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Abstract

Simulation Method to Support
Autonomous Navigation and Installation
Operation of an Offshore Support Vessel

Luman Zhao

Department of Naval Architecture and Ocean Engineering

The Graduate School

Seoul National University

Autonomous ships have gained a huge amount of interest in recent years,

like their counterparts on land–autonomous cars, because of their potential to

significantly lower the cost of operation, attract seagoing professionals and in-

crease transportation safety. Technologies developed for the autonomous ships

have potential to notably reduce maritime accidents where 75% cases can be

attributed to human error and a significant proportion of these are caused by

fatigue and attention deficit. However, developing a high-level autonomous sys-

tem which can operate in an unstructured and unpredictable environment is still

a challenging task. When the autonomous ships are operating in the congested

waterway with other manned or unmanned vessels, the collision avoidance al-

gorithm is the crucial point in keeping the safety of both the own ship and any

encountered ships. Instead of developing new traffic rules for the autonomous

ships to avoid collisions with each other, autonomous ships are expected to

follow the existing guidelines based on the International Regulations for Pre-

venting Collisions at Sea (COLREGs). Furthermore, when using the crane on

i



the autonomous ship to transfer and install subsea equipment to the seabed,

the heave and swaying phenomenon of the subsea equipment at the end of flex-

ible wire ropes makes its positioning at an exact position is very difficult. As

a result, an Anti-Motion Control (AMC) system for the crane is necessary to

ensure the successful installation operation.

The autonomous ship is highly relying on the effectiveness of autonomous

systems such as autonomous path following system, collision avoidance system,

crane control system and so on. During the previous two decades, considerable

attention has been paid to develop robust autonomous systems. However, sev-

eral are facing challenges and it is worthwhile devoting much effort to this. First

of all, the development and testing of the proposed control algorithms should

be adapted across a variety of environmental conditions including wave, wind,

and current. This is one of the challenges of this work aimed at creating an au-

tonomous path following and collision avoidance system in the ship. Secondly,

the collision avoidance system has to comply with the regulations and rules

in developing an autonomous ship. Thirdly, AMC system with anti-sway abil-

ities for a knuckle boom crane remains problems regarding its under-actuated

mechanism. At last, the performance of the control system should be evaluated

in advance of the operation to perform its function successfully. In particular,

such performance analysis is often very costly and time-consuming, and realistic

conditions are typically impossible to establish in a testing environment.

Consequently, to address these issues, we proposed a simulation frame-

work with the following scenarios, which including the autonomous navigation

scenario and crane operation scenario. The research object of this study is an

autonomous offshore support vessel (OSV), which provides support services to

offshore oil and gas field development such as offshore drilling, pipe laying, and

oil producing assets (production platforms and FPSOs) utilized in EP (Explo-

ii



ration Production) activities.

Assume that the autonomous OSV confronts an urgent mission under the

harsh environmental conditions: on the way to an imperative offshore construc-

tion site, the autonomous OSV has to avoid target ships while following a

predefined path. When arriving at the construction site, it starts to install a

piece of subsea equipment on the seabed. So what technologies are needed, what

should be invested for ensuring the autonomous OSV could robustly kilometers

from shore, and how can an autonomous OSV be made at least as safe as the

conventional ship. In this dissertation, we focus on the above critical activities

for answering the above questions.

In the general context of the autonomous navigation and crane control

problem, the objective of this dissertation is thus fivefold:

• Developing a COLREGs-compliant collision avoidance system.

• Building a robust path following and collision avoidance system which

can handle unknown and complicated environment.

• Investigating an efficient multi-ship collision avoidance method enable it

easy to extend.

• Proposing a hardware-in-the-loop simulation environment for AHC sys-

tem.

• Solving the anti-sway problem of the knuckle boom crane on an au-

tonomous OSV.

First of all, we propose a novel deep reinforcement learning (RL) algorithm

to achieve effective and efficient capabilities of the path following and collision

avoidance system. To perform and verify the proposed algorithm, we conducted

simulations for an autonomous ship under unknown environmental disturbance

iii



to adjust its heading in real-time. A three-degree-of-freedom dynamic model

of the autonomous ship was developed, and the Line-of-sight (LOS) guidance

system was used to converge the autonomous ship to follow the predefined path.

Then, a proximal policy optimization (PPO) algorithm was implemented on the

problem. By applying the advanced deep RL method, in which the autonomous

OSV learns the best behavior through repeated trials to determine a safe and

economical avoidance behavior in various circumstances. The simulation results

showed that the proposed algorithm has the capabilities to guarantee collision

avoidance of moving encountered ships while ensuring following a predefined

path. Also, the algorithm demonstrated that it could manage complex scenarios

with various encountered ships in compliance with COLREGs and have the

excellent adaptability to the unknown, sophisticated environment.

Next, the AMC system includes Anti-Heave Control (AHC) and Anti-Sway

Control (ASC), which is applied to install a subsea equipment in regular and ir-

regular for performance analysis. We used the proportional–integral–derivative

(PID) control method and the sliding mode control method respectively to

achieve the control objective. The simulation results show that heave and sway

motion could be significantly reduced by the proposed control methods during

the construction. Moreover, to evaluate the proposed control system, we have

constructed the HILS environment for the AHC system, then conducted a per-

formance analysis of it. The simulation results show the AHC system could be

evaluated effectively within the HILS environment. We can conclude that the

proposed or adopted methods solve the problems issued in autonomous system

design.

Keywords: Offshore support vessel; Autonomous navigation; Collision avoid-

ance; Path following; Deep reinforcement learning (DRL); Multibody dynamics;

Hardware-in-the-Loop Simulation (HILS); Anti-Heave Control (AHC) system;
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Chapter 1

Introduction

This chapter, which serves as a brief introduction to the topics presented

in this thesis, starts with a short description of background and motivation for

the main topics. Next, we present the research necessities for each application

along with a short discussion. After that, we thoroughly review the related work

of the discussed topics and discuss the configuration of the proposed simula-

tion framework in detail. Finally, we highlight the originality and elaborate the

contributions of this thesis.

1.1 Background and Motivation

The autonomous ship is an inevitable part of the future of the maritime

industry. The main advantage of the autonomous ship is that it could reduce

the cost of crew and transport. The reduction of the crew will significantly re-

duce the accommodation spaces and all the crew-related equipment. The cargo

capacity will be increased as a consequence. Moreover, technologies developed

for the autonomous ships have potential to notably reduce maritime accidents

attributed to human error and a significant proportion of these are caused by

fatigue and attention deficit. Therefore, the autonomous ship is considered as

a key element of a competitive and sustainable ship industry in future. The

increasing use of the autonomous ship will also lead to the creation of highly
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skilled jobs in areas such as integration and planning of autonomous ships. It

will boost the development of the maritime industry.

With the increasing demand for automation and self-governance of cer-

tain ship operations, autonomous systems with various applications have been

explored in the maritime industry for many years. However, developing a high-

level autonomous system which can operate in unstructured and unpredictable

environment is still challenging task. Most of the autonomous system design

are formulate to accommodate some specified situation, which has relatively

low ability to deal with complex and unknown environmental conditions. In

addition, these methods generally need the accurate dynamic system model.

As for the collision avoidance system, such methods can not scale well to han-

dle dense traffic and multiple highly dynamic obstacles due to the limitation

to integrate the dynamics model of the ship and the effect of environmental

disturbances (e.g. wave, wind and current) into the collision avoidance system.

Meanwhile, the recent development of artificial intelligence area has profound

effects on the industrial world, which brings researchers powerful algorithms

to characterize and control the extremely complex system under the changing

environment. Motivated by all of these theories and realistic reasons, the appli-

cation of path following and collision avoidance system focuses on the field of

advanced artificial intelligence approaches, deep reinforcement learning (DRL).

A control system for the crane is similarly important for the autonomous

ship design. For instance, when transferring and installing a subsea equipment

using a crane on an autonomous ship, the heave and swaying phenomenon of

the subsea equipment at the end of flexible wire ropes make its positioning at

an exact position difficult due to the ship motion. As a result, Anti-Motion

Control (AMC) system is absolutely necessary to ensure installation operations

safety. In order to successfully perform operation functions, the AMC system
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should have a suitable control algorithm. Moreover, the performance of the

control system must be evaluated in advance of the operation. Performance

analysis of the control system requires complicated testing procedures and a

great deal of associated equipment. In particular, such analysis is often very

costly and time-consuming, and realistic conditions are typically impossible to

establish in a testing environment. To solve this problem, the Hardware-In-the-

Loop Simulation (HILS) concept can be used as an effective method to test an

control system prior to its final installation.

Fig. 1.1 illustrates the overall research scope including three scenarios based

on the aforementioned research necessities. An OSV departs from a port heading

to an imperative offshore construction site even though the harsh environment.

The OSV has to avoid target ships while following a predefined path. When

arriving at the construction site, complete some missions such as installing

subsea equipment on the seabed.

Figure 1.1: Overview of this study.
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To complete the above scenarios, we conduct research on maneuvering an

autonomous OSV to follow a predefined planar path, and to avoid collisions

with target ships. For the AMC system design, it can be achieved through the

use of the control system such as PID control law, and sliding mode control

law based on the system dynamics on suited dynamic stability theory. To eval-

uate the proposed control system, we construct an elegant and efficient HILS

environment for an AHC system.
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1.2 Requirements for Autonomous Operation

1.2.1 Path Following for Autonomous Ship

To plan and control the motion of a marine vessel, path following system is

required. Traditionally, path following system is functionally divided into three

subsystems that must be implemented on board Fossen (2011): guidance, navi-

gation, and control system (GNC). To accomplish an autonomous operation one

needs to know where to go (guidance system), where it is (navigation system)

and what to do (control system).

Typically, for an autonomous ship with a path following task, the guidance

system consists of guidance laws for heading and surge velocity that, if satisfied,

ensure convergence to the desired path. The control system calculates rudder

angle to track the reference states delivered by the guidance system.

1.2.2 Collision Avoidance for Autonomous Ship

Marine collision can cause extreme harm to human life and a huge financial

loss to the shipowner, and it can also lead to destructive environmental effects.

As shown in Fig. 1.2, there are several examples of marine accidents caused by

marine collision.

Figure 1.2: An example of maritime accident caused by ship collision.
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According to a recent report, which indicates that more than 75% of

the marine collision accidents are caused by human decision failure Rothblum

(2002). Therefore, the implementation of intelligent collision avoidance system

making capabilities in navigation could reduce maritime accidents and its re-

spective causalities and represent long-term economical benefits.

1.2.3 Anti-Motion Control System for Autonomous Ship

Fig. 1.3 shows an example of the operation scenario including installation

of a subsea manifold using the OSV crane mounted on its deck. Meanwhile,

waves induce motion of the OSV, which induces similar effects on the subsea

equipment suspended by the crane.

Figure 1.3: An example of the use of the OSV to install a subsea manifold.

Hence, a special equipment called AMC system including AHC and ASC
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system on an OSV plays a pivotal role in offshore installation operations by min-

imizing the heave and sway motion of suspended subsea equipment regardless

of the OSV motion.

The AHC system is used to reduce the heave motion of the suspended

subsea equipment by controlling the length of the associated wire rope. Fig. 1.4

describes the control mechanism of the AHC system.

Figure 1.4: The mechanism of the AHC system.

At first, a Motion Reference Unit (MRU) measures the position and orien-

tation of the OSV. This information is transferred to an AHC control system,

in order to control the motor. The AHC system calculates the depth of the

subsea equipment according to the position and orientation of the OSV and the

OSV crane. If the depth of the subsea equipment is less than the target depth,

the AHC system sends a lowering signal to extend the length of the wire rope.

Otherwise, the AHC system sends a hoisting signal to shorten the length of the

wire rope.

Similarly, during the transferring operation, the sway motion of the sus-

pended load (e.g., subsea equipment) is inevitable. In addition, the wind at

sea can intensify the sway motion. Meanwhile, the waves induce the OSV mo-

tion, and the OSV motion induces motions of the suspended load directly or

indirectly. In such a situation, the installation operation by the crane some-
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times pauses under harsh environmental conditions to avoid above-deck colli-

sions, those between the suspended subsea equipment and the ship structure,

or those between the suspended subsea equipment and the crane. boom Jeong

et al. (2016).

Figure 1.5: The mechanism of the ASC system.

The control mechanism of the ASC is described in Fig. 1.5. First, MRU

measures the position and the orientation of the OSV and the subsea equipment,

and then the ASC system calculates the control force acting on each joint of the

knuckle boom crane according to the current positions of the subsea equipment.

Consequently, the positions of the subsea equipment can be stabilized by the

controlling of the joint angles.

Therefore, a suitable AMC system is necessary to significantly reduce the

residual heave and sway motion of the suspended subsea equipment.
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1.3 Related Work

1.3.1 Related Work for Path Following System

In the field of path following, an effective method, look-ahead Line-of-

Sight (LOS) guidance law, is used to achieve convergence to the desired path.

An overview of LOS guidance law for marine craft can be found in Fossen et al.

(2003). Lekkas (2014) mainly concerned with the path planning in combination

with the LOS guidance law to solve various kinds of curves. Oh and Sun (2010)

proposed a Model Predictive Control (MPC) method, which integrated the LOS

guidance law with a path following control for a surface vessel. An alternative

adaptive control approach corresponding to the LOS guidance law have been

investigated by Fossen and Lekkas (2017).

1.3.2 Related Work for Collision Avoidance System

In this study, we considered not only path following problem, but collision

avoidance integrated with it. Although a wide range of researches associated

with this have been extensively conducted in various approaches, several of them

do not accurately take into consideration the moving obstacles, environmental

disturbances, and COLREGs rules, or do not solve the problems simultaneously.

Collision avoidance mainly raises two problems: one is motion planning problem,

and the other is corresponding control forces computation.

Large amounts of literature only focused on the motion planning. The mo-

tion planning for the collision avoidance problem aims to find an admissible

collision-free path between the initial and goal configurations, given the envi-

ronmental conditions with obstacles, an initial and a goal configuration. The

motion planning encompasses a wide range of algorithms, which can be distin-

guished into two categories: local and global methods. The local method such
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as dynamic window (DW) methods only consider solutions optimal at the cur-

rent time step, while the global method considers the full configuration space.

Examples of global method are A*, rapidly-exploring random trees (RRTs) and

hybrid-state A*. In the context of this, to increase the path’s optimality and

reduce unpredictability, A* algorithm, one of global motion planning method,

can be used to guide the RRTs. As a result, Loe (2008) proposed a hybrid

approach with the A* guided RRTs for global motion planning and the DW

algorithm for local collision avoidance. Stenersen (2015) utilized the velocity

obstacle (VO) algorithm as a collision avoidance strategy for the surface vessel

to determine safe velocity ranges for avoiding motion obstacle, then applied a

proportion differentiation controller to complete several scenarios under COL-

REGs requirements.

Although the VO approach has the advantage of guaranteeing the safe nav-

igation, the reactive actions of the encountered vessel are neglected. Hence, the

path generated by the approach may limited in practice. To address this issue,

a research conducted by Zhao et al. (2016) presented a collision avoidance strat-

egy based on the Optimal Reciprocal Collision Avoidance (ORCA) algorithm,

which is an extensional formulation of the VO concept. The work revealed that

the ORCA algorithm has a better performance than VO. However, the envi-

ronment conditions had not been taken into consideration. Chiang and Tapia

(2018) proposed an RRT-based motion planning method for collision avoidance

system on an autonomous surface vessel with COLREGs compliance, but sim-

ilarly, the research did not consider the environmental disturbances caused by

waves and ocean currents.

