
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문

시계열유전자발현데이터에서

스트레스반응유전자를검출하기위한

클러스터링기반통합분석기법

Clustering-Based Integrated Analysis of
Time-Series Gene Expression Data to

Identify Stress-Responsive Genes

2019년 2월

서울대학교대학원

전기.컴퓨터공학부

안홍렬



Abstract

Clustering-Based Integrated Analysis of
Time-Series Gene Expression Data to

Identify Stress-Responsive Genes

Hongryul Ahn

Department of Electrical Engineering & Computer Science

College of Engineering

The Graduate School

Seoul National University

Microarray and RNA sequencing, highly parallel technologies for the measurement

of intracellular RNA molecules, were developed in the 1990s and 2000s. They opened

a new era of quantifying the amount of gene activation (expression) for every gene in

a cell through a single experiment. Since then, gene expression data have been widely

produced to investigate the change of the state of a cell, particularly in response to

environmental stress, such as heat, drought, and cold, in plants. However, a cell is

one of the most complicated systems in the universe. Understanding and modeling

the system of a cell requires a huge amount of data, which we do not yet have. Thus,

gene expression data analysis has to address the issue of the lack of data and the

development of analytical procedures, models, and algorithms that work on small-

sample-size data.
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This doctoral study proposes computational methodologies that solve the prob-

lem of modeling a highly complex system with small-sample-size data based on clus-

tering and integrated analysis. We can easily understand gene expression data in the

format of machine learning data: genes as features and different conditions of sam-

ples as classes. In gene expression data, the number of features is generally much

greater than the number of samples due to the high cost of measurement of a sam-

ple. Performing clustering analysis on gene expression data groups individual genes

into several gene clusters, resulting in the reduction of the dimension of features.

This doctoral study presents a method that uses clustering analysis to reduce the di-

mension of features. It shows the improvement of interpreting high-dimension and

small-sample-size gene expression data.

In addition, the system of a cell consists of complicated interactions between

genes, which leads to a computational problem known as high dependency between

features. Introducing external information, domain data, and domain knowledge im-

proves the modeling of relationships between genes to reflect real biological systems.

This doctoral study proposes a method that introduces genetic data and knowledge

into the analysis by constructing a template biological network. By combining the

network with the condition-specific network derived from experimental data, it suc-

cessfully explains the stress response mechanism of drought-resistant rice.

Moreover, gene expression data are measured at multiple time points along the

time axis, which is called time-series data, to track the response of cells after drug

or stress treatment. However, they often have a small number of time points, usually

less than ten, and different intervals across different time-series samples because of

the limitation that the cells die in the process of being measured. The sparsity and

heterogeneity of time-domain data in gene expression data make it difficult to clarify

the time-domain signals of genes. This study proposes a method to analyze time-
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series gene expression data by using clustering analysis to extract the meaningful

time-domain signal that is supported by many members of genes within the same

cluster.

Lastly, clustering analysis is sensitive to the distribution of data objects. How-

ever, we do not yet know the distribution of genes in gene expression data. Thus,

clustering algorithms for gene expression data are required to work on arbitrarily

distributed data. The hierarchical clustering method has been the most widely used

clustering method for gene expression data analysis, but it does not always work

on arbitrarily distributed data. This study also proposes an improved version of the

hierarchical clustering method to work on arbitrarily distributed data by combining

effective recent clustering techniques, such as network representation, phase shifting,

and cost-optimization-based tree integration.

In summary, this doctoral study proposes clustering-based computational meth-

ods for the analysis of gene expression data. Clustering analysis is used for dimen-

sion reduction, integration with biology-domain knowledge of genes, extraction of

the time-domain signal, and development of clustering on arbitrarily distributed data.

In addition, by applying it to actual stress data, this doctoral study explains the mech-

anism of drought-resistant rice, detects the cold-stress-responsive genes in Arabidop-

sis, and develops a new hierarchical clustering algorithm. The proposed methodology

is expected to be useful for the analysis of other data with similar problems.

Keywords : Clustering, Network, Integrated Analysis, Time-series, Gene Expression

Data, Stress-Responsive Genes

Student Number : 2012-23221
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Chapter 1

Introduction

1.1 Motivation

A cell regulates the number of gene products (i.e., messenger RNAs and pro-

teins) differentially depending on the external environment to maintain the system of

the living organism. We call the process by which a cell generates a gene product

from a gene “gene expression” and the values that measure how many gene prod-

ucts are in a cell “gene expression data”. The gene products are the most important

players that participate in all life activities of the cell, such as growth, differentiation,

homeostasis, response to stimulation, and apoptosis. Gene expression data are a cru-

cial resource for cell research, because they quantify the state of the cell and make

the numerical analysis of the state of the cell possible. Figure 1.1 shows an example

of gene expression data.
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Figure 1.1. Example of measuring gene expression data. A nucleus inside a cell contains
several kinds of genes (actually about 20,000). A cell produces gene products from genes
differentially depending on the external environment. The process by which a cell generates
a gene product from a gene is called “gene expression” and the values that measure how
many gene products are in a cell is called “gene expression data”. In this example, the gene
expression values for the red, yellow, and green genes are [4, 3, 3]. Gene expression data
numerically represent the state of the cell.
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The advancement of technology to measure gene expression over the last 20 to

30 years has dramatically improved the volume and accuracy of gene expression data.

Sanger sequencing [118] is an early technology to measure the gene expression level,

but it has very low throughput. It allows the measurement of the gene expression

level of one gene per experiment, resulting in unknown expression values for several

genes. The later development of highly parallel technologies, such as microarrays

[120] and RNA sequencing (RNA-Seq) [93], has made it possible to investigate the

gene expression levels of all genes (about 20,000 in higher organisms) in a single

experiment.

Since then, gene expression data have been widely produced in various fields

of biological research, such as development, aging, disease diagnosis, drug response

prediction, and genetic engineering, in different species, from humans to bacteria.

Then, what are the problems in analyzing gene expression data?

Modeling a highly complex system with small-sample-size data is the funda-

mental problem of gene expression data analysis. Gene expression data are distin-

guished from other types of machine learning data because the data observe the sys-

tem of a cell, which is one of the most complex systems in the universe. A cell

includes huge amounts of information in the DNA sequence, and the agents in a cell,

such as genes (about 20,000 ), their products, and chemical compounds, work to-

gether in a very organic way to perform the biological functions. Figure 1.2 shows

how genes interact with others in very organic ways to perform programmed bio-

logical functions. Although many interactions between genes have been revealed, we

have to uncover the unrecognized interactions between genes and understand how

they are regulated differently according to external conditions. According to the em-

pirical rule of machine learning, modeling and understanding a complex system re-

quires a massive amount of data. However, we have not yet been able to obtain that

3



Figure 1.2. Complex system of a cell. (A) Biological pathways related to cellular and molecu-
lar process (http://biochemical-pathways.com/#/map/2), and metabolism (http://biochemical-
pathways.com/#/map/1). (B) Mouse gene interaction network [79]. (C) Human coexpression
network in B cells including 44,872 connections among 3056 genes [98]. These figures show
how genes interact with others in very organic ways to perform programmed biological func-
tions.
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amount of data. The measurement of gene expression data is often constrained by eth-

ical issues or uncontrollable events (e.g., death of samples). Most importantly, gene

expression data are costly to produce.

On the other hand, the domain knowledge of genes has been accumulated over

a long period and validated by very rigorous biological experiments conducted by

professional biologists. The existence of domain knowledge provides gene expression

data an advantage over other types of machine learning data. Introducing knowledge

of genes can increase the reliability of cellular system modeling from gene expression

data.

Figure 1.3 illustrates an example and the challenges of using gene expression

data to investigate a cell’s response to cold stress. Gene expression data can be easily

understood in the format of machine learning data. Genes can be considered features,

and the targeted trait of samples can be viewed as classes (e.g., stress-resistant vs.

stress-sensitive). The challenges in gene expression analysis can be listed in detail as

follows.

• High-dimension and small-sample-size data: Gene expression data in a sin-

gle biological experiment generally have a large number of features (> 20,000)

and a much smaller number of samples (typically a few to tens).

• High dependency between features: The system of a cell consists of com-

plicated interactions between genes, which leads to a computational problem

known as high dependency between features.

• Introducing domain knowledge and data: Extensive biological knowledge

and data about genes are available. Introducing them can improve the accuracy

of the analytical model.
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• Heterogeneous structure of time-domain: Gene expression data are often

measured over time to trace the progress of an event (e.g., drought stress).

However, the time points can be differentially selected in a dataset.

• Variance between individual samples: The samples in a dataset have differ-

ent backgrounds (e.g., tissue, age, genetic background). Thus, the individual

variance of the sample causes different responses from sample to sample, even

if samples are exposed to the same stress.

• Unknown distribution of data objects: Knowing the distribution of data ob-

jects helps to establish a model. However, we do not know the distribution of

genes.

• Evaluation of results: If we have external data with label information, we

can evaluate the predicted results by comparing the predictions with labels.

However, we generally do not have such labeled data for gene expression data

analysis.

1.2 Dissertation Goal

The goal of this dissertation is to solve the recent problems in gene expression

analysis. This dissertation addresses the challenges based on integrated analysis and

clustering analysis, in detail, by (1) incorporating the public data followed by cluster-

ing for the high-dimension small-sample-size problem, (2) integrating heterogeneous

time-series data with ordering of response time, and (3) combining advanced cluster-

ing techniques to develop a clustering algorithm that works on arbitrarily distributed

data.
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The scope of the dissertation is limited to analyzing gene expression data to in-

vestigate plant cellular responses under environmental stresses, such as heat, drought,

or salt stress, because there are too many uses of gene expression data for this disser-

tation to cover. Understanding plant responses to environmental stress is becoming an

increasingly important issue, as the climate has changed dramatically in recent years.

1.3 Dissertation Structure

This dissertation consists of six chapters. The first chapter presents an overview

of this dissertation: data, challenges, and goals. The second chapter provides the

background on clustering analysis and gene expression data analysis for a biolog-

ical application that identifies stress-responsive genes. The last chapter provides a

conclusion. The three intermediate chapters address specific studies as follows.

Chapter 3 describes clustering-based dimension reduction analysis for high-

dimension and small-sample-size gene expression data. The data are extremely small

samples (N=2) of two classes (drought sensitive and drought resistant). A novel com-

putational framework called RiceTFnetwork [6] was developed to improve small-

sample-size gene expression data analysis by incorporating large-scale public-domain

gene expression data (N=1893) through a network-based clustering technique. It pro-

duced an explanation for the drought resistance mechanism.

Chapter 4 proposes a novel method to analyze multiple heterogeneous gene

expression datasets. The input data are over 20 multiple-sample gene expression

datasets where the structures of time-domain and phenotype-domain data are het-

erogeneous across multiple samples. The key element of integration is response time.

A new method called HTRgene [7] was developed to determine the response time

of genes based on clustering analysis of genes. The method successfully produced

8



stress-responsive genes.

Chapter 5 presents a novel hierarchical clustering method called IDEA [8]. We

do not yet know the distribution of genes in gene expression data. Hierarchical clus-

tering is a widely used clustering method for gene expression data, but it does not

always work on arbitrarily distributed data. This chapter proposes an improved ver-

sion of the hierarchical clustering method that works on arbitrarily distributed data

by combining effective recent clustering techniques, such as network representation,

phase shifting, and cost-optimization-based tree integration.

9



Chapter 2

Background

The previous chapter introduced technical challenges concerning the analysis

of gene expression data and introduced clustering as one of the core technologies to

address these issues. In this chapter, a survey of state-of-the-art clustering methods is

presented to lay the groundwork for the main work in the following three chapters.

This chapter also continues to explain the biological systems involved in measuring

gene expression data.

2.1 Clustering Analysis

Clustering analysis is the most representative technique for the analysis of unla-

beled data in various research fields such as information retrieval and text mining [32,

35, 125], geographic information systems (GIS) or astronomical data [38, 117, 138],

sequence data analysis [21], web applications [29, 42, 53], and DNA analysis in com-

putational biology [15]. The main idea of clustering analysis is to divide data into

subgroups of similar instances. Clustering makes underlying characteristics of data

recognizable.

10



The objective of clustering is to maximize intra-cluster similarity and minimize

inter-cluster similarity [52].

• Intra-cluster similarity: similarity between objects in the same cluster

• Inter-cluster similarity: similarity between objects in the different clusters

With these two criteria, clustering analysis can be represented as an optimization

problem (Definition 1).

Definition 1. Clustering analysis is a process to divide data objects X into k clusters
for the given parameters with the following objective.

Input: X , a set of N data objects such as X = {x1, . . . ,xN}

Parameters: δ, a clossness measure defined on a pair of data objects

(e.g. Euclidean distance) such as δ : X×X 7→ℜ

k, the number of clusters

Alg, a clustering algorithm

Output: C, a membership function such as C : X 7→ {1, . . . ,k}

The objective of clustering analysis:{
maximization of intra-cluster similarity
minimization of inter-cluster similarity

Figure 2.1 shows the process of clustering analysis. For given input X and pa-

rameters δ,k,Alg, the clustering algorithm Alg measures closeness between data ob-

jects X using δ. Then, it selects the edges with high closeness to construct a network.

Network construction is an optional process. Then it groups divides data objects X in

the network into k clusters for the objective of clustering analysis.

11



Figure 2.1. Process of clustering analysis. For given input X and three parameters δ,k,Alg,
the clustering algorithm Alg measures closeness between data objects X using δ. Then, it
selects the edges with high closeness to construct a network. Network construction is an
optional process. Then it groups divides data objects X in the network into k clusters for the
objective of clustering analysis.

