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Abstract

Optimal Design and Economic 
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In recent years, the demand for lean gas fields has increased due to the 

development of unconventional gas reservoirs in Australia and U.S. Therefore, the 

re-evaluation of natural gas liquid (NGL) recovery and NGL/LNG integrated 

processes under lean feed conditions are required. This dissertation performs 

process optimization and economic evaluation for the various representative NGL 

recovery, natural gas liquefaction and NGL/LNG integrated processes considering

the liquefied natural gas (LNG) higher heating value (HHV) specification.

Four different NGL recovery process schemes were evaluated under various 

lean feed conditions. The ISS and IPSI (A company name who owns it) processes 

are the representative processes in the conventional NGL recovery feed conditions. 

On the other hand, heavy hydrocarbons (HHC) separator and scrub column 

schemes are the simplified processes which may have advantages for lean feeds. 

The results indicate that IPSI process requires lowest raw material cost due to high 

process efficiency. However, its high total capital cost offset its overall economic 
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performance. The HHC separator scheme shows the lowest total capital cost 

because of a simplified configuration, but requires the highest raw material cost 

among the processes due to the poor separation efficiency compared with the other 

processes. ISS scheme shows best economic performance when the feed GMP 

value reaches 2.5. The scrub column scheme shows the best overall economic 

performance among the process schemes in the wide range of lean feed conditions. 

The results demonstrate that scrub column scheme can be seen as a good candidate 

of the NGL recovery processes for economically when the feed is in the 

considerably lean conditions.

An offshore platform has limited deck area different from onshore liquefaction

plants. So the selection criteria for a liquefaction process is different compared to 

the onshore liquefaction processes. In this study, six types of liquefaction processes 

that applicable for offshore units were selected and analyzed both the process 

efficiency and economic performance. The six types of processes are a dual N2 

expander, two single mixed refrigerant (SMR) and three kinds of dual mixed 

refrigerant (DMR) processes. The N2 expander process uses nonflammable pure 

nitrogen as the refrigerant that has advantages of safety and relatively simple 

operation. However, the liquefaction efficiency is the lowest one compared with 

the other processes. The DMR process includes two mixed refrigerant cycles that 

owns the highest liquefaction efficiency and per train capacity than the N2 

expander and SMR processes. However, it has more complex process configuration 

than the other processes that normally used in the large scale liquefaction plants. 

On the other hand, the process performance of a SMR process is between the N2 

expander and DMR processes. The results present that dual N2 expander process 

has the lowest process efficiency and net profit among the compared processes. 
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The SMR process 2 shows the lowest capital expenditure and payout time. The 

DMR base case scheme indicates the highest profitability and lowest operating cost 

among the processes because of the highest liquefaction efficiency. The results 

show that both SMR process 2 and DMR base processes have advantages in terms 

of some aspects compared with the other processes.

The proposed two simple integrated NGL/LNG processes and a conventional 

LNG and NGL coproduction process were also investigated with consideration of 

LNG HHV specification under the lean feed condition. The SMR process 2 and 

DMR base cycles were selected for the liquefaction part and the genetic algorithm 

(GA) method was used for the process optimization. The results show that the 

proposed integrated process, case 1, has overall economic advantages compared to 

the conventional base case scheme. The capital cost reduced remarkably by 

simplifying NGL recovery part, and only a little loss of liquefaction efficiency (less 

than 1%). The proposed process case 2, which adopts SMR process 2 as the 

liquefaction process, shows the lowest total capital cost and best profitability when 

a plant operating time is less than a certain period. Therefore, it could be a good 

process option when a plant reservoir lifetime is relatively short such as some peak 

shaving plants and special offshore applications in terms of economic aspect.

Keywords: economic evaluation, NGL recovery, liquefaction process, lean 

feed

Student Number: 2015-30754
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CHAPTER 1. Introduction

1.1. Research motivation

Natural gas is one of the representative fossil fuels that has a relatively low 

pollutant emission compared with traditional fossil such as coal and petroleum. 

Therefore, the demand for natural gas has increased in recent years. Natural gas is a 

globally used clean energy and important energy source which accounts for about a 

quarter of overall energy demand, especially the demanding of East Asia is 

increasing rapidly [1]. Recently lean natural gas production has increased since 

2005 as growing production from shale gas reservoirs. With an increasing of 

unconventional gas (shale gas etc.) reservoirs in the area of Australia, East Africa 

and U.S, and demanding for cleaner energy resources in the world, the lean gas 

reservoirs exploitation are expected to continue to rise in the next few years [2], [3].

About 9.8% natural gas is supplied as LNG, and recently LNG demand growth is 

most outstanding in Asia countries [4]. Conventional natural gas reservoirs are 

usually normal or rich feed and most of previous studies were focused on 

conventional feed reservoirs. However, the unconventional sources like shale gas, 

tight gas occupy nearly 45% of remaining natural gas resources [5]. However, most 

previous studies regarding NGL recovery and LNG/NGL integrated processes were 

focused on the conventional feed (normal or rich) conditions. Therefore, re-

evaluation of these processes under the lean feed conditions are necessary.

First, industry-standard single stage (ISS), gas sub-cooled (GSP) and IPSI are 

the representative NGL recovery processes. However, these processes are suitable 

for the conventional gas fields, which own much complex configurations in order 

to obtain high NGL recovery. Previous researches were mostly concentrate on 
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improving recovery efficiency that the processes tended to become more complex. 

However, when a feed composition is lean, there is a possibility to simplify the 

NGL recovery process due to the little amount of heavy hydrocarbons. Additionally, 

a higher heating value (HHV) specification also was not considered by the most of 

previous studies. However, the minimum LNG HHV requirements for South Korea 

and Japan two countries are normally higher than U.S. and Europe countries. As a 

result, we design two simplified NGL recovery processes and compared the 

performance considering the economy impact as well as the LNG HHV 

specification with two conventional processes under various lean feed conditions.

Second, demand for natural gas liquefaction plants will also increase next few 

years as natural gas demand increases. Single cycle using a pure nitrogen or pure 

components cascade processes were widely used in the early stage. Liquefaction 

processes are complex and energy intensive that many advanced processes have 

been developed in order to improve LNG production and energy efficiency. 

Previous liquefaction studies normally concentrated on onshore plants and focused 

on improving process efficiency. However, an offshore liquefaction process has 

limited space that the selection criteria are different from onshore liquefaction 

process. There also some papers investigated liquefaction processes for offshore 

applications, but most of them did not consider capital expenditure or only 

analyzed a few specific liquefaction processes only. More complex configuration 

may obtain higher energy efficiency, but increasing equipment count also will 

increase total capital investment. Therefore, selecting a liquefaction process 

requires considering both capital cost and process efficiency especially in offshore 

units. This thesis selects various liquefaction processes, which are suitable for 
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offshore application, and compared both efficiency and economy performance by 

each other.

Finally, both the NGL recovery and liquefaction processes require cold 

refrigeration systems that some NGL/LNG integrated studies have been conducted 

recently for sharing the refrigeration systems. Because integrating design could 

eliminate some equipment that have advantages over reducing total capital cost. 

Previous integrated studies focused on a normal or rich feed compositions and did 

not include the HHV specifications which are similar as the aforementioned NGL 

recovery researches. Therefore, in this thesis two simplified integrated NGL/LNG 

processes were proposed and compared the performance with a conventional 

integrated process considering HHV specification under the lean feed condition. 

1.2. Research objectives

The purpose of this thesis is to analyze both process efficiency and economics 

of the representative conventional and proposed NGL recovery as well as 

NGL/LNG integrated processes, and to develop the economical processes 

considering LNG HHV specification under lean feed conditions. Additionally, this 

thesis quantitatively investigates the liquefaction efficiency and economy 

evaluation for the various liquefaction processes and suggests the suitable 

processes for offshore applications.

1.3. Outline of the thesis

Chapter 1 introduces the motivation and the main objectives of this thesis. In 

Chapter 2, investigates conventional NGL recovery and liquefaction schemes. The 
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four NGL recovery and six types of liquefaction processes were simulated and 

compared the economic performance of each scheme under lean feed conditions. 

The total annualized cost was defined as an objective function considering capital 

cost, operating cost and profitability in NGL recovery. The processes were 

optimized the objective function by using a genetic algorithm. Both process 

performance and economic evaluation were performed on six types of liquefaction 

processes for offshore applications. The processes include one dual N2 expander, 

two types of single mixed refrigerant (SMR) and three types dual mixed refrigerant 

(DMR) liquefaction processes. Additionally, the previous studies regarding 

integrated NGL/LNG process was investigated. In Chapter 3 presents the proposed 

integrated processes. Two integrated NGL/LNG processes were observed in terms 

of process optimization and economic evaluation under the lean feed condition.

Then, the proposed processes were compared the efficiency and economic 

performance with the conventional integrated process. Chapter 4 describes the 

main contribution of this thesis and suggests the future works.
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CHAPTER 2. Economic evaluation of the 

conventional NGL recovery and liquefaction 

processes

This chapter is focused on the representative NGL recovery processes under lean 

feeds, and liquefaction processes for offshore units.

2.1. Evaluation of the representative NGL recovery 

processes considering LNG HHV specification
*

2.1.1. Overview

Due to the higher value of heavier hydrocarbons as well as the necessary to 

maintain the pipeline specification for natural gas transportation, the natural gas 

liquid (NGL) are often extracted from original feed gas. From the previous 

research and industrial experiences, cryogenic processes are normally the most 

economical way to NGL separation. Industry-standard Single Stage (ISS) process 

is the representative process, which uses a turbo-expander for further cooling 

instead of Joule-Thomson (JT) valve [6]. Nevertheless, this process had some 

limitations such the relatively low NGL recovery and carbon dioxide freezing 

problem [7]. Thus, many advanced process schemes have been developed and 

introduced through papers or patents such as the gas sub-cooled (GSP), cold 

residue (CRR), IPSI processes etc. In addition, especially for lean natural gas feed 

condition the heavy hydrocarbon (HHC) separator and scrub column concepts were 

also introduced in some international conventions.

                                                       
* The section 2.1 references the author’s published journal paper: C. Jin, Y. Lim, Economic 

evaluation of NGL recovery process schemes for lean feed compositions, Chemical Engineering 
Research and Design 129 (2018) 297-305
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As the basic process, the ISS (Figure 2-1) has been normally cool the inlet feed 

gas using turbo expander and expansion valve. After passing a liquid vapor 

separator, the vapor portion is further expanded with turbo-expander and the liquid 

portion is expanded with expansion valve to operating pressure before introducing 

to the de-methanizer [6]. Because of its simple configuration and low CAPEX, 

many previous researches were carried out with the ISS process as one of the base 

case for further studies. [8], [9], [10]. The GSP scheme was first introduced by 

Campbell and Wilkinson. The GSP process is slightly different from ISS where the 

process dividing two gaseous streams after passing first separator. The first stream 

is expanded the same as ISS using turbo-expander before introducing to the de-

methanizer and the other stream first heat exchanges with column top cold residue 

gas stream and after using JT valve for further expansion to column operating 

pressure. In the patent they proposed that the split vapor concept had an advantages 

in carbon dioxide icing in the column [6]. 

The IPSI process scheme (Figure 2-2) has the characteristics of high efficient 

and economical performance especially in separating propane, propylene and 

heavier hydrocarbon liquids which was developed by Yao(1999) . Unlike other 

NGL processes, the IPSI has focused on improving the tower stripping section. A 

portion of hydrocarbon liquid is withdrawn from one of the bottom tray and 

expanded and heated by inlet gas to produce a two phase, the vapor phase is 

recycled to the column increasing the light hydrocarbon component concentration 

and the efficiency of separation [11]. The previous research (Getu et al.) also 

maintained that the highest economic performance compared with other NGL 

recovery processes in some feeds composition [8].

The heavy hydrocarbon (HHC) separator and scrub column concepts are 
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integrated NGL recovery process to the liquefaction unit and could consider for 

lean natural gas feed NGL recovery [12]. Typically scrub column and HHC 

separator could be used when natural gas feed is lean which has low C2+ contents, 

the processes have the advantage of lower capital cost than other NGL recovery 

schemes, but they have the limitation of low NGL recovery efficiency. Both scrub 

column and HHC separator remove heavy hydrocarbon after pre-cooling and prior 

to liquefaction process (refer to Figure 2-3 and Figure 2-4). Comparing with HHC 

separator, scrub column has less C1, C2 loss due to the effect of using a column 

instead of a separator. Even though they have introduced in U.S. patents, it is hard 

to find publications comparing HHC separator and scrub column economic 

performance with other NGL recovery processes [13], [14].