After generating the collision-free path, the next step is adopting a control

system. Much research has been done for collision avoidance of unmanned ships

and a number of different approaches for solving this problem have emerged.
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Methods relevant for comparison in this case are VO and dynamic window

(DW). Other technologies include set-based methods, potential fields and in-

evitable collision states (ICS). However, these methods generally do not scale

well to handle dense traffic and multiple highly dynamic obstacles due to the

limitation to integrate the dynamics model of the ship and the effect of environ-

mental disturbances (e.g. wave, wind and current) into the collision avoidance

system.

There have been several studies on using analytic control methods or DRL

methods for collision avoidance. model predictive control (MPC), one of the

popular analytic control algorithm, can compute an optimal trajectory based

on predictions of obstacles’ motion accounting for their uncertainty. The use

of MPC allows the possibility to explicitly include models of relevant compo-

nents that influences the autonomous ship’s dynamics. Within this framework,

it is also possible to incorporate models of the obstacles’ motion, the evolution

of the dynamic environment and different operational constraints Chen et al.

(2018). This introduces a design flexibility and performance gains superior to

other collision avoidance approaches. However, MPC can be limited by the pre-

diction capabilities of inaccurate dynamics model and excessive computational

burden associated with the optimization problem. MPC employs a dynamic

model as a cost function and constraints in an optimization problem Johansen

et al. (2016), while some of literatures do not consider of the use of MPC for

collision avoidance with COLREGs compliance. However, there are two sig-

nificant drawbacks of the MPC formulation: exorbitant online computational

requirement and inability to consider the uncertainties in the optimal control

calculation.

Ernst et al. (2009) compared the MPC method and the fitted Q iteration-

based RL method. Simulation results showed that MPC was slightly less robust
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than RL from the numerical point of view, but had a slight advantage in terms

of accuracy. Although analytic control methods have shown that it performs

well in some specific domains, the performance of this method is often limited

due to the complex dynamic systems, which are too complicated to be properly

modeled in practical applications. Moreover, the rapid development of artificial

intelligence has spurred greater interest in various applications of autonomous

tasks. The path following and collision avoidance for the autonomous ship is

one of those tasks.

Instead of designing the collision-free path and control system separately,

several approaches have used RL to model the complex interactions between

the ship and encountered ships. RL has excellent capacity to adapt sophisti-

cated system while it is capable of self-learning, which provides researcher with

powerful algorithms to handle an extremely complex system under the unknown

environment. A value-based RL method, Q-network, for collision avoidance sys-

tem has been developed Cheng and Zhang (2018). However, the research only

focused on static obstacles and did not consider the environmental disturbances.

The existing studies seldom integrate the path following with collision avoidance

of moving obstacles simultaneously, to overcome this limitation, we focused on

the problem of integrating the path following with collision avoidance for an

autonomous ship.

To achieve this, we utilized a policy-based RL methodology for the design of

motion planning combining with control system for autonomous ship operating

in an unknown ocean environment, by considering the target ships respecting

COLREGs compliance. The advantage of the proposed method is that it is

extensible and easy to operate in terms of various environmental condition and

COLREGs regulations compliance.
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1.3.3 Related Work for Anti-Heave Control System

The general concept of HILS is comprehensively summarized in Schlager

et al. (2006) and Pedersen et al. (2013). HILS technology has been widely used in

the defense and aerospace industries as early as the 1950s. At that time, in spite

of the high cost of HILS technology, these industries benefitted greatly from its

safety. During the past decade, the advancement of computer technology has

led to the adoption of HILS to automotive systems in the 1990s. Isermann et al.

(1999) performed an efficient real-time HILS for Electronic Control Unit design

and verification. Similar work has recently been done by Fathy et al. (2006), in

providing an overview of HILS for an engine system and its prospects in the

automotive area.

For the offshore industry, ships and offshore structures are equipped with

advanced control systems for Dynamic Positioning and Power Management.

Unlike the mass production of the automation industry, the controller is unique

for each vessel or offshore structure. In this context, HILS seems indispensable

in this field. Several works proposed by Pedersen et al. (2013) and Kaliappan

et al. (2012) were dedicated to providing experience to implement HILS for

DP and PM systems. Furthermore, HILS for the AHC system is an important

field. Hu et al. (2009) performed HILS with mathematical models and physical

testing of an AHC system on a pipeline lifting mining system. The simulation is

based on a controller (PXI) from LabVIEW. Another common tool (Simulink)

is also widely used as a connection interface between controller and virtual

model. This was implemented in Muraspahic et al. (2012). The virtual model

was modeled by commercial software (Simulation X), without considering envi-

ronmental conditions. The Siemens PLC (Programmable Logic Controller) was

utilized as a controller regulating the virtual model. The visualization model
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only displayed a simple winch model. An attempt to build the virtual model

based on the Bond Graph method was presented by Aarseth et al. (2014). The

virtual model was described as the energy flow by using 20-sim. Even though the

software can display 3D-animation for development, there are some limitations

in terms of the visualization model based on VR.

1.3.4 Related Work for Anti-Sway Control System

The cranes on an offshore support vessel (OSV) are used for offshore trans-

portation and the installation of subsea equipment at sea Hong et al. (2016).

The knuckle boom crane can perform various tasks, as it is characterized by

the design of a folded knuckle that is attached to an extension rod.

During the installation operation, the sway motion of the suspended load

(e.g., subsea equipment) is inevitable. In most cases, the reduction of the sway

motion is achieved by the crane control. Abdel-Rahman et al. (2003) provided

a well-classified review of the crane control. Gjelstenli (2012) used the cas-

cade control method to solve the antisway problem for offshore crane. More

recently, Ramli et al. (2017) also conducted a comprehensive review of the con-

trol strategies for different crane types. Most of the researchers concentrated on

the overhead crane, tower crane, and boom crane. Abe (2011) used radial basis

function networks for the trajectory planning of overhead cranes and reduced

the payload sway motion. In addition, an experiment was conducted to ver-

ify the proposed controller. Le et al. (2013) presented the sliding-mode control

method for a tower crane to suppress the load sway motion and the tracking of a

trolley to the desired position. An antisway controller for overhead crane based

on multi-sliding mode method was investigated by Xu et al. (2012). Duong et al.

(2012) considered the antisway control for a tower crane by using a recurrent

neural network. Also, Wu et al. (2016) applied an adaptive fuzzy controller,
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which is a nonlinear method, to a tower crane without the requirement of a

detailed mathematical model of the crane. However, the knuckle boom crane is

not the subject of most of the previous studies.

The knuckle boom crane, however, exhibits underactuated behavior, since

the number of actuators is fewer than those of the systemic state variables.

Therefore, the control mechanism becomes more complex, leading to a more

difficult controller design. Only a few works of the literature have focused on this

crane type. Bak et al. (2011) performed the tool-point control for a hydraulically

actuated knuckle boom crane. proposed an additional auxiliary system to reduce

the load oscillations. The additional system can directly force the hoist wire rope

to control the payload sway angle. Chu et al. (2015) established a multidomain

system for the knuckle boom crane and implemented an ASC. In these studies,

the antisway controller was designed by the controlling of the movement of the

crane tip. In the present study, the antisway controller for a knuckle boom crane

on an OSV is considered.
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1.4 Configuration of Simulation Framework

According to the requirements defined in the previous section, The neces-

sary techniques are included in the simulation framework as shown in Fig. 1.6

The proposed framework comprises three layers: application layer, autonomous

ship design layer, and general techniques layer. The following sections will ex-

plain the role of each layer briefly.

Figure 1.6: Block diagram of simulation framework configuration.

1.4.1 Application Layer

The first layer is the application layer, which exhibits two main applica-

tions including the autonomous navigation and crane control application in this

study. The autonomous navigation method consists of path following and colli-
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sion avoidance method, and AMC method consists of anti-heave control method

and anti-sway control method.

1.4.2 Autonomous Ship Design Layer

For the specific autonomous ship design, three modules are indispensable:

integrated simulation interface, autonomous ship model and autonomous con-

trol system. A visualization module is not necessary, however, it can be used to

help users check the simulation results through immersive and realistic views,

and can be used for training purposes.

An integrated simulation interface is used to exchange information between

each module. In this study, we adopted the robot operating system (ROS) as

an interface to formulate a HILS environment for AHC system. Knuckle boom

crane mounted on an autonomous ship, except it, we only consider that the

ship is comprised of the hull, actuation system, and sensors. We conducted two

control problems: autonomous navigation and crane control.

1.4.3 General Technique Layer

General technique layer provides the main techniques we used in this study.

To represent the mechanical system of the autonomous ship, the equation of

motion of the ship, kunckle boom crane and the subsea equipment can be

formulated as the multibody system. These can be formulated differently ac-

cording to the expression of the constraint forces. For the ASC system design,

the knuckle boom crane has been formulated using the embedding technique.

In term of control system design, which including traditional control theory

such as adaptive control, sliding mode control and so on, we selected the sliding

mode control method as the control method of the ASC system. Additionally,

the DRL is considered as an effective control method, which is divided into
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value-based, policy-based and actor-critic method. The related theories will be

explained in chapter 2.
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1.5 Contributions (Originality)

The original contributions of this dissertation can be divided on the theo-

retical side:

• We contribute to define the problem of the COLREGs-based collision

avoidance for multiple autonomous ships under realistic assumptions. In

terms of the COLREGs region, we defined it based on the ship domain

concept.

• We present an alternative method for solving path following and collision

avoidance problem simultaneously. According to the simulation results,

the proposed RL scheme has the ability to find the optimal solution, even

when unknown disturbances affect the ship’s motion.

On the practical side, the main original contribution is that:

• In order to validate the proposed AHC system, we used the ROS as the

simulation interface, which helps to construct the HILS framework for

AHC system. In addition, we experimentally show that our approach

makes the validation process becomes time-consuming and easy handle.
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Chapter 2

Theoretical Backgrounds

2.1 Maneuvering Model for Autonomous Ship

This section presents the autonomous OSV model and the related assump-

tions that are considered in this section. Two references frames, the North-East-

Down (NED) coordinate system n = (xn, yn, zn) and the body-fixed reference

frame b = (xb, yb, zb) are utilized in this study to characterize the location and

orientation of the autonomous OSV. The NED frame is defined as a tangent

plane on the surface of Earth moving with the ship. The x axis is parallel to

lines of constant longitude, the y axis is parallel to lines of constant latitude,

and z axis pointing towards the center of the Earth. The body-fixed coordinate

is moving with the ship. The center of gravity of the ship is defined as the

origin.

2.1.1 Kinematic Equation for Autonomous Ship

In this study, the simplified three-degree-of-freedom (3-DOF) vessel dy-

namic model is used to describe the autonomous ship motions in the horizontal

plane (surge, sway, and yaw) (17). The rigid body kinematic equation is

η̇ = R(ψ)v, (2.1)

Where η = [x, y, ψ]T represents the earth-fixed position and heading angle,
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v = [u, v, r] represents the vessel-fixed velocities, R(ψ) refers to the rotation

matrix from the earth-fixed frame to the vessel-fixed frame. With the ship speed

V =
√

(u2 + v2), we define the course angle χ = ψ + β and the sideslip angle

β = arcsin (v/V ), which are illustrated in Fig. 2.1. Note that the heading angle

and course angle are equal when there is no sideslip.

Figure 2.1: Schematic representation of ship kinematic variables.

2.1.2 Kinetic Equation for Autonomous Ship

The dynamic equation for the autonomous ship can be modelled using the

following form:

Mv̇ + C(v)v + D(v)v = τ + τexternal force, (2.2)

Where M = MRB + MA is the mass matrix consisting of rigid-body mass and

hydrodynamic added mass, C(v) = CRB + CA is the Coriolis and centripetal
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matrix.

MRB =


m 0 0

0 m 0

0 0 0

 ,CRB =


0 0 −mv

0 m mu

mv −mu 0

 (2.3)

where m is the ship mass and Iz denotes the moment of inertia about the z-axis.

The hydrodynamic added mass and added Coriolis matrices are expressed as

MA =


−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Nv̇ −Nṙ

 ,CA =


0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v − Yṙr −Xu̇u 0

 (2.4)

where D(v) is the nonlinear damping matrix, which can be defined as the

sum of linear damping and nonlinear damping, D(v) = DL + DNL, where

DL =


−Xu 0 0

0 −Yv −Yr

0 −Nv −Nr

 ,DNL(v) =


−X|u|u |u| 0 0

0 −Y|v|v |v| −Y|v|r |v|

0 −N|v|v |v| −N|v|r |v|


(2.5)

We assume that the ship has only one control input, rudder angle delta.

The reason is that we maintained a constant propeller speed which is more

realistic for most ship maneuvering operating conditions. The control force τ

takes the following form:

τ =


Xδδ

Yδδ

Nδδ

 (2.6)

where Xτ , Yτ , and Nτ are the rudder coefficients associated with surge

force, sway force, and yaw moment, respectively. Furthermore, environmental
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forces disturbances act upon the ship that affects the behavior of the ship

motion. In this study, the environmental forces are split into three parts: wind

force, current force and wave force. The longitudinal wind force Fxwind , lateral

wind force Fywind , and wind moment Mzwind , which the wind exerts on the

autonomous OSV can be computed by Journée and Massie (2001):

Fxwind =
1

2
ρairATCwx(αrwave)V

2
rw, (2.7)

Fywind =
1

2
ρairALCwy(αrwave)V

2
rw, (2.8)

Mzwind =
1

2
ρairALLCwN (αrwave)V

2
rw (2.9)

where ρair is the density of air, AT and AL are the transverse projected

wind area and lateral projected wind area, respectively. L is the length of the

ship. The wind speed and direction determine the longitudinal and lateral wind

forces and the yawing moment on the ship. The wind load coefficients Cwx, Cwy

and CwN are parameterized in terms of relative wind direction. The relative

wind direction speed Vrw are defined as follows, with the wind direction βw and

wind speed Vw:

αrw = ψ − βw (2.10)

Vrw =
√
u2rw + v2rw (2.11)

Where the components of relative velocity in the x and y directions are:

urw = u− uw = u− Vw cosαrw (2.12)

vrw = v − vw = v − Vw sinαrw (2.13)

Similarly, based on the velocity vector synthesis method, the relative current
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velocity exerted by the current on the ship can be calculated from:

urc = u− uc = u− Vc cosψ − βc (2.14)

vrc = v − vc = v − Vc sinψ − βc (2.15)

Where βc is the current direction, and Vc is the speed of the ocean current.

The influence of the wave interference is mainly divided into the first-order

wave force and the second-order wave force, which can be seen as a linear wave

superimposed by a large number of regular waves of different frequencies and

wave height. The study only considers the second-order wave drift force that

affects the autonomous ship’s position and orientation. The wave force and

moment can be calculated as follows:

Fxwave = 1/2 ρwater ξ
2
wave g LCwavex(αrwave), (2.16)

Fywave = 1/2 ρwater ξ
2
wave g LCwavey(αrwave), (2.17)

Mzwave = 1/2 ρwater ξ
2
wave g L

2CwaveN(αrwave) (2.18)

Where ξwave is the wave height and αrwave is the relative wave direction. CwN ,

CwN and CwN represent the coefficients of the second order wave drift force

and yawing moment respectively. The dynamic equation of the autonomous

ship motion can be rewritten by relative velocities as:

Mv̇rc + C(vrc)vrc + D(vrc)vrc = τ + τwind + τwave (2.19)
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2.2 Multibody Dynamics Model for Knuckle Boom

Crane of Autonomous Ship

In this section, some methodologies which are required to perform the anti-

sway control simulation are described. Basically, the Newton’s 2Nd law could

be applied to describe the motion of the autonomous OSV. An autonomous

OSV mounted crane can be regarded s a multibody system which consists of

interconnected rigid bodies with joints and springs like wire ropes. The equa-

tions of motion based on multibody system dynamics is required to analyze the

motion of a knuckle crane system including a suspended subsea equipment. The

relative motion that is permitted between bodies in the multibody system is

often constrained by connections between those bodies.

