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Abstract

The robot is a self-operating device using its intelligence, and autonomous naviga-

tion is a critical form of intelligence for a robot. This dissertation focuses on localiza-

tion and mapping using a 3D range sensor for autonomous navigation. The robot can

collect spatial information from the environment using a range sensor. This informa-

tion can be used to reconstruct the environment. Additionally, the robot can estimate

pose variations by registering the source point set with the model. Given that the point

set collected by the sensor is expanded in three dimensions and becomes dense, reg-

istration using the normal distribution transform (NDT) has emerged as an alternative

to the most commonly used iterative closest point (ICP) method. NDT is a compact

representation which describes using a set of GCs (GC) converted from a point set.

Because the number of GCs is much smaller than the number of points, with regard

to the computation time, NDT outperforms ICP. However, the NDT has issues to be

resolved, such as the discretization of the point set and the objective function.

This dissertation is divided into two parts: representation and registration. For the

representation part, first we present the probabilistic NDT (PNDT) to deal with the

destruction and degeneration problems caused by the small cell size and the sparse

point set. PNDT assigns an uncertainty to each point sample to convert a point set with

fewer than four points into a distribution. As a result, PNDT allows for more precise

registration using small cells. Second, we present lattice adjustment and cell insertion

methods to overlap cells to overcome the discreteness problem of the NDT. In the lat-

tice adjustment method, a lattice is expressed as the distance between the cells and the

side length of each cell. In the cell insertion method, simple, face-centered-cubic, and
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body-centered-cubic lattices are compared. Third, we present a means of regenerating

the NDT for the target lattice. A single robot updates its poses using simultaneous lo-

calization and mapping (SLAM) and fuses the NDT at each pose to update its NDT

map. Moreover, multiple robots share NDT maps built with inconsistent lattices and

fuse the maps. Because the simple fusion of the NDT maps can change the centers,

shapes, and normal vectors of GCs, the regeneration method subdivides the NDT into

truncated GCs using the target lattice and regenerates the NDT.

For the registration part, first we present a hue-assisted NDT registration if the

robot acquires color information corresponding to each point sample from a vision

sensor. Each GC of the NDT has a distribution of the hue and uses the similarity of

the hue distributions as the weight in the objective function. Second, we present a

key-layered NDT registration (KL-NDT) method. The multi-layered NDT registration

(ML-NDT) registers points to the NDT in multiple resolutions of lattices. However,

the initial cell size and the number of layers are difficult to determine. KL-NDT de-

termines the key layers in which the registration is performed based on the change of

the number of activated points. Third, we present a method involving dynamic scaling

factors of the covariance. This method scales the source NDT at zero initially to avoid

a negative correlation between the likelihood and rotational alignment. It also scales

the target NDT from the maximum scale to the minimum scale. Finally, we present a

method of incremental registration of PNDTs which outperforms the state-of-the-art

lidar odometry and mapping method.

keywords: normal distributions transform, registration, odometry, mapping

student number: 2013-20911
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Chapter 1

Introduction

1.1 Background

A device that operates by itself by means of artificial intelligence is called a robot.

Examples of successful robotic systems include mobile platforms for planetary explo-

ration, industrial robotics arms on assembly lines, self-driving cars, and manipulators

that assist surgeons [1]. The robot must be capable of autonomous navigation to follow

a planned path to complete its given tasks, such as cleaning floors, farming, exploring

unknown environments, and transporting goods and passengers.

Autonomous navigation consists of four components: localization, mapping, path

planning, and control. First, localization estimates the pose, including the position and

orientation. Second, mapping integrates the information obtained from the environ-

ment. Third, path planning plans the feasible path in response to the situation. Fourth,

the control component actuates the moving platform to navigate along the path. These

four components are closely related, as shown in Fig. 1.1. Given a goal pose, the path

planning component considers the current and goal poses on the map to plan a path,
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Figure 1.1: Process of autonomous navigation.

and the control component controls the actuators to follow the planned path to reach

the goal. Here, to plan and follow the path, an accurate map and accurate poses are re-

quired. Given an accurate map, the localization component can estimate the robot pose

accurately. Moreover, given an accurate pose, the mapping component can update the

map accurately. Because the localization and mapping components are dependent, an

approach known as simultaneous localization and mapping (SLAM) has been devel-

oped to estimate the pose and build the map simultaneously.

The SLAM problem can be expressed as the graphical model shown in Fig. 1.2

[1]. Given the control u1:t, measurement z1:t, and constraint l1:k, estimating a posterior

over pose xt at time t along with map M

p(xt,M |z1:t, u1:t) (1.1)

is known as online SLAM, and estimating the posterior over x1:t along with M

p(x1:t,M |z1:t, u1:t) (1.2)

is known as full SLAM [1]. Additionally, SLAM can be categorized into filter-based

SLAM and graph-based SLAM. Filter-based SLAM recursively estimates xt and M
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Figure 1.2: Graphical model of SLAM [1, 2].

[3], such as EKF-SLAM using an extended Kalman filter (EKF) [4] and RBPF-SLAM

using the Rao-Blackwellized particle filter (RBPF) [5]. Graph-based SLAM can be di-

vided into two processes: front-end and back-end [6]. The front-end forms a graph

using sensors, and the back-end optimizes the graph. Graph optimization is time-

consuming, but the processing time can be shortened by such methods as incremental

smoothing and mapping (iSAM) [7] and general graph optimizer (g2o) [8].

To perform SLAM, the robot can mount devices, as shown in Fig. 1.3. It can

estimate its pose using global navigation satellite systems (GNSS), such as GPS or

GLONASS [9]. It can also estimate its pose using indoor positioning system (IPS)

based on signals such as Wi-Fi [10], RFID [11, 12], and Bluetooth [13]. Moreover,

without external references, it can estimate its pose using an inertial measurement unit
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Figure 1.3: Illustration of sensors for SLAM.

(IMU) fused with sensors, such as accelerometers, gyroscopes, and magnetometers

[14, 15]. On the other hand, to estimate the pose while also building a map of the en-

vironment, the robot can be equipped with vision sensors such as a monocular camera

[16], stereo camera [17], or omnidirectional camera [18], or range sensors such as a

laser rangefinder (LRF) [19, 20], radar [21], sonar [22], time-of-flight (TOF) depth

sensor [23], or structured light (SL) depth sensor [24, 25].

The vision-based odometry estimation method, also known as visual odometry

(VO), can be extended to visual SLAM (vSLAM) with global map optimization [26].

VO can be categorized into three approaches: the feature-based method, the direct

method, and the learning-based method. The first VO is a feature-based VO which es-

timates the pose variation based on matching features in a pair of images [27]. Later,

parallel tracking and mapping (PTAM) accelerated this method using a parallel pro-
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cessing framework and optimized using via the bundle adjustment (BA) approach [28].

Additionally, ORB-SLAM improved the processing rate using the oriented fast and ro-

tated BRIEF (ORB) feature and improved the localization accuracy by means of graph

optimization [29]. The second approach, the direct method, traces the input image

without abstraction. After dense tracking and mapping (DTAM) had been proposed to

track the pose using the intensity directly [30], large-scale direct SLAM (LSD-SLAM)

was proposed to track the pose using semi-dense VO [31] and correct the poses using

graph optimization [32]. Moreover, the convolutional neural network (CNN) SLAM

was proposed to overcome the difficulty of estimating the scale using the depth learned

from the image [33]. Direct sparse odometry (DSO) was also proposed to improve the

processing rate by selecting high-intensity points as candidates for reconstruction [34].

Recently, due to the wave of research in deep learning, the third approach, learning-

based VO, was proposed. An end-to-end VO with a deep recurrent CNN (RCNN), ab-

breviated to DeepVO, demonstrated the possibility of learning-based VO [35]. Later,

UnDeepVO, which relies on learning through an unsupervised deep learning tech-

nique, was proposed to learn the depth map from stereo images and predict the depth

map from monocular images [36].

Odometry estimation using a range sensor is based on point set registration given

that transformation to match the source point set to the target model can be regarded as

the estimated pose variation of the robot. Point cloud registration can be categorized

according to the representation, such as the point-to-point [37, 38], point-to-line [39],

plane-to-plane [40], point-to-distribution [41, 42], and distribution-to-distribution [43,

44, 45]. Most point set registrations improve the accuracy of transformation estimation

in the framework of the iterative closest point (ICP) method [37]. This dissertation also

deals with point set registration to estimate the transformation.
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It is recommended to use heterogeneous sensors on a robot due to the limitations of

each sensor, as follows. It is challenging for the robot to estimate the exact pose from

the GNSS device under certain conditions, such as indoors, underwater, underground,

in tunnels, in urban canyons, in forests, in caves, during cloudy weather, and during

GNSS jamming. In indoor and urban canyons, the robot can estimate the pose using

IPS, but IPS is unavailable if the robot is in a suburban location without any access

points or during a power outage. In GNSS- and IPS-denied situations, the robot can

estimate the pose using other devices. First, the robot can estimate the acceleration and

angular velocity using IMU. However, because the pose and the variation are obtained

by integrating the acceleration and angular velocity, any errors in the acceleration and

angular velocity will accumulate in the pose. In addition to the IMU, the pose can

be estimated using vision sensors and range sensors. Although night vision can be

learned from day vision [46], it remains challenging to utilize a vision sensor in a dark

environment. Thus, using a range sensor instead is recommended. Moreover, to deal

with weather conditions such as rain, fog, and snow as well as transparent materials

such as glass and acrylic, radar or sonar can be used instead. However, with radar and

sonar, interference can arise due to entities which operate on the same frequency. With

regard to interference, the robot can utilize other devices to estimate its pose. Because

there may be environmental conditions in which one of the sensors operates alone, it

is necessary to improve the accuracy of pose estimation using each type of sensor.

Among these sensors, this dissertation deals with lidar-based pose estimation and

studies registration methods in an effort to improve the accuracy of the estimated rigid-

body transformation.
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1.2 Problem Statement

In this dissertation, we describe the robot pose as a parameter vector Θ of the homo-

geneous transformation matrix TH . Consider that a robot explores an environment, as

shown in Fig. 1.4(a), the robot has the map Mk−1, as shown in Fig. 1.4(f), and it ob-

tains a set Pk of point samples at the current pose Θk, as shown in Fig. 1.4(d). After

the robot estimates Θk, it transforms Pk to fuse it with the map Mk−1 to obtain an

updated map Mk, as shown in Fig. 1.4(g).

We define the frame-to-frame registration as a problem of finding an optimal ∆Θ∗k

which transforms the source point set Pk to register the target point set Pk−1. The pose

variation ∆Θk can be obtained by maximizing the likelihood as

arg max
∆Θk

L(∆Θk;Pk,Pk−1). (1.3)

Similarly, we define the frame-to-map registration as a problem of finding the optimal

pose Θ∗k which transforms the source point set Pk to register the target map model

Mk−1. The pose can be obtained by maximizing the likelihood as

arg max
Θk

L(Θk;Pk,Mk−1). (1.4)

The conventional objective functions of NDT registrations are introduced in Chapter

2. Also, the modified objective functions are presented in the rest of chapters.

1.3 Literature Review

1.3.1 Point Set Registration

Point set registration has a history of over 30 years of research. After Haralick et al.

proposed a least-squares singular value decomposition (SVD) registration method esti-
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mating the robot pose [47], Besl and Mckay proposed a method called iterative closest

point (ICP) as a shape registration algorithm for point sets, parametric curves, paramet-

ric surfaces, implicit curves, implicit surfaces, polylines, and triangle sets [37]. Since

then, numerous improved methods have been proposed. Also, numerous approaches of

registration have been proposed, such as Gaussian mixture model (GMM) [44], nor-

mal distributions transform (NDT) [41], polar scan matching (PSM) [48], and Hough

scan matching (HSM) [49]. The evolution of the point set registration can be depicted

as Fig. 1.5.
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ICP

The basic process of ICP can be divided into three components: applying the updated

transformation, searching for the correspondence, and optimizing the objective func-

tion, such as the point-to-point case:

f(Ps,Pt,Θ) =
1

nPs

nPs∑
i=1

‖T (p̂s,i,Θ)− p̂c,i‖2, (1.5)

where Ps = {p̂s,i}
nPs
i=1 is the source point set, Pt = {p̂t,i}

nPt
i=1 is the target point set,

p̂c is the correspondence of p̂s, and nPs is the number of points in Ps.

In the past 27 years, to improve the performance of the ICP, Numerous methods

have been proposed. One of issues is the computational complexity, especially the

process of searching for correspondences since the computational complexity of the

naive search is O(nPsnPt). A method of using kd-tree effectively was proposed, and

it reduced the complexity toO(nPs log(nPt)) [50]. Another issue is outliers of the least

values which lead to inaccurate transformation. A trimmed ICP (TrICP) was proposed

to deal with the issue [51]. It defines the objective function as the sum of the top ntrim

least values selected from nPs least values. Since ntrim ≤ nPs , it can also accelerate

the registration. Moreover, the performance of rotational alignment was another issue

of ICP. To improve the rotational alignment, an iterative dual correspondence (IDC),

which combines ICP with iterative matching-range-point (IMRP), was proposed [52].

Later, a 2D metric-based ICP (MB-ICP) defines the objective function, using a new

metric consist of the position and orientation between two points, as

f(Ps,Pt,Θ) =
1

nPs

nPs∑
i=1

(
‖ei‖2 −

(ex,ip̂s,y,i − ey,ip̂s,x,i)2

‖p̂s,i‖2 + L2

)
, (1.6)

where L is a positive real number homogeneous to a length, p̂s = (p̂s,x, p̂s,y)
T , e =
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(ex, ey)
T is computed as

e = T (p̂s,Θ)− p̂c, (1.7)

and T (·, ·) is an operator which transforms p̂s with Θ [53]. Also, MB-ICP was ex-

tended to the 3D case [54]. The appearance of the generalized-ICP (g-ICP) can be

seen as the beginning of the registration of Gaussian mixture models (GMM). g-ICP

considers the shape uncertainty of points and uses the sum of Mahalanobis distances

as objective function, which can be expressed as

f(Ps,Pt,Θ) =

nPs∑
i=1

eTi
(
Cc,i +RCs,iR

T
)−1

ei, (1.8)

where R is the rotation matrix, Cs and Cc are the variance-covariance matrices of ps

and pc, respectively [43]. Later, normal ICP (NICP) was proposed to improve g-ICP

[55]. The objective function of NICP is the sum of the Mahalanobis distance of the

point pair and their normal vectors. Furthermore, to overcome the problem of local

minima, a globally optimal ICP (Go-ICP) which registers point sets with a branch-

and-bound (BnB) scheme was proposed [56].

So far, ICP has been modularized, as shown in Fig. 1.6 [57]. First, data filter can

sample the point samples or add information for the point samples, such as normal,

uncertainty, and curvature. Second, transform transforms the filtered source point set.

Third, match links the transformed source points to the target points. Fourth, outlier

filter can exclude outliers or set weights according to the statistics of distances between

the transformed source points and the correspondences. Fifth, metric minimize com-

putes the transformation which minimizes the objective function. Sixth, transforma-

tion check checks whether the termination condition of iteration is satisfied. Usually,

the match module is regarded as the major disadvantage of ICP. Although the compu-

tational complexity is reduced from O(nanb) to O(nblog(na)) using the k-d tree, it
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is still difficult to process over 100k points collected from a 3D range sensor in real-

time. Thus, the source and target point set must be sampled, respectively, to reduce the

number of points to 5k or less.

NDT and GMM

In 2002, Biber and Straßer proposed 2D normal distributions transform (NDT) which

is a compact spatial representation describing the shape in the form of normal dis-

tributions [41]. NDT sets regular cubic cells to subdivide the point set P , and points

in each cell are converted into a normal distribution. As Stoyanov et al. introduced,

NDT is a special case of the Gaussian mixture model (GMM) with uniform weights

and largely disjoint components [45]. In [41], Biber and Straßer also proposed a 2D

point-to-distribution NDT registration (NDT-P2D) which aligns the source point set

Ps to an NDT converted from the target point set Pt. The corresponding distribution

of each source point is the distribution in the cell where the source point is located. As

a result, NDT can reduce the time complexity toO(nb). Also, Takeuchi and Tsubouchi

extended the NDT-P2D to 3D case [42]. The authors also proposed a primitive coarse-

to-fine NDT-P2D using two-resolution NDT. Later, Magnusson et al. formalized the

3D NDT-P2D and presented the advanced applications [58].

The advantages of the NDT are the number of distributions which is usually much

smaller than the number of target points and the geometric representation which is

more accurate than the sampled points. NDT-P2D using the NDT was evaluated by

Magnusson et al. and compared to ICP. As a result, the NDT-P2D performs more ro-

bust and faster than ICP [59]. The processing rate of the NDT-based registration can

be further accelerated by registering the source NDT Ds to the target NDT Dt. Based

on this intuition, a distirbution-to-distirbution NDT registration (NDT-D2D) was pro-
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posed [45]. NDT-D2D estimates the transformation which registers Ds to Dt by mini-

mizing L2 distance between two NDTs [44]. Since the number of source distributions

is also much smaller than the number of source points, its computational complexity

O(nD,s) is much lower than the computational complexity of NDT-P2D.

The cell size is the most critical when using the NDT representation. High reso-

lution lattice leads to the fast registration but low accuracy, while the low resolution

lattice leads to the high accuracy but slow registration. The multi-resolution NDT-P2D,

also named as multi-layered NDT (ML-NDT) [60], can be a solution. The ML-NDT

roughly registers with the NDT generated by large cells, and then the cell size is re-

duced to register precisely. Segmented region growing NDT (SRG-NDT) [61] and

supervoxel NDT (SV-NDT) [62] are alternative solutions which generate NDT using

irregular cells. SRG-NDT converts the points, except for the ground points, into NDT

by the region growing method. The processing rate of SRG-NDT is breakneck, and

the accuracy is high due to removal of the ground points. However, the processing rate

can be changed according to the proportion of the ground points to the total points. On

the other hand, SV-NDT clusters the point set using supervoxel method and converts

it into NDT, and it shows a high success rate and accuracy of registration.

Smoothing NDT is another issue of NDT. So far, various approaches have been

presented to improve the performance of NDT registration, and we found a common

property which is smoothing objective function to reduce the local minima problem.

This property can be seen in following approaches. NDT generated by the overlapped

cells can reduce the discreteness of the NDT [41]. Later, trilinear 3D NDT was pro-

posed in [41, 72]. Even though the trilinear NDT-D2D shows high accuracy, its com-

putation time is eight or more times longer than the conventional NDT-D2D. The hi-

erarchical approach is another good example. It registers Ps to coarse-to-fine NDTs
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[42, 58, 60]. Also, a method of choosing resolution by comparing the number of uti-

lized points was presented to accelerate the NDT-P2D [73]. Recently, an uncertainty

approach for GMM is presented [74]. According to the paper, the GCs can be expanded

by the surface and normal uncertainties. Also, PNDT in Chapter 3 can expand GCs by

the expected mean and covariance considering pdf based on the sensor model.

GMM and NDT converts the point set into a set of Gaussian components (GC).

NDT, which is generated by regular cells, is a special case of GMM representation.

However, the objective functions are different. While the GMM registration uses the

Mahalanobis distance, the NDT registration uses the likelihood.

PSM

PSM is a point-to-point registration method. It registers the 2D point set in the polar

coordinate and shows more accurate transformation than ICP [63]. It was improved by

a scan restoration method to deal with dynamic environments [64]. However, as far as

we know, it has not been extended into 3D.

HSM

HSM is a global registration method which computes the 3-degree-of-freedom (DOF)

motion to globally align the source point set to the target point set. The feature of

HSM is transforming point samples into Hough domain to generate Hough spectrum.

It computes multiple rigid-body transformation candidates which can align the source

Hough spectrum to the target Hough spectrum. Since it aligns two point sets globally,

HSM was utilized for map merging [65, 66, 67]. Later, HSM was extended into 3D to

estimate the 6-DOF motion and abbreviated as HSM3D [68]. However, if we naively

implement the algorithm according to the theory, it consumes a lot of resources.
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1.3.2 Incremental Registration for Odometry Estimation

The incremental registration was proposed in [69]. It can be regarded as a scan-to-

map approach that the aligned scans are integrated on the map, and the source scan is

registered with the map.

The scan-to-map approach for NDT was originally proposed in [70]. The authors

proposed the simultaneous mapping and tracking method based on NDT-D2D and

NDT occupancy map (NDT-OM) to deal with the dynamic objects. The method ex-

tracts the local map from the global map and estimates the pose by registering the

source NDT to the local map. Also, the source point set is transformed and integrated

into the global map. Although the authors considered the discreteness problem of NDT

for updating NDT-OM, they did not consider the problem for extracting the local map.

Due to the discreteness of the NDT and the one-to-one correspondence strategy, the

ground truth transformation is not guaranteed to be the optimal point.