12



2.2 Essential Elements of Clustering Analysis

There are three essential elements of clustering analysis: the closeness measure,

number of clusters, and types of clustering algorithms.

2.2.1 Closeness Measure

There are two types of closeness measures: similarity and dissimilarity (dis-

tance). Distance has the same meaning as dissimilarity when used in general, but

when used strictly (especially when specified as the “distance metric”), it is mathe-

matically defined to satisfy the following conditions for x,y,z ∈ X [25].

• d(x,y)≥ 0 (non-negativity)

• d(x,y) = d(y,x) (symmetry)

• d(x,y)≤ d(x,z)+d(z,y) (the triangle inequality)

• d(x,y) = 0 if and only if x = y (identity of indiscernibles)

It is generally known that similarity and distance are preferred when dealing

with qualitative and quantitative data features, respectively [137]. From this point

of view, Xu and Tian [136] summarized widely used distances and similarities, as

shown in Table 2.1.

The perspectives of the closeness measure are very different from each other.

For example, the Euclidean distance measures the magnitude difference between two

vectors. In contrast, the cosine distance measures the angular difference between two

vectors. Thus, choosing an appropriate closeness measure is an important factor that

results in meaningful or poor clustering results [60].

One of the issues for the closeness measure is the conversion between similarity

and distance. When an algorithm is fixed for a similarity or distance as input, the

conversion will be required (e.g., graph-based clustering requires similarity as input).
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Table 2.1. Distance and similarity measures [136].

Name Formula Explanation

Minkowski
distance

(∑d
l=1 |xil− x jl|n

)1/n
A set of definitions for distance:
1. City-block distance when n = 1
2. Euclidean distance when n = 2
3. Chebyshev distance when n→ inf

Standardized
Euclidean
distance

(∑d
l=1 |

xil−x jl
sl
|2
)1/2 1. S stands for the standard deviation

2. A weighted Euclidean distance
based on the deviation

Cosine
distance 1− cosα =

xT
i x j

∥xi∥∥x j∥

1. Stay the same in face of the
rotation change of data

2. The most commonly used
distance in document area

Pearson
correlation
distance

1− Cov(xi,x j)√
D(xi)
√

D(x j)

1. Cov stands for the covariance and
D stands for the variance

2. Measure the distance based
on linear correlation

Mahalanobis
distance

√
(xi− x j)T S−1(xi− x j)

1. S is the covariance matrix
inside the cluster

2. With high computation complexity

Hamming
distance

The minimum number of
substitutions needed to
change one data point
into the other

Especially for the data of
string

Jaccard
similarity J(A,B) = |A∩B|

|A∪B|

1. Measure the similarity of
two sets

2. |X | stands for the number of
elements of set X

3. Jaccard distance
= 1− Jaccard similarity

For data of
mixed type

Map the feature into (0, 1)
Transform the feature into
dichotomous one

[39, 49]
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For the measure that is bounded ≤ M (M is the maximum value for the measure),

e.g., cosine or Pearson correlation, “ f (x) = M− x” is simply used for the conver-

sion. However, for an unbounded measure, e.g., Euclidean distance, some decreasing

kernel functions are used as follows [76].

• Cauchy function: f (x) = 1
1+x

• Generalized Gaussian function: f (x) = exp(−x)

• Fermi-Dirac function: f (x) = 1
1+exp(x)

2.2.2 Number of Clusters

Some clustering analysis methods pre-set the number of clusters to a fixed num-

ber and then generate clusters. Many methods have been developed to determine a

proper number of clusters [28]. However, determining the optimal number of clusters

is still an open problem. There are two ways to determine the number of clusters:

user estimation and systemic estimation. The former leaves the responsibility to the

user to determine the number of clusters. For example, k-means clustering requires

the number of clusters k as input to produce k clusters as output. In the latter case, the

number of clusters is deduced during the process, or the number of clusters is auto-

matically determined by the condition that the execution is terminated. For example,

in density-based clustering, the number of clusters is determined without input from

the user. It merges the clusters above the density threshold and ends when they can no

longer be merged ; in this way, the number of clusters is automatically determined.

2.2.3 Clustering Algorithm

The development of clustering algorithms is a historical research topic in data

analysis. It is difficult to provide a clear classification of the clustering method, since

various ideas have been put forth and combined to develop clustering algorithms [52].
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Figure 2.2. Classification of clustering algorithms.

Therefore, many reviews and books [17, 44, 50, 52, 58, 59, 119, 136, 137] that catego-

rized clustering algorithms classified them according to their own criteria. However,

they proposed two common criteria: basic or advanced clustering algorithms.

The categories of clustering algorithms are summarized in Figure 2.2

• Basic clustering algorithms are classified into four categories in terms of the

“approach” used to solve the clustering problem: hierarchical, partitioning,

density-based, grid-based methods. In most cases, the basic clustering algo-

rithms assume the data points are defined in Euclidean space and the metric is

Euclidean distance.

• Advanced clustering algorithms are classified according to “issues”: prob-

abilistic model-based clustering, clustering high-dimensional data, clustering

graph and network data, clustering with constraints.

Because the criteria of subclass classification are different for basic and ad-

vanced clustering, one clustering algorithm can be included in both basic and ad-

vanced clustering at the same time.
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Hierarchical clustering involves joining (or dividing) clusters successively.

Bottom-up clusterings, called agglomerate clusterings, initially define clusters as in-

dividual data elements and successively merge the closest pair of clusters until only

one cluster remains. On the other hand, top-down clusterings, called divisive cluster-

ings, initially define one cluster including all data elements and successively split a

cluster into two clusters until all clusters are partitioned into individual elements. It

produces hierarchically structured output that is visualized as a tree structure called

a hierarchical clustering tree or dendrogram. A posterior analysis called “cut tree”

generates the k (or other possible numbers) flat clusters dynamically by cutting the

internal nodes of the hierarchical clustering tree.

Partitioning clustering constructs k partitions of the objects, where each parti-

tion represents a cluster. The most representative partitioning clustering methods are

k-means and k-medoids. K-means assign the objects to k clusters, identify the cen-

troids (centers) of each cluster, re-assign the objects to the clusters whose centers are

the closest to the object, and then repeat this process until convergence. K-medoids

follows the same process as k-means, but it uses centers as medoids (they must be

one of the data objects) rather than centroids (they can be new points out of the data

objects).

Density-based clustering aims to discover clusters of arbitrary shape by consid-

ering the density of data objects. Partitioning clustering considers only the distance

between objects, so it can effectively find spherical-shaped clusters but not arbitrar-

ily shaped clusters. Density-based clustering selects densely gathered objects as an

initial cluster, merges neighbor objects when the neighborhood of a given radius con-

tains a minimum number of points, and then stops when there are no neighbor objects

to be merged. Because it stops systemically, it generally does not need the number of

clusters as input. Moreover, it produces unmerged objects (i.e., outliers), so it can be
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used to filter out noise or outliers.

Grid-based clustering divides the object space into a finite number of grid-

structured cells and then performs the entire clustering operation on the grid struc-

ture (i.e., on the quantized space). Although the time complexity clustering algo-

rithms typically depend on the number of data objects, that of grid-based clustering

depends only on the number of cells in each dimension in the quantized space, so

grid-based clustering has the advantages of low time complexity and high scalabil-

ity. STRING [132] and CLIQUE [3] are the representative algorithms of this kind

of clustering. STRING divides the data space into many rectangular units that can

be divided into the lower-level space hierarchically and recursively and uses statisti-

cal parameters of the data object in the structure spaces for clustering. CLIQUE is a

grid-based and density-based clustering algorithm.

Probabilistic model-based clustering defines the memberships where a data

object belongs to a cluster by a value within the continuous interval [0,1]. For ex-

ample, Gaussian mixture clustering assumes that the data originated from k Gaussian

distributions and defines the membership of each object to a Gaussian distribution

as the probability that it belongs to the Gaussian distribution. The expectation max-

imization (EM) algorithm is used to estimate the parameters of the Gaussian distri-

bution [80]. “Fuzzy” clustering is another name for probabilistic clustering. Fuzzy

c-means (FCM) [18] is a fuzzy version of the k-means clustering algorithm. It proba-

bilistically defines the membership as the weight of the distance of each center, while

the k-means defines the membership in a black-and-white way by assigning the ob-

ject to the cluster with the closest center. FCS [34], and MM [139] are other versions

of fuzzy clustering algorithms.

High-dimensional data clustering addresses the issues that data of high dimen-

sionality raises noise to conventional distance measures. Dimensionality reduction
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approaches project data objects onto a much lower -dimensional space and conduct

clustering analysis in the space. The feature selection approach projects data objects

onto subdimensions by selecting a set of relevant features (variables, predictors), and

the feature extraction approach projects data objects onto new dimensions by com-

bining some dimensions with weighting from the original data [1]. The subspace

clustering approach [103] is another way of performing high-dimensional data clus-

tering. It focuses on subspaces of the given high-dimensional data space and searches

for a cluster in the subspaces. CLIQUE [3] explores the clusters in lower subspaces

and extends the search in higher subspaces. PROCLUS [2] searches for clusters by

combining the k-medoid and top-down-style subspace approaches. Biclustering is a

kind of subspace clustering widely used with biological data [81]. It takes an N×M

matrix as input and tries to find a submatrix where the rows or columns share a spe-

cific similar pattern.

Graph and network data clustering divides a graph into several subgraphs,

which are also called subnetworks, modules, or communities, where the connectiv-

ity within the subgraphs is high. Since graph or network representation is a pow-

erful technique to model relationships of data objects, network data are increasingly

popular in applications such as social networks, the World Wide Web, genetic regula-

tory networks, and citation networks. Community detection is an alternative name for

network clustering. The igraph library [31] provides implements of recent commu-

nity detection algorithms: optimal modularity [48], edge-betweenness [47], leading

eigenvector [99], fast-greedy [26], multi-level [19], Walktrap [105], label propaga-

tion [107], and Infomap [111].

Constraint clustering gives some constraints in the process of clustering anal-

ysis. Background knowledge or spatial distribution of the objects can be applied to

clustering analysis through these constraints. Constraints on instance determine how
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a pair of instances has to be grouped, such as must-link or cannot-link constraints.

Constraints on clusters regulate the attributes of clusters, such as the minimum num-

ber of objects in a cluster, the maximum diameter of a cluster, or the shape of a cluster

(e.g., a convex). Constraints on similarity measurement specify a requirement that the

similarity calculation must obey; for example, the distance of two points should be

defined as the distance traveled through a specific point.

2.3 Biological System and Gene Expression Data

Biological systems are multi-scale and module-structured systems. The group of

lower-scale systems composes the high-scale systems as cells compose tissues. One

of the criteria of categorization of biology is based on the scale of interest: biochem-

istry, molecular biology, cell biology, physiology, ecology.

Molecular biology is a branch of biology that studies biomolecules and their re-

actions in a cell [9]. A cell contains genetic materials, such as deoxyribonucleic acid

(DNA), ribonucleic acid (RNA), and protein. The explanation of the flow of genetic

information from DNA, to RNA, to protein is called “central dogma”, which was

first stated by Francis Crick in 1958 [30]. With the central dogma, a cell operates all

life activities, such as growth, differentiation, homeostasis, response to environments,

and so forth. Figure 2.3 illustrates the process of the central dogma.

Until the age of microscopy, humankind could not access genetic information.

However, in 1977, when Sanger proposed a method for profiling DNA sequences [118],

humanity became able to decode the genetic information of genetic molecules. Nev-

ertheless, Sanger sequencing was limited by its low throughput, allowing the mea-

surement of only one gene per experiment. The later development of highly parallel

technologies, such as microarrays [120] and RNA-Seq [93] made it possible to inves-
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Figure 2.3. Central dogma. The explanation of the flow of genetic information from DNA, to
RNA, to protein is called “central dogma”. DNA is a source of genetic information that pro-
duces gene products : RNA and protein. RNA (messenger RNA) is a mediator between DNA
and protein that transfers the genetic information of DNA to protein. Protein is the product
of DNA, and it participates in all life activities of the cell, such as growth, differentiation,
homeostasis, response to stimulation, and apoptosis.
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tigate all genes in a single experiment. The development of genetic molecule mea-

surement technology has highly facilitated the study of genetic molecules in cells and

promoted the discovery of new biological knowledge.

Currently, two types of genetic data are dominantly generated: gene sequence

data and gene expression data. Gene sequence data investigate the character infor-

mation of genes, such as DNA and protein sequences consisting of four nucleotide

characters (A, C, G, T) and 20 amino acid characters, respectively. Gene sequences

contain deterministic information. They are determined and fixed at birth and do not

actively change during life. Thus, most gene sequence studies do not measure the

same person or organism multiple times. They mainly collect many positive and neg-

ative samples for a targeted trait (e.g., Huntington’s disease) and conduct association

analysis between the genomic sequence variants and the trait. In this type of analysis,

gathering more samples increases the statistical accuracy of the prediction. The ap-

plications of gene sequence studies include population studies, genealogy analyses,

and genome comparisons.

On the other hand, gene expression data contain dynamic information. Gene

expression data quantify the state of a cell at a particular time point. Because the

state of a cell changes depending on the external environment, gene expression data

also change. Even in the same cell, gene expression varies over time. Applications

of gene expression data include tracking the evolution of certain intracellular events,

such as cell differentiation, development, or disease progression, and responses to

drugs or stress.

There are two methodologies to measure gene expression levels. Proteome data

are used to investigate the amount of protein, and transcriptome data are used to

investigate the amount of messenger RNA. Whereas proteins are the final products

of genes, proteins have a 3D structure and are difficult to measure. Thus, current
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techniques investigate gene expression levels by measuring the amount of messenger

RNA, which is the precursor of protein, instead of the amount of protein.