According to the previous NGL recovery studies, usually the conventional NGL 

recovery studies are most based on a normal or rich feed for comparing recovery 

performance or costs [15], [16], [17]. The ethane recovery plant in the South Pars 

gas field was simulated and analyzed with an advanced exergy analysis [18]. 

Retrofitting a NGL fractionation process was analyzed and proposed an energy 

efficient design in terms of side reboiler and heat pump hybrid system, they 

reported that the methodology could save considerable operating cost compared to 

the original case [19]. The existing NGL recovery plant in Sirri Island was 

analyzed with various feed condition and reported that with the increasing of 

heavier methane the work for compressors was reduced and cold heat exchanger 

showed the highest exergy destruction [20]. Maximizing a NGL recovery with the 

commercial simulation HYSYS and assessed the de-methanizer pressure [21]. An 

integrated NGL/LNG configuration was introduced and analyzed, the result 

showed a higher ethane recovery and considerable liquefaction efficiency [22].
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Another integrated recovery plant was optimized several process parameters 

considering the effective operating conditions for plant performance with the object 

function of net profit [23]. A conceptual process design which integrate shale gas 

NGL recovery and LNG re-gasification in order to energy saving [24]. The 

dividing-wall column could replace de-ethanizer and de-propanizer columns in a 

NGL process and reported that this could enable weight reduction in floating 

liquefied natural gas facilities [25]. The hybrid genetic algorithms (GA) was used 

for optimizing economic problem of turbo-expander(ISS) recovery process [26]. 

Distillation system design was optimized for energy-efficiently separating multi-

component mixtures for NGL processes [27]. Optimization of the CRR recovery 

process with the object target function of ethane recovery was performed and 

comparing with GSP and conventional turbo expander processes [28]. 

However, the increasing production of the lean feed requires re-evaluation of the 

economic performance of NGL recovery processes based on the lean feeds. In 

particular, the requirement of LNG HHV specification in East Asia is relatively

high, and it weakens the advantages of high efficiency NGL recovery process. The 

specification of South Korea and Japan, market share of these two countries were 

more than 47% according to the IGU (international gas union) report [1], normally 

have a HHV specification between 39.7 and 43.5 MJ/Sm3 which has a higher 

minimum value than U.S. and Europe [29]. Getu et al., 2013 showed economic 

performance of various NGL recovery processes for eight feeds composition but 

did not consider more simpler process such as HHC separator and scrub column 

concepts for lean feeds [8]. Ghorbani et al., 2012 used exergy pinch analysis for 

optimizing NGL recovery plants but limited to a normal feed [30]. Also the studies 

only focused on recovery efficiency or economic performance without considering 
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the HHV specification. Park et al. 2015 includes both economic evaluation and 

HHV specification for comparing various patented NGL process schemes, but it 

remains only one normal feed condition [9].

In this chapter we focused on the four different NGL recovery processes with 

lean feed condition (GPM lower than 2.5) and evaluated its economic performance 

based on the total annualized cost (TAC). We also considered the LNG HHV 

specification which is required for the East Asia, such as South Korea and Japan. 

2.1.2. Process selection and description

In this study we selected four types of NGL recovery schemes, the ISS, IPSI, 

HHC separator and scrub column, for economic evaluation. The ISS scheme is well 

known process in NGL recovery which leads to a major development in this field, 

after that emerging GSP, CRR, RSV and IPSI schemes and so on. Hence, selecting 

ISS as the base case here. Previous studies like Getu et al. 2013 and Park et al. 

2015 analyzed ISS process [8], [9]. The IPSI is chosen because it was recently 

reported process for NGL recovery and Getu et al. 2013 reported that IPSI had 

good economic performance among various schemes [8]. The HHC separator and 

scrub column were not compared with the others even though they were introduced 

in the international conference [12]. Moreover, the proposed scrub column process 

in this thesis (Figure 2-4) is simplified version based on a US patent [31]. Because 

it is expected to have better economic performance in the lean feed composition, 

both of the processes are selected in this study. All the selected process models 

were developed by a commercial software Aspen HYSYS, and the Peng-Robinson 

equation of state was selected for the HYSYS simulation as its good prediction in 

hydrocarbon mixtures. Because it is expected to have better economic performance 
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in the lean feed composition, both processes were selected in this study. All the 

selected process models were developed by a commercial software Aspen HYSYS, 

and the Peng-Robinson equation of state was selected for the HYSYS simulation as 

its good prediction in hydrocarbon mixtures [17].

l Industry single-stage process (ISS)

The ISS scheme process flow diagram is depicted in Figure 2-1. After removal 

of acid gas and water, treated feed gas stream at a pressure of 60bar and a 

temperature of 30°C pass the heat exchanger (E-100) and it is cooled down to 

about -33°C by gas stream 6, which is from the top product stream of the column 

(T-100). Then stream 1 is flashed in the separator (V-100) to vapor stream 2 and 

liquid stream 3. The vapor stream 2 is depressurized by the turbo-expander (K-100) 

to column top pressure and introducing to the column top stage, where the power 

energy generated by expander will be used to run the compressor (K-101). The 

liquid stream 3 from flash separator (V-100) is expanded by Joule-Thomson valve 

(VLV-100) to column pressure and introduced to the column (T-100). The column 

top product stream 6 is used to cool the feed gas stream and after passing the heat 

exchanger (E-100) the temperature rises to about 23°C. The residual gas stream 7 is 

compressed by the compressor (K-101 and K-102) to meet the specified natural gas 

pressure about 60bar, then cooled to specified temperature 30C by the heat 

exchanger (E-101).

The liquefaction section is not the main of this study because this study is focusing 

on the economic performance of NGL recovery section. Therefore, it was assumed 

that the total capital expenditure is a constant value in each scheme and does not 

affect the economic evaluation results of NGL recovery. The NG stream is entering 
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a liquefaction process and temperature is reduced to about -160°C for producing 

liquefied natural gas. The stream 10 is further expanded to about 1bar by JT valve, 

the stream 11 after expansion may contain a small portion of vapor phase and 

separated through the end flash and the liquid stream is sent to the LNG storage.
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Figure 2-1 The ISS process scheme
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l Enhanced NGL recovery process (IPSI)

The IPSI is recent patented scheme in NGL recovery field, and it uses the 

column side streams to improve ethane recovery without additional refrigeration 

system. Figure 2-2 shows the process flow diagram of IPSI process scheme. The 

cleaned feed gas stream is divided into stream 1 and stream 2. The stream 1 goes 

into the heat exchanger (E-100) and cooled by residue gas stream 16 then mixed 

with stream 6 before entering cold separator (V-100). The stream 2 is cooled via 

heat exchangers (E-101, E-102, E-103, and E-104) successively by the column side 

pump around streams PA1, PA2, PA3 after mixing into stream 8 at the temperature 

about -35°C. The stream 8 follows to the separator (V-100) and this stream is 

flashed into vapor stream and liquid stream 9. The liquid stream 9 is expanded via 

JT valve to the column pressure and introduced to the column whereas the flashed 

vapor stream is divided to two streams, where 30% is going into stream 11 and the 

other 70% to stream 12. The stream 11 is further cooled in the heat exchanger (E-

105) by the column top product stream 15 and introduced as top feed stream 14 

into the column T-100, the stream 12 is expanded via turbo expander (K-101), 

which can efficiently generate power for utilizing in compressor (K-102), to a 

temperature at -40°C before feeding into the column. The tower top product stream 

15 is heated by the heat exchangers (E-105 and E-100) up to 24°C then compressed 

via compressor (K-102 and K-103) to the pressure around 60bar. The stream 19 is 

heated by compressing and should cool to 30C for meeting NG specification, via 

the cooler (E-106).

The major improvement of IPSI comparing with ISS or GSP is advanced 

utilization of the column bottom pump around streams. The pump around stream 
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PA1 and PA2 from T-100 bottom trays were used to cool the stream 5 and stream 4 

then the warmed PA1’ and PA2’ returned to the column, respectively. These two 

pump around streams not only can reduce the column (T-100) re-boiler duty but 

also provide refrigeration to the feed stream as they get warmer after cooling 

stream 5 and stream 4. Stripping column pump around streams also can apply in 

ISS or other NGL recovery schemes. The considerable enhancement in IPSI 

scheme is made by using the PA3 stream. After stripping from the T-100 bottom 

tray the stream PA3 is divided into stream 20 and stream 21. The stream 20 is 

warmed in heat exchanger E-101 after cooling feed gas stream 2 and mixed with 

stream 27 then returned to the column bottom stage. On the other hand, stream 21 

is reduce its pressure via expansion valve and heat exchange with stream 3 before 

entering the flash separator (V-101). The flashed liquid stream 24, which contains 

heavier hydrocarbon, will be pumped and mixed with column (T-100) bottom 

stream which later becomes the NGL product. However, the vapor stream 25 is 

compressed in K-100 to the column pressure and cooled by air cooler, then mixed 

with stream 28 before returning to the column bottom tray. It can decrease the 

required re-boiler duty because the PA3’ stream gets warmer. Additionally, 

relatively high concentration of light components in PA3’ stream the temperature 

profile inside the column also reduces and this makes increase heat integration 

ability [8].
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Figure 2-2. The IPSI process scheme
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l Heavy hydrocarbon (HHC) separator and scrub column process

Unlike the mentioned NGL recovery processes which are independent with the 

liquefaction process, in the HHC separator scheme the treated feed gas is directly 

entering a liquefaction process and NGL recovery is performed during the 

precooling section in the main cryogenic heat exchanger. The HHC separator 

process flow diagram is shown in Figure 2-3. The stream 1 is stripping from 

cryogenic heat exchanger and adjust by E-100 exchanger for achieving optimum 

temperature then follows to the V-100 flash separator. The liquid stream is the 

recovered NGL stream, which contains relatively heavier hydrocarbons. On the 

other hand, the remaining vapor stream NG is reinjected to the liquefaction process 

for producing LNG product. The scrub column process is similar to HHC separator, 

but the only change is the column (T-100) instead of separator (V-100). Both HHC 

separator and scrub column schemes would have the advantages when the feed gas 

is lean because the complex recovery process such as ISS, GSP or IPSI would be 

inefficient due to small amount of heavy hydrocarbon contents while the HHC 

separator or scrub column concept (refer to Figure 2-3 and 2-4) can reduces capital 

cost.
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Figure 2-3. The HHC separator process scheme
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Figure 2-4. The proposed scrub column process scheme
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2.1.3. Design criteria and specifications

A feed composition is an important and crucial factor on selecting a NGL 

recovery scheme [8]. In addition, the feed composition would vary as time passes. 

In order to cover the wide range of different lean feeds composition, four lean feeds 

having GPM lower than 2.5 are selected in this research as shown in Table 2-1. The 

GPM is defined as the amount of recoverable liquid expressed in gallons per 1000 

standard cubic feet of a gas at 60F [32]. Additionally, the traditional NGL recovery 

process is after AGRU (Acid Gas Removal Unit) and dehydration process. 

Therefore, the feeds composition shown in table 2-1 is not include acid gas and 

water components.

To compare the different NGL schemes, specifying the key process parameters, 

which have a major effect on the plant performance, are very important. Thus, 

fixing these to the certain value and conditions are very significant for the faring 

comparison [8]. The specified key process parameters as shown in Table 2-2. The 

LNG production rate is fixed at 2MTPA (million tons per annum) for each scheme. 

The feed flow rate is adjusted to satisfy the constant production rate and the inlet 

feed pressure and temperature are kept as 60bar and 30°C. The compressor, turbine 

and pump efficiency is fixed at 80%. The pressure drop between heat exchangers 

was assumed as 0.5bar and 3°C of the minimum temperature approach was applied. 