Lidar odometry and mapping (LOAM) is also based on the incremental registra-

tion [20]. One thread of LOAM extracts the plane and edge points and registers the

feature sets to estimate the pose in high frequency roughly. Another thread of LOAM

maintains a global map and registers the source plane and edge points to the plane

converted from the plane and edge points in the map respectively in low frequency.

LOAM and its improved method visual-lidar odometry and mapping (V-LOAM) [71]

rank at the top two places of KITTI chart.

1.4 Contributions

The main contribution of this dissertation is in how it improves NDT registration. To

this end, we present improved methods.
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The manner in which regular cells which spatially subdivide a point set are dealt

with is critical when using the NDT. This dissertation tackles issues pertaining to cells

and presents the solutions described below.

In Chapter 3, we present a probabilistic NDT (PNDT) representation. To avoid the

destruction of the NDT scene and the degeneration of GCs caused by a high-resolution

lattice or sparse point samples, the representation assigns an uncertainty value to each

point sample to convert all of the point samples into NDT. PNDT also leads to more

accurate registration than the conventional NDT method.

In Chapter 4, we present a lattice adjustment and a cell insertion to avoid the dis-

creteness of GCs. Lattice adjustment generates overlapped cells by decreasing the dis-

tance between cells or increasing the side lengths of cells. On the other hand, cell

insertion inserts cells to generate simple, face-centered-cubic, or body-centered-cubic

structured lattice. In addition, we demonstrate how the overlapped GCs lead to more

accurate registration than the conventional NDT.

In Chapter 5, we present the regeneration of NDT to avoid the distortion of GCs

after the simple fusion of NDTs. The method subdivides the source GCs into truncated

GCs using a target lattice and fuses the truncated GCs in the same cell. Thus, it regen-

erates the NDT so that it fits the target lattice and reduces the distortion of the fused

NDT. Using this method, a robot can build a more accurate NDT map after the robot

poses are updated by simultaneous localization and mapping (SLAM). Moreover, the

fusion of NDT maps can be more accurate than the simple fusion method.

This dissertation also presents improved NDT registration methods, as follows.

In Chapter 6, we present a hue-assisted NDT registration approach. The hue mostly

retains its value even if the brightness of the environment changes. This method addi-

tionally subdivides points in a cell according to their hue values and generates multiple
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GCs in the cell. Each GC has a distribution of hues, and the presented method improves

the NDT registration by weighting the likelihood of correspondence. This facilitates

the NDT registration of point sets which are scanned in non-structured environments.

In Chapter 7, we present a key-layered NDT registration (KL-NDT) scheme. Com-

pared to the conventional heuristic multi-layered registration technique, the presented

method determines a key layer to register and conducts registration until the likelihood

value is converged. Thus, it skips other layers and accelerates the registration process.

In Chapter 8, we present a scaled NDT representation and a multi-scale NDT reg-

istration. The overall method decreases the scale of the target NDT from the maximum

value to the minimum value to smooth the objective function, and it increases the scale

of the source NDT from zero to overcome the negative correlation between the likeli-

hood and the rotational alignment.

In Chapter 9, we present the scan-to-map incremental registration of NDTs. The

accuracy of odometry estimation is improved by the following process. First, the

source point set is transformed by the initial guess to be converted into an NDT.

Second, the submap is extracted according to the robot pose and the source NDT.

Third, the source NDT is registered to the target submap in a coarse-to-fine manner.

We show that the presented incremental NDT registration outperforms the state-of-

the-art odometry estimation method, LIDAR odometry and mapping (LOAM), with

the KITTI benchmark dataset.

The issues of NDT and presented methods are summarized in Table 1.1.
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Table 1.1: Issues of NDT registration and contributions of the dissertation.

issues of NDT registration presented method chapter

degeneration
probabilistic NDT 3

destruction

interpolation of NDT

lattice adjustment
4

cell insertion

scaled NDT

8negative correlation between
dynamic scaling factors

rotation and L2 likelihood

distortion of simple fusion regeneration of NDT 5

vision-aided registration hue-assisted NDT 6

heuristic multi-layered NDT key-layered NDT 7

inefficient scan-to-map
incremental NDT registration 9

registration

1.5 Organization

This dissertation is divided into ten chapters. In Chapter 2, we introduce the math-

ematical preliminaries of NDT representation, NDT registration, and NDT map. We

also introduce the implementation of the presented methods and the benchmark dataset

used in this dissertation. In Chapter 3-5, the improved NDT representations are pre-

sented. Following these, in Chapter 6-9, the improved NDT registration methods are

presented. Finally, Chapter 10 draws conclusions and presents topics for future work.

The chapters are summarized as follows:
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Chapter 1: background, problem statement, literature review, contributions, and

organization.

Chapter 2: preliminaries of NDT representation, registration, mapping, cell, lat-

tice, and optimization.

Chapter 3: PNDT using the sensor uncertainty.

Chapter 4: lattice adjustment and insertion methods.

Chapter 5: regeneration of NDT for target lattice.

Chapter 6: registration improved by the hue.

Chapter 7: KL-NDT determining the key-layer to register.

Chapter 8: scaled NDT and multi-scale registration.

Chapter 9: scan-to-map incremental registration.

Chapter 10: conclusions.
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Chapter 2

Preliminaries

2.1 NDT Representation

NDT representation is a special case of Gaussian mixture model (GMM) [45]. Instead

of performing expectation-maximization (EM) algorithm, NDT method sets regular

cells to rapidly subdivide point samples and computes the parameters of probability

density function (pdf) in a cell by maximum likelihood estimation (MLE) [41, 58]. For

the set of point samples P = {pi = (xi, yi, zi)}nPi=1 in a cell, it can be assumed that

the point samples are driven from a normal distributionN (µ,Σ). Thus, the likelihood

of p can be expressed as

L(µ,Σ; p) =
1√
|2πΣ|

exp

(
−1

2
(p− µ)TΣ−1(p− µ)

)
. (2.1)

and the likelihood function of P is

L(µ,Σ;P) =

nP∏
i=1

L(µ,Σ; pi). (2.2)

By MLE, µ and Σ can be obtained as follows:

µ =
1

nP

nP∑
i=1

pi, (2.3)
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Figure 2.1: Process of converting point set into NDT.

Σ =
1

nP − 1

nP∑
i=1

(pi − µ)(pi − µ)T . (2.4)

This process is performed in nD cells which have four or more point samples, and the

NDT model D = {N (µj ,Σj)}nDj=1 can be obtained. Given this NDT model as the

reference model, the likelihood of observing a point p generated from the model is a

weighted sum of distributions:

L(p|D) =

nD∑
j=1

wjN (p|µj ,Σj), (2.5)

where wj is the weight of the likelihood corresponding to N (µj ,Σj) [58].

The process of generating NDT can be summarized as Fig. 2.1. After subdividing

point samples with regular cells in subdivide, the statistical parameters µ and Σ are

computed in generate.
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2.2 NDT Registration

In the history of NDT registration, the first wave was point-to-distribution registration

based on maximum likelihood estimate (MLE) [41, 58], and the second wave was

distribution-to-distribution registration based on minimizing L2 distance between pdf

[45]. Although two algorithms are based on the NDT representation, the objective

functions are derived from different conceptions.

Assume that the scenes described by a target point set Pt, taken at the state TH,t,

and source point set Ps, taken at the state TH,s, are partially overlapped, NDT-P2D

converts Pt into NDT Dt and finds the optimal Θ by minimizing the objective func-

tion:

fP2D(Pt,Ds,Θ) = −
|Ps|∑
k=1

r1 exp
(
−r2

2
gP2D(pk, dcorr,k,Θ)

)
, (2.6)

gP2D(pk, dcorr,k,Θ) =
(
T (pk,Θ)− µc,k

)T
Σ−1
c,k

(
T (pk,Θ)− µc,k

)
, (2.7)

where N (µc,k,Σc,k) is the corresponding distribution to the kth transformed point

T (pk,Θ), r1 and r2 are the regularizing factors, respectively. According to [58], (2.6)

is an approximation of the following negative log-likelihood given the NDT Dt:

l(Ps|Dt) = − log

|Ps|∏
k=1

L(T (pk,Θ)|Dt). (2.8)

Since finding Θ∗ minimizing (2.6) can be seen as finding Θ maximizing the likeli-

hood, NDT-P2D is originally in the context of maximum likelihood estimation (MLE).

The process can be depicted as Fig. 2.2. The target point set is converted into

NDT by NDT converter, and source point set is filtered by data filter. The robot pose

is estimated by metric minimize, and the estimated pose is applied in transform to

transform the source point set. The iteration is terminated if the pose is converged.
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metric minimize

transformation check

match

target point set

transformation

source point set

data filter

data filter

transform

NDT converter

Figure 2.2: Process of NDT-P2D.

On the other hand, NDT-D2D computes Θ which minimizes L2 distance between

the target NDT Dt and source NDT Ds. In [45], the L2 distance is defined as

DL2(Pt,Ds,Θ) =

∫
(p(x|Dt)− p(x|T (Ds,Θ))2dx, (2.9)

where T (Ds,Θ) transforms Ds with Θ as follows:

µij = T (µi,Θ)− µj , (2.10)

Σij = T (Σi,Θ) + Σj , (2.11)
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where T (Σi,Θ) transforms Σi with Θ. (2.9) can be simplified as

DL2(Pt,Ps,Θ) ∼
|Ds|∑
i=1

|Dt|∑
j=1

N (0|µij ,Σij). (2.12)

Consequently, the objective function of NDT-D2D is defined as

fD2D(Dt,Ds,Θ) = −
|Ds|∑
i=1

|Dt|∑
j=1

r1 exp
(
−r2

2
gD2D(di, dj ,Θ)

)
, (2.13)

gD2D(di, dj ,Θ) = µTijΣ
−1
ij µij , (2.14)

where r1 and r2 are regularizing factors similar to those in (2.6).

The process of NDT-D2D can be depicted as Fig. 2.3. The target point set and

source point set are converted into NDT by NDT converter. The robot pose is estimated

by metric minimize, and the estimated pose is applied in transform to transform the

source NDT. The iteration is terminated if the pose is converged.

Since NDT-P2D compresses Pt into Dt, whose number of distributions is signif-

icantly smaller than nt, the time complexity of NDT-P2D is lower than ICP variants.

Also, in the same context, since NDT-D2D additionally compresses Ps intoDs, where

|Ds| is much smaller than |Ps|, the computation complexity of NDT-D2D is much

lower than NDT-P2D.

2.3 NDT Mapping

NDT mapping is one of applications using NDT. The NDT occupancy map (NDT-

OM) [75], a typical NDT mapping method, formalized the processes of NDT mapping.

Later, generic NDT mapping demonstrated the possibility of applying NDT to lifelong

graph SLAM [76]. Since the NDT can be built in the multiple resolutions [42, 58, 60],
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metric minimize

transformation check

match

transformation

source point set

transform

NDT converter NDT converter

target point set

Figure 2.3: Process of NDT-D2D.

NDT-OM and generic NDT mapping also presented the methods of multi-resolution

NDT mapping [75, 76]. So far, the hierarchical GMM [74] and the Gaussian mixture

map whose cell holds a one-dimensional GMM [77] were proposed. On the other hand,

an interest descriptor for robust NDT map matching (IRON) was proposed to estimate

the map transformation between a pair of NDT maps for map merging [78].

NDT occupancy map (NDT-OM) is a map represented in the form of an NDT
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model [75]. In [75], the cell cj is defined as

cj = {µj ,Σj , nj , p(mj |x1:t)}, (2.15)

where nj is the number of points in cj , and p(mj |x1:t) is the probability of cj being

occupied [75]. Recursive sample covariance (RSC) update of NDT-OM is performed

by following equations. Given an aligned NDT model Dt, cj can be updated by

n1:t = n1:t−1 + nt, (2.16)

µ1:t = T1:t/n1:t, (2.17)

Σ1:t = S1:t/(n1:t − 1), (2.18)

where T and S are computed as

T =

n∑
k=1

xk, (2.19)

S =

n∑
k=1

(xk − µ)(xk − µ)T , (2.20)

and T1:t and S1:t are updated by

T1:t = T1:t−1 + Tt, (2.21)

S1:t = S1:t−1 + St +
n1:t−1nt
n1:t

(
µ1:t−1 − µt

) (
µ1:t−1 − µt

)T
. (2.22)

2.4 Transformation Matrix and The Parameter Vector

The robot pose can be expressed as a homogeneous transformation matrix:

TH =

 R t

0 1

 , (2.23)
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where R is the rotation matrix, t = (tx, ty, tz)
T is the translation vector. In this dis-

sertation, Tait-Bryan angle vector r = (rx, ry, rz)
T determines R, and the parameter

vector is deinfed as Θ = (tx, ty, tz , rx, ry, rz)T ∈ R6. Also, we define that T (v,Θ)

transforms the vector v with Θ as follows:

T (v,Θ) = Rv + t, (2.24)

and T (M,Θ) transforms the matrix M with Θ as follows:

T (M,Θ) = RMRT . (2.25)

2.5 Cubic Cell and Lattice

In this dissertation, a regular cell v is defined as a unit volume for the 3D case, and

we describe v using the side length l. A lattice V = {vi}ni=1 is defined as a repetitive

arrangement of the cells. To perform the coarse-to-fine NDT registration, the NDTs

generated in multiple resolutions are required. To manage the multi-resolution NDTs

efficiently, we choose octree data structure to implement the NDT. Octree is a hierar-

chical data structure for the spatial subdivision in 3D [79]. It sets a cube covering the

current interest region and recursively subdivides the cube into 8 son-cubes, as shown

in Fig. 2.4. Here, the layer is used to distinguish the NDT generated by cubes in each

level of octree. The side length l0 in the layer 0 can be obtained by

l0 = 2Lf lf , (2.26)

where Lf is the fine layer and lf is the length of the cells in the layer Lf . Also, the

length lk of cells in the kth layer can be computed as

lk = 2−kl0. (2.27)
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2.6 Optimization

In this dissertation, we minimize the objective function using Newton method. Given

an objective function f(Θ), we compute the gradient ∇f(Θ) and Hessian Hf(Θ) to

update Θ as follows:

Θk+1 = Θk + ∆Θ, (2.28)

∆Θ = −γ (Hf(Θ))−1∇f(Θ), (2.29)

where γ is the step size which satisfies Armijo rule:

f(Θk+1) ≤ f(Θk) + c1∆ΘT∇f(Θ), (2.30)

where c1 is a constant. In this dissertation, we set c1 to 10−4. The optimization termi-

nates if the step size |∆Θ| is smaller than threshold τ = 10−6.

For NDT-P2D, the gradient of (2.6) can be derived as

∂fP2D

∂θa
(Pt,Ds,Θ) =

r2

2

|Ps|∑
k=1

r1 exp
(
−r2

2
gP2D(pk, dcorr,k,Θ)

)∂gP2D

∂θa
(pk, dcorr,k,Θ),

(2.31)

Layer    1

Layer    0

Layer    L
f
-1 

Layer    L
f
 

Figure 2.4: Illustration of the octree structure.
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∂gP2D

∂θa
(pk, dcorr,k,Θ) = 2

(
T (pk,Θ)− µc,k

)T
Σ−1
c,k

∂T

∂θa
(pk,Θ), (2.32)

and the Hessian of (2.6) can be derived as

∂2fP2D

∂θa∂θb
(Pt,Ds,Θ) =

r2

2

|Ps|∑
k=1

r1 exp
(
−r2

2
gP2D(pk, dcorr,k,Θ)

)
·(

∂2gP2D

∂θa∂θb
(pk, dcorr,k,Θ)− r2

2

∂gP2D

∂θa
(pk, dcorr,k,Θ)

∂gP2D

∂θb
(pk, dcorr,k,Θ)

)
,

(2.33)

∂2gP2D

∂θa∂θb
(pk, dcorr,k,Θ) = 2

(
T (pk,Θ)− µc,k

)T
Σ−1
c,k

∂2T

∂θa∂θb
(pk,Θ)+

2

(
∂T

∂θa
(pk,Θ)

)T
Σ−1
c,k

∂T

∂θb
(pk,Θ). (2.34)

For NDT-D2D, the gradient of (2.13) can be derived as

∂fD2D

∂θa
(Dt,Ds,Θ) =

r2

2

|Ds|∑
i=1

|Dt|∑
j=1

r1 exp
(
−r2

2
gD2D(di, dj ,Θ)

) ∂gD2D

∂θa
(di, dj ,Θ),

(2.35)

∂gD2D

∂θa
(di, dj ,Θ) = 2µTijΣ

−1
ij

∂µij
∂θa

+ µTij
∂Σ−1

ij

∂θa
µij , (2.36)

∂µij
∂θa

=
∂T

∂θa
(µi,Θ), (2.37)

∂Σ−1
ij

∂θa
= −Σ−1

ij

∂T

∂θa
(Σi,Θ)Σ−1

ij , (2.38)

and the Hessian of (2.13) can be derived as

∂2fD2D

∂θa∂θb
(Dt,Ds,Θ) =

r2

2

|Ds|∑
i=1

|Dt|∑
j=1

r1 exp
(
−r2

2
gD2D(di, dj ,Θ)

)
·

(
∂2gD2D

∂θa∂θb
(di, dj ,Θ)− r2

2

∂gD2D

∂θa
(di, dj ,Θ)

∂gD2D

∂θb
(di, dj ,Θ)

)
, (2.39)
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∂2gD2D

∂θa∂θb
(di, dj ,Θ) = 2µTijΣ

−1
ij

∂2µij
∂θa∂θb

+ 2µTij
∂Σ−1

ij

∂θb

∂µij
∂θa

+ 2µTij
∂Σ−1

ij

∂θa

∂µij
∂θb

+

2

(
∂µij
∂θa

)T
Σ−1
ij

∂µij
∂θb

+ µTij
∂2Σ−1

ij

∂θa∂θb
µij , (2.40)

∂2µij
∂θa∂θb

=
∂2T

∂θa∂θb
(µi,Θ), (2.41)

∂2Σ−1
ij

∂θa∂θb
= −Σ−1

ij

∂2T

∂θa∂θb
(Σi,Θ)Σ−1

ij + Σ−1
ij

∂T

∂θa
(Σi,Θ)

(
Σ−1
ij

∂T

∂θb
(Σi,Θ)Σ−1

ij

)
+ Σ−1

ij

∂T

∂θb
(Σi,Θ)Σ−1

ij

∂T

∂θa
(Σi,Θ)Σ−1

ij . (2.42)

2.7 Implementation

The presented methods are implemented in C/C++ language with Eigen library for

linear algebra [80], Boost library [81] for multi-thread processing, and OpenGL and

FreeGLUT [82] for visualization. The implementations are processed on Intel i7 7700

3.60GHz.

2.8 Evaluation of Registration

The presented methods in this dissertation evaluates the accuracy of the registration

to show the improvement. For the estimated transformation T̂H and the ground truth

transformation TH , we compute the error matrix Ek as follows:

Ek = T̂−1
H TH =

 ER Et

0 1

 . (2.43)

Next, the translation and rotation errors et,k and er,k can be obtained by et = ‖Et‖2

and er = ∠ [ER] , where ∠ [·] is the function which computes the rotation angle θ as

θ = arccos

(
Tr(R)− 1

2

)
. (2.44)
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Table 2.1: Configuration of KITTI benchmark data set [20].

seq.
no.

configuration

distance(m) environment

0 3714 urban

1 4268 highway

2 5075 urban+country

3 563 country

4 397 country

5 2223 urban

6 1239 urban

7 695 urban

8 3225 urban+country

9 1717 urban+country

10 919 urban+country

2.9 Benchmark Dataset

This dissertation uses KITTI benchmark data set collected by 64 channel lidar Velo-

dyne mounted on a car since it provides the reliable ground truths to evaluate odometry

estimated by the point set registration [83]. The maximum range was set to 100m, and

the number of points per frame is about 0.1M. KITTI benchmark data set is consisted

of 11 sequences, as shown in Table 2.1. It provides reliable ground truths, as shown

in Fig. 2.5. KITTI uses the criteria which are the averages of relative translational and

rotational errors et and er of (100, 200, 300, ..., 800)m intervals [83]. To be specific,
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Figure 2.5: Ground truth odometry of KITTI data set on the satellite map.

et and er are computed as follows:

et =
|Et|
∆t
× 100%, (2.45)

er =
1

∆t
arccos

(
Tr(Er)− 1

2

)
, (2.46)

which are different from the errors in Section 2.8.
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Chapter 3

Probabilistic NDT Representation

3.1 Introduction

This chapter presents a probabilistic NDT (PNDT) representation to overcome two

issues of NDT representation: degeneration and destruction. Degeneration is a prob-

lem that the covariance matrix Σ is singular. The conventional method is to adjust the

eigenvalues manually. Destruction is a problem that NDT does not convert point sam-

ples which are fewer than 4. Due to the destruction, some regions are disappeared in

the NDT representation, as shown in Fig. 3.1(b-d). There are two major factors that

determine the number of points in a cell: density of point samples and resolution of the

lattice. For example, the density of points decreases as the range or incidental angle

increases. Also, the number of points in the cell decreases as the cell size decreases.

