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Abstract

In this dissertation, three main contributions are given as; i) new two-stage au-
tomorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new
constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes
and existing LRCs, and iii) new constructions of high-rate generalized root protograph
(GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and
partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered.

First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure
channel. Recently, error correcting codes in the erasure channel have drawn great at-
tention for various applications such as distributed storage systems and wireless sen-
sor networks, but many of their decoding algorithms are not practical because they
have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes
in the erasure channel was introduced, which has good erasure decoding performance
with low decoding complexity. In this research, I propose new TS-AGDs for cyclic
codes in the erasure channel by modifying the parity check matrix and introducing the
preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the
perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through
numerical analysis, it is shown that the proposed decoding algorithm has good erasure
decoding performance with lower decoding complexity than the conventional AGD.
For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect de-
coding in the erasure channel, that is, the same decoding performance as the maximum
likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check
matrix and the submatrix inversion are also proposed and analyzed.

Second, I propose new constructions of binary and ternary LRCs using cyclic
codes and existing two LRCs for distributed storage system. For a primitive work,
new constructions of binary and ternary LRCs using cyclic codes and their concatena-
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tion are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and
6 are optimal in terms of the upper bounds. In addition, the similar method of the bi-
nary case is applied to construct the ternary LRCs with good parameters. Also, new
constructions of binary LRCs with large Hamming distance and disjoint repair groups
are proposed. The proposed binary linear LRCs constructed by using existing binary
LRCs are optimal or near-optimal in terms of the bound with disjoint repair group.
Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic
block interference and anti-jamming PR LDPC codes for follower jamming. The pro-
posed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric
channel with block interference and Nakagami-m block fading. In these channel en-
vironments, GRP LDPC codes have good performance approaching to the theoretical
limit in the channel with one block interference, where their performance is shown
by the channel threshold or the channel outage probability. In the proposed design, I
find base matrices using the protograph extrinsic information transfer (PEXIT) algo-
rithm. Also, the proposed new constructions of anti-jamming partially regular LDPC
codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS).
For a channel environment, I suppose follower jamming with random dwell time and
Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) mod-
ulation. For a coding perspective, an anti-jamming LDPC codes against follower jam-
ming are introduced. In order to optimize the jamming environment, the partially reg-
ular structure and corresponding density evolution schemes are used. A series of simu-
lations show that the proposed codes outperforms the 802.16e standard in the presence

of follower noise jamming.
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Chapter 1

INTRODUCTION

1.1 Background

Research on error correcting codes in the erasure channel is one of the major subjects in
information and communication theory. Erasure channel is a typical channel model for
wireless sensor networks and distributed storage systems (DSSs), where the locations
of symbol errors are known. In addition, some error channels such as those with block
fading (BF), block interference (BI), and jamming are often considered as erasure
channel because these approaches are advantageous for analysis and optimization of
coding schemes.

Subjects on the research of coding for these channels can be divided into two
parts; decoder implementation and code construction. For a decoder implementation,
it is known that codes for erasure channel have lower decoding complexity than error
channel. For low-density parity-check (LDPC) codes, low-complex belief propagation
(BP) decoder achieves the performance of maximum likelihood (ML) decoders for
sufficiently large codelength in the optimized constructions using density evolution
(DE) and avoiding stopping sets. However, existing decoders for classical algebraic
codes are generally highly complex and their performances are inferior to the ML

decoders.



Algebraic codes have a long history from Hamming codes to algebraic geometry
codes. The decoders of algebraic codes are designed using the mathematical properties
of the codes and thus it is difficult to implement practical decoders for algebraic codes.
However, lots of research works for their decoding algorithms have been done to re-
duce the decoding complexity and delay. In cyclic codes, one-step majority decoding
[1] and permutation decoding [2] schemes are exemplary methods which can be prac-
tically implemented using their cyclic property in the error channel. A low complexity
iterative decoder can be one of the solution as an implementable decoder and thus, the
iterative decoding algorithms and error correcting codes with iterative decoder such as
turbo and LDPC codes have been widely studied. In addition, there have been lots of
researches to apply iterative decoding to algebraic codes in error channels. In [3] and
[4], the iterative decoding of Reed-Solomon (RS) codes with sparse parity check ma-
trix and belief-propagation decoding algorithm is proposed. Iterative erasure decoder
(IED) of algebraic codes [5] has also been studied. However, IED has inherently in-
ferior decoding performance compared to the ML decoder and the gap between the
decoding performances becomes larger for the algebraic codes, because the sparse-
ness of their parity check matrices is not guaranteed contrary to the LDPC codes. Thus
a possible solution for decoding of algebraic codes is to modify the structure of the
decoder in the erasure channel.

Recently, one approach to overcome the inferior decoding performance of IED
for the algebraic codes in the erasure channel was proposed, called the automorphism
group decoder (AGD) for cyclic codes [6]. AGD uses the permutations of the automor-
phism group in the middle of the IED procedure. For cyclic codes, the permutation
operation can be substituted by the cyclic shift operation for codewords, which are
also codewords. In fact, many similar concepts have been proposed for cyclic LDPC
codes in the error channel such as multiple-bases belief-propagation (MBBP) [7] and
revolving iterative decoding (RID) [8], [9]. It was shown that for some cyclic codes,

AGD improves the decoding performance but it requires higher decoding complexity
1 © 11 &1
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and delay due to repeated decoding process.

In order to operate AGD efficiently, it is important to design the appropriate parity
check matrix. However, the conventional design method in [6] includes the problem
to find codewords with minimum Hamming weight known as NP-hard problem in
general. In contrast, the proposed TS-AGD includes a construction algorithm of good
parity check matrix with polynomial-time complexity and also has excellent decoding
performance with low decoding complexity for cyclic codes.

The proposed decoding process is done in two decoding stages, referred to as a
two-stage AGD (TS-AGD), that is, the first decoding stage finds the cyclic shift values
of the received vector for the successful erasure decoding while in the second decoding
stage, the erasure decoding process is done for the received vectors cyclically shifted
by the cyclic shift values found in the first decoding stage. Further, the proposed TS-
AGD algorithm can be implemented by the modified parity check matrix for the (n, k)
cyclic code such that some of the (n — k)-tuple column vectors in the parity check
matrix are standard vectors in the appropriate column indices and Hamming weight of
the row vectors in the parity check matrix becomes as low as possible, which requires
polynomial-time complexity. The numerical analysis shows that the proposed algo-
rithms are advantageous for two classes of cyclic codes. For perfect codes, it is shown
that the proposed modification of parity check matrix for TS-AGD achieves the perfect
decoding, showing the decoding performance identical to that of the ML decoding. For
the BCH codes with long codelength, TS-AGD and AGD with modified parity check
matrix have the near-ML decoding performance or better than the regular LDPC codes
with similar parameters. Further, the TS-AGD reduces decoding complexity compared
to AGD.

Generally, each check equation in the IED has its own erasure decoding capability.
For some algebraic codes, it is known that n — k check equations are not sufficient to
achieve good decoding performance. Thus, stopping redundancy was proposed [10],

which increases the number of check equations and it guarantees the successful de-
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coding for all the erasure symbols up to d,,;, — 1. However, stopping redundancy
increases the decoding complexity. Stopping redundancy has been studied for several
algebraic codes such as maximum distance separable (MDS) codes [11], Reed-Muller
codes [12], and algebraic geometry codes [13].
MDS codes are the algebraic codes which satisfy the Singleton bound, that is, for
(n, k,d) MDS codes as
d=n—-k+1. (1.D

It is known that MDS codes have the optimal decoding performance in the erasure
channel. The RS code is a well-known class of cyclic MDS codes that has been widely
applied to compact disc, satellite communication, and DSSs.

I propose another two-stage decoding scheme to decode cyclic MDS codes, by
modifying the TS-AGD by stopping redundancy, where the proposed TS-AGD offers
an explicit decoding method achieving decoding performance of ML decdoer. Further,
several lower bounds on the stopping redundancy for the perfect decoding of cyclic
MDS codes have been derived. Furthermore, the proposed TS-AGD with submatrix
inversion of the parity check matrix is analyzed as a generalization of the previous
method.

On the construction of the erasure codes, their intrinsic properties of the channels
are considered in the design procedure, which makes definite difference from the codes
optimized from the Gaussian error channels. In this research, new locally repairable
codes (LRCs) for DSSs and LDPC codes for follower noise jamming (FNJ) and Block
interference (BI) are proposed.

For a decade, coding for DSSs has attracted a considerable amount of attention
from researchers as the demand for data centers based on DSS grows exponentially.
In particular, regenerating codes and LRCs are mostly studied. LRC is designed to
minimize the number of storage nodes to be accessed during the repair process, called
the locality 7.

For practical usefulness, attempts to construct the optimal binagry, LRCs halv:e alsp
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been made, some of which achieve the optimality [29], [32]. For example, some con-
structions of optimal binary LRCs using bipartite graph [39], partial spread [40], [41]
and cyclic codes [29], [31] but their constructions are limited cases with some code-
length and Hamming distance upto 6. Similarly, ternary LRCs were studied [33], where
several constructions were proposed. Moreover, cyclic LRCs were introduced in [34].

In this work, new constructions of binary and ternary LRCs are proposed. In order
to construct binary LRCs. new construction methods using cyclic codes and existing
LRCs are proposed. For the binary case, it is shown that the proposed LRCs with
4 < d < 10 and some r for large portion of n are shown to be optimal or near-optimal
in terms of the upper bounds in [35] and [37]. The similar construction of binary case is
applied to the ternary ones, where ternary LRCs with good parameters are constructed.

Channels with block interference (BI) have been researched in wireless commu-
nication systems after the channel models were proposed in [53], where interference
occurs in the block unit, called a hop. If length of each hop is not small compared to
codelength, BI cannot be averaged over other hops and nature of BI channel is said to
be nonergodic.

Two-state binary symmetric channel with block interference (TS-BSC-BI) [54]
is a BSC channel with two states in each hop according to existence of BI. It was
adopted in the Gilbert-Elliot channel [55] and the channel with jamming in the military
communication [56]. In this dissertation, I propose a new class of flexible high-rate
LDPC codes, termed generalized root protograph (GRP) LDPC codes for a channel
with one BI hop among L hops. For the proposed construction, the techniques of low-
rate root [57] and root protograph (RP) LDPC codes [58] for block fading (BF) channel
are used. Note that design methods of protograph LDPC codes for BF channel have
also been researched recently in many literatures [59], [62], [63], [64].

Jamming and anti-jamming (AJ) schemes are considered as crucial issues in the
electric warfare environment and the military communication systems. As an efficient

anti-jamming schemes, information-theoretic approaches using channel modeling and
' ! | g
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coding schemes were extensively researched. For a channel modeling, channels with
jamming can be considered as a class of channels with BI but there also exists differ-
ence because jamming is intentionally designed to disrupt the communication link.

For one of AJ schemes, frequency hopping spread spectrum (FHSS) selects one
of frequency band using pseudorandom sequence, which can make it hard to know
the frequency hopping pattern and thus the system can obtain anti-jamming capability.
Therefore, jammer attempts to send jamming signal in partial band randomly, called
partial band jamming. Prior works to mitigate jamming use inter-hop interleaving,
called bit interleaving coded modulation and iterative decoding (BICM-ID) [46] and
RS concatenated coding [56] that can correct burst error caused by jamming. The prior
techniques have high anti-jamming performance but they can increase computational
complexity by decoding process.

However, there are more efficient jamming strategies one of which is a follower
jamming. In follower jamming scenario, jammer scans the occupied frequency bands
and send the jamming signal in the band found. To this end, jammer uses the fre-
quency scanner called determinator [47] or communication electronic support mea-
sure (CESM) [48] that can guarantee certain level of the scanning probability. Slow
frequency hopping (SFH) can be vulnerable to follower jamming environment. SFH
is required to lengthen the hop period or decrease hopping speed, both of which are
inevitable for high data rate communication.

In classes of the LDPC codes, partially regular LDPC (PR-LDPC) codes are the
codes which have small irregularity of degree distribution and is designed for unequal
error protection (UEP) [50]. PR-LDPC codes can also be used to AJ communication
systems. Simplified erasure-based channel environment and the corresponding density

evolution (DE) are proposed for construction of PR-LDPC codes.



1.2 Overview of Dissertation

This dissertation is organized as follows.

In Chapter 2, basic concepts of IED and AGD for erasure channel, LRCs for dis-
tributed storage system, and generalized RP and PR LDPC codes in the channels with
block interference and jamming are discussed. In the first section, operations of IED
and AGD are analyzed in the component of bipartite graph such as variable nodes,
check nodes, and their edges. Also, conventional algorithm in AGD is introduced. In
the next section, definition, bound, and existing optimal constructions of LRCs are dis-
cussed, especially for the binary case. Last, the channels with block interference and
jamming and system models are introduced. Note that block fading such as Rayleigh
and Nakagami-m fading can be considered together with BI and jamming. For a chan-
nel with BI, channel outage analysis using instantaneous input-output mutual informa-
tion is proposed as both implicit and explict form.

In Chapter 3, new two-stage automorphism group decoders for cyclic codes in the
erasure channel are proposed. In Section 3.1, some definitions used in Chapter 3 are in-
troduced. In Section 3.2, the proposed decoding algorithm for the binary cyclic codes
in the erasure channel is introduced by modifying the parity check matrix and the
AGD algorithm, called TS-AGD. For perfect codes, the proposed TS-AGD achieves
the perfect decoding in the erasure channel. For the BCH codes with long codelength,
the proposed TS-AGD achieves the near-ML performance. The numerical analysis of
the performance of the proposed decoding algorithm is used to verify the performance
improvement. In Section 3.3, the proposed TS-AGD algorithms are modified for the
cyclic MDS codes by using stopping redundancy and submatrix inversion. Then, sev-
eral lower bounds on the stopping redundancy and submatrix inversion for the perfect
decoding are derived.

In Chapter 4, new constructions of binary and ternary LRCs using cyclic codes

and existing LRCs are proposed. In Section 4.1, it is shown that some of the proposed

LRCs with Hamming distance larger than 4 are shown to be optim_a_il in'_‘tquina pEtHe —



upper bounds in [35] and [37]. In Section 4.2, the similar construction of binary case is
applied to the ternary ones, where ternary LRCs with good parameters are constructed.
In Section 4.3, new constructions of binary LRCs with disjoint repair group using ex-
isting LRCs are proposed. For new constructions, it is shown that some existing LRCs
can also be made by the new construction. In Section 4.4, The proposed construc-
tion method is applied to construct optimal or near-optimal binary LRCs with large
Hamming distance larger than or equal to 8.

In Chapter 5, new constructions of high-rate GRP LDPC codes for a nonergodic
BI and PR LDPC codes for FNJ are proposed. In Section 5.1, a new design method
of GRP LDPC codes is proposed. In Section 5.2, their asymptotic analysis is given
and finite-length performances of the proposed LDPC codes are compared with the
full-diversity LDPC codes and the channel outage probability by numerical analysis.
In Section 5.3, follower noise jamming model is introduced. In Section 5.4, construc-
tion method of PR-LDPC codes for anti-jamming is proposed and numerical analysis
is done. In the simulation, the same codelength as LDPC codes of the IEEE 802.16e
standards are compared. The result shows that the proposed codes have superior per-
formance than the standard for all the symbol sizes and jamming environments.

Finally, the concluding remarks are given in Chapter 6.

1.3 Notations

In this section, mathematical notations throughout the dissertation are summarized.
All operations are based on the finite field IF,, where ¢ is the size of the field. Let v
be a row-wise vector and v; be the i-element of v. Then, the support of v is denoted
by supp(v) = {i;v; # 0} and the Hamming weight of v by wty(v) = |supp(v)|. Let
[a,b] = {i € N;a < i < b} and [i] = [1,] for the set of positive integers Z, . Let 1

and 0 be all-one and all-zero vectors, respectively.



Chapter 2

Preliminaries

2.1 1ED and AGD for Erasure Channel

In this section, I introduce the decoding procedure of IED and AGD for erasure chan-

nel. First, I will introduce the concept of IED.

2.1.1 Iterative Erasure Decoder

An (n, k) error correcting code has an (n — k) x n parity check matrix H, which can
be represented by a bipartite graph G with n variable nodes and n — k check nodes.
Let V and U be sets of variable nodes and check nodes and let d,,, and duj be degrees
of a variable node v; € V' and check node u; € U, respectively, for 0 < ¢ < n —1
and 0 < j < n — k — 1. The bipartite graph is then denoted by G=(V, U, H). In
the erasure channel, the variable nodes have two different states, i.e., erasure and non-
erasure states, while the check nodes have three states, i.e., decodable, non-decodable,
and non-erasure states. The decoding procedure of IED consists of several iterations,
where each iteration performs check node update (CNU) and variable node update
(VNU) operations sequentially. It is assumed that CNU and VNU in the decoding
procedure are operated in a parallel way, known as flooding decoding.

The CNU operation is the procedure that each check node ﬁn({iﬂs state ?qu::ogr;lgi— i



2. Select the state by the
number of erasures

1. Add to count the . ‘The number of erasures'> 2:

number of erasures ‘non-decodable’

Check node l:'

Degree 1

Variable node Q de

‘The number of erasures'= 1:
‘decodable’

‘The number of erasures'= 0:
) ‘non-erasure’

Erasure sequence 0 1 0 0

Figure 2.1: CNU operation of IED.

2. Compute operations to
decode nodes of erasure

1. Find the decodable

check nodes —1/c T
4 <--- Scalar multiplication

****** Addition

+--- Scalar multiplication

Coxo + Clxl + CzXz + C3X3 + C4x4 =0

Figure 2.2: VNU operation of IED.
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ing the number of the erasure states of the variable nodes connected to itself. A de-
codable state of a check node is declared when the number of the connected variable
nodes in the erasure state is 1. If the check node is connected to two or more vari-
able nodes in the erasure state, then a non-decodable state is declared for the check
node. The check nodes with no connected variable nodes in the erasure state are called
non-erasure states. The VNU operation is a procedure by which variable nodes in the
erasure state are decoded using connected decodable check nodes. Fig. 2.1 and 2.2
shows the CNU and VNU operations. Note that after the decodable check nodes de-
code the corresponding variable nodes in the erasure state, then state of the check node
is changed to the non-erasure state. In the next subsection, I will introduce the concept

of AGD.

2.1.2 Automorphism Group Decoder

AGD can be applied to cyclic codes, where AGD consists of the repeated IED and
cyclic shift operations of the received vectors. That is, if there is no decodable check
node, then the received vector is cyclically shifted until decodable check nodes are
found. If it is found, the IED algorithm is repeatedly applied to the cyclically shifted
received vectors.

It is known that the cyclic shift operation is easy to implement with negligible
complexity and delay. In the AGD, IED should be performed for each cyclically shifted
received vector until the decoding is successful or the number of cyclic shifts is equal
to the length of codeword. Although the decoding complexity and delay of the AGD
are much higher than those of the IED, the decoding performance of the AGD is much
better than that of the IED.

The decoding performance and complexity of AGD can be improved by using an
optimized parity check matrix. For binary case, Hehn uses cyclic orbit generator (cog)
and cog family to construct parity check matrix [6]. Two vectors v; and vy are said to

be cyclically indistinguishable if the cyclic shift of v; is identical to V2, and otherwise,
j O

-'-\-\."i _.;_._.I--!i ..-'.:E
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cyclically distinguishable. Then, the cog is defined as the cyclically distinguishable
binary codeword of a dual code with minimum Hamming weight, which can be used
as a row of the parity check matrix. Cog family is the set of cogs that has the same
Hamming autocorrelation property, where the Hamming autocorrelations of cog’s are

defined as

|00;| = cog - cog™, |Z0,| = (1 — cog) - cog!™ -

02 — con- (1 cos™), 122, = (1~ cog)- (1 —cog™)
where cog(™) is right cyclic shift of cog by 7 and - denotes inner product. Then, the
parity check matrix is constructed by n—k cogs, where it is desirable to select the n— k&
cogs from cog families minimizing the upper bounds of Theorem 3.9 in [6]. In fact,
selecting such desirable cogs and cog families requires exponential-time complexity
because all the minimum weight codewords should be searched. Moreover, there is no
guarantee that it is the optimal construction. Therefore, it is very difficult to construct
the parity check matrix for AGD of the cyclic codes with long codelength. Therefore,
new construction methods with lower polynomial-time complexity and good decoding

performance needs to be researched.

2.2 Binary Locally Repairable Codes for Distributed Stor-

age System

In the distributed storage system, lots of storage nodes are distributed in order to store
and process a big data. In DSS, single node can fail either temporarily or permanently.
Repair process, replacing a failed node with a new node with same functionality, is
common phenomena. Computation and communication cost of the repair process are
not small compared to the total cost. Therefore, LRC is designed to minimize the
number of storage nodes to be accessed during the repair process which can reduce the
communication bandwidth and latency, called the locality r. In general, LRC has the

parameters (n, k, d, r). It is clear that LRC with locality r should satisfytthe ¢ondifiph. —
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that the union of supports of checks whose Hamming weights are less than or equal to
(r+1) is equal to [n].

As a class of LRCs, binary LRCs [32] have been researched actively for advantage
of low-complex XOR operation. In [30], the advantage of binary LRCs are numeri-
cally analyzed. In specific, (n, k,d,r) = (15,10,4,6) binary LRC is compared with
(16, 10,4, 5) nonbinary LRC, (14, 10) RS codes, and 3-replications which were used
in the conventional DSSs. In the four metrics; encoding complexity, repair complex-
ity, mean time to data loss (MTTDL), and storage capacity, the proposed binary LRC
has evenly good performance whereas the conventional codes have fatal drawbacks for
some metrics.

