũn(:, k)], we can

rewrite ȳn using dn,k and Σn,k as

ȳn =
[
Σn,1 ... Σn,Ncir

]
dn,1

...

dn,Ncir

+


z̄n,1

...

z̄n,Ncir

. (6.27)

The output (nonzero tap index and channel estimate) of the block OMP algorithm is

given by [72]

k̂ = arg max
k
‖Σn,kȳn‖22

d̂n,k̂ = E[dn,k̂ȳ
H
n ]E−1[ȳnȳ

H
n ]ȳn

= [RnΣ
H
n,k̂

][Σn,k̂RnΣ
H
n,k̂

+ σ2
z̄I]−1ȳn,

(6.28)

where Rn is the covariance matrix of channel tap [70]. Rearranging back to the original
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Algorithm 1 Joint time-domain channel vector recovery of multiple beamformed pi-
lots

Input: CS matrix Σ, measurement vector ȳ
Output: Estimated CIR of beamformed pilots ĥj

Initialize: Estimated channel vector d̂(0) = 0, residual vector ∆ = ȳ, joint support vector
S = 0, beam support vector b = 0, tap support vector c = 0, i = 0, tap searching set
Ψ = {1, ..., Ncir}, beam searching set Υ = {1, ..., J}
while stopping criterion false do

i← i+ 1
l, k ← arg max

l∈Υ,k∈Ψ
‖Σn,l,k∆‖22, //select beam and tap index

sblck ← 1, sblcm ← 0 when m 6= k, sbtck ← 0 when l 6= t //update support vector
Ψ← Ψ− {k}, Υ← Υ− {l} //remove detected supports from the searching sets
E[dn,q,pȳ

H
n ]← [sbq,cpRnΣH

n,q,p]

E−1[ȳnȳHn ]← [
∑
p

∑
q sbq,cpRnΣn,q,pΣ

H
n,q,p + σ2

z̄I]−1

d̂
(i)
n,q,p ← E[dn,q,pȳ

H
n ]E−1[ȳnȳHn ]ȳ for p = 1, ..., Ncir and q = 1, ..., J //

∆← ȳ −
∑p=Ncir
p=1

∑q=J
q=1 Σn,q,psbqcp d̂n,q,p //update residual

ĥl ←
[
(d̂

(i)
n,l,1)L...(d̂

(i)
n,l,Ncir

)L

]T
//Estimated channel tap

end while

index, we obtain the beamformed time-domain channel vector as

ĥn =
[
(d̂n,1)L...(d̂n,Ncir)L

]T
. (6.29)

Since the number of iterachannel estimation of TDSB requires a which is feasible for

IoT solutions. Since the complexity of channel estimation with TDSB is extremely

low, we can estimate multiple beams jointly. When we exploit multiple beams (see

Fig. 6.5), we can estimate channels of multiple beams jointly. Let ỹjn be the received

beamformed pilot observations of j-th beamformed pilot and ŷn =
[
ỹ1
n... ỹ

J
n

]T be the

stacked beamformed pilots. Let L be the number of observation block, then we have

ȳn =
[
ŷn−L . . . ŷn

]T
. (6.30)

Again, after proper rearranging, we have

ȳn = Ū
′′
nh̄
′′
n + z̄

′′
n, (6.31)
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Figure 6.5: Comparison between channel vector recovery when L = 3 and K = 2: (a)
the conventional time-domain CS recovery (find 2 support out of 7 candidates), and
(b) The proposed CS recovery with time-domain sparse precoding (find 2 support out
of 14 candidates).

where h̄
′′
n = [h̃1

n−L(1) ... h̃1
n(1)h̃1

n−L(2) ... h̃1
n(2) ... h̃Jn(Ncir)]

T and Ū
′′
n = [Ũ1

n−L(:

, 1) ... Ũ1
n(:, 1)Ũ1

n−L(:, 2) ... Ũ1
n(:, 2) ... ŨJ

n(:, Ncir)].

