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ABSTRACT 

 

Conventional von Neumann computing architecture is at a disadvantage in 

terms of speed and power consumption in high-level cognitive applications. 

Therefore, a new architecture to overcome this problem, the neuromorphic system, 

is attracting attention as the next generation computing system. 

In this dissertation, two types of NOR-type nonvolatile memory arrays are 

proposed for use as synaptic device array in the neuromorphic system. The SONOS 

gated-diode memory is proposed as the first candidate for the synaptic device. The 

learning process of MNIST digit patterns is presented by simulation. First, spike-

timing-dependent plasticity (STDP) learning in single-neuron string (784  1) is 

demonstrated. Then, STDP learning in multi-neuron array (784  3) with lateral 

inhibition function is demonstrated. Meanwhile, the key factors of STDP 

unsupervised learning such as input noise density (ρnoise), synaptic weight margin 

(Wmargin), and lateral inhibition factor [%] are investigated for the proper learning. 

Next, the TFT-type NOR flash memory synaptic device with a half-covered 
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floating gate (FG) that overcomes the disadvantages of the SONOS gated-diode 

memory is proposed. The long-term potentiation (LTP) and long-term depression 

(LTD) required for STDP behavior are implemented using the proposed pulse 

scheme. Unsupervised online learning is successfully demonstrated with STDP 

learning rule through software simulation reflecting the LTP / LTD characteristics 

of the fabricated synaptic device. The learning and recognition process of 28  28 

MNIST handwritten digit patterns are presented. 

As a result, an approach is suggested to use hardware-based spiking neural 

network implemented by synaptic device array using conventional CMOS 

technology for visual pattern recognition system. 

 

Keywords: neuromorphic system, synaptic device, unsupervised learning, 

spike-timing-dependent plasticity (STDP), gated-diode memory, NOR flash 

memory. 

 

Student number: 2013-20779 
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Chapter 1 

Introduction 

 

1.1  Neuromorphic computing 

Neuromorphic computing, proposed to overcome the limitations of von 

Neumann architecture, has received much attention in recent years. In a different 

way, machine learning has attracted great interest in the IT industry and has been 

developing rapidly with the performance improvement of graphics processing unit 

(GPU)-based hardware accelerators. There are various algorithms for machine 

learning, but the deep neural network (DNN) technology based on the back-

propagation (BP) algorithm exerts excellent performance in many fields such as 

image, speech recognition, translation, and human cognitive ability [1-6]. The most 

advanced architectures of DNN include convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs). However, there are important issues concerning 

power consumption, area occupied by the hardware platform, and training time. 

Therefore, there is a need to realize a small-area neuromorphic artificial neural 
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network (ANN) with low power [7, 8]. Table 1.1 summarizes the different types of 

neuromorphic ANNs and their respective features [9]. The human brain described 

on the left side of the table is very powerful to recognize the real world problem 

with very low power but the learning mechanism and structure of the human brain 

are not clearly defined yet. The deep learning shown on the right is based on a 

software-based learning algorithms and Von Neumann computer architectures. It is 

very efficient for recognition task, but the power consumption is extremely high. In 

ANNs using neuromorphic technology, learning algorithms can be categorized into 

two categories: bio-inspired learning algorithm and software-based learning 

algorithm [10-12]. Learning algorithms based on biology such as spike-timing 

dependent-plasticity (STDP) and spike-rate-dependent plasticity (SRDP) have 

implemented a model of biological neuron cell behavior [13]. For bio-inspired 

learning algorithms, there are two subcategories: supervised learning and 

unsupervised learning. Research on ANNs using bio-inspired learning algorithms 

is biased towards the use of unsupervised learning. However, supervised learning 

is efficient in a certain field. These bio-inspired learning algorithms have the 
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advantages of local learning and inferencing within large arrays, making them 

suitable for low power neuromorphic computing. In memory technology for ANN 

implementation using these algorithms, it is very important to have their own 

synaptic weight update scheme to learn without the help of external computing 

systems. In addition, weight updating methods and endurance are also important 

for reducing time and power consumption in the learning process. Also, in order to 

prevent errors in the inferencing process of learned synaptic arrays, retention 

characteristics should also be considered. In contrast, the BP of the neural network 

is a typical software-based learning algorithm [14]. The weight update is 

represented by the conductance change of a synaptic device by a BP algorithm 

based on the error between the target value and the output value. These algorithms 

allow hardware-based neural networks (HNNs) to provide high speed and low 

power operation over von Neumann-based platforms, especially GPU-based 

platforms. 
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1.2  Spike-timing-dependent plasticity (STDP) 

This chapter introduces the STDP learning algorithm and the features of the 

ANN implemented using this algorithm. There are two representative bio-inspired 

learning algorithms, STDP and SRDP. These algorithms are learning methods 

developed from the learning mechanisms observed in the biological brain. STDP is 

a learning mechanism that changes the synapse weight by the time difference 

between the signal from the presynaptic neuron and the signal from the postsynaptic 

neuron. Figure 1.1 shows the change of synaptic weight between presynaptic and 

postsynaptic neurons in response to their differences in firing time [15]. Another 

learning algorithm SRDP determines the synaptic weight change by the frequency 

of the signal from the presynaptic neuron applied to the synapse. Figure 1.2 shows 

the weight change in response to the frequency of postsynaptic neuron [16]. Here, 

we classify ANN using STDP learning algorithm as supervised / unsupervised 

learning. Next, we describe the requirements of synaptic devices that are used to 

implement ANN by applying live emotion learning algorithm. 
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Figure 1.1. Critical window for the induction of synaptic potentiation and 

depression (learning curve for STDP) [15]. 

Figure 1.2. Function controlling synaptic plasticity at the Cooper synapse (learning 

curve for SRDP) [16]. 
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1.2.1  Supervised learning 

In the case of bio-inspired learning, unsupervised learning is being studied 

more widely. However, recent research has shown and demonstrated several 

advantages of supervised learning. Kim et al explained that supervised learning is 

significantly more efficient than unsupervised learning with the same number of 

output neurons and synapses [17]. Adjustment of synapse weight is controlled by 

feedback spikes from integration & fire (I&F) circuit in unsupervised learning, but 

feedback from external system was used in the supervised manner. Querlioz et al 

proposed another application of supervised learning to improve network 

performance [18]. In conventional networks trained by unsupervised learning, 

results presented by neurons cannot be distinguished. An additional labeling 

process is needed to identify the results and supervised learning can play this role 

on the next layer. Figure 1.3 shows the architecture combining unsupervised and 

supervised crossbar and figure 1.4 shows the recognition rate of unsupervised / 

supervised layer. However, since unsupervised learning requires peripheral circuits, 

it may put a burden on area and power. 
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Figure 1.3. Architecture combining unsupervised and supervised crossbar [18]. 

 

Figure 1.4. Result of recognition rate with two layer [18]. 
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1.2.2  Unsupervised learning 

STDP-based unsupervised learning can be applied efficiently to distinguish 

unlabeled data or unstructured data, which is advantageous for real-time data 

processing [19]. Diehl et al proposed a biologically plausible unsupervised learning 

mechanism that included lateral inhibition and adaptive threshold [20]. Using this 

SNN based on the STDP algorithm, the 95% classification performance of MNIST 

dataset was demonstrated in two-layer system with 6400 postsynaptic neurons. 

Although remarkable classification results of unsupervised learning based on STDP 

have been carried out, demonstration require additional circuits to fine-tune model 

parameters that are not suitable for processing various types of data. Querlioz et al 

introduced simplified STDP rule for pattern learning in an unsupervised manner [21, 

22]. In these works, simplified STDP scheme by overlapping pre- and post-synaptic 

signal using simple pulse generation was used. To check SNN robustness, the same 

group examined the effects of device variability, including memristive synaptic 

device and CMOS neuron variability, along with system-level simulations on SNN 

[21]. Improved immunity to device variation is the result of neurons' homeostasis. 
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Figure 1.5 shows the impact of the neurons’ threshold Xth variability, with and 

without homeostasis on the recognition rate. This biologically plausible property, 

along with the WTA topology of lateral inhibition, plays an important role in 

regulating the response of neurons equally to prevent lower threshold neurons from 

being fired mainly in the network. Several different input encoding methods, 

learning methods and system structures were presented to enhance SNN's 

performance. Ambrogio et al proposed an input pulse scheme that uses input noise 

to suppress background synaptic devices [23]. Figure 1.6 shows the schematic 

illustration of the neuromorphic network with a 1T1R synapse. This configuration 

led to increased pattern synaptic device and the depression of background synaptic 

device for selective learning in an unsupervised manner. However, this 

configuration requires additional circuits for generating random noise, and it is 

difficult to optimize the input parameters of noise to handle different types of data. 

 

 

 



11 

 

Figure 1.5. Impact of the neurons’ threshold Xth variability, with and without 

homeostasis on the recognition rate [21]. 

Figure 1.6. Schematic illustration of the neuromorphic network with 1T1R synapse 

[23]. 
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1.2.3  Requirements of synaptic device 

Devices used for bio-inspired learning include resistive memory (RRAM), 

conductive-bridge memory (CBRAM), phase change memory (PCM), spin-based 

memory, and FET-based memory. By default, device array density is required to 

perform complex, large-scale tasks. In general, most research groups use crossbar 

arrays by default to build large-scale parallel computing neural networks. Although 

the two-terminal devices draw a lot of attention with the ease of implementation of 

the crossbar array. In fact, the two-terminal device requires a choice to eliminate 

the sneak path that occurs in the crossbar array configuration. Furthermore, the goal 

is not to implement an array dedicated to synaptic devices, but to implement large-

scale neural network systems, so the CMOS compatibility of synaptic device is 

important. Therefore, synaptic device must be compatible with CMOS technology 

for system implementation. 