If NDTs are destructed due to the high-resolution cells, the registration of the NDTs

may lead to an inaccurate transformation.

PNDT is a representation which considers the sensor uncertainty as the inherent

covariance for each point sample and converts all point samples into NDT regardless
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(d)

(a) (b)

(c)

Figure 3.1: Examples of the destructed NDT. From (b) to (d) are the NDTs converted

from a point set in (a) using 8m, 2m, and 0.5m cells. The cells which generate the GCs

are in blue; otherwise, cells are in red.

of the cell size. The details of the PNDT are presented in the following sections. In

Section 3.2, we introduce the sensor uncertainty modeled in the spherical coordinate

system. In Section 3.3, we present the PNDT representation and derive the modified

covariance. In Section 3.4, we discuss the generalization of NDT registration. In Sec-

tion 3.5, we compare the generation rate of NDT and PNDT. We also compare the

registration accuracy of NDT and PNDT.
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3.2 Uncertainty of Point Based on Sensor Model

This dissertation considers a range finder collecting point samples in spherical coordi-

nate system as

p̂s = (r, θ, ϕ), (3.1)

where r is radius, θ is horizontal angle, and ϕ is vertical angle, as shown in Fig. 3.2.

Also, Σs, the covariance matrix of p̂s, can be expressed as

Σs =


σ2
r 0 0

0 σ2
θ 0

0 0 σ2
ϕ

 , (3.2)

where σ2
r , σ2

θ , and σ2
ϕ are variances of r, θ, and ϕ, respectively. We use the measure-

ment p̂ and covariance Σp in Cartesian coordinate system transformed from p̂s and

Σs to define the pdf of the point as a normal distribution:

p (p|p̂,Σp) = N (p̂,Σp) =
1

|2πΣp|1/2
exp

(
−1

2
(p− p̂) Σ−1

p (p− p̂)

)
. (3.3)

The point sample p̂ is transformed from p̂s by

fs2c(r, θ, ϕ) =


r sinϕ cos θ

r cosϕ

r sinϕ sin θ

 , (3.4)

and Σp can be approximately transformed from Σs by

Σp = JΣsJ
T , (3.5)

where J is a Jacobian matrix computed as

J =
∂fs2c (r, θ, ϕ)

∂ (r, θ, ϕ)
=


sinϕ cos θ −r sinϕ sin θ r cosϕ cos θ

cosϕ 0 −r sinϕ

sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

 . (3.6)
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Figure 3.2: Top view of a sensor model in spherical coordinate system and the normal

distribution of a point p.

Since the eigenvalues (λ1, λ2, λ3) of Σp is equal to
(
σ2
r , (rsinϕσθ)

2, (rσr)
2
)
, λ2 and

λ3 increase as r increases. Using the conversion, a point set P = {pi}nPi=1 can be

converted into an NDT as

DP = {(N (p̂i,ΣU,i), 1)}, i = 1, 2, 3, ..., nP , (3.7)

where ΣU,i, i = 1, 2, 3, ..., nP is the uncertainty covariance of p̂i.

3.3 Probabilistic NDT

NDT model is a set of GCs which are converted from a set of point samples. The most

critical parameters to generate and update a GC are the mean vector µ, covariance Σ,

and the number n of points. Therefore,in this dissertation, to include the parameters,
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(a) (b) (c)

Figure 3.3: Example of PNDT representation. Given four points on a line, the GC

of the points is degenerated, as shown in (a). Given the uncertainty of each point, as

shown in (b), the GC can avoid degeneration, as shown in (c).

we define a GC d as

d = (N (µ,Σ), n). (3.8)

Also, we define the NDT model D = {di}nDi=1.

PNDT is the representation considering the uncertainty for the measured point

sample. For the point sample set P = {pj}nPj=1, as shown in Fig. 3.3(a), the probability

observing a point coordinate p can be defined as GMM:

p(p) =
1

nP

nP∑
j=1

1

|2πΣu,j |
exp

(
−(p− p̂j)Σ

−1
u,j(p− p̂j)

)
, (3.9)

as in Fig. 3.3(b). The key idea of the PNDT is to use the mean and covariance of p.

Given a lattice V = {vi = (ci, li)}nVi=1, where nV is the number of cells, the point set

in the cell vi can be represented as DPi = {dj = (N (µj = p̂j ,Σj = ΣU,j), nj =

1)}nP,i

j=1 . The mean µ and covariance Σ of the PNDT can be computed as follows:

µ = E[p] =

∫
pp(p)dp, (3.10)

Σ = Cov[p] =

∫
(p− E[p])(p− E[p])T p(p)dp, (3.11)
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Figure 3.4: Illustration of the degeneration cases and the one-sigma ellipsoids of

PNDT: point case in (a) (one point sample), line case in (b) (two point samples), plane

case in (c) (three point samples), and tetrahedron case in (d) (four point samples).

and these can be derived as

µ =
1

nP

nP∑
j=1

p̂j , (3.12)

Σ =
1

nP

nP∑
j=1

(
(p̂j − E[p])(p̂j − E[p])T + Σu,j

)
. (3.13)

The GC converted from the uncertainty GMM in Fig. 3.3(b) is not degenerated, as

shown in Fig. 3.3(c).

As shown in (3.12), µ is equal to the conventional mean computed by (2.3). It

means the center of GC is not changed by the modification. On the other hand, Σ

is the sum of the conventional covariance and the mean of uncertainties {Σu,j}nPj=1.

This modification provides two advantages. First, it can provide a covariance for one-,

two-, and three-point cases, as shown in Fig. 3.4(a-c). Second, it reduces the degener-

ation effect of the GC, as shown in Fig 3.4(d). The conventional method adjusts each

eigenvalue to ρλ1, where ρ is a threshold ratio, if the eigenvalue is smaller than ρλ1.

However, using (3.13), some distributions are expected to ignore the adjustment.
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3.4 Generalization of NDT Registration Based on PNDT

This section is to show that NDT-P2D is a special case of NDT-D2D. According to the

PNDT representation, we can model a raw point set Ps as a set of point samples whose

uncertainties are equal to

Σu,ε =


ε 0 0

0 ε 0

0 0 ε

 , (3.14)

where ε → 0. Assume that we set a lattice Vs whose resolution is so high that each

cell has at most one point sample. The PNDT Ds converted from Ps using Vs is a

set of GCs whose means µi and covariances Σi are equal to point coordinates pi and

the uncertainty Σu,ε, respectively. Consider that NDT-D2D registers Ds to Dt, we can

substitute the mean and covariance into (2.10) and (2.11) and obtain

µij = T (pi,Θ)− µj , (3.15)

Σij = T (Σu,ε,Θ) + Σj . (3.16)

Given that ε→ 0, we can approximate (3.16) and obtain Σij = Σj . Thus, the equation

(2.40) can be simplified as

gD2D(di, dj ,Θ) = (T (pi,Θ)− µj)TΣ−1
j (T (pi,Θ)− µj), (3.17)

which is the same as (2.7). Next, assume that the likelihood of the source GC di and

target GC dj is approximately 0 if they are not in the same cell, the objective function

of NDT-D2D as (2.13) becomes the objective function of NDT-P2D as (2.6).
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3.5 Experiments

3.5.1 Overview

This chapter used KITTI benchmark data set. Since the maximum range of Velodyne

is 120m, the cell size corresponding to the root octree node is set to 128m. To evaluate

NDT and PNDT in the same conditions, the cell sizes are set to l, and the ranges

searching for correspondence is set to the 1.2 times l. On the other hand, the generation

process calculates means and covariances of point sets in cells to transform the point

set into NDT. The NDT sets the threshold number nth to reject conversion of points

fewer than nth, whereas PNDT does not set nth. The PNDT additionally computes

the uncertainties of points using the variances of r, θ, and ϕ analyzed in [19]. Since

mapping is not considered in this chapter, each point set is deleted after the process

generates the corresponding NDT.

In this chapter, we apply the initial guess Θ̂0 equal to the preceding transforma-

tion Θ̂[k − 1] to the registration, as shown in Fig. 3.5. After it returns the estimated

transformation Θ̂, the target NDT Dt is deleted, and the source NDT Ds becomes the

target NDT.

3.5.2 Evaluation of Representation

To evaluate the performance of representation, all scans in the 0th dataset were trans-

formed into conventional NDTs and PNDTs by cells in layers from 1 to 12. We col-

lected two data sets: the generation rate and the number of values. The generation rate

is the percentage of cells having distributions among the occupied cells, and the num-

ber of values is for evaluating the memory usage per NDT. Since a distribution can be

reconstructed by nine values, the number is equal to nine times the number of cells
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Figure 3.5: Block diagram of PNDT-D2D with an initial guess.

having distributions. We obtained results of these as shown in Fig. 3.6. The box plots

against layer in Fig. 3.6 show the statistical results obtained by 4541 scans in the 0th

dataset.

The result in Fig. 3.6(a) shows that the generation rate of the conventional NDT

decreases with increasing layer, while that of the PNDT does not change with layer

and remain 100%. The conventional NDT can represent the environment in the lower

layer as shown in Fig. 3.7(a), but the end parts of the scan are disappeared in the higher

layer as shown in Fig. 3.7(d). On the other hand, the PNDT generates the distributions

by using the parameter
∑nP

i=1 ΣU,i/nP as shown in Fig. 3.7(b) and (e). It can generate

distributions in all of the occupied cells without NDT parameters as shown in Fig.
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Figure 3.6: Evaluation of representation performance. (a) generation rate against layer.

(b) the number of values against layer.
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(d)

(f)

(b)(a)

(c)

(e)

Figure 3.7: Comparison of Σ,
∑nP

i=1 Σu,i/nP , and ΣPNDT in the shape of 1σ Ellip-

soid. Left column shows distributions generated by 0.5m cells, and the right column

shows distributions generated by 0.125m. (a) and (b) are 1σ ellipsoids of Σ, (c) and

(d) are 1σ ellipsoids of
∑nP

i=1 Σu,i/nP , and (e) and (f) are 1σ ellipsoids of ΣPNDT .
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Figure 3.8: Box plots of errors against layers. (a) and (c) are the results of conventional

NDT, while (b) and (d) are the results of PNDT.
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3.7(d). PNDT computes the modified covariance Σ
′

and generates distributions as

shown in Fig. 3.7(c) and (f).

Due to the high generation rate, the number of values used by PNDT exponentially

increases with increasing layer as shown in Fig. 3.6(b). Even, it uses more values

than the corresponding point set in layer 12 since a distribution transformed from two

or less points still requires nine values. Therefore, it is important to note that PNDT

can generate distributions at high-resolution cells, but this can result in low memory

efficiency.

3.5.3 Evaluation of Registration

To evaluate the performance of registration, the registrations using conventional NDT

and PNDT are conducted in different layers from 5 to 7. We compared the estimated

transformation vector Θ̂k to the ground truth Θk. Also, the first initial guess Θ̂1,0 is set

to 0, and the kth initial geuss Θ̂k,0 is set to the preceding transformation vector Θ̂k−1.

As a result, the box plots of translation and rotation errors are shown in Fig. 3.8.

Fig. 3.8 (a) and (b) show that PNDT improves the translational registration. The me-

dian value in each layer is decreased by applying the presented method. Also, the

interquartile range (IQR) of each layer is shorter in Fig. 3.8 (b) than that in Fig. 3.8

(a). Similarly, the improvement of rotational registration by applying the presented

method can be seen as shown in Fig. 3.8(c) and (d).

The means of rotation errors, translation errors are shown in Table 3.1. The pre-

sented method decreased the translation error by about 20% in layer 5, 6 and about

30% in layer 7, 8. Also, it decreased the rotation error by about 20-25% in layer 5, 6, 7

and about 8% in layer 8. The estimated odometry are shown in Fig. 3.9 and Fig. 3.10.

It can be seen that the presented PNDT improves the odometry accuracy.
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3.6 Summary

The modification considering pdf based on the sensor model to compute the mean

and covariance for NDT is presented. The mean is not changed, but the covariance is

changed as the sum of conventional covariance and the average of covariances of point

samples. Since each point sample has its covariance, the presented PNDT can generate

distributions in all of the occupied cells. Thus, the number threshold of points samples

is no more necessary. Also, the generalization between objective functions of NDT-

P2D and NDT-D2D is shown. To show the improvement of the presented method, two

experiments are conducted. The results of PNDT representation show that all of the

occupied cells have GCs regardless of the resolution. On the other hand, the results of

registration show that PNDT improves the accuracy of the NDT registration.
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Figure 3.9: Odometry estimated by NDT-D2D. The results of 0th to 10th sequences

are in (a) to (k) respectively (cell size=1m).
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Figure 3.10: Odometry estimated by PNDT-D2D. The results of 0th to 10th sequences

are in (a) to (k) respectively (cell size=1m).
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Table 3.1: Comparison of odometry accuracy between NDT and PNDT.

cell size
1m 2m 4m

NDT PNDT NDT PNDT NDT PNDT

Seq 0
T(%) 2.000 1.526 1.83 1.689 2.393 2.076

R(deg/m) 0.008 0.006 0.007 0.007 0.011 0.008

Seq 1
T(%) 6.906 5.948 13.04 5.535 11.633 6.468

R(deg/m) 0.012 0.014 0.012 0.012 0.015 0.011

Seq 2
T(%) 3.974 2.929 5.49 3.192 8.014 6.109

R(deg/m) 0.011 0.008 0.013 0.008 0.02 0.016

Seq 3
T(%) 4.783 3.434 10.817 2.642 8.75 3.8

R(deg/m) 0.015 0.009 0.018 0.011 0.017 0.012

Seq 4
T(%) 9.112 2.89 14.881 4.095 33.344 5.791

R(deg/m) 0.009 0.008 0.01 0.008 0.007 0.009

Seq 5
T(%) 1.453 1.482 1.729 1.634 2.285 1.951

R(deg/m) 0.006 0.006 0.007 0.006 0.008 0.007

Seq 6
T(%) 5.181 4.159 1.746 1.525 2.309 1.653

R(deg/m) 0.012 0.011 0.006 0.006 0.01 0.008

Seq 7
T(%) 1.22 0.906 2.038 1.121 1.852 1.424

R(deg/m) 0.005 0.006 0.01 0.007 0.014 0.012

Seq 8
T(%) 2.349 1.526 2.278 1.581 3.781 2.061

R(deg/m) 0.008 0.006 0.009 0.007 0.015 0.008

Seq 9
T(%) 2.946 1.699 3.424 1.956 4.982 3.357

R(deg/m) 0.012 0.009 0.014 0.01 0.015 0.014

Seq 10
T(%) 3.557 2.902 3.185 3.089 5.181 4.159

R(deg/m) 0.01 0.007 0.01 0.01 0.012 0.011

50



Chapter 4

Interpolation for NDT Using Overlapped Regular Cells

4.1 Introduction

This chapter defines the cell which subdivides the point set P . Since NDT uses the

regular cells, it can rapidly search for the correspondences for the source point samples

or distributions. However, given a target NDT, as shown in Fig. 4.1(c), the likelihood

of observing a point would dramatically decrease due to the discreteness of the target

NDT. To overcome this problem, the interpolation method using overlapped regular

cells has been proposed, and it can generate an interpolated NDT, as shown in Fig.

4.1(d) [41]. Given the interpolated target NDT Dt, the source point sample ps has

eight corresponding cells which are overlapped 50% of lengths with their neighbor

cells, as shown in Fig. 4.1(b). In [41], the author suggested to sum up the likelihoods

obtained by each corresponding cell as the objective function of NDT-P2D as follows:

f(Ps,Dt,Θ) = −
nPs∑
j=1

8∑
k=1

r1 exp
(
−r2

2
gP2D(pj , dcorr,jk,Θ)

)
, (4.1)

where dcorr,jk is the kth corresponding GC of pj . Although the interpolation method

improves the registration accuracy, the algorithm computes the likelihoods at most 8
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Figure 4.1: Comparison between conventional and interpolated NDTs. (a) and (b) show

the 1σ ellipsoids of the conventional and interpolated NDTs, respectively. The likeli-

hoods of two NDTs are demonstrated in (c) and (d), respectively.
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Figure 4.2: Crystalline-structured cells which generate GCs: (a) simple cubic structure,

(b) face-centered cubic structure, (c) body-centered cubic structure. Red cubes are

conventional cells, and white cubes are inserted cells.

times for each source point and costs about 8 times elapsed time compared to the

conventional NDT. To balance the computation and the accuracy, this chapter presents

a method of adjusting the distance between cell centroids or the cell length.

Also, inspired by the conventional overlap method, we propose a crystalline NDT

generated by cells in the face-centered cubic (FCC) and body-centered cubic (BCC)

structures as shown in Fig. 4.2(b) and (c), respectively. Moreover, to reduce the com-

putation caused by multiple correspondences, we present the correspondence region to

match corresponding GCs rapidly.

4.2 Lattice Adjustment

In this section, we introduce the interpolation method for NDT-D2D using overlapped

regular cells based on octree instead of constructing eight individual octrees [79].

The interpolation using overlapped regular cells is to overcome the discontinuity

of NDT. Usually, the registration NDT-D2D inputs a source GC ds into the octree of

the target NDT to search for the correspondence. When the pose Θ is updated, ds
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may moves to the middle of two target GCs, where the L2 likelihood can decrease

drastically due to the discreteness of the target NDT.

First, we introduce the cells. Given the orthogonal interval dc,f between cells and

the length lf of the cells in the fine layer Lf , as shown in Fig. 4.3, we can obtain the

length l0 of root octree node by

l0 = 2Lfdc,f + (lf − dc,f ), (4.2)

and the interval dc,k and length ls,k in kth layer is defined as

dc,k = 2Lf−kdc,f , (4.3)

lk = dc,k + (lf − dc,f ). (4.4)

On each axis, we define b1,i and b2,i on ith axis to subdivide the octree box into three

intervals: [b2,i − l, b1,i), [b1,i, b2,i), and [b2,i, b1,i + l], where b1,i = ci − (l − dc),

b2,i = ci+(l−dc), and ci is the center coordinate on the ith axis. The point samples are

subdivided into 27 subsets (9 subsets for the 2D case), and the subdivision is executed

recursively until the length lk of the cell is equal to lf .

4.3 Crystalline NDT

In this chapter, we introduce a crystalline NDT whose GCs are generated by the FCC

or BCC structured lattice and compare with the conventional NDT interpolated in a

simple cubic (SC) structure. Crystalline NDT aims to increase the correspondence

candidates for the source GCs. Therefore, we insert GCs into the target NDT Dt in a

crystalline structure. To construct crystalline NDT, two processes of NDT registration
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Figure 4.3: Illustration of overlapped octree.

are modified: setting cells of generating NDT and matching the correspondence of

registering NDTs.

In the process of setting cells, first, centroids are set with the edge dc. Second,

the cells with the side length l equal to dc are set. Third, additional cells are inserted.

For the insertion in the SC structure, as shown in Fig. 4.2(a), we insert seven lattices

translated by (dc/2, 0, 0), (0, dc/2, 0), (0, 0, dc/2), (dc/2, dc/2, 0), (dc/2, 0, dc/2),

(0, dc/2, dc/2), and (dc/2, dc/2, dc/2), respectively. For the FCC case, as shown in

Fig. 4.2(b), we insert three lattices translated by (dc/2, dc/2, 0), (dc/2, 0, dc/2), and

(0, dc/2, dc/2), respectively. For the BCC case, as shown in Fig. 4.2(c), we insert a

lattice translated by (dc/2, dc/2, dc/2). Fourth, we compute µj and Σj of the point

set Pj = {p|d∞(p, cj) ≤ l/2}, where d∞ is the l∞-metric, and cj is the center of the

jth cell.

In the process of matching the correspondence, the source GC has the target GC

in the same cell as its correspondence. Since the cells are overlapped, the source GC
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can have multiple correspondences so that it needs more computation than the con-

ventional NDT registration. To accelerate the registration, we define a correspondence

region (CR) in each cell, as shown in Fig. 4.4, to tessellate the space so that each

source GC can be matched with a single correspondence. For crystalline NDT in the

SC structure (SC-NDT), the kth source GC in the jth cell has the jth target GC as its

correspondence if its mean µk = (µx, µy, µz)
T satisfies

d∞(µk, cj) ≤ 0.25dc, (4.5)

where cj = (cx, cy, cz)
T is the centroid of the jth cell. For the NDT in the FCC

structure (FCC-NDT), the source GC has a correspondence if it satisfies

d1((µk,x, µk,y), (ck,x, ck,y)) ≤ 0.5dc∩

d1((µk,x, µk,z), (ck,x, ck,z)) ≤ 0.5dc∩

d1((µk,y, µk,z), (ck,y, ck,z)) ≤ 0.5dc∩

d∞(µk, cj) ≤ 0.5dc, (4.6)

where d1 is the l1-metric. For the NDT in the BCC structure (BCC-NDT), the source

GC has the correspondence if it satisfies

d∞(µk, cj) ≤ 0.5dc ∩ d1(µk, cj) ≤ 0.75dc. (4.7)

The CRs can be illustrated, as shown in Fig. 4.4.