2.2.1 Embedding Techniques

In the case of constrained multibody dynamics, in the case of the knuckle

boom crane mounted on an autonomous ship, different numbers of coordinates

can be selected, leading to different forms of the dynamic equation.

Newton’s equation of motion for the the object on the ramp can be stated

as:

mr̈ = Fe + Fc (2.20)

The vectors in Eq. 2.20 are represented in terms of the Cartesian coordi-

nates. m is the mass and the mass moment of inertia matrices, and r is the

position vector of the center of gravity of the object with respect to the Carte-

sian coordinates. The resultant force consists of the external force Fe and the

constraint force Fc caused by kinematic constraints.

The virtual work, which states that the work done by a set up forces acting
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Figure 2.2: Embedding technique.

on a static system vanishes in a virtual displacement. Let δr denote the virtual

displacement of the object on the slope where forces including external force

Fe, constraint force Fc and inertial force acts. Adding the virtual work done by

forces gives

Fe + Fc −mr̈ = 0 (2.21a)

δW = δr · (Fe + Fc −mr̈) = 0 (2.21b)

Here, the symbol δ is used because it is not deal with the increment that

actually occurs.

Since the constraint force Fc is perpendicular to the direction of the motion,

then

δr · Fc = 0 (2.22)

Correspondingly, the work done by the resultant force becomes

δW = δr · (Fe −mr̈) = 0 (2.23)
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δr · (mr̈− Fe) = 0 (2.24a)

(δx, δy) · ((mẍ,mÿ)− (0,−mg)) = 0 (2.24b)

Based on the matrix formulation, like a·b = aT b, Eq. 2.24b can be rewritten

as

δrT (Mr̈ − Fe) = 0 (2.25)δx
δy

T (

m 0

0 m

ẍ
ÿ

−
 0

−mg

) = 0 (2.26)

A constraint acts on the above system through application of constraint

forces. The constraint force are restrict the velocity of the system to be tangent

to the surface at all times. The constraint equation in the above problem can

be written in a functional form below

C(x, y) = 0 (2.27a)

x tan θ + y = 0 (2.27b)

ẋ tan θ + ẏ = 0 (2.27c)

To describe the motion of the system, we can select a smaller set of variables

that completely describes the configuration of the system.

ẋ
ẏ

 =

 ẋ

−ẋ tan θ

 (2.28)

=

 1

− tan θ

 ẋ (2.29)
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As a result, we can obtain the following constraint equation ṙ = Jq̇, where

r is the system variables, J denotes the velocity transform matrix, and the q is

the generalized coordinates for the system.

ṙ = Jq̇ (2.30)

r̈ = Jq̈ + J̇q̇ (2.31)

Substituting Eq. 2.31 into Eq. 2.26, we can obtain the equation

MJq̈ + MJ̇q̇ = Fe + Fc (2.32)

Multiplying both sides of Eq. 2.32 by JT yields

JTMJq̈ + JTMJ̇q̇ = JTFe + JTFc (2.33a)

M̃q̈ + M̃ = F̃
e

(2.33b)

where M̃ = JTMJ, K̃ = JTMJ̇, and F̃
e

= JTFe; M̃ is the mass and the

generalized mass moment of the inertia matrix, K̃ is the generalized Coriolis

and centrifugal force, F̃
e

is the generalized external force, J is the velocity trans-

formation matrix, and J̇ is the acceleration transformation matrix. Eq. 2.33b

is the final form of the equations of motion of the multibody system based on

the multibody system dynamics. If we use this equation, we can get dynamic

motion of the autonomous OSV, the knuckle boom crane, and the suspended

subsea equipment, including constraint forces among them.

Next, we take a 2 degree of freedom pendulum as an example using the

induced embedding techniques, see Fig.2.3.
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Figure 2.3: Pendulum example.

The equation of motion of the 2D pendulum givesxP
yp

 =

 sin θ

− cos θ

 l (2.34)

ẋP
˙yP

 =

cos θl

sin θl

 θ̇ (2.35)

J =

cos θl

sin θl

 (2.36)

From the above constraint equation, we can obtain the velocity transform

matrix J. The equations of the systemic motions can be written in a matrix

form by inserting J, as follows:

M̃q̈ + K̃−E F̃e = 0 (2.37)
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where

M̃ = JTMJ =
[
cos θl sin θl

]m 0

0 m

cos θl

sin θl

 = ml2 (2.38a)

K̃ = JTMJ̇ =
[
cos θl sin θl

]m 0

0 m

− sin θθ̇l

cos θθ̇l

 θ̇ = 0 (2.38b)

EF̃e = JT EFe =
[
cos θl sin θl

] 0

−mg

 = −lmg sin θ (2.38c)

We can get the final equation of the 2D pendulum

ml2θ̈ = −lmg sin θ (2.39)
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2.3 Control System Design

2.3.1 Proportional-Integral-Derivative (PID) Control

For AHC system, the position of the suspended subsea equipment is con-

trolled by using a PID (Proportional-Integral-Derivation Control) controller

that adjusts the motor’s speed to the desired speed. A mathematical descrip-

tion of the PID controller is shown in the following equation:

u(t) = Kpe(t) +Ki

t∫
0

e(t)dt+Kd
de(t)

dt
(2.40)

where, u(t) is the control signal, and e(t) is the error signal. Kp, Ki and

Kd denote the coefficients for the proportional, integral, and derivative terms,

respectively.

2.3.2 Sliding Mode Control

Sliding mode control law is based on defining exponentially stable sliding

surfaces as a function of the output errors Utkin (1977). design is based on

making the value of sliding surface s to be equally zero. The sliding mode

surface is defined as follows

s = λx1 + x2 = 0(λ > 0) (2.41)

ẋ1 = x2 (2.42)

To reduce the sway angle of the 2D pendulum illustrated in Fig. 2.3, the

control force τ can be calculated by using the sliding mode control law.

At first, the Eq. 2.39 can be formulated as follows

mlθ̈ = −mg sin θ + τ (2.43)

θ̈ = −g
l

sin θ +
1

ml
τ (2.44)
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Figure 2.4: Sliding mode control theory.

Let x1 = θ and x2 = θ̇, Eq. 2.44 can be defined

ẋ1 = x2 (2.45)

ẋ2 = −g
l

sinx1 +
1

ml2
τ (2.46)

ṡ has to satisfy Eq. 2.47. Sliding mode control always result in chattering

around the surface due to the signum function. To reduce chattering, sgn(s)

function should be replaced by a saturation function.

ṡ = −K1s−K2sat(s) (2.47)

Dynamical system stability has be evaluated by the use of many differ-

ent methods, for example by using methods based on the eigenvalues in linear

systems, which are measures of energy dissipation, or through methods using
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functions that represent the energy in the system, such as Lyapunov functions,

which is usually the way of assuring stability when handling non-linear dynam-

ics.

Consider a Lyapunov function given by V = 1
2s
T s. To make the system

stability

V̇ = sT ṡ <= 0 (2.48)

Define the sliding surface plan s = θ̇ + λθ and then differentiating the

surface s with respect to time, one can obtain:

s = ė + λe = θ̇ + λθ (2.49)

ṡ = ë + λė = θ̈ + λθ̇ (2.50)

As a result, we can get

θ̈ = λθ̇ − ṡ (2.51)

θ̇ = λθ − s (2.52)

The control force τ

τ = mlθ̈ +mg sin θ (2.53)

τ = ml(λθ̇ − ṡ) +mg sin θ (2.54)

where ṡ = −K1s−K2sat(s), and K1 and K2 are constant parameters.
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2.4 Deep Reinforcement Learning Algorithm

In this study, we used deep reinforcement learning (DRL) algorithm to

solve the autonomous navigation problem. The learning in RL problem discov-

ers which action yield the most reward by trial and error search Sutton et al.

(1998). In most RL topics, mathematical frameworks are created to tackle prob-

lems. The mathematical framework is referred to the Markov Decision Process

(MDP), which can produce an easy framework to model a complex problem.

As illustrated in Fig. 2.5. The process of the agent observing the environment

output consisting of a reward and the next state, and then acting upon that.

This whole process is an MDP for short.

Figure 2.5: The agent-environment interaction in MDP.

MDP is meant to be a straightforward framing of the problem of learning

from interaction to achieve a goal. The agent and the environment interact at

each of a sequence of discrete time steps. The agent selecting actions and the

environment responding to these actions and presenting new situations to the

agent. The decision maker is called the agent, for example, in the path following

and collision avoidance problem, agent is the controller of the autonomous ship.

Environment in RL means the outside (including the environmental condition,

target ships, and so on) except the agent. Rewards are given out but they
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may be infrequent and delayed. Very often, the long-delayed rewards make it

extremely hard to untangle the information and traceback what sequence of

actions contributed to the rewards.

The agent makes the decisions on which actions to take at each time step.

The agent makes these decisions based on the scalar reward Rt receives and

the observed environment St. The environment receives the action At from the

agent and emits a new observation state Rt+1 and scalar reward Rt. What

happens next to the environment depends on the history. The action taken in

a state is drawn from a stochastic policy π(a|s), which is the probability that

At = a if St = s. The goal of the RL agent is to find the policy π(a|s) which

maximizes the expected discounted sum of rewards.

Gt = Rt+1 + γRt+2 + γ2Rt+3 · · · =
∞∑
k=0

γkRt+k+1 (2.55)

Where γ ∈ [0, 1] denotes the reward discount factor. During learning, the

agent has to estimate how good it is for the agent to be in a given state (state

value function) and how good it is to perform a given action in a state (state-

action function), see Fig. 2.6. The notation of ”how good” here is defined in

terms of future rewards that can be expected Sutton et al. (1998). Accordingly,

the state value function

Vπ(s) = E[
∞∑
k=0

γkRt+k+1|St = s] (2.56)

Similarly, the state action function can be defined as follows:

Qπ(s, a) = E[

∞∑
k=0

γkRt+k+1|St = s,At = a] (2.57)

RL agent can be categorised into the following types:

• Value based method: take actions greedily based on state value function

or state action value function.
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• Policy based method: use the policy function directly to take actions.

• Actor Critic method: use both the policy and value functions. Where a

critic neural network is used to tell an actor neural network how good the

action is and how it should adjust, then the actor neural network decides

which actions to take.

Figure 2.6: Bellman expectation equation of state value and state action func-

tions.

2.4.1 Value Based Learning Method

TD error is the error in the estimate made at each time, which depends on

the next state and next reward. It measures the difference between the estimate

value of Vt and the better estimate Rt+1 + γV (St+2).

δt = Rt+1 + γV (St+2)− V (St) (2.58)

Value based learning method, such as Q-learning, uses a state action value

function Q(s, a), which is defined as the expected return the agent would get
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by starting in state s, taking action a and then following a policy π.

Rt+1 + γmaxaQ(St+1, a) − Q(St+1, At) is the difference between the up-

dated (target) Q value and the predict Q value, which takes the form of a TD

error. This equation tells us that the maximum future reward is the reward

the agent received for entering the current state St plus the maximum future

reward for the next state St+1. The Q learning is defined by Eq. 2.59

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.59)

Based on the above equation, the policy strategy is taking actions which re-

sult in highest value of value action functionQ. The policy is called Greedy-Policy.

π(s, a) =


1 if a = argmaxaQ(s, a)

0 otherwise

(2.60)

2.4.2 Policy Based Learning Method

In policy based learning, the policy, probability distribution of action, is

the objective of learning Sutton et al. (2000). We have our policy πθ(a|s) that

has a parameter θ. This policy outputs a probability distribution of actions.

So how can we know whether our policy good or not? The answer is that the

policy can be seen as an optimization problem. For policy objective function,

θ is the variable and J(θ) is the objective function. We can find the best θ to

maximize a objective function.

The objective function of the policy gradient can be defined as follows Eq.

2.61.

J(θ) =
∑
s

d(s)
∑
a

πθ(s, a)Ras (2.61)
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Here, d(s) is probability distribution of state on policy πθ(s, a), J(θ) can

tell us how good our policy is; Policy gradient ascent can find the best policy

parameters to maximize the sample of good actions.

RL problem involves manipulating probabilities, which are most often rep-

resented as log-probabilities. The log-ratio trick can helps us to solve stochastic

optimization problem.

∇ log f(x) =
1

f(x)
∇f(x) (2.62)

∇f(x) = f(x)∇ log f(x) (2.63)

In a continuous environment, we can use the average reward for each time

step to formulate the objective function, the idea is that we want to get the

most reward at each time step.

∇θJ(θ) = ∇θ
∑
s

d(s)
∑
a

πθ(s, a)Ras (2.64)

=
∑
s

d(s)
∑
a

∇θπθ(s, a)Ras (2.65)

=
∑
s

d(s)
∑
a

πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
Ras (2.66)

=
∑
s

d(s)
∑
a

πθ(s, a)∇θ log πθ(s, a)Ras (2.67)

= Eπθ [∇θ log πθ(s, a)Ras ] (2.68)

Where,∇θ lnπθ(s, a) means the direction of policy update; Ras indicates the

size of policy update, which is the immediate reward. From the aforementioned,

we can conclude that:

• If Ras is high, it means that on average we took actions that lead to high

rewards under the high positive reward condition.
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• On the contrary, if Ras is low, we want to decrease the probabilities of

the actions seen under the high negative reward condition. We want to

increase the probability of taking these actions.

However, the previous formulation can not handle the long-term reward.

So that it can be replaced the instantaneous reward Ras with state action value

function Q(s, a). The equation turns to be

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Q(s, a)] (2.69)

θ ← θ + α∇θJ(θ) (2.70)

In policy gradient learning, we rely on full trajectories of an agent act-

ing within an episode of the environment to compute the reinforcement signal.

Given a trajectory, we produce a value estimate Ras for each step in the path

by calculating a discounted sum of future rewards Gt for each step in the tra-

jectory. The problem is that the policies we are learning are stochastic, which

means there is a certain level of noise to account for. This stochasticity leads

to variance in the rewards received in any given trajectory. Consequently, pol-

icy gradients suffer from high variance and low convergence Peters and Schaal

(2006). The stochastic policy takes different action in different episodes. To re-

duce the variance caused by actions, we have to reduce the variance for the

sampled rewards.

One of the most common approaches to reducing the variance of an esti-

mate is to employ a baseline which is subtracted from the reward to produce a

more stable value.

Aπ(St, At) = Qπ(St, At)− Vπ(St) (2.71)

The advantage Aπ(s, a) is the difference between two estimates: the stable

learned value function Vπ(s) and the discounted sum of future rewards Gt, or
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Qπ(s, a). Note that the learned value function Vπ(s) can be learned from a critic

neural network. It is covered in detail in the next section.

Another advantage estimate approach, called the Generalized Advantage

Estimate (GAE) Schulman et al. (2015), allows for an interpolation between

Temporal difference (TD) learning and Monte-Carlo (MC) sampling using a

lambda parameter. Roughly speaking, MC sampling wait until the return G(St)

can be obtained, until the end of the episode to determine the increment to V ,

while TD need to wait only until the next time step Sutton et al. (1998).