The energy efficiency of the weight learning and inference process of a synaptic 

device array should also be carefully considered and evaluated differently 

depending on the application. For synaptic device array used in applications that 
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perform continuous learning in real time, it is important to reduce the power used 

to update weight. In the case of synapses, which are used primarily in the inference 

process, power should be reduced in weighted sum operation. 

The purpose of the neuromorphic synaptic array is to effectively combine the 

multiplication results of the input signal with the weights of the memory devices 

having the analog weight. A number of studies have been conducted to implement 

the analog memory characteristics [24]. In [24], Yu summarized the desired 

performance metrics for synaptic devices as shown in Table 1.2. If the unique 

characteristics of the device make it difficult to achieve gradual conductance 

changes, the gradual change can be implemented by controlling the pulse shape and 

adding additional devices (resistors or FETs) [25]. The difference in conductance 

between a high conductance state and a low conductance state can have a significant 

impact on the performance of the neural network. However, this is closely related 

to the size of the neural network according to the application used. It should be 

noted that the upper limit of the conductance value may increase the overall system 

power consumption dramatically. In implementing gradual conductivity, many 
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research groups have mainly analyzed the linearity and symmetry of conductance 

change. In [26], Kim et al reported that the nonlinearity in the conductance change 

of the synaptic device is not critical to the pattern recognition rate of the system, as 

shown in figure 1.7. Using STDP and SRDP algorithms, widely used in bio-inspired 

learning, it is more important to avoid abrupt depression. For supervised learning 

involving external interventions, the side effects of abrupt depression can be slightly 

mitigated, but for unsupervised learning without external control, if the 

conductance of the synaptic devices drops dramatically, the learned synaptic 

weights may disappear in a moment. Efforts are needed to improve device structure 

and conductive change mechanisms to prevent abrupt depression. Neural networks 

are generally known to have some tolerance for device variation [21, 27]. However, 

the variation between synaptic devices should be as small as possible because it 

negatively affect the power consumption and speed of the learning process. 

Recently, research have been carried out on the HNN implementation using proven 

flash memory technology due to the immaturity of new memory technology. [17, 

28, 29]. 
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Figure 1.7. (a) The synaptic device conductance (G) as a function of applied pulse 

number with randomly assigned NL values. (b) The simulated recognition rate as a 

function of maximum NL value after 60000 times of training epochs. (c) The 

synaptic weights between the input to output neurons with 40 output neurons, when 

NL ranges are 0 ~ 0.24 and 0 ~ 0.77 [26]. 
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1.3  Conventional technologies 

Recently, studies on the neuromorphic system have been conducted in an effort 

to overcome the limitations of the von Neumann computing system [7]. Given that 

the existing von Neumann architecture is very limited in terms of speed and power 

consumption for high-level recognition applications, neuromorphic technology 

research and development have been active area for solving these problems [8]. In 

the software field, studies of the deep DNN using BP algorithm [11] were 

emphasized as an excellent cognitive capability, and efforts were made to apply the 

results to HNN. Another aspect of implementing such HNN is the use of STDP 

algorithm, one of several learning algorithms that mimics the behavior of the 

biological brain [6]. So far there have been many reports on pattern recognition 

systems that work through supervised learning based on DNN [11] [30]. However, 

there are many applications in which brain-inspired, unsupervised learning can also 

be used in actual machine learning [13]. 

To implement HNN using the STDP algorithm, it is important to replicate long-

term potentiation (LTP) / long-term depression (LTD) functions as electrical 
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elements in accordance with the spike firing sequence. Many studies have 

attempted to reproduce electronic synaptic devices and synaptic plasticity through 

the CMOS VLSI circuits [31] [32]. In recent years, studies have been actively 

conducted on the composition of synapse array using the memristor crossbar array. 

[23], [33]-[36]. Figure 1.8 shows a neural network composed of memristor crossbar 

array. However, memristors still have disadvantages in device characteristics 

fluctuations and reliability when configured with large-scale crossbar arrays [37], 

[38]. Fluctuation in device characteristics in memristors causes a decrease in 

recognition rate in the pattern recognition process in a real artificial neural network 

[22]. Research on electrical synapses based on CMOS Field Effect Transistor (FET) 

were recently carried out. As a result of these efforts, a number of devices have been 

introduced, including NOMFET [39] and MemFlash [40] [41]. Figure 1.9 shows 

the schematic drawing of a two-terminal MemFlash circuitry. However, in one of 

these studies [39], metal nanoparticles are used in memory functions, causing 

compatibility problems with the CMOS process. In other study [40], it remains 

unclear how it is used to create a large synaptic array and how it works. 
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Figure 1.8. Neural network composed of CMOS neurons and HfOx-based electronic 

synapses [36]. 

 

Figure 1.9. Schematic drawing of a two-terminal circuitry (MemFlash) [41]. 
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1.4  Purpose of research 

As described above, the need for synaptic device to implement a neural network 

based on bio-inspired algorithm is emerging. In this work, we propose NOR-type 

nonvolatile memory arrays to demonstrate unsupervised learning with STDP. First, 

we investigated SONOS gated-diode that bit-line current of a cell string can be 

trimmed accurately by controlling the stored charge in each cell. Moreover, we 

suggest an approach to use the gated-diode memory as a synapse-like neuromorphic 

hardware. Afterwards, we analyze and review issues that arise when we try to 

implement a neural network using the gated-diode memory array. To overcome 

these problems, a new TFT-type NOR flash memory array is proposed. We fabricate 

a TFT-type NOR flash memory array using the conventional CMOS fabrication 

process and suggest an approach to use TFT-type NOR flash memory as synaptic 

device. We also looked at the advantages of this device as synaptic device. Then, 

we report simulation results of unsupervised learning using STDP in our TFT-type 

NOR flash memory array. Main point in this work is to demonstrate unsupervised 

learning with STDP using NOR-type nonvolatile memory array. 
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1.5  Dissertation outline 

This dissertation is composed as follows. Chapter 1 contains an overview of the 

neuromorphic technology and STDP algorithms. Then, current research trends of 

synaptic devices are described. The purpose of research and the outline of 

dissertation are also presented. Chapter 2 describes the structure, characteristics, 

and pattern learning simulation results of the SONOS gated-diode memory synaptic 

devices. After that, the discussion of the issues that arise when using the memory 

array for the HNN system. In Chapter 3, the structure, fabrication process, and 

measurement results of the TFT-type NOR flash memory are presented. Then, 

circuit / pulse schemes to utilize the device array for the neural network are 

presented. The last part of this chapter analyzes the pattern recognition performance 

and suggest ways to improve it. Finally, the conclusion is delivered in Chapter 4. 

The main content of this dissertation has already been published in referred 

journals [9], [28], and [42]. With the publishers’ permission to reuse the article in 

this dissertation, the major parts of the present thesis were reproduced from [9], 

[28], and [42] following the publishers’ guidelines, respectively. 
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Chapter 2 

SONOS gated-diode memory array 

 

2.1  Device structure 

Figure 2.1 shows a 3-D schematic view of a single SONOS gated-diode 

memory and figure 2.2 shows a 3-D schematic view of SONOS gated-diode 

memory array consisting of multiple word-lines (WLs) and bit-lines (BLs), 

respectively. The n+ region forms in the upper area of the p-type silicone fin and is 

connected to the BL via MOSFET as a select device of a cell strings. The gate 

dielectric stack covers the top and both sides of the fin where the n+-p junction is 

formed. Here, the thicknesses of the ONO stacks are 3 nm, 6 nm and 9 nm. The gate 

electrode is formed on the gate stack. 

In this operation, the configuration of the diode-type cell string is significantly 

different from that of the existing FET-type NAND flash memory cell string. The 

n+ diffusion area formed in the upper area, as shown in figure 2.1, proceeds along 

the fin body. Therefore, when reading the cells selected in this operation, all WLs, 
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except the cells selected in the diode-type cell string, may be floated or bias to a 

low voltage depending on the resistance of the n+ area. However, the n+ region of 

the FET-type cell string is typically formed only in the fin space between adjacent 

WLs, not in the channel. So, all WLs, except the cells (pass cells) selected in the 

cell string, must be biased to a large bias (>5 V) that turn on the pass cells on 

completely. Under certain bias conditions, gate-induced drain leakage (GIDL) 

current is generated near the n+ area surface and becomes BL current (IBL). The 

GIDL current flows from the BL to the p-type area of the n+-p diode. The p-type 

area of the diode type cell string is connected to each other between the cells. GIDL 

current in all cells can be added to the BL current. This is equivalent to the total 

current added by all memristors connected to the neuron network circuit [43]. The 

detailed fabrication process of a device and a device array can be found in previous 

work [44]. 
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Figure 2.1. 3-D schematic view of a single SONOS gated-diode memory. 

Figure 2.2. 3-D schematic view of SONOS gated-diode memory array consisting 

of multiple word-lines (WLs) and bit-lines (BLs) 
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2.2  Device characteristics 

In this chapter, we examine the electrical characteristics of the SONOS gated-

diode cell. Figure 2.3 shows the IBL (BL current)-VWL (WL bias) curves as a 

parameter of the VBL (BL bias) [42]. As VWL increases, the IBL increases significantly, 

due to the increasing the GIDL current. At a negative VWL, the energy band near the 

surface of the n+ region is bent up and the electron/hole pairs are created through a 

band-to-band tunnel. The electrons flow through the BL and the holes flow into the 

p-region. Therefore, the GIDL current flows from the BL to the p-region. As the 

VBL increases, the band bending increases, significantly increasing the IBL. 

Programming (PGM) in the gate-diode memory is performed by FN tunneling. 

After the programming operation, the IBL read from the programmed cell increases 

because of the increased band-to-band tunneling (BTBT) caused by electrons stored 

in the nitride. On the other hand, erasing (ERS) is performed by injecting BTBT hot 

holes as a result of GIDL generation. The band structures for these PGM/ERS states 

are shown in figure 2.4 (a), (b), respectively. 