Let dn,j,k = [h̃jn−L(k) ... h̃jn(k)]T and Σn,j,k = [Ũj
n−L(:, k) ... Ũj

n(:, k)], MMV

can be rewritten as

ȳn =
[
Σn,1,1 ... Σn,J,Ncir

]
s1,1dn,1,1

...

sJ,Ncirdn,J,Ncir

+


z̄n,1,1

...

z̄n,J,Ncir

, (6.32)

where Σn,j,k is the re-ordered sensing matrix of signal vectors dn,j,k. In order to

identify whether signal vector dn contains energy, we define a binary vector s =

[s1,1 ... s1,Ncir ... si,j ... sJ,Ncir ] where si,j = 1 indicates that j-th tap in i-th beam

is nonzero and si,j = 0 otherwise. In each iteration of the recovery algorithm, which

is essentially the block OMP algorithm, the index of the component with the largest

energy in the channel vector is chosen. We note that all taps in the selected beam and

all beam in the selected tap are removed from the search set in the next iteration. We

repeat the iterations until K dominant components are identified. The detailed steps of

algorithm are depicted in Algorithm 1.
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6.5.2 MSE Analysis

In this section, we investigate the MSE performance of beamformed pilot using com-

pressive sensing. For analysis simplicity, the followings are assumed: 1) Orthogonal

matching pursuit (OMP) algorithm is used, 2) The probability of time-domain channel

tap locations are equally likely between Ncir taps, and 3) K̃ sparsity is known to the

receiver. Since we use OMP algorithm, the estimator would like to detect correct tap

when the measurements are enough. In fact, if the algorithm works correctly, the set

of detected tap would be equal or subset of actual taps with high probability. Although

there are many combinatorial cases for detected set and active sets, we can simplify as

follows:

• Case A: the number of detected tap tdet(= tcorr + tinc) is less than the sparsity

of beamformed pilot K̃. For example, K̃ − tdet = n, there are tdet taps are

corrected detected and n taps are mis-detected.

• Case B: the number of detected tap tdet is larger than the sparsity of beamformed

pilot K̃ and actual taps are subset of detected set. For example, tdet − K̃ = m,

there are K̃ taps are corrected detected and m taps are mis-detected.

Let MSEj = E(|∆gj |2) be the MSE of jth CIR tap, where ∆gj = ĝj−gj . When

jth tap is active and detected correctly, MSE of jth CIR tap is distorted by noise only

(MSEj = σ2
z ). Otherwise, MSEj is occurred from either of two cases; detected but

not active and non-detected but active. When the jth tap is detected but not active tap,

Then MSEj can be summarized when the number of detected tap kdet is less than K̃

and vice versa. That is

MSEj =


σ2
z + σ2

s,j , if kdet < K̃

2σ2
z + σ2

s,j , otherwise
, (6.33)
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where σ2
s,j is the signal power of jth active tap. The overall MSE is given by

MSE = Ps

( ∑
correct

σ2
z

)

+ (1− Ps)
Ncir∑
l=1

Ptap,l

( ∑
correct

σ2
z +

∑
incorrect

MSEj

)

≈ Ps

( ∑
correct

σ2
z

)
+ (1− Ps)

×
K̃∑
n=1

P K̃m,n

( ∑
correct

σ2
z +

∑
incorrect

MSEj

)
,

(6.34)

where Ps is probability of perfect support detection with K̃ sparse, Ptap,l is probability

of l tap detection, and P K̃m,n is probability when n taps are miss-detected among K̃

taps. With these relaxed assumptions, P K̃m,n is
(
K̃
n

)(Ncir−K̃
K̃−n

)
/
(Ncir
K̃

)
and we can rewrite

(6.33) using the Corollary 4.2 in [94] as follows

MSE = σ2
E = Ps

 K̃∑
correct

σ2
z

+ (1− Ps)

×
K̃∑
n=1

P K̃m,n

(
(K̃ − n)σ2

z + n(σ2
z + σ2

s,j)
)

≤ K̃σ2
z + Cδ1/2 K̃

2

Ncir
σ2
s , if

σ2
s

σ2
z

≥ δ−3/2

2K̃
.