Figure 2.4 illustrates a typical biological research process that uses genetic data.

Scientists design biological research projects to investigate mechanisms underlying

specific phenotypes (e.g., cancer or obesity in medical applications or stress resis-

tance in crop engineering) by preparing biological samples in positive vs. negative

groups (e.g., cancer vs. control groups). For investigations at the molecular level,

bulks of cells are extracted, and libraries for the cells are prepared. Then, genetic

data are measured using microarray and sequencing technologies, and the data are

analyzed using various computational tools. Based on the analysis results, scientists

design follow-up biological experiments, which may result in new crops, vaccines,

or drugs.

2.4 Identification of Stress-Responsive Genes Using
Gene Expression Data

One important research topic that can be investigated by using gene expres-

sion data is the way in which plants respond to environmental stress. Characterizing

environmental-stress-induced responses has historically been a major research topic

in agricultural studies related to the productivity of crops [10, 62, 129]. Moreover,

environmental stress has become a more serious issue in plant science due to recent

dramatic climate changes. The Intergovernmental Panel on Climate Change (IPCC)

estimates that the global mean temperature will increase somewhere between 1◦C

and 4◦C until 2050 and that the drought stress increased by the climate change will

significantly reduce crop productivity in Africa and Asia [14].
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Figure 2.4. Process of biological research using gene expression data.
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Figure 2.5 shows a typical signaling pathway for stimulation. When external

stimuli, such as stress, hormone, drug, and intercellular signaling molecules, reach

a cell, receptors on the cell membrane accept it and activate downstream proteins to

deliver the signal. The activated protein then signals the downstream protein sequen-

tially to the transcription factor (TF) protein. TF has the ability to enter the nucleus

and bind to a specific DNA sequence called motif. When TF binds to the promoter or

enhancer region of the target gene (TG), TF recruits RNA polymerase and promotes

production (i.e., transcription) of messenger RNA of the TG. The resulting messenger

RNA moves into the cytoplasm and the ribosome performs synthesis (i.e., translation)

of the protein from the messenger RNA. The resulting protein then performs a biolog-

ical function in response to the stimulus. Thus, understanding the cellular response

to stress is the discovery of a stress signaling pathway in which the stress signaling

genes deliver the stress signal from the receptor to the final protein product.

The use of gene expression data in plant stress studies has led to the realization

of a new paradigm of research called “data-driven” research paradigm. The paradigm

does not require sophisticated hypotheses derived from high-level biological knowl-

edge to start a biological research project. After only selecting the stress of interest,

for example, cold stress, experimental biologists collect samples before and after the

stress and measure the gene expression data of the samples. Then, computational bi-

ologists, called bioinformaticians, analyze the gene expression data to produce the

candidate stress-responsive genes. Then, they together select the interesting genes

from the list and make a genetically modified (GM) crop where the expression level

of the selected gene is artificially activated or depressed. This approach has been

highly successful in the development of stress-resistant plants [54, 101, 106, 122,

131, 135, 143, 144]. In these data-driven studies, the analysis of gene expression

data, which is the main topic of this doctoral study, is critical to the success of the
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Figure 2.5. Typical signaling pathway in response to stress. When stress reaches a cell, re-
ceptors on the cell membrane accept it and activate downstream proteins to deliver the signal.
The activated protein then signals the downstream protein sequentially to the TF protein. TF
enters the nucleus, binds to the promoter or enhancer region of the TG, and recruits RNA
polymerase to promote production (i.e., transcription) of messenger RNA of the TG. The
resulting messenger RNA moves into the cytoplasm and the ribosome performs synthesis
(i.e., translation) of the protein from the messenger RNA. The resulting protein performs a
biological function in response to the stress.
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project.

To find the stress signaling genes in gene expression data, gene expression lev-

els are compared between sample groups before and after the stress for each gene.

This produces the genes whose expression levels change significantly between the

two groups called “differentially expressed genes (DEGs)”. To analyze the data, pair-

wise comparison tools based on statistical models are used, such as limma [109],

edgeR [110], and DESeq [11]. However, because the cost of producing the data is

high, botanists cannot extensively investigate gene expression levels for many sam-

ples.

Subsequent technological advances have lowered the cost of measuring data

and extended gene expression data in the time dimension. Gene expression data have

been measured in plants at multiple time points after stress to create time-series data.

Moreover, time-series analysis tools have been developed, such as maSigPro [100],

Imms [126], splineTC [88], and ImpulseDE [116]. Gaussian process model also can

be an effective technique to analyze time-series data [67]. However, since the cost of

generating gene expression data is still high, those data include not only a small num-

ber of time points (usually under five) but also a small number of samples (usually

under five).

Now, to analyze gene expression data for a large number of samples, field ex-

perts have been collecting data on specific research interests, building databases, and

providing them to researchers in the public sector. For example, the OryzaExpress

database [51] provides 624 gene expression datasets from 37 experimental series with

their experimental conditions. Its improved version, PlantExpress [87], was published

later, and it contains 3,884 and 10,940 gene expression datasets for rice and Arabidop-

sis species. A more recent database, the Rice Expression Database (RED) [134],

provides 284 RNA-seq gene expression datasets that were measured under various
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experimental conditions in rice species.

The integrated analysis of gene expression data is required to produce robust

results because the deviation of the experimental conditions between samples makes

a big difference between the DEG results of the samples. When comparing response

genes reported in different experiments, we can observe only a small number of com-

mon response genes even though the experiments were conducted with the same

stress on the same species. For example, Kreps [73] and Matsui [85] reported 2,086

and 996 DEGs for cold stress in Arabidopsis, respectively, and only 232 DEGs, about

16% of the union of the two DEG sets, were commonly determined. To overcome the

effects of individual experimental conditions, a method that integrates multiple gene

expression datasets is required. However, the multiple gene expression datasets col-

lected from databases have heterogeneous data structures, which requires appropriate

and sophisticated approaches and techniques such as network propagation [5] or deep

learning [66]. The issue and method will be presented in detail in Chapter 5.
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Chapter 3

RiceTFnetwork: Transcriptional
Network Analysis for Revealing Drought
Resistance Mechanisms of AP2/ERF
Transgenic Rice

Recently, understanding how plants respond to environmental stress has been

becoming more important because of the rapid change of the global environment. In

this study, we compared the cellular response under dehydration stress for two rice

species: the wild-type (WT) species of the drought-sensitive phenotype and the GM

species of the drought-resistant phenotype. The GM was named erf71 because it was

made by overexpressing the OsERF71 TF gene. It showed enhanced survival over

the WT under drought stress at the vegetative stage of growth and a 23–42% increase

in total weight gain over the WT under drought stress at the reproductive stage of

growth. We examined the duration of drought stress by tracing the expression level

of the Dip1 (drought-induced protein 1) gene [141] and then measured time-series

gene expression data at eight time points for the two rice species: 0, 0.5, 1, 3, and 6

hours for WT and 0, 1, and 6 hours for GM. The goal of analysis is to explain the

drought resistance mechanism of the GM rice.
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3.1 Computational Problems

To help the reader understand the data, Figure 3.1 illustrates the gene expression

data in this study in the format of machine learning data. The data objects are two rice

samples (WT and GM), the features are genes, and the classes are drought resistant

and drought sensitive. The goal of the analysis is to explain the drought resistance

mechanism of the GM rice. Computational challenges are (1) the analysis of high-

dimension (> 20,000 genes) and small-sample-size (only two samples) data, (2) the

analysis of the high dependency between features due to the complex interactions

between genes, and (3) the comparison of the time-series data of two samples.

3.2 Methods

To address the computational problems, this section developed a novel compu-

tational framework called RiceTFnetwork [6] to characterize the drought resistance

mechanism of a GM rice species. The method uses network representation and clus-

tering analysis as fundamental techniques. The proposed computational framework

consists of two steps, as illustrated in Figure 3.2.

• Step 1: Constructing a dehydration TF network utilizing gene expression data

from databases and a dehydration experiment.

• Step 2: Instantiating phenotype-differential dehydration networks and identi-

fying DEG modules.

The first step profiles TFs first from domain knowledge. TFs are special-type

genes that function as regulators for the other TGs. TF proteins bind to the DNA

promoter region of a TG and activate or suppress the expression level of the TG.

Considering only edges between TFs and the other TGs reduces the size of a gene
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network, thus reducing the problem space. After focusing on TFs, the method con-

structs a template TF network by inferring regulatory relationships between TFs and

TGs. The network construction improves the inference power by using a large-scale

public dataset including about 1,800 samples. Then, it instantiates a stress-condition-

specific network by selecting edges guided by the experimental data. Integrating the

large-scale public dataset with the small-sized experimental data increases the accu-

racy of the inferences of the network.

The second step applies clustering analysis to the stress-condition-specific net-

work to divide it into several gene subnetworks (or clusters/modules). Clustering

analysis reduces the dimension from the number of genes into the number of clus-

ters, which addresses the issue of high-dimension and small-sized-sample data. The

dimension reduction makes it possible to interpret the difference between two rice

species at the gene expression level. Details on each step are described in the next

sections.

3.2.1 Step 1: Constructing Dehydration TF Network
Utilizing Gene Expression Data from Databases and
Dehydration Experiment

To construct a reliable dehydration TF network, a template TF network was

constructed by utilizing large-scale microarray data. At the beginning of this step,

network construction factors, such as choice of network construction method, dataset

size, and cutoff values, were thoroughly investigated. A recent study investigated

many network construction methods and reported that mutual-information and correlation-

based methods recovered feed-forward loops most reliably [83]. Since the goal of

this study was to investigate the effect of OsERF71 overexpression on other genes

through relationships between the TFs and their TGs, which can be seen as feed-
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Step 1: Constructing a dehydration

TF network utilizing gene 

expression data from database

and a dehydration experiment

Step 2: Instantiating phenotype-

differential dehydration

networks and identifying

differentially expressed

gene modules.

Phenotype-differential
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Figure 3.2. TF network analysis workflow. A template TF network was constructed by select-
ing strongly co-expressed TF–TG pairs in 1,893 sample public domain microarray datasets.
Then, a dehydration TF network was constructed by selecting strongly co-expressed TF–TG
pairs in eight dehydration experiment RNA-Seq datasets. Phenotype-differential dehydration
networks were instantiated by mapping gene expression differences to node values. Then,
clustering analysis was performed. Finally, DEG modules were selected by t-test, and the
biological functions of gene modules were characterized by GO analysis.

33



forward propagation from OsERF71 to other genes, Pearson’s correlation coefficient

(PCC) was used as the network construction method.

Large-scale gene expression datasets (1,893 microarray datasets) were down-

loaded from the OryzaExpress Gene Expression Network website (http://bioinf.mind.

meiji.ac.jp/OryzaExpress/). Probe-IDs that were used for microarray experiments

were converted to gene-IDs according to a previous study [89]. Since PCC is shown

to converge as the sample size increases, an empirical study was performed to deter-

mine whether the dataset size was beyond the convergence threshold and was suffi-

cient to construct a robust template TF network. By varying the number of samples,

different sample-size subsets of the microarray data were produced by random sam-

pling from the 1,893 microarray datasets. For each subset, PCCs between TFs and

TGs were then computed and PCC density distributions and network topologies were

investigated. The density distributions and the network topologies converged with

a sample size greater than approximately 800. This observation showed that 1,893

microarray datasets were sufficient to produce a robust template TF network. Re-

cent studies that used the PCC method for biological network construction detected

modular structures of genes in Arabidopsis, rice, and maize networks [41, 82]. These

studies reported that each of the modules had a specific biological function. Based on

this result, the functionality score was defined as follows:

FunctionalityScore(G) =−
∑
ci∈C

|ci|
N

log10(pci). (3.1)

In the formula, G is a network and it is divided into a set of gene clusters,

C = [c1,c2, . . . ,cn], using a graph-based clustering algorithm [19]. N is the number

of genes in the network, and pci is the p-value of the most significant gene ontology

(GO) term in a GO enrichment test of the cluster ci. The functionality score measures
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how well a network is divided into functional gene modules. The functionality scores

were investigated for each network constructed at different PCC cutoff values. The

cutoff value of 0.67 was chosen because it was the cutoff value at which the function-

ality score was maximized. TF–TG pairs with strong associations (|PCC|> 0.67) in

the 1,893 microarray datasets were then defined as edges in the template TF network.

The template TF network consisted of 10,740 genes (898 TFs and 9,842 nonTFs)

and 135,550 links (4,073 TF–TF links and 131,477 TF–nonTF links). A dehydra-

tion TF network was then constructed by selecting edges in the template TF network

that had strong associations (|PCC| > 0.67) in eight dehydration experiment RNA-

Seq datasets. The constructed dehydration TF network consisted of 7,319 genes (729

TFs and 6,590 nonTFs) and 50,672 links (1,375 TF–TF links and 49,297 TF–nonTF

links). The topology of the network was visualized using Cytoscape [114].

3.2.2 Step 2: Instantiating Phenotype-Differential
Dehydration Networks and Identifying DEG Modules

In this step, the goal was to identify DEG modules between WT and erf71 from

the dehydration TF networks by the following strategy.

• Step 2-1: Phenotype-differential dehydration TF networks were instantiated

by mapping gene expression differences to node values of the dehydration TF

network.

• Step 2-2: Graph-based network clustering broke down the phenotype-differential

dehydration TF networks into several gene clusters according to connectivity.

• Step 2-3: Differential expression and GO enrichment tests were performed for

each cluster.

• Step 2-4: DEG modules were selected and designated as “modules.”