The limitation of heavy hydrocarbon(C5+) concentration in LNG product should 

not exceed 0.1 mole % in LNG product due to freezing probability during the 

liquefaction process [33]. For meeting the specification of HHV, adding ethane or 

propane at liquefaction end is not preferable due to economy or technical reasons 

[34]. Therefore, it is better to adjust HHV at NGL recovery process. The HHV of 

LNG product is specified to 40.50 MJ/Sm3. The same HHV value was used by Park 
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et al. 2015 in previous studies [9].
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Table 2-1. Feeds composition (mole %)

Component Feed 1 Feed 2 Feed 3 Feed 4

C1 92.97 91.57 91.22 90.67

C2 4.18 5.18 5.21 5.23

C3 1.23 1.5 1.68 1.98

iC4 0.54 0.5 0.55 0.45

nC4 0.54 0.48 0.52 0.65

iC5 0.04 0.15 0.16 0.25

nC5 0.04 0.1 0.11 0.23

C6 0.03 0.01 0.01 0.02

C7 0 0.01 0.01 0.03

C8 0 0 0 0.02

C9 0 0 0 0.01

C10+ 0 0 0 0.01

N2 0.43 0.5 0.53 0.45

CO2 0 0 0 0

GPM value 1.84 2.2 2.3 2.5
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Table 2-2. Common process key parameters and constraints

LNG products 2 MTPA

Plant inlet gas pressure 60 bar

Plant inlet gas temperature 30 °C

Compressor/Turbine/Pump efficiency 80%

Pressure drop across the heat exchanger 0.5 bar

Heat exchangers minimum temperature approach 3 °C

HHV (LNG) min. 40.50 MJ/Sm3

C4 (LNG) 2 mol% max.

C5+ (LNG) 0.1 mol% max.

Property fluid package Peng Robinson
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2.1.4. Economic evaluation

l Capital cost estimation

The major equipment of a distillation column, separator, plate fin type heat 

exchanger, shell and tube heat exchanger, compressor, turbine and pump are 

considered in the cost estimation. In order to estimate capital cost, sizing of each 

equipment is required and some parameters are obtained from HYSYS simulation 

results.

The column sizing requires the diameter and height calculation. The diameter of 

column calculation using Equation (2-1) introduced by Gavin Towler [35]. The 

equation is based on the well-known Souders and Brown equation which can get 

the maximum vapor velocity and the column diameter. 

�� = �−0.171��
� + 0.27�� − 0.047� �
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where, �� and �� denote maximum allowable vapor velocity and plate spacing 

(range 0.5-1.5), respectively. �� is the maximum vapor rate which can be obtained 

easily form the simulation. Distillation column height is calculated based on height 

Equivalent to theoretical plate (HETP ) and the HETP=0.85m is selected here [35]. 

Separator diameter calculation use the gas flow rate Equation (2-2) which is 

applying droplet settling velocity [36]. 
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where �� and �� stand for gas flow rate and sizing parameter, respectively. The 

sizing parameter can be obtained either from American petroleum institute

(API) recommendation or from the droplet-settling equation, where we use a 
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constant value 0.1 in this study. To calculate the heat exchange area of a heat 

exchanger, the overall heat transfer coefficient (U value) of 80 Btu/h ft2 °F is used

[37]. The compressor, turbine and pump cost is relying on the power consumption 

of each equipment and the power duty is also can easily get from the simulation. 

ESDU (Engineering Sciences Data Unit) organization provides the costing 

method of multi-stream plate fin type heat exchangers and ESDU 97006 was 

introduced about the selection and costing of plate-fin type heat exchanger [38]. 

The total exchanger volume should be obtained in order to cost the exchanger. First, 

a mean volumetric coefficient �� is obtained from Equation (2-3).

��̇

��
= ∑

��̇

��

�
���             (2-3)

where, ��̇ is the heat transferred in the zone, � is the total number of streams 

involved in the zone,  ��̇ and �� denote the amount of heat transferred to the ���

stream in the zone and the volumetric film coefficient at ��� stream. Next, the heat 

exchanger volume is then calculated from the expression below.

�� =
��̇ ∆��,��

��
           (2-4)

where, ∆��,� is the logarithmic mean temperature in the zone. Finally, the total 

active volume of the exchanger is calculated by summing the volumes for each 

zone with considering an allowance of 15% for headers and distributers.

After sizing the equipment, purchase cost is estimated by using Equation (2-5), 

which is commonly applied for preliminary design stage [39]. 

�������
� = �� + �������(�) + ��[�����(�)]

�	 	 	 	 	 	 	 	 	 (2-5)

where, ��
� is the equipment purchase cost. A is the capacity or size 

parameter for equipment. For compressors, turbines and pumps it represents 
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power consumption. For heat exchangers and vessels, it represents area and 

volume, respectively. The correlation parameter data for K1, K2, K3 used in 

each equipment as below Table 2-3 which is taken from Turton et al., (2012)

The total capital cost (TCC) can be obtained by multiplying Lang factor with the 

major equipment purchase cost as well as considering time value which is based on 

the current CEPCI (chemical engineering plant and cost index) [40].
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Table 2-3. Equipment cost data parameters

Equipment Type Description K1 K2 K3 Capacity, Units

Compressors
Centrifugal, 

reciprocating
2.2897 1.3604 -0.1027 power, KW

Turbines Axial gas turbines 2.7051 1.4398 -0.1776 power, KW

Heat exchanger U-tube 4.1884 -0.2503 0.1974 Area, m2

Process Vessels Vertical 3.4974 0.4485 0.1074 Volume, m3

Pumps Reciprocating 3.8696 0.3161 0.122 power, KW

Towers Tray and packed 3.4974 0.4485 0.1074 Volume, m3
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l Operating cost estimation

Calculating the operating cost is often complex and it mainly rely on energy 

costs. In addition, utility costs like electricity are the main utilities and directly 

influenced by the cost of fuel price [8]. The utility cost, such as electricity and 

refrigeration cost, and the feed raw material cost are the main operating cost 

considered in this research. The raw material cost in here represents the cost of feed 

natural gas. The steam cost is ignored in this study because the column operating in 

similar conditions, and accordingly re-boiler temperature and column bottom NGL 

mass flow are also no big difference with all the candidate four schemes which 

result less effect in total operating cost. The electricity is mainly consumed by 

compressor, turbine and pump and the reference unit price of electricity and natural 

gas cost is obtained from the EIA (U.S Energy Information Administration). 

Unlike ISS and IPSI, the HHC separator and Scrub column schemes should 

include additional refrigeration cost, extra precooling of NGL flow, for fair 

comparison of total operating cost because they get precooling refrigeration from 

integrated liquefaction system. The refrigeration cost is calculated by applying the 

liquefaction efficiency reported from previous references ([41]; [42]). The 

liquefactio efficiency in this study assumes 14 kW/ton/day and with the electricity 

cost of 0.1 usd/kWh, we could obtain the operating cost 33.6 usd/ton. Then 

multiply NGL mass flow rate for getting additional refrigeration cost for HHC 

separator and Scrub column schemes. In this study, we focused on NGL recovery 

part and neglect the heat exchanger cost effect of liquefaction cycle because the 

recovered NGL mass flow is very small compared to the LNG production (about 

1.5% of LNG production) under the lean feed compositions. Thus, we ignore the 

increasing size of cryogenic heat exchanger in liquefaction part.
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2.1.5. Profitability analysis

The profitability analysis is made for each scheme for comparing net profit and 

payout time. The net profit is obtained by the gross profit minus tax (the tax rate 

assumed 30% in this study). The gross profit is calculated by products revenue 

minus operating cost [40]. The payout time, also called payback time in some 

research, is evaluated and compared to each process. Payout time is the total capital 

cost divided to the net profit which is expressed as Equation (2-6) [43].

������	���� =
�����	�������	����

���	������
	 	 	 	 	 	 	 	 	 (2-6)

2.1.6. Total annualized cost (TAC) optimization

The annualized TCC is expressed on annual basis by assuming 5% interest rate 

over 10 years’ period for the economic evaluation. In this research, we considered 

TAC as object function of optimization. Here, the TAC is defined as the sum of 

annualized TCC, total operating cost and minus byproducts credits (Equation (2-7))

��� = 	����������	��� + �����	���������	����	– 	����������	�������  

(2-7)

In which the byproducts credits include each component of the NGL (C2+) cost.

l Global optimization

The genetic algorithm (GA) was used by linking Matlab with HYSYS 

optimization to find the minimum TAC. The GA method has been used in some 

previous studies, and its applications have been tested [44]. GA is an intelligent 
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random search algorithms based on the mechanics of natural evolution, it utilizes 

historical information and finally could yield a global optimum by repeating a

series of population selection and generation for complex optimization problems 

which have many local optimum solutions. The parameter of population uses in 

this study is 30 and the elite count of 2 for the GA. The process constraints are 

given as above mentioned Table 2-2 and optimization variables by each scheme are 

listed in below Table 2-4. Where T, P and F stands for temperature, pressure and 

flow rate, respectively. The subscript number represents stream number of each 

process.
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Table 2-4. Optimization variables by each scheme

Process schemes Optimization variables

ISS T1, P4

IPSI F11, F21, T7, T3, T4, T5, T6, P14

HHC Separator P2, T2

Scrub column P2, T2
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l Sensitivity analysis

The variable sensitivity analysis was performed for each scheme in order to 

investigate the effect of objective function. 

For the ISS scheme (Figure 2-1), stream 1 temperature influence for the objective 

function TAC is less than 0.1 % when increase 10 % and decrease 10 % value 

compare to the base temperature value as shown in Figure 2-5. On the other hand, 

stream 4 pressure influence for the TAC is more than 1.5 % according to Figure 2-6. 

They show that the column pressure has bigger effect than the separator flash 

temperature in terms of the ISS process. Flow ratio of stream 11 and stream 21, the 

temperature of stream 6 and stream 7 were selected as the variables for the IPSI 

process (Figure 2-2). The flow ratio of stream 11,21 and the temperature of stream 

6 do not have big impact (less than 0.2%) for the objective function TAC when 

increase or decrease 10% from the base value (refer to Figures 2-7~ 2-9). However, 

the flash temperature of stream 7 has bigger sensitivity in terms of TAC. The TAC 

difference is about 0.45% when stream 7 temperature increases 10%, whereas it 

has no feasible solution when decrease the temperature 10%. It shows the 

sensitivity for stream 7 temperature is big in the IPSI scheme. For the similar 

concept process HHC separator (Figure 2-3) and scrub column (Figure 2-4), flash 

temperature of stream 2 has bigger impact than the flash pressure according to 

Figures 2-10~ 2-13.
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Figure 2-5. Temperature (stream 1) affect for the ISS scheme
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Figure 2-6. Pressure (stream 4) affect for the ISS scheme
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Figure 2-7. Flow ratio (stream 11) affect for the IPSI scheme
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Figure 2-8. Flow ratio (stream 21) affect for the IPSI scheme
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Figure 2-9. Temperature (stream 6) affect for the IPSI scheme
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Figure 2-10. Temperature (stream 7) affect for the IPSI scheme
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Figure 2-11. Temperature (stream 2) affect for the HHC separator scheme
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Figure 2-12. Pressure (stream 2) affect for the HHC separator scheme
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Figure 2-13. Temperature (stream 2) affect for the scrub column scheme
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2.1.7. Results and discussion

The results of economic evaluation for the selected four schemes is shown as 

Table 2-5. The data in the table is taken the average values of the four different 

type feeds cases for comparison purposes. 

The total capital cost result shows that IPSI has the highest value, whereas the 

HHC separator scheme has the lowest value among the other schemes due to its 

simple configuration and fewer number of process equipment. The most complex 

scheme IPSI gives 29.2% higher capital cost compared to the ISS scheme because 

the IPSI needs additional compressors and a number of heat exchangers for column 

bottom section improvements. Figure 2-14 illustrates the total capital cost by each 

scheme. The payout time presents similar tendency with the total capital cost 

results of the four schemes. However, remind that the payout time of each scheme 

is small according to Table 2-5. We also can find the payout time is similarly small 

according to the previous study conducted by Getu et al. 2013 [8]. This is because 

the payout time estimated by the academy usually assumes only the utility cost as 

the total operating cost due to the limitation of plant operation know-how. 

Therefore, the net profit overestimates the actual value that the results of payout is 

underestimated. If we consider other factors such as fixed charges and general 

expenses by a certain factor introduced in [40], the payout time of the ISS process 

is about 0.633, which is larger than the value shown in Table 2-5.

The total operating cost is mainly divided by the utility cost and raw material cost. 