In addition, it is called disjoint repair group if supports of local checks are pair-
wisely disjoint. It is widely used in the constructions because DSS has the hierarchical
structure from the storage unit to the whole data center, which makes correlated and
burst erasures among the same region. Therefore, the repair group should be con-
structed disjointly so that the only independent nodes are used in the repair process.

For following subsections, I introduce bounds, optimality, and existing construc-

tions of LRCs.

2.2.1 Bounds and Optimalities of Binary LRCs

In this subsection, bounds and optimalities of binary LRC are discussed. Especially,
bounds and optimalities between two parameters such as d and r have been studied,
where (n, k,d,r) LRC is said to be r-optimal if (n, k,d,r") LRC does not exist for
r’ < r. Similarly, (n, k, d,r) LRC is said to be d-optimal and k-optimal if (n, k, d’, r)
and (n, k', d, r) LRCs do not exist for ' > d and k' > k, respectively. LRC is said to
be optimal if LRC is r-optimal, d-optimal, and k-optimal. Moreover, the well-known

bounds for LRCs are listed as follows.
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Proposition 2.1 (Singleton-like bound [35]). For an (n,k,d,r) LRC,

k

dSn—k—[—‘—i—?. 2.2)
T

Proposition 2.2 (Cadambe-Mazumda (C-M) bound [36]). For an (n,k,d,r) linear

LRC,

k < min {zr + k((,zg(n —z(r+1),d)} (2.3)
zeZt

where k((,?,z (a,b) is the largest possible code dimension for codelength a and minimum

distance b of the linear code over F,,.
For linear binary LRCs, explicit bound with d > 5 was proposed as follows.

Proposition 2.3 (L-space bound [37]). For an (n,k,d,r) linear binary LRC with d >

5and2§r§%—2, it holds

rm rn rn
< —min{logy (14 —), —— 1 2.4
S mm{og2< +2)’(r+1)(r+2)} @4

For for linear binary LRCs with disjoint repair groups, more improved bound from

(2.4) was also proposed as follows.

Proposition 2.4 (L-space bound with disjoint repair group [41]). For the (n,k,d,r)
binary linear LRC with d = 2t + 2 and n = (r + 1)l, it holds if t + 1 is odd,

l
rn r+1
ks r+1 B 10g2 Z H < Qij > ) (2.5)

0<ir+..+4 <[ 452 =1

else ift + 1 is even,

!
rn r+1

< — 11

M [0g2< 2 H(zij>+

0<ig+..+i <[22 ] 7=1

l +1

Zz‘1+...+u:% Hj:l (r2z'j )

- . (2.6)
Ezsd

There exist many optimal and near-optimal constructions of LRCs. For ¢ > n 41,

there exist optimal LRCs for almost all parameters. However, constructions of optimal

LRCs on the ¢ < n + 1 including the binary cases are not completely known-1] |
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Table 2.1: Optimal existing binary LRCs with disjoint repair group

(d,r) Constructions
(4,r < 3) bipartite [39]
(6,2) cyclic code(limited n) [29], partial spread [41]
(6,3) partial spread [41]
(10,2) cyclic code(n = 2™ + 1) [29], [31]

2.2.2 Existing Optimal Constructions of Binary LRCs

Optimal binary LRCs with d < 6 have been found by various methods, which are
listed in Table 2.1. Especially for (d,r) = (6,2), recent works in [41] can find the
optimal LRCs of almost all cases. However, it is still open problem to find optimal
or near optimal binary LRCs with disjoint repair group for d > 8 or r > 3. There
are few constructions of optimal LRCs by (2.4) for d > 8 or r > 3 in [41]. In [41],
some k-optimal LRCs with d > 8 are proposed using partial spread which requires
exponential complexity and thus, it is hard to find optimal LRCs with long codelength.
Therefore, constructions of binary LRCs with new parameters and lower complexity

needs to be researched.

2.3 Channels with Block Interference and Jamming

In this section, I introduce channels with block interference with binary phase shift
keying (BPSK) modulation and jamming with M -ary frequency shift keying (MFSK)
modulation. In fact, they are similar in many sense. First, I will introduce the channels

with block interference.

2.3.1 Channels with Block Interference

The channel models of block interference are divided into the two cases of TS-BSC-
BIs with and without BE. Here, k information bits are encoded into the (n, k) binary

:l -I

—
Sy |
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protograph LDPC code with n — k check nodes (CNs), n variable nodes (VNs), and

code rate R = % The codewords are indexed as

C = (Cl, ...,CL) = (6171, 6172, ---Cl,ha 0271,

02727---7CL,1,-~-7CL,h) € F2n 2.7

where ¢; denotes the partial codeword in the ¢-th hop and & denotes the length of the
hop with A |n and the number of hops L = 7. Binary phase shift keying (BPSK) modu-
lation converts ¢ to X = (X1, ...,Xz) with elements z; ; = (—1)% fori € [L], j € [h].

The received signal can be expressed as
Yij = (1= Bi)zij +n (2.8)

where «; denotes the fading coefficients, 3; € {0, 1} denotes the indicator of BI with
probability p = Pr(8; = 1), and n; ; is additive Gaussian noise with A/(0, o%). Note
that existence of BI is often treated in the binomial distribution independent from BF
and noise [55], [56]. In this model, BI hops only contain additive Gaussian noise inde-
pendent from the desired signal. In this dissertation, two specific channel models are

considered as follows:

1) Channel with BI and without BF

0 with BI and wihtout BF in the ¢-th hop
o = (2.9
1 without BI and BF in the -th hop
2) Channel with BI and BF
0  with BI and BF in the ¢-th hop
o = { (2.10)
«; without BI and with BF in the ¢-th hop.

Clearly, the hops with BI contain only interference and the hops without BI and BF
contain the desired signal and additive Gaussian noise. Here, I assume that a; follows

the Nakagami-m distribution as

2mm€2m71 —m§2

Jai(§) = Ty ¢ ] G _,.(2.-};15) -
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where I'(m) is the Gamma function. Then, o2 follows Gamma distribution with E(a?) =
1. The Nakagami-m fading model has the advantages of simple computation and good
matching with theoretical and practical fading models when selecting m properly. The
following cases show the relationships between Nakagami-m and other theoretical

fading models as:
1) m = 1; Rayleigh fading

2) _ (K+1)?%,

= 51 approximated Rician fading with parameter /<

3) m — 4o00; additive Gaussian channel.

At the receiver, the LDPC decoder uses the BP algorithm using the CSIs of noise
variance and fading coefficients, where perfect CSI can be known to the decoder. Also,
the initial log-likelihood ratio (LLR) message value of the BP decoding algorithm is

written as

%, without BI in the i-th hop
s (2.12)

0, with BI in the ¢-th hop
where «; is the estimate of the channel coefficient. Although the BP algorithm was
initially proposed only for the Gaussian noise channel, it is known to be universally
good for fading channels if I use the channel LLR as in (2.12).
The channel analysis with BI can be given using the information-theoretic method,
that is, with mutual information (MI). Note that the MI of each hop with Gaussian

a?ES

noise is expressed as I ( N ) where % denotes the signal to noise ratio per each

codeword bit and

e (2.13)

T

Iote) = [ otr.) logylo(r, w)ldr — 5 log,

with ¢(7, ) = ;/x (e==(T+1)? 4 o==(T=1)*) [58] Note that I () is upper bounded

by min{1,logy(1 4+ x)}. The channel capacity is the expectation of MI of each hop,

which is expressed as

(2.14)

b ) 1 ] —
H Z-1TH ©F 7

1 o2E,
w5 ()
i€[L]
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Then, the outage probability is defined as P(I4 < R), which is the lower bound for the
frame error rate (FER) of any coding scheme for the given channel and R. It is possible
to derive outage probability by generating «; randomly and checking /4 < R, but the
outage probability can be analyzed using the following method.

For a channel without BF, if a codeword has L,, hops with Bls, MI reduces to

L—-1L, E
s = v, 2.15
A 7 G<N0> (2.15)

The outage probability can be asymptotically given as

LR B
Pout,Lu = P(IA < R) =Uu <L — Lu — IG <]V(]>> (216)

where u(z) returns 1 if x > 0 and 0, otherwise. Equation (2.16) shows the outage

probability of the channel with BI and without BF in the Gaussian noise channel.

Thus, the channel threshold is defined as % = R e satisfying I <REb) = L“fu’

where the outage probability goes to zero. Using p, the outage probability is given as

Pout,p Z[/ ()p( ) out,L,=l’
= S (1) (1= ) (2 — I (52)) (2.17)

=1 ;na(:)c (l/)pl/(l _ p)L—l/

where p(l’) represents a binomial distribution and I}, .. is a nonnegative maximum
integer satisfying +—— z' < Iq ( ) Note that the channel threshold is given as ]]f,

satisfying I (REb) =7 LZR

mazx

For a channel with BF, the outage probability cannot converge to zero even though
ﬁ—; is sufficiently large. For Rician fading, the implicit form of the outage probabil-
ity was derived in [61]. In addition, the lower bound of the outage probability for
Nakagami-m fading was also derived in [60]. The lower bound of the outage proba-
bility for the channel with BI and BF can be obtained as follows.

The i-th hop in L — L,, hops without BI is called good if logy(1 + a? ﬁ;) >1

and bad, otherwise. In fact, I have I;(a? E, ) < 1 for good hops because I (« ZQJ’\E,S) <

min{1,logy(1 + ai % Es =)} [60]. Then, the probability of good hop is given as| p_/.-'_'—'}: -
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Pr(a? > 1/%) Let U, G, and B be sets of hops with BI, good hops, and bad hops,
respectively and thus |/| = L, and |G U B| = L — L,,. Then, the probability of ¢ good
hops for L,, hops with Bl is expressed as

Pr(|G| =t) = (L _tL“> (P —p)E et t e [L - L) (2.18)

T'(m,m/ 5)

Note that p’ =
is an incomplete Gamma function [60]. Clearly, total channel capacity of L hops, 4

is upper bounded as

9]+ Sieslog (1+ a2£2)

Ix < 2.19
A< 7 (2.19)
Thus, the outage probability can be lower bounded as
2 Es
Pout.1ujc| = Pr| 1G]+ Z logy (1+a?=2) <LR|. (2.20)
icB No

Let A; be a random variable log, ( +a? Es ) whose pdf A; is given as [60]

foo( 25;1> :
04- Es NO 2 10g2 0 < < 1
0 otherwise

where F 2 represents the cumulative distribution function of a?. Then, the lower
bound of the outage probability of L,, hops with BI is rewritten as

L—L,
Pout 1y > Z (LR — t)Pr(|G| = t) (2.22)

where F(LR—t) = Pr(Zﬁ;lL »~! A, < LR—t), which can be calculated numerically
by the fast Fourier transform (FFT). Suppose that the hops with BI are generated with
probability p and the lower bound of the outage probability is derived as

L

L / _q/
Pout,p > g <l,>pl (1 - p)L : Pout,Lu:l’- (2-23)
— 1] O 1 = —
I'=0 AN =—T1TH &
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2.3.2 Channels with Jamming with MFSK and FHSS Environment

From now on, the channel with jamming with MFSK modulation and FHSS environ-
ment are introduced. For block Rayleigh fading channel, I consider an ¢-th symbol in
the k-th hops, where 0 < ¢ < I —1and 0 < k < K — 1. Suppose that the messages
are sent on the m-th tone of M-ary FSK, Then the received symbol without jamming
Yrn, ki 1S expressed as

Yinki = U/ Eki + 10 (2.24)

where &} ; is the energy value of the symbol, n is an additive white Gaussian noise
with zero mean and variance % and oy, is normalized Rayleigh fading factor with
E|ox2] = 1 and probability density function p(a) = 2a,e~ . Note that a, depends
on the hop in block fading. For MFSK demodulation aspects, cosine and sine integra-
tors detect phase ¢ with uniformly distribution over [—, 7]. The power, occurrence,
and interval of jamming rely on the category of jamming, which will be discussed in

the next subsection. In short, jamming signal is expressed as

1, If jamming occurred in ;
5(k,i) = J s Yok (2.25)
0, otherwise.

Then, the received signal is expressed as

ap+/Ericosp + jo(k,i) +n, m=m

T'me,k,i = (2.26)
jo(k,i) +n, otherwise
apr/Epising + jo(k,i) +n, m=m

Prns i = Z (2.27)
Jjo(k,i) +n, otherwise.

Demodulator calculates the squared values and selects the largest one as demodu-

lated message as

My ; = argmax,,, (T ki) (2.28)
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where 7, . ; = r%w’k’i + 7"72”37,671..

In the decoding procedure, one of the crucial parameter is binary log likelihood
ratio (LLR). Binary LLR value in the decoder can be different by existence of side
information, but oy, or statistics of j is difficult to know. Here, the decoder uses LLR

considering only statistics of n, which is expressed as

A/ (Sk,i)r?n’ i
ZG(m,i):OI()( Ny - )
2

\/ (é'k,i)rfn’ i
ZG(m,i):lI()( No - )
2

where G(m, 1) is a function that returns 0 when the i-th bit mapped from message m

A(rg,;) = log (2.29)

is 0 and otherwise, 1.
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Chapter 3

New Two-Stage Automorphism Group Decoders for Cyclic

Codes in the Erasure Channel

In this chapter, new two-stage automorphism group decoders for cyclic codes in the
erasure channel are proposed. For this, additional definitions are introduced in the

following section.

3.1 Some Definitions

In this section, some definitions for the proposed algorithms are presented as follow.
First, several definitions of a binary sequence are presented. Let sp(¢) denote a char-
acteristic sequence of index set D such that sp(¢t) = 1if t € D and sp(t) = 0,
otherwise. Two binary sequences frequently used in this chapter are defined as fol-

lows.

Definition 3.1 (Erasure sequence). Erasure sequence s.(t) is defined as a character-
istic sequence of the erasure set S., which is the set of indices of erasure symbols in

the vector received over the erasure channel.

Definition 3.2 (Parity check sequence). Parity check sequence s,(t) of the (n—k) xn

parity check matrix H of the (n, k) cyclic code is a binary sequencejof length n defined
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as
1, lth(ht) =1
sp(t) = 3.D
0, otherwise
where hy is the t-th column of H. Furthermore, let S, denote the support set of sp(t),

i.e., the set of indices of column vectors with Hamming weight 1.

For column indices of the parity check matrix [, the components of S, are called
standard indices and otherwise, non-standard indices. Thus, the number of 1’s in a
length of s,(t) is smaller than or equal to n — k. The Hamming cross-correlation of

two binary {0, 1} sequences, s.(t) and s, (%), is defined as

I
—

n

Ry (1) = Se(t)sp(t+ 1) (3.2)

i
o

where Ry (7) takes values in {0,1,2,...,n — k}. The stopping redundancy for the

parity check matrix is defined as follows.

Definition 3.3 (Stopping redundancy p [11]). Stopping redundancy p of the code C
is the minimum number of check equations for which the decoder can correct all of
the erasure patterns with erasure symbols less than or equal to d — 1, where d is the

minimum distance of the code C.

A mask is a useful notation to represent the parity check matrix of MDS codes be-
cause only the location of nonzero values in the parity check matrix is of our interests,

which is defined as follows.

Definition 3.4 (Mask). Mask A is an (n — k) X n binary matrix whose component a; ;

is 1 if the (i, j) component of matrix H is nonzero and otherwise, zero.

Note that mask A is the same as H for binary codes. It is known that the ML
decoding performance in the erasure channel is best, that is, a practical decoder in the
erasure channel can have the same or inferior erasure decoding performance to that of

-
= |
L

the ML decoder. At this point, the perfect decoding is defined as follows« -7
."\-\._! - ;.. - |
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Definition 3.5 (Perfect decoding). It is called perfect decoding in the erasure channel

if its erasure decoding performance is the same as that of ML decoder.

In general, perfect decoding is not common because it is rarely possible to show it.
In this chapter, the perfect decoding is shown by checking all cases of erasure patterns
for some of the cyclic codes with small values of n and k.

There is an example of (8,4) RS code, where an ML decoder can correct any four

erasure symbols regardless of their locations.

Example 3.1 (AGD). Suppose that an (8,4) RS code is defined in Fy7 and its generator

polynomial is given as

k-1
g(z) = [J(z — 2") = 2" + 22° + 22 + 162 + 13. (3.3)
1=0

Then, the corresponding parity check polynomial is obtained as

8
-1
_ (" 1) =2t 1528 + 222 + 2+ 13 (3.4)

and the systematic parity check matrix can be constructed from h(x) as

1000 4 9 8 4
01 00 1 2 11 9

H— (3.5)
0 01 0 15 5 15 9

000 1 15 2 1 13

The parity check matrix H can be described by a bipartite graph as shown in
Fig. 3.1. Circles represent variable nodes and squares represent check nodes and the
edge between the i-th circle and the j-th square indicates that the (i, j) component
of H is nonzero. In Fig. 3.1, the circles with dashed line are variable nodes in era-
sure states, where there are four erasure symbols. Then, the erasure sequence s.(t) is
(1,0,1,0,1,0,0, 1) and the parity check sequence s,(t) is (1,1,1,1,0,0,0,0).

The AGD procedure is described in Fig. 3.1. In the first bipartite graph Fig. 3.1,

the decoder performs CNU operations and confirms that there is.-"lé'i cheek pode inln — 7
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decodable state. The IED declares a decoding failure, whereas the AGD proceeds to
the next decoding procedure by cyclic shifting the received vector. In the second bipar-
tite graph of Fig. 3.1, one right cyclic shift operation for the received vector and CNU
operation are done. After four CNU operations, it is found that one check node is in a
decodable state, which can proceed to a VNU operation to correct the fourth erasure
symbol. In the third bipartite graph of Fig. 3.1, after three CNU operations are per-
formed, the decoder finds that the other check nodes are all in decodable states, which
can proceed to three VNU operations to correct the three remaining erasure symbols
and then the decoding procedure is completed. In the above decoding procedure for

AGD, three IED operations and one cyclic shift are performed.

Example 3.1 shows that the AGD has superior performance to the IED. However,
successive IEDs are needed for each cyclic shift operation, which is the main issue of
the decoding complexity and delay in the AGD. This example shows that it is needed
to select cyclic shift values and construct parity check matrix carefully to reduce the
decoding complexity. In the next section, I propose a new decoding scheme for cyclic

codes.

3.2 Modification of Parity Check Matrix and Two-Stage AGD

In this section, I propose a new modification method for the parity check matrix and a
two-stage decoding algorithm, and the result of a numerical analysis for the proposed

decoding algorithm is discussed.

3.2.1 Modification of the Parity Check Matrix

First, I propose a method to modify the parity check matrix for the proposed two-
stage decoding algorithm because the decoding performance of the proposed two-stage
decoding algorithm depends on the structure of the parity check matrix. The following

criteria are used for the modification of the parity check matrix usiglg, De_ﬁnitimil:3.2.=l
A _.;_. 4 .I-- I; ..-'.: |
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Figure 3.1: AGD for (8, 4) RS code in Example 3.1.

1) Each row of the parity check matrix has as low Hamming weight as possible.

2) The parity check sequence of the parity check matrix has Hamming autocorre-

lation values as low as possible.

3) Modify the parity check matrix such that as many of its column vectors as pos-

sible are the standard vectors.

In fact, the best criteria for the parity check matrix of (n, k) cyclic codes can be de-

scribed as:

1) The Hamming weights of all rows of the parity check matrix are equal to the

minimum Hamming weight of its dual code.

2) All Hamming autocorrelation values of the parity check sequence of the parity

check matrix are equal.
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3) n — k columns of the parity check matrix are standard vectors.

It is easy to check that in order for the parity check sequences to satisfy the second
criterion, they should be the characteristic sequences of cyclic difference sets D¢ with
parameters (n, k, A) for (n, k) cyclic codes, if their parameters are allowed for the
cyclic difference sets. Note that k-subset D¢ of a cyclic group G with order n is a
(n, k, \) cyclic difference set if every nonzero component of G has exactly \ repre-
sentations as a difference d. — d., with components from D¢ [16]. It is known that
some cyclic codes satisfy the above best criteria. The other criteria can be compro-
mised if one criterion cannot be achieved due to the other criteria. For these cases,
it is recommended to apply the priority as the descending order to the three criteria
from the empirical results, the detailed procedures of which are given in the numerical
analysis in the next subsection.

The new decoding algorithms together with the proposed modification of the parity

check matrix will be explained in the next subsection.

3.2.2 A New Two-Stage AGD

Using AGD algorithm, I propose a new two-stage AGD of (n, k) cyclic codes in the

erasure channel as follows.

a) Preprocessing Stage (First Decoding Stage)

Find a {0, 1} parity check sequence s,(t) of length n from the parity check matrix
H of an (n, k) cyclic code. Find a {0, 1} erasure sequence s.(t) of length n from the

received vector r = (g, r1, ..., 7,—1). Then, calculate a Hamming cross-correlation as

n—1

Ry(m) = sp(t)se(t+7), 0<7<n—1. (3.6)
t=0

Clearly, Ry (7) takes values of the nonnegative integers less than or equal to min{|Se/|, |Sp|}
because | S| is the number of erasure symbols and | S, | is the number of standard vec-

tors of the parity check matrix. It can be assumed that the decodiq&@om@lq@ty bfEE —
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Figure 3.2: The second stage decoding procedure of the TS-AGD of 7 such that
Ry (1) = |Se|.

preprocessing stage for each 7 is analogous to the CNU of one check node. If there

exists 7 such that Ry (1) =

found, cyclically shift the received vector and proceed to the second decoding stage
for r() in the order of 7’s such that values of Ry (7) are decreasing, where r(7 is a

cyclic shift of r by 7.

b) IED Decoding Stage (Second Decoding Stage)

In the second decoding stage, the IED algorithm is used for decoding of the cyclically
shifted received vector according to the values of Ry (7). Recall that S, is the support
set of sp(t). Let r(M = (Pm—ryTn—rt1, .-, Tn—r—1) be a received vector cyclically
shifted by 7, where erasure symbols are located in the indices in St = = {t|se(t—7) =

1,0<t<n-—1}.