Therefore, IBL reading from erased cells decreases due to holes stored in the 
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nitride layer. The IBL detected in the programmed cell is approximately 103 times 

greater than the IBL value of the cell erased under the read bias conditions shown in 

Table 2.1. Therefore, memory performance can be achieved by detecting the 

difference in current between these two states. Figure 2.5 shows IBL-VWL curves as 

the state of the charge storage layer (PGM or ERS). 

The IBL can also be increased incrementally by incremental step pulse 

programming (ISPP) as shown in figure 2.6 [44] [45]. In this scheme, The gate 

voltage of the program pulse Vpp can be increased to a constant value after each 

program phase. As PGM voltage (Vpp) increases, the number of trapped electrons 

increases, increasing cell current. In figure 2.6, the circle symbol represents the IBL-

VWL characteristic after the cell has been programmed to a Vpp value of 15 V, where 

the hexagon symbol shows IBL-VWL curve after the cell is programmed at Vpp value 

of 21 V. Here, between the two curves, the pulse step ΔVpp is 1V. 
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Figure 2.3. Bit-line (BL) current versus word-line (WL) bias for a gated-diode 

memory cell as a parameter of VBL [42]. 

Figure 2.4. Schematic view, which shows the (a) programmed (PGM) and (b) erased 

(ERS) state with the stored charge at nitride charge trapping layer [44]. 
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Table 2.1. Bias conditions for the programming (PGM) and erasing (ERS) of cells 

in a cell string [42]. 

 

 

 

Figure 2.5. IBL-VWL curves as the state of the charge storage layer (PGM or ERS). 
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Figure 2.6. Incremental step pulse programming (ISPP) characteristic of the 

SONOS gated-diode memory cell [42] [44]. 
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2.3  Device measurement results as a synaptic device 

2.3.1  Implementation of neural network 

Figure 2.7 shows the neural network topology for STDP unsupervised learning 

[46]. The main purpose of the neural network is to learn and recognize the unlabeled 

binary MNIST handwritten dataset. Each number pattern is input to the neural 

network via 784 (28  28) input neurons (PRE), which will be passed to the second 

neuron layer (POST). Each POST output neuron is linked to each other via 

inhibitory synapse.  

3-D conceptual diagram of the synaptic array using SONOS gated-diode 

memory is shown in figure 2.8. Input signals from PRE neuron are transmitted by 

the WLs of the memory array and the weighted sum results of synaptic devices are 

combined into BLs and delivered to POST neuron. 

Figure 2.9 shows the schematic circuit diagram of the neural network when 

implemented on a SONOS gated-diode memory array. The pattern transmitted from 

the input neuron is input through the gate of each single gated-diode device. The 

input signal to the gate is converted into a current reflecting the weight stored in the 
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synapse, and is added to the BL of the array. The combined current through the BL 

is connected to the POST neuron circuitry outside the array, causing the neuron to 

fire. Each POST neuron is connected via FET type synapse that performs inhibitory 

action, thereby suppressing the action of neurons other than oneself. 

 

 

Figure 2.7. Topology of spiking neural network (SNN) using unlabeled binary 

MNIST handwritten patterns [46]. 
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Figure 2.8. 3-D conceptual diagram of the synaptic array using SONOS gated-diode 

memory array. 

Figure 2.9. Schematic circuit diagram of the neural network for STDP unsupervised 

learning when implemented on a SONOS gated-diode memory array. 
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2.3.2  Pulse scheme for STDP weight update 

For STDP operation, the synapse cells can be potentiated or depressed 

selectively using the pulse scheme shown in figure 2.10. As shown in figure 2.10 

(a), input signal from PRE neuron and POST feedback signals through an integrated 

fire circuit are applied to the WL and BL respectively to vary the weight of the 

synapse cell. 

The program and erase operations of charges stored in the nitride storage 

trapping layer depend on the WL and BL voltage states. When a PRE input pulse is 

applied and the POST neuron is fired, the tail part of the input pulse overlaps with 

the head portion of the feedback pulse. Then, a pulse of 10.5 V magnitude and a 

time of 10 ms is applied to the WL reference to perform program operation at the 

nitride layer, which simulates synapse LTP operation. On the other hand, if the PRE 

input signal is applied after POST neuron firing, the tail portion of the feedback 

pulse overlaps the head portion of the input pulse. Then a pulse having a magnitude 

of -10.5 V and a time of 10 ms is applied to the WL basis, which causes erase 

operation in the nitride layer, resulting in the same result as the synapse LTD 
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operation. Using this pulse scheme, the desired pattern image can be trained on the 

synaptic array by repeatedly inputting the target MNIST image and noise image 

[23]. If noise input is transmitted after the pattern image, the weights of synapse 

cells overlapping noise pattern are depressed to increase the weight difference 

between the learned synapse cell and the un-learned synapse cell. Therefore, by 

repeating the cross-entry, each synapse string can be trained with the desired pattern. 

Table 2.2 summarizes the pulse scheme for these weight updates for STDP 

operation and the pulse scheme for the weight read operation. The read pulses for 

reading and summing the weights of the synapses are applied to the WL for -6 V 

and the BL for 2 V magnitude and 10 ms time, respectively. 
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Figure 2.10. (a) Schematic diagram of PRE (input) and POST (feedback) pulses 

that cause weight updates of SONOS gated-diode synaptic device. (b) Pulse scheme 

of PRE and POST neurons to the SONOS gated-diode synaptic array that causes a 

LTP and LTD. 
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Table 2.2. Bias conditions for the weight update (LTP/LTD) and weight read 

operation of cells in a SONOS gated-diode synapse array. 
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2.3.3  LTP/LTD characteristics 

The pulse scheme for the synapse weight update described above is applied to 

actual devices and the results are shown in figure 2.11. Sequential 20 repetitive LTP 

pulses followed by 20 repetitive LTD pulses are applied to the WL and BL of the 

synaptic device, and then the weight of the device is read. In this case, the pulse 

scheme used in each operation is the same as the scheme in Table 2.2. The repeated 

increase of the synapse weight is confirmed by the repeated application of the LTP 

pulse, which is dependent on the amount of charge stored in the nitride storage layer. 

Therefore, when the LTD pulse is applied to fully potentiated cells, the synapse 

weight rapidly decreases. Figure 2.12 shows the STDP curves derived when the 

pulse scheme is used. Because of the use of rectangular pulse instead of increasing 

or decreasing pulse over time, simplified STDP curve is derived. 
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Figure 2.11. The LTP/LTD repetition characteristics of the SONOS gated-diode 

synaptic device measured using the pulse scheme of figure 2.10. 

 

Figure 2.12. STDP curve derived from the pulse scheme of figure 2.10. 
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2.4  Simulation results of pattern learning 

2.4.1  Single-neuron learning 

Figure 2.13 shows a flowchart of the overall pattern learning process used in 

the simulation. The simulation was performed with software MATLAB, and the 

operating characteristics of synapse reflected the measured characteristics of the 

SONOS gated-diode memory cell. Output neurons are assumed to be ideal 

capacitors and comparators. First, reset the synapses by randomizing the weights of 

all synapses. In the PRE target image for learning, only the part where the input 

value of a pixel exists in that image triggers the Xpre pulse to WL of figure 2.10 (a), 

which may result in firing of the POST neuron via I&F circuit. This postsynaptic 

spike is sent to other neurons and inhibits charges accumulated by the neuron's 

integrate capacitor. This process allows each neuron to learn its own image pattern 

to implement pattern classification. The neurons also transmit the feedback spike to 

the BLs of the synapses cells connected to it, which immediately update the synapse 

weights. Figure 2.14 shows ten 28  28 MNIST handwritten target digits and noise 

pattern used in this learning simulation. 
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To identify the learning and updating capabilities of the synaptic devices in 

single-neuron, patterns represent the numbers "2" and "5" were used sequentially. 

These input patterns are input repeatedly with or without noise pattern for STDP 

learning. The initial synaptic weights are randomly distributed between the 

minimum to maximum weights of the SONOS gated-diode memory cells. Figure 

2.15 (a) shows the pattern learning process without noise input pattern in a single-

neuron containing 784 (28  28) synaptic devices (i.e. 784  1). The change in the 

weight map of synapse array is shown when each image is entered sequentially 30 

times. As mentioned previously, in the proposed pulse scheme, it appears that the 

pattern does not update to another pattern because LTD of synapse weights is not 

possible when noise input is not used. Similarly, the non-pattern background area 

is also checked that depression does not occur. On the other hand, the result of 

single-neuron pattern learning with noise input pattern is shown in figure 2.15 (b). 

The synaptic weights of the array have been correctly updated based on the STDP 

behavior when each image is displayed 30 times sequentially. The weight learning 

for pattern “2” is completed through 30 epochs, and after 30 consecutive epochs, 
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learning of the weights corresponding to pattern “5” has been achieved. This result 

indicates that the desired input pattern and pattern update have been performed 

successfully. 

In the single-neuron learning, weight margin (Wmargin) between targeted 

synapse and background synapse has an important influence on pattern recognition 

rate. This is because the weight margin must be guaranteed above a certain level to 

distinguish the desired pattern from the other pattern in the recognition process. 

Single-pattern learning in this single-neuron can be done well without any 

additional input. However, in case of changing the learned pattern in single-neuron 

or multi-pattern learning in multi-neuron, noise input patterns are needed. These 

noise input patterns depress the weights of the background synapses that are not the 

desired number pattern. These noise input patterns are input through a certain 

number of synapses randomly selected from total of 784 PRE synapses. The noise 

density (ρnoise) is determined by the number of randomly selected input synapses. 

Figure 2.16 shows the influence of such input noise density on pattern learning. 