In Step 2-1, phenotype-differential dehydration TF networks were instantiated
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by mapping gene expression differences between time points for each plant (i.e.,

log2(W1/W0) and log2(W6/W0)) as well as differences across plants (i.e., log2(E1/A0)−

log2(E1/W0)) to nodes of the dehydration TF network, where “W” and “E” stand

for WT and erf71, and “0”, “1”, and “6” stand for 0, 1, and 6 hours after treatment

(HAT), respectively. In Step 2-2, the phenotype-differential dehydration TF networks

were broken down into several gene clusters using a multi-level network clustering

method [19] that groups highly connected nodes into a cluster of nodes. In Step 2-

3, a paired sample t-test was performed on each cluster to determine whether each

gene cluster was differentially expressed. In addition, the biological functions of each

cluster were characterized by GO enrichment analysis based on Fisher’s exact test. In

Step 2-4, the clusters showing high-level significance (p < 1.0e−9) in both tests were

selected and designated as “modules.”

3.3 Results and Discussion

3.3.1 Network and Clustering Analysis

The goal of RiceTFnetwork was to characterize the differences in gene expres-

sion response between WT and erf71 utilizing a TF network. In a TF network, nodes

are genes (TFs and nonTFs) and edges are connections between TFs and potential

TGs including TFs. The TF network did not include edges between nonTF genes to

focus on transcription-factor-centered regulation.

A template TF network was constructed by selecting TF–TG pairs with strong

associations (|PCCs|> 0.67) in eight RNA-Seq datasets from the experiment and in

1,893 microarray datasets in the public domain. Differences in gene expression levels

(i.e., log2-fold change)were then assigned to the genes in the network. Figures 3.3A

and 3.3B show the constructed dehydration TF networks of WT and erf71, respec-
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B - A
=log2(E1/E0)-log2(W1/W0)

log2(E1/E0)

-1 1

-1 1

log2(W1/W0)

-1 1

A B

C

Figure 3.3. Phenotype-differential dehydration TF networks. The two time-point differential
networks (A and B) were instantiated by mapping gene expression differences between time
points such as log2(W1/W0) and log2(E1/E0), respectively. In these networks, red/blue dots
denote the up/downregulation of gene expression under dehydration stress. A phenotype-
differential network (C) was instantiated by mapping gene expression differences between
two rice plants such as log2(E1/E0)− log2(W1/W0). In this network, red/blue dots denote
the relative up/downregulation of gene expression in erf71 compared to WT.
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tively, where red/blue dots denote up/downregulated genes before and after dehydra-

tion stress (i.e., 0 HAT vs. 1 HAT). Figure 3.3C shows a phenotype-differential TF

network where red/blue dots denote relatively differentially regulated genes between

WT and erf71. In other words, red dots indicate genes that are relatively upregulated

(more upregulated or less downregulated) in erf71 under dehydration stress.

The TF network was divided into 88 gene clusters by grouping highly connected

genes into a cluster by a graph-based network clustering algorithm. Each cluster was

characterized by differential gene expression and GO enrichment tests. Finally, five

gene clusters were identified, with 713, 1,363, 537, 1,586, and 1,605 genes, showing a

high level of significance (p< 1.0e−9) in both tests. The five clusters were designated

as “modules.” Table 3.1 summarizes the results of the differential gene expression test

and GO enrichment test for the five modules.

Figure 3.4 shows the characteristics of the five modules—the position in the TF–

TG network, plots of the expression levels, and the biological functions. The mean

expression levels of the five modules were changed in one direction (i.e., increased

or decreased) as dehydration stress continued in both rice plants, but the degree of

change was different between the two rice plants. Module 1 that included drought-

response-related TFs was upregulated in both types of rice but less upregulated in

erf71. Modules 2, 3, and 4 that were related survival-critical mechanisms, such as

translation, response to oxidative stress, and cell division cycle, were downregulated

in both types of rice but less downregulated in erf71. Module 5 that were related to

photosynthesis was downregulated in both types of rice but more downregulated in

erf71. These results suggests erf71 diverted more energy to survival-critical mecha-

nisms related to translation, oxidative response, and DNA replication while further

suppressing energy-consuming mechanisms, such as photosynthesis. The next sec-

tion presents a detailed analysis of each module.
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Table 3.1. Results of differential expression test and GO enrichment test of five gene modules.
The differential expression test was performed using t-test at 0-to-1 HAT between WT and
erf71. The GO enrichment test was performed by Fisher’s exact test. A p-value cutoff (p <
1.0e−9) was used to decide differential expression and enriched GO terms.

Gene
module

Differential expression
at 0-to-1 HAT period

between WT and erf71
P-value Enriched GO terms P-value

Module 1 Less up-regulated in erf71 1.2e-62
Regulation of transcription,
DNA-dependent

3.3e-27

Module 2 Less down-regulated in erf71 3.0e-56
Translation
Ribosome biogenesis

3.0e-108
2.0e-11

Module 3 Less down-regulated in erf71 4.0e-71 Response to oxidative stress 1.5e-12

Module 4 Less down-regulated in erf71 7.0e-71
Microtubule-based movement
DNA replication

3.4e-20
2.3e-14

Module 5 More down-regulated in erf71 3.5e-80
Photosynthesis
Photosynthesis, light harvesting

3.0e-25
9.4e-13
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Figure 3.4. Characteristics of five gene modules. The figure in the center shows a dehydration
TF network with five gene modules. The line plots around the network are gene expression
levels of the five gene modules, where y-axis is the average of log2-fold changes of gene
expression level with respect to the 0 HAT time point. The blue words of each module are the
biological functions derived by GO enrichment tests. This figure suggests erf71 diverted more
energy to survival-critical mechanisms related to translation, oxidative response, and DNA
replication while further suppressing energy-consuming mechanisms, such as photosynthesis.
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3.3.2 Analysis of Drought-Response-Related Gene Module

The GO term highly enriched in Module 1 was DNA-dependent regulation of

transcription (GO:0006355). According to the TF list obtained from the plant TF

special database, PlantTFDB [63], about a fifth of the genes in Module 1 (143/713)

consisted of TFs: WRKY (27), ERF (23), NAC (17), C2H2 (10), bZIP (9), bHLH

(7), MYB (6), GRAS (6), HSF (5), MYB related (5), Trihelix (4), C3H (4), HD-ZIP

(2), Dof (2), NF-YB (2), SBP (2), G2-like (2), ARR-B (2), NF-YC (1), CO-like (1),

RAV (1), CAMTA (1), VOZ (1), ARF (1), CPP (1), and DBB (1), where the num-

bers in parentheses indicate the number of genes included in the module. Among

them, TF families such as WRKY, ERF, NAC, C2H2, bZIP, bHLH, and MYB are

well-known drought-stress-related TF families [24, 77, 92, 96, 97, 123]. Moreover,

alterations in the expression of 10 TFs in Module 1, Os01g0797600 (OsAP37) [101],

Os01g0968800 (OsDREB1F) [131], Os02g0654700 (OsAP59) [101], Os03g0741100

(OsbHLH148) [122], Os03g0815100 (SNAC1) [54], Os03g0820300 (ZFP182) [143],

Os05g0322900 (OsWRKY45) [106], Os11g0127600 (ONAC045) [144], Os11g0184900

(OsNAC5) [124], and Os12g0583700 (ZFP252) [135], have already been reported to

produce drought-resistant phenotypes.

Reverse-transcription-polymerase chain reaction (RT-PCR) experiments confirmed

the expression levels of the TFs in Module 1 that have not yet been documented to

affect drought resistance. Among them, eight TF genes, Os02g0764700 (OsERF103),

Os03g0180900 (TIFY11C, OsJAZ2), Os03g0327100 (ONAC039, OsCUC1), Os03g0820400

(ZFP15), Os04g0671800 (OsC3H32), Os04g0676700, Os06g0670300, and Os12g0123800

(ONAC132, ONAC300), were shown to be upregulated in both plants but less up-

regulated in erf71 during the 0-to-1 HAT period in response to drought stress (Fig-

ure 3.5). Os03g0180900 (TIFY11C, OsJAZ2) is a gene of the JAZ family that contains

a well-conserved domain called ZIM or TIFY [127]. It was induced under drought
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Figure 3.5. RT-PCR analysis of eight TF genes in Module 1. RT-PCR experiments measured
the expression levels again for the TFs in Module 1 that have not yet been documented to
affect drought resistance. Among them, eight TF genes (i.e., Os02g0764700 (OsERF103),
Os03g0180900 (TIFY11C, OsJAZ2), Os03g0327100 (ONAC039, OsCUC1), Os03g0820400
(ZFP15), Os04g0671800 (OsC3H32), Os04g0676700, Os06g0670300, and Os12g0123800
(ONAC132, ONAC300)) were shown to be upregulated in both plants but less upregulated in
erf71 in the 0-to-1 HAT period in response to drought stress as in the RNA-Seq experiment.
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stress and by the overexpression of OsbHLH148, a gene that causes drought tol-

erance when overexpressed. In addition, OsJAZ2 exhibited a weak interaction with

OsbHLH148, and it has been proposed to target the activation of OsbHLH148 [122].

Os03g0327100 (ONAC039, OsCUC1) and Os12g0123800 (ONAC132, ONAC300)

were reported to be responsive to drought, salt, and cold stress [40]. These results

show that the eight TFs were differentially regulated in WT and erf71 during the

0-to-1 HAT period and putatively related to the drought-resistance mechanism.

Genes in Module 1 were upregulated in both WT and erf71, and Module 1 was

the only upregulated module among all five modules. As overall gene expression lev-

els decreased with continued dehydration stress, indicating the suppression of various

activities, upregulation was a relatively unexpected phenomenon. Module 1 contained

many upregulated DEGs (31 up-DEGs among a total of 112 up-DEGs in both plants

in the 0-to-1 HAT period) with a significance level of p < 1.0e−23 by Fisher’s exact

test. In summary, the expression level of TF genes was increased in the dehydration

response network, and those TF genes seemed to form a modular structure in the

network clustering analysis, suggesting that the TF module might have particular bi-

ological functions. This observation needs further investigation, but this was beyond

the scope of this study.

OsERF71, the overexpressed gene, was present in Module 1, and it had three di-

rect neighbors (Os03g0701700, Os10g0346600, and Os11g0157200) in the module.

The genes in Module 1 were directly connected to the transgene, unlike those in the

other modules.

Although gene expression levels increased in Module 1, the degree of change

differed between WT and erf71. Gene expression increased less in erf71 in the early

response phase (i.e., the 0-to-1 HAT period). This trend, relatively small gene expres-

sion changes in erf71 in the early response phase, was observed consistently in the
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results of other analyses: the number of DEGs was smaller in erf71, and the mag-

nitude of change in expression was smaller for genes in Modules 2, 3, and 4 and

globally during the 0-to-1 HAT period.

3.3.3 Analysis of Survival-Related Gene Modules

Three modules, Module 2, 3, and 4, included genes that were relatively upregu-

lated in erf71 compared with WT. The enriched GO terms were genetic information

processing and translation for Module 2, response to oxidative stress for Module 3,

and cell cycle for Module 4. All significantly enriched GO terms were commonly

related to essential biological processes for sustaining life.

In Module 3, 54 genes were related to oxidative reduction (GO:0055114), while

23 were related to response to oxidative stress (GO:0006979). Oxidation is closely

related to water deficiency tolerance in plants. In particular, reactive oxygen species

(ROS) are known to be overproduced in response to abiotic stress. ROS are highly

reactive and toxic, causing damage to proteins, lipids, carbohydrates, and DNA when

they exceed the cell’s antioxidant removal capacity [46, 91]. Since those genes in

erf71 were downregulated to a lesser extent than in WT, it is possible that erf71 is

more capable of detoxifying the rising level of oxidation, preventing severe damage

to the plant.

3.3.4 Analysis of Photosynthesis-Related Gene Module

Module 5 consisted of genes that were downregulated more in erf71 compared

with WT. The significant GO terms enriched in the module were related to photo-

synthesis (p < 1.0e−13). During photosynthesis, the plant synthesizes chemical com-

pounds using energy from light. However, such photosynthetic metabolic processes

require the plant to use energy. For example, toxic elements are generated as a sub-
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sidiary product that must be detoxified, requiring the plant to produce anti-toxic ele-

ments. Thus, maintaining such photosynthetic metabolism during a critical situation,

such as dehydration, hinders the survival of the plant [108]. In the analysis, erf71

transgenic rice showed the strong downregulation of the expression levels of photo-

synthetic genes compared with WT, suggesting that erf71 was possibly able to shut

down photosynthesis mechanisms in response to dehydration stress.

3.3.5 Biological Validation Experiment

Smaller changes in gene expression in erf71 in the early response phase (i.e., the

0-to-1 HAT period) were observed consistently. For instance, the number of DEGs

was smaller in erf71, and the magnitude of the decrease in expression was smaller in

erf71 when considering all genes. The TF network analysis also showed that genes

in Modules 2, 3, and 4 were related to survival-associated biological functions under

stress conditions, such as microtubule-based movement, translation, and response

to oxidative stress, and these were downregulated less in erf71 compared with WT.

This observation is intuitive, since maintaining the gene expression levels of survival-

related genes promotes the dehydration-resistant phenotype. However, genes in Mod-

ule 5 that were related to photosynthesis showed a greater response in erf71 (i.e., the

genes in Module 5 were downregulated more in erf71). Since this was a key observa-

tion in this study, the photosynthetic levels were measured for WT and erf71 plants

under dehydration stress through an experiment at the physiological level. The ex-

periment confirmed that net photosynthesis levels decreased in both plants but with

greater magnitude (two-fold) in erf71 (Figure 3.6).
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Figure 3.6. Differences of net photosynthesis levels in WT and erf71 plants under drought
stress treatment. The net photosynthesis levels were measured for WT and erf71 at four time
points under drought stress and then normalized with respect to the control sample (i.e.,
stress-treated sample – control sample). Error bars are pooled SEMs. The net photosynthesis
level was downregulated in both types of rice but more in erf71, as denoted by blue arrows.
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3.4 Summary

This chapter analyzed time-series gene expression data measured over time after

drought stress treatment for two rice samples: WT and GM. The goal was to investi-

gate the drought resistance mechanism of the GM rice. The computational problems

of the analysis were the biased ratio between the number of features and the number

of samples, the high dependency between dimensions induced by complex interac-

tions between genes, and the small number of time points.