TDlearning : GAE(γ, 0) : Ât = Rt + γV (St+1)− V (St) (2.72a)

MCsampling : GAE(γ, 1) : Ât =
∞∑
l=0

γlRt+l − V (St) (2.72b)

However, policy gradient involves a second-order derivative matrix which

makes it not scalable for large scale problems. The computational complexity

is too high for real tasks. Intensive research is done to reduce the complexity

by approximate the second-order method.

In the study, we selected the proximal policy optimization (PPO) method,

which is an extension of the policy gradient method. Instead of imposing a hard

constraint, it formalizes the constraint as a penalty in the objective function.

By not avoiding the constraint at all cost, we can use a first-order optimizer like

the Gradient Descent method to optimize the objective. Even we may violate

the constraint once a while, the damage is far less and the computation is much

simple. We repurpose it to measure the difference between the two policies.

We don’t want any new policy to be too different from the current one. In its

implementation, we maintain two policy networks. The first one πθold(at|st) is

the current policy that we want to refine. The second πθ(at|st) is the policy that

we last used to collect samples.
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With the idea of importance sampling, we can evaluate a new policy with

samples collected from an older policy Schulman et al. (2017). This improves

sample efficiency. But as we refine the current policy, the difference between

the current and the old policy is getting larger. The variance of the estimation

will increase and we will make bad decision because of the inaccuracy. As a

result, we synchronize the second network with the refined policy again. It will

be introduced in the next section.

We use a ratio Eq. 3.14 between the old policy and new policy to measure

how difference between two policies.

rt(θ) =
πθ(at|st)
πθold(at|st)

(2.73)

We construct a new objective function to clip the estimated advantage

function if the new policy is far away from the old policy. Our new objective

function becomes:

LPPO(θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.74)

If the probability ratio between the new policy and the old policy falls

outside the range (1-ε) and (1-ε), the advantage function will be clipped.

2.4.3 Actor-Critic Method

So far we has focused on value based method such as Q-learning, and

policy based method such as policy gradient. Actor-critic method combines the

benefits of both methods. The learning agent of Actor-critic method has been

split into two separate entities: the actor (policy) and the critic (value function).

Roughly speaking, actor-critic method, utilize both an actor which defines the

policy, and a critic (often a parameterized value estimate) which provides a
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more reduced variance reward signal to update the actor.

Actor-critic method uses TD method that has a separate memory structure

to explicitly represent the policy independent of the value function. The policy

structure is known as the actor, because it is used to select actions; and the

estimated value function is known as the critic, because it criticizes the actions

made by the actor.

Typically, the critic is a state-value function. After each action selection,

the critic evaluates the new state to determine whether things have gone better

or worse than expected. That evaluation is the TD error:

δt = Rt+1 + γV (St+1)− V (St) (2.75)

where V (St) is the current value function implemented by the critic. If

the TD error is positive, it suggests that the tendency to select should be

strengthened for the future, whereas if the TD error is negative, it suggests the

tendency should be weakened.

The actor is only responsible for generating an action, given the current

state St.
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2.5 Hardware-in-the-Loop Simulation

Hardware-in-the Simulation (HILS) is a technique, where physical part of a

real system are substituted by a simulation. It is used for validating embedded

real-time systems prior to their actual deployment.

The development of of a safety-related real-time system involves validation

techniques ensuring sufficient trust in the reliability of the system. As part

of validation, dynamic testing aims to remove errors within a system prior to

its final deployment. However, it is often difficult to test a real-time system

performing control tasks in its natural environment because the conditions of

the environment circumvent an accurate observation of the real-time systems

interface. Also, it may be very costly and time consume to establish certain test

conditions in the physical environment. A comprehensive summary on concepts

of regarding the design and analysis of real time system can be found in. With

regard to the real-time system, a fundamental study on the concepts of HILS

is presented in .

In this study, HILS environment for our system includes an actual con-

trol system and a simulation of the environment. HIL tesing is performed by

connecting the simulator to the target control system, so that testing can be

conducted in a controlled environment. The simulator acts as a virtual world

for the control system by simulating the necessary equipment including system

dynamics, sensors and actuators. Consequently, the simulator will respond in

the same way as the actual system would in real operation on board.

2.5.1 Integrated Simulation Method

The HILS communication with the control system by sending and receiving

signals. So that the communication interface is necessary. In this study, we adopt
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the robot operating system (ROS), which is widely used to develop hardware

and control algorithms rapidly.

ROS is an open-source, meta-operating system for your robot. It pro-

vides the services you would expect from an operating system, including hard-

ware abstraction, low-level device control, implementation of commonly-used

functionality, message-passing between processes, and package management.

http://wiki.ros.org/ROS/Introduction

Figure 2.7: The benefit of use of ROS.

For the communication between the control system and the HIL simulator,

an integrated simulation environment was constructed using the data commu-

nication interface of the ROS. In our application, the use of ROS allows us to

easily integrate the control algorithms with the HIL simulator and with the real

hardware in the ships. As shown in Fig. 2.7, the advantage of ROS is that it is

possibility to directly develop algorithms on the control system and safely test

them in a simulated scenario.

Fig. 2.8 describes the communication and features of ROS configuration.
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Figure 2.8: The components of ROS.

One of the primary purposes of ROS is to facilitate communication between

ROS modules called nodes. These nodes represent the executable code and the

code can reside entirely on one computer, or nodes can be distributed between

computers or between computers and robots. With this simulation environment,

the HIL simulator can be easily replaced by actual hardware, which is supported

by the ROS. As a result, an experiment can be easily conducted in the real

environment to validate the control algorithms.
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Chapter 3

Path Following Method for
Autonomous OSV

Autonomous ships rely heavily on guidance system in order to accomplish

desired motion control scenarios such as object tracking, path following. Breivik

and Fossen (2005).

3.1 Guidance System

3.1.1 Line-of-sight Guidance System

This section considers a 2-D control scenario where the autonomous OSV

is assigned to follow a predefined path. Path following is a task of following the

predefined path which is usually specified in terms of waypoints. Each waypoint

is defined using coordinates (xk, yk) for k = 1, 2, 3.. For the autonomous OSV,

this means it should pass through waypoint (xi, yi) with desired heading angle.

A frequently used method for the path following is LOS guidance. To avoid large

drift when switching at the desired heading angle, and to provide a proper

desired heading angle to the controller, the commanded LOS heading is fed

through a reference model. The diagram of the LOS guidance system is given

in Fig. 3.1, where the LOS position PLOS is the point along the path the the

vessel should point at. It is located somewhere along the straight line connecting

the current waypoint Pk((xk, yk)) and the next Pk + 1((xk+1, yk+1)). Let the
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ship’s current position be located at the center of a circle with the radius of

n times the ship length. The circle intersects the current straight line at two

points where PLOS is selected as the point closest to the next waypoint Pk+1.

Figure 3.1: Diagram of LOS guidance geometry for a straight line.

Consider a straight line path defined by the two waypoints Pk(xk, yk) and

Pk+1(xk+1, yk+1), respectively; the path-tangential angle can be adjusted as

follows:

ψp = arctan (yk+1 − yk, xk+1 − xk) (3.1)

Hence for a ship that is specified regarding the positions (x, y), the along-

track error and cross-track error can be computed as the orthogonal distance
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to the path-tangential reference frame defined by the point Pk.

xe
ye

 =

 cosψP sinψP

− sinψP cosψP

x− xk
y − yk

 (3.2)

One of the control objective for straight line path following becomes limt→∞ ye =

0. Driving ye to zero directs the velocity towards the intersection point PLOS

which corresponds to the desired direction. Based on the LOS guidance law,

the desired course angle is separated into two parts:

ψd = ψP + ψLOS (3.3)

= ψP + arctan(
−ye
4

) (3.4)

ψLOS = arctan(
−ye
4

) (3.5)

Where 4 represents the look-ahead distance and takes values between 1.5

and 2.5 of the ship length Fossen (2011). ψLOS ensures that the velocity is

directed toward the point on the path.

In the presence of the environmental disturbances, the heading angle error

ψe becomes:

ψe = ψd − β − ψ (3.6)

By the above equations, the cross-track error and heading angle error can

be explicitly stated by the following equation:

xe
ψe

 =

− sinψP cosψP 0

0 0 1




x− xk
y − yk

ψP + ψLOS − β − ψ

 (3.7)
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Where ye and ψe are referred to the cross-track error and heading angle

error respectively. The control objective of the path following is to drive the

two errors to zero.
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3.2 Deep Reinforcement Learning for Path Following

System

This section presents the definitions and theoretical background of the

controller design used in this study. The main objective of the study is to ensure

that position of the ship converges to and follows the predefined path. The brain

of the path following system is the controller. Generally, the controller measures

the process variables concerning the analysis module of the autonomous OSV

and directs to control command to the actuators to correct the error between

the process variables and the desired value.

3.2.1 Deep Reinforcement Learning Setup

The path following problem is defined in the context of the sequential

decision-making problem by considering the surrounding environment. Dur-

ing training, all the current process variables of the autonomous OSV can be

observed and evaluated whether it arrive at the destination. Based on the ob-

servation space, self-play trials are conducted to determine the control strategy

under various training processes. Once the training process is completed, the

autonomous OSV is capable of automatically navigating predefined way and

arriving at the destination under the commands of the controller.

At each time step t, the controller has access to an observation vector and

computes a control command that drives the ship from the current position to

the destination. Given the observation vector st, the autonomous OSV computes

a control command, at, sampled from a stochastic policy πθ(a|s) with the policy

parameter θ.

at ∼ πθ(at | st), (3.8)
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As a result, the path following problem has been formulated as a sequential

decision-making problem. Thus, the objective of the controller design is to find

an optimal policy.

As a result, the sequential decision-making for the path following problem

can be formulated as a Markov decision process (MDP) in an RL framework

illustrated in Fig. 3.2.

The decision-maker (autonomous OSV), which is called an agent, executes

an action in the environment, and the environment, in turn, yields a new state

and reward. The terms ‘agent’, ‘environment’, and ‘action’ are used instead

of ‘autonomous OSV’, ‘analysis module’, and ‘control signal’ further in this

paper. More formally, the agent and environment interact at each of a sequence

of time steps, t = 0, 1, 2. . . , At each time step t, the agent receives states

of the environment, st ∈ S, where S is the set of states, at ∈ A(st), is the

set of actions available in state st. One time step later, the agent received a

numerical reward, rt+1 ∈ R, and find itself in a new state st+1. The mapping

from the states to actions is called a policy (denoted as πθ), where πθ(a|s) is

the probability that at = a if st = s Sutton et al. (1998). Namely, the return

Gt =
∑∞

k=0 γ
krt+k+1, where γ ∈ [0, 1] is the discount rate. The state value

function Vπ(s) = E[rt|st = s] is the expected return for following policy πθ from

the state st. The state action value function Qπ(s, a) = E[rt|st = s, at = a]

is the expected return for selecting action at in state st and then following

policy πθ. (Sutton and Barto, 2015) As shown in Fig. 3.2, the policy can be

formulated as a controller that observes states and applies actions to the agent

(autonomous OSV). The aim of the agent is to find an optimal policy, which can

maximize the sum of the rewards (return) received during the interaction with

the environment. In this way, the autonomous OSV can follow the predefined

path and avoid collision with the encountered OSVs.
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As illustrated in Fig. 3.2, the policy can be formulated as a controller

that observes states and applies actions to the autonomous OSV. which can

maximize the sum of the rewards (return) received during the interaction with

the environment.

Figure 3.2: A configuration of RL framework for the path following system.

Observation Space

The observation vector of the path following system is defined as sOt , which

denotes the autonomous OSV observation vector. We define the state as the

information the agent receives about the environment at a given time step. In

addition, we assume that the state space in this study are all observed. It can

be expressed as:

sOt = [ye, ψe, ψ̇e, χe, χ̇e, ‖Pgoal − P‖2, φ̃, δ, δ̇, L] (3.9)

The autonomous OSV state related to the path following system sOt , con-
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Table 3.1: State observation in path following system

State Description

ye Cross error

‖Pgoal − P‖2 Distance between the ship and the destination

ψe Heading angle error

φ̃ Relative angle between the course angle and the angle point

to the destination

χe Course angel error

δ Rudder angel

ψ̇e Angular velocity of heading angle error

δ̇ Rudder angular velocity

χ̇e Angular velocity of course angle error

L Length of the autonomous OSV

sisting of 10 elements, which are illustrated in the Table 3.1. The ye is the cross

error, the ψe is the heading angle error, and ψ̇e is the angular velocity of heading

angle error and χe is the course angle error. Moreover, ‖Pgoal − P‖2 represents

the distance between the position of the autonomous OSV and the destination.

φ̃ is the relative angle between the course angle of the autonomous OSV and

angle pointing to the destination from the ship. the rudder angle δ and rudder

angular velocity δ̇ are also considered as a part of the state space. As the length

of the autonomous OSV L may have a specific impact on the action space, it

is also included into the state space.

Action Space

As was mentioned above, the state space consists of the autonomous OSV

inertial coordinates, while the action is related to the rudder angle (Fig. 3.3).
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We divide the permissible rudder angle δ into a set of three discrete values:

a ∈ [−20, 0, 20]. Here, the maximum angle of the specified autonomous OSV

δmax is set to 20 degree. This chosen set of action is proven adequate and any

given set up action can be used. As the autonomous OSV is an underactuated

system which has been formulated in the previous section, the control vector

can be expressed as τ = [τx(t), τy(t), τN (t)]T .

Figure 3.3: Action space in the path following system.

Reward Function Design

The reward function is computed as the sum of the rewards accumulated

in each episode, where a reward is a measurement of action quality. The reward

function can be specified to reward the agent for approaching its goal. It is

designed to constraint the autonomous OSV to follow the predefined paths.

At first, a distance reward Rdistance is designed to guide the autonomous

OSV to achieve the destination. This can be expressed mathematically as:

Rdistance = −λdistance‖Pgoal − P‖2 (3.10)
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where Pgoal, P are the position of the destination and current position of the

autonomous OSV respectively, which can be found in Fig. 3.4. where λdistance

refers to a hyper-parameter. When the ship approaches the destination, the

more substantial distance reward value is imposed on the agent.

Figure 3.4: Action space in the path following system.

Moreover, to avoid the drift phenomenon, the linear velocity of sway v has

to smaller than the surge velocity u. As a result, the drift reward function can

be formulated as follows. Where the rdrift refers to the drift reward value in

case of the drift phenomenon occurs.

Rdrift =


−rdrift if |u| < |v|

0 otherwise

(3.11)

The course angle error ψe and the cross error ye have been considered in

another two reward function. In order to encourage the autonomous OSV to

follow the predesigned path, the course angle error and the cross error between

the autonomous OSV and the path have to converge to zero. When calculating

the course angel error reward, within a small range |ψe| < |ψ|, we propose

an exponential reward function to model it. If the heading angle error and

the heading angular velocity error equal to zero, which means that there is

no deviation between the autonomous OSV and path, the agent receives the
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maximum reward at the current time step.

Rheading =


exp(−kd(ψe2 + ψ̇2

e)) |ψe| < |ψ|

−rheading error otherwise

(3.12)

The formation of the cross error reward function is similar to the heading

angle reward function.