Pattern learning requires a certain density of noise. If this noise density is too high, 
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the recognition rate of the pattern is degraded, and the learning reversal 

phenomenon in which the noise pattern is learned occurs. Therefore, the noise input 

pattern density used for learning should be carefully considered to optimize learning 

efficiency. 

 

 

 

Figure 2.13. Flowchart of the overall pattern learning process used in the simulation. 
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Figure 2.14. The ten 28  28 MNIST handwritten target digits and noise pattern 

used in the learning simulation. 

 

 

Figure 2.15. Unsupervised pattern learning and updating results (a) without input 

noise pattern, and (b) with input noise pattern in a single neuron when the first 

pattern “2” and the second pattern “5” in figure 2.14 were learned 30 times in order. 
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Figure 2.16. Recognizing probability of input and noise pattern as a function of 

input noise density. 
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2.4.2  Multi-neuron learning 

Further simulation works were conducted by increasing the number of POST 

output neurons for multi-neuron learning while maintaining the method of adding 

noise input pattern from the previous chapter. In multi-neuron learning, the main 

goal is to learn different patterns for each neuron. To identify these characteristics, 

simulations were performed by selecting the number "3", "6" and "7" from the 

MNIST handwritten dataset of figure 2.14. In order to check the learning progress 

in unsupervised manner, the input method was selected along with the noise input 

on each randomly selected number pattern. One example of this pattern input 

method can be found in figure 2.17. Figure 2.17 (a) shows an example of an input 

train in which random noise inputs are applied between and number patterns are 

entered in random order. Figure 2.17 (b) shows a sequence of input patterns to help 

understand the random repetitive input of image and noise patterns. 

Figure 2.18 shows the pattern learning results for a multi-neuron array (784  

3) composed of 784 PRE input neurons and three POST neurons. Figure 2.18 (a) 

shows the changing aspect of synaptic weights when repeatedly applying inputs of 
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figure 2.17 to a multi-neuron array (784  3). As can be seen in the figure, each 

neuron does not learn its own patterns but progresses as if it were lumped together 

by three patterns. In order to solve this problem and make each neuron learn 

different patterns, we adopted the concept of lateral inhibition based on biological 

theory [47] [48]. In multi-neuron learning, an inhibitory synapses are used to lower 

the membrane potential of neurons other than the firing neurons themselves. An 

inhibitory factor, which determines how low the membrane potential of the other 

neurons, should be considered carefully. If the inhibitory factor is too high, only a 

small number of neurons will fire repeatedly to interfere the learning of other 

neurons, while if it is too low, it will be difficult to distinguish the neuron's own 

learning pattern. Figure 2.18 (b) shows the progress of multi-neuron learning when 

the lateral inhibition function is used. This shows the process of changing the weight 

states of the synapses corresponding to each neuron at representative epoch 

numbers. After a certain number of epochs, the weights of the synapses belonging 

to each neuron are gradually tuned according to a different pattern. These results 

confirm the possibility of multi-neuron learning. 
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Figure 2.17. (a) An example of input train. (b) A sequence of input patterns of the 

random repetitive input of image and noise patterns. 

Figure 2.18. Synaptic weight change corresponding to each neuron when pattern 

train in figure 2.17 were randomly presented 200 times (a) without, and (b) with 

lateral inhibition function. 
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2.5 Issues 

Previous chapters presented learning capabilities of the SONOS gated-diode 

memory array as a synaptic device array using the measured characteristics of the 

devices. However, several critical issues have been identified when trying to 

actually use these devices as synapses. 

The first problem is the unwanted increase in power consumption due to 

feedback pulses occurring in the learning process. Figure 2.19 shows the previously 

proposed device structure and feedback pulse (Xpost) shape. As shown in the figure, 

the feedback pulse is applied to the BL (n+-region) of the device array, which 

contains both positive and negative bias. Therefore, when the feedback pulse is 

applied to the BL, there is a section where the n+-p diode between the BL and the 

p-substrate is turned on, so a large amount of current flows through the learning 

process. Moreover, in a fabricated device array, p-substrates are tied together 

throughout the whole wafer, so it cannot be individually controlled during the 

synaptic weight learning process. This unwanted power consumption can be 

pointed out as a fatal problem, as it is repeated countless times during repetitive 
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learning processes. 

A second issue is the increase in standby power consumption caused by 

increased weights of synaptic devices. Figure 2.20 identifies this problem. Indicates 

when the learning is repeated to increase the weight of the synapses at read bias, in 

which case the leakage current of the synapse device at the standby voltage of 0 V 

can also be seen. This means that when learning is over, power consumption occurs 

even when there is no input from the system, due to the continuous increase in the 

weight of synapses with unsupervised manner. The increase in power consumption 

due to this leakage current is also a problem, but this quiescent current has become 

so large that it can be misjudged as a weight information from synapses in the 

recognition process that it may cause errors in recognition phase. 

The next problem is that the PGM/ERS pulse used in learning phase is too 

long. Bias conditions used for the weigh update (LTP/LTD) are shown in table 2.2. 

Here, the width of PGM/ERS pulse for LTP/LTD is 10 ms. This level of weight 

update time is significantly higher than other non-volatile memory used as synaptic 

devices [49]. This could lead to serious delay in neuromorphic system with 
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numerous weight updates. 

The final issue is the use of noise input signal in the learning process. As 

previously described, this system uses noise pattern for depression of the 

background part and pattern update in the learning process. Generating a noise input 

pattern that has certain density across the whole pixel itself would be a huge burden 

on the circuit system, and applying it crosswise with image pattern is also 

disadvantage. The increase in learning time is also one of the side effects that cannot 

be ignored because the pattern and noise must be applied repeatedly. 

So far, we have presented device analysis and learning simulation works to 

utilize the fabricated SONOS gated-diode memory array as the synaptic array in the 

neuromorphic system. Then, we followed up with discussions of the critical 

problems that arise when we actually try to use the device array for the 

neuromorphic system. In the subsequent chapters, we will propose a new 

neuromorphic device to overcome these problems and proceed with the fabrication 

and analysis of the device for learning/recognition task. 
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Figure 2.19. Diode current flow caused by pulse of Xpost used for the weight update 

(LTP/LTD). 

 

Figure 2.20. Standby power consumption increasing due to the repetitive 

potentiation of the synaptic weight. 
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Chapter 3 

TFT-type NOR flash memory array 

 

3.1  Device structure 

Figure 3.1 shows the 3-D schematic view of the TFT-type NOR flash memory 

device. Cross-sectional views cut along the directions of A-A’ and B-B’ are shown 

in figure 3.2 (a) and (b), respectively. As shown in figure 3.1, each WL and BL (n+ 

drain) intersect in the form of a crossbar to simplify scaling memory array on a large 

scale. In figure 3.2 (a), the drain and source of each unit device are connected via a 

poly-Si channel that is half covered by an n+ poly-Si floating gate (FG) through an 

inter-poly dielectric (IPD) material. All devices connected to a single WL are 

controlled simultaneously through a single WL. 

The TFT-type memory array also has a structure in which the p-substrate and 

the device are isolated by the SiO2 insulation layer. This structure resolves leakage 

current issue arising from LTP/LTD operation, which was the first issue in the 

SONOS gate-diode synaptic array of previous chapter. A half-covered FG is located 
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between the WL and the source, and if voltage is applied between the two electrodes, 

the PGM and ERS memory operations are performed. Because the FG covers only 

half the channel, the VT does not drop below zero in the full ERS state of the 

synaptic device, which prevents leakage current during the system operation. This 

will solve the standby power-increasing problem caused by the excessive LTP 

process of the synaptic device when using unsupervised learning method, which 

was pointed out as the second issue in the SONOS gated-diode synaptic array. 

Figure 3.2 (b) shows the structure of the device in the direction of BL. The 

FGs of adjacent devices are isolated from each other and configured to perform 

their own memory operations. However, the placement of source and drain running 

side by side in the BL direction is common between n memory cells under n WLs 

to allow current sum from n NOR flash memory cells. Therefore, each memory cell 

can send its own memory information to the common BL in the form of summed 

current. This is similar to the configuration of biological synapses, each of which 

reflects its weight information and combines it with signal sent to the next neuron. 

Figure 3.3 shows bird’s eye view of a TFT-type NOR flash memory array. 
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Figure 3.1. The 3-D schematic view of the TFT-type NOR flash memory device 

Figure 3.2. Cross-sectional views cut in the (a) WL direction and (b) BL direction 

of the device. 
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Figure 3.3. Bird’s eye view of a TFT-type NOR flash memory array. 
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3.2  Device fabrication 

The TFT-type NOR flash memory arrays are fabricated on a 6-inch Si wafer 

with 6 masks and conventional CMOS process technology. The used masks are 

source/drain formation (1st), poly-Si channel define (2nd), FG formation (3rd), CG 

formation (4th), contact hole (5th), and metal line formation (6th).  

The main fabrication process diagrams and detailed steps are shown in the 

figures 3.4, and 3.5, respectively [28]. Figure 3.4 shows the schematic cross-

sectional views of the key fabrication process steps, and figure 3.5 shows the 

process flow of the fabrication of TFT-type NOR flash memory. 