1) For 7 suchthat Ry (7) = |Se|: Itis clear that SéT) C S, that s, all of the erasure
symbols in () are located in the indices of standard vectors. Note that the i-th
component of the received vector r is expressed as the transmitted symbol c;

for a non-erasure symbol and ¢; for an erasure symbol. Supposp that r(7) Ican be
.-' .y - 1 . & |
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2)

split into two n-tuple vectors as

r( =) 4 p(7) (3.7)

ne

where the j-th component of rg) is denoted as ¢; for j € SéT) and otherwise,

0 and the j-th component of r,(;) is equal to the j-th component of r(7) for

j¢ SéT) and otherwise, 0. In general, the syndrome vector should be zero as

S=He = HeD) + HEO) =0 (3.8)
and thus
HED) = HED) . (3.9)

If the j-th column vector of H is the i-th standard vector u;, ¢; is equal to the
i-th component of H (rffe))T because Ry (7) = |Se|. Clearly, each j-th column
for j € S, C S) has a different standard vector u;. In this case, I can recover all
of the erasure symbols by H (r%Te))T in one iteration, which is described in Fig.

3.2

For 7 such that Ry (7) = |Se| — 1: In this case, I have one erasure symbol in
the non-standard vector of i and the other erasure symbols are located in the
column indices in S),. Here, the decoding process is done in two steps, that is,
one for one erasure symbol in the non-standard vector of H and the other for
the other erasure symbols with indices in S,. Suppose that the set of erasure
symbol indices is given as {ep, €1, €2, ..., e,_1}, where z is the number of era-
sure symbols. Suppose that the e;-th column is the i;-th standard vector w;,,
0 <j < z—2,and the e,_1-th column of H is a non-standard vector. I also
have |S,| — z+ 1 standard vectors in H, where non-erasure symbols are located.
In the first decoding step, assume that for z < ¢ < |S,|, some 7;-th component
of the e,_1-th column of H is equal to 1. Then, using the 7;-th row of H, the

erasure symbol ¢, _, can be recovered because there is no erasure symbol ex-

cept for ¢., , at the positions of component 1 in the ij-th_.{Q}V -Q:f H;".F.hqnf II =1
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Figure 3.3: The second stage decoding procedure of the TS-AGD of 7 such that

Ry(t

3)

)= [Se - L.

go to the second decoding stage, which is the same as that of R(7) = |S.|. If
the i;-th component of the e._1-th column of H is 0, decoding of the first step
cannot be successful because e,_; disappears in the IED procedure. If the first
decoding step is not successful, then I try to decode it for other 7 values such

that Ry (7) = |Se| — 1. The second decoding procedure is described in Fig. 3.3.

For 7 such that Ry (1) < |Se|—2: Let S, = {t|s,(t) = 0}, i.e., the complement
of Sp. Let S, = Sy, US,,,., where S, is a subset of indices such that the erasure
symbols exist and Sp,,, = S, \ Sp,. Similarly, let S, = S, U S,,. and then
clearly, |S,, | = Ru(7). For j € S,,.., suppose that the j-th component of the
e;-th column of H with e; € S . 1s 1 and that the j-th components of the other
columns with indices in S, \ {e;} of H are all zero and further, there exists
u; in the columns with indices in S, . Then, I can recover the erasure symbol
with index e;. That is, all erasure symbols except for ¢, are disappeared in the
inner product of the j-th row of H and the received vector cyclically shifted
by 7 and thus ¢, can be recovered. To decode the remaining erasure symbols,

it is needed to return to the preprocessing stage to find the values of 7’s with

higher values of Ry (7). The second decoding stage of the proposed two-stage

- " % x
¥ [ 11 &==|
-"*-_i = '1.'1 '-'!
| ]
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Figure 3.4: The second stage decoding procedure of the TS-AGD of 7 such that
Ry (1) <|Se| —2.

decoding algorithm is described in Fig. 3.4.

The overall decoding procedure is described in Algorithm 3.1 and Fig. 3.5 shows

a flowchart to summarize the proposed decoding algorithm.

3.2.3 Analysis of Modification Criteria for the Parity Check Matrix

This subsection analyzes the modification criteria of H for (n, k) cyclic codes. The
first criterion is related to the number of standard vectors, that is, the number of ¢’s
such that s,(t) = 1, which is less than or equal to n — k. As described in the previous
subsection, the proposed TS-AGD procedure can be done for the cyclically shifted
received vector r(7) such that Ry (7) has higher values. As the number of 1’s in sp(t)
increases, it is more probable for Ry (7) to have high values.

The second criterion is how to locate the standard vectors in the parity check ma-
trix. It is not easy to prove the second criterion and thus the following theorem replaces

the proof of the second criterion. First, I need a lemma for provin% the foﬁllowiﬂg the-
-\-.._! _l\.;_. i .I-- I: ..-'.: I
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Algorithm 3.1 Two-stage AGD
Require: received codeword r, s,(t), modified /, and IED

U = ¢,v < 0; {v:n-tuple vectors}
r® ¢« r
a;
forr=0ton —1do
se(t) < r(©); {obtain s, (t) from r(¥)}
Calculate Ry (1) = 2774 se(t)sp(t +7)
if Ry (7) = |Se| then
Obtain r(7) by cyclic shifting r(®) by 7
Do IED for r(7)
STOP
end if
Vr < Rp(7); {v;: 7-th component of v}
end for
fori =1tondo
7'« argmax ¢ ,,_ 1\ Vr, U < U U{T'}
Obtain r(™) by cyclic shifting r(¥) by 7/
Do IED for r(7)
if v.» = 1 and the erasures in the non-standard indices are decoded by IED then
Do IED to decode the remaining erasure symbols
STOP
else if there exist the decoded erasure symbols by IED then
U<+ ¢
Obtain r(®) by cyclic shifting r(™) by n — 7/
Goto a;
end if
Obtain r(¥) by cyclic shifting (™) by n — 7/

end for p
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Figure 3.5: Flowchart of the TS-AGD algorithm.

orem.

Lemma 3.1 (Bonferroni inequality [14]). Let E;, i € A, be sets of components. Then,

I have the following inequality as

Z |Ei| — Z ﬂEZ <
ICA|I|=1 ICA,|I|=2 liel
Uel< X \Ei!—,j‘ > [NE| 610
i€A ICA,|Il=1 ICA,|I|=2 liel

Theorem 3.1. In the upper bound of Lemma 3.1, the number of occurrences of Ry (1) >
|Se| — 1 for 0 < 7 < n — 1 is maximized if the parity check sequence of the modified

parity check matrix has a particular constant dependent on-|Se| aufpgorng_{atz’la ya_lyaf. =
SEA
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Figure 3.6: Number of doubly counted erasure patterns for 7 such that Ry (7) = |Se|.

Proof. First, it is desirable for the proposed decoding algorithm to successfully decode
more erasure patterns, which is possible if Ry (7) > |Se| — 1. Thus, I have to modify
the parity check matrix, for which Ry (7) > [Se| — 1 is most common for as many

shift values 7 as possible. The following two cases are considered.

1) Ry(7) =|Sel:

This means that SéT) C S,. It is easy to check that in R 1(7), it is equivalent to
cyclically shift s,(t) instead of s.(t). Let S](,T) be the support set of s, (t + 7).
Let E; be the set of erasure patterns which can be successfully recovered by

sp(t + 7). Then, I have |E;| = ('lgzl‘), which leads to

n—1
S
Z |E| < n<“SI’D (3.11)

7=0
It is easy to check that doubly counted erasure patterns are included in (3.11),
which should be excluded. If the shaded parts in Fig. 3.6 include all the erasure
symbols, those erasure patterns are doubly counted, where a (71, 72) denotes the
number of pairs (s,(t + 71), $p(t + 72)) = (1, 1). Thus T have (2|Sp‘+‘|lé:1|’72)_n)
doubly counted erasure patterns. Using Lemma 3.1, the number of erasure pat-
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Figure 3.7: Number of doubly counted erasure patterns for 7 such that Ry (7) = |Se|—

1.

terns which are successfully decoded by s),(¢) is bounded as

n—1
U
7=0

n—1
2
<D B = =) |Bn N By <
7=0

71,72

S0\ 2 (218l +a(r,m) —n
”<|se|> n2< 5.| ) G412

71,72

2) Ry(r) = |S.| — 1:

In this case, the index of one erasure symbol is in S’p and the indices of the other
erasure symbols are in S,. Thus, the total number of such erasure patterns is
(n—\Spl) ( |5y

1 IS |71), where doubly counted erasure patterns are included. There are

two cases of doubly counted erasure patterns as shown in Fig. 3.7.

1) Each of two erasure symbols is located in A1y and A1, respectively and

the other erasure symbols are located in Agg, which are counted as

(n—\Sp|—1a(7'1 77'2)) 2 (2|SP‘TSZT11§TLT2)) )

2) One erasure symbol is located in Aj; and the other erasure symbols are
located in Agg, which are counted as (“(711’72)) (2|SP‘T§1£E172)7”). Similarly,
from Lemma 3.1, the number of erasure patterns which are successfully
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decoded by s, (t) is given as

n—1
2 n— 1SN\ 1S, \ 2
< - < P p =
_Z‘ET‘ nZ’ETlmET2|—n< 1 ><’Se’_1 n
7=0 T1,T2

5 (<n— 1S5l Ia<mz>>2<2|sp| falm - n)+

71,72€[0,n—1]
a(Tl,TQ) Q‘Sp‘—l—a(Tl,TQ)—n
G (G O

In order to maximize the upper bounds in (3.12) and (3.13), the second terms of the

n—1
U

7=0

right hand sides should be minimized, which can be solved by the convex optimization.

The objective functions to be minimized are as follows:

2\Sp|+a(7'1,7—2)—n

1) For Ry (1) = 0, the objective functionis » ( A ).

2) For Ry (1) = 1, the objective function is

T <n — [l I a(71772)>2(2!5p| Tiﬁ?;z) - n)

T1,72
n a(t1,m2)\ (2|Sp| + a(m1,72) —n
1 |Se| — 1

) . (3.14)
It is easy to check that the following constraints are used for optimization:

1) Forall 7 and 75,0 < a(11,72) < n —[Sy|.

2) Forany 75, Y7\ a(r1,m2) = (n — |Sp|)2

3) Forany 7,a(7,7) =n —|Sy|.

4) [Se] < [Spl.

Let g(z,y) be a function defined by

y—1 z—i .
= ifa>y+1
glae.y) = § im0 i / (3.15)
0, otherwise .
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where = and y are real numbers. In fact, I have that g(z,y) = (z) for z,y € Z+.
It is easy to check that g(x,y) is a convex function. First, the objective function for
QISp\—nJra(Tmz))

|5, '

e

Ry (1) = 01is convex because g(2|S,| — n+ a(r1,72),|Se|) = (

At this point, T will prove that the objective function for Ry (7) = 1 is convex for

i< |S—7f| < 1 and |Se| > 3 but it does not mean that the case of % < {isnota

convex. Clearly, the convexity of (3.14) can be proved by the convexity of summands.

Then, the summand of (3.14) can be rewritten as
a(t1,12)9(2|Sp] —n+ a(7i, ), |Se| — 1)+
(n—|Sp| — CL(Tl,’Tg))2g(2|Sp| —n+a(r1,7),|Se| —2). (3.16)
Using g(x,y) = x_TyHg(x, y — 1) for z > y — 1, (3.16) can be modified as
(a(11,m2)(2|Sp| + a(r1,72) —n — |Se| +2)+
(1Sl = ) (n = S| — a(r1,72))*)9(2]Sp| —n + a(r1, 7). [Se| = 2). (B.17)
The convexity of (3.17) can be proved by its second derivative. Let

fa) = a(r1, ) (2ISp] + a(r1, m2) =1 = [Se| +2) + (ISe] = V(1 — S| = a(m, m2))*.
(3.18)

Then, (3.17) can be expressed as the product of f and g. Then the convexity of (3.17)

can be proved by deriving the following inequality
(f9)" =f"g+2f'g + fg" = 0. (3.19)

It is not difficult to derive the s-derivative of g(x, y) in terms of x as

gy = > I x;f (3.20)

S,|S|=s1€[0,y—1]\[S] !

Using the geometric-harmonic mean inequality

1
(l‘lxg...$n) n Z 1
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with z; = (r — i+ 1) and n = y, L have

1 bg(zy)
(9(z,y))v > Sy (3.22)
%9(% y) < g'(z,y). (3.23)
(9(z,y))v

In general, gt (x,y) is the summation of polynomials factored into y — s + 1 polyno-

mials of degree one. Using (3.22) and (3.23), (3.17) can be modified as

b—s+1
(9(a,b— s +1)7+71
Using (3.24), I have

g V(a,b) < g (a,b). (3.24)

(fg)// — f//g+2f/g/+fg// 2
(¢ - i 2(15:| - 3) /
2 1
9(2|Sp| = n+a(r1,m2),|Se| — 3) 153 9(2|Sp| = n+a(11,m2),|Se| — 3) 153

Se| —3)? 2(|S.| — 3
s (S ASIY o),
GUSpl. 15— 35 g8, 1S.] — 3) s
(3.25)
Letw = 2(‘3‘““{)’! . Then, it is enough to show that
9(ISp|,|Se|—3) 15el=3
W f +2wf + f" > 0. (3.26)

It is easy to check that w is an increasing function for | S| and ;gd‘ and a decreasing
P

function for |.Sp|. Then, left hand side of (3.26) can be rewritten as

L(a) = w?((1Se] = 1) (n = |S,] = a(r1,72))* +
alm,2)(—n + 218, | — [Se| + a(r1, m2) +2) )+ (3.27)
2w(—2n|Se| +n + |Se[(2|Sp| + 2a(T1, 72) — 1) +2) + 2[S|.

At this stage, it is necessary to prove that L(0) > 0 and that its discriminant is negative

2] 2] ol

in terms of a. It is easy to check that L(a) is linear in terms of |Se| with a negative
=1 —

1 K
11"
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slope. Thus, L(a) has its minimum value at the maximum value of |Sc|. If |S¢| = |S,],

I have

L(0) = w?(|Sp| = 1) (n—|Sp|)* +w(n(2—4|Sp|) +4]Sp|* ~2|Sp| +4) +2Sp| = 0.
(3.28)

Let z = % Then for sufficiently large values of n and p, (3.28) can be written as

ﬁﬁ?j = w(|Sp|—1)(1=2)>=4|Sp|+4[Sp [ > ((w(|Sp| — 1) +4)z — w(|Sp| — 1)) (2—1)
= (w(|S,| — 1) +4) (z - wﬁéﬁfi I)li 4) (z—1). (3.29)

Clearly, (3.29) is positive for a sufficiently large p. Thus, I have L(0) > 0. Next, the

discriminant is written as

D = w'n? — 10w*n|S,| + 4w'n + 9w?|S,|? — 4w|S,| + 4w + 8w?|S,|> < 0.
(3.30)

It can also be reduced with sufficiently large values of n and p, whose simplified in-
equality is given as
(9uw* 4 8w?)2% — 10wz + w* < 0. (3.31)

% < z < 1, it is easy to derive D < 0 for a large value of w. Fig. ?? shows

For
the upper bound of convexity region by (3.30) and (3.31), which shows that the two
bounds become identical as | S| becomes larger. Thus I prove the convexity of (3.17)
for the proposed convexity region.

Using the solution of the optimization program cvx for (3.17), its minimum value
occurs at
(n—[Se] +1)2 —n —|Se| + 1

n—1

a(m,m) = for all 7; and 79, (3.32)

which means that the autocorrelation values of s,(t) are constant. Thus, I prove the

theorem.

b 5 1 =
.-':l-\.\,_ﬂ -tl" - !; -"‘.l[p . ]
| Al ] =Rl
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Figure 3.8: Complexity analysis of pre-processing operation for TS-AGD.

2. Select the state by the
number of erasures

1. Add to count the - “The number of erasures'> 2:
number of erasures "/ ‘non-decodable’
% “The number of erasures’'= 1:
Degree 7 % ‘decodable’
C
d. — 1 integer ] “The number of erasures'= 0:
additions ‘non-erasure’

OOO

Erasure sequence
Figure 3.9: Complexity analysis of CNU operation for AGD and TS-AGD.

The third criterion is related to the performance of the decoder, that is, H with
the minimum Hamming weight of rows can have better decoding performance in IED
as mentioned in [6] as cog, because more erasure symbols are removed in the inner

product of the received vector and the rows with the minimum Hamming weight of H.

3.2.4 Analysis of Decoding Complexity of TS-AGD

In the decoding stage, it requires a large number of iterations and high decoding com-
plexity. In the pre-processing stage, TS-AGD derives the order of decoding by com-
puting cross-correlation of the parity check sequence and erasure sequence. TS-AGD
decodes in order of more successful decoding cases of cyclic shift values 7 but AGD
decodes for all the possible 7 without considering the decoding order.

I analyze the decoding complexity using integer addition and XOR operation.
.:l-' e T I' .-"

=% )|
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operations
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Figure 3.10: Complexity analysis of VNU operation for AGD and TS-AGD.

Complexities of each integer addition and each XOR operation between two binary
integer values are considered as 1, respectively and then integer additions and XOR
operations among [ values are done by (I — 1) serialized operations between two in-
tegers in the binary form. The complexity of pre-processing stage will be counted by
occurrence of integer additions as in Fig. 3.8 and the complexity for search of 7’s with
high correlation values is ignored because it has low complexity. For each iteration
of decoding process, both CNU and VNU operations are performed, where CNU op-
eration requires (d. — 1)(n — k) integer additions as in Fig. 3.9 and VNU operation
requires (d. — 2) XOR for each decodable erasure symbol as in Fig. 3.10. To compute
the decoding complexity by the numerical analysis, I consider XOR and integer addi-
tion operations as 1, respectively, because complexities of integer addition and XOR

operation are equal in the implementation by DSP coding.

3.2.5 Numerical Analysis for Some Cyclic Codes

In this subsection, the proposed TS-AGD is applied to several cyclic codes in the era-
sure channel, that is, the perfect codes such as Hamming codes, Golay codes, and
extended Golay codes, and some triple-error correcting BCH codes. For perfect codes,
the proposed modification of parity check matrix can achieve the decoding perfor-
mance identical to that of the ML decoder, known as perfect decoding. For triple-error
correcting BCH codes, AGD and TS-AGD have the near-ML decodjin:ig pf:,r\.for:p?:ncei Q!r
A1 =" 1LH <
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better than regular LDPC code with the similar parameters. Furthermore, the number
of iterations of TS-AGD is better than that of AGD. Regarding decoding complexity,
additional complexity by pre-processing stage for TS-AGD may increase the decoding
complexity but for large codelength, decoding complexity of TS-AGD becomes lower
than that of AGD.

a) Proposed Decoding Algorithms for Perfect Codes

1) (2™—1,2™—1—m,3) Hamming codes: Clearly, Hamming codes have only one
cog and thus one row in H is needed to achieve the ML decoding performance

as in the following proposition.

Proposition 3.1. For an (n, k, d) linear code C, the IED of 2" x n expanded
parity check matrix whose rows consist of all of the codewords of its dual code

C* can achieve ML decoding performance.

Proof. Note that the ML decoder can decode only if S, of the erasure pattern
does not include the support of any codeword. Let H be an (n— k) X n submatrix
with full rank by selecting rows from the expanded parity check matrix. Let Hg,
be an (n — k) X |Se| submatrix generated by selecting the columns with indices
in S, from H. Let € be an |Sc|-tuple erasure vector, that is, € consists of the
components with indices in S, of the transmitted codeword. Then, I have the

syndrome of

S=Hr) =B + HEO) =0, (3.33)
which can be modified as
Hs ¥ = He) = HE) . (3.34)

If the rank of Hg, is lower than |S,|, (3.34) has multiple solutions, implying

that the decoder cannot decode the codeword. Thus, Hg, shpl_i'ild_hj_a\fe1 full yan‘lk —
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and then there exist |.S,| linearly independent rows in Hg,. Let H' and H ge be
|Se| x n and |Se| x |Se| matrices constructed from H and Hg, by selecting
|Se| linearly independent rows, respectively. By selecting the components with
the same row indices as those of Hg from H (r%Te))T in (3.34), I can find €
by inverting H . From the properties of linear codes, each row of H’ g:H "is
actually the codeword of the dual code C~L. Then, the IED of H whose rows
consist of the codewords of C can correct the erasure patterns, which do not

include the codeword. Clearly, this corresponds to the ML decoder. 0

From the above proposition, the Hamming codes which have only one cog can
achieve the ML decoding performance, because they have the same performance

as a 2% x n expanded parity check matrix.

