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ABSTRACT 

 

Conventional von Neumann computing architecture is at a disadvantage in 

terms of speed and power consumption in high-level cognitive applications. 

Therefore, a new architecture to overcome this problem, the neuromorphic system, 

is attracting attention as the next generation computing system. 

In this dissertation, two types of NOR-type nonvolatile memory arrays are 

proposed for use as synaptic device array in the neuromorphic system. The SONOS 

gated-diode memory is proposed as the first candidate for the synaptic device. The 

learning process of MNIST digit patterns is presented by simulation. First, spike-

timing-dependent plasticity (STDP) learning in single-neuron string (784 ³ 1) is 

demonstrated. Then, STDP learning in multi-neuron array (784 ³ 3) with lateral 

inhibition function is demonstrated. Meanwhile, the key factors of STDP 

unsupervised learning such as input noise density (ɟnoise), synaptic weight margin 

(Wmargin), and lateral inhibition factor [%] are investigated for the proper learning. 

Next, the TFT-type NOR flash memory synaptic device with a half-covered 
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floating gate (FG) that overcomes the disadvantages of the SONOS gated-diode 

memory is proposed. The long-term potentiation (LTP) and long-term depression 

(LTD) required for STDP behavior are implemented using the proposed pulse 

scheme. Unsupervised online learning is successfully demonstrated with STDP 

learning rule through software simulation reflecting the LTP / LTD characteristics 

of the fabricated synaptic device. The learning and recognition process of 28 ³ 28 

MNIST handwritten digit patterns are presented. 

As a result, an approach is suggested to use hardware-based spiking neural 

network implemented by synaptic device array using conventional CMOS 

technology for visual pattern recognition system. 

 

Keywords: neuromorphic system, synaptic device, unsupervised learning, 

spike-timing-dependent plasticity (STDP), gated-diode memory, NOR flash 

memory. 

 

Student number: 2013-20779 
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Chapter 1 

Introduction 

 

1.1  Neuromorphic computing 

Neuromorphic computing, proposed to overcome the limitations of von 

Neumann architecture, has received much attention in recent years. In a different 

way, machine learning has attracted great interest in the IT industry and has been 

developing rapidly with the performance improvement of graphics processing unit 

(GPU)-based hardware accelerators. There are various algorithms for machine 

learning, but the deep neural network (DNN) technology based on the back-

propagation (BP) algorithm exerts excellent performance in many fields such as 

image, speech recognition, translation, and human cognitive ability [1-6]. The most 

advanced architectures of DNN include convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs). However, there are important issues concerning 

power consumption, area occupied by the hardware platform, and training time. 

Therefore, there is a need to realize a small-area neuromorphic artificial neural 
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network (ANN) with low power [7, 8]. Table 1.1 summarizes the different types of 

neuromorphic ANNs and their respective features [9]. The human brain described 

on the left side of the table is very powerful to recognize the real world problem 

with very low power but the learning mechanism and structure of the human brain 

are not clearly defined yet. The deep learning shown on the right is based on a 

software-based learning algorithms and Von Neumann computer architectures. It is 

very efficient for recognition task, but the power consumption is extremely high. In 

ANNs using neuromorphic technology, learning algorithms can be categorized into 

two categories: bio-inspired learning algorithm and software-based learning 

algorithm [10-12]. Learning algorithms based on biology such as spike-timing 

dependent-plasticity (STDP) and spike-rate-dependent plasticity (SRDP) have 

implemented a model of biological neuron cell behavior [13]. For bio-inspired 

learning algorithms, there are two subcategories: supervised learning and 

unsupervised learning. Research on ANNs using bio-inspired learning algorithms 

is biased towards the use of unsupervised learning. However, supervised learning 

is efficient in a certain field. These bio-inspired learning algorithms have the 
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advantages of local learning and inferencing within large arrays, making them 

suitable for low power neuromorphic computing. In memory technology for ANN 

implementation using these algorithms, it is very important to have their own 

synaptic weight update scheme to learn without the help of external computing 

systems. In addition, weight updating methods and endurance are also important 

for reducing time and power consumption in the learning process. Also, in order to 

prevent errors in the inferencing process of learned synaptic arrays, retention 

characteristics should also be considered. In contrast, the BP of the neural network 

is a typical software-based learning algorithm [14]. The weight update is 

represented by the conductance change of a synaptic device by a BP algorithm 

based on the error between the target value and the output value. These algorithms 

allow hardware-based neural networks (HNNs) to provide high speed and low 

power operation over von Neumann-based platforms, especially GPU-based 

platforms. 