To address the problems, this study proposed a two-step comprehensive com-

putational framework, RiceTFnetwork, involving the construction, integration, and

clustering of gene networks. The first step used network representation for the inte-

grated analysis of gene expression data and external domain data. The second step

conducted clustering analysis for dimension reduction from the number of genes to

the number of subnetworks. Characterization of gene subnetworks suggested that GM

diverted more energy to survival-critical mechanisms related to translation, oxidative

response, and DNA replication while further suppressing energy-consuming mecha-

nisms, such as photosynthesis. The follow-up biological experiments confirmed the

further suppression of the photosynthesis of GM at the physiological level.
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Chapter 4

HTRgene: Integrating Multiple
Heterogeneous Time-series Data to
Investigate Cold and Heat Stress
Response Signaling Genes in Arabidopsis

Different background conditions of samples lead to large variance of responses

to the stress across the samples, making it difficult to recognize the signal. It is

well known that when more data are used for the analysis, the signal-to-noise ra-

tio is increased, and the accuracy of the results improves. Fortunately, the time-series

gene expression data under the same stress with different experimental conditions are

available in databases (see Section 2.4). However, none of the databases above pro-

vides an integrated analysis of the collected data. This study collects multiple time-

series datasets from public databases measured under the same stress and conducts

an integrated analysis of them. The goal of analysis in this chapter is an integration of

heterogeneous time-series gene expression data to investigate how Arabidopsis plant

responses to stress.
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4.1 Computational Problems

Figure 4.1 illustrates the input data of this chapter, time-series gene expression

datasets of 28 samples of Arabidopsis under cold stress treatment, and the challenges.

The heterogeneous structure of time-domain (i.e., different time points) and the vari-

ance of experimental conditions between individual samples (i.e., different tissue,

age, background, etc.) arise the computational challenges. The heterogeneous time-

domain and variance of experimental conditions between individual samples cause

the response timing to vary from sample to sample, making the integration of data

difficult [4, 65]. The analysis of heterogeneous time-domain data is a new problem

of time-series data analysis as far as the author is aware.

4.2 Methods

This section presents a method called HTRgene [7] that determines stress-

responsive genes by integrating and analyzing the heterogeneous gene expression

data under the same stress. The key ideas of integration are “response time (RT)” and

“response order”. It works on the assumption that the response order of genes will be

preserved even if the response time of genes is advanced or delayed across multiple

samples. In addition, HTRgene uses clustering analysis to reduce the complexity of

computation.

The following are definitions of the concepts used in heterogeneous time-series

data integration analysis.
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Definition 2. Let li be the number of time points in time-series sample i and eg,i, j

be the expression level of a gene g in sample i at time point j. Let also Bg,i, j be a
set of expression levels of a gene g in sample i before time point j excluding j, i.e.,
{eg,i,1, . . . ,eg,i, j−1} and Ag,i, j be a set of expression levels of a gene g in sample i after
time point j including j, i.e., {eg,i, j, . . . ,eg,i,li}.

• A response time t i
g of a gene g in sample i is a time point where a statistical

test of significance of expression level difference is maximized between Bg,i,t i
g

and Ag,i,t i
g
.

• A response time vector R⃗g of a gene g is a vector of response time < t1
g , . . . , t

m
g >

for m samples.

• The order of two response time vectors, R⃗g1 and R⃗g2 , is determined as R⃗g1 ⪯
R⃗g2 if t

•
g1
< t

•
g2

for at least one sample and t
•
g1
≤ t

•
g2

for all samples.

• A response schedule is a longest consistent ordering of genes for a set of
binary ordering of two genes based on response time vectors.

• A response phase is the position of response in the response schedule.

• A candidate response genes are defined as genes that are differentially ex-
pressed significantly in multiple samples and whose response phases can be
determined.

There are two complexity-related challenges for determining the response time

and order of HTRgene.

• Computational challenge 1: The complexity of determining response time

vectors depends on the number of samples and time points. Given n time points,

there are potentially n−1 possible response time points, excluding one before

the first time point and one after the last time point, for one sample. The inte-

grated analysis of m samples has to consider (n−1)m candidates to determine

a response time vector.

• Computational challenge 2: The complexity of ordering the response time

vectors depends on the number of genes. In Arabidopsis, there are 27,416 cod-
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ing genes [74], which is too many to be ordered.

HTRgene reduces complexity by determining and ordering the response times

at the gene cluster level, not at the gene level, which reduces the computation de-

pending on the number of clusters. The process of HTRgene consists of four steps,

as illustrated in Figure 4.2.

4.2.1 Step 1: Normalization and Detection of Consensus
DEGs

HTRgene takes a set of time-series gene expression data from a single platform,

either microarray or RNA-Seq, as input. Different scale normalization methods are

used depending on the data platform.Quantile normalization using the affy R pack-

age [45] is used for microarray data, and variance stabilization transformation using

the DESeq package [11] is used for RNA-Seq data. After scale normalization, HTR-

gene performs base normalization to initialize expression values at the initial time

point (i.e., the time point before the stress T = 0) to zero. Different basement normal-

ization methods are used depending on the shape of data distribution. For instance,

when plotting expression levels of a gene, the plot follows a normal distribution, so

substitution-based normalization (eq. 4.1) is used for normal-shaped data. However,

log-fold-change-based normalization (eq. 4.2) is used for log-scale-shape distribution

data, which is the standard practice for RNA-Seq data.

The expression level eg,i, j,k of gene g measured in time-series sample i at time

point j in a replicate k is adjusted as follows for microarray data:

eg,i, j,k−
1
|R|

|R|∑
k

eg,i,0,k (4.1)
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and as follows for RNA-Seq data:

log(eg,i, j,k +1)− 1
|R|

|R|∑
k

log(eg,i,0,k +1). (4.2)

After normalization, HTRgene determines consensus DEGs across multiple time-

series samples. First, single-sample DEGs on the time domain were determined (i.e.,

DEGs in each sample). Differential expression tests were performed for each time

point with respect to the time point before the stress (T = 0) using the limma [109]

tool. A gene is considered a DEG in a single time-series sample if it is differentially

expressed in at least one time domain in the sample.

To evaluate the significance of a DEG across multiple time-series samples, a

statistical test was performed on the number of samples in which a gene could be

a DEG. A matrix of genes vs. time-series samples was constructed for the genes

that were determined as DEGs in samples. Then, the matrix elements were randomly

shuffled and a random distribution was generated by counting the number of samples

where a particular gene was a DEG. In this way, the p-value of DEG frequencies was

measured, and Benjamini-Hochberg multiple correction [16] was performed. Then,

the genes were selected whose DEG frequencies were significant (ad j.p < 0.05) for

samples, and they were considered consensus DEGs.

The top 10% significant genes among consensus DEGs were selected as pseudo-

reference genes since they were highly likely true-response genes for stress. These

pseudo-reference genes were used to determine parameters for further analysis steps.
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4.2.2 Step 2: Gene Clustering Based on Co-Expression
Patterns

To determine the response time points of the multiple time-series samples, clus-

tering of genes was performed across different samples. Since there are three dimen-

sions, genes × samples × time points, clustering is very difficult. A recent three-

dimensional clustering algorithm To determine the response time points of the multi-

ple time-series samples, clustering of genes was performed across different samples.

Since there were three dimensions, genes × samples × time points, clustering was

very difficult. A recent 3D clustering algorithm [64] was used. The basic idea is to

generate a single vector for each gene by concatenating the time and the sample di-

mensions. Then a spherical K-means (skmeans) clustering algorithm [20] is used to

generate clusters based on the cosine distance between two vectors. The 3D cluster-

ing produced a set of gene clusters, {C1, . . . ,CK}. Among them, small-sized clusters

with less than three members were excluded. The method to determine the number

of clusters K is described in the “Determining the number of gene clusters” section.

4.2.3 Step 3: Response Time Vector Detection for Each Gene
Cluster

This step determines the response time vector R⃗Ci for each gene cluster Ci using

a t-test on the difference in gene expression values before and after response vectors.

Determining an optimal response time vector is a computationally complex problem

because of its exponentially increased search space. To handle the big search space

issue, a hill-climbing approach was used to determine the optimal RT solution sug-

gested in [140]. Step 3 consists of three substeps: 1) initializing an RT, 2) generating

a new candidate RT, and 3) selecting an RT that improves the separation score. Steps
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2) and 3) are repeated until no candidate RT improves the separation score.

Initializing R⃗Ci using a hierarchical clustering

The hierarchical clustering of genes is used to generate the initial R⃗Ci . Since the

goal is to determine a time point as a stress response time, hierarchical clustering is

performed on the time dimension, progressively merging adjacent time points based

on gene expression values. To set the initial R⃗Ci , a response time ri is determined for

each sample i for all genes in Ci and then R⃗Ci is a vector < t1
Ci
, . . . , ts

Ci
, . . . , tm

Ci
> where

ts
Ci

is a response time for each sample s.

Generating and selecting a new candidate R⃗Ci

The next step is to generate a candidate R⃗Ci by moving an element of R⃗Ci to a

nearby time point. The testing is done by performing a t-test on the gene expression

difference before and after a R⃗Ci vector.

T statR
g j , the quality score of response point R based on a statistical model of

the individual gene g j, is calculated according to the following procedure. Suppose

that EXPpre
g j and EXPpost

g j are the sets of expression values of gene g j where the

expression value of gene g j of sample si is assigned to EXPpre
g j or EXPpost

g j depending

on whether si belongs to the pre-response or post-response group. T statR
g j is defined

as the absolute value of t-statistics with an assumption of two-sample equal variance.

Then, T statR
Ci , the quality score of a cluster Ci, is an average of quality scores of all

genes in Ci.
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4.2.4 Step 4: Ordering Gene Clusters

Among all clusters, the goal is to select and order a set of clusters that are consis-

tent in terms of response times. To do this, the concept of ResponseSchedule was de-

fined. Informally, a response schedule S is the longest consistent ordering of response

time vectors without conflict. The “conflict” between R⃗Ci of two clusters means that

no ordering of the two clusters can be determined. For instance, when the current

schedule S is {< 1,1,1,1 >,< 3,3,4,5 >}, a candidate R⃗i =< 3,3,5,4 > has con-

flict with < 3,3,4,5 > because the third and fourth elements have disagreeing orders.

Each cluster was considered in the order of quality scores T statR
C• . Initially, S

is empty, so the cluster with the highest quality score is added to S. Then, the cluster

Ci with the next best quality score is considered. If Ci does not have conflicts with

any of the clusters that are already included in S, then Ci is added to S. Otherwise, Ci

is rejected. This process continues until there is no cluster to be considered. Then, the

“response phases” are defined as the positions of the clusters remaining in Respons-

eSchedule S.

4.2.5 Determining the Number of Gene Clusters

Once consensus DEGs and pseudo-reference genes were determined in Step

1, sets of candidate response genes were generated by increasing K in steps of 50

starting from 50 to half of the number of consensus DEGs. Then, K, maximizing

the association between pseudo-reference genes and candidate response genes by

measuring F1 score, was chosen.
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4.3 Results and Discussion

4.3.1 Cold and Heat Stress Datasets

HTRgene was applied to two stress type (i.e., heat and cold) time-series data in

Arabidopsis. Affymetrix microarray platform raw data were collected from GEO [13]

and ArrayExpress [72]. This study focused on detecting genes and aligning them ac-

cording to their response time to a single stress factor. Thus, the recovery phase data

were excluded from the dataset. The collected raw data were processed and quan-

tile normalized using the affy R package [45]. The 28 and 24 time-series sample

datasets for cold and heat stress showed heterogeneous meta-properties, as shown in

Tables 4.1 and 4.2, respectively. HTRgene produced 425 and 272 candidate response

genes that were assigned to 12 and 8 response phases as a result of the integrated

analysis of cold and heat stress datasets, respectively. The heat map of 425 candidate

genes to cold stress in Figure 4.3 shows that the response time defined by the HTR-

gene method propagates along the time points as the response phases proceed from

p1 to p12. This result shows that HTRgene successfully determined the gene clusters

and their orders that are consistent with signaling propagation along the cold stress

pathway. The next section investigates whether the results are consistent with actual

biological mechanisms found through the literature review.

4.3.2 Reproduction of Cold Stress Pathway

The integrated analysis for cold stress data produced 425 candidate response

genes that were assigned to 12 response phases. The results were compared to known

cold stress pathway genes reported in review papers [61, 90, 145]. As shown in Fig-

ure 4.4, the cold stress pathway can be organized into a three-level pathway: signal

transmission, TF cascade, and downstream gene level pathways.
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Figure 4.3. Heat map of 425 candidate response genes to cold stress during response phases.
HTRgene produced 425 candidate response genes that were assigned to 12 response phases
as a result of an integrated analysis of 28 cold stress time-series sample datasets. The columns
of the heat map are four time-series samples with more than five time points: S1 to S4. The
rows of the heat map are 12 response phase gene clusters, and the numbers in parentheses
indicate the number of genes in a cluster. The colors of the heat map indicate up (red) or
down (blue) gene expression changes in comparison to the non-stressed time point (T = 0).
The black lines represent the response time point of a cluster in each sample. The heat map
shows that the response time (the black line) defined by the HTRgene method propagates
along the time points as the response phases proceed from p1 to p12. This result shows that
HTRgene successfully determined the gene clusters and their orders that are consistent with
signaling propagation along the cold stress pathway.
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In the signal transmission level pathway, the cold stress signal first alters mem-

brane rigidity and the concentration level of Ca2+. The signal is transmitted by chang-

ing the activation status of proteins sequentially, such as CLRKs, CPKs, CBL-CIPKs,

MEKK1, MKK2, MPK3/4/6, ICE1, HOS1, CAMTA3 genes [90, 145]. These genes in

the signal transmission level pathway were not assigned to any cluster in the results.