The required raw material cost is illustrated in Figure 2-15. The IPSI process 

scheme requires the lowest raw material cost compared to other schemes even 

though it has the highest capital cost. The raw material saving for IPSI is 0.02% 

compared to ISS, 0.05% and 1.66% compared to the Scrub column and HHC 
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separator scheme, respectively. Because this study focused on lean feed condition, 

the high efficiency of the IPSI is not so remarkable. The total capital cost affect is 

bigger than raw material cost. It means that even though the IPSI scheme requires

lowest raw material, the higher capital cost and the operating cost offset the 

economic performance. HHC separator scheme owns the lowest total capital cost 

but the higher operating cost affect more in economic performance.
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Table 2-5. Economic and profitability analysis for the selected NGL schemes

ISS IPSI
HHC 

Separator
Scrub Column

Total Capital Cost ($) 12,505,611 17,662,398 771,518 1,517,911 

Total Operating 
Cost($/year)

344,977,737 345,229,183 352,179,175 345,885,252 

    1. Utility Cost($/year) 754,981 1,089,377 2,240,383 1,561,578 

    2. Raw material 
cost($/year)

344,222,756 344,139,807 349,938,792 344,323,674 

By products credits ($/year) 29,705,007 29,672,069 31,070,406 29,508,476 

Gross Profit($/year) 364,727,270 364,442,886 358,891,231 363,623,224 

Net Profit($/year) 255,309,089 255,110,020 251,223,862 254,536,257 

Payout time(year) 0.049 0.069 0.003 0.006
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Figure 2-14. Total capital cost of each scheme
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Figure 2-15. Required raw material cost by each scheme
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According to the aforementioned economic analysis Table 2-5 the ISS scheme has 

better advantages of utility cost than others, however, the IPSI gives better results 

in raw material cost. On the other hand, the HHC separator has lowest total capital 

cost due to the simple design concept. Because of this dissimilarity in each scheme, 

we defined TAC for performing overall economic evaluation which was 

considering annualized total capital cost, total operating cost and byproducts credit 

as discussed in previous part in detail. The TAC value for each feed is shown in 

Figure 2-16. For the feed 1 (GPM 1.84) the scrub column scheme has the lowest 

TAC value and IPSI gives the highest TAC, the savings of scrub column scheme is 

0.49%, 0.72% compared to the ISS scheme and the HHC Separator scheme, 

respectively. Similarly, for the feed 2 (GPM 2.2) the scrub column also has the best 

results and it is saving about 0.06%, 0.39% compared to the ISS and HHC 

separator schemes. Along with increasing feed GPM value the economy advantage 

of scrub column is lessened. When the GPM value reach 2.3 (Feed 3) both the 

scrub column and ISS scheme have almost the same TAC value, anyway they still 

have a lower value than IPSI and HHC separator schemes by 0.33% and 1.8% 

respectively. However, when the GPM value reach 2.5 (Feed 4) the ISS scheme, 

instead of Scrub column, has the lowest TAC value which is 0.32% lower than the 

scrub column and up to 2.62% lower than the HHC separator scheme.
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Figure 2-16. TAC analysis for each feed composition
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2.1.8. Summary

The economic analysis was performed to the ISS, IPSI, HHC separator and 

scrub column NGL recovery schemes focused on the various lean feeds condition. 

The HHV specification was also specified for meeting the requirement of wide 

regions. The HHC separator scheme shows the lowest and the IPSI gives the 

highest total capital cost as usual due to the configuration complexity. The IPSI 

gives the best performance in required minimum raw material cost with respect to 

its high efficiency. Nevertheless, the high total capital cost and operating cost offset 

its economic performance. The HHC separator scheme has lowest total capital cost 

but shows the highest raw material cost due to its worst separation efficiency 

comparing to other schemes. Because of considering lean feeds, the required raw 

material cost shows not so much deviation among the schemes.

In this work, TAC was utilized as comparing overall economic performance for 

the selected NGL recovery schemes which was included the annualized total 

capital cost, operating cost and byproducts credits. The results show that the scrub 

column scheme has the best performance when the feed is lean and GPM is lower 

than 2.3. When the feed GPM value reaches 2.5 the traditional ISS scheme gives 

better performance. The results demonstrated that when the feed is considerable 

lean (GPM value is lower than 2.3) the scrub column scheme can be considered as 

a good candidate for a NGL recovery process.
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2.2. Optimization and economic analysis of natural gas 

liquefaction processes for offshore units

2.2.1. Overview

LNG (Liquefied Natural Gas) has been widely used for economic long-distance 

transportation of natural gas because it has greatly reduced volume (about 600 

times) compared to natural gas. Accordingly, demand for LNG plants are also 

expected to increase due to increased demand for LNG. In the early stage of 

liquefaction process, single cycle using pure refrigerant or cascade processes were 

widely used [45], [46], [47]. However, since the complex and energy intensive 

characteristics of liquefaction processes, many advanced liquefaction processes 

have been developed for improving production and liquefaction efficiency [48]. 

The representative processes are SMR, C3MR (propane pre-cooled mixed 

refrigerant), DMR and MFC (mixed fluid cascade). The C3MR process, developed 

by Air Products and Chemicals Inc., has remained largest market share because it 

has been dominant in land-based LNG plants. However, C3MR has no record for 

the application of offshore liquefaction units. It normally has large propane 

inventory which may increase safety concern and large amount of equipment count 

so that it is not suitable for offshore units. 

Unlike an onshore liquefaction plant, an offshore platform has limited deck 

space, so that the selection criteria for liquefaction process is different with the 

land-based liquefaction plants. An offshore plant must be able to withstand much 

harsh environment than land-based plants such as waves or currents. It is very 

important to concern limited deck space, compactness and equipment count. 

Therefore, mixed refrigerant liquefaction process such as SMR, DMR and N2 

expander processes are normally considered as the suitable processes for offshore 
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LNG process.

According to the previous liquefaction studies regarding offshore application, 

there are some focus on improving liquefaction performance. A SMR process was 

suggested for a small medium scale offshore unit because of small equipment count 

and simplicity [49]. A DMR liquefaction process was proposed that was suitable 

for LNG FPSO and showed that the proposed scheme decreased power 

consumption by 1.2% compared with a DMR process [50]. Four liquefaction 

processes such as a SMR and dual N2 expander processes for the small-scale plants 

were analyzed and showed that a SMR process had the lowest specific power 

requirement [51]. Optimization of a SMR liquefaction process for offshore

applications was performed by knowledge-inspired hybrid approach [52]. The 

cascade, SMR and the single expander processes were simulated with Aspen 

HYSYS and optimized by the global optimization tool GA to achieve minimum 

power consumption [53]. N2-CO2 expander cycle, which has the inherent safety in 

the operation of offshore units, was optimized for compression energy 

requirements [54]. A cascade liquefaction process with nonflammable refrigerants 

was proposed for the offshore application and showed that enhanced efficiency 

compared to the conventional turbine-based processes [55]. A natural gas Claude 

cycle was analyzed and compared the efficiency and compactness with C3MR and 

some N2 Brayton cycles, showed that the Claude cycle was a good candidate for 

offshore LNG processes [56].

There also have some studies that both consider liquefaction efficiency and 

economic performance. Li and Ju, 2010. compared C3MR, mixed refrigerant cycle 

(MFC) and N2 expander processes and showed that N2 expander scheme was the 

best choice for offshore units in terms of efficiency and economically considering 
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LNG FPSO (floating production storage and off-loading units) layouts [57]. 

However, the efficiency and economic comparison of SMR and DMR cycles were 

not included. 

Adopting more refrigeration cycles could increase the energy efficiency of a 

liquefaction process. But increasing the number of refrigeration stages also will 

increase equipment count and total capital investments. Therefore, selecting a 

liquefaction process requires a comprehensive comparison considering both capital 

cost and liquefaction efficiency especially in offshore units. In this chapter various 

liquefaction processes include N2 expander, SMR and some DMR cycles that 

suitable for offshore units were selected and comparing both the liquefaction 

efficiency and economic performance of each process.

2.2.2. Process description

A liquefaction process normally uses treated natural gas (NG) which is removed 

impurities such as acid gas, water, mercury and heavier hydrocarbons. The 

composition mainly contains C1(normally more than 90%) with small amount of 

C2-C4 components and very small amount of C5+ components (less than 

0.1mole%). The treated NG is cooled to about -160C at standard atmospheric 

pressure through a liquefaction process.

l N2 expander process

A N2 expander process uses a pure N2 as refrigerant, it has advantages of simple 

configuration, relatively small footprint and easier operation than the other

liquefaction processes. Thus, it can be applicable for some special offshore 

application and peak shaving plants. But it requires a lot of energy consumption 

that resulting in lower liquefaction efficiency than the processes using mixed 
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refrigerant cycles. However, the N2 expander processes still favorable for the 

offshore units due to inherent safety in handling non-flammable refrigerant and 

easy operation. For example, the minimization of flammable inventory like 

propane is very important for process safety for floating liquefied natural gas 

(FLNG). Lee et al. 2013 analyzed several liquefaction processes using non-

flammable refrigerants including single and dual N2 expander process [58]. A 

single N2 expander process has very simple configuration with one multi-stream 

heat exchanger, but the efficiency is almost lowest in the N2 expander processes. A 

dual N2 expander process has two expanders while the single N2 expander process 

has only one expander, so the dual N2 expander process has higher liquefaction 

efficiency than the single N2 expander process. The efficiency can be improved 

more than 32% [58]. Dubar 1988 introduced more complex processes: dual N2 

expander and triple N2 cycles using several multi-stream heat exchangers [59]. 

Lim et al. 2014 simulated another configuration of single N2 expander process 

using two multi-stream heat exchangers [42]. The liquefaction efficiency is 679 

kWh/ton, which was 14.5% higher and 26.2% lower efficiency than the single and 

dual N2 expander processes shown by Lee et al. 2013.

In this study a dual N2 expander process was selected and shown as Figure 2-17

due to its simple configuration and higher efficiency than single N2 expander 

process.
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Figure 2-17 Dual N2 expander process
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l SMR processes

For higher liquefaction efficiency, it is important to reduce the entropy 

generation because of temperature difference in the heat exchangers, normally 

mixed refrigerant (MR) cycle is effective in reducing the temperature difference 

with a lower equipment count than pure refrigerant cycle [60]. MR systems are 

widely used in liquefaction processes because of high energy efficiency, compact 

design compared to other processes operating with pure refrigerant. Therefore, a 

SMR process generally has higher liquefaction efficiency than a dual N2 expander 

process which uses pure N2 refrigerant only. The SMR process also can be seen as 

a good candidate that is suitable for the small scale offshore units because it can 

achieve higher efficiency than the dual N2 expander process and simpler 

configuration than DMR cycles. Moreover, SMR processes have higher flexibility 

and easier operability than DMR cycle because they use only one mixed refrigerant 

cycle. The capacity of a SMR process is normally less than 1.3 MTPA per train.

According to previous studies regarding the SMR processes, there have several 

different configurations. The representative SMR processes are PRICO SMR 

(Black & Veatch), APCI (air products and chemicals) SMR, Linde SMR. Khan et al. 

2013 optimized a SMR by knowledge based optimization method [61]. The SMR

process has very simple configuration which involves one multi-stream heat 

exchanger, one compressor, one set of cooler and one Joule-Thomson (JT) 

expansion valve. MR component they used N2, C1~C4 components and after 

optimization, the liquefaction efficiency was 424.3 kWh/ton (table 3-1). Shirazi & 

Mowla. 2010 also analyzed a SMR process and conducted energy optimization by 

using GA optimization technique [62]. Other researches from Morosuk et al. 2015 

and Khan et al. 2012 also analyzed a SMR process [63], [64]. Their configurations 
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for the SMR processes are almost the same except the numbers of MR compression 

stages (normally uses two or three compression stages). Xu et al. 2013; Cao et al., 

2016; Lim et al., 2014 investigated a SMR process including a flash separator to 

separate vapor and liquid MR streams, after that the vapor and liquid MR streams 

increase the pressure by the compressor and pump, respectively [65], [66], [42]. 

The process could reduce compressor size because of using pump to increase a 

portion of liquid MR stream. Vatani et al. 2014 analyzed an APCI SMR that the 

process configuration consists of two multi-stream heat exchangers [67]. Moein et 

al. 2015 analyzed another APCI SMR process with three multi-stream heat 

exchangers, they optimized total required power of the SMR process by GA [68]. 

The MR compositions include N2, C1~C3, nC4, iC4 and specific power 

consumption of the process was 275.04 kWh/ton after optimization. There also 

exist more complex configurations than previous mentioned SMR processes such 

as Linde SMR process investigated by Vatani et al. 2014 [67]. The Linde process 

used four multi-stream heat exchangers in order to improve heat integration. 

However, this process has more complex configurations than APCI SMR and the 

efficiency advantage is not obvious, so does not include in this study. 