2) For the (23,12, 7) binary Golay code: Using the proposed modification criteria,
the parity check matrix of the (23, 12, 7) binary Golay code can be modified as

10001000000001100011101
01001010010000101010001
00100000001001101010011
00010010011001100001001
00001110001000100000111
Hy, = 00001011000001001001011 (3.35)
00001000111000000011011
00000010010101000010111
00000010001010001011101
00001000011001011000101
00000000010000101101111

and its parity check sequence is given as

sp(t) = ( 11110101100110010100000 )_?,_: o338 —
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Table 3.1: Undecodable erasure patterns by the modified A in the (23,12,7) binary

Golay code
Number of | Total number of | TS-AGD and TS-AGD and
erasures erasure patterns | AGD of H,,, | AGD of H,,,, ML
<6 0 0

7 245157 253 253

8 490314 4554 4554

9 817190 37973 37950

10 1144066 197754 194810

11 1352078 700488 656558

which corresponds to the characteristic sequence of cyclic difference set with
parameters (23,12, 5). Here, the modified parity check matrix has 12 standard
vectors and its rows have the minimum Hamming weights. Thus, (3.35) satis-
fies the three modification criteria for the parity check matrix. The numerical
analysis shows in Table 3.1 that the proposed TS-AGD with H,, can achieve
the same performance as the ML decoder and outperform the AGD with H,,,
where H,,s denotes the systematic form of its parity check matrix defined as
[I12|P]. Figs. 3.11 and 3.12 show the number of iterations and the decoding
complexity of the (23,12, 7) binary Golay codes. Two decoders, AGD and TS-
AGD with H,, and H,,, are considered in Figs. 3.11 and 3.12 . The number of
iterations of the proposed TS-AGD algorithm can be reduced compared to the
AGD as shown in Fig. 3.11 The decoding complexity of TS-AGD with H,, is
lower than that of AGD for the low erasure probability, where most of Ry (7)
by pre-processing stage are higher than |S.| — 2 as in Fig. 3.12. However, de-
coding complexity of TS-AGD with H,, is higher for the other cases because
many cases of Ry (7) by pre-processing stage are lower than |S.| — 2 and they

cannot be decoded in few iterations.

3) (24,12, 8) binary extended Golay code: In fact, while this is not a cyclie ¢ode; it —
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Figure 3.11: Average number of iterations of AGD and TS-AGD with modified H for
the (23, 12, 7) Golay code.
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Figure 3.12: Decoding complexity of AGD and TS-AGD with modified H for the
(23,12, 7) Golay code.
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is cyclic except for the last parity bit. Thus, I can apply the AGD algorithm and

the proposed TS-AGD algorithm. Hehn modified the parity check matrix as [6]

HHehn =

and the systematic form of the parity check matrix is given as

Hsys =

111000001001100000100001
110000100001001110000001
110100101010010000000001
111000110000000000010101
110001000101010000000101
110100010100000010100001
011000100001010001001001
110110000001000000011001
111101000000001001000001
110010000010001000100101
001100101001001000010001
001101010011001000000010

100000000000110111000101
010000000000101110001011
001000000000011100010111
000100000000111000100101
000010000000110001011011
000001000000100010111111
000000100000000101100111
000000010000001011011101
000000001000010110111001
000000000100101101111001
000000000010011011100011

000000000001111111111110
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The modified parity check matrix based on the three proposed criteria can be

given as

100010000000011000111010
010010100100001010100010
001000000010011010100110
000100100110011000010010
000011100010001000001110
o 000010110000010010010110 (3.39)
000010001110000000110110
000000100101010000101110
000000100010100010111010
000010000110010110001010
000000000100001011011110

000010100110011010111101

where the first 11 standard column vector indices are determined by the cyclic
difference set with parameters (23, 12, 5) as before and the last standard vector
is located in the extended bit. The last row of H,,, has the Hamming weight of

12, which is larger than the minimum Hamming weight 8. Thus, I can further
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modify it by replacing the last row by sum of the first row and the last row as

100010000000011000111010
010010100100001010100010
001000000010011010100110
000100100110011000010010
000011100010001000001110
Hy— 000010110000010010010110 (3.40)
000010001110000000110110
000000100101010000101110
000000100010100010111010
000010000110010110001010
000000000100001011011110

100000100110000010000111

where the last row has the minimum Hamming weight 8 but the first column is
not a standard vector. The further modification is done by replacing the i-th row
with the sum of the i-th row and the last row of H,,, 1 < ¢ < 11 and the last

row with the first row of H,, as
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100000100110000010000111
010000000010010000011111
001010100100000000011011
000110000000000010101111
000001000100010010110011
000000010110001000101011
000000101000011010001011
000010000011001010010011
000010000100111000000111
000000100000001100110111
000010100010010001100011

100010000000011000111010
In fact, the first columns of H 4 and Hp have Hamming weight 2. Then the

S
I

(3.41)

parity check sequences of H),, H 4, and Hp are given as

Sp,Hm (1) = ( 111101011001100101000001 ) (3.42)
Sp.HA (1) = ( 011101011001100101000001 ) (3.43)
Sp.Hp(t) = ( 011101011001100101000000 ) : (3.44)

In the (24, 12, 8) extended Golay code, any of the modified parity check matrices
cannot achieve the same performance as that of the ML decoder. However, the
TS-AGD by adding redundant check equations to Hp can give us the same

decoding performance as the ML decoder, which is given as

Hp
Heo = , (3.45)
H A
where H :4 is a submatrix composed of nine rows out of the first 11 rows of H 4.

Fig. 3.13 shows the relationship among the various modified parity check ma-

trices. Table 3.2 shows the decoding performance of the propg%eglx"_fs_—ﬁ(l}!).ap“g ==
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Figure 3.13: Modifications of the parity check matrix in the (24, 12, 8) extended binary

Golay code.

4)

AGD with Hgys, Hp,, Ha, Hp, Hpepn, and He, where He shows decoding
performance identical to that of the ML decoder and better decoding perfor-
mance than the decoding algorithm by Hehn. In AGD, difference of the number

of iterations by H’s are small as in Fig. 3).

However, decoding complexity of the modified H’s is lower than Hg.p,, except
H_ as in Fig. 3.15, where H,. has the smallest number of iterations but highest
decoding complexity due to additional rows of the parity check matrix. For the
number of iterations of TS-AGD, H,, and H4 are lower than others because

|Sp| = n — k, which is larger than the others.

For decoding complexity of TS-AGD, similar tendency of the previous case of
(23,12, 7) Golay codes is shown, where that of TS-AGD is lower than that of
AGD for low erasure probabilities. Among the modified H’s of TS-AGD, the

decoding complexity is proportional to the number of iterations except H¢.

Ternary (11,6, 5) Golay code: For the ternary (11,6, 5) Golay code, AGD and

TS-AGD algorithms with the systematic and the modified form of their parity
.-:'ﬂ._-i _-.;.‘: 5 |' ..-; ;
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Figure 3.14: Average number of iterations of AGD and TS-AGD with modified H for
the (24, 12, 8) extended Golay code.
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Figure 3.15: Decoding complexity of AGD and TS-AGD with modified H for the
(24,12, 8) extended Golay code.
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Table 3.2: Undecodable erasure patterns by the modified H for the (24, 12, 8) binary

extended Golay code

Total TS-AGD | TS-AGD | TS-AGD | TS-AGD | TS-AGD
Number | number and and and and AGD | and AGD
of of erasure AGD AGD AGD of Hp of Ho
erasures | patterns of Hyys of H,, of Hy and Hy.p, | and ML
<7 0 0 0 0 0
8 735471 759 759 759 759 759
9 1307504 12144 12144 12144 12144 12144
10 1961256 92000 91080 91080 91080 91080
11 2496144 | 460253 | 426581 425178 425040 425040
12 2704156 | 1515792 | 1344005 | 1325536 1322179 1313116

check matrices can achieve the ML decoding performance, whereas the number

of iterations and the decoding complexity of the modified form are better than

those of the systematic form. The systematic parity check matrix of the ternary

(11,6, 5) Golay code is given as

Hsys =

10000122210
01000012221
00100212012
00010110111
00001222101

(3.46)

The modified form of the parity check matrix uses the parity check sequence

constructed by the characteristic sequence of the cyclic difference set with pa-
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Figure 3.16: Average number of iterations of AGD and TS-AGD with modified H for

the (11, 6,5) ternary Golay code.

rameters (11,6, 3) as

12000110022
00100212012
Hy, =1 01010122002
01001201022
02000021112

where the parity check sequence is given as

Sp,H,, (1) = ( 10111000100 ) .

(3.47)

(3.48)

The number of iterations and the decoding complexity of the ternary Golay

codes are described in Figs. 3.16 and 3.17, which shows that those of TS-AGD

has lower than those of AGD. By numerical analysis, there are no undecodable

erasure patterns for the number of erasures e < 6, there are 66 undecodable

erasure patterns for e = 6, and there are no decodable erasure patterns for e > 6

for the modified form and the ML decoders.
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Figure 3.17: Decoding complexity of AGD and TS-AGD with modified H for the

(11,6, 5) ternary Golay code.

b) Proposed TS-AGD Algorithms for Binary Primitive BCH Codes

Binary primitive BCH codes are widely used due to their low-complexity encoding,
large designed distance, and guaranteed decoding performance for certain number of
erasures. However, BCH codes require inherently high decoding complexity and their
decoding performance is degraded for large n and k. The proposed TS-AGD can over-
come the disadvantages of BCH codes by the low-complexity decoding with improved
performance compared to AGD. Here, the proposed TS-AGD for the triple-error cor-
recting (63,45, 5), (255,231,5), and (1023,993,5) BCH codes is numerically ana-
lyzed in the erasure channel.

In general, s,(t) of the BCH code is generated by the cyclic difference set but
there are some cases that the cyclic difference set does not exist for the parameters of
the BCH code. Instead, S, can be constructed using the union of cyclotomic cosets
of the finite field as an alternative construction method. In this case, s,(¢) does not
have constant autocorrelation but has relatively low values of autocorrelation. Thus,

this construction method of s,(¢) also results in good decoding performance.
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Figure 3.18: Frame error rate of (63, 45) BCH code by GMD, AGD, and TS-AGD for
Hy, and H,y,, and ML.
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Figure 3.19: Decoding complexity of AGD and TS-AGD for (63, 45) BCH code.

1) (63,45,7) BCH code:

For (63,45) BCH code, the proposed modification of H is done using the cy-
clotomic cosets of the coset leaders of the finite field Fys in {c, o, o'}, where
o is a primitive element of Fys. For numerical analysis, H,,, has better decod-
ing performance than H,y,, but they have near-ML decoding performance as in
Fig. 3.18. However, decoding complexity of TS-AGD is slightly higher than that

of AGD in some range of erasure probability as in Fig.-3.19 @uerto addijtignal -
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Figure 3.20: Number of iterations of AGD and TS-AGD for (63, 45) BCH code.
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Figure 3.21: Frame error rate of (255, 231) BCH code by GMD, AGD, and TS-AGD
for Hy, and Hys, and (260, 234) regular LDPC code with d,, = 3 by IED.

decoding complexity by pre-processing, whereas the number of iterations in TS-
AGD is always lower than that in AGD as in Fig. 3.20 due to the pre-processing
stage for (63,45) BCH code.

2) (255,231, 7) BCH code:

For (255,231) BCH code, the proposed modification of H is done using the

cyclotomic cosets of the coset leaders of the finite field Fbs in {3 a? ol
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Figure 3.22: Decoding complexity of AGD and TS-AGD for (255,231) BCH code
and IED for (260, 234) regular LDPC code with d,, = 3.
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Figure 3.23: Number of iterations of AGD and TS-AGD for (255, 231) BCH code and
IED for (260, 234) regular LDPC code with d,, = 3.

where « is a primitive element of Fys. For numerical analysis, H,, has better
decoding performance than H,,, and (260, 234) regular LDPC codes with d,, =
3 as in Fig. 3.21. Decoding complexity and the number of iterations of TS-
AGD are lower than those of AGD as in Figs. 3.22 and 3.23, but they are higher
than those of IED of regular LDPC code. The reason is that additional decoding

complexity by pre-processing stage becomes negligible for large, codelength,
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Figure 3.24: Frame error rate of (1023, 993) BCH code by GMD, AGD and TS-AGD
for H,, and Hy,, and (1020, 984) regular LDPC codes with d,, = 3 by IED.
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Figure 3.25: Decoding complexity of AGD and TS-AGD for (1023, 993) BCH code
and IED for (1020, 984) regular LDPC code with d,, = 3.

where the number of correctable erasure patterns is exponentially grown.

3) (1023,993,7) BCH code:

For (1023,993) BCH code, the proposed modification of H is done using the
cyclotomic cosets of the coset leaders of the finite field Fyi0 in {a, o', a3},

where « is primitive element of Fy10. H,, has better decoding performance than

—
v |
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Figure 3.26: Number of iterations of AGD and TS-AGD for (1023,993) BCH code
and IED for (1020, 984) regular LDPC code with d,, = 3.

Hgys and (1020, 984) regular LDPC code with d,, = 3 as in Fig. 3.24. Decoding
complexity and the number of iterations of TS-AGD are lower than those of
AGD as in Figs. 3.25 and 3.26, but they are higher than those of IED of regular
LDPC code. Decoding performance and complexity of (1023,993) BCH code

are shown in the same tendency as those of (255,231) BCH code.

In short, AGD and TS-AGD have the near-ML decoding performance or better than
regular LDPC code with the similar parameters. Furthermore, the number of iterations
of TS-AGD is better than that of AGD. Regarding decoding complexity, additional
complexity by pre-processing stage for TS-AGD may increase the decoding complex-
ity as in Fig. 3.19, but for large codelength, decoding complexity of TS-AGD becomes
lower than that of AGD.
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3.3 Construction of Parity Check Matrix and TS-AGD for
Cyclic MDS Codes

In this section, the proposed TS-AGD is applied to cyclic MDS codes. In order to
achieve the perfect decoding, stopping redundancy and submatrix inversion are also

used for the TS-AGD of cyclic MDS codes.

3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes

The criteria for the modification of the parity check matrices in Section 3.2 can be

simplified for the TS-AGD of cyclic MDS codes from the properties of the MDS codes.

Proposition 3.2 (The first and third criteria for cyclic MDS codes). For the parity
check matrix of the (n,k) MDS codes, n — k standard vectors can be made in any
columns of the parity check matrix and the Hamming weight of all rows is k+ 1, which

is the minimum Hamming weight of its dual codes.

Proof. It can be easily proved from the theorems in Section 2 of Chapter 11 in [27].
O

Thus, the first and third criteria can always be satisfied in the parity check matrix
of the MDS codes but for the second criterion, I have to make the magnitude of the
Hamming autocorrelation of the parity check sequence as low as possible.

In order to improve the decoding performance of AGD and IED, the expanded
parity check matrix is proposed by expanding the rows of the parity check matrix.
That is, the (n — k) X n parity check matrix can be expanded to a b(n — k) X n matrix,
which is composed of b distinct parity check matrices. Note that each (n— k) x n parity
check matrix has its own parity sequence. Then, the TS-AGD using the expanded
parity check matrix decodes the received vector by the first (n — k) x n parity check
matrix. If it fails, successful decoding is possible using the subsequent parity check

matrices. Note that if the perfect decoding is possible by the exp?nded parlit_yI check
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matrix, the number of rows in the expanded parity check matrix is called the stopping

redundancy.

3.3.2 Proposed TS-AGD for Cyclic MDS Codes
a) TS-AGD Algorithm for Cyclic MDS Codes

The procedure of the proposed TS-AGD for MDS codes is nearly identical to that of
the binary codes introduced in the previous section but the detailed decoding procedure
is slightly different. For the binary codes in Fig. 3.3, there is a case that the erasure
symbols in the non-standard part cannot be successfully decoded at the first iteration
for Ry (1) = |Se| — 1. Unlike the binary codes, TS-AGD for the MDS codes can
always successfully decode the cyclically shifted received vectors with 7 such that
Ry (1) > |Se| — 1 because the non-standard column vectors of the parity check matrix
always consist of nonzero components. Therefore, the maximum number of iterations
is reduced to 2 if there exists 7 which meets the condition of Ry (7) > |Se| — 1.
However, the proposed TS-AGD cannot decode the received vectors of the cyclic MDS

codes for the cases of Ry (7) < |Se| — 2.

b) Performance Analysis of Cyclic MDS Codes and LRCs

For (n, k) cyclic MDS codes, their minimum distance is the largest value n — k +
1, which means that the best ML decoding performance of the MDS codes can be
obtained in the erasure channel. However, since the minimum Hamming weight of
rows in the parity check matrix of the MDS codes is the largest value k& + 1, this
degrades the decoding performance for AGD or IED compared to the binary codes
due to the third modification criterion of the parity check matrix.

In order to mitigate the degradation of the decoding performance due to the third
criterion without expansion of the parity check matrix, I can also consider cyclic lo-
cally repairable codes (LRCs) [15], which can be constructed by slightly modifying the

MDS codes as follows. LRC is originally used to reduce the decoding compléxity=df —
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the repair process in distributed storage systems. LRCs have slightly shorter minimum
Hamming distances than MDS codes, which reduces the decoding performance gap
between AGD and the ML decoder. In this subsection, the proposed TS-AGD decod-
ing algorithm can be applied to LRCs as well as cyclic MDS codes in order to achieve
the ML decoding performance. For (d; — 1)|k and df |n , the generator polynomial of
the optimal cyclic LRC is given as

glz)= ][] @-a) (3.49)

ie{LUM}

where df denotes Hamming distance of the dual code, L = {I|l mod d = 0}, and

M ={0,1,2,...,n — dik_ldf}. For the code parameters (n, k) = (15, 8), there exist

a (15,8,8) MDS code, a (15,8, 7) cyclic LRC with d-. = 5, and a (15,8, 5) cyclic
LRC with d

in = 3. From (3.49), the generator polynomial of the (15,8, 7) cyclic
LRC has the zeros {1,a',a?, a3, a*, a®, oY}, Similarly, the generator polynomial of
the (15,8, 5) cyclic LRC has the zeros {1, at,a?, a3, a5 a” al?}. The characteristic
sequence of the cyclic difference set with parameters (15,8, 4), that is, a bit-inverted

m-sequence of length 15 can be used for the parity check sequence as
sp(t) = (111011001010000). (3.50)

Then, the corresponding masks A of the parity check matrices of the (15,8, 8) MDS
code, and the (15, 8,7) and (15, 8, 5) cyclic LRCs are given as

100100110101111
010100110101111
001100110101111
Amps = | 000110110101111 (3.51)
000101110101111
000100111101111
000100110111111
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Table 3.3: Undecodable erasure patterns for the (15, 8) cyclic MDS code and LRCs

Total TS-AGD | TS-AGD TS-AGD, TS-AGD
Number | number of | and AGD | and AGD | AGD, and and ML
of erasure with with ML with AGD with with
erasures | patterns Hgys Hyps Hriresss) | HLrCussn | HLRC G550
<3 0 0 0 0 0
4 1365 90 0 0 0 0
5 3003 1128 168 60 3 0
6 5005 3520 2380 820 400 0
7 6435 5820 5680 3600 3570 405
100100100100100
010100110101111
001100010101111
ALRCu557 = | 000110110101111 (3.52)
000101110101111
000100111101111
000100110111111
100100110101111
010000100001000
001000010000100
ALRC(15,875> 000010000100001 (3.53)
000101110101111
000100001000010
000100110111111

The erasure decoding performance of the above three (15, 8) codes is shown in Ta-

ble 3.3. Clearly, the ML decoding performance of LRC with lower di is degraded

compared to that of MDS codes but the performance gap between TS-AGD and the

ML decoder becomes smaller. For the (15,8, 5) cyclic LRC, TS-AGD:pertofthsthe —
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Figure 3.27: Average number of iterations of the (15, 8) cyclic MDS code and cyclic
LRCs.
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Figure 3.28: Decoding complexity of the (15, 8) cyclic MDS code and cyclic LRCs.
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perfect decoding, that is, there is no difference in the decoding performance between
TS-AGD and the ML decoder. TS-AGD has the best decoding performance for the
(15,8,7) cyclic LRC which can replace the (15, 8,8) MDS code. Figs. 3.27 and 3.28
show that TS-AGD has lower decoding complexity and the fewer iterations than those
of AGD for the MDS code and LRCs. For TS-AGD, MDS codes have lower decoding
complexity than LRCs because MDS codes use the TS-AGD algorithm. That is, TS-
AGD decoding for LRCs is not always successful when Ry (7) = |Se| — 1, because
LRC is not an MDS code and some components of the non-standard column vectors
of the parity check matrix of LRC are zero.

Instead of mitigating the strict condition of the cyclic MDS codes by the cyclic
LRCs, the expanded parity check matrix can be used to enhance the erasure decod-
ing performance of the cyclic MDS codes. Numerical analysis of the expanded parity

check matrix using m-sequences is introduced in the following subsection.

¢) Performance Analysis of TS-AGD with Expanded Parity Check Matrix for
Cyclic MDS Codes

To analyze the erasure decoding performance of TS-AGD with expanded parity check
matrix for cyclic MDS codes, it is necessary to know the Hamming auto- and cross-
correlations of the parity check sequences of the expanded parity check matrix. By
counting the number of decodable (n—k)-erasure patterns by Lemma 3.1, the decoding
performance of the TS-AGD with expanded parity check matrix can be estimated. Each
term of the expanded parity check matrix in (3.10) can be modified as in the following

proposition and theorems.