This result is biologically interpretable since the actions in the signal transmission

level pathway, such as phosphorylation, SUMOylation, and ubiquitination [61, 90,

145], affect the proteins’ structures but not their expression levels.

In the TF cascade level pathway, ICE1 and CAMTA3 genes, which are the last

activated genes in the signal transmission level pathway, initiate gene expression reg-

ulation [37]. However, the two genes were not assigned to any cluster since they

are activated by protein-structure-modifying actions. They bind to CG1 and ICE1-

box DNA cis-elements, which induces CBF2 (DREB2A) and CBF3 (DREB1A), re-

spectively [61]. The CBF2 and CBF3 genes are assigned to the second response

phases “p2” in the result. CBF2 and CBF3 are known to bind to CRT/DRE el-

ements, ACCGACNN and [A/G]CCGACNT, respectively, and regulate the down-

stream genes [84, 115]. In addition, since they share the common CRT/DRE element

ACCGACNT, they regulate some of the same downstream genes.

In the downstream level of the signal transduction pathway, among CBF2 down-

stream genes [115], eight genes were found in the late response phases “p4,” “p6,”

“p7,” and “p9.” Moreover, among CBF3 downstream genes [84], 19 genes were found

in the late response phases “p2,” “p3,” “p4,” “p6,” “p8,” “p9,” and “p10.” Among

them, five genes are common. Collectively, it is shown that the analysis results corre-

spond to the known cold stress pathway.
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Figure 4.4. Cold stress pathway and cluster results. The cold stress pathway can be organized into
a three-level pathway: signal transmission, TF cascade, and downstream gene level pathways. In the
signal transmission level pathway, the cold stress signal is transmitted by changing the activation status
of some proteins sequentially, such as CLRKs, CPKs, CBL-CIPKs, MEKK1, MKK2, MPK3/4/6, ICE1,
CAMTA3 genes. In the TF cascade level pathway, ICE1 and CAMTA3 genes initiate gene expression
regulation. They bind to CG1 and ICE1 DNA elements and then upregulate CBF2 (DREB2A) and
CBF3 (DREB1A) genes, respectively. The CBF2 and CBF3 genes were assigned to the second response
phase “p2” in the result. They are known to bind to CRT/DRE elements regulating downstream genes.
In the downstream-level pathway, eight of the CBF2 downstream genes were found in the late response
phases “p4,” “p6,” “p7,” and “p9.” In addition, 19 CBF3 downstream genes were found in the late
response phases “p2,” “p3,” “p4,” “p6,” “p8,” “p9,” and “p10.” Collectively, it is shown that the analysis
results correspond to the known cold stress pathway.
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4.3.3 Reproduction of Heat Stress Pathway

The integrated analysis for heat stress data produced 272 candidate response

genes that were assigned to seven response phases. The results were also compared

to the heat stress pathway summarized in a review [102]. As shown in Figure 4.5,

the heat stress pathway can also be organized into a three-level pathway: signal trans-

mission, TF cascade, and downstream gene level pathways.

In the signal transmission level pathway, the heat stress signal first changes

membrane rigidity and the concentration level of Ca2+ and ROS. The signal is then

transmitted by changing the activation status of some proteins sequentially, such as

CBK3, PP7, CDKA1, CPKs, CBL-CIPKs, and HSFA1s genes [102]. These genes in

the signal transmission-level pathway were not assigned to any cluster in the results,

which is biologically interpretable since the actions in the signal transmission level

pathway, such as phosphorylation, dephosphorylation, SUMOylation, and protein–

protein interaction [102], affect the proteins’ structures but not their gene expression

levels, as in the cold stress results.

In the TF cascade level pathway of heat stress, HSFA1 genes are the major reg-

ulator of TF cascade [78]. However, they did not show gene expression changes in

the result. The result was possible because they are activated by protein-structure

modifying actions. HSFA1s bind to HSE elements that target directly some TFs:

HSFA2, HSFA7A, and HSFBs (HSFB1A, HSFB2A, and HSFB2B) [102]. Interest-

ingly, HSFBs, HSFA7A, and HSFA2 bind to HSE elements then activating themselves

again. Thus, transcriptional upregulation is accelerated by this feed-forward signal-

ing [56]. Among these TFs, HSFA2, HSFA7A, and HSFBs, the direct target of HSFA1

were assigned to the second response phase “p2.”

In the downstream level pathway, among the downstream genes of heat shock

factor genes [55, 121, 142], 52 genes were found in late response phases “p2,” “p3,”
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Figure 4.5. Heat stress pathway and cluster results. The heat stress pathway also can be organized
into a three-level pathway: signal transmission, TF cascade, downstream gene level pathways. In the
signal transmission-level pathway, heat stress signal is transmitted by changing the activation status of
some proteins sequentially, such as CBK3, PP7, CDKA1, CPKs, CBL-CIPKs, and HSFA1s genes. In the
TF cascade-level pathway, HSFA1s genes are the major regulator of TF cascade. HSFA1s bind to HSE
elements then target directly some TFs such as HSFA2, HSFA7A, and HSFBs (HSFB1A, HSFB2A, and
HSFB2B). Then, the targeted TF genes bind to HSE elements, then activate themselves again, inducing
heat stress signaling acceleration. Among these TFs, HSFA2, HSFA7A, and HSFBs were assigned to
the second response phase “p2.” In the downstream-level pathway of HSFA2, HSFA7A and HSFBs, 52
genes among heat shock factor downstream genes were found in late response phases “p2,” “p3,” “p4,”
“p5,” “p6,” and “p7.” Collectively, it is shown that the analysis results correspond to the known cold
stress pathway.
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“p4,” “p5,” “p6” and “p7.” Collectively, it is shown that the analysis results corre-

spond to the known heat stress pathway.

4.3.4 Comparison with Existing Methods

HTRgene was evaluated by comparison with existing tools. Qualitatively, HTR-

gene is more informative than other tools since it provides not only candidate re-

sponse genes but also response phases. For instance, DEG detection tools such as

limma [109], edgeR [110], and DESeq [11] output DEGs by comparing the control

samples with the case samples but do not produce response phases. Other pattern-

based tools, such as ImpulseDE [116], are designed to report differentially patterned

genes between control and case time-series samples but do not report response phases.

Since the existing tools do not provide response phases, the performance com-

parison is done in terms of accuracy of determining candidate response genes only.

For performance comparison, HTRgene without ordering and with ordering were

considered separately in order to trace how much improvement was made by or-

dering the reference genes (i.e., ground truth) to estimate accuracy. 330 and 158

genes with GO annotation “response to cold” and “response to heat” from the TAIR

database [74], as limma, ImpulseDE, HTRgene without ordering, and HTRgene with

ordering, produced 3449, 7840, 3602, and 425 candidate response genes for cold

stress analysis; and 5091, 8193, 2957, and 272 candidate response genes for heat

stress analysis, respectively, as shown in Figure 4.6A. Among the genes, 41, 56, 124,

and 41 were ground truth genes for cold stress; and 73, 83, 69 and 49 ground truth

genes for heat stress, respectively. To measure the performance quantitatively, F1

score was computed (a widely used accuracy metric to consider both precision and

recall). HTRgene outperformed the other tools in terms of the F1 score about three-

fold as shown in Figure 4.6B. In addition, ordering was effective to reduce the number
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Figure 4.6. Candidate response gene detection results of limma, ImpulseDE, and HTRgene
(without and with ordering). A) The number of candidate response genes. B) F1 scores as
an estimate of the accuracy of detecting candidate response genes. F1 scores were calculated
by measuring consistencies between the outputted candidate response genes and reference
genes that are labeled as “response to cold” and “response to heat” in the TAIR database. The
p-values were calculated by Fisher’s exact test.
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of DEGs and improve F1 score of DEG detection.

4.4 Summary

In this chapter, HTRgene was developed, which is a method to integrate mul-

tiple heterogeneous time-series gene expression data for the investigation of stress

response signaling mechanisms in plant. Collecting all available datasets in the pub-

lic domain is a way to increase the power of analysis in investigating the signaling

mechanisms. The challenge is that the datasets are heterogeneous in terms of the

time-domain (the number of time points and intervals are different) and phenotype-

domain (the tissue of samples and the age of samples are different). In this study,

response times are defined to integrate different datasets. With respect to response

time points, genes are ordered to predict stress-responsive genes. In the process, clus-

tering analysis is used to extract the meaningful time-domain characteristic, which is

supported by many members of genes within the same cluster. In experiments using

28 and 24 time-series sample gene expression datasets under cold and heat stress,

HTRgene successfully reproduced biological mechanisms of cold and heat stress in

Arabidopsis.
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Chapter 5

IDEA: Integrating Divisive and
Ensemble-Agglomerate Hierarchical
Clustering Framework with
Density-Based Tree Search for Arbitrary
Shape Data

Hierarchical clustering is one of the most widely used clustering methods for

gene expression data analysis. Hierarchical clustering is easily understood because

of its simple and intuitive framework. Hierarchical clustering successively divides

clusters, which is called bottom-up or agglomerate clustering, or successively merges

clusters, which is called top-down or divisive clustering. Although many new algo-

rithms and strategies have been proposed, hierarchical clustering has remained based

on the simple successive process as first developed. Then, it shows weakness for re-

cent clustering issues such as distribution of data or a large number of data objects.

The goal of this chapter is to develop a new hierarchical clustering algorithm that

works on clustering analysis of genes.
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5.1 Computational Problems

The input data in this chapter is a similarity matrix of genes, and the goal is to

cluster the genes meaningfully. Figure 5.1 shows the challenges of this chapter. Al-

though the distribution of data objects strongly affects the clustering analysis, the dis-

tribution of genes remains unknown. In addition, the size of input data is the square of

number of genes, about 20,000× 20,000, so the clustering on genes has to be efficient

for computation. This chapter proposes an improved version of hierarchical cluster-

ing method to work on the arbitrarily distributed data with computational efficiency

by combining effective recent clustering techniques such as network representation,

phase shifting, and cost-optimization-based tree integration.

5.2 Evaluation Metric of Hierarchical Clustering
Tree

This section introduces the cost function of hierarchical clustering tree, which

operates theoretical fundamentals for the ensemble clustering algorithm of this study.

Dasgupta [33], in 2016, proposed a cost function, which is the first evaluation func-

tion of the hierarchical clustering tree. The invention of evaluation function started a

new paradigm in the development of hierarchical clustering methodologies [23, 27,

94, 113]. This is because researchers since have since been able to develop new hier-

archical clustering methods as an optimization problem that is to minimize the cost

function of Dasgupta. As preliminary knowledge, the cost function that Dasgupta

proposed is as follows:

costG(T ) =
∑
i j∈E

wi j|leaves(T [i∨ j])|, (5.1)
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where G = (V,E,w) denotes a graph whose vertexes, edges, and weights of edges are

V , E, and w, respectively. T denotes a tree (not necessarily binary). For a node u, T [u]

denotes the subtree rooted at u. For leaves i, j ∈V , the expression i∨ j denotes their

lowest common ancestor in T . Then, T [i∨ j] is the smallest subtree whose leaves

include both i and j. leaves(T [i∨ j]) denotes the leaves of this subtree. Figure 5.2

shows an example of computing Dasgupta’s cost function. Dasgupta also proposed a

generalized version of cost function that uses a monotonically increasing function, f ,

to |leaves(T [i∨ j])| in the basic cost function as follows:

costG(T ) =
∑
i j∈E

wi j f (|leaves(T [i∨ j])|). (5.2)

In the same paper, he also showed that computing the optimal cost function is

NP-hard, but a top-down recursive partitioning hierarchical clustering heuristic using

αn-approximation sparsest cut has O(αn logn)×c(T ∗), where c(T ∗) denotes a cost of

optimal tree T ∗ (hereafter, c(T ∗) will be skipped for convenience). Then, he showed

that Leighton-Rao sparsest cut [75]-based algorithm has O(logn logn). Subsequently,

the cost was reduced to O(
√

logn logn) in a paper [23] by using Azora-Rao-Vazirani

sparsest cut [12], and then to O(logn) via spreading metrics method [113]. Then,

another paper [27] proposed an algorithm with O(1)-approximation in special con-

dition when the input graph G is generated from hierarchical stochastic block model

(HSBM).

In addition, Moseley and Wang [94] proposed a revenue function revG(T ) that

is a counterpart of Dasgupta’s cost function:

revG(T ) =
∑
i j∈E

wi j|non-leaves(T [i∨ j])|, (5.3)

where non-leaves(T [i∨ j]) denotes leaves that do not belong to the subtree T [i∨ j].