As mentioned above, there are various versions of SMR liquefaction processes, 

from the simplest SMR process to the more complex Linde SMR process. This 

study we choose SMR process 1 (Figure 2-18) and SMR process 2 (Figure 2-19) as 

the candidate processes for the offshore applications considering simple operation 

and footprint.
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Figure 2-18. SMR process 1
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Figure 2-19. SMR process 2
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l DMR processes

A SMR cycle has simple structure with less equipment count, but the efficiency 

and each train capacity are limited, so it has been used for the small size of NG 

liquefaction plants. Since a SMR cycle has limitations in liquefaction efficiency 

and each train capacity that can be improved, DMR cycle should be used for 

achieving higher liquefaction efficiency and larger capacity per train. The capacity 

can be achieved up to 5 MTPA per train for DMR cycle [69]. Therefore, the DMR 

liquefaction process could be applicable in large scale offshore units. For example,

Shell Prelude FLNG adopted a DMR process. The previous studies 

Venkatarathnam & Timmerhaus, 2008; Vatani et al. 2014 investigated a 

conventional DMR base process that uses two multi-stream heat exchangers for 

pre-cooling and the other two multi-stream heat exchangers for liquefaction and 

sub-cooling successively [60],[67]. Another configuration of DMR process was 

simulated and economic optimization was performed by Wang et al. 2014 [70]. 

This DMR process uses only one multi-stream heat exchanger as the pre-cooling 

section, which is different with the abovementioned DMR process using two multi-

stream heat exchangers for pre-cooling. Additionally, US patent 6,269,655 

introduced several DMR liquefaction processes requiring minimum plot plan area 

that were suitable for offshore applications [71]. The invention addressed that these 

DMR processes could operate at high efficiency that were both compact and cost 

effective. Number of MR cycles is one of the most major determining factors for 

liquefaction efficiency, and increasing the number of MR cycles can improve 

process efficiency and capacity but the total capital cost and required area may 

increase accordingly. For example, the Linde introduced a liquefaction process 

called MFC using three MR cycles. The MFC process has higher energy efficiency 



59

than above introduced liquefaction processes due to uses three different MR cycles. 

However, the complex configuration and require large footprint that are not 

suitable for offshore application. As mentioned, compactness and simple operation 

are more important for offshore units. Though, the processes have much more 

complex configurations than DMR cycle such as MFC are excluded in this study.

The well-known DMR base process shown as Figure 2-20 and the other two cases 

liquefaction processes (Figure 2-21 and Figure 2-22), which were suggested for 

offshore applications by the US patent 6,269,655 [71], are selected as the candidate 

processes for DMR cycle. The liquefaction efficiencies for N2 expander, SMR, 

DMR processes referenced from the previous studies are listed in Table 2-6.
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Figure 2-20. DMR base process
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Figure 2-21 DMR process 2
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Figure 2-22. DMR process 3
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Table 2-6. Liquefaction efficiencies from the previous studies

Author Journal Process
Efficiency 

(kWh/ton)

Barclay & Denton, 
2005

LNG journal Single N2 expander 907.2

Dubar 1998 US 5,768,912

Single N2 expander 647

Dual N2 expander 453

Lee et al., 2013 ISOPE

Single N2 expander 794

Dual N2 expander 538

Lim et al., 2014
Industrial & 

Engineering Chemistry 
Research

Single N2 expander 679

Shirazi & Mowla, 
2010

Energy SMR 303.6

Khan et al., 2012
Asia‐Pacific Journal of 
Chemical Engineering

SMR 424.4

Moein et al., 2015
Journal of Natural Gas 

Science and 
Engineering

SMR 275.04

Lim et al., 2014
Industrial & 

Engineering Chemistry 
Research

SMR 347

Vatani et al., 2014
International Journal of 

Energy Research
SMR 305

Vatani et al., 2014
International Journal of 

Energy Research
DMR 275
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Barclay and Shukri, 
2000

Annual Gas Processors 
Association 
Convention

DMR 307.2

Venkatarathnam & 
Timmerhaus, 2008

Springer DMR 240

Lee et al., 2011 ISOPE DMR 237.4
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2.2.3. Results and discussion

Optimization and economic analysis results of the abovementioned six types of 

liquefaction processes are shown as below.

l Optimization results

Process optimization was performed by minimizing power consumption of the 

liquefaction cycle as an objective function and the GA, described more detail in 

section 2.1, connected with HYSYS variables was used in here. Minimizing the 

required power consumption is commonly used as the objective function of a 

liquefaction process optimization [72], [65], [68]. There also exist some studies 

were used exergy efficiency [60], exchangers heat duty [73], heat exchanger area 

[74], or operating cost as an objective function [75]. Additionally, Minimum 

temperature approach (MTA) of 3 C was used as optimization constraints in this 

study. 

The results of optimization variables for dual N2 expander process (Figure 2-17) 

are illustrated as Table 2-7. There are total seven optimization variables including 

four pressure level for the N2 refrigerant, two inlet temperature for the turbines and 

one N2 refrigerant split ratio variables. The lowest pressure of N2 refrigeration was 

3.92 bar, and the highest pressure was up to nearly 60 bar. The two inlet 

temperature for the turbines were -17 C and -57.5 C, respectively. N2 refrigerant 

split ratio was about 0.33. The refrigerant split into dual streams have advantages in 

the heat integration compared to the single N2 expander process. Accordingly, the 

liquefaction efficiency could obtain is higher than single N2 expander process. 

Total power consumption for the liquefaction cycle was 263,092 KW and LNG 

product was 334.8 ton/h for the Dual N2 liquefaction process. The liquefaction 

efficiency was 32.75 KW/ton/day (about 785.9 KWh/ton) after optimization, which 
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value was in the range of the previous reported N2 expander efficiency in 

agreement with Table 2-6.

The optimization variables for SMR process 1 (Figure 2-18) and SMR process 2 

(Figure 2-19) SMR liquefaction processes are shown as Table 2-8 and Table 2-9. 

There are nine and ten optimization variables for the SMR process 1 and SMR 

process 2, respectively. The SMR process 1 has two-stages compression while the 

SMR process 2 owns three-stage compression. Hence, the SMR process 2 has one 

more variable than the SMR process 1. Both processes use same component 

nitrogen (N2), methane (C1), ethane(C2), propane(C3) n-butane(nC4) as the MR 

composition variables and one MR mass flow as a variable. The lowest MR 

pressure for the SMR 1 and SMR 2 processes were 2.76 bar and 3.04 bar. Likewise, 

the highest MR pressure for the two schemes were 29.59 bar and 43.95 bar. The 

lowest pressure for the two schemes were similar, but the highest pressure for SMR

process 2 was 48.5% higher than SMR process 1. It is because SMR process 2

utilizes three-stage compression systems instead of two-stage compression. The 

MR mass flow of SMR 1 was 17.4% higher than that of SMR process 2. Total 

required power and LNG product for the SMR process 1 were 101,170 KW and 

334.6 ton/h. For the SMR process 2, the values were 96,322 KW and 334.8 ton/h 

after optimization. The liquefaction efficiencies of the SMR process 1 and SMR 

process 2 cycles were 12.6 KW/ton/day (302.4 KWh/ton) and 11.99 KW/ton/day 

(287.7 KWh/ton), respectively. The liquefaction efficiency of SMR process 2 is 

about 5% higher than the SMR process 1 after optimization.

The results of optimization variables for the three types of DMR processes 

(Figure 2-20~2-22) are given as Table 2-10. There are 19 variables for the DMR 

base process, ten of which are in the warm mixed refrigerant cycle (WMR) and 
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nine in the cold mixed refrigerant cycle (CMR). The WMR cycle is for natural gas 

precooling which includes three pressure variables (two-stage compression), five 

composition variables (N2, C1, C2, C3, nC4), one WMR flow ratio and one mass 

flow variables. The CMR cycle is for liquefaction and sub-cooling containing four 

pressure variables (three-stage compression), four CMR composition variables (N2, 

C1, C2, C3) and one mass flow variable. The DMR process 2 and 3 are utilizing 

only one multi-stream heat exchanger for pre-cooling part. Therefore, they do not 

include the WMR split-flow ratio variable comparing with the DMR base process, 

and accordingly both DMR process 2 and 3 consist of total 18 optimization 

variable. According to Table 2-10 data, the lowest and highest MR pressure for the 

three schemes show similar values after optimization. The WMR and CMR 

compositions also have a similar tendency. Total power consumption for the DMR 

base case, DMR process 2 and 3 were 79,489 KW, 86,410 KW and 89,778 KW 

respectively. LNG product for those schemes indicate almost the same value (about 

334.8 ton/h). The liquefaction efficiency of DMR base was 9.89 KW/ton/day 

(237.39 KWh/ton), the efficiency of DMR process 2 and 3 were 10.75 KW/ton/day 

(258.09 KWh/ton) and 11.17 KW/ton/day (268.18 KWh/ton), respectively. 

Table 2-11 shows the summary of LNG product and liquefaction performance 

for each process. The LNG product for each process is similar (at the most about 

0.1% difference). The required power consumption and liquefaction efficiency 

have same tendency. The simplest process N2 expander has highest power 

consumption and efficiency. By contrast, the most complex process DMR base 

shows the lowest power consumption and efficiency. The dual N2 expander 

presents about 69.8% low process efficiency compared to the DMR base scheme. It 

indicates that the process has more complex configuration has higher process 
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efficiency. DMR base process also shows 21.5%, 17.5%, 8.02% and 11.48% higher 

process efficiency than SMR process 1, SMR process 2, DMR 2 and DMR 3 

schemes.
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Table 2-7. Optimization variables of the Dual N2 expander process

Variables

Pressure (bar) P_low 3.92

Pressure (bar) P_m 13.00

Pressure (bar) P_m2 28.25

Pressure (bar) P_high 59.37

Turbine inlet Temperature 1 (C) T_low -57.51

Turbine inlet Temperature 2 (C) T_high -17.06

Refrigerant split ratio F 0.33

Total number of variables 7
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Table 2-8. Optimization variables of the SMR process 1

Variables

Pressure P_low 2.76

Pressure P_m 10.04

Pressure P_high 29.59

N2 Composition CN2 0.07

C1 Composition CC1 0.27

C2 Composition CC2 0.34

C3 Composition CC3 0.14

nC4 Composition CC4 0.18

MR mass flow F 1651.00

Total number of variables 9
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Table 2-9. Optimization variables of the SMR process 2

Variables

Pressure P_low 3.04

Pressure P_m 7.15

Pressure P_m2 21.61

Pressure P_high 43.95

N2 Composition CN2 0.09

C1 Composition CC1 0.26

C2 Composition CC2 0.33

C3 Composition CC3 0.06

nC4 Composition CC4 0.26

MR mass flow F 1406.03

Total number of variables 10
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Table 2-10. Optimization variables of the DMR processes

Variables DMR base DMR 2 DMR 3

Pressure PPMR-1 2.80 3.08 3.03

Pressure PPMR-2 7.79 7.93 7.56

Pressure PPMR-3 16.43 16.34 15.02

N2 Composition CN2 0.00 0.00 0.00

C1 Composition CC1 0.00 0.00 0.00

C2 Composition CC2 0.25 0.22 0.21

C3 Composition CC3 0.58 0.58 0.58

nC4 Composition CnC4 0.16 0.19 0.20

Tee Flow ratio RPMR-5 0.64 - -

WMR mass flow Fwmr 1144.63 970.01 1008.52

Pressure PCMR-1 2.91 2.74 2.80

Pressure PCMR-2 15.00 14.99 15.00

Pressure PCMR-3 20.85 20.44 21.46

Pressure PCMR-4 45.99 43.79 50.33

N2 Composition CN2 0.06 0.05 0.11

C1 Composition CC1 0.41 0.40 0.36

C2 Composition CC2 0.34 0.33 0.32

C3 Composition CC3 0.20 0.21 0.22

CMR mass flow Fcmr 690.88 688.28 709.85

Total number of variables 19 19 18 18

WMR cycle

CMR cycle
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Table 2-11. LNG product and liquefaction performance by each scheme.

N2 Dual expander SMR 1 SMR 2 DMR base DMR2 DMR3

LNG Product (ton/h) 334.8 334.6 334.8 334.8 334.8 334.8

Power consumption (kw) 263,092 101,170 96,322 79,489 86,410 89,778

Liquefaction efficiency (kw/ton/day) 32.75 12.60 11.99 9.89 10.75 11.17
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l Economic evaluation

The capital cost and operating cost estimation method are the same as that 

described in Chapter 2.1. The results by each scheme are shown as Figure 2-23. 