After cleaning process, which include sulfuric peroxide mixture (SPM), 

ammonium hydroxide-hydrogen peroxide mixture (APM), hydrochloric acid-

hydrogen peroxide-water mixture (HPM), and diluted hydrogen fluoride (DHF), a 

300-nm-thick layer of SiO2 insulator was formed on top on the 6-inch Si wafer by 

wet oxidation process. Then, a layer of in situ n+-doped poly-Si was formed on an 

insulator layer. After the doped poly-Si layer was patterned (first mask) by a 

SS03A9 photoresist (PR), a 20-nm-thick amorphous Si active layer was deposited 
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by a low-pressure chemical vapor deposition (LPCVD), poly-crystalized by 

annealing, and then patterned (second mask). Figure 3.6 (a) and (b) show SEM 

images after this fabrication step. A 7-nm-thick layer of SiO2 was then deposited as 

a tunneling oxide (Tox) layer by a LPCVD process at 780 oC, after which a layer of 

n+-doped poly-Si was formed and patterned as a FG (third mask). To separate the 

FGs, exposed FG is isotropically etched by reactive-ion-etching (RIE) process with 

SF6 gas as shown in figure 3.6 (c). SiO2 was then deposited at a thickness of 15 nm 

as a blocking oxide (Box) layer. The n+-doped poly-Si was formed and patterned 

above the Box as control gate (CG) (fourth mask). After tetraethyl orthosilicate 

(TEOS) deposition, contact holes for the CGs, sources, drains were formed (fifth 

mask) by RIE process. Subsequently, Ti/TiN/Aluminum (Al)/TiN electrodes were 

formed by sputtering and were then patterned (sixth mask) by photolithography. 

Then, hydrogen (H2) annealing at 450 oC for 30 min was performed to improve the 

contact and interface property. 

SEM images of a fabricated device are shown in figure 3.6 [28]. Figure 3.6 (a) 

shows a SEM image of the step corresponding to figure 3.4 (b). Figure 3.6 (b) is a 



58 

 

bird’s eye view of the same step. Figures 3.6 (c) and (d) show SEM images of 

fabrication steps corresponding to figures 3.4 (d) and (f), respectively. For the 

fabricated cell devices in the array, the width of the control gate (WCG) is 2 μm and 

the length between the source and drain (LCG) is 0.5 μm. One memory cell can be 

scaled down to 8 F2 if the WCG is scaled to the minimum feature size (F). 

Most of the processes were carried out using the equipment in Inter-University 

Semiconductor Research Center (ISRC) located in Seoul National University 

(SNU), Seoul, Korea, and in situ n+-doped poly-Si layer was deposited by using the 

equipment of National NanoFab Center (NNFC) located in Daejeon, Korea. 
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Figure 3.4. (a)-(f) Schematic cross-sectional views of the key fabrication process 

steps [28]. 
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Figure 3.5. Process flow of the fabrication of TFT-type NOR flash memory [28]. 
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Figure 3.6. SEM cross-sectional images of fabricated structures, (a)-(b) SEM 

images corresponding to the step shown in figure 3.4 (b), (c) SEM image 

corresponding to the step shown in figure 3.4 (d), and (d) SEM image corresponding 

to the step shown in figure 3.4 (f) [28]. 

 

 

 

(a) (b)

(c) (d)

n+ poly

Insulator

poly-Si

CG

FG

TEOS

n+ poly n+ poly

Insulator

poly-Si

n+ poly

n+ poly

Insulator

poly-Si

n+ poly

FG

n+ poly

Insulator

poly-Si

n+ poly



62 

 

3.3  Device measurement results 

3.3.1  Current-voltage (I-V) characteristics 

The direct current (DC) I-V characteristics of the fabricated reference TFT and 

TFT-type NOR flash memory were measured by using semiconductor parameter 

analyzer (B1500A, Keysight) and cascade probe station. 

The ID-VCG characteristics of a reference TFT and a TFT-type NOR flash 

memory cell as a parameter of VD (1, 2, and 3 V) are shown in figures 3.7 and 3.8, 

respectively. Here, gate width (WCG) and gate length (LCG) of reference TFT and 

TFT-type NOR flash memory are 2 ㎛ and 0.5 ㎛, respectively. Because oxide 

layer between CG and FG increase the effective gate oxide thickness, memory 

devices having FG have larger threshold swing (SS) and lower on-current value 

than the reference FET. These measurement results show that the fabricated TFT-

type NOR flash memory device works well. 
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Figure 3.7. Drain current versus control-gate (CG) bias of fabricated reference TFT 

(w/o FG) as a parameter of the drain voltage (VD) [28].  

Figure 3.8. Drain current versus control-gate (CG) bias of fabricated TFT-type NOR 

flash memory (with FG) as a parameter of the drain voltage (VD) [28]. 
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3.3.2  PGM/ERS characteristics of flash memory 

All memory cells fabricated in an array represent similar ID-VCG characteristics 

in the initial state. The charge stored in the FG of each memory cell is reflected in 

the on-current (ID/IBL) of the device. This current flows to the common BL of the 

array and has the same effect as the weighted sum in the biological synapse array. 

Figure 3.9 (a) shows the drain current versus control-gate (CG) bias of fabricated 

TFT-type NOR flash memory (with FG) as a parameter of the memory state (initial, 

ERS, and PGM) in log scale, and figure 3.9 (b) shows the same result in linear scale. 

Figure 3.9 (a) confirms that the memory operation of the flash device works well, 

and this characteristic enables the device to implement the synaptic weight by the 

memory function. Figure 3.9 (b) represents this characteristic in linear scale. As 

shown in the figure, the turn-on voltage (VT) does not fall below zero even under 

full ERS condition of the device, as mentioned in previous chapter. 

The retention characteristics of a TFT-type NOR flash memory cell measured 

at 300 K is shown in figure 3.10. The ID difference between the PGM and ERS 

states is kept beyond two orders of magnitude after 104 sec and are extrapolated to 
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remain larger than two orders of magnitude even after 106 sec. In the retention 

characteristics shown in figure 3.10, ID after ERS decreases slightly with time, and 

ID during the PGM state doubles at 106 sec. Thus, reliable memory characteristics 

of the TFT-type NOR flash memory cell are obtained. Here, control-gate width 

(WCG) and control-gate length (LCG) of measured TFT-type NOR flash memory are 

2 ㎛ and 0.5 ㎛, respectively. Among the requirements for electronic devices for 

use as synapses, the retention characteristic is quite important. Because the memory 

state of the device represents the trained weight of the synapse, keeping it for a long 

time is significant for the recognition capability of the synaptic device array. 
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Figure 3.9. Drain current versus control-gate (CG) bias of fabricated TFT-type NOR 

flash memory (with FG) as a parameter of the memory state (initial, ERS, and PGM) 

in (a) log scale and (b) linear scale. 
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Figure 3.10. Retention characteristics of a fabricated memory device. Here, control-

gate and drain biases are 3 V and 1 V, respectively, to read the ID. 
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3.4  Device measurement results as a synaptic device 

3.4.1  Circuit diagram of neuromorphic network 

In order to utilize the proposed TFT-type NOR flash memory array as a synaptic 

device array, additional circuit system is required. Figure 3.11 shows the circuit 

topology of a neural network system when implemented with a TFT-type NOR flash 

memory array. Pattern images sent from PRE neurons are entered into the WLs of 

the memory array. Signals input to WLs reflect the weights stored in the synapses 

and are converted into current and then added to the common drain line (CDL) of 

the array. The current in the CDL flows through the current mirror circuit to the 

POST neuron circuit outside the array. Current is deposited in the membrane 

capacitor of the POST neuron, which fires when the membrane potential exceeds a 

certain threshold. Each POST neuron is connected via a FET-type inhibitory 

synapse which acts as a suppression, which in turn suppresses the firing of the 

neuron other than itself. The firing signal from the POST neuron triggers a switch 

between the common source line (CSL) and the ground, allowing the CSL to be 

connected to the spike-generated circuit. The firing signal is also sent to the spike-
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generation circuit, which generates a feedback spike pulse to the CSL on its own 

array, and the output spike pulse is output to the WLs of the synapse array in next 

layer. The weight update methods and circuit configuration described above enable 

self-learning of synapses and neurons arrays without intervention of external 

circuits and computation. 

 

 

Figure 3.11. Schematic circuit diagram of an unsupervised neuromorphic network 

with a TFT-type NOR flash memory array and a neuron circuit [28]. 

VDD

CDL

CSL

WL(2)

WL(N)

Synapse array

Inhibitory

FET

Neuron circuit

Cmembrane

Integrate-and-

fire circuit

Spike

generation 

circuit

Feedback

spike pulse

IBL

IBL`

Current

mirror

Other 

neurons (N-1)

Post-output

Spike pulse

Lateral

inhibition

signal

Post

synapse array

WL(1)

Lateral inhibition

signal



70 

 

3.4.2  Pulse scheme for STDP weight update 

In this chapter, we describes a new pulse scheme for using the proposed TFT-

type NOR flash memory as a synaptic device. Here, we will address the third and 

fourth issues identified in the previous chapter 2.5 when using the SONOS gated-

diode memory as synaptic device array. The first issue is that the time length of the 

pulse used for LTP / LTD operation is too long, and the second issue is that 

additional noise input pattern must be used to train pattern images. To overcome 

these two problems, a new pulse scheme for STDP weight update is proposed. 

For STDP operation, the synapse cells can be potentiated or depressed 

selectively using the pulse scheme shown in figure 3.12. The basic principles of 

synapse cell LTP / LTD operations are as follows. When a certain neurons is fired, 

the weights of synapses that contribute to the neuron's firing are potentiated. These 

characteristics are designed to be automatically performed by overlapping PRE 

input pulse and the feedback pulse generated by the POST output signal. On the 

other hand, for synapses where no input signal is entered, the feedback signal causes 

the LTD process. As shown in figure 3.12 (a), input signal from PRE neuron and 
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feedback signal from spike-generation circuits are applied to WL and n+-source 

respectively to change the weight of synapse cell. The PGM and ERS operation of 

charges stored in the FG depend on the voltage state of the WL and the n+-source 

connected to the CSL. If the input pulse is applied and then a neuron is fired, the 

tail portion of the input pulse overlapped by the head portion of the feedback pulse, 

as represented by the LTP operation shown in figure 3.12 (b). As a result, a -8.5 V 

pulse, expressed by Xpre-Xpost in figure 3.12 (b), is applied to the WL for 100 μs to 

perform an ERS operation in the FG similar to an LTP operation in biological 

synapse. Conversely, if there is no input signal from the PRE input, only the 

feedback pulse is applied to the memory cell source. This is the same as applying a 

pulse with a magnitude of 5.5 V and a width of 100 μs to the WL, which stores 

electrons in FG (PGM Operation) and has the same effect as the LTD of synapses. 