4.4 Experiments

4.4.1 Lattice Adjustment

The experiments were conducted using the KITTI lidar benchmark dataset sequence 0

[83]. We conducted two experiments: one is adjusting dc as the moderator and fixing ls

56



(a) (b) (c)

Figure 4.4: Correspondence regions for matching correspondence (a) simple cubic

structure, (b) face-centered cubic structure, (c) body-centered cubic structure.

as the control variable, and another one is adjusting ls as the moderator and fixing dc as

the control variable. The NDTs generated by the presented method can be visualized

as shown in Fig. 4.5. The results in Fig. 4.5(a-c) are the case fixing ls while the results

in Fig. 4.5(c-e) are the case fixing dc.

In the following experimental results, we compared the translational error et, the

rotational error er, the runtime of subdivision ts, and the runtime of registration tr, re-

spectively. We followed the evaluation method suggested in [83] to compute et and er

which are the average errors of every possible subsequences of length 100,200,...,800m.

As we suggested in the previous section, since the interpolation is needed by the

fixed target NDT DT , we extracted 3000 samples from the source NDT Ds for each

case. Therefore, ts indicates how fast it takes to generate interpolated NDT, while tr

indicates how fast the registration takes to be converged.

In the first experiment, we investigated the performance against the interval be-

tween cells. We fixed the length of cells to 1m and changed dc from 0.25m to 1m with

interval 0.25m, and the accuracy and runtime against dc are summarized in Table 4.1.

The translational and rotational accuracies are improved by decreasing dc. It indi-

cates that the NDT can be smoothed to improve accuracy by reducing dc. However,
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Figure 4.5: The interpolated NDTs: (a) dc=0.25m, l=1m, (b) dc=0.5m, l=1m, (c)

dc=1m, l=1m, (d) dc=1m, l=1.5m , and (e) dc=1m, l=2m.
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Table 4.1 shows that the dc and accuracy are not positively correlated. On the other

hand, since the total number of GCs of target NDT Dt is increased as dc decreases,

ts and tr are increased as dc decreases. Also, since the octree becomes deep as dc

decreases, it takes more time to search for correspondence.

Table 4.1: Accuracy and runtime against dc.

dc(m) et(%) er(deg/m) ts(sec) tr(sec)

1.00 4.7373 0.0095 0.1830 0.1676

0.75 1.9383 0.0077 0.2779 0.2159

0.50 1.6055 0.0090 0.6515 0.3670

0.25 1.7357 0.0083 5.8437 0.5205

In the second experiment, we investigated the performance against the length ls

of the cell. We fixed the interval of cells to 1m and changed ls from 1m to 2m with

interval 0.25m. Since dc is fixed, the depth of octree of Dt and the number of GCs of

Ds are fixed. The results can be summarized in Table 4.2.

As ls increases, the covariance of each GC is swelled since the coverage of each

cell is extended. As a result, the GC of the interpolated NDT are expanded as shown in

Fig. 4.5(d) compared to those of the original NDT in Fig. 4.5(c), and Table 4.2 shows

that et is improved as ls increases from 1m to 1.5m while er almost remains at the

same degree. However, et is increased when ls is 1.75m and 2m. We found the reason

in Fig. 4.5(e). The GCs in Fig. 4.5(e) are more smoothed than those in Fig. 4.5(d) so

that the shapes of the GCs are similar to the neighbor GCs. In Table 4.2, we can see that

ts is increased as ls increases. The main reason is that the number of point samples to

compute the mean and covariance is increased. On the other hand, tr does not increase
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dramatically against ls since the number of the GCs of Ds is the same.

Table 4.2: Accuracy and runtime against ls.

ls(m) et(%) er(deg/m) ts(sec) tr(sec)

1.00 4.7373 0.0095 0.1830 0.1676

1.25 2.1023 0.0099 0.2360 0.1748

1.50 1.8166 0.0102 0.3021 0.1934

1.75 1.9806 0.0108 0.3844 0.2044

2.00 2.1745 0.0099 0.4696 0.1941

4.4.2 Performance of Crystalline NDT

Experiments of the crystalline NDT were conducted with the KITTI benchmark dataset

sequences 0-10. We evaluated the averages of relative translational and rotational er-

rors et and er, the elapsed time, and iterations of frame-to-frame PNDT-D2D.

We conducted three experiments for conventional NDT, BCC-NDT, FCC-NDT,

and SC-NDT which are visualized, as shown in Fig. 4.6. First experiment is the regis-

trations without CR, second experiment is the registrations with CR, and third exper-

iment is registrations using randomly sampled 1000 source GCs. The side length l of

the cell is set to 1m, and dc is also set to 1m. For optimization, we used Newton method

with at most 40 iterations, and r1 and r2 being 1 and 1/3. As a result, the averages of

et, er, elapsed time, and iteration can be summarized as Table 4.3.

Target SC-NDT without CR results in the more substantial translational error than

the conventional PNDT. The reason for that is at sequence 6 et of SC-NDT is 4.310%

while et of NDT is 1.320%. Without the sequence 6, the averaged et of the SC-NDT is
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Figure 4.6: Crystal structures of cells generating GCs: (a) reference image, (b) con-

ventional NDT, (c) BCC-NDT, (d) FCC-NDT, (e) SC-NDT.
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Table 4.3: Pose errors estimated with different lattices.

avg. et(%) avg. er(deg/m) avg. t (sec) avg. iter.

conventional NDT 2.534 0.0082 1.027 9.830

SC-NDT, no CR 2.766 0.0081 6.827 10.110

FCC-NDT, no CR 1.932 0.0075 3.463 10.083

BCC-NDT, no CR 1.958 0.0074 1.785 10.164

SC-NDT 2.135 0.0076 2.560 10.365

FCC-NDT 1.940 0.0074 1.683 10.328

BCC-NDT 1.973 0.0074 0.825 10.342

conv.+sampling 2.806 0.0085 0.489 10.574

SC+sampling 2.218 0.0076 1.700 10.560

FCC+sampling 1.948 0.0076 1.430 10.168

BCC+sampling 2.130 0.0076 0.588 10.486

2.611% while that of the conventional NDT is 2.654%. On the other hand, FCC- and

BCC-NDT showed similar accuracies, which are higher than the conventional NDT

and SC-NDT. However, without the presented CR, each source GC has a maximum of

four correspondences from target FCC-NDT and maximum of two correspondences

from the target BCC-NDT. As a result, it leads to the increasing runtime and the num-

ber of iterations.

The second experiment is performing NDT-D2D applied with CR. Table 4.3 shows

that the elapsed times of SC-, FCC-, and BCC-NDT using CRs were shortened by

53.8%, 51.4%, and 62.5% respectively even though the iterations are increased about

2%. Although the averages of et and er of FCC- and BCC-NDT did not change dra-
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matically using CR, et of SC-NDT was significantly improved since et of sequence 6

was reduced to 1.031 %.

In the third experiment, the random sampling of the source GCs resulted in shorter

runtime for all cases. It decreased by 52.4% , SC-NDT by 33.6%, FCC by 15.0 %, and

BCC by 28.7%. However, not only et increased with conventional PNDT by 10.7%,

BCC by 8.0%, FCC by 0.4%, and SC structure by 3.9%, but also er increased with the

conventional PNDT by 3.66% , BCC by 2.43%, FCC by 2.57%, and SC structure by

0.13%.

The results showed that the crystalline NDT improves the registration accuracy and

the CR improves the processing rate of the registration using crystalline NDT. We also

confirmed that the accuracy of registration can be improved by crystalline NDT. To be

more specific, the SC-NDT takes the longest time, but has the lowest accuracy. FCC-

NDT shows the best accuracy but takes about twice as much time as the conventional

NDT. On the other hand, although the accuracy of registration using the BCC-NDT is

lower than that of the FCC-NDT, the processing rate is similar to the registration using

conventional NDTs.

4.5 Summary

This chapter presents the method of the lattice adjustment for interpolation. Instead

of constructing eight individual octrees, the overlapped octree by setting the length

and orthogonal interval of cells is utilized to generate overlapped cells. This chap-

ter focuses on the discontinuity of the target NDT influencing the registration perfor-

mance and claims that the target NDT is the target to be interpolated. This chapter

also presents a crystalline NDT representation to improve the accuracy of the pose
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estimated by NDT-D2D. SC-, FCC-, and BCC-NDTs are introduced as examples of

crystalline NDT, and the correspondence region is presented for the processing rate

improvement.

The lattice adjustment is evaluated by two experiments. One is inserting the same

size of cells. It fixes the cell interval and changes the cell length. Another one is ex-

panding the cells. It fixes the length and changes the cell interval. As a result, since the

inserting cells increase the number of GCs to generate, the runtime is increased as the

interval decreases. On the other hand, since the number of GCs to generate is the same

in the case of expanding cells, runtime generating NDT is not dramatically increased as

the length increases. The crystalline NDT is evaluated by three experiments. Among

Crystalline NDTs, FCC-NDT showed the best accuracy, and BCC-NDT showed the

fastest processing rate.
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Chapter 5

Regeneration of Normal Distributions Transform

5.1 Introduction

Although applications of the NDT to SLAM and map matching are proposed as we

introduced in Section 2.3, they neglected a problem which arises when the lattices

at different poses generate the couple of NDTs which can scarcely be similar. To be

specific, SLAM can update poses after a loop closure so that GCs can be transformed,

as shown in Fig. 5.1(a). Moreover, if multiple robots are exploring in an environment

where communication is not guaranteed, they may not align the lattices and build local

NDT maps in inconsistent lattices, as shown in Fig. 5.1(b). If a robot simply fuses the

GCs in Fig. 5.1(c), it can distort the NDT map, as shown in Fig. 5.1(d).

To overcome this problem, we present a method which regenerates the NDT such

that it becomes suitable for the target lattice. The presented method subdivides the

source NDT into truncated GCs using the target lattice and then recomputes the mean,

variance-covariance matrix, and the number of points corresponding to the truncated

GCs in the same cell.
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Figure 5.1: Fusion of NDTs in inconsistent lattices. (a) The lattice at each pose is

transformed after the poses are updated by SLAM. (b) If multi-robots are unable to

align lattices at the initial states, NDTs are generated by inconsistent lattices. (c) The

aligned NDT in orange is to fuse with the target NDT in blue. (d) The simple fusion

of NDTs can shift the mean by ∆µ, rotate and scale the covariance by ∆θ and ∆λ.
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5.2 Mathematical Preliminaries

The key of the presented method is recomputing the mean and covariance of each GC

truncated by the target lattice. Here, we introduce the derivations of the mean vector

and variance-covariance matrix of the truncated trivariate normal distribution in [84].

5.2.1 Trivariate Normal Distribution

For a random vector x = (x1, x2, x3)T ∼ N (µ,Σ), we can standardize x as z =

(z1, z2, z3)T , where zi = (xi−µi)/σi, µi is the mean of xi, σi is the standard deviation

of xi. Also, the trivariate normal distribution of x can be standardized as

p(z) =
1

(2π)3/2∆1/2
exp

(
−1

2
zTAz

)
, (5.1)

A =
1

∆


1− ρ2

23 ρ13ρ23 − ρ12 ρ12ρ23 − ρ13

ρ13ρ23 − ρ12 1− ρ2
13 ρ12ρ13 − ρ23

ρ12ρ23 − ρ13 ρ12ρ13 − ρ23 1− ρ2
12

 , (5.2)

∆ = 1− ρ2
23 − ρ2

13 − ρ2
12 + 2ρ23ρ13ρ12, (5.3)

where ρij is the correlation coefficient of zi and zj .

5.2.2 Truncated Trivariate Normal Distribution

Given a standardized random vector z whose pdf is a trivariate normal distribution

doubly truncated by the standardized upper truncation ui = (Ui − µi)/σi and lower

truncation li = (Li − µi)/σi, as shown in Fig. 5.4, the pdf can be expressed as

p(z) =
1

(2π)3/2∆1/2(Φ(ui)− Φ(li))
exp

(
−1

2
zTAz

)
, (5.4)
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Figure 5.2: Illustration of the truncated normal distribution.

where zi satisfies li < zi ≤ ui, and Φ(z) is the cumulative density function (cdf) of z

which is defined as

Φ(z) = P (y ≤ z) =

∫ z

−∞
φ(y)dy, (5.5)

φ(z) =
1√
2π

exp

(
−1

2
z2

)
. (5.6)

To compute the mean vector and variance-covariance matrix of z, first, the expec-

tation and variance of zi are computed as:

E[zi] = − φ(ui)− φ(li)

Φ(ui)− Φ(li)
, (5.7)

V ar(zi) = 1− uiφ(ui)− liφ(li)

Φ(ui)− Φ(li)
−
(
φ(ui)− φ(li)

Φ(ui)− Φ(li)

)2

. (5.8)

Next, for variables zj , j = 1, 2, 3, j 6= i, the mean, variance, and covariance can be

derived as:

E[zj ] = ρijE[zi], (5.9)

V ar(zj) = ρ2
ijV ar(zi) + 1− ρ2

ij , (5.10)

Cov(zi, zj) = ρijV ar(zi). (5.11)
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Also, the covariance of zj and zk, where k = 6− i− j, can be derived as

Cov(zj , zk) = ρijρikV ar(zi) + ρjk − ρijρik. (5.12)

Finally, for the random vector x = (x1, x2, x3)T , the mean, variance, and covariance

can be computed as follows:

E[xi] = σiE[zi] + µi, (5.13)

V ar(xi) = σ2
i V ar(zi), (5.14)

Cov(xi, xj) = σiσjCov(zi, zj), j 6= i. (5.15)

5.3 Regeneration of NDT

The regeneration method can be divided into four processes: alignment, subdivision,

regeneration, and fusion. First, the alignment process aligns the source NDT Dn to the

target NDT Dt with the estimated relative transformation T . Second, the subdivision

process subdivides the transformed source GCs into the truncated GCs using the target

lattice Ct. Third, the regeneration process fuses the truncated GCs in each cell. Finally,

the fusion process fuses the regenerated GC and the existing GC in the same cell. We

depict the method as shown in Fig. 5.3.

5.3.1 Alignment

The alignment process transforms the source NDT Dn = {N (µn,i,Σn,i)}nD
i=1 with

the estimated relative transformation Θ by (2.24) and (2.25) and obtains the aligned

NDT Da = {N (µa,i,Σa,i)}nD
i=1. After the transformation, the aligned GCs can cross

two or more cells, as shown in Fig. 5.4(a).
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Figure 5.3: Block diagram of the regeneration method.

5.3.2 Subdivision of Gaussian Components

The presented regeneration method subdivides the NDT on the ith axis with i = 1, 2, 3

sequentially. Suppose that the side length of the target cell is l, the GC has an interval

[kl, (k + 1)l) on the ith axis, as shown in Fig. 5.4(a). The subdivision of a GC can

be divided into three processes: determining truncation value, examining the weights,

computing the number of points, mean, and covariance matrix.

First, the bound nearer to the mean on the ith axis is chosen as the truncation value

B. For example, B is set to kl shown in Fig. 5.4(a). The GC can be divided into two

truncated normal distributions with truncation values (−∞, B) and [B,∞).
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Figure 5.4: Subdivision of the GC. Red boxes are the target lattice, white box is the

source cell, and white raw points are converted into a GC. The GC in (a) is subdivided

by the truncation value kl, and two GCs are regenerated in (b).

Second, we define a weight threshold wth ∈ (0, 0.5) to check whether the weights

wl = Φ(b) andwh = 1−Φ(b), where b = (B−µa,i)/σa,i, are in the interval (wth, 1−

wth). If the weights are in the interval, the subdivision is performed; otherwise, it is

ignored. Two special cases are notable. It always subdivides GCs if wth = 0, while it

does not subdivide any GCs if wth = 0.5.

Third, if wl and wh are in the interval (wth, 1 − wth), the algorithm computes

the weighted number nw of points, mean µw, and variance-covariance matrix Σw for

each truncated distribution. nw is computed by nw = wna, where na is the number of

points corresponding to the source GC, and µw and Σw are computed by (5.7)-(5.15).

As a result, the source GC can be subdivided into two GCs, as shown in Fig. 5.4(b).

After the subdivision is completed on the ith axis, the same process is performed on

the other axes. At the end, we can obtain the truncated NDTDs = {N (µs,i,Σs,i)}, i =

1, 2, 3, ..., nD,s. For the worst case, the subdivision on an axis generates 2nD GCs with
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the computational complexity O(nD). Thus, for the N dimensional subdivision, we

can derive the computational complexity as O((2N − 1)nD).

5.3.3 Fusion of Gaussian Components

Although the regeneration and fusion processes perform the same work, we present

the two-step fusion for the applications such as detecting the difference between the

regenerated NDT and existing NDT. Two processes fuse the NDTs using different

equations. The regeneration process computes the number nr of the points in a cell as

nr =

nD,s∑
i=1

ns,i (5.16)

and computes the regenerated mean µr and sample variance-covariance matrix Σr as

follows:

µr =
1

nr

nD,s∑
i=1

ns,iµs,i, (5.17)

Σr =
1

nr

nD,s∑
i=1

ns,i
(
Σs,i + µs,iµ

T
s,i

)
− µrµTr . (5.18)

On the other hand, the fusion process fuses the regenerated NDT and existing NDT us-

ing (2.16)-(2.22). The time complexities of (2.16)-(2.22) and (5.16)-(5.18) areO(nD,s).

However, due to the numbers of additions, multiplications, and divisions, (5.16)-(5.18)

are faster than (2.16)-(2.22) when nD,s > 2. Thus, the regeneration uses (5.16)-(5.18)

instead of (2.16)-(2.22) if nD,s > 2. The reason is that equations (2.16)-(2.22) add

31nD,s − 31 times, multiply 31nD,s − 19 times, and divide 10nD,s − 1 times while

equations (5.16)-(5.18) add 22nD,s − 4 times, multiply 21nD,s + 9 times, and divide

12 times. Although the division is slower than the multiplication, we can assume that

both are the same. We referred the time for addition as ta and the time for multipli-

cation as tm, and we obtained the elapsed time of equations (2.16)-(2.22), equal to
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(31nD,s − 31)ta + (41nD,s − 20)tm, and the elapsed time of equations (5.16)-(5.18),

equal to (22nD,s − 4)ta + (21nD,s + 9)tm. Assume that multiplication is as fast as

addition, the elapsed time equations become (72nD,s − 51)ta and (43nD,s + 5)ta. In

this case, if nD,s > 2, equations (5.16)-(5.18) are faster than equations (2.16)-(2.22).

Since addition is usually much faster than multiplication, we compared two cases ig-

noring additions. In this case, equations (5.16)-(5.18) are also faster than equations

(2.16)-(2.22) if n > 2.

If there are no other applications between regeneration and fusion processes, it is

recommended to fuse the truncated GCs and existing GC using (5.16)-(5.18).

5.4 Experiments

To evaluate the presented method, we used KITTI benchmark dataset captured via

Velodyne HDL-64E [83], a 64-channel 3D LIDAR, at 10Hz, and Freiburg benchmark

dataset captured via a structured-light based Microsoft Kinect at 30Hz [85].

5.4.1 Evaluation Metrics for Representation

To evaluate the spatial representation performance of the NDT regenerated by the tar-

get lattice, we used the following metrics. First, we evaluated the performance of the

NDT in the receiver operating characteristic (ROC) domain [86]. We define a cell with

a GC as in a positive state and a cell without a GC as in a negative state. In this con-

text, the state of a cell with a regenerated GC is predicted to be positive, whereas a cell

without a regenerated GC is predicted to be negative. When a cell is predicted to be

positive, it is a true positive (TP) if the actual state of the cell is positive; otherwise, it is

a false positive (FP) if the actual state is negative. Likewise, when a cell is predicted to
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Figure 5.5: L2 likelihood against translational value ty and the rotational angle θ. This

simulation rotates red GCs in (a) from -5 to 5 degrees and moves them from -0.4 to

0.4 on y axis. The result of the simulation is shown in (b).

be negative, it is a true negative (TN) if the actual state is negative or is a false negative

(FN) if the actual state is positive. These TP, FP, TN, and FN designations can be used

to compute the true positive rate (TPR) and false positive rate (FPR) as follows:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, (5.19)

and the TPR and FPR determined by the discrimination threshold form a curve in the

ROC domain. We also used the accuracy rate, which is computed as

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.20)

Additional metrics are the mean L2 value dL2 and the mean error dm used in [75].