The SMR process 2 gives the lowest total capital cost among the processes. It 

was 5.13%, 9.77%, 14.09%, 8.19% and 9.62% lower than the N2 expander, SMR 

process 1, DMR base, DMR 2 and DMR 3 processes, respectively. N2 expander 

process has simpler configuration than the SMR process 2 but shows a little higher 

capital investment cost. This is because the N2 expander process uses expensive 

turbines unlike the SMR process 2 using JT valve. Similarly, the SMR process 1 

presents nearly 10 % higher capital expenditure compared with the SMR process 2 

even though it owns simpler process complexity. Because SMR process 1 requires 

higher compressor size than SMR process 2 which causes great effect on the total 

capital expenditure. DMR base process, which has the most complex 

configurations in here, indicates about 14% higher capital expenditure compared to 

the SMR process 2.

The total operating cost by each scheme (Figure 2-23) shows that DMR base 

process reveals the lowest operating cost per year. Conversely, due to a poor 

liquefaction efficiency the N2 expander process presents the highest operating cost 

which is 54% higher compared to the DMR base scheme. Operating cost savings of 

DMR base case were 21.43% and 17.48% compared to SMR process 1 and SMR 

process 2. For the other DMR processes: DMR process 2 and 3 the savings were 

8.01% and 11.46%, respectively. Even though DMR base scheme gives the highest 

total capital cost expenditure among the schemes, the operating cost shows lowest 

expenditure due to the higher process efficiency than the other processes. For 

example, DMR base process presents about 14% higher total capital cost compared 
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to SMR process 2. On the other hand, it spends around 17% lower operating cost 

than the SMR process 2 per year.

Total annualized cost (TAC) in this chapter is defined as the sum of annualized 

TCC and total operating cost as Equation (2-8). The annualized TCC is calculated 

based on an annual basis in terms of an interest rate of 5% over 10-year period for 

economic evaluation. TAC has the advantage that reflect both total capital cost and 

operating cost impact.

��� = 	����������	���	 + 	�����	���������	����          (2-8)

Figure 2-24 presents TAC expenditure for each scheme. According to the figure, 

DMR base process shows the lowest TAC value while the N2 expander process 

shows the highest. The difference is around 50.92% between the two processes. 

TAC of DMR base process reveals 18.85% and 14.33% lower than the SMR 

process 1 and SMR process 2 It also shows 6.37% and 9.66% lower compared to 

the DMR process 2 and 3. The TAC and total operating cost for each process tend 

to be similar, but the rate of TAC compared to total operating cost was slightly 

decreased due to the effect of total capital cost. However, it is easy to find that the 

cost impact of operating cost is much greater than that of total capital cost.

Profitability results for the process schemes are given as Table 2-12. LNG price 

in this study was assumed 8 USD/MMBTU. The product revenues for the six 

different processes are similar, with a difference of less than 0.1%. It means that all 

the processes give similar LNG production. The gross profit of DMR base scheme 

shows the highest while the N2 expander process presents the lowest value among 

the schemes. The difference in gross profit between these two processes is 

approximately 14.05%. The profit of SMR process 2 shows 2.26% lower than the 

DMR base process. However, the SMR process 2 gives the shortest payback time 
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and DMR base process shows the longest (the deviation is approximately13.84% 

between the two processes).
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Figure 2-23. Total capital cost and operating cost for each scheme
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Figure 2-24. Total annualized cost (TAC) for each scheme
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Table 2-12. Profitability analysis for the process schemes.

N2 Dual expander SMR 1 SMR 2 DMR base DMR 2 DMR 3

Product revenue (USD/year) 1,215,912,298 1,215,202,998 1,215,912,298 1,216,211,499 1,216,061,919 1,215,912,298

Gross Profit (USD/year) 597,204,635 661,129,017 666,084,179 681,129,916 674,917,345 671,817,675

Net Profit (USD/year) 418,043,244 462,790,312 466,258,925 476,790,941 472,442,141 470,272,373

Payout time (year) 0.185 0.176 0.158 0.179 0.169 0.173
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In this chapter 2.2, process performance and economic evaluation were carried 

out on six types of representative liquefaction processes for offshore application. 

The results show that dual N2 process requires highest power consumption (more 

than 60% compared to DMR base) and lowest net profit (approximately 10% lower 

than the other schemes) among the schemes. Therefore, it can be seen that the N2

expander process is not advantageous in terms of process performance and 

economy aspects compared with other processes. The SMR 2 process shows the 

lowest total capital cost and payout time while DMR base case presents the highest 

net profit and lowest operating cost among the processes. The SMR 2 shows 14% 

and 12% lower total capital cost and payout time than DMR base. Conversely, 

DMR base process gives lower total operating cost compared to the SMR 2. Both 

the SMR 2 and DMR base each have advantages, compared with other processes,

that should be considered as good candidate schemes for offshore units.
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2.3. Evaluation of a representative NGL/LNG integrated 

process considering LNG HHV specification

2.3.1. Overview

In a conventional normal or rich feed condition, integrate the NGL recovery and 

liquefaction process have advantages over economic performance because 

integrating the two series cryogenic processes can share refrigeration systems and 

also eliminate a number of process equipment. Cueller et al. 2002 presented that 

integrated NGL/LNG co-production design could incredibly reduce capital and 

operating costs [76]. NGL are always removed from original treated feed gas for 

several reasons. For example, the added value of heavier hydrocarbons, the 

pipeline specification requirement for transportation etc. Moreover, the heavier 

hydrocarbons such as C5+ should be removed prior to liquefaction process in order 

to prevent freezing during liquefaction. Cryogenic processes are normally the most 

economic for the NGL recovery which have shown by previous studies and 

industrial experience. The representative processes are ISS, GSP and IPSI process 

etc. They use expander and joule-thomson (JT) valve to letdown the feed pressure 

for achieving cryogenic condition, these processes sometimes also need additional 

external refrigeration systems when the feed composition is rich. There are several 

existing liquefaction processes licensed by different companies such as APCI, Shell, 

Linde etc. The representative schemes are APCI SMR, C3MR and DMR processes, 

among them C3MR process has the dominant market share, especially in onshore 

plant, so far. However, the DMR process ,which is replaced the propane precooling 

cycle instead of the mixed refrigeration cycle, has reported its larger train capacity 

and higher liquefaction efficiency than C3MR [70],[77]. Both the NGL recovery 

process and liquefaction process are need refregeration systems, so they may have 
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the potential to integrate the two process configurations. Elliot et al. 2005 applied 

an integrated concept to real NGL/LNG projects and they showed that proper 

integration results in significant deacrease of overall capital cost and improving 

products production as well [78].

Pevious studies could classify as two groups regarding the NGL and LNG 

integrated processes. First, the researches focus on developing process efficiency. 

Ghorbani et al. 2016 introduced an integrated process for LNG and NGL products 

including a nitrogen rejection unit, the process applied C3MR cycle for providing 

refrigeration and the results showed resonalble specific power with more than 90% 

NGL recovery [79]. Mehrpooya et al. 2014 proposed three integrated processes 

with applying MFC, DMR and C3MR refrigeration systems, they reported that 

these configurations had high ethane recovery and lower specific power compared 

to the similar previous studies [80]. An integrated NGL/LNG process configuration 

was examined by Vatani et al., which could be applied for large scale LNG plants. 

This scheme utilized dual mixed refrigeration cycles for liquefaction, which 

showed good efficiency and acceptable NGL recovery under a rich feed condition 

[22]. Khan et al. 2014 presented integrated process using SMR cylcle and energy 

intensive coupled distillation configurations. After knowledge-based optimization, 

the proposed scheme showed remarkable improvement in compression power 

saving compared to the base case [81]. Wang and Xu 2014 presented that an 

integrated NGL recovery with LNG re-gasification process showed remarkable 

potentials on both energy savings and product production [24]. Hudson et al. 2003

reported several examples and showed that a good recovery rate as well as 

efficiency performance could be achieved by integrating liquids recovery with 

liquefaction processes [82]. Brostow and Roberts 2013 indicated that the required 
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energy could save remarkbly by integration of NGL recovery and liquefaction 

processes [31]. Dynamic simulation was performed by Husnil et al. 2014 in order 

to determine the control variables for a modified SMR cycle integrated with NGL 

recovery process [83]. Pillarella et al. 2007 introduced an integrated NGL/LPG 

extraction, a scrub column was applied, with C3MR liquefaction cycle. This simple 

integration process concept required less equipment than traditional extraction 

before liquefaction processes [84]. Uwitonze et al. 2016 compared DMR 

liquefaction cycle integrated with a conventional NGL recovery process and the 

other two proposed cases, which improved NGL recovery section with heat 

integration by distillation column [85]. They investigated that the heat integration 

process showed lower overall energy consumption and the products purities could 

be acquired by the integrated column system.

Second, the previous studies consider both efficiency and economy analysis. He 

and Ju 2014 proposed an integrated NGL recovery scheme with a signgle mixed 

refrigerant cycle, they selected global optimization method of GA for optimizing 

the process and described that the energy consumption could be reduced more than 

9% as well as the economic analysis showed good profitability [86]. Lee et al. 2012

investigated and compared natural gas liquefaction and recovery processes for 

offhsore application, they used SMR cycle as a refrigeration system due to its 

simple, compact and suitable characteristic on offshore floating structures [87].

Exergoeconomic analysis was performed by Ghorbani et al. 2017 for a NGL 

recovery and liquefaction integrated process, the results showed that exergy 

efficiency by air coolers and exergy destruction in the compressors affect power 

consumption straightly [88]. Ansarinasab and Mehrpooya 2017 evaluated two 

integrated processes using DMR and MFC refrigeration cycles by adopting 
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advanced exergoeconomic analysis, the results showed that the heat exchanger 

plays a crucial role in the coproduction of NGL and LNG products process [89]. 

Ansarinasab et al. 2016 performed exergoeoconomic evaluation on a recently 

reported integrated process which used MFC by refrigeration system, the results 

showed that the most important factor for the excergy destruction is due to heat 

exchangers [90]. A novel NGL/LNG integrated process using absorption system in 

precooling and MFC cycle for liquefaction was proposed [91]. The exergy analysis 

showed 12.72% improvement for overall efficiency compared to base case due to 

adopting absorption precooling system and the proposed process could increase 6.2% 

of net annual benefit according to economic analysis results.

2.3.2. A conventional integrated process description

Figure 2-25 illustrates a NGL/LNG conventional integrated process flow 

diagram. The pretreated feed, without water and acid gas, stream at 30 °C and 60 

bar is sent to the E1 and E2 multi stream heat exchangers successively for 

precooling the feed stream. Then the precooled stream 2 is flashed via V1 separator. 

The vapor stream is divided by stream 3 and stream 4, where the stream 3 is further 

cooled by the column top stream 9 and enters column top stage after depressurizing 

to the column pressure through JT valve. The other stream 4 is directly 

depressurized by the turbo expander C1 before introducing to the column. The 

liquid stream 5 is first expanded by JT valve to the column pressure and then enters 

to the column. The column top stream 9, after heat exchanging with stream 3, is 

compressed about 60 bar by C2 and C3 compressors before feeding to the E3 multi 

stream exchanger. The stream 13 follows to the exchanger E4 for sub cooling about 

-160 °C, then the stream 14 is reduced its pressure to about 1bar by JT valve. After 
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JT expansion the stream may contain small amount of end flash gas which could 

separate from a separator. The remaining liquid product is sent to LNG tank for 

storage. 