Rcross =


exp(−kc(ye2 + ẏ2e)) |ye| < |y|

−rcross error otherwise

(3.13)

where kd and kc define the parameters of the exponential function which

relate to its convergence speed. rheading error and rcross error are the positive values

when the autonomous OSV deviates from the path at a relatively large angle.

3.2.2 Neural Network Architecture

The network consists of a critic network (value function) and a policy

network (policy function). The critic network is used to predict a state value

function for each state, and the policy network is used to predict the action. As

shown in Fig. 3.5, to represent the policy network, we use a fully-connected (FC)

multilayer perceptron with two hidden layers consisting of 64 and 32 hidden

units with tanh nonlinearities outputting the probability over the action space.

In the process of training, the state is transmitted to the neural network, and

the agent selects and executes an action according to the policy with the highest

probability. Training of the critic and policy networks (see Fig. 3.6) is performed

by defining the surrogate loss functions for each network. Then, back-propagate

gradients computed with the unified surrogate loss function are used to update

the weights of the network. We refer to the network trained with this approach

as Clipped PPO, as shown in Algorithm 1.
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Figure 3.5: Flow diagram of neural network architecture

Figure 3.6: Network architecture. The observable state is fed into two fully-

connected layers (FC), the outputs of critic network and policy network are a

state value function (green) and an action (orange), respectively.
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3.2.3 Training Process

In this section, we focus on learning path following policy which performs

robustly and effectively in various scenarios. Policy gradient (PG) methods di-

rectly optimize the policy parameters θ by following the direction of the gradient

of the expected return with respect of the policy parameters, which can be di-

rectly estimated from samples. However, traditional PG methods are sensitive

to the choice of step size and have poor sample efficiency. In order to elim-

inate these disadvantages, a Proximal Policy Optimization (PPO) method is

proposed to constrain the step size of the policy update during training. PPO

is an extension of the policy gradient method. It uses a clipped surrogate ob-

jective function as the policy network’s loss function, which is formulated as

follows Schulman et al. (2017).

rt(θ) =
πθ(at|st)
πθold(at|st)

(3.14)

LPPO(θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (3.15)

In Eq. 3.14, πθ(at|st) is the probability of the action under the current

policy with the policy parameter θ, πθold(at|st) is the probability of the action

under the previous policy. Thus, rt(θ) is the ratio of the probabilities under

the current and previous policies, it is greater than 1 when the action is more

probable for the current policy, while it is between 0 and 1 when the action is

less probable for the current policy than the previous one.

However, if rt(θ) trend to a big value, it means that it would lead to taking

a big gradient steps. To deal with this, the objective function gains a penalty

term, which rt(θ) is clipped between 1− ε and 1 + ε. Therefore, it updates the

policy conservatively by clipping the policy ratio to be within a small range
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around 1.0.

In Equation. 3.15, Êt denotes the empirical expectation over time steps, Êt

is the estimated advantage at time t, ε is a hyper-parameter, which is usually set

to 0.1 or 0.2. The value targets are calculated based on the generalized advan-

tage estimation (GAE) advantages Schulman et al. (2015). It is defined as the

difference between the state action value function and the state value function.

As shown in Algorithm 1, at each iteration, the agent (autonomous OSV) collect

T time steps of data (where T is much less than the episode length), and run the

policy for T time steps. Then we construct the surrogate loss LPPO(θ) on these

sampled trajectories, the loss function is optimized with the Adam optimizer

for Eπ epochs. By taking a gradient ascent step on this loss with respect to the

network parameters, the action will be led to obtain a higher reward. The state

value function Vφ(st), used as a baseline to estimate the advantage Ât, which is

approximated with a neural network with parameters φ. We construct the mean

squared error loss LV (φ) for Vφ(st), and optimize it with Adam optimizer for

Ev epochs. We update πθ(at|st) and Vφ(st) independently and their parameters

are not shared since we have found that using two separated networks will lead

to a better results in practice. For completeness, the algorithm for iteratively

updating policy and value function is given below:

Table. 3.2 presents the hyper-parameters used during the simulation runs.
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Algorithm 1 PPO with an autonomous OSV.

1: Initialize policy network πθ and value network Vφ(st).

2: for iteration = 1, 2, ..., do

3: Run policy πθ for T timesteps, collecting {st, rt,at}, where t ∈ [0, T ]

4: Estimate advantages using GAE Schulman et al. (2015), Ât =∑T
l=0(γλ)lδt, where δt = rt + γVφ(st+1)− Vφ(st)

5: break, if T > Tmax

6: πold ← πθ

7: // Update policy

8: for j = 1, ..., Eπ do

9: rt(θ) = πθ(at|st)
πold(at|st)

10: LPPO(θ) =
∑Tmax

t=1 min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

11: Update θ with lrθ by Adam Kingma and Ba (2014) w.r.t LPPO(θ)

12: end for

13: // Update value function

14: for k = 1, ..., EV do

15: LV (φ) = −
∑T

t=1(
∑

t′>t γ
t′−trt′ − Vφ(st))

2

16: Update φ with lrφ by Adam w.r.t LV (φ)

17: end for

18: end for
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Table 3.2: The hyper-parameters of our training algorithm described in Algo-

rithm

Parameter Value

λ in line 4 0.95

γ in line 4 and 15 0.99

Tmax in line 5 5120

Eφ in line 8 10

ε in line 10 0.2

lrθ in line 11 2e−5

EV in line 14 10

lrφ in line 16 1e−3
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3.3 Implementation and Simulation Result

3.3.1 Implementation for Path Following System

In this study, we consider an autonomous OSV that assigned to converge

to a predesigned path specified by the path planner. Fig. 3.7 illustrates the

implementation with the path following mission. To visualize the simulation

result, the 3D visualization tool RViz was considered to be a suitable platform

which provided by ROS. It is perfect for easily visualizing a simulated envi-

ronmental including autonomous OSV, generated path, and other target ships.

The calculation module interfaces with RViz to set the position, orientation of

the autonomous OSV.

Figure 3.7: Simulation setup in phase one: path following and the principle

dimensions for the autonomous OSV and the actuator.

In the real-world implementations, the environment is often dynamic and

unpredictably changing. To handle this environment, the path planner is re-
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quired to be able to generate various paths. We divided the training process

into two phases, which accelerates the policy convergence and allows to get a

higher reward.

At first, we train the autonomous OSV to follow the randomly generated

path without any target ships, and this allows the autonomous OSV to im-

prove the training speed in the presence of the target ships. The designed path

considered here is composed of a collection of waypoints which randomly cre-

ated as shown in Fig. 3.7. During the training process, the position and the

number of waypoints are all created randomly. The principal dimensions of the

autonomous OSV with its actuator is shown on the left side of Fig. 3.7. Pérez

and Blanke (2002)

The objective of controlling the autonomous OSV is to follow the randomly

generated path without deviation. In this task, the rudder angle applied to the

autonomous OSV is limited to three choices: a positive angle of a fixed magni-

tude, a negative angle of the same magnitude, or zero. The rewards function,

described in the previous section, are given on every time step until the des-

tination (last waypoint) is reached, which finishing an episode. After finishing

the given training iteration, the optimal policy can be obtained.
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Table 3.3: Environmental conditions for path following scenario.

Case
Num. of

way points

Wave condition Current

direction

[deg]

Wind

direction

[deg]

Training & Testing

Direction

[deg]

Height

[m]

Period

[sec]

Network

model

Training

iteration

Training

time[h]

1-1

4

- - - - - A

0 0

1-2 55 0.5

1-3 150 1.0

1-4 90 1.0 10 90 90 A - -

1-5 90 1.0 10 90 90 A-1 20 0.5

1-6 45 1.0 10 45 45 A-1 - -

1-7 6 0 1.0 10 0 0 A-1 - -

The proposed control algorithm was applied to path following in the real

environment using the wind and current data to examine the effectiveness and

practical utility of the approach. The simulation environment has been im-

plemented using the python software package. The environment includes the

dynamic model of the autonomous OSV, the randomly generated paths, and

the simulated wave, wind, and current sea disturbances. The integrated time

step was set to dt = 0.1 s. Several simulation cases considering a variety of en-

vironmental conditions were conducted, regarding the following variables: wave

velocity direction: 0◦, 45◦, 90◦, wind velocity direction: 0◦, 45◦, 90◦, and cur-

rent velocity direction: 0◦, 45◦, 90◦. The wind and sea current velocity upper

bounds are equal to 30.0 m/s and 1.0 m/s, respectively. The resultant dis-

turbance forces and torque are collected in τwind = [Fxwind , Fywind , Fzwind ] and

τwave = [Fxwave , Fywave , Fzwave ]. The related parameters of the environmental

forces used in the following cases are obtained from the Oil Companies Inter-

national Marine Forum (OCIMF).

At each training iteration, the agent exploits the policy to generate trajec-

tories until the maximum length of (Tmax = 5120) time steps is reached. We

then randomly select samples from the collected data. The selected sampled
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mini-batch (=64) is used to construct the surrogate loss function with is opti-

mized with the Adam optimizer for Eπ (Eπ = 10) epochs. Average reward is

computed as the sum of the rewards accumulated in each episode, where the

path following reward functions follow the rules. An episode ends when the

determination is reached, or the ship is too far away from the path.

3.3.2 Simulation Result

Simulation Result of 3 Step Rudder Angle

Fig. 3.8, Fig. 3.9, Fig. 3.10 illustrate the simulation results of the position

of the autonomous OSV following the predefined path in Case 1-1, Case 1-2,

and Case 1-3, respectively. These simulation results represent the pre-training,

on-training with the iteration of 55, and post-training with the iteration of

150 respectively. The network model A was trained without the environmental

forces. During the training, the paths are generated randomly by connecting

four way-points. The initial heading angle of the autonomous OSV is also de-

fined randomly. According to the simulation results, the capability of success-

fully following the path and reaching the destination is apparent.

The performance of the rudder angle in Case 1-3 is depicted in Fig. 3.11.

It shows that when passing through each waypoint, the rudder angle is set to

be maximum.

The following plot shows the average total reward during the path following

training. We can find that the reward increases smoothly. The Case 1-1, Case

1-2 and Case 1-3 are signed in Fig. 4.13. However, when the environmental

forces including wave, wind and sea current acting on the autonomous OSV

(Case 1-4), we tested the trained model A. The simulation result of Case 1-4 is

shown in Fig. 3.13, which represents that the autonomous OSV deviates from
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the designed path regularly so that it fails to follow the path. The corresponding

result of rudder angle is depicted in Fig. 3.14.

Based on the network model A, we continuously train it under the same

environmental conditions in Case 1-4. As a result, we got the trained network

model A1 after 20 iterations. Fig. 3.15 and Fig. 3.16 in Case 1-5 show the simu-

lation results using the network model A-1; the autonomous OSV can followed

the designed path successfully under the environmental forces.

The environmental conditions, such as the wave amplitude, period, and

direction, current and wind direction can induce different motions of the au-

tonomous OSV. In order to evaluate the effectiveness of network model A1

under the various environmental forces, Here, we implement the Case 1-6 con-

cerning with the following environmental conditions: wave direction (45◦), cur-

rent direction (45◦), and wind velocity direction (45◦). Fig. 3.17 and Fig. 3.18

show the simulation results of the Case 1-6 without training.

In Case 1-7, the wave, current and wind directions are equal to 0 degrees,

and the training paths are more complicated than the previous Cases by adding

to six waypoints. As shown in Fig. 3.17, the autonomous OSV can successfully

follow the designed path without training. According to these simulation results,

we can conclude that one of the advantages of the proposed method is its

excellent performance of adaptation in the unknown environmental disturbance.
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Figure 3.8: Graphs of the position of the autonomous OSV in Case 1-1. The

result is calculated by the model A without environmental forces before training.
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Figure 3.9: Graphs of the position of the autonomous OSV in Case 1-2. The

result is calculated by the model A without environmental forces before training.
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Figure 3.10: Graphs of the position of the autonomous OSV in Case 1-3. The

result is calculated by the model A without environmental forces before training.
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Figure 3.11: Graphs of rudder angle of the autonomous OSV in Case 1-3.

Figure 3.12: Average reward during training.
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Figure 3.13: Graphs of the position of the autonomous OSV on a designed path

in Case 1-4. The result is calculated by the model A with environmental forces

before training.
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Figure 3.14: Graphs of rudder angle of the autonomous OSV in Case 1-4.
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Figure 3.15: Graphs of the position of the autonomous OSV on a designed path

in Case 1-5. The result is calculated by the model A with environmental forces

before training.
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Figure 3.16: Graphs of rudder angle of the autonomous OSV in Case 1-5.
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Figure 3.17: Graphs of the position of the autonomous OSV on a designed

path in Case 1-6. The result is calculated by the model A-1 with environmental

forces.
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Figure 3.18: Graphs of rudder angle of the autonomous OSV in Case 1-6.
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Figure 3.19: Graphs of the position of the autonomous OSV on a designed

path in Case 1-7. The result is calculated by the model A-1 with environmental

forces.

77



Figure 3.20: Graphs of rudder angle of the autonomous OSV in Case 1-7.
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Table 3.4: Comparison cases of path following problem according to 3 step

rudder angle and 5 step rudder angle

Case Num. of way points
Training & Testing

Mean cross error

[m]

1 4 1.12 1.26

2 6 1.76 1.91

3 6 1.76 1.81

Simulation Result of 5 Step Rudder Angle

To evaluate the 3 step action performance, we subdivided the action com-

mand from a set of three discrete values (3 step) into a set of five discrete

values (5 step). The action that is related to the rudder angle becomes a set

of three discrete values a ∈ [−20,−10, 0, 10, 20]. Furthermore, we compared the

simulation results of path following according to 3 step rudder angle and 5 step

rudder angle in Table. 3.4.

Fig. 3.21 and Fig. 3.23 illustrate the simulation results of the position of

the autonomous OSV following the predefined path in Case 1 and Case 2. These

simulation results represent the 3 step rudder angle and 5 step rudder angle,

respectively.

However, the mean cross error of the 3 step rudder angle result is smaller

than the 5 step rudder angle, that is mean the performance of the 3 step rudder

angle result is better than 5 step rudder angle. Fig. 3.22 and Fig. 3.24 represent

the corresponding rudder angle tendency.
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Figure 3.21: Comparison result of path following according to 3 step rudder

angle and 5 step rudder angle.

Figure 3.22: Comparison result of rudder angle.
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Figure 3.23: Comparison result of path following according to 3 step rudder

angle and 5 step rudder angle.

Figure 3.24: Comparison result of rudder angle.

81



Since the training iteration between the 3 step rudder angle and 5 step

rudder angle has the difference, thus, we continually train the neural network

model of 5 step rudder angle. As shown in Fig. 3.25, the average reward converge

to a constant value eventually. Using the retrained neural network model, we

compare the rudder angle between 3 step rudder angel result and 5 step rudder

angel result. According to the Fig. 3.26, we can conclude that the rudder angel

tendency of 3 step rudder angel and 5 step rudder is similar to each other when

the training iteration is the same.

Figure 3.25: Continue training the 5 step rudder angle neural network model.

Figure 3.26: Comparison results of rudder angle.
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Table 3.5: Environmental conditions of comparison scenarios

Case Path type
Wave condition Current

direction

Wind

direction

PPO
PID

(fully tuned)

Direction

[deg]

Height

[m]

Period

[sec]
Model

Mean

cross

error

Model

Mean

cross

error

1

CURVE

- - - - - A 1.14 B 3.26

2 45 1.0 10 45 45 A 6.11 B 9.37

3 45 1.0 10 45 45 A 1 0.91 B 1 7.03

4 90 1.0 10 90 90 A 1 0.95 B 1 7.28

3.4 Comparison Results

3.4.1 Comparison Result of PPO with PID

Path following system for autonomous OSV are predominately implemented

using the Proportional, Integral, Derivative (PID) control systems. PID have

demonstrated close-to-ideal performance in many circumstances.