4 

 

 

H
u
m

a
n
 

b
ra

in
N

e
u
ro

m
o
rp

h
ic

D
e

e
p
 le

a
rn

in
g

T
a
rg

e
t

B
io

lo
g

y

S
p
ik

in
g

 n
e

u
ra

l

n
e

tw
o
rk

s
 (S

N
N

s
)

D
e

e
p
 n

e
u
ra

l n
e

tw
o
rk

s
 (D

N
N

s
)

C
o
n
vo

lu
tio

n
a
l 

n
e

u
ra

l n
e

tw
o
rk

s
 (C

N
N

s
)

R
e

c
u
rre

n
t n

e
u
ra

l n
e

tw
o
rk

s
 (R

N
N

s
)

H
W

-b
a
s

e
d

S
W

-b
a
s

e
d

C
o
m

p
o
n
e

n
ts

N
e

u
ro

n
 a

rra
y

N
e

u
ro

n
 a

rra
y

(In
te

g
ra

te
 

&
 fire

)

N
e

u
ro

n
 a

rra
y

(A
c
tiva

tio
n
 

fu
n
c
tio

n
, 

In
te

g
ra

te
 
&

 fire
)

vo
n
 N

e
u
m

a
n
n

a
rc

h
ite

c
tu

re

(G
P

U
, 

T
P

U
, 

e
tc

.)
S

y
n
a
p
s

e
 a

rra
y

S
y
n
a
p
tic

 
d
e

vic
e

 
a
rra

y
S

y
n
a
p
tic

 
d
e

vic
e

 
a
rra

y

L
e

a
rn

in
g

a
lg

o
rith

m

S
T

D
P

, S
R

D
P

,

e
tc

.

S
T

D
P

, S
R

D
P

(B
io

-in
s

p
ire

d
)

B
a
c
k
-p

ro
p
a
g

a
tio

n

(S
o
ftw

a
re

-b
a
s

e
d
)

P
o
w

e
r

c
o
n
s

u
m

p
tio

n
E
x
tre

m
e

ly
 

lo
w

L
o
w

In
te

rm
e

d
ia

te
H

ig
h

M
a
tu

rity
E
x
tre

m
e

ly
 

h
ig

h
L
o
w

In
te

rm
e

d
ia

te
H

ig
h

T
a
b
l
e

 1
.
1
.
 

D
i
f
f
e
r
e
n
t
 
t
y
p
e
s
 
o
f
 
n
e
u
r
a
l
 
n
e
t
w
o
r
k
s
 
a
n
d
 
t
h
e
i
r
 
r
e
s
p
e
c
t
i
v
e
 
f
e
a
t
u
r
e
s

 [
9
]
. 



5 

 

1.2  Spike-timing-dependent plasticity (STDP) 

This chapter introduces the STDP learning algorithm and the features of the 

ANN implemented using this algorithm. There are two representative bio-inspired 

learning algorithms, STDP and SRDP. These algorithms are learning methods 

developed from the learning mechanisms observed in the biological brain. STDP is 

a learning mechanism that changes the synapse weight by the time difference 

between the signal from the presynaptic neuron and the signal from the postsynaptic 

neuron. Figure 1.1 shows the change of synaptic weight between presynaptic and 

postsynaptic neurons in response to their differences in firing time [15]. Another 

learning algorithm SRDP determines the synaptic weight change by the frequency 

of the signal from the presynaptic neuron applied to the synapse. Figure 1.2 shows 

the weight change in response to the frequency of postsynaptic neuron [16]. Here, 

we classify ANN using STDP learning algorithm as supervised / unsupervised 

learning. Next, we describe the requirements of synaptic devices that are used to 

implement ANN by applying live emotion learning algorithm. 
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Figure 1.1. Critical window for the induction of synaptic potentiation and 

depression (learning curve for STDP) [15]. 