It can be divided into two cycles, precooling cycle and liquefaction cycle, for the 

DMR liquefaction part. The PMR (precooling mixed refrigerant) cycle is the inner 

loop cycle with the multi stream heat exchangers E1 and E2. The PMR-3 stream, 

which is compressed about 16.7 bar and the air cooled temperature of 33 °C, enters 

the first multi stream exchanger E1 and cooled about 0°C. The PMR-4 stream is 

divided two streams; one portion is expanded by JT valve to about 7.83 bar and 

returned to the E1 exchanger for providing cold refrigeration, the other remaining 

portion is further cooled through exchanger E2 about -33°C and then depressurized 

by JT valve about 2.81 bar before returning to the E2 exchanger for providing cold 

refrigeration. The CMR cycle for liquefaction is the outer loop cycle extended with 

E1, E2, E3 and E4 multi stream heat exchangers. The pressurized CMR-4 stream is, 

about 46 bar, first cooled to 33°C via the air cooler and follows to the E1 and E2 

exchanger successively. After precooling section, the CMR-6 stream is cooled 

about -33°C and then flashed to the CMR-7 and CMR-8 stream through a cold 

separator. The vapor stream CMR-7 is introduced to the E3 and E4 exchangers for 

further cooling and the pressure reduced to about 2.9 bar after expansion via JT 

valve. Then the stream cold stream is returned to the E4 exchanger for providing 

cold refrigeration. The liquid stream CMR-8 is passed the exchanger E3 and 

depressurized about 2.9 bar by JT valve and mixed with the returning cold stream 

from the E4 heat exchanger. The mixed cold stream follows the exchanger E3 in 

order to provide cold refrigeration. Then the stream CMR-1 increase the pressure 

via three stage compressors for complete the cycle.
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Figure 2-25. The conventional NGL/LNG integrated process (base case)
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CHAPTER 3. The proposed integrated processes 

under the lean feed conditions*

3.1 Overview

According to the chapter 2.3.1, previous studies for the integrated NGL recovery 

and liquefaction schemes, some of them have tended to only focus on improving 

process efficiency. For the large scale plants, plants efficiency maybe one of the 

most important factors compared to the total capital investments in terms of long-

term consideration. On the contrary, not only proper process efficiency but also the 

capital investments should be considered for small-medium scale plants (offshore 

units etc) or peak shaving plants. There are also some papers evaluated both 

process efficiency and economy evaluation. For example, He and Ju 2014 proposed 

a novel integrated process and performed exergy analysis and profitability analysis 

as well [86]. Lee et al. 2012 designed the integrated processes which could 

applicable for offshore units with consideration of investment costs [87].

Nevertheless, the studies tended to concentrate on a conventional normal rich feed 

condition and also without considering the LNG higher heating value (HHV) 

specification. The feed compostion is a very important factor in the natural gas 

processes [8]. Different feed conditions may show completely different process 

performance. Moreover, with the increasing number of unconventional lean gas 

reservoirs also require a re-evaluation of the integrated process configurations 

under the lean feed compositions. Additionally, the minimum requirements of LNG 

HHV in East Asia such as Japan and South Korea are higher than Europe countries 

or U.S. The two countries market share in LNG market is reported more than 47% 

                                                       
* This chapter references the author’s accepted journal paper: C. Jin, Y. Lim, Optimization and 

economic evaluation of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) 
processing for lean feed gas, Applied Thermal Engineering.
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based on IGU report [1]. This implies that the HHV specification for LNG products 

is also an important factor which should be included for consideration in the LNG 

processes.

In this paper we analyzed both process efficiency and economic evaluation with 

consideration of LNG HHV specification under lean feed conditions. We evaluated 

specific power consumption for liquefaction process and total annualized costs of 

selected integrated schemes which were conventional integrated NGL recovery 

with liquefaction process and proposed two cases of simplified integrated processes, 

respectively.

3.2 The proposed integrated process description

3.2.1. The proposed integrated process with DMR cycle

The simplified integrated process scheme utilizing DMR liquefaction cycle is 

shown in Figure 3-1. The simplified process has different configurations in NGL 

recovery section compared to Figure 2-24 base case. The previous study conducted 

by Jin and Lim shows the NGL recovery scheme could be simplified under lean 

feed condition.[92] The pretreated feed at 30°C and 60 bar follows the multi stream 

exchangers E1 and E2 successively for precooling the feed temperature of -33°C. 

The stream 2 is directly letdown the pressure to the column pressure through JT 

valve and introduced to the T1 column top stage. After extracting NGL from 

fractionation, the column top gas stream is compressed about 60 bar via C1 

compressor and fed to the E3 and E4 exchangers, respectively. The stream 8 

reaches the temperature of -160 °C after expands through JT valve to slightly 

above atmosphere pressure for stripping end flash gas. After that, the liquid LNG 

product send to LNG tank for storage. For the DMR liquefaction process, PFD is 
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same as the base case and do not mention here again.
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Figure 3-1. The proposed NGL/ LNG integrated process (case 1)
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3.2.2. The proposed integrated process with SMR cycle

The simplified integrated process scheme adopting SMR liquefaction cycle is 

shown in Figure 3-2. This simplified integrated process with SMR liquefaction 

system is the same configuration in NGL recovery part as the Figure 3-1 scheme. 

The pretreated feed follows the multi stream heat exchangers E1 for precooling the 

feed temperature about -33°C. The stream 1 is reduce the pressure by JT valve 

before entering the T1 column top stage. The column top gas stream 3 is 

compressed about 60 bar thorough C1 compressor and fed to the E2 exchanger. 

The SMR cycle has only one mixed refrigerant cycle. Therefore, it has more 

simple configuration than the previous two cases (Figure 2-24 and Figure 3-1). The 

MR-1 stream is elevated pressure about 42 bar by the C2 and C3 compressors. The 

MR-3 stream is cooled to about 30C through air cooler system, then it is separated 

by vapor and liquid streams through a separator. The vapor stream MR-4 is further 

compressed by a compressor and the liquid stream MR-5 increase the pressure by a 

pump before mixing each other. The MR-6 stream is divided by vapor stream MR-

7 and liquid stream MR-8 via a separator. The stream MR-7 and MR-8 are 

precooled to -30°C after passing the first E1 exchanger. Then both the MR-9 and 

MR-10 streams pass the E2 heat exchanger for further cooling. After JT expansion 

the cold stream MR-11 and MR-12 returned to the E2 and E1 exchangers 

sequentially for providing cold refrigeration.



93

Figure 3-2. The proposed NGL/ LNG integrated process (case 2)
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3.3 Feed compositions and specification

Feed composition is a decisive factor in process selection. For a same process 

with different feed composition, the process configuration may be changed for the 

process performance. We select a typical lean feed composition as shown in Table 

3-1 since we focus on the lean feed condition, where the GPM value of this feed is 

1.84.[92] The GPM is the amount of recoverable liquid which is expressed in 

gallons per 1000 standard cubic feet of gas at 60 °F and basically consider as lean 

feed when the value is lower than 2.5 [32]. The feed composition in Table 3-1 is 

not include water and acid gas components because the NGL recovery and

liquefaction processes are the post process of AGRU and dehydration processes.

Specify common key parameters are very important for fair comparison of 

different process schemes because these parameters could affect process 

performance significantly. Table 3-2 shows the common process specification in 

this study. The minimum HHV is specified in order to satisfy the LNG 

specification of east Asian countries. The LNG C5+ specification is referenced 

from gas processors suppliers association (GPSA) engineering data book [33].
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Table 3-1. Feed composition (mol. %)

Component C1 C2 C3 iC4 C4 iC5 C5 C6+ N2

Feed 92.97 4.18 1.23 0.54 0.54 0.04 0.04 0.03 0.43 
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Table 3-2. Common process key specifications

Feed flow rate 19,519 kg mole/h

Plant inlet gas pressure 60 bar

Plant inlet gas temperature 30 °C

Compressor/Turbine/Pump efficiency 80%

Pressure drop across the heat exchanger 0.5 bar

Heat exchangers minimum temperature approach 3 °C

HHV (LNG) Min. 40.50 MJ/Sm3

C5+ (LNG) 0.1 mol% max.

Property fluid package Peng Robinson
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3.4 Liquefaction efficiency analysis

In a liquefaction process the efficiency is normally expressed as the consumed 

power of refrigeration cycle compressors over produced LNG. Therefore, the 

minimization of the total required work of compressors stands for better 

liquefaction efficiencies. In this study, the objective function is expressed as 

Equation (3-1), minimization the total work of refrigeration cycle compressors [93],

[94], [65].

��������	�(�) = ∑������������            (3-1)

In Equation (4-1) the � is optimization variables including MR mass flow of 

each component, the outlet pressure of compressors etc. The optimization variables 

(�) in this study is shown as Table 3-3 and Table 3-4. The WMR for precooling 

cycle uses N2, C1, C2, C3, nC4 refrigerants and N2, C1, C2, C3 are selected as the 

CMR for the DMR liquefaction cycle and N2, C1, C2, C3, nC4 refrigerants are 

selected for the SMR liquefaction cycle

The constraints of this study are minimum temperature approach in the heat 

exchangers, compressors inlet stream temperature. These constraints are detailed as 

follows:

∆����,���� ≥ 3	°� ;         

           ������,������������ ≥ ����,�        (3-2)

Where the ∆����,���� stands for the MTA in heat exchanger i, ������,������������

and ����,� refer to operating temperature of ith inlet compressor stream and dew 

point temperature of the stream.
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Table 3-3. Optimization variables (with DMR cycle)

WMR cycle

Pressure PPMR-1

Pressure PPMR-2

Pressure PPMR-3

N2 composition CN2

C1 composition CC1

C2 composition CC2

C3 composition CC3

nC4 composition CnC4

Tee flow ratio RPMR-5

WMR mass flow FWMR

CMR cycle

Pressure PCMR-1

Pressure PCMR-2

Pressure PCMR-3

Pressure PCMR-4

N2 composition CN2

C1 composition CC1

C2 composition CC2

C3 composition CC3

CMR mass flow FCMR

Total number of variables 19



99

Table 3-4. Optimization variables (with SMR cycle)

MR cycle

Pressure Plow

Pressure Pm1

Pressure Pm2

Pressure Phigh

N2 composition CN2

C1 composition CC1

C2 composition CC2

C3 composition CC3

nC4 composition CC4

MR mass flow F

Total number of variables 10
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The GA is used for the process optimization. The GA Matlab code linked with 

Aspen HYSYS is used for obtaining the optimum process conditions. The GA is a 

random search method based on the idea of natural evolution which uses historical 

information and eventually find the global optimum by reproducing a series of 

population. The GA method is an effective tool for hydrocarbon process 

optimization and used for several previous studies [86], [95]. The population size 

200 and the elite count 10 are selected for the GA main tuning parameters. 

3.5 Economic evaluation

Economic evaluation as well as profitability analysis between the integrated base 

process and the proposed two schemes were performed the same method as 

described in Chapter 2.1. The TAC in this research is defined the same as Equation 

(2-8) which is discussed in previous Chapter 2.2. The annualized TCC is calculated 

by an annual basis and the interest rate of 5% over 10-year period was used in this 

study.

3.6 Results and discussion

The total capital cost by each scheme is shown in Figure 3-3. The conventional 

LNG/NGL integrated process (base case) shows the highest total capital cost, 

whereas the simplified integrated process utilizing SMR cycle (case 2) presents the 

lowest total capital cost. The total capital cost difference of these two schemes is 

about 21.5% because case 2 scheme not only simplified NGL recovery section but 

also liquefaction cycle which could lead to significantly reduce the equipment 

counts. The integrated process using DMR cycle (case 1) also can save the total 

capital cost 4.3% compared to the base case due to the simplified NGL recovery 
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section.

Figure 3-4 indicates the total operating cost for the three different processes. The 

case 1 scheme shows the lowest total operating cost compared with other processes. 

The saving is 1.5% and 23.9% compared to the base case and case 2 schemes, 

respectively. The case 2 scheme gives highest operating cost due to the highest 

compressor power consumption compared with base case and case 1 processes 

which use DMR instead of SMR cycle for high liquefaction efficiency.

The TAC for the processes is illustrated by Figure 3-5. The case 2 gives the 

highest and, conversely, the case 1 shows the lowest TAC. The case 1 scheme has 

1.8% lower TAC than the base case scheme and 18.5% lower TAC than compared 

to the case 2. The trend of TAC is similar with the total operating cost as shown in 

Figure 3-4. It means that the impact of total operating cost is greater than the total 

capital cost in terms of TAC.
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Figure 3-3. Total capital cost for each scheme
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Figure 3-4. Total operating cost for each scheme
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Figure 3-5. TAC for each scheme
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The LNG/NGL product and liquefaction efficiency for the candidate schemes are 

shown in Table 3-5. The LNG product of each process is similar, and there is less 

than 0.3% deviation between the schemes. The NGL product recovery is very small 

for all cases because this study we focused on lean feed conditions that has only 

small amounts of heavy hydrocarbons. The LNG product and consumed 

compressor power are the two factors that affect the liquefaction efficiency. The 

base case and case 1 processes have almost the same specific power (efficiency). 

Case 2 process presents the highest specific power, about 24% higher, compared to 

the other two schemes. This is because case 2 adopts SMR cycle as the liquefaction 

part, which has a poor liquefaction efficiency compared with DMR cycle that 

requires more compressor power than the other two schemes.