Case 1 is the simulation result of PPO model A and PID model B under

the condition that there are no environmental forces(Fig. 3.27). As a result of

simulation with PPO model A, the mean cross error between the autonomous

navigation ship and the set path was 1.14 meters, and the simulation with the

fully tuned PID model B resulted in a mean cross error of 3.26 meters.

However, the trained PPO model A and tuned PID model B were used for

the simulation of path following when the environment forces, including wind,

wave, and sea current, were taken into account. The simulation of Case 2. As

a result of simulating with PPO model A, the mean cross error is 6.11 meters

and the simulation result of PID model B shows that the mean cross error is

9.37 meters. As shown in the simulation results, the learned / tuned PPO and

PID models in the absence of environmental external forces performed not well
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Figure 3.27: Graphs of the comparison result of PPO and PID in Case 1 and

Case 2. The result is calculated by the model A and B without environmental

forces.

followed in Case 2 given the environmental external force. It can be seen that

the autonomous OSV deviates from the predefined path and all failed to follow

the path.

Based on training model A and tuned model B, we continuously trained

/ tuned it under similar environmental conditions in Case 3. As a result, we

obtained the trained PPO model A-1 and PID model B-1. Fig. 3.28 shows the

simulation results using PPO model A-1 and PID model B-1 in Case 3; one can

see that the autonomous OSV follows the designed path successfully under the

environmental forces. In the context of the 45◦ environmental forces (Case 3),

the mean cross error of PPO model A-1 is 0.91 meters and the mean cross error

of PID model B is 7.03 meters.

To evaluate the effectiveness of PPO model A-1 and PID model B-1 under

various environmental forces, the following environmental conditions were set in
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Figure 3.28: Graphs of the comparison result of PPO and PID in Case 2 and

Case 3.

Case 4: wave direction (90◦), current direction (90◦), and wind velocity direction

(90◦).

According to these simulation results, we can conclude that one of the ad-

vantages of the proposed method is its excellent performance in the unknown

environmental disturbances. When the objective exposed to unperdictable and

harsh environments (e.g. wind, current, and wave, etc). However, a PID con-

troller can be far from optimal Maleki et al. (2016) Koch et al. (2018).
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Figure 3.29: Graphs of the comparison result of PPO and PID in Case 3 and

Case 4.
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3.4.2 Comparison Result of PPO with Deep Q-Network (DQN)

The development of intelligent way point navigation control is an active

area of research. In RL, an agent is given a reward for every action it makes in

an environment with the objective to maximize the rewards over time.

We compare the performance of PPO controller with that of value based

RL algorithm DQN controller. Table 3.6 shows the environmental conditions of

comparison scenarios.

Table 3.6: Environmental conditions of comparison scenarios

Case
Num. of

way points

Wave condition Current

direction

Wind

direction

PPO DQN

Direction

[deg]

Height

[m]

Period

[sec]
Model

Mean

cross

error

Model

Mean

cross

error

1 4 45 1.0 10 45 45 A 1 1.14 C 3.26

2 6 0 1.0 10 0 0 A 1 6.11 C 9.37

Figure 3.30: Graphs of the comparison result of PPO and DQN in Case 1.

Fig. 3.30 shows the average reward of PPO and DQN for path following in

87



Figure 3.31: Graphs of the comparison result of PPO and DQN in Case 2.

Case 1. The average reward converges to a maximum value until 1580 iterations.

Fig. 3.31 shows the average reward of PPO and DQN for path following in Case

2. The average reward converges to a maximum value until 1000 iterations.

In this study, we study the accuracy and prediction of navigation control

provided by intelligent controller trained using state-of-the art RL algorithm:

PPO and DQN. We then compare the performance of the RL controller with

that of a PID controller. Our evaluation finds that 1) controller trained using

PPO outferform PID controller and capable of exceptional performance. 2)

controller trained using PPO outperform value-based DQN algorithm.
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Chapter 4

Collision Avoidance Method for
Autonomous OSV

4.1 Deep Reinforcement Learning for Collision Avoid-

ance System

4.1.1 Deep Reinforcement Learning Setup

As illustrated in Fig. 4.1, the agent (autonomous OSV) and environment

interact at each of a sequence of discrete time steps. At each time step t, the

agent has access to the observation vector and computes the collision-free con-

trol command that drives the ship from the current position to the destination.

In this study, we define the action as the rudder angle, which will change

the direction of the ship. One time step later, the agent of the ship receives a

reward and find itself in a new state.

The policy can be formulated as a controller that observes states and ap-

plies actions to the agent. The aim of the agent is to find an optimal policy,

which can maximize the sum of the rewards (return) received during the inter-

action with the environment. In this way, the autonomous OSV can follow the

predefined path and avoid collision with the encountered ships.
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Figure 4.1: Simulation setup in phase two: collision avoidance with three target

ships.

Observation Space

We define a state as the information the agent about the environment at a

given time step. The observation vector of the system is divided into two parts:

sOt and sTt . where sOt denotes the autonomous OSV observation vector and sTt

is the observation vector related to the target ships.

As mentioned in the previous chapter, the state st consists of the state of

the autonomous OSV observed itself sOt and sTt relevant to the target ships. It

can be expressed as:

sOt = [ye, ψe, ψ̇e, χe, χ̇e, ‖Pgoal − P‖2, φ̃, δ, δ̇, L] (4.1)

sTt = [Pobstaclei , Vobstaclei , ‖P − PobstacleP i‖2, ‖χ− χobstacleP i‖2, li] (4.2)

The path following related state sOt has been introduced in the previous

chapter. The observation vector of the target ships sTt , consist of 5 elements as
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shown in Fig. 4.2. It contains positions Pobstaclei and velocities Vobstaclei of the

target ships in the local frame attached to the autonomous OSV. The relative

distances between the autonomous OSV and the target ships, ‖P−PobstacleP i‖2,

and the relative angles between the autonomous OSV and the target ships

‖χ − χobstacleP i‖2 have been considered. In addition, the lengths of the target

ships li are also contained in the state space, where i represents the number of

the target ships li. The state st are summarized in the following Table. 4.1.

Figure 4.2: Target ships related state definition.

Action Space

We have considered that state space consists of the autonomous OSV iner-

tial coordinates, while the action is related to the direction of the rudder angle.

We divide the permissible rudder angle δ into a set of three discrete values:

a ∈ [−20, 0, 20]. This chosen set of action is proven adequate and any given set

up action can be used.
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Table 4.1: State observation in collision avoidance system

State Description

ye Cross error

‖Pgoal − P‖2 Distance between the ship and the destination

ψe Heading angle error

φ̃ Relative angle between the course angle and the angle

point to the destination

χe Course angel error

δ Rudder angel

ψ̇e Angular velocity of heading angle error

δ̇ Rudder angular velocity

χ̇e Angular velocity of course angle error

L, li Length of the autonomous OSV and the target ships’

length

Pobstaclei Target ship’s position

Vobstaclei Target ship’s velocity

‖P − PobstacleP i‖2 Relative distance between the autonomous OSV and the

target ships

‖χ− χobstacleP i‖2 Relative course angles between the autonomous OSV and

the target ships

‖P − PobstacleP i‖2 Relative distance between the autonomous OSV and the

target ships

92



Reward Function Design

The objective of autonomous OSV is to follow the predefined path while

avoids collision with the target ships. So the reward functions for path following

have to be taken into consideration.

Besides the path following reward functions, when the autonomous OSV

collides with the other target ships in the range of a circle with radius r0, it is

penalized by the collision reward rcollision. Where Pobstaclei the current position

of the target ships.

Rcollision =


−rcollision if |P − Pobstaclei | < r0

0 otherwise

(4.3)

As the autonomous OSV has to avoid the target ships in compliance with

COLREGs, the related reward function RCOLREGs has to be added:

RCOLREGs =


rCOLREGs if turn right

−rCOLREGs otherwise

(4.4)

4.1.2 Neural Network Architecture

Similar with the path following problem, the network of collision avoidance

scenario consists of a critic network (value function) and a policy network (pol-

icy function). The critic network is used to predict a state value function for

each state, and the policy network is used to predict the action. To represent the

policy network, we used a fully-connected (FC) multilayer perceptron with two

hidden layers, consisting of 64, 32 hidden units with tanh nonlinearities, out-

putting the probability over the action space. When training, the state inputs

to the neural networks, and the agent selects and executes an action according
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to the policy with the highest probability. As shown in Fig. 4.3, training both

the critic network and policy network by defining surrogate loss functions for

each network. Then back-propagate gradients computing with the unified sur-

rogate loss function are used to update the weights of the network. We refer to

the network trained with the approach as Clipped PPO.

Figure 4.3: Network architecture. The observable state is fed into two fully-

connected layers (FC), the outputs of critic network and policy network are a

state value function (green) and an action (orange), respectively.

4.1.3 Training Process

Here, we focus on learning a path following and collision avoidance policy

simultaneously which performs robustly and effectively in various scenarios. We

also adopted clipped PPO for the collision avoidance problem.
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4.2 Implementation and Simulation Result

4.2.1 Implementation for Collision Avoidance System

COLREGs compliance

An important factor in the implementation for the collision avoidance sys-

tem is ensuring all the ships comply with the COLREGs rules. The detailed

description of COLREGs are in the appendix. A diagram of target ships as de-

fined by COLREGs Commandant (1999) is shown in Fig. 4.4: the autonomous

OSV is requested to be the give-way vessel, and the target ships are designed

to be the stand-on vessels. If the distance between the give-way vessel and the

stand-on vessel is in a dangerous range, COLREGs is considered to apply. As

suggested in Fig. 4.4(a), in the case of head-on scenario, the autonomous OSV

should change course to starboard and pass with the target ship on its port

side to avoid it, then return to the original path when confirming safety. Simi-

larly, the diagram of the crossing scenario is shown in Fig. 4.4(b), the optimal

strategy corresponds to a course offset toward starboard side until the target

ships are passed at a safe distance on the autonomous OSV’s port side. Finally,

the overtaking scenario is shown in Fig. 4.4(c), the autonomous OSV can either

pass starboard or port of the target ship, depending on COLREGs. In these

scenarios, the target ships do not respect its responsibility to keep away.

Implementation

To visualize the simulation results, the 3D visualization tool RViz provided

by Robot Operating System was used. It allows visualizing the simulated en-

vironment, including the autonomous OSV, generated path, and target ships.

The calculation module interacts with RViz to set the position and orientation

of the autonomous OSV.
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Figure 4.4: Target ships for COLREGs: (a) Head-on (b) Crossing (c) Overtak-

ing.

In the real-world implementations, the environment is often dynamic and

may change unpredictably. To handle this environment, the path planner is

required to be able to generate various paths. We divided the training process

into two phases, which accelerates the policy convergence and allows to get a

higher reward.

In the first phase, we train the autonomous OSV to follow the randomly

generated path without any target ships. It allows the autonomous OSV to

improve the training speed in the presence of the target ships.

The objective of controlling the autonomous OSV is to follow the ran-

domly generated path without deviation. In this task, the rudder angle of the

autonomous OSV is limited to three choices: a positive angle of a fixed magni-

tude, a negative angle of the same magnitude, or zero. The reward functions de-

scribed in previous section, except the collision reward function and COLREGs

related reward function, are given on every time step until the destination (last

waypoint) is reached. That means that the episode is finished. After completing

the given training iteration, the optimal policy can be obtained.

When the autonomous OSV achieves reliable performance, we save the

trained policy and proceed to the second phase. Based on the trained neural net-
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work, the policy is further updated in the second phase, when the autonomous

OSV is assigned to follow the randomly generated path with the target ships.

To simplify the problem, we assume that there are three target ships, which

represent different scenarios at each segment path: head-on scenario, crossing

scenario, and overtaking scenario. During following the path, the autonomous

OSV encounters these three types of ships. Fig. 4.5 illustrates the training pro-

cess setup of the second phase.

In each episode, the autonomous OSV follows the path and avoids the tar-

get ships. Rudder angle is applied by the autonomous OSV until the destination

is reached. Then, the autonomous OSV is restored to its initial position, and

the new episode begins.

Figure 4.5: Simulation setup in phase two: collision avoidance with three target

ships.
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Before proposing the collision avoidance formulation, some assumptions

should be made to simplify the training process. There are three target ships

which represent the different scenarios respectively at each segment path: head-

on scenario, crossing scenario, and overtaking scenario. The specifications of

the target ships are listed in Table. 4.2. Each target ship is regarded as a circle

with radius R, R is randomly selected between 25 and 150 meters. Also, it is

assumed that if the autonomous OSV did not take avoidance actions, it will

collision with target ships. As a result, the initial position of the target ships

should be well-designed.

Since all the target ships are designed to be the stand-on vessels, the ve-

locities of them are set to be constant. During the training process, the head-on

ship is located on the first segment path with a random velocity. When the

autonomous OSV successfully avoids the first head-on ship and passes the first

turning waypoint, the crossing ship set sail with a constant velocity VC . Sim-

ilarly, the overtaking ship start moving with a relatively slow velocity VO as

soon as the autonomous OSV passes the second turning waypoint.

When evaluating the simulation effect, it is worth to take into account

an additional visualization tool to help users check the results through a more

immersive and realistic view. In this study, we used the Unity 3D which has

many advantages such as low price, good performance, and various effects.

Especially, the environment such as the sky with clouds, ocean with reflection

and waves around the autonomous OSV was modeled for realistic visualization.

The graphical user interface of the simulation result is shown in Fig. 4.6.
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Figure 4.6: Visualization of the simulation using unity 3D.

Table 4.2: Simulation setup with target ships.

Target Ship

Types

Details

Dimension (radius) Initial Position Velocity

Ship 1 Head-on R ∈ [25, 150] PH VH

Ship 2 Crossing R ∈ [25, 150] PC VC

Ship 3 Overtaking R ∈ [25, 150] PO VO
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Table 4.3: Environment conditions for collision avoidance scenario.

Case

Wave

condition
Current

direction

[deg]

Wind

direction

[deg]

Training & Testing

Direction

[deg]

Height

[m]

Period

[sec]

Network

model

Training

iteration

Training

time

[h]

2-1 90 1.0 10 90 90 B 1,580 27

2-2 45 1.0 10 45 45 B - -

4.2.2 Simulation Result

The performance analysis of the collision avoidance system was conducted

by using the proposed control algorithm for various environmental conditions.

The objective is to control the autonomous OSV to avoid the target ships with

respect to COLREGs compliancy, while ensuring following the predefined path.

To demonstrate COLREGs compliance, we trained the RL agent to avoid

target ships using the clipped PPO algorithm. According to the previous sec-

tion, the state input st consists of the state of the autonomous OSV observed

itself sOt and sTt relevant to the target ships. The output of the network is the

rudder angle and the reward function consist of the collision avoidance reward

functions, and the path following reward functions.

Cases in Table. 4.3 suggest that the RL agent is trained including the exter-

nal forces. Case 2-1 shows the simulation is trained using the network model B

under the following environmental conditions. It takes 27 hours approximately

by 1,580 iterations. Case 2-2 is the other simulation case using the network

model B when changing the environmental conditions, particularly, which is

tested without additional training.