(6.35)

6.6 Simulations and Discussion

6.6.1 Simulation Setup

In this section, we compare the MSE and spectral efficiency of the conventional schemes

and the proposed TDSB scheme. We consider OFDM-based IoT systems where Bs =

20 MHz, subcarrier spacing of 15 KHz, and DFT size of NF = 2048. The maxi-
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mum delay spread of the multipath channel is assumed to be 0.467 µs, which yields

Ncir = 144. Duration of OFDM symbol is 7.2 µs and the time interval between ad-

jacent pilot symbols is 5 ms. We assume that 5 taps in the channel vector are nonzero

with uniform energy. One out of 12 subcarriers is randomly chosen for the pilot pur-

pose. In the proposed TDSB scheme 5 beams are used for the pilot transmission. As a

channel model, we use Jakes’ model for the temporal correlation of the complex gains

of the tap is J0(2πfDτ) where J0(·) is the 0-th order Bessel function of the fist kind,

fD = vfc/c denotes the maximum Doppler frequency, and τ is the pilot interval. We

also assume that nonzero elements of time-domain channel are uncorrelated.

6.6.2 Simulation Results

We first compare the MSE performances of the proposed TDSB scheme with the con-

ventional channel estimation algorithms (LMMSE [73]) in Fig. 6.6. In order to observe

the performance of narrowband observation, we assign 12 consecutive subcarriers

(Bu = 150 KHz) to each IoT device. Since the receiver has only partial observation in

frequency-domain at each pilot observation, the conventional LMMSE does not work

properly. Further, pilot subcarriers are locally placed within narrow bandwidth of Bs,

the conventional CS-based channel estimation scheme is also not working well. We

observe that the proposed scheme outperforms the conventional schemes and achieves

more than 20 dB gain in high SNR regime. This result reveals that the proposed TDSB

scheme is feasible for the MTC or IoT devices equipped with stringent hardwares.

In order to observe the effectiveness of channel sparsification, we next measure the

MSE performances with and without using TDSB as depicted in Fig. 6.7. As the con-

ventional pilot transmission, beamforming is not used so that all nonzero taps are esti-

mated from the pilot measurements. That is, pilots are transmitted per antenna without

beamforming and time-domain channel vectors hin are estimated for each antenna i.

In case of TDSB, each beamformed pilot employ one of nonzero taps in hn and beam-

formed time-domain channel vectors h̃jn are estimated jointly at the device. Since the

130



−5 0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

101

SNR (dB)

M
SE

Ideal
LMMSE
Block OMP
Proposed (L=7)
MSE bound

Figure 6.6: MSE performance of TDSB scheme as a function of SNR (L = 7, J = 5,
K = 5 and NT = 16).

number of nonzero taps is reduced by TDSB, the proposed scheme outperforms the

cases without using TDSB scheme at the basestation. Interestingly, we observed that

MSE performance is improved as the nonzero taps are decreased in the time-domain

channel vector and this reveals same results mentioned in Section V. The benefit of

sparsification can be better understood by observing the normalized throughput. In

Fig. 6.9, we plot the normalized throughput as a function of SNR. As a performance

metric, we define the normalized throughput η as

η (bps/Hz) =
Nbit

(Nt −Np)TdBs
, (6.36)

where Nbit is the number of successive bit during Td duration, Nt is the number of

REs used for transmission, and Np is the number of REs used for pilot transmission.

In this case, we set NT = 32 and compare the performance of the TSDB scheme with
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Figure 6.7: MSE performance with and without TDSB scheme at the basestation (L =
7, J = 5, K = 5 and NT = 16).

the following two scenarios; 1) a system use the proposed beamforming and channel

estimation algorithm, and 2) a system use the conventional (without beamforming)

pilot transmission and CS-based channel estimation. For pilot overhead, 2 and 170

subcarriers are used for the proposed scheme and the conventional pilot transmission,

respectively. For the data transmission, we use the best beam feed back from the IoT

device [78]. Since the proposed scheme use fewer pilot symbols, the TDSB scheme

achieves 2-fold of gain in terms of normalized throughput.