Proposition 3.3 (The first term in the Bonferroni inequality in the expanded parity
check matrix). The first term in (3.10) is modified in the expanded parity check matrix
as follows:

> |Ei| =bn(k(n— k) +1). (3.54)
ICA,|I|=1

65



Proof. Suppose that the expanded parity check matrix has b parity check sequences.
The 7-shifted parity check sequence s,(t + 7) can correct n — k erasure symbols in

the following two cases:

1) Ry (7) = |Se|: n — k erasure symbols are located in the n — k standard vector

indices and the decoder can correct the (Z:’,:) = 1 erasure pattern.

2) Ru (1) = |Se| —1: n— k — 1 erasure symbols are located in the standard vector

indices and the decoder can correct the ("% ) (¥) = (n— k)k erasure patterns.

Each parity check sequence of the expanded parity check matrix has up to n cyclically
equivalent parity check sequences and therefore, it can correct up to n(k(n — k) + 1)

erasure patterns. O

Theorem 3.2 (The second term in the Bonferroni inequality in the expanded parity
check matrix). The second term in (3.10) can also be modified in the expanded parity

check matrix as

> N

ICV,|I|=2 lieT

(4Fsp,i(t+71)73p,j(t+T2)(k = 2) +nFy, () s, (t4m2) (B = 1)> (3.55)

D>

71,72=01<i<5<b

where Fy (11r,),s, ;(t+r2)(7) returns I U‘Z?:_(Jl(sp,i(t + 71)8p,j (t + T2)) = v and 0,

otherwise.

Proof. The proof is similar to that of Theorem 3.1. For the ¢-th and j-th cyclically
shifted parity check sequences, the number of doubly counted decodable erasure pat-

terns is expressed as

2. |NE

IcV,|I|=2 liel

n—1 k
= Y Y S ey e () (3.56)

71,72=0 1<i<j<by=0

where c,, is the number of doubly counted decodable erasure patterns from sy, ; (¢t +71)

and sp, (¢ + 72). Equation (3.56) partitions the number of doubly cdunted decddable —
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erasure patterns by 71, T2, Sp, (t), sp; (t), and ~. The remaining problem is to determine

cy. For the given 7, s, (t), and s, (t), the doubly counted decodable erasure patterns

can be computed as follows:

1y

2)

3)

Thus,

If v < k—3: A doubly counted decodable erasure pattern does not occur because
there should be at most n— k — 3 erasure symbols in Agg and the remaining three
erasure symbols cannot be decoded regardless of their locations of Ag;, 419, and
A1, where the Hamming cross-correlation values of one parity check sequence

and the erasure sequence are smaller than or equal to k — 3.

If’y = k — 2: I have |A11| =k - 2, |A10| = |A01| = 2, and |A00| =N —
k — 2. Then, doubly counted decodable erasure patterns occur when one erasure
symbol is located in Ag1, one erasure is in Ajg, and n — k — 2 erasure symbols

are in Agg. Therefore, c, is 4.

If y=Fk—1:Thave |Aj1| =k — 1,|A10| = |Ao1| = 1, and |Agp| =n — k — 1.
Then, the doubly counted decodable erasure patterns can occur when one erasure
symbol is located in Ag, one erasure symbol is in A1g, and n — k — 2 erasure
symbols are in Agg, where ¢, = n—k—1. In addition, doubly counted decodable
erasure patterns occur when one erasure symbol is located in A1; and the other
n — k — 1 erasure symbols are in Agg, Ag1, or Ajg, where ¢, = k + 1. The sum

of the two cases gives us ¢, = n.

the theorem is proved. O

The distribution of the Hamming auto- and cross-correlation values of the parity

check sequences can be used to count the first and the second terms in the Bonfer-

roni inequality by Proposition 3.3 and Theorem 3.2. The Hamming auto- and cross-

correlations of pseudorandom sequences, especially the m-sequences of length n =

2™ — 1, have been researched. There can be used to analyze the erasure decoding per-

formance of TS-AGD. In this subsection, TS-AGD with the expan_'qiiecl 'parj[ty| check _—
A == L1 |
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matrix for (n,

n+1

5—) MDS codes is analyzed, where the parity check sequences for

(n — k) x n parity check matrices are constructed using the bit-inverted m-sequence

and its decimated sequences. In fact, it is well known that the m-sequences correspond

to the characteristic sequences of the cyclic difference sets.

1y

2)

m < 3: For m = 3, only one (n— k) X n parity check matrix with a parity check
sequence constructed by the bit-inverted m-sequence of length 7 can achieve the

perfect decoding. It can be easily shown by the numerical analysis.

m = 4: There are two bit-inverted m-sequences, s, (t) and s, () of length n =
15. The distribution of their Hamming cross-correlation values for 7 € [0, n—1]

can be given as [17]

3, 4 times
n-! 4, 5 times
D 5o (t)spy(t+7) = ‘ (3.57)
—0 5, 4 times

6 2 times.

In this case, I can derive the number of the decodable 8-erasure patterns for the
expanded parity check matrix with b = 2 by the inclusion-exclusion principle.
For the first term in (3.55), the number of doubly counted erasure patterns is

computed as 2 x 5(7 x 8 + 1) = 1710. For the second term, it is given as

>, NE

ICV,|I|=2 liel

14
=2 > (4Fsp,i<t>,sp,j<t+f>(5)+15Fsp,i<t>,sp,j<t+7>(6))

=0 1<i<j<2
14

= (4F,, (1), 047 (5) = 15 x 4 x 2 = 120,
7=0

(3.58)

which makes at least 1590 decodable erasure patterns and it is the exact value
because it has no triply or more counted erasure pattern. Note that the total

number of 8-erasure patterns is (185) = 6435.
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Table 3.4: Hamming cross-correlation distribution of m-sequence of length 31 and its

decimated sequences

Decimation | The number of Hamming Types
cross-correlations (values)
3 3(6,8,10) Gold [18], Kasami [19]
5 3(6,8,10) Gold [18]
7 3(6,8,10) Welch [20]
11 3(generally, 5)(6,8,10) Boston and McGuire [21]
15 6(6,7,8,9,10,11)

3) m > 5: For m = 5, there are six m-sequences of length 31, whose Hamming
cross-correlation distributions are listed in Table 3.4. For these cases, the peak
correlation values are either 10 or 11, which means that there are no doubly
counted decodable erasure patterns because there are no Hamming correlation
values larger than £k — 2 = 14. Therefore, any expanded parity check matrix
with b < 6 has erasure decoding performance achieving the upper bound. The
maximum value of the Hamming cross-correlation of the m-sequence and its
decimated sequences can be derived as {MTTH)HJ [22]. Thus, for m > 5,

I have
(m+2)

F +2 3 +3J<2m—1—2:k—2. (3.59)

4
Thus, it is easily checked that there are no doubly counted erasure patterns for
construction of the expanded parity check matrices for any combinations of an
m-sequence and its decimated sequences for m > 5. Therefore, the total number
of decodable erasure patterns of TS-AGD with expanded parity check matrix
constructed by bit-inverted m-sequences can be maximized for the cyclic MDS
codes. However, the performance by TS-AGD is worse than that of the perfect

decoding for cyclic MDS codes.
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3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix
for Cyclic MDS Codes

In order to achieve the perfect decoding by TS-AGD with the expanded parity check
matrix for cyclic MDS codes, the required stopping redundancy p = b(n — k) is
grown exponentially as n and k increase. It is known to be NP-hard to calculate or
approximate the exact value p for the perfect decoding [28]. For small values of n and
k of the cyclic MDS codes, it will be shown that I can find the optimal p which meets
the lower bound. In this paper, I only consider the case of p < 3(n — k) and I propose
a construction method of the expanded parity check matrix for the perfect decoding in

this subsection. First, three lower bounds on the stopping redundancy are proposed.

a) Lower Bounds on p for the Perfect Decoding by TS-AGD

The first lower bound is similar to the Gilbert (sphere packing) bound as in the follow-

ing theorem.

Theorem 3.3 (Gilbert-like lower bound).

p= {n((n (—NZ)CBH 1)} (n—k) (3.60)

Proof. Suppose that an expanded parity check matrix has b parity check sequences.
If there are no doubly counted decodable erasure patterns, the number of decodable
erasure patterns is bn((n — k)k + 1) from Proposition 3.3, which is larger than or

equal to (nf k:) Thus, the theorem is proved. O

This bound can be improved by lotto designs [16] and the Bonferroni inequality

[14].

Definition 3.6 (Lotto design [16]). An (n, k, p, t)-lotto design is an n-set V of elements
and a set B of k-element subsets (blocks) of V', such that for any p-subset P of V, there
is a block B € B, for which |P N B| > t. L(n, k,p,t) denotes the smallest number of
blocks in any (n, k,p, t)-lotto design. 2] O | =]

ey
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By using the above lotto design, I can obtain more improved lower bounds on p as

follows.

Theorem 3.4 (Lower bound by the lotto design).

L —kn—-kn-k-1
pz[ (nn=kn—kn )}(n—k) (3.61)
n
Proof. In order to decode the cyclic MDS codes, it is necessary for the Hamming
correlation values to be less than or equal to 1, i.e., Ri(7) > |Se|—1. It also means that
the intersection between the standard indices and the support set of erasure sequence is
larger than or equal to n— k& — 1. Then, the minimum number of parity check sequences
L(n,n—k,n—kn—k—1)

in the expanded parity check matrix is lower bounded by - . O

The lotto design improves the lower bound in Theorem 3.4. Moreover, the lower

bound for p can also be improved by the Bonferroni inequality as follows.

Theorem 3.5 (Lower bounds by the Bonferroni inequality).

(nﬁk) —4A(n,6,n — k)

p= n(k(n — k) — 3)

(n—k) (3.62)

where A(n,d,w) denotes the maximum number of codewords for the (n,d,w) con-

stant weight codes.

Proof. For an expanded parity check matrix with b parity check sequences, the number
of decodable erasure patterns follows (3.10), whose right hand side can be used as an
upper bound. In this approach, the second term is calculated as in Theorem 3.2 if
the Hamming auto- and cross-correlations of the parity check sequences are known.
If cyclically shifted parity check sequences are considered, I have bn distinct parity
check sequences, which can be considered as constant weight codewords. Now, I have
to count the number of two codewords with Hamming distance less than or equal to 4.
By definition, A(n, 6, k) is the maximum number of n-tuple binary codewords which
have weight of k£ and the minimum Hamming distance 6. Then, for each codeword,

there exist at least bn — A(n, 6,n — k) codewords which have Halp\}ﬂin_g:ﬂi_sﬁanée Jess —
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than or equal to 4. Thus, the total number of pair of codewords with Hamming distance
less than or equal to 4 is at least % (bn — A(n,6,n — k)) because all pairs are counted
twice. The minimum value of the second term in the RHS of (3.10) can be computed

for n = k — 2, that is, Hamming distance 4. Thus, I have

2. |NE

IcV,|11=2 liel

n—1

> Y Y AR s () (B — 2)

71,72=0 1§i<j§b

>4 x g(bn — A(n,6,n—k)). (3.63)

From Proposition 3.3, (3.63),

Uiev Ei| = (")), and [V| = bn, the right inequality
in (3.10) can be modified as (3.62). ]

The value of A(n,d,w) is not exactly known in general and its upper bounds are

used in this chapter.

b) Examples of the Perfect Decoding for p < 3(n — k)

Table 3.5 lists the required values b for the perfect decoding by TS-AGD with expanded
parity check matrix for (n, k) cyclic MDS codes. The underlined values denote the
maximum values among the previously derived three lower bounds and the values in
parenthesis refer to the lower bounds on b, which are different from the numerically
obtained values of b.

Algorithm 3.2 shows one of the simple construction method of the expanded parity
check matrix for (n, k) cyclic MDS codes using the set of (n — k)-erasure patterns.
Using Algorithm 2, the values of b for the perfect decoding are numerically derived
for (n, k) cyclic MDS codes in Table 3.5.

To obtain specific values of the lower bounds, the upper bounds of A(n,d,w) in
[23] and the lower bounds of L(n, k, p, t) in [24] are used.

Some (n, k) MDS codes in Table 3.5 can be analyzed as follows.

1) (n,k) = (10,5): The lower bound by Theorem 3.5 shows a stricter bound com-

pared to the other bounds. The values b by Theorems 3.3 and 3.4 are geiiputed —
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Algorithm 3.2 Greedy algorithm for the construction of the expanded parity check

matrix
Require: b(n — k) x n expanded parity check matrix H, the set of all (n — k) erasure

sequences £, S =¢,b=1,and 7 =0
while £\ S # ¢ do
veE\S
spp(t) <0
forr=0ton—1do
C e {50 05 se®)spplt +7) = 18.] — 1 s (1) € B}
S+ SucC
end for
b+—b+1

end while

Table 3.5: Required b < 3 for perfect decoding with expanded parity check matrix for
(n, k) cyclic MDS codes with 3 < k < 8and 8 <n < 20

Em|8|9|10] 11 | 12 | 13 | 14 | 15 |16 |17 | 18 |19 | 20
30111 ] 1 1 |20 ] 1 2 (21222302
4 1111213232 3 |43 |40

5 1112 2 3 153

6 |[1|1]2 | 2 |43

7 11|12 3

8 [1[1] 1| 1 32503
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as

(5)

brhms = | 22— | = [0.969] =1 3.64
Thm.3 {10(5 » 5+1)—‘ [ | (3.64)

L(10,5,5,4) 10
bThm.4 [ 0 -‘ {10-‘ (3.65)

whereas Theorem 3.5 gives us a tighter lower bound as

() —ax7

brhms = | —ot——— | = [1.0181] = 2. 3.66
Thm.5 {10(5X53)w [ | (3.66)

Using Algorithm 3.2, the expanded parity check matrix can be constructed with

two parity check sequences as

sp1(t) = (0101100101)
spa(t) = (1000011011).

(3.67)

2) (n,k) = (11,5): The values b of the three lower bounds are equal to 2. Con-
struction of the expanded parity check matrix can be realized by the character-

istic sequences of the cyclic difference sets with parameters (11,5, 2) as

spa(t) = (10100011101)
spa(t) = (11011100010).

(3.68)

3) (n,k) = (13,4): The values of b by Theorems 3.3, 3.4, and 3.5 are given as

_ (1) _ _

bThm.a = {W] = [2.153] =3 (3.70)
| (D) —ax13] _

bThm.s = {13(“9_3) = [1.545] = 2. (3.71)

Using Algorithm 3.2, the optimal expanded parity check matrix of the (13,4)
cyclic MDS code can be constructed by the following three parity check se-

quences as
sp1(t) = (1100011111110)

sp2(t) = (1111011101001) (3.72)
sp3(t) = (1010111100111). ] & 1 &)
" = = K
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3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes

Matrix inversion is not widely used in the erasure decoding but for some codes in the
erasure channel, it is permissible for small submatrix inversion. In particular, raptor
codes [25] or regenerating codes for distributed storage systems [26] often use an
inversion operation of a small submatrix for decoding. The conventional assumption
of stopping redundancy for IED is not an inversion-based decoding, but it requires lots
of additional check nodes for a large value of n. However, TS-AGD allowing submatrix
inversion up to a u X u matrix dramatically reduces the stopping redundancy for the
perfect decoding. The operation of submatrix inversion in the proposed TS-AGD for

cyclic MDS codes is always guaranteed by the following proposition.

Proposition 3.4 (The nonsingularity of parity check matrix of cyclic MDS codes). For
any square submatrix of the modified parity check matrix for MDS codes is nonsingu-

lar.
Proof. 1t can be proved by Theorem 8 in Chapter 11.4 in [27]. O

Thus, Algorithm 3.1 becomes Algorithm 3.3 for the perfect decoding by TS-AGD
with expanded parity check matrix and submatrix inversion for cyclic MDS codes.
In Algorithm 3.3, the u elements of the syndrome vector with indices i, ,%,, ..., 4,

where for k € [1,u], ji is in the S, N S, can be computed as

sij, = € hiy g +€jshiy jo + .o+ €, R +a;;, =0,fork € [1,u] (3.73)

ijk aju

where a;; denotes the symbols recovered by the received vector and the parity check
matrix in columns whose indices are not in Se N 5’p. By solving the above system
of linear equations by submatrix inversion, the erasure symbols e;,, €, ...,€;, can
be recovered. Then, the remaining erasure symbols are decoded by the inversionless
VNU.

Three lower bounds on b for the perfect decoding by TS-AGD with expanded

parity check matrix and submatrix inversion for the cyclic MDS codés afe deriyed:=|. —
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Algorithm 3.3 TS-AGD for the expanded parity check matrix with submatrix inver-

sion
Require: b(n — k) x n parity check matrix H, parity check sequences s, ;(t), erasure

sequence s, (t)
for i = 0 tou do
for j =0tobdo
forr=0ton —1do
if 7 se(t +7)spj(t) = |Se| — i then
if i <1 then
Follow Algorithm 3.1 for cyclic MDS codes
STOP
else
Select columns of H with indices in S, N S},
Select | S.N.S,| rows whose indices are indices of “1” in the j-th column
of the standard vector, j € Sc NS,
Invert |Se N Sp| x |Se N Sp| submatrix
Find erasure symbols with indices in Se N §p
Decode the other |S. N Sp| erasure symbols by additional iterations
without inversion
STOP
end if
end if
end for
end for

end for

76



a) Bonferroni Inequality for TS-AGD with Expanded Parity Check Matrix and
Submatrix Inversion for Cyclic MDS Codes

The Bonferroni inequality in (3.10) can be modified as in the following theorems.

Theorem 3.6 (The first term of the Bonferroni inequality with submatrix inversion).
The first term in (3.10) is modified in the expanded parity check matrix with submatrix

inversion as

> B = bnzu: (n ; k) <l:> (3.74)

Icv,|I|=1 i=0
Proof. Suppose that the expanded parity check matrix has b parity check sequences.
The 7-shifted parity check sequence s,(t + 7) can correct n — k erasure symbols if

Ry(t) > n—k —u If Ry(tr) = n —k — i, n — k erasure symbols are in the

n—k

n — k — i standard indices and the decoder can correct (,"," ) (lf) erasure patterns.
The number of decodable erasure patterns is the sum of all ¢ € [0, u], which proves the

theorem. O

Theorem 3.7 (The second term in the Bonferroni inequality with submatrix inversion).
The second term can also be modified in (3.10) in the expanded parity check matrix
with submatrix inversion as

> e

ICV,|I|=2 lieT

u—1 n—1
1<i<j<b p=0 71,72=0 0<¢+n1 <u,0<(+n2<u
<k —2u + u) <2u - u) <2u - u) (3.75)
¢ m n2

C) Fsp,i(t'FTl),sp,j(t—i-Tz)(k —2u + u)

< n—k—2u+p
ek —m—m—

where Fsp,i(t+T1)7Sp,j(t+T2)(7) returns 1 ifzzlz_ol(sp,i(t + 71)8p,(t + 72)) = v and

otherwise, 0.

Proof. The proof is the generalization of that of Theorem 3.2. For the ¢-th and the j-th
parity check sequences cyclically shifted by 71 and 72, the function Fy (1 s, (t+m) (7)
is computed as follows. If v = k — 2u + p for p € [0, u; have [41]| =k 2 +7}. -
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|A1o| = |Ao1| = 2u—p, and |Ago| = n—k —2u+ p. Let ¢, 71, and 772 be the numbers
of erasure symbols in Agg, A19, and Ag1, respectively. To decode the received vector in
two parity check sequences, the Hamming correlation of each parity check sequences
is less than or equal to u, where ( + 71 < w and ¢ + 72 < wu. This provides the

proof. 0

b) Lower Bounds of the Stopping Redundancy for TS-AGD in an Expanded Par-

ity Check Matrix with Submatrix Inversion

The three lower bounds on b for TS-AGD with expanded parity check matrix and u X u
submatrix inversion for the cyclic MDS codes can be modified as in the following

theorems.

Theorem 3.8 (Gilbert-like lower bound of TS-AGD with expanded parity check matrix

and submatrix inversion).

a {nzy_(ﬁf s &J . o

Proof. It manifests from Theorem 3.3. [

Theorem 3.9 (Lower bound by the lotto design for the TS-AGD with expanded parity

check matrix and submatrix inversion).

> [L(n,n—k,n—k,n—k—u)
o n

-‘ (n—k). (3.77)
Proof. 1t manifests from Theorem 3.4. O

Theorem 3.10 (Lower bound by the Bonferroni inequality for the TS-AGD with ex-

panded parity check matrix and submatrix inversion).

(M) = () A(n, 4u + 2,n — /ﬂ
> (n—k) (3.78)
’ { (i (7 (5 = ()

where A(n,d,w) is the maximum number of codewords for (n,d,w) constant weight

codes. 1
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Proof. The proof is the generalization of that of Theorem 3.5. Two parity check se-
quences that have Hamming correlation less than & — 2u have no doubly counted
decodable erasure patterns, because two parity check sequences cannot be simulta-
neously decoded regardless of their locations of erasure symbols for [Agg| < n —
k — 2u — 1. For |Agy| = n — k — 2u, the doubly counted decodable erasure patterns

exist only when u erasure symbols are located in Ajg and Ag1, respectively, where

2n

2 .. L
n ) . The remaining part is similar

|A1g| = |Ao1| = 2u. Then, the number of cases is (

to the proof of Theorem 3.5. 0
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Chapter 4

New Constructions of Binary and Ternary LRCs Using

Cyclic Codes and Existing LRCs

In this chapter, new constructions of binary and ternary LRCs are proposed using
cyclic codes and existing LRCs. First, new constructions of binary LRCs using cyclic

codes are introduced.