Figure 1.2. Function controlling synaptic plasticity at the Cooper synapse (learning 

curve for SRDP) [16]. 
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1.2.1  Supervised learning 

In the case of bio-inspired learning, unsupervised learning is being studied 

more widely. However, recent research has shown and demonstrated several 

advantages of supervised learning. Kim et al explained that supervised learning is 

significantly more efficient than unsupervised learning with the same number of 

output neurons and synapses [17]. Adjustment of synapse weight is controlled by 

feedback spikes from integration & fire (I&F) circuit in unsupervised learning, but 

feedback from external system was used in the supervised manner. Querlioz et al 

proposed another application of supervised learning to improve network 

performance [18]. In conventional networks trained by unsupervised learning, 

results presented by neurons cannot be distinguished. An additional labeling 

process is needed to identify the results and supervised learning can play this role 

on the next layer. Figure 1.3 shows the architecture combining unsupervised and 

supervised crossbar and figure 1.4 shows the recognition rate of unsupervised / 

supervised layer. However, since unsupervised learning requires peripheral circuits, 

it may put a burden on area and power. 
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Figure 1.3. Architecture combining unsupervised and supervised crossbar [18]. 

 

Figure 1.4. Result of recognition rate with two layer [18]. 
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1.2.2  Unsupervised learning 

STDP-based unsupervised learning can be applied efficiently to distinguish 

unlabeled data or unstructured data, which is advantageous for real-time data 

processing [19]. Diehl et al proposed a biologically plausible unsupervised learning 

mechanism that included lateral inhibition and adaptive threshold [20]. Using this 

SNN based on the STDP algorithm, the 95% classification performance of MNIST 

dataset was demonstrated in two-layer system with 6400 postsynaptic neurons. 

Although remarkable classification results of unsupervised learning based on STDP 

have been carried out, demonstration require additional circuits to fine-tune model 

parameters that are not suitable for processing various types of data. Querlioz et al 

introduced simplified STDP rule for pattern learning in an unsupervised manner [21, 

22]. In these works, simplified STDP scheme by overlapping pre- and post-synaptic 

signal using simple pulse generation was used. To check SNN robustness, the same 

group examined the effects of device variability, including memristive synaptic 

device and CMOS neuron variability, along with system-level simulations on SNN 

[21]. Improved immunity to device variation is the result of neurons' homeostasis. 
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Figure 1.5 shows the impact of the neuronsô threshold Xth variability, with and 

without homeostasis on the recognition rate. This biologically plausible property, 

along with the WTA topology of lateral inhibition, plays an important role in 

regulating the response of neurons equally to prevent lower threshold neurons from 

being fired mainly in the network. Several different input encoding methods, 

learning methods and system structures were presented to enhance SNN's 

performance. Ambrogio et al proposed an input pulse scheme that uses input noise 

to suppress background synaptic devices [23]. Figure 1.6 shows the schematic 

illustration of the neuromorphic network with a 1T1R synapse. This configuration 

led to increased pattern synaptic device and the depression of background synaptic 

device for selective learning in an unsupervised manner. However, this 

configuration requires additional circuits for generating random noise, and it is 

difficult to optimize the input parameters of noise to handle different types of data. 
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Figure 1.5. Impact of the neuronsô threshold Xth variability, with and without 

homeostasis on the recognition rate [21]. 

Figure 1.6. Schematic illustration of the neuromorphic network with 1T1R synapse 

[23]. 
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1.2.3  Requirements of synaptic device 

Devices used for bio-inspired learning include resistive memory (RRAM), 

conductive-bridge memory (CBRAM), phase change memory (PCM), spin-based 

memory, and FET-based memory. By default, device array density is required to 

perform complex, large-scale tasks. In general, most research groups use crossbar 

arrays by default to build large-scale parallel computing neural networks. Although 

the two-terminal devices draw a lot of attention with the ease of implementation of 

the crossbar array. In fact, the two-terminal device requires a choice to eliminate 

the sneak path that occurs in the crossbar array configuration. Furthermore, the goal 

is not to implement an array dedicated to synaptic devices, but to implement large-

scale neural network systems, so the CMOS compatibility of synaptic device is 

important. Therefore, synaptic device must be compatible with CMOS technology 

for system implementation. 

The energy efficiency of the weight learning and inference process of a synaptic 

device array should also be carefully considered and evaluated differently 

depending on the application. For synaptic device array used in applications that 
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perform continuous learning in real time, it is important to reduce the power used 

to update weight. In the case of synapses, which are used primarily in the inference 

process, power should be reduced in weighted sum operation. 