In order to observe the effect of pilot overhead, we plot the normalized through-

put as a function of pilot overhead in Fig. 6.10. The pilot overhead is the ratio of

the pilot resources to the LTE-Advanced systems. For example, 100% pilot overhead

indicates that 8.3% of whole OFDM resources are used for pilot symbols. As pilot

overhead decreases, the conventional LMMSE scheme performs poorly so that nor-

malized throughput decreases. While MSE performance is improved as pilot overhead

132



−5 0 5 10 15 20 25 30
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

M
SE

Ideal w/ TDSB
Ideal w/o TDSB
LMMSE w/ TDSB
LMMSE w/o TDSB
Proposed w/ TDSB (L=7)
Conventional CS w/o TDSB (L=7) [70]

Figure 6.8: Test.

increase in the TDSB scheme, normalized throughput is decreased due to pilot over-

head. Overall, results shows that TSDB scheme outperforms the conventional scheme

without TDSB even when the pilot overhead is accounted for and achieves 2 folds of

gain in 10 dB SNR regime with NT -fold reduction in pilot overhead. Also, the results

reveal that the proposed scheme achieves substantial reduction in pilot overhead.

6.7 Summary

In this chapter, we proposed a pilot beamforming scheme for the IoT systems by Spar-

sification of pilot beamforming. Our work is motivated by the observation that the pilot

overhead must scale linearly with the number of taps in CIR vector and the number of

transmit antennas so that the conventional pilot transmission is not an appropriate op-

tion for the IoT devices. The key feature of the proposed TDSB scheme is to minimize

the nonzero elements of a channel vector using the antenna-domain beamforming. To
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Figure 6.9: Normalized throughput (QPSK with NT = 32, K is 5).

do so, we apply the time-domain sparse precoding, where each precoded channel prop-

agates via fewer tap than the original channel vector. The received channel vector of

beamformed pilots can be jointly estimated by the sparse recovery algorithm. From

numerical simulations, we observed that the proposed TDSB scheme achieves signifi-

cant reduction in pilot overhead. Having a few nonzero taps with orthogonal supports

between the beamformed pilots, CS estimator worked effectively with less pilot over-

head. It has been shown by MSE analysis and evaluation results that the proposed

scheme is effective in achieving an extreme overhead reduction in the pilot overhead

in the IoT scenarios.
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Figure 6.10: Throughput as a function of pilot overhead (SNR=10dB, NT = 32).
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, new strategies to employ sparse-ware recovery have been exten-

sively studied. Although the sparse recovery has been used in the recovery of channel

and sensing the sporadic signal phenomenon, I focused on the various applications

including packet transmission, multiuser access, beamforming, and feedback. These

new extensions enables to transmit data efficiently, manage interuser interference, re-

cover beamformed channel with far less pilot overhead, and transmit highly accurate

information, which provide guidelines for designing 5G systems. Specifically, I make

the following contributions:

• In Chapter 2, we have proposed the short packet transmission strategy for URLLC.

The key idea behind the proposed SVC technique is to transform an information

vector into the sparse vector in the transmitter and to exploit the sparse recovery

algorithm in the receiver. Metaphorically, SVC can be thought as a marking dots

to the empty table. As long as the number of dots is small enough and the mea-

surements contain enough information to figure out the marked cell positions,

accurate decoding of SVC packet can be guaranteed. We showed from the nu-

merical evaluations that the proposed SVC scheme is very effective in URLLC
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scenarios. In this dissertation, we restricted our attention to the URLLC scenario

but we believe that there are many other applications that the SVC technique can

be applied to. Also, there are many interesting extensions and variations worth

investigating, such as the information embedding in nonzero positions, channel

aware sparse vector coding, and combination of SVC and error correction codes.

• In Chapter 3, we have proposed a new short packet transmission scheme called

sparse vector coding (SVC) for the mMTC uplink scenario. The key idea behind

the proposed SVC transmission scheme is to convert an information vector into

the sparse vector and use the support identification algorithm as a decoder in the

receiver. The SVC transmission scheme is easy to implement, robust to noise

and multiuser interference, and also scalable to the massive access scenario in

mMTC. We showed from the simulations in the LTE uplink scenario and mas-

sive access scenario in 5G that the proposed SVC technique is very effective in

short packet transmissions.