To use these metrics, we construct a true sample covariance (TSC) NDT [75], which
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is converted from the accumulated point sets using the target lattice, as the ground

truth. Here, dm is the mean of the distance between the centers of the predicted GC

N (µp,Σp) and the TSC GC N (µt,Σt) computed as

dm =
1

n

n∑
i=1

||µp,i − µt,i||, (5.21)

where n is the number of the predicted GCs. Additionally, dL2 is the mean of the L2

likelihood of N (µp,Σp) and N (µt,Σt), which is computed as

dL2 =
1

n

n∑
i=1

r1 exp
(
−r2

2
(µp,i − µt,i)T (Σp,i + Σt,i)

−1(µp,i − µt,i)
)
, (5.22)

where r1 and r2 are regularizing factors [45, 75]. However, if the source and target GCs

are not sufficiently close, as shown in Fig. 5.5(a), dL2 can be negatively correlated with

the rotational alignment, as shown in Fig. 5.5(b).

Because dm is the Euclidean distance between the centers of GCs, to evaluate

the shape similarity of NDTs, we paid attention to the Fréchet distance between two

Gaussian distributions, which is expressed as

d2
F = ||µp − µt||2 + tr[Σp + Σt − 2(ΣpΣt)

1/2], (5.23)

where the first term is the distance between the centers in the Euclidean space, and the

second term is the distance in the space of covariance matrices [87]. In this chapter,

we refer to the second term as the covariance distance and define the mean covariance

distance as

dcov =
1

n

n∑
i=1

√
tr[Σp,i + Σt,i − 2(Σp,iΣt,i)1/2]. (5.24)

5.4.2 Representation Performance of the Regenerated NDT

In this experiment, we evaluate the representation performance of the regenerated NDT

against the weight threshold wth. We set the ground truth Θ to (0.5m, 0m, 0.5m, 0,
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0.16π, 0). For the KITTI dataset, the cell size varies from 0.5m to 3m at intervals of

0.5m, and for Freiburg dataset, the cell size varies from 0.05m to 0.3m at intervals of

0.05m.

In the KITTI case, the point set in Fig. 5.6(a) is converted into an NDT in Fig.

5.6(b) using the local lattice. If the NDT is naively regenerated by the target lattice,

the GCs can be distorted, as shown in Fig. 5.6(c). Compared to the TSC NDT in Fig.

5.6(e), some cells in Fig. 5.6(c) have no GCs and are therefore false negatives. On the

other hand, the NDT regenerated by the presented method in Fig. 5.6(d) generates GCs

suitable for the target cell. Similarly, we conducted an experiment with the Freiburg

dataset; the visualized results in this case are shown in the second row in Fig. 5.7. The

Distortion of the GCs is also apparent in Fig. 5.7(c) as compared to Fig. 5.7(d) and (e).

To verify the performance of the presented method, we investigated the perfor-

mance using the ROC curve, accuracy, L2 value, mean error, and covariance distance,

as shown in Fig. 5.8 and 5.9. The ROC curves of the NDTs of KITTI regenerated with

different cell sizes are shown in Fig. 5.8(a). This figure shows that it approaches the

ideal coordinate (0, 1) in the ROC domain as the cell size decreases. It also shows that

aswth decreases, the TPR increases, as does the FPR. Moreover, we obtained accuracy

plots against wth, as shown in Fig. 5.8(b), which shows that the smaller the cell size

becomes, the better the accuracy is. Also, the accuracy is improved as wth decreases,

and this relationship is obvious for large cells. However, the plot shows that the accu-

racy can decrease as wth approaches zero. The Freiburg dataset also shows a similar

pattern, as presented in Fig. 5.9(b), as the small value of wth leads to a strict subdi-

vision. For example, if wth = 0, the presented method always subdivides the source

NDT using the target lattice, and it generates GCs in the empty cells of the TSC NDT.
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Figure 5.6: Visualization of the point set and NDTs of KITTI.
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Figure 5.7: Visualization of the point set and NDTs of Freiburg.
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It means that the FPR increases, which in turn lowers the accuracy as computed by

(5.20). The ROC curves in Fig. 5.8(a) and Fig. 5.9(a) also show that the FPRs increase

as wth decreases.

We also evaluated the performance using the mean L2 value, mean error, and co-

variance distance. The mean L2 values dL2 of the KITTI and Freiburg data sets are

shown in Fig. 5.8(c) and Fig. 5.9(c), respectively. These outcomes indicate that dL2

increases as wth decreases from 0.5. However, similar to the accuracy outcome, dL2

declines as wth approaches zero. On the other hand, we evaluated the mean error dm

and covariance distance dcov. The mean errors dm against wth with different cell sizes

are shown in Fig. 5.8(d) and Fig. 5.9(d). This finding indicates that dm decreases as

wth decreases, but, similar to dL2 , it worsens as wth approaches zero. Unlike dm, dcov

with different cell sizes decreases as wth decreases as shown in Fig. 5.8(e) and Fig.

5.9(e).

Furthermore, to determine the relationships between the metrics and wth, we ana-

lyzed the KITTI case using 2.5m cells. As a result, Fig. 5.10(a) shows that the lower

whisker of the L2 value decreases as wth decreases from 0.2 to 0, while the median

maintains a similar L2 value. Moreover, dm against wth in Fig. 5.10(b) shows a simi-

lar pattern. On the other hand, dcov in Fig. 5.10(c) shows that the lower whisker, lower

quartile, and median all decrease as wth decreases, while the upper whisker and up-

per quartile maintain similar values. Thus, from these plots, we inferred that if wth

approaches zero, the regenerated covariances become similar to the corresponding

ground truth covariances. However, the regenerated GCs can be far from the corre-

sponding GCs of the TSC NDT.
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Figure 5.8: Results of KITTI point sets. (a) ROC curve (b) accuracy (c) mean L2 value

(d) mean error (e) mean covariance distance. (naive case: wth = 0.5)
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Figure 5.9: Results of Freiburg point sets. (a) ROC curve (b) accuracy (c) mean L2

value (d) mean error (e) mean covariance distance. (naive case: wth = 0.5)
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5.4.3 Computation Performance of the Regeneration

We evaluated the elapsed time of regeneration and the number of values used by regen-

eration. Here, Fig. 5.11(a) shows that the elapsed time for the KITTI point set increases

aswth decreases. In addition, the elapsed time increases as the cell size decreases. This

likely occurs due to the number of GCs, as the average elapsed time with different cell

sizes is 12-22 µs per GC, and even the elapsed time for the 0.5m cell is smaller than

that for the 3m cell case, as shown in Fig. 5.11(b). In Fig. 5.11(a), it also shows that

the regeneration process can exceed 10Hz with wth = 0 except with a 0.5m cell size.

Given that the upper bound of the average elapsed time is 22 µs, we suggest holding

the number of GCs to fewer than 4546 for Velodyne HDL-64E sensor.

Similar to the elapsed time, the number nV of the values used by the NDT increases

as wth decreases, as shown in Fig. 5.11(c). We chose the best case of the presented

method using wth = 0.155 and a 0.5m cell size, as this method has the highest number

of values relative to that of naive regeneration, and we found that nV in this case is

82



approximately 105.0k while nV in the naive case is approximately 87.0k. Compared

to nV of the raw point set, equal to 374.0k, the regenerated NDT shows compactness.

Also, compared to nV before the regeneration, equal to 110.0k, nV of the presented

method is close to 95.5% while nV in the naive case is close to 79%. These findings

indicate that 21% of the GCs are fused with the neighbor GCs regenerated by the target

lattice, as shown in Fig. 5.6(c).

We found that the Freiburg point set also shows similar patterns to those of the

KITTI point set. The elapsed time increases as wth or the cell size decreases, as indi-

cated in Fig. 5.11(d), and the average elapsed time is 11-44 µs per GC, as shown in Fig.

5.11(e). Thus, we suggest holding the number of GC to fewer than 757 for Kinect to

regenerate online. The plot in Fig. 5.11(d) also shows that the presented method regen-

erates the NDT with wth = 0 at a rate faster than 30Hz, except for the 5cm cell case.

Similar to the KITTI point set, nV of the NDTs regenerated by the naive and presented

methods with 5cm cells and wth = 0.085 are 33.2k and 38.4k, respectively, while nV

of the point set is 614.6k. Compared to nV of the NDT before regeneration, equal to

44.8k, nV of the presented method is 6.4k less, as it does not generate GCs corre-

sponding to all of the ground-truth GCs. On the other hand, nV of the naive method

is 11.6k less because the GCs in the same target cell are fused after regeneration, as

shown in Fig. 5.7(c).

5.4.4 Application of Map Fusion

In this experiment, we compared the application of map fusion between the conven-

tional and presented methods using sequence 0 of KITTI. The cell size is set to 1m

for these methods, and wth is set to 0.1 for the presented method. Also, we assumed

the following scenario. Suppose that robot A RA and robot B RB create maps with-
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Figure 5.11: Elapsed time of regeneration, average elapsed time, and required number

of values used by the regenerated NDT from left to right. The top row is the results of

KITTI, and the bottom row is the results of Freiburg. (naive case: wth = 0.5)
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Figure 5.12: Paths of two robots.

out the complementary initial poses. If a rendezvous occurs, RA estimates the rela-

tive pose T between RB and itself and receives the NDT map DM,B from RB . Next,

RA transforms DM,B with T and fuses it with DM,A. Because this experiment aims

to verify the representation performance of NDT map in how it fuses the existing

NDT and the NDT regenerated by the presented method, we applied the poses xgt[k],

k = 0, 1, 2, ..., 4540, provided by KITTI to exclude the error caused by the point set

registration process. To be specific, RA starting from xA = xgt[1000] and RB starting

from xB = xgt[1420] move to rendezvous point xR = xgt[1200], as shown in Fig.

5.12. During this process,RA andRB buildDM,A andDM,B , as shown in Fig. 5.13(a)

and (b), respectively. At xR,RA receivesDM,B fromRB , and it regeneratesDM,B us-

ing its lattice and fuses it with DM,A. We evaluated the methods using the TSC NDT

map DM,TSC , as shown in Fig. 5.14(a).

As a result, compared to the TSC NDT map in Fig. 5.15(a), the GCs are distorted

by the conventional method, as shown in Fig. 5.15(b). On the other hand, compared to

the GCs in Fig. 5.15(b), the presented method resulted in distinct GCs in the cells, as
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(b)

(a)

(c)

Figure 5.13: NDT maps built on the paths. (a) is the NDT map of robot A, (b) is the

NDT map of robot B, and (c) is the regenerated NDT map of robot B.
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(a)

(c)

(b)

Figure 5.15: Fusion of the NDT maps: (a) TSC NDT map, (b) NDT map fused by the

conventional method, (c) NDT map fused by the presented method.
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Table 5.1: Performance of map fusion

method conventional (wth = 0.5) presented (wth = 0.1)

# of GC 49467 54137

dL2 0.9396 0.9500

dm(m) 0.1141 0.0866

dcov(m) 0.5707 0.5652

elapsed time(s) 0.422 0.824

shown in Fig. 5.15(c). Also, we evaluated the fused maps with the metrics in 5.4.1. As

summarized in Table 5.1, dL2 and dcov are improved by about 2%, while dm shows an

improvement of approximately 24%. These outcomes indicate that the simple fusion

causes large drifts of GC centers. However, because the presented method requires ad-

ditional time for the subdivision of the GCs, the elapsed time is 1.95 times that needed

by the conventional fusion process. To be specific, the presented method takes 0.824

seconds to subdivide 34816 GCs into 100150 truncated GCs and fuse the truncated

GCs, while the conventional fusion takes 0.422 seconds to fuse DM,B and DM,A.

5.5 Summary

In this chapter, we presente a method of regenerating an NDT fitted to a target lattice to

improve the representation performance of a fused NDT map. The method subdivides

the GCs of the NDT into truncated GCs sequentially on three axes. The truncated GCs

located in the same cell are then fused into one GC to regenerate the NDT fitted to

the target lattice. We evaluated the performance against a weight threshold using the
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lidar-based KITTI and Kinect-based Freiburg data sets. As a result, the ROC, accu-

racy, mean L2 value, and mean error improved as the weight threshold was decreased,

but they degenerated again as the weight threshold approaches zero because too low a

weight threshold increases the false positive rate. On the other hand, the mean covari-

ance distance for evaluating the covariance similarity decreases with a decrease in the

weight threshold, with a lower weight threshold leading to a shorter covariance dis-

tance. In the case of map fusion application, we also found that the presented method

improves the mean L2 value, the mean error, and the mean covariance distance.
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Chapter 6

Hue-Assisted Registration

6.1 Introduction

This chapter presents a colored NDT registration method. Due to the good extensibil-

ity of ICP, most of color-supported registration algorithms are based on ICP. The early

algorithm is Colored ICP (cICP) [88]. Y, I, and Q from the YIQ color model were inte-

grated to the distance function. Similarly, 4D ICP integrated the hue variable from the

hue-saturation-lightness (HSL) model to the distance function [89]. Color-constrained

ICP uses six classes corresponding to six intervals of the hue range. Points would be

classified to classes according to hue. The points in the highest-scored class would be

registered by ICP [90]. The modified Colored ICP quantizes I and Q to classify tar-

get points. The corresponding cell of a source point on the IQ plane is decided by I

and Q of the source point, and it searches for the closest point in the cell [91]. Color-

supported generalized ICP is a color-supported variant of the generalized ICP (gICP),

which is a variant of ICP [92]. L*, a*, b* from the L*a*b* color model are integrated

to the distance function of gICP. Also, there is a color-supported variant called Color
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(b)(a)

Figure 6.1: Colored papers taken with the high luminous intensity in (a) and low lumi-

nous intensity in (b).

NDT. Color NDT is improved by applying color weights to the objective function [93].

We utilized the hue from the hue-saturation-value (HSV) model because of its

brightness-invariant and viewpoint-invariant properties. After the target point set is di-

vided by the octree structure, the points in each cell are classified according to their hue

values. In addition, the objective function of NDT was modified to be weighted by hue

coefficients. In this chapter, the circular mean and variance of the hue are described.

6.2 Preliminary of the HSV Model

Color information can be obtained by a vision sensor. The RGB values of an object

are varying with the viewpoint of the sensor and the luminous intensity. On the con-

trary, the hue value from the HSV model is invariant to those effects. Two photographs

are taken at different brightness levels as shown in Fig. 6.1. The distributions of RGB

of photographs are as shown in Fig. 6.2. The distributions in Fig. 6.2(a) are widely

distributed while those of Fig. 6.2(b) are concentrated at the left side. The hue dis-

tributions as shown in Fig. 6.3 are very close. Averages of four peaks in Fig. 6.3(a)
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(b)(a)

Figure 6.2: RGB distributions of Fig. 6.1: R in red, G in green, and B in blue.

(b)(a)

Figure 6.3: Hue distributions of Fig. 6.1(a) and (b) respectively in (a) and (b).

are 32.58, 114.80, 155.34, and 246.88 while four averages in Fig. 6.3(b) are 66.79,

127.43, 149.30, and 240.26. Due to the brightness-invariant property of the hue, the

hue is possible to support the registration of two colored point sets scanned at different

brightness level.
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Figure 6.4: Colored octree. Tree in the gray box is the original octree.

6.3 Colored Octree for Subdivision

The colored octree structure is presented as shown in Fig. 6.4. The tree in the gray

box is the conventional octree structure as introduced in Section 2.5. The structure in

the box can be replaced with other structures, such as R-tree [94]. The colored octree

additionally divides the leaves of the octree into at most nhue color leaves which are

corresponding to hue intervals. For example, in Fig. 6.4, since nhue is 6, six intervals of

the hue range are [0, 1/6), [1/6, 2/6), [2/6, 3/6), [3/6, 4/6), [4/6, 5/6), [5/6, 1). The

kth target point pt,k, whose hue is in the jth interval, is classified into the jth hue

group gij in the ith cell.
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Figure 6.5: Comparison between the distribution of the simple mean and variance and

the distribution of the circular mean and variance.

6.4 HA-NDT

We compute µij and Σij for gij by (2.3) and (2.4). Next, we computes the mean µh,ij

and variance σh,ij of the hue. Since the hue is circular, the simple mean and variance

lead to the wrong distribution, as shown in 6.5. Therefore, HA-NDT uses the circular

mean and variance of the hue. The circular mean µh is computed as

µh =
1

2π
arctan 2

 nP∑
j=1

sin(2πpt,j,h),

nP∑
j=1

cos(2πpt,j,h)

 . (6.1)

Due to the circular property of the hue, the distance between two hues should be in the

range [0,0.5]. This dissertation defines the hue distance as

dh(h1, h2) = min(|h1 − h2|, 1− |h1 − h2|), (6.2)

and the circular variance σcir as

σh =
1

nP

nP∑
j=1

dh(pt,j,h, µh)2. (6.3)
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Figure 6.6: Results of odometry estimation with cell size l=1m. Black odometry is

ground truth, blue one is estimated by PNDT-D2D, and red one is estimated by PNDT-

D2D-DSF. (a) 0th sequence. (b) 1st sequence. (c) 2nd sequence.

Using µh and σh, the weight wh of a source point ps and the target GC is computed as

wh = exp

(
−
dh(ps,h, µh)2

2σh

)
. (6.4)

In contrary to the original NDT as shown in Fig. 6.6(a), there are at most nhue GCs in

a cell, as shown in Fig. 6.6(b).

HA-NDT registers Ps with Dt. HA-NDT searches for the corresponding cell for

ps. Next, it searches for a corresponding hue group. The group is determined by which

interval its hue is in. The likelihood of observing ps is weighted with wh.
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6.5 Experiments

The conventional NDT and HA-NDT are implemented by Point-Cloud-Library (PCL)

[11]. We ran the implementation on Intel Core i7-3770. Data sets we use are from [12].

Data sets were recorded by Microsoft Kinect, and the ground-truth paths were captured

with 100Hz tracking cameras. ‘freiburg1_room’, ‘freiburg2_ desk’, ‘f-

reiburg3_nostructure_texture_far’, and ‘freiburg3_structure_

texture_far’ are chosen.

First, the performance of the different nhue of the HA-NDT are evaluated. Second,

the performance of NDT and the HA-NDT are evaluated. The cell size is set to 5cm

for the data set of the room and 10cm for other data sets, and the time stamp is 0.27

second. To avoid singular covariance, the geometric objective function of a hue group

is available only if the number of points in the group is greater than 5. The performance

are compared in terms of the iteration, runtime, translation error, and rotation error. The

convergence criterion is the step length. If the length is smaller than a threshold which

is 10−6, then the algorithms terminate.

6.5.1 Evaluation of HA-NDT against nhue

nhue=1 is chosen to evaluate to check how the average of hue supports NDT. Due to

three primary colors, nhue starts with 3. Next, nhue is doubled up to 24. The results

are as shown in Table 6.1.

As shown in Table 6.1, the performance of the HA-NDT become better as nhue in-

creases until nhue=12. Since the hue intervals become narrower as nhue increases, the

number of points in each hue group becomes smaller. Due to the constraint against sin-

gular covariance, the number of available groups decreases. Hence, the current scanned
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points are possible to be dropped because the corresponding groups are not available.

Moreover, as nhue increases, the hue intervals become narrower, and the hue of a cur-

rent scanned point and the hue mean of the corresponding group become closer. It

means that the point sets are possible to find more appropriate correspondences. Due

to this reason, the errors become lower as nhue increases. However, as nhue is 24, the

errors increase. The reason is that the algorithm drops too many current scanned points

because the hue intervals are too narrow to be available. As the result shown in Table

6.1, the result of nhue=12 is generally the best.

6.5.2 Evaluation of NDT and HA-NDT

In this experiment, nhue of HA-NDT is set to 12. The results are as shown in Table

6.2. Plots in Fig. 6.7 show the convergence of algorithms. The point sets at 9116.45

and 9116.68 second in ‘freiburg3˙structure˙texture’ data set are used. The data is also

used to show the objective function against the step length as shown in Fig. 6.8.

As the results shown in Table 6.2, although the runtime per iteration of the HA-

NDT is shorter, the runtime is longer than NDT and HA-NDT. However, the translation

and rotation errors of the HA-NDT are lower than those of NDT and HA-NDT. Fig.

6.7(a) shows the convergence of NDT. It shows that NDT would stop after the second

iteration. Fig. 6.8(a) and (b) show the objective functions of NDT against the step

length at the first and second iterations. The step length obtained at second iteration

is approximately zero. If the step length is shorter than threshold, we regard that the

registration is converged.