4.1 Constructions of Binary LRCs Using Cyclic Codes

In this section, new binary LRCs are proposed by using cyclic codes, where some of

them are optimal in terms of bounds in (2.2), (2.3), and (2.4).

n, let v = 2~ and

Construction 4.1 (Cyclic binary LRCs with d = 4). For (r + 1) ]

u =1+ 1, where gcd(u,v) = 1 and u,v > 2. Let g(x) be a generator polynomial of
the cyclic binary LRC and (' be an u-th root of unity. Then, (uv, uv —deg(g(x)), 4, u—

1) binary LRCs can be constructed by the following generator polynomials:

1) For 2

r, g(x) = (z¥ + 1)g1(x), where g1(x) is the minimal polynomial of [’

over Fs.

2) Forr =2m—1, g(z) = (2 + 1)(z + 1)2"" ", where m is a positive integer.

r])
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Proof. First, I have to prove that they are LRCs, that is, there are at least one check
with Hamming weight r + 1. Since (z¥ + 1)|g(z), 1 + 2V + ... + ("D can be a
check of H. Thus, the proposed codes are LRC with r = u — 1.

Next, it is necessary to prove that the minimum distance of the proposed LRCs is 4.
It is easy to check that there is no codeword with odd Hamming weight for both cases
of g(x). Subsequently, I have to prove the nonexistence of codewords with Hamming
weight 2 and the existence of codewords with Hamming weight 4.

For 2|r, suppose that I have a codeword ¢(x) with Hamming weight 2. Since (z" +
Dle(z), e(z) = 14 2,1 € [u]. Further, ¢(8') = 0, that is, (3)" = 1 and u/(vl)
and thus, [ = 0 from gcd(u,v) = 1. Then, ¢(z) = 1+ 1 = 0, which contradicts the
assumption. Thus, there is no codeword with Hamming weight 2. It is easy to check
that g(x) divides (1 + z")(1 + =), which is a codeword with Hamming weight 4.

For r = 2™ — 1, suppose that there exists a codeword ¢(x) with Hamming weight
2. Since (22" +1)|c(x), c(z) = 22" +1,1 € [0,20 —1]. Since ¢(z) = (22" +
1)(2G0277 0 4 =220 4 277 1 1), (2 4 1) should divide (z(—Y +
=227 4 22" 4 1) and thus [ should be even. Let [ = 2I’. Then, c(z) =

2m—1

22" 41, which satisfies ¢(3”) = 0, where 3" is a v-th root of unity. Then, (3”)"?" =
1. Given that u = 2™, ged(u,v) = 1,and I’ € [0,v — 1], Thave l = 0 and ¢(x) = 1 +
1 = 0, which contradicts the assumption. Thus, there is no codeword with Hamming
weight 2. Since g(z) = 22" 'tV + 22" 4 2¥ + 1, there exists a codeword with

Hamming weight 4. O

Some classes in Construction 4.1 are optimal or r-optimal as in the following

proposition.

Proposition 4.1 (Optimality of Construction 4.1). For LRCs in Construction 4.1, two
classes of (21,1 — 1,4,1) and (41,3l — 2,4,3) cyclic binary LRCs are optimal for
l >3, gcd(2,1) = 1 and one class of (31,2l — 2,4,2) proposed cyclic binary LRC is
r-optimal by (2.2) for | > 4, ged(3,1) = 1.
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Proof. Two classes of the proposed (21,1 —1,4,1) and (4{, 3] — 2,4, 3) LRCs have the
same parameters as the optimal binary LRCs in Construction 4.1 in [38]. If the class
of proposed (31,2l — 2,4,2) LRC is not r-optimal, the inequality % < "2—;2 derived
from (2.2) for LRC with r = 1 should be satisfied but it does not hold for [ > 4, which
tells that the class of proposed (3[, 2] — 2, 4,2) LRC is r-optimal. O

Optimal or r-optimal LRCs with the same parameters were also introduced in [38],
[39], but they were not cyclic.
Noncyclic binary LRCs with larger minimum distance are also proposed as in the

following construction.

Construction 4.2 (Linear binary LRC with d > 6 and r» = 2). Let 8 be a primitive
element of the finite field Fom and n a positive integer larger than or equal to 9 and
divisible by 3 such that %” <2m —1. LetCgbea (2™ —1,2™ —m — 2, 4) expurgated

Hamming code with generator polynomial g(x) = (x + 1)g1(x), where gi(x) is the

minimal polynomial of 3 over Fo. A (27", %” —m — 1,> 4) shortened expurgated

Hamming code Cs can be generated by shortening the first (2™ — 2?” — 1) information

bits of Cg. Then, concatenation of Cs and an (n, %") cyclic code with parity check
polynomial 25 +25 + 1 as an inner code makes an (n, %” — [log, (%” +1)]-1,d >

6,2) LRC Cc.

Proof. Let Hg and Hg be the parity check matrices of Cg and Cg, respectively. Let
Hp = [H{ Hj H}) and Hg = [H) Hj), where H{ is the (m + 1) x (2™ — 1 — 22)
matrix and H5 and Hj are the (m + 1) x § matrices. The parity check matrix of the
cyclic inner code can be given as H; = [I n I n 1 %] The parity check matrix of the

proposed LRC is then given as

H H), H, O
N KON
Hy Ig In I%

3

where O denotes the (m + 1) x § zero matrix. It is easily verified that the locality of

LRC is 2 from the lower part of H, H;. Adding all of the rows of H; makes an alll-6ng. —
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vector and thus, there is no codeword with odd Hamming weight. At this stage, I have
to prove that there is no codeword with Hamming weight 4. Suppose that there is a
codeword with Hamming weight 4. Since the minimum distance of Cg is larger than or
equal to 4, the nonzero elements of the codeword with Hamming weight 4 should be
located in the first %” elements of the codeword. In order to satisfy Hy, the codeword
polynomial should be a form of ¢(z) = 2/ + x7 + '+5 +27%5 = (2 +27) (14 23),
0 <i<j< 3. Clearly, g1(7)|c(x) and thus ¢(3) = 0 but B5 #land '+ 57 #0.

Thus, there is no codeword with Hamming weight 4. 0

Using (2.4), the optimality of the LRCs in Construction 4.2 can be stated as fol-

lows:

Proposition 4.2 (Optimality of Construction 4.2). Let k. and k be the dimensions
of the LRCs satisfying the equality in (2.4) and the proposed LRCs in Construction
4.2, respectively. If n > 33, the proposed LRCs are r-optimal. Further, if n > 33 and
[logy(Z +1)]+1 = [logy(1+n)], the proposed LRCs are r-optimal and k-optimal.

Proof. If n = 33 or 36, k = kopt by (2.4) and thus LRC is r- and k-optimal. For
n > 39, the proposed LRC is also r-optimal by (2.2), because (2.2) is rewritten as
% < % =2 w < 22 < L forr =1, thatis, # < [logy (n+ 1)]. Thus
it does not hold for n > 39 and = 1, which tells that the proposed LRC with n > 33
is r-optimal. Also, kopr = % — [logy (n 4+ 1)] and k = % — [logy (% +1)] — 1 and
thus if [logy (2 +1)] 4+ 1 = [logy(1 + n)], the proposed LRCs are r-optimal and

k-optimal, i.e., k = Kop. ]

Note that (2.4) does not gaurantee d-optimal because (2.4) is valid for d > 5. Table
4.1 shows the parameters of optimal LRCs with d = 6 and » = 2 from the existing
works [29] [40]. Thus, Construction 4.2 gives us new binary r- and k-optimal LRCs.

For r > 3, there is a construction of LRC based on nonlinear codes as in the

following construction.
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Table 4.1: Optimality of the existing binary LRCs with d = 6 and r = 2
(n, k), conditions r-opt | k-opt | d-opt
Thm. 1in[29] | (2" — 1,22 —m),2/m | O 0 0
Cor. 1in [40] | (35,25 —4),4<s<5 (0] (0] (0]

Construction 4.3 (Nonlinear binary LRC with d > 5 and r > 3). Let 3 be a primitive
element of the finite field Fom and n a positive integer such that n + 1 is divisible
by r + 1. Let v be :%11 and m should satisfy rv < 2™ — 1. Let Cg be a (2™ —
1,2™ —m — 2,4) expurgated Hamming code as defined in the previous construction.
An (rv,rv—m—1, > 4) shortened expurgated Hamming code Cs can be generated by
shortening the first (2™ —rv—1) information bits of Cg. Then, the (n+1,rv—m—1,>
4, 1) linear LRC C¢ can be constructed by concatenating Cs and an (n + 1,rv) cyclic
code with parity check polynomial z™ + z"=V? 4+ .+ x¥ + 1. By selecting all
codewords with the i-th element 1 for a fixed i € [rv,n| and deleting the i-th elements

from the selected codewords, an (n,2"°~™=2,> 5 1) nonlinear binary LRC can be

constructed.

Proof. Let Hg be a parity check matrix of Cs. A parity check matrix of the (n,rv)
cyclic code can be given as Hy = [I,, ... I,] = [H} I,], where H} is a v X rv matrix

consisting of r I,,’s. Then, the parity check matrix of the proposed LRC is given as

Ho
Hy

o :[HS 0}

H, I,

where O denotes the (m + 1) x v zero matrix. It is easily checked that the locality of
LRC is r from the lower part of H, H;. Adding all of the rows of H; makes an all-one
vector and thus, there is no codeword with odd Hamming weight. Now, I have to prove
that there is no codeword with Hamming weight 4. Suppose that there is a codeword
with Hamming weight 4. Since the minimum distance of Cs is larger than or equal to

four, the nonzero elements of the codeword with Hamming weight 4 should be located

in the first rv elements of the codeword. If the codewords with qgﬁ?e}df elemiéntsih —
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the index [rv, n| exist, their Hamming weights are larger than or equal to six. Since I
select the codewords with the i-th element 1 for a fixed ¢ € [rv, n], the selected code
has the minimum Hamming weight larger than or equal to six. By deleting the i-th
elements from all selected codewords, their minimum Hamming weight is larger than
or equal to five. At this point, I have to prove the number of codewords of the proposed
LRCs. First, I can decompose C¢ into two classes, that is, a set of codewords with the
i-th element 1, Cgi) and a set of the remaining codewords, C(()i) . Let ¢; be a codeword
of C;i) . Then for any ¢; in C;i) , ¢; @ ¢, belongs to C(()i) and thus |CY) | < |C(()i) |. Further,
for any ¢, in C, ¢; @ ¢, belongs to C! and thus ](Zg) | < |C'”]. Accordingly, |Cg) | =

]C;“| =2mv="=2 which is the number of codewords of the proposed LRCs. O

In order to encode the proposed LRCs in Construction 4.3, the parity check matrix
of Cc¢ in Fig. 4.1 is used, where m 4+ 1 < v. Assume that index ¢ is set to rv, whose
element will be ‘deleted’ from all codewords of CY) later. For the message vector m =
(my, ma, ..., Mypy—m—2), the codeword can be given as ¢ = (pg, M1, M2, .o, Mypy—m—2,
P1,D2; o D(r +1)v_1), where p,,+2 = 1 will be deleted for the proposed LRCs. First,
the value of p is computed by the (m + 1)-th row of H¢c, m, and py,,+2 = 1. Then, the
values of p1, pa, ..., Pm+1 are computed using Hg and the values of p,,+3, Pm+d, -
DPm—+v+1 can also be computed by H;. The codeword of the proposed LRC is then
given as (po, M1, M2, cooy Myy—m—2y D1y P2y -5 Dm+1s Pm+3s Dm—+4s -y Pm+v+1)- Thus,
the encoding procedure of the proposed LRCs is identical to that of the linear code
Cc.

Using (2.2), the optimality of the LRCs in Construction 4.3 can be stated as fol-

lows:

Proposition 4.3 (Optimality of Construction 4.3). For some n, the proposed binary

LRCs in Construction 4.3 is r-optimal.

Similar to the proof of the previous cases, it can be easily checked that (2.2) does
not hold for (n, k,d,r — 1) LRC in Construction 4.3. Table 4.2 listjs the C.Qdelepigth of
-\-.._! _l\.;_. 5 I: ..-'.:i
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Figure 4.1: Parity check matrix of the LRC in Construction 3 with ¢ = rv.

Table 4.2: Codelength of r-optimal LRCs in Construction 3 with r € [3, 8]

Po (ml' my, .., mrv—m—z)

N

Message vector m

D1, o) Pms1)

Fixed bit
Pm+z =1

0
1

(pm+3' ) pm+v+1)

p Im+1 0
H : m
100 ... 100 ... 100 ... m+1
2 - T m+ 2
YAl L I, I,

: m+v
011 2 (r—1v rorv+ 1. (r+ v

=1 =n

Indices

r

3

4

5

6

7

8

n

> 67

> 124

> 209

> 286

> 431

> 620

r-optimal LRCs for r € [3, 8] in Construction 4.3.

As a special case for the short codelength, I can modify Constructions 4.3 as in the

following example to construct binary LRC.

Example 4.1 (Construction of linear binary LRC with » = 3). Linear binary LRC
with d = 6 and v = 3 can be constructed for short codelength without deleting the
i-th bit in Construction 4.3. A (20, 10,6, 3) LRC is constructed by using a (15,10, 3)
binary cyclic code with g(x) = (z* + z + 1)(x + 1), which is optimal by (2.3) and

better than dimension 9 from [40].

Table 4.3 summarizes the optimality of the proposed binary LRCs.

4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes

Using the construction method of the binary LRCs, two linear ternary LRCs are pro-

posed in the following constructions.
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Table 4.3: Optimality of the proposed binary LRCs using cyclic codes

Conditions r-opt | k-opt | d-opt
Const.4.1 Class with d = 4, r = 2 of Prop. 4.1 O ? ?
Const.4.1 | Classes withd = 4, r = 1, 3 of Prop. 4.1 (0] O O
Const.4.2 d>6,r=2,n2>333|n 0) ? ?
Const.4.2 d>6,r=2,n2>333|n (0] (0] ?
Mogy (22 + 1)] + 1 = logy(1 + n)]
Const.4.3 d>5,(r+1)[(n+1),Prop. 4.3 o) ? ?
Exam.4.1 (n,k,d,r) = (20,10,6,3) o o o

Theorem 4.1 (Linear ternary LRCs of d > 5 and r = 2). Let 3 be a primitive element
of the finite field F3m and n a positive integer divisible by 3 such that %” < 3™ —1. Let
Cgbe a (3™ —1,3™ —m — 2,3) cyclic code with generator polynomial g(z) = (x —
1)g1(x), where gy (x) is the minimal polynomial of 3 over F3. A (%, % —m—1,> 3)
shortened code Cs can be generated by shortening the first 3™ — 1 — %" information
bits of Cg. Then, concatenation of Cs and an (n, %”) cyclic code C¢ with parity check
polynomial z5" + % + 1 as an inner code makes an (n, 2 —[logg (2 +1)] —1,d >

5,2) linear ternary LRC.

Proof. 1tis easy to check that Cg has d > 3 by BCH bound and two consecutive zeros
{1, 8}. Let Hg and Hg be parity check matrices of Cg and Cg, respectively. Similarly
to Construciton 4.2, the parity check matrix of the proposed LRCs is given as (4.1).
Then, the locality of the proposed LRC is 2 and I have to prove that there is no
codeword with Hamming weights of 3 and 4. Suppose that there is a codeword with
Hamming weight 3. Since the minimum Hamming weight of Cg is larger than or equal
to 3, the nonzero elements of the codeword with Hamming weight 3 should be located
in the first %” elements of the codeword. Then, the codeword polynomial should be
c1(x) = a2 4+asa? +aszxt T or c2(z) = ey’ Fagai +azrk,0<i< j<k< 7 and

ay,az,az € {—1,1}. It is easy to check that the checksum of H; cannot be satisfied

for the both cases. If the codeword with Hamming weight 4 has threg fonzero,elemeits —
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located in [2* — 1] and the other in [2%,n — 1], it cannot be a codeword because the
check [02?71, 1] can be obtained by subtracting I:l%n ,02] by (z — 1) in g(x) from [1,]
by Hj. Thus, the codeword with Hamming weight 4 has four nonzero elements in
[20 — 1], which can be represented as c¢(z) = (a12? + ap2?)(1 —25),0 <i < j < 2,
a1,as € {—1,1} because it should satisfy H;. Then, ¢(3) # 0 because 53 # 1 and

=0 £ +1. Thus, there is no codeword with Hamming weight 4. O

Note that the (12,5, 6,2) ternary LRC constructed in Construction 4.1 has the
same parameters as those of the eight classes of the optimal ternary LRCs in [33] by
2.2).

In addition, the linear ternary LRC of = 3 can also be constructed as follows.

Theorem 4.2 (Linear ternary LRC of d > 5 and r = 3). Let 8 be a primitive element
of the finite field F3m and n a positive integer divisible by 4 such that ?jT” < 3" -1
Let Cg be a (3™ —1,3™ — 1 — 2m,4) ternary BCH code with g(z) = g1(z)g2(z),
where g1(x) and g3(x) are the minimal polynomials of 3 and 3% over F3, respectively.

A (%T”, %" — 2m, > 5) shortened code Cs can be generated by shortening the first

3m—1- %T" information bits of Cg. Then, concatenation of Cs and an (n, %T") cyclic

code C¢ with parity check polynomial 2T + o T + &1 + 1 as an inner code makes an

(n, 3 — 2[logs(2" +1)],d > 5,3) linear ternary LRC.

Proof. 1t is easily checked that the locality of the proposed LRC is 3 by the parity
check polynomial of Cs. Then, I have to prove that there is no codeword with Hamming
weight 4. If there is a codeword with Hamming weight 4, its nonzero element should
be located in [% — 1] because Cs has the minimum Hamming weight 4 by BCH
bound and the three consecutive zeros. For a1,as € {—1,1} and i # j € [} — 1], the

codewords with Hamming weight 4 can be expressed as in the following five cases;
D) er(z) = M (a2’ + aged — aya’ti —agad i) = 2H(1 — %) (a12" + agx?) for

1e{0,%}.

2) co(z) = arz’ + asa? — a1zt — a4t = (1= :L‘an)(q_:-@’ :I*:uzafi)!.g =]
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3) e3(x) = ay 2’ + agaxd —ayx'ti —agad = (1—2%)(a12" + ased (14 x%)).

. . .2 .2 2 .
4) cy(x) = a1x* + aszI i — ai't T — agdtE = —:L‘Tn(l - m_%)(almZ +

ag? (14 z71)).
5) ¢s5(z) = a1a’ + agadTi — i — aszd T = (1—2)(a1a’ — aga? 7).

For the proofs of 1) and 2), it is easy to check that ¢;(/3) # 0 because [ i # 1 and

B3It £ £1 and c5(8) # 0 because 34 # 1. For 3), I have to prove c3(8*) # 0 for at

leastone k € [1, 3]. Suppose ﬁ%,ﬁ%,ﬁ% + —1.Clearly,ﬁ%n # 1fork € [1,3]and 1

have a1 8¢ + az3 (8% +1) = a1 8% + a2 (BT +1) = a1 8% + as8% (BT +1) = 0
. 2i _ 2j [ p2n

by c3(8) = c3(8%) = c3(8%) = 0. Then, 8¢ = 0;11%1' — Z02B7 BT+ and also

. —asf1 (BT +1)
i ap —a2B8% (871 41) Thus. I have %Tn_’_l 2 _ %-}-1 33771—1—1 which can
= arm = Ty (Be+1) iﬁ JL,
be rewritten as 34 (84 — 1)2 = 0 and it contradicts. If 3 = —1 for some k € [1, 3],

e3(B*) = (1 4 1)(a1 %) # 0. Similarly, 4) can be proved. For 5), #7~"F% = 1 by

Bt = C;ll—[g; = 774 and ¢5(8) = ¢5(82) = 0, but there is a contradiction. Thus, there

is no codeword with Hamming weight 4. O

4.3 Constructions of Binary LRCs with Disjoint Repair Groups
Using Existing LRCs

In this section, a new construction method of binary linear LRCs is proposed using

existing LRCs as in the following theorem.

Theorem 4.3 (Construction of new binary LRCs using existing LRCs). Suppose that
for (r +1)|n, an (25, k1,d1) and (35, k2, d2) linear binary codes Cy and C; exist,

respectively. Then, (-2 ki — d},r — 1) binary LRC C} is constructed by adding

r+17 7"+17

747 disjoint repair groups in parity check matrix of C1, which should satisfy Ci CCy.

By combining C{ and Ca, (n, ki + ko — > min (d},dy + dz),r) binary LRC C

sy

with =5 dlS]omt repair groups is constructed.
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Proof. Letv = 5. Suppose that C'1 has a parity check matrix as

Her, = 4.2)
Hy,

where Hy, = [I,,, I, ..., I,] for identity matrix I,, with size v. Assume that the parity

check matrix of C is given as

He, O
He=| 0 He, |- 4.3)
1,

First, it is easy to check that the locality of C is r from submatrix [H, I,], the lower
part of Hc. Similarly, it is also easy to derive n and k from H¢ for C. In order to prove
Hamming distance, it can be partitioned to three cases by the location of nonzero

elements for the each codeword of C as;

™™m

1) All the nonzero elements exist in [;75].

2) All the nonzero elements exist in [ + 1, 7).