Table 3.1 summarizes the pulse scheme for these weight updates and weight 

reading operations. Reduce power consumption by preventing leakage current 

during unit PGM and ERS with floated CDL electrode during weight updates. 

Reading pulses for reading and weighted-sum operation of the synapses are applied 
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to the WL with a magnitude of 3 V and a width of 100 μs. 

So far we have proposed a new pulse scheme used to utilize TFT-type NOR 

flash memory array as a synaptic array. The new pulse scheme can solve the 

previously mentioned problems. First, as table 3.1 summarizes, the width of pulse 

used to train the synaptic weight is 100 μs. This is three orders shorter than the 10 

ms width of the learning pulse used in the SONOS gated-diode memory. This allows 

for the implementation of a neuromorphic system with faster learning time. Noise 

input pattern, which was pointed out as another problem, is not used in the newly 

proposed pulse scheme at all. This is because a new proposed pulse scheme could 

depress the weights of the background and the unwanted part without the noise 

input pattern. This has the advantage of reducing the burden of additional circuits 

required to produce noise input pattern and reducing learning time compared to the 

previous pulse scheme that required repeated entering of two inputs. 
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Figure 3.12. (a) Schematic diagram of PRE (input) and POST (feedback) pulses 

that cause a weight update of TFT-type NOR flash synaptic device. (b) Pulse 

scheme of PRE and POST neurons to the TFT-type NOR flash synaptic array that 

causes a LTP and LTD [28]. 
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Table 3.1. Bias conditions for the weight update (LTP/LTD) and weight read 

operation of cells in a TFT-type NOR flash synapse array [28]. 
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3.4.3  LTP/LTD characteristics 

In this chapter, we present the measurement results when the proposed new 

pulse scheme is applied to the actual synaptic device, and the modelling process for 

applying the measured characteristics to the pattern recognition simulation. 

First, the pulse scheme for the synapse weight update described in previous 

chapter was applied to the actual devices; these results are shown in figure 3.13. 

Following 20 iterative LTP pulses, 20 repeated LTD pulses are applied to the WL 

and the source electrodes of the synaptic device, and the weight of the device is 

measured between them. In this case, the pulse scheme used for each operation is 

the same as in table 3.1. The repetitive increase in the weight of the synapse is 

determined by the repeated application of the LTP pulse depending on the amount 

of charge stored in the FG. Similarly, the amount of weight change when LTD pulse 

is applied is affected by the amount of charges stored in the FG. As a result, the 

degree of weight change depends on the state of the synaptic weight, and needs to 

be modeled to perform system-level simulation. Therefore, we have modeled the 

LTP/LTD behavior characteristics of the synapses obtained through measurements. 
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The information for the numerical modeling is as follows. We have proceeded 

the numerical modeling of the measurement data. The behavioral modeling results 

and the parameters used are summarized in table 3.2. Figure 3.14 shows the result 

of comparing the fitting result with the measurement data, and confirms that the 

two results match well. In addition, we can estimate the weight change behavior of 

synapse with various synapse weight state by using this numerical fitting result, 

which can be confirmed by figure 3.15. Figure 3.15 shows the fitting results for 

each weight state states, and in this case we extracted the LTP / LTD change ratio 

for each weight state. This modeling produces individual STDP behaviors based on 

the weight state of the synapse. Figure 3.16 shows the STDP curves for the three 

representative weight states derived from the modeling results of figure 3.15. 
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Figure 3.13. The LTP / LTD repetition characteristics of a TFT-type NOR flash 

memory device measured using the pulse scheme of table 3.1 [28]. 

 

 

 

Table 3.2. Fitting parameter values of model equations for the simulation [28]. 
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Figure 3.14. Comparison of fitting calculation result with the measurement data. 

 

Figure 3.15. The LTP / LTD behavior modeling results in various weight states 

using calculated fitting results. 

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

 Measurement

 Calculation

G
/G

m
in

Pulse #

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Case3

Case2

 Measurement

  

  Calculation

 

G
/G

m
in

Pulse #

Case1



79 

 

 

Figure 3.16. STDP behavior depending on the current weight in a synaptic device 

when the current weight is low (case 1, low G/Gmin: 19.7) (a), moderate (case 2, 

moderate G/Gmin: 56.1) (b), and high (case 3, high G/Gmin: 79.3) (c) [28]. 
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3.5  Simulation results of pattern recognition 

3.5.1  Overall flow of pattern learning and recognition 

From this chapter, we will verify the pattern learning and recognition 

capabilities of the proposed TFT-type NOR flash memory when applied to the 

neuromorphic system. Figures 3.17 (a) and (b) show the flowchart of the overall 

pattern learning and recognition process used in the simulations, respectively. The 

simulation was performed with software MATLAB, and the operating 

characteristics of the synapses are determined by the measured characteristics of 

the TFT-type NOR flash memory cell. For the simulation work, neuron circuits 

were assumed to consist of ideal capacitors and comparators. The pattern learning 

process is described in figure 3.17 (a). 

First, reset the synapses by randomizing the weight of all synapses. In the PRE 

target image for learning, only the part where the input value of the pixel exists in 

that image triggers the Xpre pulse of figure 3.12 (b) to the WLs. The Xpre signals 

make each synapse device send weighted current to the CDL, which can cause the 

firing of the POST neuron through I&F circuit. The resulting postsynaptic spike is 



81 

 

sent to other neurons and inhibits them by discharging accumulated charges in their 

integrate capacitor. This process allows each neuron to learn its own image pattern 

for implementing pattern classification. The fired neuron also sends a feedback 

spike to the CSL of the synapse cells connected to it, which immediately updates 

the synaptic weights in that neuron. Figure 3.17 (b) illustrates the recognition 

process of neurons connected to trained synapses. Additional circuits such as that 

for lateral inhibition and feedback spike delivery are not required during the 

recognition process. Once the target image is entered, the resulting POST neurons 

can be observed through the I&F circuits. At this point, the recognition rate of the 

trained neurons can be checked by comparing it with that of the other neurons. Until 

now, we have a full overview of the simulations for pattern learning and recognition, 

and then we will look at actual pattern learning, classification, and recognition 

results using this simulation structure. 
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Figure 3.17. Flowchart of pattern (a) learning and (b) recognition [28]. 
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3.5.2  Dot-pattern learning and classification 

In this chapter, we have identified learning and classification capabilities of 

dot-patterns using the characteristics of the synaptic device array and MATLAB 

simulation structure that have been presented. Figure 3.18 shows the four 3  3 

target input images used in this simulation. 

Figure 3.19 shows the pattern learning process in a single neuron containing 

nine synaptic devices (9  1). It is confirmed that the synaptic weights of the array 

update correctly based on the STDP action in the synapse array when each image 

is presented 70 times sequentially. First, when pattern 1 is learned for 70 epochs, 

the red lines indicate the average weight of the synapses corresponding to pattern 1 

(solid symbols) and the average weight of the synapses not corresponding to pattern 

1 (open symbols). In order to confirm the updating of the learned pattern when the 

other pattern is applied to the learned synapse array, pattern 2 was presented for 70 

epochs after the pattern 1 learning step. During the pattern 2 learning period, the 

blue lines show the potentiation of the synapses corresponding to pattern 2 (solid 

symbols) and the depression process of synapses not corresponding to pattern 2 
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(open symbols) are performed. The inset figures show the weight of each synapse 

in the array when each input pattern is applied. The initial synaptic weights are 

randomly distributed between the minimum to maximum weights of the proposed 

memory cells. It can be confirmed that the weight learning for pattern 1 is 

completed through 70 epochs, and after the subsequent 70 epochs, the learning of 

weights corresponding to pattern 2 is achieved. This result shows that the learning 

of the desired input pattern and pattern updating are performed successfully. For the 

proposed unsupervised pattern learning, there are no additional input signals, which 

consume more power and make the learning process more complex. 

Figure 3.20 shows the pattern learning and recognition results for a multi-

neuron array (9  4) composed of nine (3  3) PRE-input neurons and four POST 

neurons. It is necessary to take advantage of the lateral inhibition function of each 

of the four neurons to ensure the learning of their own unique patterns. To 

implement the lateral inhibition function, inhibitory synapses are used to lower the 

membrane potential of neurons other than the fired neuron. POST neurons are 

connected to each other via an inhibitory synapse. An inhibitory factor (in this case 
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30%), which determines the amount of reduction in the surrounding neurons, should 

be considered carefully. If the inhibitory factor is too high, only a small number of 

neurons will fire repeatedly, interfering with the learning of other neurons, while if 

it is too low, it will be difficult to distinguish each neuron's own learning pattern. 

Fig. 11 (a) shows the progress of multi-neuron learning when the input patterns are 

presented repeatedly through the PRE input of the synaptic array. The average value 

of the pattern (solid symbols) and the background (open symbols) weight of 

neurons 1-4 over epochs are shown. In the early stages of learning, there are 

oscillations of the pattern weights, but after a certain number of epochs, the weights 

of the synapses belonging to each neuron are gradually tuned according to a 

different pattern. The classification ability of patterns using the synapse array that 

has undergone this multi-pattern learning process is shown in figure 3.20 (b). This 

figure indicates that a specific POST neuron fires in response to each input pattern 

when four input patterns are applied in a random order. This system is thus able to 

distinguish four distinct patterns with the multi-neuron array effectively. 
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Figure 3.18. The four 3  3 image patterns used in the simulation. 