As shown in Table 6.2, the translation and rotation errors of HA-NDT using simple

mean and variance and the HA-NDT are lower than NDT. The reason is that the target

point set is more geometrically well-represented by distributions of hue groups. In
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Table 6.1: Comparison between different nhue.

dataset nhue iterations runtime(s) error(m) error(deg)

Freiburg1
room

1 4.965 19.695 0.119 5.130

3 5.646 19.219 0.119 4.629

6 5.439 14.918 0.119 5.192

12 5.706 16.087 0.109 4.079

24 6.127 16.344 0.116 4.492

Freiburg2
desk

1 5.181 35.196 0.077 1.637

3 5.349 36.868 0.082 1.555

6 5.222 29.842 0.079 1.496

12 5.441 25.479 0.080 1.595

24 5.846 32.859 0.081 1.501

Freiburg3
nostructure
texture(far)

1 4.965 39.515 0.077 0.721

3 4.929 39.426 0.077 0.695

6 4.393 35.9 0.076 0.621

12 4.729 34.821 0.079 0.678

24 4.346 33.595 0.082 0.619

Freiburg3
nostructure
texture(far)

1 4.548 36.431 0.058 0.901

3 5.417 39.344 0.060 0.803

6 4.833 36.092 0.060 0.824

12 5.05 28.459 0.060 0.759

24 5.717 40.636 0.059 0.711
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Table 6.2: Comparison Between Algorithms.

dataset algorithm iterations
runtime

(s)
runtime per
iteration (s)

error
(m)

error
(deg)

Freiburg1
room

NDT 3.915 16.421 4.194 0.178 4.394

HA-NDT 5.706 16.087 2.819 0.109 4.079

Freiburg2
desk

NDT 2.876 22.774 7.919 0.075 1.231

HA-NDT 5.05 28.46 5.636 0.060 0.759

Freiburg3
nostructure
texture(far)

NDT 3.61 31.795 8.807 0.271 1.191

HA-NDT 4.729 34.821 7.363 0.079 0.678

Freiburg3
structure

texture(far)

NDT 3.62 24.392 6.738 0.135 1.912

HA-NDT 5.441 25.479 4.683 0.080 1.595

addition, the algorithms find better correspondences than NDT. However, the runtime

of HA-NDT using simple mean and variance and the HA-NDT are longer than NDT.

Fig. 6.7(b) and (c) show HA-NDT using simple mean and variance and the HA-NDT

need more iterations until stop than NDT.

The HA-NDT performs the more accurate registration than HA-NDT using simple

mean and variance. For a point far away from the mean of the cell, whose eigenvalues

of the covariance matrix are small, the likelihood of the point computed by HA-NDT

is significant while the likelihood computed by HA-NDT using simple mean and vari-

ance is approximately zero. It means that all of the current scanned points in the cell

participate in objective function, first and second order partial derivatives. Due to this

fact, the HA-NDT registers all of the current scanned points to target point set.

The initial guess of the step length of NDT or HA-NDT is set to one. As the graphs

shown in Fig. 6.8(a) and (b), which are the objective function against the step length
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(a) (b) (c)

Figure 6.7: The convergence of algorithms: (a) NDT, (b) HA-NDT using simple mean

and variance, and (c) HA-NDT.

at the first and second iterations of NDT, the objective function increases as the step

length decreases, so does HA-NDT as shown in Fig. 6.8(c) and (d). On the other hand,

the initial guess of the improved HA-NDT is better not to be one because the step

length obtained by Armijo’s rule is usually very big as shown in Fig. 6.8(e), and it

would lead to the failure of registration. In this experiment, the initial guess of the step

length is chosen as ||H−1
k gk||, which is much smaller than one. Since the initial guess

usually satisfies Armijo’s rule, the runtime per iteration of the HA-NDT is shorter than

NDT-P2D and HA-NDT using simple mean and variance.

6.6 Summary

The performance of HA-NDT is evaluated by benchmark data sets. As the result, the

accuracy of the registration is improved. The improvement is approached by changing

the weighted objective function to objective function and the circular mean and hue

variance. HA-NDT is expected to overcome the difficulty of the registration at flat or

repeated structure by the hue.
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Figure 6.8: Score functions aginst step length. (a) and (b) are the objective functions

of NDT plotted against the step length. (c) and (d) are those of HA-NDT using simple

mean and variance. (e) and (f) are those of the HA-NDT. (a), (c), (e) are the objective

functions of the 1st iterations, and (b), (d), (f) are those of the 2nd iterations.
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Chapter 7

Key-Layered NDT Registration

7.1 Introduction

NDT needs regular cells to subdivide the target points into distributions. In fact, what

determines the accuracy and speed of NDT is the cell size. To overcome the trade-

off between the accuracy and runtime, the improved NDT registration which performs

converging and adjusting stages was proposed [42]. This variant method creates multi-

ple resolutions of cells to improve the registration. In the context of multiple resolution

lattices, multi-layered NDT (ML-NDT) was proposed [60]. ML-NDT generates mul-

tiple layers which contain different resolutions of the lattices and registers the source

point set to the target NDT layer by layer. The number of layers and iterations are fixed

in the conventional ML-NDT. However, as shown in Fig. 7.1(a), rough GCs in the 5th

layer does not represent the geometric structure of environments well. This roughness

usually leads to the failure of registration. On the other hand, GCs in the 7th layer,

as shown in Fig. 7.1(b), represent the structure better. Since the better representation

results in the higher accuracy and higher success rate of registration, the number of
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(b)(a)

Figure 7.1: Rendering distributions of benchmark data set scanned outdoor: NDT in

the 5th layer is in (a) and NDT in the 7th layer is in (b).

layers should not be limited. Another problem of ML-NDT is the fixed number of it-

erations. ML-NDT iterates three times of the registration in each layer except for the

final layer. The registration in high layers are usually mismatched if it is mismatched

in preceding layers. In addition, ML-NDT is not adaptive to the density and range of

the point set which depend on the environment and the robot pose. Moreover, if the

density of the point set is high enough to avoid the singularity of covariance in each

cell, it can subdivide more times to represent accurately.

This chapter introduces a new key-layered NDT (KL-NDT) algorithm. The main

contribution of KL-NDT is that it improves the accuracy and success rate by registering

in key layers until it satisfies the condition of termination and skipping registrations in

other layers.
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7.2 Key-layered NDT-P2D

KL-NDT is a scan matching algorithm which registers the source point set Ps to the

target point set Pt in multiple layers. For convenience, we call a cell containing at least

one target point pt as an activated cell and call a cell containing four or more pt as a

utilized cell. Also, we call a transformed source point pT as an activated point if it is

in an activated cell.

Compared to ML-NDT, KL-NDT iteratively executes subdividing process, gen-

erating process, and registering process as shown in Algorithm 1. First, it subdivides

cells by Keylayer(V) to get into the next key layer. Second, it computes the mean and

covariance for the partial point set in each cell by Generate(P ,V). Finally, it com-

putes the pose update by Register (P , V , D, Θ). Before the iteration, it obtains the

initial cell, a cube covering both Pt and Ps, by Range(Pt,Ps). It terminates the it-

eration when the pose update is relatively small to the estimated pose variation, the

distributions become degenerated, or the number of correspondence is fewer than the

threshold.

A unique feature of KL-NDT is to register point sets in key layers. KL-NDT gen-

erates distribution set and registers point sets by the cell set Vk which is obtained by

Keylayer(Vk−1). As shown in Fig. 7.2, it skips generations and registrations in the ini-

tial layer L0 and L1. The first generation and registration are executed in L2, which is

the first key layer.

The key layer is determined by nin,j+1

nin,j
, which is the ratio of the numbers of

activated points in the jth and (j+1)th layers. The function Keylayer(Vk−1) recur-

sively subdivides Vj in Lj and creates Vj+1 for Lj+1 until the ratio is not bigger than

threshold value τkl, which is close to 1. In Fig. 7.2, white squares are activated cells,
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Algorithm 1 KLNDT
Require: target point set Pt, source point set Ps

Ensure: transformation vector Θ

1: the initial cell set V0 = Range(Pt,Ps); Θ0 = 0; k ← 0

2: repeat

3: k ← k + 1

4: the kth cell set Vk = Keylayer(Vk−1)

5: the NDT Dk = Generate(Pt,Vk)

6: Θk = Register(Ps,Vk,Dk,Θk−1)

7: until ‖Θk−Θk−1‖
‖Θk−1‖ < τ or degenerate(Dk,Ps)

8: return Θk

blue boxes are pt, red balls are activated ps, and red-lined balls are inactivated ps.

Keylayer(Vk−1) skips registrations in L0 and L1 since nin,1

nin,0
and nin,2

nin,1
are bigger than

τkl. However, since nin,3 is much smaller than nin,2, the ratio becomes smaller than

τkl. Thus, Keylayer(Vk−1) terminates subdivision, and the cell set Vk in the kth key

layer is obtained.

When it comes to NDT-D2D registration, the number of activated source point is

computed differently. First, the module Keylayer extracts the GCs in the fine layer Lf .

Second, it inputs the GCs and check whether the GCs are in the activated cells, as

shown in Fig. 7.2. Third, it obtains the number of points which is corresponding to a

activated source GC. Finally, it sums up the numbers and obtains nin.

KL-NDT inherits the objective function of ML-NDT to compare with ML-NDT,

which is a half of the square of Mahalanobis distance as

s(p) =
1

2
(p− µ)TΣ−1(p− µ), (7.1)
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Figure 7.2: The process of searching for key layers and registering in key layers.
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where s(p) is the objective function of p,µ is the mean vector, and Σ is the covariance

matrix. The function Generate(Pt,Vk) in Algorithm 1 computes m and Σ of partial

point set in each activated cell, and it returns the NDT Dk. In each key layer, KL-NDT

registers two point sets by the Newton method. The function Register (Ps, Vk,Dk,

Θk−1) in Algorithm 1 updates Θ until γ is smaller than the threshold value.

On the other hand, this dissertation applies the multi-layer approach to NDT-D2D

registration. In this case, different from the point-to-distribution KL-NDT and ML-

NDT, we use the objective function of NDT-D2D to the multi-layered NDT-D2D (ML-

NDT-D2D) and the key-layered NDT-D2D (KL-NDT-D2D).

7.3 Experiments

7.3.1 Evaluation of KL-NDT-P2D and ML-NDT-P2D

This experiment compares the success rate and accuracy between KL-NDT and ML-

NDT. First, the convergence of the objective function and pose estimation is compared.

Second, the success rate and the accuracy are compared. We use a benchmark data set

which is scanned by the Velodyne three-dimensional range finder [95]. The parameters

of KL-NDT such as τit and τkl are initially set. Also, those of 4-layered ML-NDT

and 6-layered ML-NDT are set. The registration of ML-NDT iterates 3 times in each

preceding layer and iterates until γ is smaller than the threshold value in the final layer.

In the experiment, Ps is generated by rotating Pt 5 degrees about the yaw axis. As

shown in Fig. 7.3, 4-layered NDT, 6-layered NDT, and KL-NDT successfully register

the point sets. The convergence of the objective function of KL-NDT and ML-NDT

is shown in Fig. 7.3(a) and Fig. 7.3(b), respectively. KL-NDT skips layers and begins

in the 4th layer and registers only in the 4th and 8th layers. On the other hand, 4-
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Figure 7.3: Convergence of the objective function and ry about yaw axis: the objective

functions of KL-NDT and ML-NDT are in (a) and (b) respectively, and plots of ry of

KL-NDT and ML-NDT are in (c) and (d) respectively.

layered ML-NDT and 6-layered ML-NDT begin in the 1st layer and register layer by

layer. The convergence of the estimated yaw angles ry of KL-NDT and ML-NDT is

shown in Fig. 7.3(c) and Fig. 7.3(d), respectively. As shown in Table 7.1, ry estimated

by 6-layered ML-NDT is closer to 5 than that of 4-layered ML-NDT. In addition,

translational transformation estimated by 6-layered ML-NDT is closer to 0 than that

of 4-layered ML-NDT. On the other hand, ry estimated by KL-NDT is closer to 5

than that by 6-layered ML-NDT, and the translational transformation is closer to 0.

Also, ten scans are extracted from data set and set to be Pt. Each Ps is generated

by transforming each Pt. The translational variations are set from -6 to +6 meters at

intervals of 2 meters on pitch and roll axes, respectively, and the rotational variations
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Table 7.1: Errors of the pose estimation.

algorithm d(mm) rx(deg) ry(deg) rz(deg)

KL-NDT 0.985 2.71e-4 5.001 7.79e-4

ML-NDT(4) 25.266 -0.064 4.851 -0.051

ML-NDT(6) 18.836 2.60e-4 5.003 6.75e-4

Table 7.2: Success rates and accuracy of algorithms.

algorithm success rate(%)
average of error

d (m) ry (deg)

KL-NDT 73.99 1.072 0.0432

ML-NDT(4) 68.67 1.437 0.1217

ML-NDT(6) 68.79 1.316 0.1144

are set from -50 to +50 degrees at intervals of 5 degrees about the yaw axis. The results

of success rates are shown in Table 7.3. The success rates of 4-layered ML-NDT and

6-layered ML-NDT are similar. However, the error of pose variation estimated by 6-

layered ML-NDT is lower than that by 4-layered ML-NDT. It shows that the accuracy

of ML-NDT is limited if the number of layers is small. On the other hand, the success

rate of KL-NDT is higher than ML-NDT since it registers point sets in key layers.

Moreover, its errors of ry and d are much smaller than those of ML-NDT since KL-

NDT is available for registration in higher layers.
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Table 7.3: Errors of the pose estimated by ML-NDT-D2D.

Lc et(%) er(10−3deg/m) t (sec)

2 2.534 7.839 1.208

3 2.534 7.848 1.072

4 2.533 7.836 0.986

5 2.528 7.847 0.935

6 2.527 7.802 0.926

7 2.534 7.823 0.918

7.3.2 Evaluation of KL-NDT-D2D and ML-NDT-D2D

In this experiment, we evaluated the NDT-D2D which registers in the multiple layers

using the KITTI sequences 0 to 10, and the cell size in the fine layer Lf = 8 is set to

1 m. The initial guess is set to the preceding pose variation.

First, we conducted experiments which begin registrations in the different coarse

layers, where Lc ∈ {2, 3, 4, 5, 6, 7}. Registration in each layer iterates at most three

times, and the registration in the fine layer iterates until the transformation converges.

Second, we conducted experiments of KL-NDT-D2D with τkl ∈ {0.985, 0.990, 0.995,

0.999}. The results of ML-NDT-D2D are summarized in Table 7.3, and the results

of KL-NDT-D2D are summarized in Table 7.4. As a result, KL-NDT-D2D and ML-

NDT-D2D show the similar registration performance. However, KL-NDT-D2D with

τkl equal to 0.99 and 0.985 shows the faster registration compared to ML-NDT-D2D.

The accuracy decreases as Lc increases because we use initial guess and the pose

variation to estimate becomes smaller than the case without the initial guess.
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Table 7.4: Errors of the pose estimated by KL-NDT-D2D.

τkl et(%) er(10−3deg/m) t (sec)

0.999 2.534 7.845 1.118

0.995 2.526 7.834 1.090

0.99 2.529 7.838 0.877

0.985 2.531 7.831 0.867

7.4 Summary

This chapter presents a new key-layered normal distributions transform algorithm. The

number of layers and the number of iterations per layer are not fixed in the presented

KL-NDT. The method of searching for the key layer is introduced, and the perfor-

mance is demonstrated by the experiment. Also, the terminating criteria of the algo-

rithm and the registration in each layer are presented. The higher success rates and the

lower errors of KL-NDT are verified compared to ML-NDT from the experiment.
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Chapter 8

Scaled NDT and The Multi-scale Registration

8.1 Introduction

In this chapter, a registration improved by dynamic scaling factors (DSF) is presented.

Two scaling factors st and ss of covariances are defined for Dt and Ds, respectively.

The presented registration is based on NDT-D2D, and it can be divided into three steps.

First is NDT-P2D-like registration which can register without the negative correlation

between L2 distance and rotational alignment. Second is NDT-D2D with decreasing

ss and st to roughly obtain the transformation. Third is NDT-D2D with fixed ss and

st determined by the translation vector. In experiments, we compared NDT-D2D and

PNDT-D2D improved by the presented method. As a result, the presented DSF im-

proves the registrations.

Although there are numerous approaches to smooth the NDT registration as in-

troduced in 1.3.1, we still have to determine the regularizing factors experimentally.

NDT-D2D has another issue caused by the objective function. Generally, L2 likelihood

is expected to increase as the point sets are aligned. However, it is negatively corre-
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Figure 8.1: Negative correlation between L2 likelihood and rotational alignment. (a)

red: 1σ of the target covariance, blue: 1σ of the source covariance rotated with θ and

scaled with ss. (b) L2 likelihood between two distributions against θ with different ss.

lated to the rotational alignment at a location. GivenDt in red andDs rotated with θ in

blue as shown in Fig. 8.1(a), we can have the graph of L2 likelihood against θ in Fig.

8.1(b). As a result, although it is rotationally aligned as |θ| decreases, the L2 likelihood

decreases as shown in Fig. 8.1(b).

To overcome the problem, we suggest to initialize ss to 0 and gradually increase

it. In Fig. 8.1(b), the L2 likelihood against θ with different ss from 1 to 0 can be seen.

As ss decreases, the changes caused by θ decreases, and if ss = 0, it is degenerated as

NDT-P2D of Dt and mean vectors of Ds.

8.2 Scaled NDT representation and L2 distance

NDT-D2D with dynamic scaling factors (NDT-D2D-DSF) is based on the scaled NDT,

whose covariance matrices are scaled by a positive scaling factor s. We define a scaled
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covariance Σs as

Σs = sΣ. (8.1)

It is equivalent to scale the eigenvalue of Σ with s. The eigenvector matrix V and

eigenvalue matrix D of Σ obtained by eigenvalue decomposition can be expressed as

Σ = V DV T , (8.2)

D =


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3

 , (8.3)

where σ2
i is the variance on ith eigenvector, and the scaled covariance Σs can be

derived as

Σs = sΣ = V (sD)V T = V DsV
T . (8.4)

Therefore, as s increases, the variance is swelled and the NDT is smoothed as shown

in Fig. 8.2.

We define two individual scaling factors ss and st for Dt and Ds, respectively, and

we modify (2.11) to

Σs,ij = ssRΣiR
T + stΣj , (8.5)

and d2 can be seen as the special case of ss = st = 1/d2. Thus, the presented objective

function can be expressed as

fs(Dt,Ds,Θ) =

ns∑
i=1

nt∑
j=1

ds,ij , (8.6)

ds,ij = −d1 exp
(
− 1

2
gs,ij

)
, (8.7)

gs,ij = µTijΣ
−1
s,ijµij . (8.8)
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8.3 NDT-D2D with dynamic scaling factors of covariances

The key idea of the presented method is varying scaling factors st and ss in each iter-

ation to improve the accuracy of the NDT-D2D. To decrease and increase the scaling

factors, we define a function as follows:

s(k) = S(k, ki, kf , si, sf ), (8.9)

where ki and kf are the initial and final iterations, respectively, and si and sf are the

initial and final scales, respectively.

At the first, since Ds is not rotationally aligned to Dt, the negative correlation

problem might exist. Therefore, the strategy is to initialize ss to 0 so that it becomes the

NDT-P2D between Dt and mean vectors of Ds. Also, to attract those mean vectors of

Ds,Dt is swelled with st = smax. After this initialization, the registration performs the

following processes in order: scaling NDTs to avoid the negative correlation between

L2 distance and rotational alignment, shrinking NDTs with the same scaling factors,

and scaling NDTs considering the translation.

In the first process, since Ds can be expected to be rotationally aligned to Dt as

the registration iterates, st can gradually decrease from smax to s1 shrink Dt to regain

the shape by S(k, 0, k1, smax, s1) and ss can gradually increase from 0 to s1 show the

shape ofDs by S(k, 0, k1, 0, s1)). The process continues until ss = st in k1th iteration

as shown in Fig. 8.3.

In the second process, ss and st decrease as the same function S(k, k1, k2, s1,

stran(k)) until snew = stran in k2th iteration. Since ss = st, Σi and Σj have the same

influence on the cost, gradient, and Hessian matrix of the objective function. Also, as

the scaling factors decrease to stran, Dt and Ds are shrunken to regain their shapes so

that the registration can be expected to estimate the more accurate transformation. If
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Figure 8.2: Illustration of the scaled NDT.

stran is greater than smin, st would be equal to snew. However, since the local minima

of the objective function can appear again due to the small stran, we ask st to be at

least smin to avoid the local minima.

In the final process, Ds registers to Dt with fixed ss = stran and st. If stran >

smin, st is equal to stran as the case (a) in Fig. 8.3, otherwise st is equal to smin as

the case (b) in Fig. 8.3. The process terminates if the condition of the termination is

satisfied.

The properties of the processes can be seen in the optimization process. In this

chapter, we choose Newton method as an example. To estimate Θ by minimizing (8.6),

it updates Θ iteratively by (2.28) and (2.29). The gradient and Hessian matrix of (8.6)

are derived as follows.