• In Chapter 4, we have proposed the pilot-less sparse vector coding (PL-SVC)

suitable for the short packet transmission in URLLC and mMTC scenarios. The

key idea behind the proposed PL-SVC is to transmit the location information

in the form of a sparse vector and then to decode the location information via

the compressed sensing technique. The PL-SVC transmission scheme does not

require pilot transmission, also very easy to implement, and can be easily ex-

tended to the SIMO and MIMO configurations. We show from the numerical

experiments in the 5G OFDM uplink scenario that the proposed PL-SVC is ef-

fective in the short packet transmission and outperforms the conventional SVC

and PUSCH transmission schemes.

• In Chapter 5, we have proposed a new data transmission strategy for the ultra-

shot packet by transmitting side (analog) information. The key idea behind the

proposed JSVC transmission scheme is to transform the small information into
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a sparse vector and map the side-information into a magnitude of the sparse

vector. Metaphorically, JSVC can be thought as a standing a few poles to the

empty table and measure the height of pole at the receiver. As long as the num-

ber of poles is small enough and the measurements contains enough information

to find out the marked cell positions, accurate recovery of JSVC packet can be

guaranteed. We showed from the numerical evaluations and analysis of decod-

ing performance that the proposed JSVC scheme is very effective in ultra-short

packet transmission such as analog feedback, MIMO feedback, and control-type

channel.

• In Chapter 6, we have proposed a pilot beamforming scheme for the IoT systems

by Sparsification of pilot beamforming. Our work is motivated by the observa-

tion that the pilot overhead must scale linearly with the number of taps in CIR

vector and the number of transmit antennas so that the conventional pilot trans-

mission is not an appropriate option for the IoT devices. The key feature of

the proposed TDSB scheme is to minimize the nonzero elements of a channel

vector using the antenna-domain beamforming. To do so, we apply the time-

domain sparse precoding, where each precoded channel propagates via fewer

tap than the original channel vector. The received channel vector of beamformed

pilots can be jointly estimated by the sparse recovery algorithm. From numerical

simulations, we observed that the proposed TDSB scheme achieves significant

reduction in pilot overhead. Having a few nonzero taps with orthogonal supports

between the beamformed pilots, CS estimator worked effectively with less pilot

overhead. It has been shown by MSE analysis and evaluation results that the

proposed scheme is effective in achieving an extreme overhead reduction in the

pilot overhead in the IoT scenarios.
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7.2 Future Research Directions

In this section, we discuss future research directions related to the topics of this disser-

tation.

• Combined with channel coding and sparse vector coding: one of drawback of

sparse encoding is the accept of error correction capability. Since the number of

nonzero element is a few, when the decoder miss the correct support, the whole

packet is corrupted, so that bit error detection or correction is not possible. How-

ever, when we combine the channel coding mechanism into the sparse mapping,

the decoder can correct the false detected support so that the performance would

be improved.

• Grant-free access with blind active user detection: when sparse mapping is used

in uplink transmission, the packet structure as well as the user sparsity can

jointly used for decoder. When a few users are active among the user set, the ac-

tual number of transmitted user is only a few and the support of each user would

be small as well. When we consider double sparsity, the active user detection

performance as well as packet decoding performance would be improved.

• Multi-dimensional sparsity mapping for short packet transmission: in this dis-

sertation, we only considered the sparsity in code dimension. However, when

we extend sparse mapping in other dimension, sparse mapping can be extended

into such as antenna ports, frequency, time, and spatial layers. Using multi-

dimensional sparse mapping, one can improve the reliability of ultra short packet

transmission.