Fig. 4.7 illustrates a training process of collision avoidance with three target
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ships. Training starts with a head-on scenario, where the black arrow and the

green arrow represent the initial heading angle of the autonomous OSV and

head-on ship respectively. When in the head-on stage, the autonomous OSV

(red) pass with the head-on vessel (green) on its port side, then back to the

original path (blue). The first waypoint arrival of the autonomous OSV will

trigger the crossing scenario. At this time, the crossing OSV (light blue arrow)

starts approaching to the path, the autonomous OSV (red) makes a course

change to avoid it. The course change is to starboard (in compliance with

COLREGs) since a course change to port might increase the hazard. Stage 3

illustrates the overtaking scenario: while the autonomous OSV is overtaking a

slower target ship (orange arrow), the autonomous OSV then changes course to

starboard to keep away from the overtaking ship. Finally, one trajectory finishes

until the autonomous OSV reaches its destination.

Figure 4.7: Training process of collision avoidance with three target ships.
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During the head-on and crossing training process, it is not clear whether

the autonomous OSV collision with the target ships from the above graphs as

lack of the time coordinate. Therefore, we added Fig. 4.8 to illustrate the middle

process when two ships meet at the same time. In the head-on scenario, when the

head-on ship arrives at the P1t , the autonomous OSV has made a maneuver to

avoid collision and crosses abaft of the head-on ship. In the second case, when

the crossing ship arrives from the starboard side, and the autonomous OSV

changes course to starboard and passes with crossing ship on her port side.

Figure 4.8: Head-on and crossing simulation.
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Fig. 4.9 illustrates the simulation result of collision avoidance with three

type of target ships using the network model B. In Fig. 4.10, a corresponding

graph of rudder angle of the autonomous OSV is presented. The control behav-

ior corresponds to a course offset toward the starboard side until all the target

ships pass at a safe distance on the autonomous OSV’s port side.

Figure 4.9: Graphs of positions of the autonomous OSV, and three target ships

in case 2-1. The result is calculated by the model B with external forces.

Therefore, we can conclude that the performance of the proposed algorithm

for controlling the autonomous OSV to avoid various target ships. Also, based
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Figure 4.10: Graphs of rudder angle of the autonomous OSV in case 2-1.

on the network model B, we changed the target conditions. Simulation results

in Fig. 4.11 and Fig. 4.12 illustrate that the proposed algorithm is practical and

can safely manage complex scenarios with various environmental disturbances.

Fig. 4.13 shows the average reward for collision avoidance in case 2-1. The

average reward converges to a maximum value until 1580 iterations, and it takes

approximately 27 hours.
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Figure 4.11: Graphs of positions of the autonomous OSV, and three target ships

in case 2-2. The result is calculated by the model B with external forces.
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Figure 4.12: Graphs of rudder angle of the autonomous OSV in case 2-2.

Figure 4.13: Average reward for collision avoidance.
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4.3 Implementation and Simulation Result for Multi-

ship Collision Avoidance Method

4.3.1 Limitations of Multi-ship Collision Avoidance Method -

1

In the previous section, the single-ship collision avoidance system has taken

the first person view, where the own ship is the only manoeuvring party while

the target ships remain their heading and velocity. Only the own ship is assumed

to comply with COLREGs. According to the it, the own ship is requested to

avoid all of the target ships. Moreover, it is assumed that there is only one

target ship which the own ship has to make decision to avoid collision at some

point.

However, whether it is possible to let the own ship avoid multiple target

ships at the same time? Fig. 4.14 illustrates a case when the own ship encounter

with multiple target ships. For example, when three target ships (ship 4, ship

5, ship 6) approaching to the own ship at the same time, the own ship has to

avoid all of them. That is mean, the own ship has to make the optimal decision

by considering the situation of the three target ships. While meeting the three

target ships, the state space of the three target ships has to input to the neural

network. The input is consist of not only the own ship related state, but the

target related states (red). As a result, when the own ship encounters several

target ships at the same time, the input size of neural network will be changed.

To solve this problem, we divide the input into two regions: the own ship

related state region and the target ships related state region. Furthermore,

the target ships related state region is divided into four sub-regions: head-

on, crossing port, crossing starboard, and overtaking region. For example, the

target ship 4, which is determined be the head on ship with respect the the own
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ship, ones state has to be input to the head-on region. Based on the section

partition method, the input size of the neural network can be fixed.

One of the key points to the multi-ship collision avoidance method is to

categorize the type of the target ships in terms of COLREGs.

Figure 4.14: Limitation and solution of multi-ship collision avoidance method.

4.3.2 Limitations of Multi-ship Collision Avoidance Method -

2

The other limitation of the training process is that when all the ships

state observation inputted to the neural network, its input size will be changed

correspondingly. Here, Fig. 4.15 illustrates a case that the own ship encounters

with multiple target ships.

Instead of inputting the state observation of all the ships into the neural
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network, we copy one network model, which is fully trained at the beginning

of the simulation, to all the ships. Using this strategy, each ship not only own

ship, but target ships can make decision to avoid each other.

Figure 4.15: Limitation and solution of multi-ship collision avoidance method.

By overcoming the two limitations, we aim to let all the ships have the

capability to make decisions from the first person perspective according to the

state observation receives from the surrounding ships. The multi-ship collision

avoidance method has the capability to manoeuvre not only so called the own

ship, but the target ships can autonomously avoid each other according to

COLREGs.
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4.3.3 Implementation of Multi-ship Collision Avoidance Method

Target Ships Category

Each ship treats itself as the own ship (OS) and its surrounding ships as

target ships (TSs). In order to categorize the type of the target ships with

respect to the own ship, the input to the neural network is divided into four

regions including head-on, crossing port, crossing starboard, and overtaking.

As shown in Fig. 4.16, the diagram centers on the the own ship is divided into

four regions with head-on (Ship 3), crossing port (Ship 4), crossing starboard

(Ship 2), and overtaking (Ship 1). It can be used to determine whether the own

ship has to avoid the target ships. Here, the instantaneous velocity of the own

ship is defined in v0, and the instantaneous velocities of the target ships are

defined in vTi . i is the number of the target ships. Each target ship approaching

to the own ship is categorized with respect to the heading of the own ship v0.

Fig. 4.17 illustrates the overall process involved in determining the type of

target ships based on COLREGs. The process involves computing the dimen-

sions of the safety area for the own ship, which is considered the region R where

target ships should not enter. It can be explained in three steps:

• The first step involves determining the whether the target ship enter the

safety area or not,

• If that, the second step involves categorizing the type of the target ships.

The target ships are categorized based on its instantaneous position with

respect to the heading and position of the own ship according to the

regions defined in Fig. 4.16: head-on, crossing port, crossing starboard,

and overtaking,

• In the third step, the target ship is further categorized based on its relative
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Figure 4.16: Regions used to categorize the position of the target ships.

heading with respect to the heading of the own ship.
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Figure 4.17: Procedure of capture of target ships state observation.
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Reward Function of Multi-ship Collision Avoidance

The state category procedure for the multi-ship collision avoidance method

is presented in the previous subsection, so that the next step is to design the

training process, which means how to implement the reward functions for the

multi-ship collision avoidance method.

One problem has to solved first is how to judge which reward function

should be used. It can be determined by the relative position and velocity

between the own ship and target ships. Suppose the current positions of the

own ship is P and the target ships is set to Pobstacle, respectively.

The ship domain is treated as a circle with radius R and any intrusion of

other target ships must be avoided. The ship domain of own ship R depends on

the ship length and the maximum rudder angle. Fig. 4.18 illustrates a critical

scenario: while the own ship is head on a target ship, whose principle dimension

is same as the own ship. The own ship keeps on turning course to starboard

with its maximum rudder angle in order to keep away from the target ship. The

most minimum distance between the two ships is obtained. Correspondingly,

the safe distance R is set to 400 meters in this study.

domain.png

Figure 4.18: Ship domain of the own ship.
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In real situation, there may be more than one target ship, and the own

ship has to judge which one has to avoid first at one time. It can be judged by

the ship domain R. If the distance between the own ship and the target ship is

larger than the radius of the ship domain R, the path following reward function

is adopted.

Figure 4.19: Reward function of collision avoidance.
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If not, let’s move to the next step: category the target ships into four

regions and calculate the state observation respect to each target ship. Once

the target ships in the following region: head-on, crossing port, and overtaking

region, it can trigger the collision avoidance reward function.

It should be noted that when the target ship is approaching from the port

side of the own ship, the target ship is regarded as the crossing port target ship.

At this time, the crossing port target ship should take appropriate operations

to give way to the own ship, while the own ship makes no attempt to keep

away, and keeps its way to the destination. In this situation, the path following

reward function has to be continuous implemented.

As shown in Fig. 4.20, the collision avoidance reward function should be

implemented until all the target ships are passed at a safe distance on the own

ship’s port side. It can be judged by checking the relative position and heading

angle between the own ship and the target ships.
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Figure 4.20: Reward function of collision avoidance.
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If the own ship have been successfully avoid all the target ships, it is re-

quested to converge to the predefined path. Consequently, the path following

reward function is switched to implement.

Figure 4.21: Reward function of collision avoidance.
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4.3.4 Simulation Result of Multi-ship Collision Avoidance Method

Simulation Case 1

The main information used to evaluate COLREGs compliance at a given

future point in time, on a predicted ship trajectory generated by the control

behavior, is illustrated in Fig. 4.22, the detailed information can be found in

the appendix.

According to COLREGs, two ships have four types of encounter situa-

tions, which are crossing port, head-on, overtaking, and crossing starboard. As

we have explained previously, the purpose of this study is to make a decision

concerning collision avoidance that is COLREGs compliant, with the reactive

action of the surrounding target ships being taken into account. According to

the target ships stipulated in COLREGs, the anticipated action of both the

ships potentially involved in a collision is defined in Fig. 4.22, with the corre-

sponding regions using different colors.

Figure 4.22: Simulation setup based on COLREGs rule.

Simulation setup with multiple target ships is given in Fig. 4.23. The spe-

cific procedure for this simulation case is presented as follows. During training

process, all the ships (from ship A to ship H) use the same neural network.

In addition, the initial position of the ships are fixed at the same point, and

the range of relative heading of the ships are randomly specified according to
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COLREGs.

Figure 4.23: Diagram of target ships according to COLREGs.

• In case (a), a crossing port situation happens if the other ship (ship

B) coming from more than 22.5 degrees abaft the beam. When the two

ships are involved in a dangerous ship domain, their surrounding region

is painted with the corresponding color. For example, as ship B are in the

crossing port region of ship A, from the view of ship A, its color of the

region becomes purple. On the contrary, ship A is regarded to be located

in the crossing starboard region of ship B, so that its color of the region

becomes orange.

• In case (b), a head-on situation happens if two ships (ship C and ship

D) are meeting on reciprocal courses in the range of 10 degrees. In this

situation, ship C and ship D are found to be located in the other party’s

head-on region, the corresponding region are all painted with red color.

• In case (c), a overtaking situation happens if the other ship (ship F) is

overtaking ship E in the range of 135 degrees.
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• In case (d), a crossing starboard situation situation happens if the other

ship (ship H) coming from the starboard side of ship G.

Since all the ships manoeuvre at the same velocity, they will collision with

each other if contrary to the COLREGs rules. The objective of this test is to

evaluate the introduced method in interpreting COLREGs, which dictates that

the ships should pass each other port to port.

The simulation result of case (a) and (b), as shown in Fig 4.24, which

illustrates the procedure of the four ships collision avoid with each other and

then converge to the predefined paths. When ship A and ship B move to the

configuration shown in case (a), the two ships form a crossing port situation,

after the target ship’s type is detected in terms of the procedure illustrated

in Fig. 4.17. In case (a), when ship B arrive from the port side from the first

person view of ship A, ship A has the right to stay on and ship B makes a

course change to avoid it.

In case (b), when ship C and ship D are meeting in the head-on situation,

both the ships have to alter course to starboard so that each pass on the port

side of each other.
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Figure 4.24: Simulation result of Multi-ship collision avoidance.
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The simulation result of case (c) and (d), as shown in Fig 4.25. In case (c),

ship E is overtaking ship F, and keeps out of the way with alternative control

behaviors. In case (d), when ship H arrive from the starboard side from the

first person view of ship G, ship H has the right to stay on and ship G makes

a course change to avoid it.

Figure 4.25: Simulation result of Multi-ship collision avoidance.

122



In the following subsections, a more complex scenarios is simulated and

the results are analysed to test the performance of the proposed anti-collision

decision making procedure.
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Simulation Case 2

Simulation with four ships (from ship A to ship D) scenario is given in

Fig. 4.26. Since the four ships manoeuvre with the same velocity, they will

collision with each other if contrary to COLREGs.

From ship A’s point of view, there are three target ships approaching: ship

D (crossing port), ship C (head-on), ship B (crossing starboard), which means

that ship A needs to manoeuvre to ship B (crossing starboard)’s port side to

avoid collision with respect to COLREGs.

Figure 4.26: Multi-ship collision avoidance setup, where the four ships are head-

ing to the center point.

With respect to ship A and ship B, it forms a crossing starboard situation;

for ship A and ship C, it forms a head-on situation. Ship A can ignore ship D

as it is located in its crossing port region. Therefore, ship A is responsible to

change course to starboard in order to keep away from ship B and ship C.

Similarly, for the first person view of ship C, it has to make a course change
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to starboard in order to keep away and pass with ship D and ship A. The four

ships will go round and round as long as the path does not deviate too much

from the predefined path.

Figure 4.27: Procedure of the multi-ship collision avoidance, where the four

ships are starting avoid their target ship.
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Finally, the four ships converge to its predefined path until passing the

other target ships.

Figure 4.28: Procedure of the multi-ship collision avoidance, where the four

ships are backing to their predefined paths.
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Fig. 4.29 and Fig. 4.30 show the simulation result of the proposed multi-

ship collision avoidance method. As explained previous part, ship A gives way

to ship C while ship C gives way to ship A.

.

Figure 4.29: Displacement of ship A and ship C.
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ship C and ship D have responsibility to stay away from each other in

compliance with COLREGs. We believe that the proposed multi-ship collision

avoidance method can deal with more complex situations. The method can be

refined further by considering by reducing the unnecessary action command

and adding the ship velocity as the action command.

Figure 4.30: Displacement of ship B and ship D.
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Chapter 5

Anti-Motion Control Method for
Knuckle Boom Crane

5.1 Configuration of HILS for Anti-Heave Control Sys-

tem

Since the AHC system is responsible for the successful operation of the

crane, the AHC system must have a suitable control algorithm, and its per-

formance should be evaluated in advance. Performance analysis of the AHC

system requires a complicated test procedure, and a great deal of equipment.

This real model requires real sensors, actuators, and mechanical systems

to generate true sensor measurements, and receive control signals. This test

environment is very costly, and it is nearly impossible to guarantee completely

safe conditions for testing. Moreover, it is time consuming to test while at sea,

and particularly difficult to identify bugs before testing. Therefore, to overcome

these defects, the idea of replacing real sensors, actuators, and mechanical sys-

tem by virtual ones is introduced, as shown in Fig. 5.1.

This testing environment is called Hardware-In-the-Loop Simulation (HILS),

and represents a technique that is used in the development and testing of a com-

plex control system interacting with a virtual model. Zhao et al. (2018). This

virtual model is included in the testing and development by adding mathe-
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Figure 5.1: HILS environment for AHC system.

matical representation of all related dynamic systems. The test in the HILS

environment is less expensive than the real test, because all parts, with the

exception of the controller, can be replaced by software. It can also generate

any environmental conditions, takes less time for testing, and allows bugs to be

found in advance.