3) Nonzero elements exist in both [;75] and [;55 + 1, 7],

For the first case, Hamming weight of the corresponding codewords are at least d.
There is no second case because submatrix [H, I,,] of He cannot be satisfied. For the
last case, the number of nonzero elements in [[4] is at least d; due to the checks
[He, O] and the number of nonzero elements in [ + 1, 7] is at least d2 due to the
checks [O Hg,]. Therefore, Hamming weight of the corresponding codewords is at
least dy + do and the minimum Hamming weight of C is minimum of the above two

cases, which completes the proof. 0

The (20, 10, 6, 3) binary LRC in Example 4.1 can be generalized by using Theo-

rem 4.3 as follows.
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Construction 4.4 (d > 6, r = 3). For 4|n, suppose that Cy is an (%", 2?” — [logs(1 +

2n 2m_1 n

)] — 1,> 3) shortened Hamming code obtained by shortening [1, -1 Z]’
[22";_1 +1,2 (2277;_1 — %T”)} and [2 <22W;)7_1) ,22m 1 — %”} information bits from

(22m —1,22™ — 2m — 1, 3) Hamming code, where m is a smallest integer satisfying
3n
3n < 22m 1. Then, (3, 2 — [%W —1,6,2) LRC C| with % disjoint repair

3n
groups is constructed. Using Theorem 4.3, an (‘%", %T” — [bgm%“)} —1,6,3) LRCs

C can be with 7 disjoint repair groups is constructed.

Proof. Clearly, the generator matrix of C] is a primitive polynomial p, (x), where « is
a primitive element of Fo2mn. Note that check polynomial for Hy, in (4.2)is 1 + z +
2% . Thus, the generator polynomial of Cj is po(z) (1+ l'%)/(l + 29 + x%) =
pa(z)(1 4 z7) and roots of C} is {1,a,a?, o, a*}. Thus, the minimum Hamming
distance of C] is larger than or equal to 6, that is , dj > 6. Clearly, d; > 3 and do = 2
and thus min{d, d; + d2} = 5. From the checks [/ I I I] in lower part of (4.2), all

codewords should be even Hamming weights and thus d = 6. U

The optimality of the proposed LRC in Construction 4.4 is given in the following

proposition.

Proposition 4.4 (Optimality of Construction 4.4). The proposed LRC is optimal if
3n
[logy(1 + 32)] = Q[M] + 1, Furthermore, the proposed LRC is r- and d-
3n
optimal if [logy(6n — 16)] > 2 {ww + 1 for disjoint repair group.

It can be easily proved from Proposition 2.4 and thus, I omit it.

4.4 New Constructions of Binary Linear LRCs with d > 8
Using Existing LRCs

In this section, I will show that the proposed LRCs satisty LRCs new k-optimality for

k > 8. For > 8, note that there is no guarantee that (2.6) is tight for LRCs with large

minimum Hamming distance d > 8. Instead, I will relax /-c-optim_a}i;ty asrlogatithimic. —
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gap for k if kpropt — bk < logyn, where kprop1 is maximum dimension satisfying
(2.5) or (2.6) in Proposition 2.4. and it is called near k-optimal for for LRCs with
dimension ko If it is logarithmic gap, the ratio M = O(log?n) which
becomes small for larger n.

By modifying the proof of Theorem 4.3, the other new construction of binary linear

LRC:s is also proposed as in the following corollary.

Corollary 4.1. Suppose that for (r+1)

(5, k1, dy) linear binary codes Cy exists.

n(g, ki— = dy, T‘H —1) binary LRC C} can be constructed by adding - 747 disjoint

repair groups in parity check matrix of Cy, satisfying C; C Cy. As in Theorem 4.3, an

(n,2ky — > min (d}, 2dy),r) binary LRC C with 5 7 disjoint repair groups is

r—i—l’—

constructed with parity check matrix as

He, O
He=| O He |- (4.4)
H, Hp

It can be proved similar to that of Theorem 4.3 and I omit proof. For d > 8§, the

following construction is proposed.

Construction 4.5 (d > 8, r = 2,3). Forr = 2,3 and (r + 1)

and Cs be shortened Hamming codes whose m x (2™ — 1) parity check matrix H, and

2

H s are additive representation of [1, o, a®, b+1

b+2 b+ ]|

n_
a1 and [, ot ot L«

respectively, where o is a root of irreducible trinomial ™ +x° +1 of FJ, b € [m —1],

and m is a smallest integer satisfying ;35 < 2™ — 1. Then, a (%, Ti—"l — [logy(1 +
7)1 — 2,4) binary code C is constructed with parity check matrix
1 0
He, = 0 1 4.5)
He, He,
and (n, 3 — [logy(1 + )] — 1,8,3) LRC C} with ;15 disjoint repalr gmugs l,s e
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structed with the parity check matrix

F .

0 1
Her, = . (4.6)

He, He,

1 1
From Theorem 4.3 for r = 2, (n, %+ — 2[logy(1 + §)] — 2,> 8,2) binary LRC C is
constructed using C1 and an (r+17 1 — Hoga(1 + 25)1, 3) binary code Cy whose

parity check matrix He,
1
He, = ) 4.7)
He,

From Corollary 4.1 for r = 3, (n, k,d,r) = (n, 2% — 2[logy(1 + %)] — 3,> 8,3)

binary LRCs is constructed using C'.

Proof. First, it is easy to check that localities of the proposed LRCs are 2 and 3, re-
spectively. In order to prove minimum Hamming distance of the proposed LRCs, it it

necessary to prove two claims.

1) Minimum Hamming distance of the code with parity check matrix He, is 4.

2) Minimum Hamming distance of the code with parity check matrix H¢/, is 8.

Fo the proof of 1), I divide it to the three cases by the location of nonzero elements as

in Theorem 4.3. If all the nonzero elements exist in [T%] or [-17 17 +1] Minimum

1
Hamming distance is 4 because its parity check matrix is . For the third

He,
0

01
For the proof of 2), it is not difficult to check that H¢/, can be modified to

1 0

case, minimum Hamming distance is also at least 4 by two upper checks

Her, + Herg O | by elementary row operation. From 1 + o’ 4+am =0,1
I 1

have He, +He, = [14+a, a+a?™, .. a7+ +a? 771 71} = [am aﬂ“;..a,quf Hzl }.m_u
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Thus, He, + He; is also a parity check matrix of shortened Hamming code and its min-
imum Hamming weight is 3. From the first and last local rows, the minimum Hamming
weight of Her, is 8.

Based on the values of d; = 4 and d} = 8 from 1) and 2) and and dy = 3, it is
easily checked that minimum Hamming distance of C is 8 by Theorem 4.3 or Corollary
4.1.

Note that the check [ 0 01 ] forthe LRCofr=2o0r| 0 0 0 1 | forfor
the LRC of r = 3 in H¢ can be generated by of other check and thus, I can increase

the dimension of C by 1. O

Note that primitive trinomial does not exist for all m. The existence of primitive
trinomial for each m < 5000 was found in [42]. Optimality of the Construction 4.5 can

be shown using Proposition 2.4 as in the following proposition and I omit the proof.

Proposition 4.5 (Optimality of Construction 4.5). If there exists a primitive trinomial
with degree m = [logy(1 + %), the proposed construction is r- and d-optimal if
logQ(%) > 2[logy(1+ §)] + 2 forr = 2 and logQ(%) > 2[logy(1 +

D)1 + 3 forr = 3. Also, they are near k-optimal.

For some k-optimal LRCs with d = 8 such as (16,6,8,2), (20,8,8,3), and
(24,11, 8,3) [41] can be induced by some criteria and exhaustive search, which re-
quires exponential complexity of codelength. However, the proposed method offers
explicit constructions regardless of n though they are near k-optimal. First, a lemma is

given for the proof of the following construction as:

Lemma 4.1 (Theorem 1 in [43]). Let go2(x) be a factor polynomial of the polynomial
g1(x), both over Fy. For i = 1,2, let g;(x) generate an (n, k;,d;) cyclic code. Then,
the Hamming distance of the cyclic (2n, k) code generated by g(x) = g1(x)ga(x) is
given as min(dy, 2da) where dy and ds is the Hamming distance of (n, k) cyclic code

with generator polynomial g1(x) and gs(x), respectively.
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For specific case, I can construct an optimal (30,12, 8,2) LRC using different

approach as follows.

Construction 4.6. (n,k,d,r) = (30,12, 8, 2) optimal binary cyclic LRC can be con-
structed by generator polynomial g(z) = (210 + 1)(2%2 + z + 1)?(z* + = + 1).

Proof. First of all, it is easy to check that the locality of the code is 2 for codeword
polynomial c¢*(z) = 2?0 + 2'9 4 1 of the dual code of the LRC. In order to show
minimum Hamming distance, let g1(z) = (z° + 1)(2? + 2 + 1)(2* +  + 1) and
ga(x) = (2° 4+ 1)(2? + 2 + 1). By Lemma 4.1, d; is larger than or equal to 8 by 7
consecutive roots {a’, !, a?, a3, a* a® a8}, where « is a primitive element of Fys

and dy is 4 by roots {a”, a® a®}. Therefore, the Hamming distance is at least 8. In

addition, optimality can be verified by (2.6). O

For the following construction, the definition of reciprocal polynomial will be
used. For Fan, reciprocal polynomial p(z) is denoted as p(z) = a"p(z~1). Also,
p(z) is called reversible if p(xz) = p(x). Note that binary reversible polynomials will
be used as generator polynomial of code C; for codelength 2™ + 1 if m is odd and
2™ — 1 if m is even. r-optimal LRCs with d > 10 and r = 3 will be proposed in the

following theorem.

Lemma 4.2 (Theorem in [44]). For 3|n and 2s < %, suppose that an (n — 3s,k —
3s) shortened linear code Cs can be obtained by shortening the information bits with
indices in |[s], [% +1,5 + 3], and [%" +1, %” + 3] from (n = 2™ + 1,k) cyclic
systematic code C, with roots {a~', a}, where o is a primitive element of Fom. Then,
the minimum Hamming distance of Cs is at least 3. Also, the support of x € Cs with
Hamming weight 3 is only supp(x) = {i,i+ % — s,i+ % — 2s} fori € [0,% — s)

and there is no codeword with Hamming weight 4.

Proof. First, the minimum Hamming weight of codeword in C,. is 3 due to two con-

secutive roots {c, a}. Suppose that the codeword polynomial with Hamming weight
¥ | ) =11 ==
A =T H O]

| = =)
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3 is shown to be ¢(z) = 1+ 2’ + 2. Then, c(a) = 1 + ' + o = 0, c(a™!) =
l4a+ad =0,0<i< j < n and therefore, o'+ o = 1and ot = 1,
which means 7 = 5 and j = %n Similarly, suppose that the Hamming weight of some
codeword is four and its codeword polynomial is given as ¢(z) = 1 + 2 + 27 + 2F.
Then, c(a) = 1+’ +af +a* =0and c(a™!) = 1+a "+ a7 +a~* = 0 and thus,
&' ol TF 4o+ = oIk Then, the polynomial a(z) = (z+a!)(z+af)(z+ak)
for 0 < i < j < k < n can be expressed as (2% + o/T/7%)(z + 1), which means that
one of the roots of a(x) is a” = 1 and thus, i = 0, which contradicts to the assumption
of ¢ > 0. Therefore, there is no codeword with Hamming weight 4. In addition, it is

easy to check support of Cs; with Hamming weight 3 and nonexistence of codeword

with Hamming weight 4 by properties and indices of the shortened code. 0

Construction 4.7 (Binary LRCs with d > 10 and » =

Co is an (g, ks dy) = (2™ + 1,2™ — 2m £ 1,3) systematic cyclic binary code
with roots {1, a}, where m is the smallest integer satisfying %" < 2™ £ 1 and

2m < % and « is a primitive element of Fom. Then, Cy is constructed by shorten-

ing the information bits with indices in [2"?:1 - %] [2mi1 +1,2 (Qmil) — %], and

[2 (2Mi1) +1,2"+1— ]from Cy. Then, a (??Tna n _ 2ﬂog2(3n + 1)]vd > 1072)

LRC C} is constructed by adding  local checks with disjoint repair groups. Suppose
that Co is an (%, — [logo(1 + )], d > 3) shortened Hamming code obtained by
shortening the first om' 11 7 information bits from the (2m —1,2" —m/ —1 ,3)
systematic Hamming code, where m/ is the smallest integer satisfying ™ 1< om' _ 1.
Using Theorem 1, an (n, 2 — 2[logy (2% ¥ 1)] — [logy(1 + 2)],d > 10,3) LRC C
with 7 disjoint repair groups is constructed.

Proof. 1t is easy to check that the locality of the proposed LRC is three and d is

3 -2

10 by 9 consecutive roots {a, ™%, a,™3  a,72 a1 1, @,

,a,3, a*} of the generator
polynomial of C'1 ger, () = pa(x)pa-1(z)(zF + 1) similar to those in [31], which

corresponds to the first case in the proof of Theorem 4.3. The third case in the proof of

Theorem 4.3 is when nonzero elements exist in both [2] and [2% gr it n].xlN_otp thatthe. —
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minimum Hamming distance of C is at least 6 because d; and ds are 3. However, there
are no codewords with Hamming weights 6 and 8 and thus, the minimum Hamming
weight of C is at least 10. In order to prove this, Lemma 4.2 will be used.

Suppose that there is a codeword with Hamming weight 6 in C and then the code-
word should be Hamming weight 3 in [2%] and [ + 1, n], respectively. However, the
only support in [22] is {i,i + %,i + 2} for i € [%] by Lemma 4.2. Regardless of the
support in [%T” + 1, n], two local checks cannot be satisfied in (4.2). Thus, there is no
codeword with its Hamming weight 6. Suppose that there is a codeword with Ham-
ming weight 8. Then, Hamming weight in [%" + 1,n] should be 3 because it should
be less than or equal to 4 by the local checks. Also, there is no codeword with Ham-
ming weight 4 in [3 + 1, n] because if exists, the support of codeword in [2"*] has the

Hamming weight 4 and in fact, it does not exist by Lemma 4.2. For [%”], there are two

different cases to satisfy local checks as follows:

1) x; € C1, where supp(xy) = {i,i+ 2,i+ 2, j, k} for different 4, j, k satisfying

i €[2]and j,k € [27].

2) xp € Cy, where supp(x2) = {i,i+ 2, j,k, h}, {i,i+ 2%, j, k,h},or {i+2, i+
20§, k, h} for different 4, j, k, h satisfying ¢ € [%] and j, k, h € [22].

For the above cases, I already know that there is a nonzero codeword x3 € C; such
that supp(x3) = {i,i + %,i + 2%} from Lemma 4.2. By linearity, the sums of two
codewords x; + X3 and X2 + X3 should also be codewords of whose Hamming weights
are 2 and 4. From Lemma 4.2, there are no codewords with Hamming weights 2 and 4
in C1, which makes contradiction. Therefore, the minimum Hamming weight of C is

at least 10. O

Note that the optimal LRCs with d > 10 and » = 2 were constructed in [29],[31]
using reversible polynomial. The optimality of the Construction 4.7 without proofs is

shown as follows:
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Table 4.4: Optimality of proposed binary LRCs with disjoint repair group using exist-

ing LRCs

(d,r) k k-opt | d-opt | r-opt
(6,2) 2 flogy (3 +1)] -1 A 0 0
(6,3) sn_opleeCEhy_ 1 | A | 0 | O

(8,20r3) | ;75 —2[logy(1+ ;47)] —r | near A 0]
(8,2) 12(n = 30) o] o | o
(10,3) 38— 2[logy(1 + 2] near ? 0

~[logy (1 + 2)]

Proposition 4.6 (Optimality of Construction 4.7). The proposed LRC is r-optimal for

n > T2. Also, it is near k-optimal.

Table 4.4 lists the constructions and optimality of the proposed binary LRCs. The
proposed LRC gives us new classes of LRCs which can be explicitly constructed even

for long codelength.
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Chapter 5

New Constructions of Generalized RP LDPC Codes for
Block Interference and Partially Regular LDPC Codes

for Follower Jamming

5.1 Generalized RP LDPC Codes for a Nonergodic BI

In this section, I propose new GRP LDPC codes for TS-BSC-BIs with and without BE.
First, I explain the motivation of new code design using minimum blockwise Hamming
weight.

5.1.1 Minimum Blockwise Hamming Weight

The minimum blockwise Hamming weight of the code [57] is described in the follow-

ing definition.

Definition 5.1. Minimum blockwise Hamming weight d. of code C is defined as

de = cerg\l?O} (Z U(Wt(ci))) ) (5.1

i€[L]

where u(x) returns 1 if x > 0 and 0, otherwise.
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Note that the minimum blockwise Hamming weight d,. is also called diversity
order in the BF channel, which corresponds to a slope of FER curve in the coded per-
formance. In addition, a code with minimum block Hamming weight d.. is designed to
be robust against d. — 1 deep fades. It is known that the minimum blockwise Hamming

weight of codes with L hops is upper bounded by the Singleton-like bound as [57]
d. <1+ [L(1-R)], (5.2)

which implies a trade-off between R and d.. If a code of R < % has the minimum
blockwise Hamming weight of d. = L in the BF channel, it is said that the code
achieves full diversity. Among LDPC codes, the low-rate root LDPC codes [57] and
the RP LDPC codes [58] with R = L are designed to have the full diversity d, = L.
In contrast, the maximum value of d. can be achieved as 2 from (5.2) if the code has
R e (LZ ] For example, the high-rate turbo code with R = &=L and d, = 2
was proposed in the BF channel [65].

In fact, the codes robust against deep fades are also advantageous for the BI chan-
nel because BI can be considered as deep fade. In addition, the BI channel in the high
E, /Ny region can be considered as block-erasure channel as in Section 3.A of [57].
However, the high-rate code with R = L L and d, = 2 does not work well in the BI
channel because it should be always I4 < R when BI exists and ﬂ < 00. Thus, I
propose new high-rate GRP LDPC codes with R € [T’ LT) and d. = 2 in the next

subsection.

5.1.2 Construction of GRP LDPC Codes

In this chapter, I propose a GRP LDPC code with L hops and R = w 0<B<
b. First, the structure of its base matrix is proposed to enhance performance in the high

E, /Ny region.

Construction 5.1 (GRP LDPC codes). Let T; be a b(L — 1) x b(L — 1) upper or

lower triangular low-density matrix with diagonal elements 1, wlaﬁc}z iscequally rop}- -
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partitioned with a row size b as T; = [TlTl, TZTQ, ...,Tgﬂ(Lil)]T, i € [L]. Let D; be

a (b — B) x b(L — 1) nonnegative integer matrix. Then, GRP LDPC codes of R =

% have the parity check matrix lifted from (bL — ) x b(L — 1)L base matrix
B = [By, By, ..., B] with B; = [T}, T},, .., T} |, DI, T, ...,TLT(LA)]T

Remind that BI channel can be considered as block-erasure channel in the high
E} /Ny region. In the erasure channel, it is well-known that the existence of stopping
set can degrade the performance of BP decoder. The proposed code is designed to
avoid the stopping set in a hop while keeping the maximum values of d. as 2 in the

high E} /Ny region.

Theorem 5.1. Minimum blockwise Hamming weight of the proposed GRP LDPC

codes is 2 and the proposed codes do not have stopping set within one hop.

Proof. Suppose that there exists a binary vector v = [vy, ..., vz], where the indices of
all nonzero elements are in the i-th hop, i.e., wt(v) = wt(v;) > 0. Note that a stopping
set S is defined as a subset of VNs, where every CN connected to them has at least
two edges emanating from the VNs in S. To prove that there is no stopping set S in
the i-th hop, I will show that some CNs have only one edge emanating from the VNs
inS.

For an upper triangular low-density matrix 7;, suppose that the last index of the
nonzero element in v; is the one lifted from the j-th column of B;, j € [b(L — 1)].
Then, it is easy to prove this because there is a CN with one edge emanating from
the VNs with indices in supp(v;) by a permutation matrix Py lifted from the diagonal

elements 1 of 77

i3]
i-th hop and d. = 2 because v is not a codeword if the set of VNs with indices in

in the base matrix. Therefore, the code has no stopping set in the

supp(v) does not contain S and thus, d. > 2 by (5.1). It is easily checked that the

maximum value of d.. is two for the code rate larger than or equal to % from (5.2).

For a lower triangular low-density matrix 73, the proof can also be done similarly. []

Some integers of the base matrix remain undetermined in (_I.Qﬂstgu:ct_iqn J 15k —7
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order to find the best base matrix operating well even in the low Ej, /Ny region, the
modified PEXIT algorithm in [58] is applied to the proposed GRP LDPC codes as

follows.

a) Modified PEXIT Algorithm

Suppose that there exists a b, x b, base matrix B of the protograph LDPC code C with
L|b. and let by, = bf‘ In the previous section, the initial message value of LDPC codes
in the fading channel is given as (2.12). Given that an all-zero codeword is transmitted,

the message values can be approximately expressed as

(5.3)

A2 g2
20 4o
—H |-

mg 5 ~ N < 2 o
In order to express the modified PEXIT, the four types of the MIs are used, which are

Ig,(3,7), I, (i,7), La,(i,7), and I4_(i, j) as follows:

1) Ig,(i,j); extrinsic MI between the message sent by V; to C; and the associated

codeword bit, on one of the b; ; edges connecting V; to C;

2) Ig,(i,7); extrinsic MI between the message sent by C; to V; and the associated

codeword bit, on one of the b; ; edges connecting C; to V

3) 14,(%,7); apriori MI between the input LLR of V; and the associated codeword

bit, on one of the b; ; edges connecting C; to V;

4) I4,.(i,7); a priori MI between the input LLR of C; and the associated codeword

bit, on one of the b; ; edges connecting C; to V;.