At the initial state which st = smax and ss = 0, we have the gradient and Hessian

of gij as follows:
∂gs,ij
∂θa

=
2

st
µTijΣ

−1
i

∂µij
∂θa

, (8.10)
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∂2gs,ij
∂θa∂θb

=
2

st

(
µTijΣ

−1
i

∂2µij
∂θa∂θb

+
∂µTij
∂θa

Σ−Ti
∂µij
∂θb

)
. (8.11)

(2.29) can be derived as

∆Θt = −γ
(∑

i,j

ds,ij
(
g

(2)
ij −

1

st
g

(1)
ij

T
g

(1)
ij

))−1
·
(∑

i,j

ds,ijg
(1)
ij

)T
, (8.12)

where gij is (2.40). This equation leads to the same update vector obtained by NDT-

P2D of Dt scaled by st and the mean vectors of Ds. As st decreases, the influence of

g
(2)
ij decreases, and dij also decreases. If st is so large that all of dij are approximately

1, ∆Θk is

∆Θt = −γ
(∑

i,j

g
(2)
ij

)−1
·
(∑

i,j

g
(1)
ij

)T
. (8.13)

It is the upper bound of ∆Θk against st, and it is exactly the same update vector

obtained by NDT-P2D based on Mahalanobis distance [60].

In the first process, the first and second derivatives of Σ−1
s,ij increases as ss in-

creases. It means that the registration not only aligns the mean vectors of Ds to Dt but

also aligns the shapes of GCs. In the second and third processes, as st and ss decrease,
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ds,ij gap increases. Since ds,ij in (8.14) and (8.17) acts like a weight, the pair of GCs

having larger L2 likelihood has more influence on computing update vector.

The gradient vector of (8.6) can be derived as follows:

∂fs(Dt,Ds,Θ)

∂θa
=

ns∑
i=1

nt∑
j=1

−1

2
ds,ij

∂gs,ij
∂θa

, (8.14)

∂gs,ij
∂θa

= 2µTijΣ
−1
s,ij

∂µij
∂θa

+ µTij
∂(Σ−1

s,ij)

∂θa
µij , (8.15)

∂(Σ−1
s,ij)

∂θa
= −ssΣ−1

s,ij

(
RΣi

∂RT

∂θa
+
∂R

∂θa
ΣiR

T

)
Σ−1
s,ij . (8.16)

Also, the Hessian matrix can be derived as follows:

∂2fs(Dt,Ds,Θ)

∂θa∂θb
=

ns∑
i=1

nt∑
j=1

∂2ds,ij
∂θa∂θb

, (8.17)

∂2ds,ij
∂θa∂θb

= −1

2
ds,ij

(
∂2gs,ij
∂θa∂θb

− 1

2

∂gTs,ij
∂θa

∂gs,ij
∂θb

)
, (8.18)

∂2gs,ij
∂θa∂θb

= 2µTijΣ
−1
s,ij

∂2µij
∂θa∂θb

+ 2
∂µij
∂θa

T

Σ−1
s,ij

∂µij
∂θb

+ 2µTij
∂(Σ−1

s,ij)

∂θb

∂µij
∂θa

+ 2µTij
∂(Σ−1

s,ij)

∂θa

∂µij
∂θb

+ µTij
∂2(Σ−1

s,ij)

∂θa∂θb
µij , (8.19)

∂2(Σ−1
s,ij)

∂θa∂θb
= −ssΣ−1

s,ij

(
RΣi

∂R

∂θa

T

+
∂R

∂θa
ΣiR

T

)
∂(Σ−1

s,ij)

∂θb

−ss
∂(Σ−1

s,ij)

∂θb

(
RΣi

∂R

∂θa

T

+
∂R

∂θa
ΣiR

T

)
Σ−1
s,ij

−ssΣ−1
s,ij

(
∂R

∂θa
Σi
∂RT

∂θb
+

∂2R

∂θa∂θb
ΣiR

T

+
∂R

∂θb
Σi
∂RT

∂θa
+RΣi

∂2RT

∂θa∂θb

)
Σ−1
s,ij . (8.20)
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8.4 Range of scaling factors

Since distributions of the conventional NDT are constructed by discrete cells, local

minima of the objective function exist. Therefore, smoothing the NDT is critical for

NDT registration. In this chapter, we suggest a method of smoothing linear and pla-

nar distributions and a method of smoothing the distributions based on the translation

distance.

Assume a dense point set in a cell whose size is l and range is (l0, l1) in one

dimension, the mean µ1 is equal to l0+l/2, and the covariance Σ1 is equal to l2/12. We

consider another distribution which is N (µ2,Σ2), where µ2 = l0 + 2l and Σ2 = Σ1,

and have a scaled Gaussian mixture function as

p(x) =
1∑
i=0

exp

(
−(x− µi)2

2sΣi

)
, (8.21)

and a gradient of the function expected to be zero is

dp(x)

dx
=

1∑
i=0

(x− µi)
sΣi

exp

(
−(x− µi)2

2sΣi

)
. (8.22)

By parameterizing x as x(t) = µ1 + tl, t ∈ (0, 1), we have the scaling factor s(t)

making the gradient zero as

s(t) =
6(1− 2t)

log (1/t− 1)
. (8.23)

By (8.23), it is possible to determine a scaling factor to set the gradient at x to 0. In this

chapter, we define a target scale smin which sets the gradient to zero at the middle of

two means, and it is obtained by lim
t→0.5

s(t) = 3 which smooths distributions as shown

in Fig. 8.2.

We also suggest a method to determine the target scaling factor stgt based on trans-

lation δ. As shown in Fig. 8.4, the stgt is defined as the factor scaling the distribution
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Figure 8.4: Illustration of determining stgt based on the likelihood difference limit ε at

µ+ δ.

to have likelihood equal to 1− ε at µ+ δ so that

1− ε = exp

(
− δ2

2smaxΣ

)
. (8.24)

We apply the same assumption Σ = l2/12 as mentioned before, and stgt can be com-

puted by

stgt = − 6δ2

l2 log(1− ε)
. (8.25)

To compute smax in Section 8.3, we substitute the maximum velocity vmax as δ. Also,

the translation |t| can be substituted into (8.25) to obtain stran in Section 8.3.

8.5 Experiment

To evaluate the performance of the registration with the dynamic scaling factor, first,

we conducted experiments on the NDT-D2D and PNDT-D2D without initial guess in

the following cases: different scaling factors, different ss with st increasing from 0 to

121



sref , and the presented method. Second, we experimented with estimating odometry

by the conventional PNDT-D2D and PNDT-D2D-DSF as an application. In this case,

the registration has a previous transformation as the initial guess.

8.5.1 Evaluation of the presented method without initial guess

For the first case with fixed scaling factors, the NDT-D2D and PNDT-D2D register

point sets with st = ss ∈ S = {1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18,20, 40, 60,80, 100}.

For the second case with dynamic ss and fixed st, the NDT-D2D and PNDT-D2D

perform with st ∈ S and ss increasing from 0 to st. For the third case of the presented

DSF, we used the linear function as an example of S(k, ki, kf , si, sf ):

s(k) = Sde(k, k1, s1, s2) =
sf − si
kf − ki

k, (8.26)

and we set k1 to 4 and k2 to 7. To compute smax, we assumed that the maximum

velocity of the car is 180km/h which is equal to 5m/Hz, and we substituted 5 as δ into

(8.25). As a result, we obtained the median of the translational and rotational errors as

shown in Fig. 8.5.

In Fig. 8.5, the lowest translational error of NDT-D2D can be found at s = 6, and

the lowest rotational error can be found at s = 2. Also, the lowest translational and

rotational errors of PNDT-D2D can be found at s = 6 and s = 2, respectively. Also,

the second case which has ss increasing from 0 to st shows the lower errors than the

first case for both NDT-D2D and PNDT-D2D.

To compare the third case to the best results, we extract the results of s = 2 and

s = 6 and demonstrate them in the form of boxplots as shown in Fig. 8.6. The trans-

lational and rotational errors of NDT-D2D-DSF and PNDT-D2D with DSF (PNDT-

D2D-DSF) show the lower medians than the case s = 6 and s = 2, respectively.
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s = 2. (a) translational errors (b) rotational errors.
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Figure 8.6: Errors of NDT-D2D and PNDT-D2D with s = 6, s = 2, and DSF, respec-

tively. (a) box plots of the translational errors (b) box plots of the rotational errors.

Also, the interquartile range (IQR) of NDT-D2D-DSF is narrower than NDT-D2D with

s = 6 in Fig. 8.6(a). On the other hand, since it is difficult to compare PNDT-D2D-DSF

to PNDT-D2D with the fixed scaling factor, we have values to show the improvements

as follows. For the translational error, the IQR of PNDT-D2D-DSF equal to 3.2982

is similar to the IQR of PNDT-D2D with s = 6 equal to 3.4233, and the median of

PNDT-D2D-DSF equal to 3.1573 is less than the median of PNDT-D2D with s = 6

equal to 3.239 about 2.52%. Also, for the rotational error, the IQR of PNDT-D2D-
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DSF equal to 0.0897 is also similar to the IQR of PNDT-D2D with s = 6 equal to

0.0949, and the median of PNDT-D2D-DSF equal to 0.0039 is less than the median of

PNDT-D2D with s = 2 equal to 0.0480 about 4.8%.

8.5.2 Application of odometry estimation

The main purposes of this experiment are not only the application of the presented

method but also the adaptivity to the different cell sizes. We expected that stran, the

scaling factors considering translation in the second and third process, would increase

as cell size decreases since δ is similar in (8.25) while l is decreasing. Hence, we

conducted the experiment with cell size l equal to 0.5m, 1m, 2m, and 4m. Since PNDT-

D2D-DSF shows better accuracy than NDT-D2D-DSF, we chose PNDT-D2D-DSF to

compare to the conventional PNDT-D2D. To improve the accuracy, PNDT-D2D and

PNDT-D2D-DSF have the previous transformation as the initial guess. As a result of

0th to 10th sequences, the errors against the cell size are as shown in Table 8.1 and 8.2.

The averages of the translational and rotational errors of PNDT-D2D-DSF are almost

smaller than those of PNDT-D2D. However, the errors from 7th to 9th sequences are

higher than those of PNDT-D2D. The reason in the 7th sequence is that the estimated

velocity becomes small on the street like a corridor. Since DSF smooths the objective

function, the transformation can be converged into 0, which leads to the lower cost

than the ground truth. Also, the reason in the 8th sequence is that the environment at

the first is so extensive that the point set forms a shape of a disk. Hence, it leads to the

cost estimating 0 is lower than the ground truth.
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Table 8.1: Translation error of odometry estimated by PNDT-D2D and PNDT-D2D-

DSF.

seq.

translational error(%)

cell

size=0.5m

cell

size=1m

cell

size=2m

cell

size=4m

PNDT DSF PNDT DSF PNDT DSF PNDT DSF

0 2.11 1.58 2.31 1.79 1.72 1.63 2.00 1.93

1 3.06 2.21 3.22 2.39 3.46 2.17 6.91 2.38

2 10.13 2.12 3.14 2.02 4.13 2.56 7.48 5.89

3 2.78 2.10 3.64 2.85 3.22 1.79 4.39 4.50

4 80.50 91.22 3.42 2.29 4.96 2.82 14.83 3.69

5 1.59 1.53 1.72 1.63 1.66 1.64 1.83 1.82

6 12.67 1.39 2.06 1.50 1.99 1.77 1.70 1.68

7 0.80 0.92 0.94 1.07 1.22 1.03 1.62 1.70

8 1.92 2.07 2.12 2.16 2.04 4.64 2.46 2.49

9 1.43 1.44 1.73 1.76 2.59 2.20 6.10 4.19

10 2.07 2.01 2.52 2.38 2.55 2.00 3.22 3.23

mean 10.82 9.87 2.44 1.99 2.69 2.20 4.78 3.05
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Table 8.2: Rotation error of odometry estimated by PNDT-D2D and PNDT-D2D-DSF.

seq.

rotational error (10−3deg/m)

cell

size=0.5m

cell

size=1m

cell

size=2m

cell

size=4m

PNDT DSF PNDT DSF PNDT DSF PNDT DSF

0 11.3 10.5 11.5 11.4 12.2 12.3 15.6 15.4

1 24.5 14.6 16.4 12.0 14.9 13.2 14.2 13.2

2 66.8 11.2 13.4 12.4 14.1 13.8 26.6 24.3

3 9.1 8.3 9.2 7.8 11.4 11.3 12.7 11.9

4 6.5 3.2 8.8 8.6 7.8 7.7 8.3 10.0

5 12.5 10.7 10.9 10.7 11.9 12.0 13.7 14.0

6 13.6 9.4 12.9 13.2 11.5 11.3 13.2 13.2

7 6.7 4.2 5.6 5.9 6.7 5.9 12.8 13.4

8 11.9 11.3 11.0 11.5 12.7 18.1 15.6 16.9

9 15.1 13.5 15.2 15.5 17.8 18.2 34.7 30.3

10 12.5 12.7 12.5 10.5 17.1 15.4 20.8 20.3

mean 17.3 10.0 11.6 10.9 12.6 12.7 17.1 16.6
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8.6 Summary

We presented a dynamic scaling factor approach to improve the accuracy of NDT reg-

istration. To avoid the negative correlation between L2 distance and rotational align-

ment, the presented method DSF initially sets ss to 0. Also, to smooth the objective

function and to avoid the discreteness of GCs, DSF sets the range for st.

We conducted two experiments. First, we compared the registration with the pre-

sented DSF to the registrations with different fixed scaling factors and the registrations

with ss increasing from 0. As a result, the presented DSF can improve the accuracy

of NDT-D2D and PNDT-D2D. Second, we experimented with estimating odometry as

an application of PNDT-D2D with the presented method. As a result, the accuracy of

PNDT-D2D-DSF is higher than the conventional PNDT-D2D.
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Chapter 9

Scan-to-map Registration

9.1 Introduction

Incremental registration is a scan-to-map registration [69]. Since the map has the better

recall for the source point set than the scan, the incremental registration can lead to the

better accuracy than the scan-to-scan registration. Therefore, the method of simulta-

neous mapping and tracking proposed in [70] shows considerable performance. Also,

the mapping thread of LOAM is based on an incremental registration [20].

In this chapter, we present an incremental registration based on multi-layered prob-

abilistic normal distributions transform (ML-PNDT). Incremental registration is to

obtain the accurate target ML-PNDT, and the multi-layer approach is to deal with

the considerable pose variation of the robot. To accurately estimate the robot pose,

the presented method shares the lattice of the global map to generate the target and

source ML-PNDTs. We evaluated the accuracy performance of the presented method

with KITTI benchmark dataset and compared with the state-of-the-art method LOAM.

Also, we evaluated the elapsed time of each process of the presented method.
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9.2 Multi-layered PNDT

To overcome the problem of determining the cell size for NDT, a multi-layer, also

called multi-resolution, approach which generates NDT for lattices with several lat-

tices was proposed [58, 60, 96]. The approach is usually implemented based on the

octree structure [79, 96], and the multi-layered NDT takes the strategy that generates

NDTs from the fine layer Lf to the coarse layer Lc [96, 60]. Also, an efficient method

of generating NDT DL−1 by reusing DL has been proposed in [60, 96].

In this chapter, we define the multi-layered PNDT (ML-PNDT)M as follows:

M = {DL}, L = Lc, Lc + 1, ..., Lf − 1, Lf , (9.1)

and we show that the multi-layer approach is also applicable to the PNDT. In the

following sections, we use the NDTs as follows:

• DP : point set with uncertainties as an NDT (Fig. 9.1(a)).

• DLf : NDT converted from DP by the lattice VLf .

• DL : NDT converted from the NDT DL in the layer L+ 1 (Fig. 9.1(c)).

It is an efficient strategy to generate the NDT DL in the layer L by reusing the

NDT DL+1. For example, given a cell vLi in the layer L to generate a GC dLi =

(N (µLi ,Σ
L
i ), nLi ) as shown in Fig. 9.1(c), vLi has a GC set {dj}i, j = 1, 2, ..., nLD,i,

which is an NDT DLi in Fig. 9.1(b). In short, it is a process that converts an NDT

DLi into a GC dLi in the cell vLi , and the equations can be derived from (9.2)-(9.4) as

follows:

nLi = nP,i =

nL
D,i∑
j=1

nL+1
j , (9.2)
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f
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Figure 9.1: Illustration of a point set with uncertainties and the NDTs: point set in (a),

NDT in layer L in (b), and NDT in layer L− 1 in (c).
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j µL+1
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ΣL
i =

1

ni

nL
D,i∑
j=1

nL+1
j∑
k=1

p̂jkp̂
T
jk − µLi µLi

T
+

1

ni

nL
D,i∑
j=1

nL+1
j

 1

nL+1
j

nL+1
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k=1

ΣU,jk


=

1

ni

nL
D,i∑
j=1

nL+1
j

(
ΣL+1
j + µL+1

j µL+1
j

T
)
− µLi µLi

T

=
1

ni

nL
D,i∑
j=1

njµjµ
T
j − µiµTi +

1

ni

nL
D,i∑
j=1

njΣj . (9.4)

Since nLD,i ≤ 8 � nP (nLD,i ≤ 4 for 2D case), it is efficient to generate the NDT in

the layer L > Lf by reusing the NDT in the layer L+ 1. As a result, the ML-PNDT in

(9.1) can be constructed efficiently by the functions generating NDTs from Lf to Lc

recursively.
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Figure 9.2: Block diagram of the presented method.

9.3 NDT Incremental Registration

We propose a method to estimate odometry and build a map based on PNDT repre-

sentation and the incremental registration [69], as shown in Fig. 9.2. The key idea of

the presented method is that generating target and source ML-PNDTs similar to each

other. To this end, the source ML-PNDTMs is converted from the transformed point

set P by sharing the lattice of the PNDT-map DM , and the target ML-PNDT Mt is

regenerated from the local PNDT in the PNDT-map DM .

In the rest of the chapter, we consider three coordinate systems shown in Fig. 9.3.

First, the conventional coordinate system of the robot is denoted by {C}. Second, the
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global coordinate system {G} is determined by the initial robot pose, and it is also

the map coordinate system {M}. Third, the local coordinate system {L} is translated

from {G}, and its origin is the location of the robot. For convenience, we denote the

rigid-body transformation by B
ATH , which transforms coordinates from the coordinate

system {A} to {B}. The components of the presented method can be listed as follows:

• initializing the PNDT-map DM .

• generating source ML-PNDTMs.

• reconstructing target ML-PNDTMt.

• estimating the pose by registeringMs toMt.

• updating PNDT-map DM .

The details of each step are described in the following subsections.

9.3.1 Initialization of PNDT-Map

We denote the PNDT-map by DM since the map only consists of the PNDT in the

layer Lf . The reason is that PNDT requires less memory than ML-PNDT, and to be

similar to the source PNDT, the presented method reconstructs the ML-PNDT from

the PNDT-map instead of reusing PNDTs in the multiple layers.

After the robot obtains the first point set P[0], {G} and {M} are determined as

{C}0, which is the conventional coordinate system at discrete time 0. Also, P[0] is

converted into a PNDT, which is the initial PNDT-map.
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9.3.2 Generation of Source ML-PNDT

If the source NDT is converted from the point set before it is transformed, it results in

the difference between the target and source NDTs as shown in Fig. 9.4. To generate

Ms similar toMt regenerated from the PNDT-map, we propose the method to share

the lattice of the PNDT-map with the source point set P . To this end, the presented

method generates ML-PNDT after transforming P .

At first, the point set CP in {C} is obtained by the sensor. Given an initial guess

G
CTH of the robot pose, a transformation L

CTH and L
GTH can be obtained as

L
CTH =

 L
CR 03×1

01×3 1

 ,LG TH =

 I3×3 x

01×3 1

 , (9.5)

where L
CR is the rotation matrix equal to G

CR, and x is the initial guess of the robot

location. Next, LP is subdivided by the lattice shared by the map. To share the lattice,

the presented method transforms all of the centers of the cells in each layer from {G}

to {L}, and it regards the vertex which is the nearest to the robot location as the new

center Lcnew for the root cell. At last, it subdivides LP to generate the source ML-

PNDTMs.

9.3.3 Reconstruction of The Target ML-PNDT

The reconstruction of the target ML-PNDT Mt can be divided into three processes.

In the first process, the mean vector set LPµ = {Lµi}
nLc
D
i=1 in the layer Lc is extracted

from LMs. Next, LPµ obtains the GCs in the gray cells of PNDT-map, as shown in

Fig. 9.3. At the last, theMt sets the new center cnew as the center of the multi-layered

lattices to regenerate PNDT from layer Lf to Lc recursively based on the method in

Section 9.3.2.
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Figure 9.3: Illustration of coordinate systems and the cells providing GCs in the coarse

layer (gray cells).

9.3.4 Pose Estimation Based on Multi-layered Registration

In the presented method, the pose is estimated by registering DLs to DLt based on

minimizing (2.13) from the coarse layer Lc to the fine layer Lf . The presented method

estimates the robot pose based on the multi-layered PNDT-D2D (ML-PNDT-D2D)

since it can deal with the long-range pose variation.