• Simultaneous wireless information and power transmission: when wireless power

transmission is used together with information, the information is transmitted

without changing its original form so that the efficiency of power transmission

is very small. Meanwhile, to maximize the efficiency of power transmission,
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the rate of information is extremely low so that it is not possible to communi-

cate. When the sparse mapping is used for information, the transmitter will have

freedom to design the signal for power efficiency and both information rate and

power efficiency will improve.
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초록

5세대무선통신시스템의새로운기술혁신은무인차량및항공기,스마트도시

및공장,원격의료진단및수술,인공지능기반맟춤형지원과같은전례없는서비

스 및 응용프로그램으로 부상하고 있다. 이러한 새로운 애플리케이션 및 서비스와

관련된통신방식은대기시간,에너지효율성,신뢰성,유연성및연결밀도측면에

서 기존 통신과 매우 다르다. 현재의 무선 액세스 방식을 비롯한 종래의 접근법은

이러한요구사항을만족할수없기때문에최근에 sparse processing과같은새로운

접근 방법이 연구되고 있다. 이 새로운 접근 방법은 표본 추출, 감지, 압축, 평가 및

탐지를포함한기존의정보처리에대한효율적인대체기술로활용되고있다.지난

10년 동안 compressed sensing (CS)기법은 의료영상, 기계학습, 탐지, 컴퓨터 과학,

통계및기타여러분야에서빠르게확산되었다.또한,신호의희소성(sparsity)를이

용하는 CS 기법은 다양한 무선 통신이 연구되었다. 주목할만한 예로는 채널 추정,

간섭 제거, 각도 추정, 및 스펙트럼 감지가 있으며 현재까지 연구는 주어진 신호가

가지고 있는 본래의 희소성에 주목하였으나 본 논문에서는 기존의 접근 방법과 달

리인위적으로설계된희소성을이용하여통신시스템의성능을향상시키는방법을

제안한다.

우선 본 논문은 다운링크 전송에서 희소 신호 매핑을 통한 데이터 전송 방법

을제안하며짧은패킷 (short packet)전송에적합한 CS접근법을활용하는기술을

제안한다. 제안하는 기술인 희소벡터코딩 (sparse vector coding, SVC)은 데이터 정

보가인공적인희소벡터의 nonzero element의위치에매핑하여전송된데이터패킷

은 희소벡터의 0이 아닌 위치를 식별함으로 원신호 복원이 가능하다. 분석과 시뮬

레이션을 통해 제안하는 SVC 기법의 패킷 오류률은 ultra-reliable and low latency

communications (URLLC)서비스를지원을위해사용되는채널코딩방식보다우수
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한성능을보여준다.또한,본논문은 SVC기술을다음의세가지영역으로확장하였

다. 첫째로, 여러 개의 SVC 기반 패킷을 동일한 자원에 겹치게 전송함으로 상향링

크에서 대규모 전송을 지원하는 방법을 제안한다. 중첩된 희소벡터를 다중사용자

CS디코딩방식을사용하여채널간섭에강인한성능을제공하고비직교다중접속

(NOMA)방식과유사한성능을제공한다.둘째로, SVC기술이희소벡터의 support

만을 식별한다는 사실을 이용하여 파일럿 전송이 필요없는 pilotless-SVC 전송 방

법을 제안한다. 채널 정보가 없는 경우에도 희소 벡터의 support의 크기는 채널의

크기에 비례하기 때문에 pilot없이 복원이 가능하다. 셋째로, 희소벡터의 support의

크기에 추가 정보를 전송함으로 복원 성능을 향상 시키는 enhanced SVC (E-SVC)

를 제안한다. 제안된 E-SVC 전송 방식의 핵심 아디디어는 짧은 패킷을 전송되는

정보를희소벡터로변환하고정보복원을보조하는추가정보를희소벡터의크기

(magnitude)로매핑하는것이다.

마지막으로, SVC기술을파일럿전송에활용하는방법을제안한다.특히,채널

추정을위해채널임펄스응답의신호를희소화하는프리코딩기법을제안한다.파

일럿신호을프로코딩없이전송되는기존의방식과달리,제안된기술에서는파일

럿신호를빔포밍하여전송한다.제안된기법은기지국에서다중안테나를활용하여

채널 응답의 0이 아닌 요소를 최소화하는 시간 영역 희소 프리코딩을 적용하였다.

이를통해더적확한채널추정을가능하며더적은파일럿오버헤드로채널추정이

가능하다.

주요어:희소인지,압축센싱, 5세대통신,희소벡터코딩,희소빙포밍

학번: 2015-30204
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