A profitability analysis was also carried out for each scheme as presented in 

Table 3-6. The product revenue for the three schemes are almost the same (less 

than 0.1%). However, the net profit and gross profit show the same trend for case 1 

and the base case, these are 2.52% higher than those of case 2. This is mainly due 

to the total operating cost difference. The net profit for the base case and case 1 are 

nearly the same (only 0.01% deviation). The payback time for case 2 process 

shows the lowest value, even though case 2 process has the lowest net profit. The 

payout time for case 2 is 19.4% and 15.8% lower than the base case and case 1, 

respectively. This is because the total capital cost of case 2 is remarkably lower 

than the other processes as shown in Figure 3-4.
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Table 3-5. LNG/NGL product and liquefaction performance

Base case Case 1 Case 2

LNG product (ton/h) 333.1 332.3 332.1 

NGL product (ton/h) 1.8 2.6 2.8 

Compressor power(kW) 79,798 79,758 98,879 

Specific power (kW/ton/day) 9.983 10.000 12.407 
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Table 3-6. Profitability analysis comparisons by each scheme

Base case Case 1 Case 2

LNG product revenue($/year) 1,209,709,828 1,206,837,991 1,206,067,943 

NGL product revenue ($/year) 5,089,192 6,971,171 7,407,367 

Product revenue ($/year) 1,214,799,019 1,213,809,162 1,213,475,309 

Gross Profit ($/year) 678,227,230 678,281,762 661,198,337 

Net Profit ($/year) 474,759,061 474,797,233 462,838,836 

Payout time (year) 0.194 0.185 0.156 
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The net revenue in this study is defined as net profit multiply by time and minus 

total capital cost in order to compare the revenue which is both consider net profit 

and equipment cost impact. The net revenue of each scheme by years is presented 

in Figure 3-6. According to Figure 7, the net revenue of case 2 scheme is higher 

than the other two schemes before 1.3 years and after passing 1.3 years the net 

revenue of case 1 scheme is higher than the other two processes (the years may be 

longer than 1.3 years in a real plant because the total capital cost calculated by 

academic methods normally tends to be underestimated compared to the actual 

practice). It means that if the plant reservoir life is less than 2 years, like peak 

shaving plants or shale gas reservoirs etc, the case 2 scheme can be consider as one 

of the candidate processes. However, if the plant reservoir life, as the traditional 

exploited plants, is longer the case 1 is a good option.
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Figure 3-6. Net revenue (net profit excluded capital cost) by time
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3.7 Summary

Liquefaction efficiency optimization and economic evaluation are performed for 

the three cases of LNG/ NGL integrated processes under the lean feed condition.

The GA algorithms linked with commercial software HYSYS is used for 

optimizing the process efficiency considering LNG HHV specification value. The 

economic evaluation is investigated by each process include the TAC, total capital 

cost, total operating cost, net profit, payout time and net revenue. The results show 

that the proposed integrated scheme case 1, which is simplified NGL recovery 

section compared with the base case, has higher net profit and lower capital cost 

compared with the conventional base case scheme without notable loss of 

liquefaction efficiency under lean feed condition. It is the opposite results 

compared with former related integrated process studies applied under normal or 

rich feed condition. It means that when the feed composition is considerably lean

the NGL recovery section can be simplified without remarkable loss of process 

efficiency for saving capital cost. 

The simplified case 2 scheme, which is simplified both liquefaction and NGL 

recovery parts compared with the base case, gives about 24% lower liquefaction 

efficiency compared to the base case and the case 1. Moreover, the case 2 shows 

highest TAC and lowest net profit among the three schemes. However, it has the 

lowest total capital cost and payout time because of the less equipment counts. 

Additionally, the net revenue of case 2 shows higher value than the other two 

schemes when the plant operation time is less than 1.3 years. Therefore, when the 

plant reservoir life is short enough, such as some peak shaving plants, shale gas 

reservoirs, special offshore units and so on, the simplified case 2 scheme could be 
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considered as a good process option for the economic purpose.
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CHAPTER 4. Concluding Remarks

4.1. Conclusions

Unlike conventional feed compositions, this thesis focused on lean gas feed 

conditions, and proposed simplified NGL recovery as well as NGL/LNG integrated 

processes. These proposed processes were compared process efficiency and 

economy performance with the traditional representative processes. The scrub 

column process shows the best overall economic performance, considering both the

total capital cost and operating cost, compared with other representative NGL 

recovery processes, such as ISS and IPSI, when the feed GPM value is lower than 

2.3. For the NGL/LNG integrated processes, the proposed integrated process case 1 

scheme presents lower total capital cost than the base case process. Case 1 scheme 

also shows lower total operating cost and TAC compared with the base case and 

case 2 processes under the lean feed condition. Although the proposed case 1 

process shows advantages in total capital cost and operating cost relative to the 

base case, it maintained similar performance compared with the base case process 

in terms of the liquefaction efficiency and LNG production.

The results demonstrate that the proposed processes have advantages on overall 

economic performance compared with the conventional processes with relatively 

low loss of process efficiency under the lean feed conditions. Therefore, the 

proposed processes could be seen as another consideration for selecting a NGL 

recovery and NGL/LNG integrated processes when the feed composition is lean. 

Moreover, various types of liquefaction processes for offshore units were 

investigated considering both liquefaction efficiency and economic performance. 
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The results provide a quantitative analysis of both the liquefaction efficiency and 

economics of those liquefaction processes that will be an important reference when 

selecting a liquefaction process for offshore application.
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4.2. Future works

We find that the method of calculating the major equipment cost used in this 

study tends to underestimate in some special items, such as compressors and 

turbines, compared to the actual price when collaborative research with 

engineering companies. Therefore, further studies need to improve the method of 

calculating equipment purchase cost.

In the case of the operating costs, there is a limitation that are overestimated in 

terms of net profit, since only utility costs and raw materials were considered as the 

operating costs in this study. Further research should be needed to assess other 

factors of operating costs such as fixed charges and administrative costs for the 

NGL/LNG integrated processes.

Economic evaluation and process optimization were performed for the proposed 

integrated processes in this dissertation. However, the industrial operability for the 

proposed processes should be further evaluated.
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Abstract in Korean (국문초록)

최근 호주와 미국을 비롯한 국가들의 비 전통가스전 개발이

증가함에 따라 lean 가스필드에 대한 수요가 점차 증가하고 있으며

따라서 조성이 lean 한 조건하에서의 NGL 회수공정 및 LNG 공정에

대한 성능 및 경제성 재평가가 필요할 것으로 예상된다. 본 논문은

다양한 NGL 회수 공정과 액화공정 그리고 NGL/LNG 통합 공정에

대하여 HHV 스펙을 고려한 공정최적화 및 경제성평가를 진행하고

비교 분석하였다. 

NGL회수공정은 네 가지 서로 다른 공정들에 대하여 다양한

lean가스조성 하에서 공정성능 및 경제성평가를 진행하였다. 그 중

ISS 와 IPSI 공정은 전통 feed 조건하에서의 대표적인 공정인 반면에

HHC separator 와 scrub column 은 장치수를 최소화하여 단순한

공정도를 가진 공정들로 feed 조성이 lean 할 경우 강점을 가질

것으로 예상되는 공정이다. 공정성능평가 결과 비교적 많은 장치를

사용하여 복잡한 공정도를 가지고 있는 IPSI 공정이 가장 좋은

분리효율을 가지고 있으므로 다른 공정들에 비해 가장 적은 재료비를

사용하였다. 그러나 상대적으로 높은 자본투자가 IPSI 공정의 전체적인

경제성에 더 큰 영향을 주었다. 가장 단순한 공정인HHC separator 

공정은 다른 공정들 대비 가장 적은 자본투자비를 보였지만

상대적으로 좋지 않은 분리효율로 인하여 가장 많은 재료비를

사용하였다. 자본투자비용 및 운전비용 등 전반적인 경제성을 고려
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했을 경우 ISS 공정이 feed GPM 값이 2.5로 근접할 때 가장 좋은

경제성을 보였고 scrub column 공정은 feed 조성이 일정하게 lean 할

경우 다른 공정들 대비 가장 좋은 경제성을 보였다. 이는 전반적인

경제성측면에서 봤을 때 조성이 일정하게 lean 할 경우에는

상대적으로 복잡한 ISS 공정이나 IPSI 공정보다도 scrub column 

공정을 NGL 회수 공정으로 사용하는 것이 더 유리함을 보여 준다.

해상용 천연가스 액화공정의 경우 제한된 공간 및 안전성 등

원인으로 인하여 일반적으로 육상보다 더 복잡한 선정기준을 가지고

있다. 예를 들어 육상에서 최대 점유율을 보이고 있는 C3MR 

액화공정은 상대적으로 많은 공간 필요 및 공정안전성에 영향을 주는

많은 양의 프로판 성분을 필요로 하고 있으며 이로 인하여 해양

플랫폼에는 실제 사용 된 경우가 없다. 본 논문은 해상에서 사용

가능한 하나의 N2 엑스펜다 공정, 두 가지 종류의 단일혼합냉매 공정

(SMR) 및 세가지 타입의 듀얼혼합냉매 공정 (DMR) 등 총 6가지

타입의 공정들에 대해 공정성능 및 경제성평가를 진행하였다. N2 

엑스펜다 공정은 비가연성인 질소를 단일냉매로 사용하므로 플랜트

운전측면 및 안전성 측면에서 강점을 가지고 있지만 다른 공정들 대비

가장 좋지 않은 효율을 보이는 것으로 알려져 있다. DMR 공정은 두

개의 혼합냉매를 사용하므로 N2 엑스펜다 및 SMR 공정보다 더 좋은

효율을 보이고 트레인당 용량도 가장 크므로 상대적으로 큰 용량의

액화공정 선정에 사용가능하다. 반면에 상대적으로 많은 장치를

사용하므로 복잡한 공정도를 가지고 있고 따라서 가장 큰 투자비를
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필요로 한다. SMR 공정은 N2 엑스펜도 와 DMR 공정의 사이의

공정성능을 보인다. 성능 및 경제성평가 결과 N2 엑스펜더 공정이

다른 공정들 대비 가장 낮은 효율과 수익성을 보였다. SMR 2 공정은

가장 적은 투자비와 payout time 을 보였고 DMR base 공정이 다른

공정들 대비 높은 액화효율을 보여주었고 따라서 가장 높은 수익성과

가장 적은 운전비용을 필요로 하였다. SMR 2 공정은 투자비측면에서

가장 좋은 경제성을 보였고 DMR base 공정은 상대적으로 복잡한

공정도를 가지고 있어 높은 초기 투자비를 보이지만 높은 액화효율을

가지고 있어 운전비용 측면에서 다른 공정들 대비 강점을 가지고

있으므로 해상용 액화공정 선정 시 프로젝트 상황에 따라 SMR 2 공정

또는 DMR base 공정을 액화공정 후보로 고려할 수 있다. 

통합공정은 본 논문에서 제안 한 두 개의 최대한 장치수를 간소화

한 NGL/LNG 통합공정과 전통적인 통합공정을 feed 가 lean 한 조성

하에서 LNG HHV 스펙을 고려하여 성능 및 경제성을 비교 분석하였다. 

액화공정 파트는 SMR 2 공정과 DMR base 공정을 각각 사용하였고

유전자 알고리즘을 공정 글로벌 최적화에 적용하여 공정

최적운전조건을 도출하였다. 공정 최적화 결과 제안 한 Case 1 공정이

전통공정에 대비 액화효율은 조금 낮았지만 NGL회수 공정부분 장치를

최대한 줄임으로 인하여 상당히 낮은 자본투자비를 보였다. 또한

전반적인 경제성 측면에서도 Case 1 공정이 가장 좋은 성능을

보여주었다. 액화공정에 SMR 를 사용한 Case 2 공정의 경우에는 비교

분석한 세 개의 공정 중에서 가장 낮은 자본투자비를 보였으나 운전비
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측면에서 다른 공정들 대비 비교적 큰 차이를 보여 전반적인 경제성

측면에서는 좋지 않았다. 하지만 플랜트 운영기간이 15개월보다 짧을

경우에는 가장 좋은 수익성을 보여주었다. 그러므로 제안된 Case 2 

공정은 플랜트 운전기간이 짧은 peak shaving 플랜트 또는 feed 

reservoir 수명이 짧은 해양플랜트에 적용하면 전체 투자비를 줄일 수

있을 뿐만 아니라 전체 수익성 측면에서 유리하여 NGL/LNG 통합

공정 선정 시 하나의 좋은 공정옵션으로 고려할 수 있음을 보여주었다.

주요어: 경제성평가, NGL 회수, 액화공정, lean 가스

학번: 2015-30754
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