Figure 3.19. Unsupervised pattern learning and updating results with a single 

neuron. Average weights of the targeted pattern synapses (PTN, solid symbols) and 

the background synapses (BGD, open symbols) when the first pattern 1 and the 

second pattern 2 in figure 3.18 were learned 70 times in order. Inset images 

represent the weight map of the synapse array at the time of each epoch. 
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Figure 3.20. (a) Result of unsupervised multi-pattern learning and recognition. 

Average weights of the targeted pattern synapses (solid symbols) and the 

background synapses (open symbols) are shown when patterns 1-4 in figure 3.18 

were sequentially presented 350 times. (b) Classification behavior of neurons when 

random image patterns are applied after the multi-pattern learning process. 
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3.5.3  MNIST pattern learning and classification 

In the previous chapter, pattern learning and classification processes were 

demonstrated using simple dot-patterns. However, these examples are not enough 

to apply to real-world pattern recognition problem because image patterns are too 

simple (only 9 pixels) and only have four distinct types. Therefore, we have 

extended the sample patterns to the MNIST handwritten dataset and discussed the 

results of the learning simulations. Figure 3.21 shows the ten 28  28 MNIST 

handwritten target input images used in this simulation. 

Figure 3.22 shows the pattern learning process of a single neuron, which 

includes 784 (28  28) synaptic devices (i.e. 784  1). Verify that the synaptic 

weights of the array are updated correctly based on the STDP behavior of the 

synaptic device array when each image is displayed 80 times sequentially. The 

insertion figures show the weight maps of each snapshot in the array when each 

input pattern is applied. The initial synaptic weights are randomly distributed 

between the minimum and maximum weights of the proposed memory cell. The 

weight learning for pattern 2 is completed in the 80 epochs, and after the 80 
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consecutive epochs, weight learning for pattern 5 is completed, and after 80 epochs, 

weight learning for pattern 9 has been completed. This result indicates that the 

desired input pattern and pattern update have been performed successfully. These 

results suggest that in single-neuron learning using the proposed synaptic device 

array, it is possible to learn the desired pattern and to change the learned weight 

array into a different pattern. 

Figure 3.23 shows pattern learning and classification results for multiple 

neuron array (784  10), consisting of 784 PRE input neurons and 10 POST neurons. 

In order to implement lateral inhibition, inhibitory synapses are used to reduce the 

potential of membrane in neurons other than those fired. These inhibitory synapses 

are implemented by inhibitory FETs connected to membrane capacitors in each 

neuron as shown is figure 3.11. Each POST neuron is connected to each other via 

these inhibitory FETs as shown in figure 3.11. An inhibition factor (in this case 47%) 

determining the potential reduction of membrane in neurons other than those fired. 

Figure 3.23 (a) shows the progress of multiple neuron learning when the input digit 

patterns are repeatedly displayed through PRE input neurons of the synaptic device 
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array. This figure shows the process of changing the weight states of the synapses 

corresponding to each neuron at each epoch count. In the early stages of learning 

there are oscillations of pattern weights, but after a certain number of epochs, the 

weights of synapses belonging to each neuron are gradually adjusted according to 

different patterns. The ability to classify patterns using the proposed synaptic device 

array with multiple pattern learning sequence is shown in figure 3.23 (b). This 

figure shows how POST neurons fire in response to each input pattern when 10-

digit patterns are applied in random order. The digit patterns can be classified by 

comparing the POST neuron’s firing rate of a neuron that has learned the digit 

pattern with the POST neuron’s firing rate of other neurons. This effectively 

identifies 10 distinct patterns in multiple Neuron arrays. As a result, 10 distinct digit 

patterns are effectively distinguished in the proposed multi-neuron array. 

In Addition, we analyzed the effect of the synaptic device variation in the 

classification task using hardware based neural network. We have evaluated the 

accuracy of learning based on device variation in the proposed neuromorphic 

system. The results are shown in the figure 3.24. We have considered device-to-
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device variations in the potentiation, depression, and minimum/maximum values of 

the device conductance. The parameters of the synaptic devices are determined to 

have a Gaussian distribution. The ratio of the standard deviation to the mean 

represents the device-to-device variability. Although the characteristic of neural 

network does not show a significant change in the final learning results even if the 

variation of the device varied by 30%, the epochs for learning unique pattern are 

increasing. It is also possible to confirm the difference in sharpness in the weight 

map even after the learning is completed. If the variation exceeds 30%, it can be 

confirmed that the learning is not performed smoothly. This result can be changed 

according to the size of the network and the type of the pattern, but it can be seen 

that the variation of the device results in degradation of learning accuracy. 

Therefore, it is important to design the artificial neural network as to minimize the 

variations of the devices used. 
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Figure 3.21. The ten 28  28 MNIST handwritten digits used in the simulation [28]. 

Figure 3.22. Unsupervised pattern learning and updating results with a single 

neuron. Average weights of the targeted pattern synapses (PTN, solid symbols) and 

the background synapses (BGD, open symbols) when the first pattern 2, the second 

pattern 5, and the third pattern 9 in figure 3.21 were learned 80 times in order. Inset 

images represent the weight map of the synapse array at the time of each epoch [28]. 
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Figure 3.23. Result of unsupervised multi-pattern learning and recognition with the 

multi-neuron array. (a) The process of changing the weights of the synapses 

corresponding to each neuron are shown when patterns 0-9 in figure 3.21 were 

randomly presented 800 times. (b) Classification behavior of neurons when random 

digit patterns are applied after the multi-pattern learning process [28]. 
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Figure 3.24. Result of unsupervised multi-pattern learning progress according to 

device variation. 
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3.5.4  Homeostatic property for high cognitive 

performance 

In previous chapters, we have discussed the learning and classification 

capabilities of simple dot-patterns and MNIST handwritten digit patterns on a 

neural network using the proposed synaptic device array. However, so far, 

simulations have been conducted using only a limited number of selected patterns, 

which in fact must be learned and recognized based on a large database of various 

forms. Therefore, we have expanded learning task to use 60,000 training examples 

of full binary MNIST dataset. Then, 10,000 test examples of MNIST dataset were 

used to check the recognition accuracy of the neural network [51]. 

However, if the multi-pattern learning method presented previously is applied, 

each neuron does not learn its individual number pattern as desired. Only a few 

neurons are trained exclusively, and these neurons are repeatedly fired. These 

misguided learning results can be found in figure 3.25 (a). This is the result of 

identifying the firing frequency of 30 POST neurons by entering 10000 test datasets 

after learning 60000 training datasets. As shown in the figure, only a few neurons 
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are fired intensively, and the others are rarely responding to any digit pattern input. 

To address this imbalance problem, homeostatic properties, one of the 

operational principles of biological neurons, were introduced. Figure 3.26 shows 

the operating principles of the biological homeostatic property [50]. If the activity 

level is too low (left), the calcium concentration falls below the target. As calcium 

concentrations decrease, membrane current can return the neuron's activity to the 

target level. If the firing rate and calcium concentration are too high (right), adjust 

the membrane and synaptic current in the opposite direction to reset the target 

activity level [50]. Therefore, we adopted the homeostatic property of these 

biological neurons and applied them to the neuron circuit system used for pattern 

learning simulation. As with the biological characteristics, the membrane threshold 

voltage of the neuron was adjusted according to the activity of the neuron. If the 

neuron's activity is too high, it is set to increase the membrane threshold and vice 

versa. Figure 3.25 (b) shows the activity of POST neurons after applying 

homeostatic properties. It is confirmed that neuron’s firing is much more balanced 

than when homeostatic properties are not applied. 
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Figure 3.25. Result of unsupervised multi-pattern learning progress using 30 POST 

neurons (a) without, and (b) with homeostatic property. 

Figure 3.26. Basic mechanisms of activity-dependent homeostatic regulation in 

model neurons [50]. 
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3.5.5  Pulse scheme optimization 

In the previous chapter, the homeostatic property was adopted to balance firing 

rate between POST neurons. However, introducing the homeostatic property did 

not complete the learning and recognition process of the entire MNIST dataset, 

which is due to the characteristics of abrupt LTD phenomenon of the device. Figure 

3.27 (a) shows the results of the device measurement showing the abrupt LTD 

characteristic used in the previous simulations. As shown in figure 3.27 (b), 

involvement in the LTD of a synaptic device is the tail portion of Xpost pulse. 

Therefore, it is possible to analyze that the pulse amplitude of the tail section of the 

Xpost can be adjusted to resolve the abrupt LTD phenomenon. Figure 3.28 shows the 

change in the conductance of the measured synaptic device by applying the LTD 

pulse in three additional cases other than the -5.5 V used in the previous 

measurement. The depression processes with LTD pulses amplitude of -5.2 V for 

case 1, -5 V for case 2, and -4.8 V for case 3 are shown, respectively. After 

confirming that the amplitude of the LTD pulse can be adjusted to improve the 

abrupt depression phenomenon, the measurement results were applied to the 
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simulations. Figure 3.29 shows the results of learning and recognition when 

applying the measurement results in these three cases. From case 1 to 3, the slower 

the LTD conductance changes, the more consistent the input pattern and the desired 

output result. This result led to the completion of a new pulse scheme optimized 

through case 3, which greatly improved the entire MNIST dataset learning / 

recognition. 

Finally, we have proceeded for obtaining a higher recognition rate by 

expanding the number of POST neurons. Figure 3.30 shows the recognition rates 

of proposed spiking neural network for unsupervised online learning as a parameter 

of the number of POST neurons. In the figure, we can see an increase in recognition 

rate by increasing the number of POST neurons from 10 to 100. Finally, the 

recognition rate reached the 82% when 100 POST neurons were used. 

Figure 3.31 (a)-(c) identifies a confusion matrix when the number of POST neurons 

are 30, 50, and 100. Figure 3.31 (d) shows that when the number of POST neurons 

is 100, the synapses belonging to each neuron have been trained well for the specific 

numbers. 
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Figure 3.27. (a) The abrupt LTD phenomenon as a result of previous measurement. 

(b) The portion of pulse scheme causing the LTD. 