Because costG(T )+ revG(T ) = n
∑

i j∈E wi j, the cost function and revenue function
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Figure 5.2. Example of Dasgupta’s cost function. Let a hierarchical clustering method suc-
cessively divides graph G, where all weights of connected edges are 1 (wi j = 1), to generate
a hierarchical tree. It divides the graph into {1,2,3},{4,5,6} by disconnecting edge {w34} in
the first round. Because |leaves(T [•])| is 6 in the first round, the cost increases by 1 × 6. In
this way, the total cost becomes 22. If |leaves(T [•])| is thought of as a penalty term, then we
can see that the first round has the biggest penalty, and the right strategy to reduce the cost is
to cut off the least weighted edges in the first round.
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have a dual relationship and the optimal solution to minimizing costG(T ) is the same

as the optimal solution to maximizing revG(T ). They performed theoretical analysis

for three clustering algorithms: average linkage, bisecting k-means, and divisive local

search. Then, they analyzed the upper/lower bounds of approximation:

• for average linkage algorithm:

1
3 revG(T ∗)≥ revG(Taverage linkage)≤ (1

2 + ε)revG(T ∗),

• for bisecting k-means algorithm:

revG(Tbisecting k-means)≤ 1
Ω(
√

n)revG(T ∗),

• for divisive local search algorithm:

n−6
n−2

1
3 revG(T ∗)≤ revG(Tdivisive local search),

where T ∗ is the optimal tree.

5.3 Methods

This section first presents an ensemble clustering algorithm that integrates mul-

tiple trees by minimizing a cost function. Since the ensemble approach increases time

complexity, this section continuously suggests a computationally efficient clustering

framework, Integrating Divisive and Ensemble-Agglomerate hierarchical clustering

framework (IDEA) [8], which uses advanced clustering techniques such as divisive-

agglomerate hybridization and nearest neighbor-based graph construction.

5.3.1 Ensemble of Hierarchical Clustering Methods

Figure 5.3 illustrates an ensemble integration of hierarchical clustering method.

Assume that there are L hierarchical clustering methods, each of which builds indi-

vidual hierarchical clustering trees from a graph. Let G = (V,E,w) be an undirected
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and weighted graph, T1,T2, · · · ,TL be hierarchical clustering trees that are generated

by L hierarchical clustering methods, and s(T•) = e−c(T•) be a score of tree (larger is

better), where c(T•) is Dasgupta’s cost function. Then, the method collects all pairs

of leaves that are merged in at least one tree and defines a support score for each pair

as
∑

Ti∈T † s(Ti), where T † is a set of trees that merged the pair. It selects the pair with

the biggest support score, and updates all trees by forcing the trees to merge the pair.

If a tree already merged the pair, there is no change to those trees. On the contrary, if

a tree under the current consideration does not merge the pair, it is re-built by the cor-

responding hierarchical clustering method from the graph where the pairs are forced

to be merged. In this way, all trees are integrated step-by step, and only one ensemble

tree is produced finally.

5.3.2 IDEA Hierarchical Clustering Framework

The designed ensemble method is not computationally efficient, since it is based

on an adapting divisive-agglomerate hybrid approach and repeats weighted α-nearest

neighbor graph construction. Thus, a hierarchical clustering framework, IDEA, was

designed. IDEA takes a set of data points, X , with a metric of the user’s choice (e.g.,

Euclidean distance or cosine similarity) defined on pairs of data points δ : X×X→ℜ

and three parameters, α, β, and k, as input and produces a hierarchical clustering

tree, T , and a set of flat clusters, C. IDEA consists of pre-processing, main, and

post-processing steps. IDEA is described in detail in Algorithm 18 and illustrated in

Figure 5.4.
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Algorithm 1: IDEA clustering framework
Input: a set of datapoints X and a metric (e.g. Euclidean distance) defined on pairs

of datapoints δ : X×X →ℜ.
Parameters : α, the number of nearest neighbor,

β, the number of chunk,
k, the number of flat clusters.

Output: A hierarchical clustering tree T and a set of clusters C.

// Pre-processing
1 Construct a weighted α-nearest neighbor graph G from X and w;
2 Initialize a tree T ← a tree where all nodes in G are direct children of T.root;

// Main-step
3 Set a set of treeGraph S←{(T,G)};
4 Set a target treeGraph (T̂ , Ĝ)← S.selectOne();
5 while |S|< k do
6 Partition Ĝ into β chunks by recursive min-cut algorithm ; /* i.e.

Divisive stage */
7 Generate multiple hierarchical clustering trees of β chunks by applying multiple

graph abstractions and linkages ; /* i.e. Agglomerate stage */
8 Build a integrated tree of chunks by ensemble assembly of trees where each

chunk has member nodes as direct children ; /* i.e. Ensemble stage

*/
9 Replace T̂ ← the ensemble assembled tree and update the change of tree

structure on T ;
10 Divide T̂ into two subtrees T̂L and T̂R and Ĝ into two sub graphs ĜL and ĜR

whose nodes are leaves of T̂L and T̂R;
11 Try to change memberships of the leaf nodes of T̂L and T̂R to the opposite

subtree and accept the change if the cost is reduced;
12 Compute separation scores of T̂L.score and T̂R.score;
13 Update S← S∪{(T̂L, ĜL),(T̂R, ĜR)}\(T̂ , Ĝ);
14 Set a target treeGraph (T̂ , Ĝ)← argmax(T̂ ,Ĝ)∈S T̂ .score;
15 end

// Post-processing
16 Complete a full binary tree T by performing average linkage hierarchical clustering

on leaf nodes under the chunks;
17 set a set of k clusters C←{leavesOf(T̂ )}(T̂ ,Ĝ)∈S;
18 return T and C
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Pre-processing: initializing input graph by constructing a weighted

α-nearest neighbor graph

In the pre-processing step (LINE 1, 2), IDEA constructs a weighted α-nearest

neighbor graph, G = (V,E,w), from X and δ. It collects a set of α-nearest neighbor

edges E = {ei j} s.t. N = |E|, the number of edges, ≤ |X |×α. Then, w(ei j), a weight

of edge ei j, is defined as follows:

w(ei j) =λ× rank(ei j)/N (5.4)

+(1−λ)× e−(neighborness(i, j)+neighborness( j,i)),

where rank : E → {N,N − 1, · · · ,1} denotes a function to map the closest edge to

N and the farthest edge to 1 according to the metric δ and neighborness : {i, j} →

{0,1, · · · ,α− 1} denotes a function to map to 0 if node j is the first neighbor or to

α− 1 if the α-th neighbor with respect to node i. λ is the weight between rank and

neighborness (λ = 0.9 by default). Converting a dataset into a weighted α-nearest

neighbor graph has practical advantages in real-world clustering problems. It is be-

cause it reduces the number of edges from |X |2 to |X |×α, which also reduces time

complexity of the clustering algorithm so that it helps to speed up and complements

increment of time complexity induced by an ensemble approach.

Main-step: integrating divisive and ensemble agglomerate hierarchical

clustering

The main step (LINE 3∼14) employs an ensemble hierarchical clustering strat-

egy to build trees with good Dasgupta’s cost. To perform ensemble clustering on

datasets with lower complexity, it uses a divisive-agglomerate hybridization method.

It first performs division (dividing the graph G into β chunks), then agglomeration

(merging the chunks successively). In the agglomerative stage, multiple clustering

79



methods are used to generate independent clustering trees; then, the ensemble method

is used to integrate them and provide a single integrated tree. Then, it splits the tree

into two subtrees and tunes membership of boundary nodes. Among the subtrees,

it chooses one target subtree to be split next according to a separation score. It re-

peats this process recursively until the tree is separated into k subtrees. Below are

the details on the division method, the ensemble agglomerate clustering method, the

membership refinement method, and computation of a separation score.

Divisive stage: Clustering experiments to investigate how well graph partition

methods divide a graph into a set of β chunk graphs showed that clustering accuracy

improves as the size of chunks becomes even. In addition, although the data glob-

ally has an irregular shape, if it is separated into a suitable number of small chunks,

the chunks have convex-shapes. These observations motivated a recursive graph par-

titioning algorithm that divides into a similar number of partial graphs of convex-

shape using a fast min-cut based graph partitioning software hMETIS [71]. First, the

algorithm divides a graph into two subgraphs using hMETIS. Then, it selects the

largest subgraph and divides it into two subgraphs again. It repeats this process until

it obtains β subgraphs (i.e., chunks). For each chunk, it divides the chunk into two

half-chunks and tests if half chunks are closer to another chunk than to the oppo-

site half chunk. If so, it shatters the chunk into single nodes. In addition, it tears off

boundary single nodes from the chunks. Then, it reassigns the single nodes into the

remaining chunks. It repeats this process τ times (τ = 5 by default).

To determine the chunks to be shattered and the boundary single nodes to be

reassigned, a modified metric of silhouette score [112] was developed. Let a chunk A

be divided into two half-chunks, AL, and AR, and a node, i ∈ AL, is closest to another

chunk B among the set of chunks except A. Also, let a(i) be the sum of weights from

node i to the chunk AR and b(i) be the sum of weights from node i to the chunk B.
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Then, the score of i, s(i), is defined as below:

s(i) =
b(i)−a(i)

max{a(i),b(i)}
. (5.5)

Note that s(i) has the range −1≤ s(i)≤ 1, where s(i)> 0 means that a node i in the

chunk AL is closer to a chunk AR than chunk B. In addition, the score of node in chunk

AR can be computed the same way. If an average score of A, i.e.,
∑

i∈A s(i)
|A| , is less than

0, the chunk is considered to be closer to the other chunk; thus, it is shattered. If

a score of node s(i) is less than −0.5, then the node is considered boundary single

nodes then separated out from the chunk. Single nodes are reassigned to the chunks

for which the sum of weights is greatest.

Agglomerate stage: Once a graph is divided into β chunk graphs, IDEA gen-

erates multiple clustering trees of the chunks. To generate multiple trees, a combina-

torial method using different graph abstraction and linkage methods was developed.

Graph abstraction means a process to construct a new chunk, graph from the original

graph. In this process, the number of vertexes is reduced from the number of nodes

|V |, to the number of chunks, β. There are several possible edge abstraction methods

that define a new weight of edge for pairs of chunks. For instance, the two chunks, A

and B, contain |A| and |B| nodes, then there are several possible weights of edges be-

tween the chunks (i.e., {wi j}i∈A, j∈B), and then a “sum” abstraction method reduces the

weights of edges into a single representative weight value, i.e., wAB =
∑

i∈A, j∈B wi j.

To do this, it uses six abstraction methods: sum, min, max, edge count, edge aver-

age (sum of weights divided by the number of edges), and all pair average (sum of

weights divided by the number of all possible pairs).

With the abstracted graph, it applies four traditional agglomerate clustering meth-

ods: single, complete, weighted, and average linkage methods. When two chunks, AL
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and AB, are merged into new chunks A, the weight of an edge between A and B is

defined as follow:

single linkage: wAB = max{wALB,wARB} (5.6)

complete linkage: wAB = min{wALB,wARB} (5.7)

average linkage: wAB =
wALB|AL||B|+wARB|AR||B|

(|AL|+ |AR|)×|B|
(5.8)

weighted linkage: wAB =
wALB +wARB

2
(5.9)

Thus, it uses six graph abstraction methods and four linkage methods, and thus

24 different clustering methods total. Then, it assembles the 24 trees into a single tree

by the ensemble integration of multiple trees that is presented before in this article.

Membership refinement: After divisive and ensemble agglomerative cluster-

ing, a constructed tree, T , is divided into two subtrees, TL and TR. For each subtree

(for convenience, choose TL) and each leaf node, i ∈ TL, of the subtree, IDEA com-

putes the sum of weights from the node to the leaves of subtrees. If node i is closer to

the opposite subtree (i.e.,
∑

j∈TR
wi j >

∑
j∈TL

wi j), it keeps the boundary nodes. For

the boundary nodes, it tries changing memberships to the chunks of the opposite tree

and accepts the change if the cost decreases.

Target tree search: After membership refinement, it searches for a set of sub-

trees and select a target subtree with a maximum separation score, and it is clustered
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and divided into two subtrees. A separation score of subtree T is defined as follows:

separationScore(T ) =

∑
i∈AL , j∈AR

wi j

|AL||AR|∑
i, j∈AL

wi j
|AL |(|AL |−1)

2

×
∑

i, j∈AR
wi j

|AR |(|AR|−1)
2

, (5.10)

where AL and AR denote the leaves of two subtrees divided from T .

Post-processing: finalizing a full binary tree and k flat clusters

In the post-processing step (LINE 16, 17), it produces final tree and k flat clus-

ters as output. The final tree is a full binary tree constructed by performing average

linkage for leaves under chunks. The final k flat clusters, C, are defined as the dece-

dent nodes of k subtrees.

5.4 Experiments and Results

For the evaluation of performance, IDEA was compared with other clustering al-

gorithms for 20 datasets. These datasets are generated and collected from https://github.

com/deric/clustering-benchmark, and they are grouped into four types of subsets:

convex-overlapped, non-convex, non-convex-noise, and complex biological datasets.

The numbers of class and data points are summarized in Table 5.1.

The compared clustering algorithms consist of four baseline (single, complete,

weighted, and average linkage), one cost optimization-based (linkage++ [27]), and

two density-based hierarchical clustering (densityCut [36] and HDBSCAN [86]) meth-

ods. Among them, linkage++ is designed given a graph as input, and baseline meth-

ods can be performed on a graph or an adjacency distance matrix. HDBSCAN, on

the other hand, accepts only adjacency distance matrix, and densityCut accepts data

points as input. A weighted nearest neighbor graph is given as input to linkage++ and
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Table 5.1. The statistics of clustering analysis datasets.

No. The number of
cluster

The number of
data points Source

A01 15 600 [128]
A02 31 3100 [128]
A03 35 5250 [68]
A04 15 5000 [43]
A05 15 5000 [43]
A06 15 5000 [43]
B01 3 312 [22]
B02 6 7236 [69]
B03 9 9208 [70]
B04 8 7677 [70]
B05 10 7676 self-generated
B06 9 7675 self-generated
C01 3 3673 [57]
C02 6 8000 [69]
C03 9 10000 [70]
C04 8 8000 [70]
C05 10 8000 self-generated
C06 9 8000 self-generated
D01 11 300 [104]
D02 5 5804 [6]
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baseline methods. Baseline methods were also tested for adjacency distance matrix

by using the fastcluster package [95]. Dasgupta’s cost was measured to evalu-

ate the result of hierarchical clustering trees, and adjusted rand index (ARI) [130] was

measured to evaluate the result of k flat clusters for IDEA and other clustering meth-

ods. To facilitate comparison, the cost was normalized by dividing the cost of IDEA

method. That is, a normalized cost of “2” means twice the cost of IDEA clustering.