As shown in Fig. 9.2, the initial guess GTH,0[k] at the discrete time k is applied

to the source and target ML-PNDTs in the ‘transform’ and ‘extraction’ blocks respec-

tively. Therefore, the presented multi-layered PNDT-D2D (ML-PNDT-D2D) estimates

the pose variation LV between the pose registering PNDTs and the initial guess pose in

{L}. As a result, the estimated pose variation LV can be obtained by ML-PNDT-D2D,

and GTH [k] can be derived as

GTH [k] =G
L TH

LV L
GTH

GTH,0[k]. (9.6)

The initial guess can be obtained by additional devices such as an inertial mea-

surement unit and wheel odometry. For the robot without those devices, the estimated

135



target PNDT source PNDT

Figure 9.4: 1σ ellipsoids of PNDTs in the inconsistent lattices.

velocity can be used as an initial guess, and it is computed as

GTH,0[k] =G TH [k − 1]
(
GTH [k − 2]−1 GTH [k − 1]

)
. (9.7)

9.3.5 Update of PNDT-Map

The update process integrates the source point set transformed by the robot pose

GTH [k] with the existing PNDT-map Ds[k − 1]. We integrate the point set instead of

the aligned source PNDT since the PNDT is not guaranteed to fit the lattice of Ds. For

example, the PNDT aligned as shown in Fig. 9.4 leads to one or more GCs being in the

same cell v thus the update can result in the distortion of GCs, such as drifted center,

enlarged eigenvalues, and changed eigenvectors. To avoid those distortions and update

the map accurately, the robot should update the GC d[k] = (N (µ[k],Σ[k]), n[k]))

with the point set P in the same cell as follows:

n[k] = n[k − 1] + nP , (9.8)
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µ[k] =
1

nk]

(
n[k − 1]µ[k − 1] +

nP∑
i=1

pi

)
, (9.9)

Σ[k] =
1

n[k]

(
n[k − 1]

(
Σ[k − 1] + µ[k − 1]µ[k − 1]T

)
+

nP∑
i=1

pip
T
i

)
− µ[k]µ[k]T .

(9.10)

9.4 Experiments

We evaluated the accuracy of the pose estimated by the presented method with the

KITTI data set sequence 0-10.

The side length of a cell is set to 1 m, and the maximum range is set to 100 m [83].

The cells are constructed in the octree structure, and the fine layer Lf was computed

as 8. Also, we set the coarse layer Lc to 5. For PNDT, we applied the 1σ value for

the range at 15mm and encoder angle at 0.026 degree quantization noise from the

manufacturer specification. The regularizing factors r1 and r2 in (2.13) are set to 1 and

1/3 respectively. To accelerate the presented method, the number of source GCs in

each layer was limited by 3000, and GCs are randomly chosen. The maximum number

of iterations is set to 40.

In the visualization as shown in Fig. 9.5, we confirmed that the blue 1σ ellipsoids

in the cells of layer Lc are called by thePµ. Also, the lattice of the global map is shared

to generate DLf

t in blue and DLf
s in red as shown in the zoomed region in Fig. 9.5.

As a result, the presented method estimated the odometry as shown in Fig. 9.6.

The mean relative translational errors of odometry estimated by the presented method

are compared with the state-of-the-art LOAM [20] in Table 9.1. Also, the presented

method is ranked at the 16th on KITTI visual odometry chart. Except for sequence

0,3,and 10, the presented method shows 1-31% better accuracy than LOAM. Also, the
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Figure 9.5: Reconstructed target NDT in the layer Lf . The target NDT is in blue,

source NDT is in red, and the map NDT is in gray. The blue ellipsoids are in the cells

where the mean vectors of the source GCs in the layer Lc are.

presented method shows the better mean of the errors of all sequences than LOAM

does. The error of sequence 0 is 8.4% higher than LOAM, and the error of sequence

10 is 5.5% higher than LOAM. However, the error of sequence 3 is 92.6% much higher

than LOAM.

We also recorded the elapsed time of each process and the total time, and the

means and standard deviations are summarized in Table 9.2. Since the maximum

range of HDL-64E is so wide that the number of points acquired from HDL-64E is

large, the point set registration algorithm hardly process in real time. For example, in

[20], LOAM takes one second to process a scan of KITTI dataset. Thus, the presented

method has the mean of elapsed time equal to 0.717 seconds and the deviation is 0.217

seconds. The most time-consuming process is registration. It is possible to reduce the
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Figure 9.6: Odometry of sequence 0-10 estimated by the presented method.
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Table 9.1: Results of KITTI benchmark datasets

seq.
no.

configuration
mean relative

translational error(%)
mean relative

rotational
error(deg/m)

distance(m) environment [20] presented presented

0 3714 urban 0.78 0.85 0.0040

1 4268 highway 1.43 0.99 0.0012

2 5075 urban+country 0.92 0.78 0.0028

3 563 country 0.86 1.65 0.0036

4 397 country 0.71 0.70 0.0006

5 2223 urban 0.57 0.56 0.0030

6 1239 urban 0.65 0.52 0.0027

7 695 urban 0.63 0.50 0.0039

8 3225 urban+country 1.12 0.92 0.0033

9 1717 urban+country 0.77 0.63 0.0026

10 919 urban+country 0.79 0.83 0.0031

mean 0.84 0.81 0.0028

maximum iteration number to accelerate the registration;however, it sacrifices accu-

racy since the optimization may not converge.

9.5 Summary

In this chapter, we showed that the recursive generation of multi-layered NDT can be

applied to PNDT. Also, we present the method of estimating the robot pose based on
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Table 9.2: Elapsed time of each process

process mean(s) deviation(s)

loading point set 0.081 0.116

generation ofMs 0.104 0.04

reconstruction ofMt 0.066 0.036

registration 0.335 0.275

map update 0.086 0.031

total 0.717 0.217

the multi-layered registration between the source ML-PNDT and target ML-PNDT re-

constructed from the PNDT-map. The key idea of the presented method is improving

pose accuracy by generating source and target PNDTs similar to each other. Thus, the

presented method sets the vertex nearest to the robot location as the new center and

uses the same global lattice to generate the source and target ML-PNDTs. In exper-

iments, we showed that the accuracy performance of the presented method is higher

than the state-of-the-art method LOAM by using KITTI benchmark data set. Also, we

showed the elapsed time of each process of the presented method. The results showed

that the registration process is the most time consuming one. Since enlarging cells and

limiting the number of iterations sacrifice the accuracy, we came to the conclusion that

the selection of the key GCs is critical to improve the runtime of PNDT registration.
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Chapter 10

Conclusions

This dissertation presents methods of improving a point set registration using the NDT

representation. The first approach is improving the NDT representation. First, we pre-

sented a PNDT which can avoid destruction caused by high resolution of cells using

the sensor uncertainty. The mean is not changed, but the covariance is changed as the

sum of conventional covariance and the average of covariances of point samples. Since

each point sample has its covariance, the presented PNDT can generate distributions

in all of the occupied cells. Thus, the number threshold of points samples is no more

necessary. To show the improvement of the presented method, two experiments are

conducted. The results of representation show that the generation of distributions in all

of the occupied cells regardless of the resolution is achieved by applying PNDT. Sec-

ond, we defined the overlapped cells and modified the octree to adjust the lattice. We

also present a cell insertion method to generate the body-centered cubic structure and

face-centered cubic structure lattice. In the experiments, we compared the odometry

accuracy against the cell side length and against the distance between cell centroids, re-

spectively. For the cell insertion method, the BCC, FCC, and SC structured lattices are

142



compared in the experiment. We also compared the cases of applying the correspon-

dence region method. Third, we presented a method of regenerating a source NDT fit

toe the target lattice. The method subdivides an NDT into truncated GCs and fuses the

truncated GCs in the same cell. In the experiment, the presented method showed the

more accurate representation than the naive regeneration. As shown in experimental

results against the weight threshold wth, the presented method outperforms the simple

fusion of NDTs.

The second approach is improving the NDT registration. First, we presented a

HA-NDT weighting the likelihoods of the target NDT and the source point set by

the similarity of hue distributions. As a result, it improved the accuracy of the trans-

formation than the conventional NDT registration. Second, we presented an efficient

multi-layered NDT registration using the key layer. The number of layers and the num-

ber of iterations per layer are not fixed in the presented KL-NDT. The main feature

of KL-NDT called ‘searching for key layers’ is introduced, and the performance is

demonstrated by the experiment. Also, the terminating criteria of the algorithm and

the registration in each layer are presented. In the experiment, KL-NDT-P2D shows

the higher success rates and the lower errors than ML-NDT-P2D. For the NDT-D2D

case, the accuracy performances of ML-NDT-D2D and KL-NDT-D2D are similar;

however, KL-NDT-D2D processes faster than ML-NDT-D2D. Third, we presented a

dynamic scaling factor approach to improve the accuracy of NDT registration. To avoid

the negative correlation between L2 distance and rotational alignment, the presented

method DSF initially sets ss to 0. Also, to smooth the objective function and to avoid

the discreteness of GCs, DSF sets the range for st. We conducted two experiments.

First, we compared the registration with the presented DSF to the registrations with

different fixed scaling factors and the registrations with sM increasing from 0. As a
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result, the presented DSF is able to improve the accuracy of NDT-D2D and PNDT-

D2D. Second, we conducted an experiment estimating odometry as an application of

PNDT-D2D with the presented method. As a result, the accuracy of PNDT-D2D-DSF

is higher than the conventional PNDT-D2D. Fourth, we presented a scan-to-map incre-

mental NDT registration. As a result, the presented method outperforms the state-of-

the-art odometry estimation method, LOAM. The reasons are as follows. The PNDT

provides a dense representation even if the resolution is very high. Also, the PNDT is

generated after the point set is transformed by the initial guess. Thus, the PNDT can

be more similar to the submap than the PNDT which is converted from a point set and

then transformed. In addition, the presented method can rapidly extract the submap

which is consisted of cells where the source GCs are. Moreover, due to the multi-

layered registration of the source NDT and the target submap, the coarse registration

provides a reasonable initial guess to the fine registration.
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[60] C. Ulaş and H. Temeltaş, “3d multi-layered normal distribution transform for

fast and long range scan matching,” Journal of Intelligent and Robotic systems,

vol. 71, no. 1, pp. 85–108, 2013.

[61] A. Das and S. L. Waslander, “Scan registration using segmented region growing

ndt,” The International Journal of Robotics Research (IJRR), vol. 33, no. 13, pp.

1645–1663, 2014.

[62] J. W. Kim and B. H. Lee, “Robust and fast 3-d scan registration using normal

distributions transform with supervoxel segmentation,” Robotica, vol. 34, no. 7,

pp. 1630–1658, 2016.

[63] A. Diosi and L. Kleeman, “Fast laser scan matching using polar coordinates,”

The International Journal of Robotics Research (IJRR), vol. 26, no. 10, pp. 1125–

1153, 2007.

[64] S.-H. Lee, H.-C. Lee, and B.-H. Lee, “A scan restoration method for robust polar

scan matching in dynamic environments,” Advanced Robotics, vol. 27, no. 11,

pp. 877–891, 2013.

153



[65] S. Carpin, “Fast and accurate map merging for multi-robot systems,” Autonomous

Robots, vol. 25, no. 3, pp. 305–316, 2008.

[66] H.-C. Lee, S.-H. Lee, M. H. Choi, and B.-H. Lee, “Probabilistic map merging for

multi-robot rbpf-slam with unknown initial poses,” Robotica, vol. 30, no. 2, pp.

205–220, 2012.

[67] H.-C. Lee and B.-H. Lee, “Improved feature map merging using virtual support-

ing lines for multi-robot systems,” Advanced Robotics, vol. 25, no. 13-14, pp.

1675–1696, 2011.

[68] A. Censi and S. Carpin, “Hsm3d: Feature-less global 6dof scan-matching in the

hough/radon domain,” in Robotics and Automation (ICRA), 2009 IEEE Interna-

tional Conference on, 2009, pp. 3899–3906.

[69] D. Holz and S. Behnke, “Sancta simplicitas-on the efficiency and achievable re-

sults of slam using icp-based incremental registration,” in Robotics and Automa-

tion (ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp. 1380–

1387.

[70] T. Stoyanov, J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Normal distribu-

tions transform occupancy map fusion: Simultaneous mapping and tracking in

large scale dynamic environments,” in Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 4702–4708.

[71] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust,

and fast,” in Robotics and Automation (ICRA), 2015 IEEE International Confer-

ence on. IEEE, 2015, pp. 2174–2181.

154



[72] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and J. Hertzberg, “Eval-

uation of 3d registration reliability and speed-a comparison of icp and ndt,”

in Robotics and Automation (ICRA), 2009 IEEE International Conference on.

IEEE, 2009, pp. 3907–3912.

[73] H. Hong and B. Lee, “Key-layered normal distributions transform for point cloud

registration,” Electronics Letters, vol. 51, no. 24, pp. 1986–1988, 2015.

[74] Q. Li, R. Xiong, and T. Vidal-Calleja, “A gmm based uncertainty model for point

clouds registration,” Robotics and Autonomous Systems, vol. 91, pp. 349–362,

2017.

[75] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d normal dis-

tributions transform occupancy maps: An efficient representation for mapping in

dynamic environments,” The International Journal of Robotics Research (IJRR),

vol. 32, no. 14, pp. 1627–1644, 2013.

[76] E. Einhorn and H.-M. Gross, “Generic ndt mapping in dynamic environments

and its application for lifelong slam,” IEEE Robotics & Automation Magazine,

vol. 69, pp. 28–39, 2015.

[77] R. W. Wolcott and R. M. Eustice, “Robust lidar localization using multiresolution

gaussian mixture maps for autonomous driving,” The International Journal of

Robotics Research (IJRR), vol. 36, no. 3, pp. 292–319, 2017.

[78] T. Schmiedel, E. Einhorn, and H.-M. Gross, “Iron: A fast interest point descriptor

for robust ndt-map matching and its application to robot localization,” in Intelli-

gent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,

2015, pp. 3144–3151.

155



[79] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Oc-

tomap: An efficient probabilistic 3d mapping framework based on octrees,” Au-

tonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[80] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org, 2018.

[81] Boost, “Boost C++ Libraries,” http://www.boost.org/, 2019, last accessed 2019-

01-29.

[82] FreeGLUT, “FreeGLUT Libraries,” http://freeglut.sourceforge.net, 2019, last ac-

cessed 2019-01-29.

[83] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

kitti vision benchmark suite,” in Computer Vision and Pattern Recognition, 2012.

CVPR 2012. Proceedings of the 2017 IEEE Computer Society Conference on.

IEEE, 2012, pp. 3354–3361.

[84] N. Balakrishnan, “Continuous multivariate distributions,” Wiley StatsRef: Statis-

tics Reference Online, 2014.

[85] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark

for the evaluation of rgb-d slam systems,” in Intelligent Robots and Systems

(IROS), 2012 IEEE/RSJ International Conference on, Vilamoura Portugal, 2012,

pp. 573–580.

[86] T. Stoyanov, M. Magnusson, H. Almqvist, and A. J. Lilienthal, “On the accu-

racy of the 3d normal distributions transform as a tool for spatial representation,”

in Robotics and Automation (ICRA), 2011 IEEE International Conference on,

Shanghai China, May 2011, pp. 4080–4085.

156
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초록

로봇은 자신이 갖춘 지능으로 스스로 작동하는 기기이다. 자율 이동 지능은 로

봇이가져야하는중요한지능이다.본논문은이러한자율이동지능을위한 3차원

거리센서기반위치추정및지도작성을위한방법을제시한다.

로봇은거리센서를이용하여위치한환경의공간정보를점군(point set)형태로

수집할 수 있는데, 이렇게 수집한 정보를 환경의 복원에 이용할 수 있다. 또한, 로

봇은 점군과 모델을 정합하는 위치를 추정할 수 있다. 거리센서가 수집한 점군이 2

차원에서 3차원으로확장되고해상도가높아지면서점의개수가크게증가하면서,

NDT (normal distributions transform)를 이용한 정합이 ICP (iterative closest point)

의대안으로부상하였다. NDT는점군을분포로변환하여공간을표현하는압축된

공간표현방법이다.분포의개수가점의개수에비해월등히작기때문에 ICP에비

해 빠른 성능을 가졌다. 그러나 NDT 정합 기반 위치 추정의 성능을 좌우하는 셀의

크기,셀의중첩정도,셀의방향,분포의스케일,대응쌍의비중등파라미터를설정

하기가매우어렵다.본학위논문에서는이러한어려움에대응하여 NDT정합기반

위치추정의정확도를향상할수있는방법을제안하였다.

본 논문은 표현법과 정합법 2개 파트로 나눌 수 있다. 표현법에 있어 본 논문은

다음 3개방법을제안하였다.첫째,본논문에서는분포의퇴화를막기위해경험적

으로 공분산 행렬의 고유값을 수정하여 공간적 형태의 왜곡을 가져오는 문제점과
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고해상도의 NDT를생성할때셀당점의개수가감소하며구조를반영하는분포가

형성되지 않는 문제점을 주목했다. 이를 해결하기 위하여 각 점에 대해 불확실성

을 부여하고, 평균과 분산의 기대값으로 수정한 확률적 NDT (PNDT, probabilistic

NDT)표현법을제안하였다.공간정보의누락없이모든점을분포로변환한 NDT

를 통해 향상된 정확도를 보인 PNDT는 샘플링을 통한 가을을 가능하도록 하였다.

둘째, 본 논문에서는 정육면체를 셀로 다루며, 셀을 중심좌표와 변의 길이로 정의

한다.또한,셀들로이뤄진격자를각셀의중심점사이의간격과셀의크기로정의

한다. 이러한 정의를 토대로, 본 논문에서는 셀의 확대를 통하여 셀을 중첩시키는

방법과 셀의 간격 조절을 통하여 셀을 중첩시키는 방법을 제안하였다. 본 논문은

기존 2D NDT에서사용한셀의삽입법을주목하였다.단순입방구조를이루는기존

방법 외에 면심입방구조와 체심입방구조의 셀로 이뤄진 격자가 생성하였다. 그 다

음해당격자를이용하여 NDT를생성하는방법을제안하였다.또한,이렇게생성된

NDT를정합할때많은시간을소요하기때문에대응쌍검색영역을정의하여정합

속도를 향상하였다. 셋째, 저사양 로봇들은 점군 지도를 NDT 지도로 압축하여 보

관하는것이효율적이다.그러나로봇포즈가갱신되거나,다개체로봇간랑데뷰가

일어나지도를공유및결합하는경우 NDT의분포형태가왜곡되는문제가발생한

다.이러한문제를해결하기위하여 NDT재생성방법을제안하였다.

정합법에 있어 본 논문은 다음 4개 방법을 제안하였다. 첫째, 점군의 각 점에

대해 대응되는 색상 정보가 제공될 때 색상 hue를 이용한 향상된 NDT 정합으로

각 대응쌍에 대해 hue의 유사도를 비중으로 사용하는 목적함수를 제안하였다. 둘

째, 본 논문은은 다양한 크기의 위치 변화량에 대응하기 위한 다중 레이어 NDT 정

합 (ML-NDT, multi-layered NDT)의 한계를 극복하기 위하여 키레이어 NDT 정합

(KL-NDT, key-layered NDT)을 제안하였다. KL-NDT는 각 해상도의 셀에서 활성

화된 점의 개수 변화량을 척도로 키레이어를 결정한다. 또한 키레이어에서 위치의

추정값이 수렴할 때까지 정합을 수행하는 방식을 취하여 다음 키레이어에 더 좋은
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초기값을제공한다.셋째,본논문은이산적인셀로인해 NDT간정합기법인 NDT-

D2D (distribution-to-distribution NDT)의목적함수가비선형이며국소최저치의완

화를위한방법으로신규 NDT와모델 NDT에독립된스케일을정의하고스케일을

변화하며 정합하는 동적 스케일 기반 NDT 정합 (DSF-NDT-D2D, dynamic scaling

factor-based NDT-D2D)을 제안하였다. 마지막으로, 본 논문은 소스 NDT와 지도간

증대적 정합을 이용한 주행계 추정 및 지도 작성 방법을 제안하였다. 이 방법은 로

봇의 현재 포즈에 대한 초기값을 소스 점군에 적용한 뒤 NDT로 변환하여 지도 상

NDT와가능한한유사한 NDT를작성한다.그다음로봇포즈및소스 NDT의 GC

(Gaussian component)를고려하여부분지도를추출한다.이렇게추출한부분지도와

소스 NDT는 다중 레이어 NDT 정합을 수행하여 정확한 주행계를 추정하고, 추정

포즈로소스점군을회전및이동후기존지도를갱신한다.이러한과정을통해이

방법은 현재 최고 성능을 가진 LOAM (lidar odometry and mapping)에 비하여 더

높은정확도와더빠른처리속도를보였다.

주요어: normal distributions transform, registration, odometry, mapping

학번: 2013-20911
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