 

Figure 3.28. The LTD characteristics using three different LTD pulse amplitudes 

(Case 1: -5.2 V, Case 2: -5 V, and Case 3: -4.8 V) [51]. 
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Figure 3.29. Confusion matrix of pattern recognition results based on three 

different cases of pulse conditions (Case 1, 2, and 3). 

 

Figure 3.30. Recognition rates of proposed neural network for unsupervised online 

learning as a parameter of the number of POST neurons. 
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Figure 3.31. Confusion matrix of the full binary MNIST pattern classification 

results with (a) 30 POST neurons, (b) 50 POST neurons, (c) 100 POST neurons. (d) 

Learning result of synaptic weights after unsupervised online learning with 100 

POST neurons. 
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Chapter 4 

Conclusion 

 

In this dissertation, we have demonstrated unsupervised online learning with 

STDP learning algorithm using two types of NOR-type nonvolatile memory arrays. 

As the first candidate, we have presented a SONOS gated-diode memory array 

and investigated current behavior as memory performance in the cell array. Then, 

we have proposed a neural network configuration and LTP / LTD pulse scheme for 

using the memory array as a synaptic device array, and we have analyzed the 

measurement results of applying LTP / LTD pulse scheme to the actual device. 

Afterwards, pattern learning capabilities of MNIST digit patterns were identified in 

single- (784  1) and multi-neuron (784  3) using software MATLAB simulations 

reflecting the measurement results of the device. The simulation results were 

analyzed based on the key factors of STDP unsupervised learning, input noise 

density (ρnoise), synaptic weight margin (Wmargin), and lateral inhibition factor [%]. 

The chapter then completed with a discussion of the critical issues that arise when 
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using the SONOS gated-diode memory array as hardware-based neural network. 

In the next chapter, we have proposed a TFT-type NOR flash memory array to 

address the problems that occurred earlier, and analyzed the structures of the device 

array. We have fabricated successfully a TFT-type NOR flash memory to be used 

in a synaptic device array for unsupervised online learning using the STDP learning 

algorithm. The fabrication process of the TFT-type NOR flash memory device was 

explained and its characteristics as an electronic synaptic device were analyzed. 

Because the device structure enables PGM / ERS operations to be performed by the 

gate and source voltages, it is possible to implement the STDP behavior of a synapse 

without any additional circuit configuration. In addition, WLs and BLs are 

configured as the crossbar types, enabling excellent scalability for large-scale 

synaptic arrays. Moreover, unsupervised learning and recognition with the STDP 

learning rule were demonstrated using the proposed memory array. Through 

MATLAB simulation, the learning of simple 3  3 dot-patterns and 28  28 MNIST 

handwritten digit patterns was done based on the STDP characteristics of the 

devices, and the pattern classification performance was investigated. It was 
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confirmed that learning and classification are possible in single- (784  1) and 

multi-neuron (784  10) arrays. In addition, to improve the pattern recognition 

capability of the proposed synaptic device array, the homeostatic property was 

adopted to enhance the learning ability. To perform a high-level recognition task, 

the proposed LTD pulse scheme was also optimized, and the learning and 

inferencing capabilities of entire MNIST handwritten digit patterns were verified. 

In summary, we have presented the feasibility of implementing a scalable 

hardware-based spiking neural network for unsupervised pattern recognition task 

using a TFT-type NOR flash memory array through system-level software 

MATLAB simulation. 
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Appendix A 

Current-steering digital-to-analog conversion 

utilizing GIDL current in SONOS gated-diode 

memory string 

 

The memristors have been actively studied for a variety of potential 

applications, such as neuromorphic computing chips [52]-[54], programmable 

analog circuits [55]-[58], and non-volatile memory [59]. This is because the 

memristors are made up to two terminals, which makes it advantageous to 

implement a crossbar array. However, when integrated with CMOS technology, 

there are several issues that arise, including poor reliability and increased process 

complexity. Also, select devices are always required for crossbar array operations. 

The SONOS gate-diode array, built on the Si wafer, can take advantage of these 

benefits while maintaining good reliability. Memory operation is performed by 

charging and discharging the carrier in the nitride layer of the oxide / nitride / oxide 

(O/N/O) gate dielectric stack. By controlling the charges stored in each cell with 



107 

 

cell strings in an array, which is similar to controlling the memory state in 

memristors, we can modify the current flowing through the n+ region to realize the 

current-steering digital-to-analog converter (DAC). 

In this chapter, we examine the non-volatile memory properties of the SONOS 

gate-diode by characterizing the current from the cell string while programming or 

erasing the cell. It will also be shown that the current can be trimmed accurately by 

controlling the stored charge in each cell. Moreover, we suggest an approach which 

utilizes the SONOS gated-diode memory as a programmable analog circuit element. 

As an example, we demonstrate a current-steering DAC with binary-weighted 

programmed cells in a cell string. 

As shown in figure 2.6, the IBL of the SONOS gate-diode memory can be 

gradually increased through incremental step pulse programming (ISPP) [45]. 

When using FN tunneling as a programming mechanism, the gate voltage of the 

program pulse Vpp increases to a constant value after each program step. As 

programming voltage (Vpp) increases, the number of trapped electrons increases, 

increasing cell current. This allows the current of each cell can be set to the desired 
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value accurately. Using these characteristics, we demonstrate a 6-bit binary 

weighted DAC implemented in the 1×6 SONOS gated-diode memory string. The 

IBL for each cell in the string can be set to exact value using the ISPP method. The 

IBL in each cell increases as Vpp increases. The six cells in the string are programmed 

with ISPPs to have IBLs of 0.1, 0.2, 0.2, 0.4, 0.8, 1.6, and 3.2 nA, respectively, under 

read bias conditions, as shown in figure A.1. 

Figure A.2 shows the measured analog output versus digital input 

characteristics of a configured 6-bit DAC. The current change step of 0.1 nA is 

clearly visible in the insert figure. Differential nonlinearity (DNL) and integral 

nonlinearity (INL) are extracted from the measured transfer characteristics of a 6-

bit DAC and are illustrated in figure A.3. We also implemented a 4-bit DAC with 

the same string. The measured signal-to-noise and distortion ratios (SNDR) for 4-

bit and 6-bit DACs implemented are 25.65 dB and 37.76 dB respectively, 

corresponding to the effective number of bits (ENOB) of 3.97 and 5.98 bits. The 

great linearity characteristic is due to the superior manageability and retention 

characteristics of IBL and the good retention characteristics. 
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In conclusion, by programming SONOS gated-diode memory array using an 

incremental step pulse programming method, an area-efficient, 6-bit current-

steering DAC was realized with near-ideal INL and DNL characteristics. 

 

 

 

 

 

Figure A.1. Tuning the six-cells to have binary-weighted cell currents (0.1, 0.2, 0.4, 

0.8, 1.6 and 3.2 nA) with the ISPP. [42]. 
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Figure A.2. Measured analog output versus input code for the 6-bit DAC [42]. 

Figure A.3. The differential nonlinearity (DNL) and integral nonlinearity (INL) 

measured in least significant bit (LSB) as a function of the input code for a 6-bit 

DAC [42].  
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초    록 

 

기존의 폰 노이만 컴퓨팅 구조는 높은 수준의 인지 응용분야에서 속

도와 전력 소비 측면에서 불리한 구조를 지니고 있다. 따라서 이러한 

문제를 해결하기 위해 새롭게 제안된 신경모방 컴퓨팅은 차세대 컴퓨팅 

시스템으로 주목을 받고 있다. 

본 논문에서는 두 가지 종류의 NOR-형 비휘발성 메모리 어레이를 신

경모방 시스템의 시냅스 어레이로 사용하도록 제안한다. 전하 저장 층

을 포함하는 게이트를 갖는 다이오드 메모리 어레이가 시냅스 모방 소

자의 첫 번째 후보로 제안된다. 시뮬레이션을 통해 MNIST 손글씨 이미

지 패턴의 학습 과정을 보여준다. 첫째로, 단일 뉴런 스트링 (784  1) 

에서 스파이크 시점 의존 가소성 기반 학습이 시연된다. 그런 다음 측

면 억제 기능을 사용하여 다중 뉴런 어레이 (784  3) 에서 스파이크 시

점 의존 가소성에 기반한 학습을 시연한다. 한편, 적절한 학습을 위해 

입력 잡음 밀도 (ρnoise), 시냅스 가중치 간극 (Wmargin), 측면 억제 계수 

[%] 와 같은 스파이크 시점 의존 가소성 기반 비지도 학습의 주요 요인

들에 대해 조사한다. 

다음으로, 전하 저장 층을 포함하는 게이트를 갖는 다이오드 메모리
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의 단점들을 극복하는 활성 채널의 절반을 덮는 플로팅 게이트가 포함

된 박막 트랜지스터형 NOR 플래시 메모리 시냅스 모방 소자를 제안한

다. 제안된 펄스 구동 방식을 활용하여 스파이크 시점 의존 가소성 동

작에 필요한 장기 강화 및 약화 기능이 구현된다. 공정 제작된 메모리 

어레이의 장기 강화 / 약화 특성을 반영하는 소프트웨어 시뮬레이션을 

통해 스파이크 시점 의존 가소성 학습 규칙을 이용한 비지도 실시간 학

습이 성공적으로 시연된다. 28  28 MNIST 손글씨 숫자 패턴의 학습 및 

인식 과정을 제시한다.  

결과적으로, 기존 CMOS 기술을 사용하여 제작된 시냅스 모방 소자로 

구성된 하드웨어 기반 신경망을 시각 패턴 인식 시스템으로 사용하는 

방안이 제안되었다. 

 

주요어: 신경모방 시스템, 시냅스 모방 소자, 비지도 학습, 스파이크 

시점 의존 가소성, 게이트를 갖는 다이오드 메모리, NOR-형 플래시 메

모리. 
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