Let J(o) be a function given by

o SlE=o2/2)?
e 20
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The inverse function .J~1(x) is given in an approximated form as

1.0954222 4 0.214217x + 2.33737/,

. if0 <z < 0.3646
7 (x) = (5.5)
—0.7066921n [0.386013(1 — z)] + 1.75017z,

\ otherwise.

Suppose that the block fading coefficients are estimated as & = (a1, ..., &p,) for the
br X be base matrix, where &, (1—1)41 = ... = G, for all I € [L]. Then, the modified
PEXIT is described in Algorithm 5.1.

The distributions of the fading coefficients differ depending on the channel models.
The remaining analysis for the GRP and other LDPC codes with different code rates
are discussed as follows.

In fact, the detailed method using PEXIT algorithm is the same as that in [58]
except the initialization. In order to enhance the performance in the channel with a
BI hop, initial fading coefficient in the [-th hop is set to 0, i.e., oy = 0 and o; = 1
for i € [L] \ {l}. Then, find the best base matrix such that the corresponding BP
threshold (Ej/No)pp,tn has minimum value. By Construction 5.1 and the modified
PEXIT algorithm, a GRP LDPC code with L = 2,b = 3, 3 = 2, and R = § is

constructed as

021 | 100
110 | 110
Barp1 = . (5.9
011 | 011
001 | 120

Similarly, two GRP LDPC codes with L = 3 can be constructed as follows. The first
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Algorithm 5.1 Modified PEXIT algorithm [58]
Require: Standard deviation of Gaussian channel noise o, code rate R, block fading

coefficients & = (&1, ..., Gp, ), (by X bc) base matrix B, maximum iteration number

I 4z, and set of indices of hops with BIU C [L]

842R2E, 462
1. Initialization: Set 02, ; = —Iy—" = — for j € [be] \ {bp(I—1)+ill € U,i €
[bn]} and 02, ; = 0, otherwise, with the iteration number / = 0.

2. Variable node update(VNU): For all (7, j) € [b.] X [bc], calculate Ig, (i, j) using

I4,(i,7) and 0, ; as

IEU (Z7j) =

br
T 4| D _Albe = 6ei) (T 1 (La, (e, )} + 02,5 | (5:6)
c=1

where §;; = 1if i = j and 6;; = 0, otherwise. Then, for all (i,5) € [b.] x [bc],
IAC(Z’]) A IEU(Z’j)'
3. Check node update(CNU): For all (¢, 5) € [b;] X [b], calculate Ig_ (4, ) using

IEC(Z7]) =

L= J ([ D Albiw = 605) (J7H1 = La, (i,0)))°} | . (5.7)

Then, for (i,5) € [by] X [be), La,(i,5) + IE,(i, ).

4. Cumulative mutual information(CMI): Calculate [ é g forall j € [bc] as

br
Itng =7 Z{(J_l (Ig.(c, )} + o |- (5.8)
c=1

5. Stopping criterion: If I ]C a7 = Lforall j € [b], terminate the decoding (decod-
ing successful). Else, if Ié a1 7 1foratleastone j € [be] and I = I,,4,, terminate
the decoding (decoding failure). Otherwise, go to step 2 with [ < I + 1.

"3 3 +
A e | H G
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one is constructed forb =2, 3 =1,and R =

2111
1000
Barp2 = | 0100
3010
0001

The second one is constructed for b = 2, § =

0012
1120
1000
0100
0010
0001

Bgrps =

e
75 as

1000
0100
2112
0010
0001

1000
0103
0010
0001
1112

0,and R =

1000
0100
0012
1120
0010
0001

1000
0100
0010
0001
0012
1120

[Nl

as

(5.10)

(5.11)

In the next subsection, the proposed codes of (5.10) and (5.11) will be compared

with other low-rate full-diversity LDPC codes with L. = 2, 3 and channel outage prob-

ability in (2.14).

5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes

In this section, the proposed GRP LDPC codes are compared with full-diversity rate-

compatible RP (RCRP) LDPC codes designed for L = 2 and R = % in (4) of [62]

and irregular RP2 (IRP2) LDPC code designed for L = 3 and R = % in (18) of [64].

Note that it is not possible to make the same code rate of both the proposed codes of

R > % and the full-diversity codes of R < % by definitions, if L > 3. For additional

comparison, the regular protograph LDPC code of R = 1/3 and d. = 1, whose base

matrix is (4 x 6)-sized all-one matrix, is also simulated. In order to have asymptotic

performance, BP and fading thresholds are shown in the next subseacgion_. 3
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Table 5.1: Channel and BP thresholds of GRP, regular, and full-diversity LDPC codes
in the channels with L = 2,3

L 2 3
BP/Chan. thr. GRP1 | RCRP | Reg. || GRP2 | GRP3 | IRP2
BP thr. w. BI 4.364 | 4.736 00 4745 | 3.630 | 2.923

Chan. thr. w. BI 4.070 4.606 | 3.387 | 1.948
BP thr. w.o. BI 1.716 | 1.946 | 1.730 || 1.606 | 1.266 | 1.606
Chan. thr. w.o. BI -0.496 0.590 | 0.158 | -0.496

5.2.1 Asymptotic Analysis of LDPC Codes

Asymptotic analysis of the proposed and full-diversity LDPC codes can be done by
fading threshold [58] using PEXIT algorithm and channel threshold by (2.14). How-
ever, there is a difference in initialization of the PEXIT algorithm as in the construc-
tion because our interest is error performance for the channel with BI. Therefore, I will
consider the case where the first hop is with BI, i.e., a; = 0.

For a channel with a BI hop, Table 5.1 shows that the proposed GRP LDPC codes
have smaller gap between channel and BP thresholds with BI than full-diversity codes
forboth L =2and L = 3. For L = 2and R = % GRP1 LDPC codes have lower
BP threshold than RCRP LDPC codes and regular LDPC codes do not have the BP
threshold for any Ej/Np due to small value of d. = 1. Table 5.1 also includes the
thresholds for L = 3.

Fig. 5.1 shows the fading threshold vector (aw, a3) with L = 3 and E, /Ny =
12[dB] for the GRP LDPC codes of R = 1—72 and R = % and IRP2 LDPC code of
R= %, where the first hop is with BI. For a channel with a BI hop, it is shown that the
proposed GRP LDPC codes have good performance approaching to channel fading
threshold, but IRP2 and RCRP LDPC codes have larger gap to the channel fading
threshold.
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Figure 5.1: Fading threshold vector (a2, ag) of the channels of Ej, /Ny = 12[dB] and
L = 3, where the first hop is with BI for the GRP and IRP2 LDPC codes.

5.2.2 Numerical Analysis of Finite-Length LDPC Codes

In this subsection, I show that the finite-length FER performance of the proposed GRP
and full-diversity LDPC codes matches the aforementioned asymptotic analyses. All
the finite-length LDPC codes have codelength 2304 with two or three hops lifted by
circulant permutation matrices, which generate quasi-cyclic LDPC codes. In addition,
I generate the shift values for the parity check matrix to avoid girth 6, where girth 6
for LDPC codes can degrade finite-length performance.

Furthermore, the following channel environments are assumed. First, existence
of BI for each hop is assumed to follow binomial distribution with p = 0.01 in the
channels without BF and with Rayleigh BF. For BP decoder, the maximum number
of iterations is set to I.;, = 100. For FER, GRP LDPC codes declare an error if at
least one of the coded bits are erroneous, but IRP2 and RCRP LDPC codes declare
an error if at least one of the information bits are erroneous. Note that the location of
information bits is known in RCRP and IRP2 LDPC codes but is not explicitly known
in the proposed GRP LDPC codes.

The finite-length FER performance of regular, GRP1, and RCRP LDPC codes of
L = 2 and GRP2, GRP3, and IRP2 LDPC codes of L = 3 with p :;f)_-,:O%k\lyi_tlﬁqqlé BlfJ iis
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Figure 5.2: FER performance of finite-length regular, GRP1, and RCRP LDPC codes
of L = 2 and GRP2, GRP3, and IRP2 LDPC codes of L = 3 and n = 2304 in the BI
channel with p = 0.01 and without BE.

shown in Fig. 5.2. First, FER of LDPC codes has shape of stairs with two levels, which
shows that the codes cannot be decoded for the cases without BI and with a BI hop if
E, /Ny is lower than channel thresholds without BI and with a BI hop. The proposed
GRP LDPC codes have good performance approaching to the channel threshold and
their gaps are smaller at the lower stair, which is the case of the channel with a BI. For
the full-diversity RCRP and IRP2 LDPC codes, they can correct BI for high Ej, /Ny,
but gap between FER and channel threshold is larger than GRP LDPC code because it
has large BP threshold as in Table 5.1. For regular LDPC code, FER does not approach
to the channel outage probability even for high Ej, /Ny due to small value of d. = 1.
The finite-length FER performance of regular, GRP1, and RCRP LDPC codes of
L = 2 and GRP2, GRP3, and IRP2 LDPC codes of L = 3 with p = 0.01 with
Rayleigh BF is shown in Fig. 5.3. In this case, FER curves of GRP and IRP2 LDPC
codes show high error-floor for high Ej /Ny due to the existence of Bl. GRP LDPC
codes have good performance approaching to the channel outage probability but IRP2
and RCRP LDPC codes have larger gap between FER and channel outage probability
than the proposed GRP LDPC codes. For regular LDPC codes, FER does not approach

to the channel outage probability even for high E/Ng due to small, \::alug-pf 1dcﬁ: I ]
A = LH &
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Figure 5.3: FER performance of finite-length regular, GRP1, and RCRP LDPC codes
of L = 2 and GRP2, GRP3, and IRP2 LDPC codes of L = 3 and n = 2304 in the BI
channel with p = 0.01 and Rayleigh BF.
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Figure 5.4: Jamming environment of the system model.

5.3 Follower Noise Jamming with Fixed Scan Speed

Follower noise jamming (FNJ), also called as repeater-back jamming, is based on the
assumption that the jammer can scan the frequency which the transmitter uses. Gener-
ally, it is efficient strategy than partial band jamming in that the jammer can succeed
to insert jamming with high probability. However, the jamming interval has the fun-
damental limitation by geometry of the transmitter, receiver, and jammer, which is

explained in [51]. This relation is expressed as in Fig. 5.4.

T, +T; <Tp (5.12)
¥ > 1 &) —
i g Re1
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M, T is the processing time of the jammer and 7}, is the

, where T), =
interval of one hop.

For this setting, the interval that the jamming cannot approach for fixed geometry
exist, which is called jamming eclipse. Two parameters describing FNJ are p and u. p
is the probability that the jamming can be actually inserted in a hop and p is the ratio
that the jamming possesses in a hop.

The scenario can be more specified by the assumption that the processing time can
be variable. [52] also suggest variable jamming interval scenario, where the scenario
comes from the processing time. Processing time of the jammer largely depends on the
scan time. The jammer wants to find the used frequency as quick as possible, whereas
it has to scan randomly due to lack of information about hopping rules. Then, the

moment that finds the frequency can be different. Furthermore, I supposes that the

jammer has the fixed scan speed v. Then, the processing time 7T}, can be expressed as
er =T"+ Tscan (5.13)

Ny,
ﬂwn:mm(j?AL—MEJ (5.14)

From (5.14), i has to be divided into two terms. One is possibly front initial point

of the jamming called as u, and the other is back initial point, called as p;. Then, 1

have
T, + T*
el 5.15
Ha T (5.15)
N
= pha + =L (5.16)
’UTh
pik = ufptq, min (pp, 1)] (5.17)
1 _
p=—_Ha (5.18)
Hb — Ha

For convenience, I suppose 7% = (. By using geometry and proper v and 7},

jamming parameters are evaluated. d(k, 7) of received signal can be defined as
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S(hyiy = - R (5.19)
0 otherwise.

The remained topic is about power of jamming. The follower jamming is more
energy efficient in that the jammer only can insert jamming in valid frequency band.
For general case, the jammer also can select the tones of message in MFSK modulation
or insert jamming into all the tones regardless of the size of M. The difference is that
the jammer should divide total power as the size of M is bigger, which weakens the
jamming effect. For a latter case, the average jamming statistics are expressed as

N.
j=~N|o0, L . (5.20)
( 2M (1 — Na+m1211(ﬂb71))>

In this chapter, only follower noise jamming and sufficiently highly powered cases
are considered because jamming power is not a parameter that can be controlled. In
the next section, the procedure from the channel to inducing PR-LDPC codes is intro-

duced.

5.4 Anti-Jamming Partially Regular LDPC Codes for Fol-

lower Noise Jamming

Partially regular LDPC codes were firstly designed for unequal error protection [50].
Modified version of PR-LDPC codes for anti-jamming, AJ-PR-LDPC codes are given

as below.

Construction 5.2 ((\, d., d,,) AJ-PR-LDPC codes). The (), d., d,) AJ-PR-LDPC codes
with rate r is given as below. For an positive location vector A = [\1, ..., \i| where
>~ A = land corresponding variable node degree d,, = [d 1, ..., dy k| withr(\-d.) =
dy, AJ-PR-LDPC codes has parity check matrix H that is constant weight d. in the
each row and each h;, The i-th column of H that has block size I has to satisfy

ey

3 i | 1
H 2}l o
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Figure 5.5: Structure of AJ-PR-LDPC codes.

K K+1
wt(h) = deg, Vi (mod I) € [T Aeis T Y Acil: (5.21)
=1 =1

For constructing AJ-PR-LDPC codes, the simplified channel modeling is needed.

5.4.1 Simplified Channel Model and Corresponding Density Evolution

In order to use density evolution, channel model needs to be determined. Fig. 5.6 shows
the model of error distribution of hop under follower jamming. The hop is divided
into 3 intervals by the SER. The leftmost interval is called as jamming eclipse, which
jamming cannot approach by geometrical issue. Middle interval is where jamming may
probably exist and error rate grows linearly. Rightmost interval is where the jamming
is always inserted. Note that the exact values of P,, P, are not equal between hops due
to the existence of block fading.

It is challenging to formulate density evolution of above channel environment,
since it has many parameters to be considered. Instead, simplified channel model is
proposed in Fig. 5.7. In this model, error is substituted with erasure and the middle

interval with linear growth is changed to a series of intervals the whole of.which.forms
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|A| — 2 stair shapes. The corresponding density evolution of the simplified model is

induced as below.

1—1 .
€ = (e — ea)iw — Teai€ 1, |Al] (5.22)
Pt = €ig™i ! (5.23)
Al
G =1— (1= Nip)®! (5.24)
i=1

The initial values of €4, €5, and A have to be determined. However their values
cannot be induced from real channel rather evaluated heuristic way before constructing

PR-LDPC codes, details of which are discussed next subsection.

5.4.2 Construction of AJ-PR-LDPC Codes Based on DE

The procedure of construction is summarized in Algorithm 5.2. Before constructing
PR-LDPC codes, initial values of €4, €, A, dc.maz» Sa» Sp, and code rate r should be de-
termined. Then, the maximum degree of variable node dy, 1oz = [dv,1,mazs ---> v, K maz]
and the check nodes d ;4. are needed. s, and s, are incremental factors of simpli-
fied channel that makes channel poor. The parameters can be evaluated intuitively by
designer’s choice but large A, dmaq, and small s,, s, can make the algorithm time-
consuming.

The resulting degree pair does not guarantee convergence in specific channel but
has ordinal excellence than other pairs. Partial regular PEG can be implemented with
modification of regular PEG or permutation of columns from the irregular PEG. In this
section, the specific construction is introduced and compared to the LDPC code IEEE

standards of 802.16e in the next section.
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Algorithm 5.2 Construction of AJ-PR-LDPC
Require: ¢, €, Sq, 5p, A, dy.mazs de,maz»> and code rate 7.

Generate all the degree pair D of (d,, d.) which satisty d,, < dy, mazs de < demaz-
while There exist pairs more than one do

Set D,, as the degree pairs that are not converged to O for each element of D by
the proposed density evolution.

D+ D\ D,

€q < €q 1+ Sq, €p < €p + Sp.
end while
Select the remaining degree pair of D

Use partial regular PEG for generating H by the selected degree pair.

Ensure: the parity check matrix H.

Table 5.2: Jamming environment of the simulation

Cases Modulation | u, | p | Ey/N;
No jamming | NC-MFSK X
Slow scan with 3/8 | 11/8 | 5/8 -50
Fast scan M=2,4,8,16 | 3/8 | 7/8 1 [dB]

5.5 Numerical Analysis of AJ-PR LDPC Codes

The simulation is done by NC-MFSK channel with follower jamming. The symbol
sizes M = 2,4,8,16 are used and the jamming environment divided into 3 cases; no
jamming, the jamming with fast scan speed and slow scan speed. Hop size has 192
bits for all M and the scan speed is defined as proportional values of Ny, and Tj,.

. 2N . N
The scan speed of fast speed case is v = T—hf” and one of slow case is v = 57, - LThe

parameter representing jamming power % is —50[dB] if the jamming exists. It is the
J
environment that the jamming overwhelms the message signal regardless of p or M.

The table summarizing the channel and code criterion is in Table 5.2.

The code criteria are the codelength N = 2304 and code rate & =, 3, wlk;ich is
1 221l &
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Figure 5.8: Simulation result of the proposed AJ-PR-LDPC codes with MFSK modu-
lation of M = 2.

the same as 802.16e standards. There are 12 hops in the code regardless of M. AlJ-
PR-LDPC codes in this simulation have initial values €, = 0.2,¢;, = 0.9,s5, = s =
0.0L,A= (3,43, % 5. &), de;mae = 8, and dy maq = (8,8,8,16,16,20). Ais chosen
according to the fast scan case. The resulting AJ-PR-LDPC codes have parameters of
de=5,A=(3,%,4),and d, = (2,3,4). Decoder uses BP with LLR values of MFSK
and the performance comparison of the codes is in Figs. 5.8, 5.9, 5.10, and 5.11.

In these figures, red circle represents the same jamming environment. The pro-
posed one represents AJ-PR-LDPC codes. With the same M and jamming, 802.16e
has superior performance than the proposed one for all M with no jamming case.
However, the AJ-PR-LDPC has more gain in two jamming case, which shows the
anti-jamming effect. The largest gain is obtained in the slow scan case, which is the
base of the proposed one. It is shown that the performances are the better in low %) as

M is larger, but worse in high %
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Figure 5.9: Simulation result of the proposed AJ-PR-LDPC codes with MFSK modu-
lation of M =4
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Figure 5.10: Simulation result of the proposed AJ-PR-LDPC codes with MFSK mod-
ulation of M =8
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Figure 5.11: Simulation result of the proposed AJ-PR-LDPC codes with MFSK mod-
ulation of M = 16
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Chapter 6

Conclusion

In this dissertation, new TS-AGD for cyclic codes in the erasure channel, new con-
structions of binary and ternary LRCs using cyclic codes and existing LRCs, and new
constructions of high-rate GRP LDPC codes for a nonergodic BI and AJ-PR-LDPC
codes for FNJ were studied.

First, TS-AGD algorithms for cyclic binary and cyclic MDS codes were proposed
by modifying and expanding the parity check matrix. Modification criteria of the parity
check matrix are proposed and the proposed TS-AGD algorithms are shown to be
able to reduce the average number of iterations and the decoding complexity. The
perfect codes, BCH codes, and MDS codes are considered for the proposed TS-AGD
algorithms, where some of them achieve the perfect decoding. For the MDS codes,
the modified decoding algorithm with expanded parity check matrix and submatrix
inversion for perfect decoding is discussed. It is shown that some cyclic codes achieve
the perfect decoding by the proposed TS-AGD with the expanded parity check matrix
and submatrix inversion.

Second, several binary and ternary constructions of LRCs by cyclic codes and
existing LRCs are proposed. Our constructions can construct binary LRCs with pa-
rameters of 4 < d < 10 and 2 < r < 3, most of which are optimal for k, d, and r

or near k-optimal. As a future work, improved construction betterjthan_qur coln_struq—
-'-\-\."i _.;_. i .I-- 1 ..-'.:i
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tions will be researched. Also, improved bounds and constructions of LRCs with large
Hamming distance and locality can be studied.

Third, I proposed high-rate GRP LDPC codes for channels with BI using the con-
cept of minimum blockwise Hamming weight. The design and asymptotic analysis
of the proposed GRP LDPC codes were done by the modified PEXIT algorithm. The
finite-length GRP LDPC codes show good performance approaching to the channel
outage probability. There remains an open problem in the design of good RP LDPC
codes for channels with BI and BF, for which the minimum blockwise Hamming
weight is larger than 2, that is, 3 < d. < L. Design and analysis of the LDPC codes
for channels with BI and BF and with relatively large d. and L can be researched.

Also, I proposed AJ-PR-LDPC codes for follower noise jamming, where I assumes
the SFH and MFSK with Rayleigh block fading channel with follower jamming to
imitate tactical environment. Furthermore, a new model for follower jamming with
fixed scan speed in FH/SS environment is proposed. The model of probabilistic hop
error distribution can be simplified with erasure stair model and it is used for density
evolution for AJ-PR-LDPC. Simple algorithm can be used to derive the degree pair
with ordinal excellence and PR-PEG are used to generate H. The simulation result
shows that the proposed codes have better performance in the presence of jamming
than 802.16e. Nonbinary codes can be more optimized solution to the cases with high

M which can be future work.
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