In addition, since densityCut software does not produce hierarchical clustering tree,

it was excluded in the cost comparison.

5.4.1 Experiment on Convex and Overlapped Datasets

Dataset A consists of six datasets (A01 to A06) of convex-shape, but they over-

lap between clusters. A recent clustering comparison review study [133] showed

that overlapping among clusters makes the cluster analysis challenging. Figure 5.5A

showed IDEA had the minimum cost (1.000), followed by average-graph (1.0002),

average-dist (1.204), complete-dist (1.830), and weighted-dist (1.989). In addition,

IDEA produced the result of maximum ARI (0.857) as shown in Figure 5.5B, fol-

lowed by densityCut-dist (0.855), average-graph (0.836), average-dist (0.769), and

complete-dist (0.697). Note that the values in parentheses are the means of normal-

ized cost, and the words “graph” and “dist” behind the names of algorithms represent

a weighted nearest neighbor graph and an adjacency distance matrix that are given as

input to the algorithms. Figure 5.5C is a visualization of results of seven representa-

tive clustering methods for dataset A.
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Figure 5.5. Cluster performance comparison on convex and overlapped dataset. Dasgupta’s
costs (A), ARI (B), and clustering result plots for six datasets and clustering algorithms.
The words “graph” and “dist” behind the names of algorithms represent a weighted nearest
neighbor graph and an adjacency distance matrix, which are given as input to the algorithms.
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5.4.2 Experiment on Non-Convex-Shape Datasets

The second type of dataset consisted of six datasets (B01 to B06). The challenge

is that clusters are of non-convex-shapes, as shown in a recent clustering comparison

review [133]. In an experiment with these datasets, average-graph (0.976) and IDEA

(1.000) were the first and second best in minimizing cost, as shown in Figure 5.6A,

followed by average-dist (1.587), single-graph (2.040), and single-dist (2.152). In

addition, IDEA showed the maximum ARI (1.000), as shown in Figure 5.6B, fol-

lowed by average-graph (0.9999), densityCut-dist (0.973), HDBSCAN-dist (0.960),

and single-graph (0.956). Figure 5.6C is a visualization of results of seven represen-

tative clustering methods for dataset B.

5.4.3 Experiment on Non-Convex-Shape and Noisy Datasets

Another experiment was performed with six datasets (C01 to C06) of non-

convex-shape with noise data points. Because of the noise data points, this dataset

is more difficult than those used in the previous experiments. In an experiment with

these datasets, IDEA outperformed all competing clustering methods in minimizing

cost function (1.000), as shown in Figure 5.7A, followed by average-graph (1.021),

average-dist (1.521), single-graph (2.855), and complete-dist (2.919). IDEA pro-

duced the result of maximum ARI (0.980), as shown in Figure 5.7B, followed by

average-graph (0.920), densityCut-dist (0.812), HDBSCAN-dist (0.738), and average-

dist (0.537). Figure 5.7C is an visualization of results of seven representative cluster-

ing methods for dataset C.

87



Figure 5.6. Cluster performance comparison on non-convex dataset. Dasgupta’s costs (A),
ARI (B), and clustering result plots for six datasets and clustering algorithms. The words
“graph” and “dist” behind the names of algorithms represent a weighted nearest neighbor
graph and an adjacency distance matrix, which are given as input to the algorithms.
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Figure 5.7. Cluster performance comparison on non-convex and noise dataset. Dasgupta’s
costs (A) and ARI (B) for six datasets and clustering algorithms. Dasgupta’s costs (A), ARI
(B), and clustering result plots for six datasets and clustering algorithms. The words “graph”
and “dist” behind the names of algorithms represent a weighted nearest neighbor graph and
an adjacency distance matrix, which are given as input to the algorithms.
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Table 5.2. Evaluation of clustering methods for dataset D (complex biological dataset).

Rank
D01

Cost ARI

1 IDEA, graph 1.000 HDBSCAN, dist 0.934
2 average, graph 1.005 IDEA, graph 0.926
3 single, dist 1.118 average, graph 0.888
4 single, graph 1.126 densityCut, dist 0.885
5 weighted, graph 1.157 single, dist 0.879
6 complete, graph 1.286 average, dist 0.777
7 average, dist 1.505 weighted, dist 0.745
8 weighted, dist 1.988 single, graph 0.603
9 HDBSCAN, dist 2.343 weighted, graph 0.597
10 complete, dist 2.528 complete, graph 0.557
11 complete, dist 0.535

Rank
D02

Cost ARI

1 IDEA, graph 1.000 IDEA, graph 0.582
2 average, graph 1.017 average, graph 0.579
3 single, graph 1.937 complete, graph 0.041
4 weighted, graph 6.825 HDBSCAN, dist 0.001
5 complete, graph 7.439 single, graph 0.000
6 HDBSCAN, dist 9.217 weighted, graph 0.000
7 complete, dist 13.310 average, dist 0.000
8 weighted, dist 13.409 single, dist 0.000
9 average, dist 13.515 weighted, dist 0.000

10 single, dist 13.610 complete, dist -0.001
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5.4.4 Experiment on Complex Biological Datasets

IDEA was additionally evaluated using two complex biological datasets (D01

and D02). IDEA shows the best performance on cost for D01, cost and ARI for D02,

and the second best on ARI for D01, as shown in Table 5.2. These results show IDEA

performs well on real-world data as long as 2D datasets.

5.5 Summary

This chapter presented a computationally efficient hierarchical clustering algo-

rithm, called integrating divisive and ensemble-agglomerate (IDEA), for clustering

on arbitrarily distributed data. Hierarchical clustering can generate numerous cluster-

ing trees, but it is difficult to determine that a tree is better than other trees. Recently,

Dasgupta’ cost function was developed as a metric to evaluate clustering trees. IDEA

uses the cost function to integrate multiple trees generated by several hierarchical

clustering methods and produces an integrated tree with reduced cost. IDEA also in-

cludes a top-down and bottom-up strategy to reduce the complexity of clustering tree

enumeration. In experiments using arbitrary shape datasets on 2D dimension, IDEA

performed better in minimizing Dasgupta’s cost and improving accuracy (adjusted

rand index) over existing cost-minimization-based, and density-based hierarchical

clustering methods in experiments using arbitrary shape datasets. It also showed bet-

ter performance in complex genetic datasets where the distribution of data was not

yet known. This chapter presented a computationally efficient hierarchical clustering

algorithm, called integrating divisive and ensemble-agglomerate (IDEA), for clus-

tering on arbitrarily distributed data. Hierarchical clustering can generate numerous

clustering trees, but it is difficult to determine that a tree is better than other trees. Re-

cently, Dasgupta’ cost function was developed as a metric to evaluate clustering trees.
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IDEA uses the cost function to integrate multiple trees generated by several hierar-

chical clustering methods and produces an integrated tree with reduced cost. IDEA

also includes a top-down and bottom-up strategy to reduce the complexity of clus-

tering tree enumeration. In experiments using arbitrary shape datasets on 2D, IDEA

performed better in minimizing Dasgupta’s cost and improving accuracy (ARI) over

existing cost-minimization-based and density-based hierarchical clustering methods

in experiments using arbitrary shape datasets. It also showed better performance in

complex genetic datasets where the distribution of data was not yet known.
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Chapter 6

Conclusion

The goal of this dissertation was to solve the recent computational problems in

gene expression analysis. The fundamental problem of gene expression data analysis

is modeling a highly complex system with small-sample-size data. This dissertation

addressed the challenges based on clustering and integrated analysis. This disserta-

tion developed three practical methods or algorithms for analyzing gene expression

data to investigate the cellular response of plants under environmental stress:

• RiceTFnetwork: a computational framework to integrate a large-scale repos-

itory dataset based on network representation for the analysis of extremely

small-sample-size gene expression data

• HTRgene: a computational framework to integrate a multiple time-series gene

expression data where time-domain and phenotype-domain are heterogeneous

• IDEA: a hierarchical clustering algorithm that works on arbitrarily distributed

data.

This dissertation, in Chapter 3, proposed a comprehensive analysis framework,

RiceTFnetwork, that involves construction, integration, and clustering of gene net-

works, for the analysis of two sample gene expression datasets. By constructing a

template network using a large-scale public gene expression dataset and then inte-

grating with the network that was generated from experimental data, the computa-

tional framework successively analyzed the gene expression data and revealed the
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underlying drought-resistance mechanism of a GM rice species.

HTRgene was proposed in Chapter 4, which is a method to integrate multiple

heterogeneous time-series gene expression data to investigate stress response signal-

ing genes. HTRgene used a response-time-based approach to integrating multiple

heterogeneous data. HTRgene clusters genes based on co-expression patterns, de-

tects the response times of the gene clusters, and then determines a response order

of the clusters across multiple samples to produce response order preserving DEGs.

HTRgene successfully reproduced biological mechanisms of cold and heat stress in

Arabidopsis in the analysis of 28 and 24 time-series sample gene expression datasets

under cold and heat stress.

IDEA was developed in Chapter 5, which is a computationally efficient hier-

archical clustering algorithm that works on arbitrarily distributed data. IDEA con-

structed a weighted nearest neighbor graph and divided the graph into chunks. Then,

it performed an ensemble hierarchical clustering by integrating multiple trees gener-

ated by several hierarchical clustering methods and produced an integrated tree with

reduced cost. The IDEA clustering method showed better performance in minimiz-

ing Dasgupta’s cost and improving accuracy (ARI) over existing cost-minimization-

based, and density-based hierarchical clustering methods in experiments using arbi-

trarily distributed datasets and complex genetic datasets.

In conclusion, this study has studied an effective method to model a highly com-

plex system with small-sample-size data. Clustering genes into subgroups reduced

the number of features, then also the complexity of modeling. It thus increased the

reliability of modeling and the interpretability of gene expression data analysis. Net-

work representation was an effective method to integrate domain knowledge/data and

the experimental data. Constructing a template network using biological knowledge

and the public domain data followed by incorporating the template network with the
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experimental data produced a well-established network that revealed the underlying

characteristics of data. Integrating heterogeneous time-series data with a novel con-

cept, response time, was a solution of the heterogeneous structure of time domain

and the individual variance of samples. Nearest neighbor graph, phase shifting, and

ensemble tree integration were also effective for clustering on arbitrarily distributed

data.

With the method, this dissertation successfully analyzed time-series gene ex-

pression datasets, producing results that were helpful in characterizing underlying

drought resistance mechanism of a GM rice species, and identified stress response

signaling genes for cold and heat stress in Arabidopsis, which was partially consis-

tent with current biological knowledge.
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초록

본논문은유전자발현데이터를분석할때의문제들을정리하고그문제들을

해결하는 방법을 제시한다. 유전자 발현 데이터는 세포 내에 유전자가 활성화된

양을수치화한데이터이며세포의상태를모델화하기위하여이데이터를사용한

다. 하지만 세포는 이만 개 이상의 유전자, RNA, 단백질, 기타 화학 물질 등이 유

기적으로작용하여구성되는매우복잡한시스템이며,이러한세포를모델화하기

위해서는많은수의데이터가필요하다.그런데현재기술및자원적한계에의해

충분한 수의 데이터를 확보할 수 없으며, 적은 수의 데이터로 이 복잡한 세포를

모델화해야하는것이유전자발현데이터분석의핵심적인문제이다.

본논문은적은수의데이터로세포를효과적으로모델화하기위하여클러스

터링과네트워크기법을사용하여기존의생물지식과공개된데이터를통합적으

로 이용하는 방법론을 제시한다. 그 구체적인 방법은 다음과 같다. 클러스터링 분

석을통해개별유전자를적은수의클러스터로묶음으로써특성차원을축소하고

모델화의 복잡성을 줄임으로써, 적은 수의 발현량 데이터로 세포의 상태를 모델

화하고해석하는방법을제시한다.대량의외부데이터로부터유전자네트워크를

구성하고 실험 데이터로 구성한 네트워크와 통합함으로써 생물학적 도메인 데이

터와지식을네트워크를형태로분석과정에도입하여모델의정확성을향상하는

방법을 제시한다. 이질적 시간 구조를 가지는 다수의 시계열 데이터를 통합하는

분석에서,클러스터링방법으로유전자의반응순서가보존되는유전자들을찾는

방법을제시한다.아직그분포를알지못하는유전자의집합을클러스터링하기위

해,앙상블기법및비용최소화기법등최신클러스터링기술을사용하여계층적

클러스터링방법을향상한다.

정리하면,이논문은복잡한시스템이면서데이터개수가적어모델화가어렵

고, 시계열 구조가 비균질한 유전자 발현 데이터 분석의 문제를 클러스터링과 네
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트워크를기반으로통합분석하여해결하는방법을제시한다.또한이러한개발한

방법들을 실제 스트레스 실험 데이터에 적용하여, 가뭄 저항성 벼의 메커니즘을

설명하고, 저온 스트레스에 대해 반응하는 유전자를 검출한다. 제시된 방법론은

컴퓨터 공학의 데이터 분석 분야에서 비슷한 문제를 가진 문제들을 해결하는데

활용될수있을것으로기대된다.

주요어 : 클러스터링,네트워크,통합분석,시계열,유전자발현데이터,스트레스

반응유전자
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