The purpose of the neuromorphic synaptic array is to effectively combine the 

multiplication results of the input signal with the weights of the memory devices 

having the analog weight. A number of studies have been conducted to implement 

the analog memory characteristics [24]. In [24], Yu summarized the desired 

performance metrics for synaptic devices as shown in Table 1.2. If the unique 

characteristics of the device make it difficult to achieve gradual conductance 

changes, the gradual change can be implemented by controlling the pulse shape and 

adding additional devices (resistors or FETs) [25]. The difference in conductance 

between a high conductance state and a low conductance state can have a significant 

impact on the performance of the neural network. However, this is closely related 

to the size of the neural network according to the application used. It should be 

noted that the upper limit of the conductance value may increase the overall system 

power consumption dramatically. In implementing gradual conductivity, many 
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research groups have mainly analyzed the linearity and symmetry of conductance 

change. In [26], Kim et al reported that the nonlinearity in the conductance change 

of the synaptic device is not critical to the pattern recognition rate of the system, as 

shown in figure 1.7. Using STDP and SRDP algorithms, widely used in bio-inspired 

learning, it is more important to avoid abrupt depression. For supervised learning 

involving external interventions, the side effects of abrupt depression can be slightly 

mitigated, but for unsupervised learning without external control, if the 

conductance of the synaptic devices drops dramatically, the learned synaptic 

weights may disappear in a moment. Efforts are needed to improve device structure 

and conductive change mechanisms to prevent abrupt depression. Neural networks 

are generally known to have some tolerance for device variation [21, 27]. However, 

the variation between synaptic devices should be as small as possible because it 

negatively affect the power consumption and speed of the learning process. 

Recently, research have been carried out on the HNN implementation using proven 

flash memory technology due to the immaturity of new memory technology. [17, 

28, 29]. 
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Figure 1.7. (a) The synaptic device conductance (G) as a function of applied pulse 

number with randomly assigned NL values. (b) The simulated recognition rate as a 

function of maximum NL value after 60000 times of training epochs. (c) The 

synaptic weights between the input to output neurons with 40 output neurons, when 

NL ranges are 0 ~ 0.24 and 0 ~ 0.77 [26]. 
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1.3  Conventional technologies 

Recently, studies on the neuromorphic system have been conducted in an effort 

to overcome the limitations of the von Neumann computing system [7]. Given that 

the existing von Neumann architecture is very limited in terms of speed and power 

consumption for high-level recognition applications, neuromorphic technology 

research and development have been active area for solving these problems [8]. In 

the software field, studies of the deep DNN using BP algorithm [11] were 

emphasized as an excellent cognitive capability, and efforts were made to apply the 

results to HNN. Another aspect of implementing such HNN is the use of STDP 

algorithm, one of several learning algorithms that mimics the behavior of the 

biological brain [6]. So far there have been many reports on pattern recognition 

systems that work through supervised learning based on DNN [11] [30]. However, 

there are many applications in which brain-inspired, unsupervised learning can also 

be used in actual machine learning [13]. 

To implement HNN using the STDP algorithm, it is important to replicate long-

term potentiation (LTP) / long-term depression (LTD) functions as electrical 
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elements in accordance with the spike firing sequence. Many studies have 

attempted to reproduce electronic synaptic devices and synaptic plasticity through 

the CMOS VLSI circuits [31] [32]. In recent years, studies have been actively 

conducted on the composition of synapse array using the memristor crossbar array. 

[23], [33]-[36]. Figure 1.8 shows a neural network composed of memristor crossbar 

array. However, memristors still have disadvantages in device characteristics 

fluctuations and reliability when configured with large-scale crossbar arrays [37], 

[38]. Fluctuation in device characteristics in memristors causes a decrease in 

recognition rate in the pattern recognition process in a real artificial neural network 

[22]. Research on electrical synapses based on CMOS Field Effect Transistor (FET) 

were recently carried out. As a result of these efforts, a number of devices have been 

introduced, including NOMFET [39] and MemFlash [40] [41]. Figure 1.9 shows 

the schematic drawing of a two-terminal MemFlash circuitry. However, in one of 

these studies [39], metal nanoparticles are used in memory functions, causing 

compatibility problems with the CMOS process. In other study [40], it remains 

unclear how it is used to create a large synaptic array and how it works. 
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Figure 1.8. Neural network composed of CMOS neurons and HfOx-based electronic 

synapses [36]. 

 

Figure 1.9. Schematic drawing of a two-terminal circuitry (MemFlash) [41]. 