Fig. 5.2 shows the procedure to control the length of the wire rope with the

sensors and actuator. the virtual model of the OSV can consist of a multibody

system, which can represent realistic motion in waves. The HILS environment

did not include the virtual sensor, which is assumed to be ideal. The virtual

measures the current position of the suspended subsea equipment calculated

by the virtual mechanical system. The difference between the desired position

and current position of the equipment is sending to the AHC system. The AHC

system, having a control algorithm, calculate the control signal - the desired an-
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gular velocity to actuate a virtual actuator. Consequently, the motor actuation

will change the wire length to keep the equipment at a desired position.

The virtual sensor is implemented by simply receiving the motion data

calculated from the virtual mechanical system. The virtual actuator calculates

the rotating angle of the winch by integrating the rotating speed from the

controller. Finally, the winch changes the length of the wire rope according to

the rotating angle.

Figure 5.2: Simplified geometry of the system of the OSV-knuckle boom crane.

To develop the HILS environment for the proposed AHC system, a virtual

model of the OSV was first created from a multibody system that can repre-

sent realistic motion in waves. Then, a controller of the AHC system with a

control algorithm for heave compensation was implemented on real hardware.

Next, an integrated simulation interface was implemented to efficiently connect

the virtual model and the controller, and a visualization model was developed

to verify simulation results by immersive and realistic views. Finally, a perfor-

mance analysis of the AHC system was conducted within the proposed HILS

environment.
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5.1.1 Virtual Mechanical System

To represent the virtual mechanical system, the equations of motion of

the OSV, the OSV crane, and the subsea equipment, including wave loads as

an external force, must be formulated. They should be solved simultaneously,

because these bodies are closely related to each other by joints or wire ropes,

as shown in Fig. 5.3. Hence, this is referred to as a multibody system Cha et al.

(2010).

Figure 5.3: Multibody system of OSV, OSV crane, and subsea equipment.

It is very difficult to apply a Newton-Euler equation directly to the multi-

body system in the case of existing constraints and constraint forces. There-

fore, we change the form of the Newton-Euler equation to the formulation for

multibody system dynamics. Here, we choose the discrete Euler-Lagrange equa-

tion Ham et al. (2015). A variational principle is introduced in Fowles and

Cassiday (1999). To compute a discrete trajectory of a body, the concept of

virtual displacement and virtual work can be considered. According to Hamil-

tons’s principle, which addresses the expenditure of energy in the system during

motion, the action integral J can be defined as:

J =

∫ t2

t1

Ldt =

∫ t2

t1

(T − V )dt (5.1)
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where, T and V are the kinetic and potential energy of the particle, re-

spectively, and L is called the Lagrangian. During a time interval from t1 to t2,

the actual motion minimizes the above integral. This can be expressed mathe-

matically as:

δJ = δ

∫ t2

t1

(T − V )dt = δ

∫ t2

t1

Ldt (5.2)

From Eq. 5.2, we can deduce the Euler-Lagrange equation, which is known

to be:

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= 0 (5.3)

A discrete Euler-Lagrange equation is utilized in Lew (2003), and Mars-

den and West (2001). The action integral of the Lagrangian of Eq. 5.1 can be

represented by the sum of an infinitesimal area with time divided into small

time steps h. Approximating each infinitesimal area as a rectangular shape, and

the velocity q̇k as
qk+1−qk

h , the discrete action integral of the Lagrangian Jd can

be expressed by:

Jd =
N−1∑
k=0

Ld(qk,qk+1, h) (5.4)

where, h is the time step, and qk is the position of the particle at time

t1 + kh. According to the variational principle, the particle moves along the

trajectory where ∂J is zero. Thus, the formula can be expressed as:

δJd =
N−1∑
k=0

Ld(qk,qk+1, h) =
N−1∑
k=0

[D2Ld(qk−1,qk, h)+D1Ld(qk,qk+1, h)]δqk = 0

(5.5)
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where, Di is the partial differential operator, which means the partial dif-

ferentiation by the ith variable. As a result, Eq. 5.5 can be expressed in the

form of a discrete Euler-Lagrange equation:

[D2Ld(qk−1,qk, h) +D1Ld(qk,qk+1, h)] = 0 (5.6)

Considering the system with constraints L = L+
∑m

j=1 λjgj(q) and external

forces, the discrete Euler-Lagrange equations for the system can be obtained,

namely:

[D2Ld(qk−1,qk, h)D1Ld(qk,qk+1, h)]

+
m∑
j=1

hλjk(
∂qk
∂gj

)

+ fα+d (qk−1qk)

+ fα−d (qkqk+1)(qk+1

− qk) = 0 (5.7)

(5.8)

According to a Taylor series expansion, the constraints can be expressed by:

m∑
j=1

gj(qk+1) =
m∑
j=1

[(gjqk) + (
∂gj
∂qk

)(qk+1 − qk)] (5.9)

From Eq. 5.7 and the constraints (Eq. 5.9), we can derive the discrete

Euler-Lagrange equations in matrix form:

M −GT
k

Gk 0

qk + 1

h2λk

 =

M(2qk − qk − 1)− h2 ∂V∂qk + h2f(qk,
qk−qk−1

h )

−g(qk) + Gkqk


(5.10)
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Now, the motion of the OSV, including the OSV crane and the subsea

equipment, can be calculated according to Eq. 5.10, which considering wave

loads as an external force.

When the simulation starts, the equations of motion of the OSV can be

solved to find its acceleration. Then the velocity and position are successively

calculated by time integration (Ham et al., 2015b; Hong et al., 2015). Based on

the obtained velocity and position, the external forces, including the radiation,

diffraction, Froude-Krylov, and restoring forces, are updated for the next time

step. The hydrodynamic force can be divided into two parts: the wave exciting

force, which is exerted by the incident wave; and the radiation force from the

wave, generated by the motion of the floater itself. This is expressed as:

Fhydrodynamic = Fexciting + Fratiation (5.11)

Fexciting is calculated by multiplying the force Response Amplitude Oper-

ator (RAO) with the sinusoidal function at a given frequency. The force RAO

can be obtained from a commercial solver, such as Wave Analysis by Diffraction

and Morison (WADAM) by Veritas (2002). The Cummins equation Cummins

(1962) can be used to calculate Fradiation, which considers the impulse re-

sponse of the floater in the time domain. The frequency-dependent added mass

coefficient aij(ω) and the frequency-dependent damping coefficient bij(ω) at a

given frequency ω can also be obtained from the commercial solver. Using the

frequency-dependent coefficients aij(ω) and bij(ω), the added mass A and retar-

dation function B(τ) can be determined. The infinite added mass A∞, which is

a constant matrix, is often used, rather than calculating the above integral. In

the case of a regular wave, only one wave frequency should be chosen according

to a single wave amplitude (a). The motions RAOs of OSV can be obtained

from a commercial solver like WADAM.
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However, in the case of an irregular wave, there are a number of N wave

frequencies and amplitudes, according to the given wave spectrum.

Fexciting =

N∑
m=1

amF(ωm) cos (ωmt+ εm) (5.12)

Based on the exciting force theory proposed by Journée and Massie (2001),

Eq. 5.12 is the linear superposition, which can be calculated in irregular wave.

Since the first order wave force is a linear phenomenon, time history of the first

order wave loads in a certain sea state can be obtained from frequency domain

calculations by using the frequency characteristics of the first order wave loads,

and the wave spectrum, by using the superposition principle. So that the time

history of the first order wave loads becomes Eq. 5.12 with chosen phase shifts.

The principal dimensions of the target OSV (M/V CHLOE CANDIES) are

85.25 m in length, 18 m in breadth, and 7.4 m in depth, while its deadweight

is 3,500 tons. The principal dimensions of the subsea equipment are 20.3 m in

length, 15 m in breadth, and 6.1 m in depth. Its weight is 175 tons. Fig. 5.5

shows that the OSV and the crane are composed of several rigid bodies.

The pedestal of the crane (Body2) is attached to the deck of the OSV barge

(Body1). The knuckle boom has upper and lower arms, which are depicted as

Body3 and Body4. Those rigid bodies are connected by revolute joints, which

can allow only one rotational motion perpendicular to the joint axis. The subsea

equipment (Body5) is suspended by a single wire rope from the tip of the upper

arm. As an initial condition, the wire length is 197.1 m below the sea surface.

Because those bodies are connected by joints and the wire rope, the motions

are closely related to the others. The OSV barge is the only part upon which

the hydrodynamic force is exerted.

In this study, the wire rope is modeled by the incompressible spring, which

adds the force only when it is extended. It is calculated as follows:
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Figure 5.4: Rigid body models of the OSV and the crane.

Fwirerope = k(x− x0) if x > x0 (5.13)

where, k is the spring constant, which measures how stiff and strong the

spring is; and x–x0 is the distance when the spring is stretched from its equi-

librium position.

The added mass of the subsea equipment, which is immersed inside the

seawater, should be considered. Because the vertical motion of the equipment

is dominant during the operation, we can estimate the added mass roughly

by the rectangular plate (DNV, 2011). The vertical added mass of the subsea

equipment is obtained from the following equation:
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Madded,virtical = ρCAVR

= 1.025× 0.66× (20.3× 15)

= 206[ton] (5.14)

where, CA is the added mass coefficient, and VR is the reference volume. It

is interpolated by the ratio of the length and breadth of the subsea equipment

Veritas (2011).

5.1.2 Virtual Sensor and Actuator

An MRU is a motion reference device that is capable of measuring pitch,

roll, heave, and heading to a high degree of accuracy, and is suitable for any

maritime operation. In the real OSV, the measurements are transferred to the

control system. Then the control system sends voltage to regulate the rotating

speed of the motor. Finally, the torque causes the winch to rotate, and controls

the wire rope length. In the HILS environment, the real sensor and actuator

should be replaced by a virtual sensor and actuator. As described before, the

virtual sensor is implemented by simply receiving the motion data calculated

from the virtual mechanical system. The virtual actuator calculates the rotating

angle of the winch by integrating the rotating speed from the control system.

Finally, the winch changes the length of the wire rope according to the rotating

angle.

Electrical motor

The virtual actuator we chose in this study is a electric motor(Robotics

Dynamixel XM-430 servo actuator), which can be controlled by ROS directly.
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Figure 5.5: Mechanical of dynamixel motor.

The motor torque is proportional to the armature current i by a constant

factor Kt.

T = Kti (5.15)

The back electromagnetic fields is proportional to teh angular velocity of

the shaft by a constant factor Ke.

e = Keθ̇ (5.16)

Equations derived from Newton’s second law and Kirchhoff’s voltage law.

where b is the motor viscous friction constant.

V = Ri+ L
di

dt
+ e (5.17)

Jθ̈ = T − bθ̇ (5.18)

In state-space form, the governing equations above can be expressed by
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choosing the rotational angel, speed and electric current as the state variables.

d

dt


θ

θ̇

i

 =


0 1 0

0 − b
J −K

J

0 −K
L −R

L



θ

θ̇

i

 +


0

0

1
L

V (5.19)

Hydraulic motor

The servo-valve is a device that uses mechanical motion to deliver a mea-

sured amount of fluid power to the hydraulic motor. The mechanical motion is

induced by the electrical current that changes in proportion to the displacement

of the spool attached on the valve Eq. 5.20.

xv ≈
kti

k(r + b)
(5.20)

where, xv is the spool position changed by the current input i. As a result,

the movement of the spool can change the load flow into the two chambers of

the hydraulic motor. The load flow qL represents the average of the flows in the

lines connected between the servo-valve and the hydraulic motor, which can be

linearized as follows:

qL = Kqxv −KcpL (5.21)

where,

Kq = Cdb

√
1

ρ
(ps − sgn(xv)pL) (5.22)

Kc =
Cdbxv

√
1
ρ(ps − sgn(xv)pL)

2(ps − sgn(xv)pL)
(5.23)
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In addition, the dynamic model of the hydraulic motor can be derived

based on the following equations:

Vt
4β
ṗL = −CtmpL −Dmωm + qL (5.24)

Jtω̇m = −Bmωm +DmpL − TL (5.25)

Consequently, the speed of the motor shaft can be controlled by the electri-

cal current. By combining the above Eq. 5.20 with Eq. 5.24, the linear dynamic

model of the servo valve controlled hydraulic motor can be formulated by in-

serting the linearized valve characteristics into the model (Merritt, 1967).


Vt
4β 0 0

0 Jt 0

0 0 1



ṗL

ω̇m

θ̇m

 =


−Kcei −Dm 0

Dm −Bm 0

0 1 0



pL

ωm

θm

 +


Kp

0

0

 i+


0

−TL

0

 (5.26)

where, Vt and Dm are the total volume and displacement of the hydraulic

motor chambers, respectively; TL is the load torque on the hydraulic motor,

Jt is the moment of inertia of the hydraulic motor, and θm denotes the motor

shaft angle; and Kcei is the leakage coefficient of the hydraulic motor and servo-

valve, Bm is the viscous friction coefficient, and β is the bulk modulus. These

parameters listed above represent the valve characteristics.

5.1.3 Control System Design

A mathematical description of the PID controller is shown in the following

equation:

u(t) = KP [e(t) +
1

TI

t∫
0

e(τ)dτ + TD
de(t)

dt
] (5.27)
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where, u(t) is the control signal, and e(t) is the error signal. The control

algorithm of the AHC system is used to minimize the heave motion of the sub-

sea equipment. Therefore, the set-point in the control algorithm is the target

depth of the subsea equipment. The difference between the process variable

and the set point is the error signal e(t); KP is the proportional gain, TI and

TD are the integral and derivative time constants, respectively; and KI = KP
KI

and KD = KPTD are the integral gain and derivative gain respectively. Thus

these PID gain values (KP , TI , and TD) can be tuned through simulation to

achieve the desired AHC performance of the system. In this study, the position

of the equipment, which is calculated in real time, is sent to the controller, and

is regarded as the process variable input. The control algorithm continuously

calculates the difference between the set-point and the current depth of the sub-

sea equipment, to minimize the difference over time, by adjusting the rotating

speed of the motor. To accomplish this, it transmits to the virtual actuator,

and the process repeats, until the subsea equipment can maintain the target

depth.

5.1.4 Integrated Simulation Interface

The three-component system, consisting of the virtual model, the AHC

system, and the vritual actuator model, is difficult to integrate, as each piece

possesses its own development purposes and environment. Therefore, a simula-

tion interface is necessary. Fig. 5.6 shows the integrated simulation procedure

for HILS of the AHC system.

The procedure of HILS for AHC system is described as follows:

1. Start the ROS master in Linux, and create three nodes. Every node reg-

ister with the ROS master to be able to communicate with the rest of the

network.

142



Figure 5.6: Procedure of HILS for AHC system.

2. Current position of the payload is published to the control system node

through the rosbridge.

3. Based on the transferred data, desired angular velocity is calculated. The

control system node use a publisher to send the data to the topic (/desired

angular velocity) and the rosbridge websocket node will use a subscriber

to receive the same topic. Using the transferred data, virtual actuator

calculates the rotating angle.

4. Virtual mechanical system solve the equations of motion and changes

current position of the payload.
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Table 5.1: Data transmission

From (publisher) To(subscriber) What(Topic)

/rosbridge websocket /control system node /distance

/control system node /rosbridge websocket /desired angular velocity
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5.2 Implementation and Simulation Result of HILS

for Anti-Heave Control System

5.2.1 Implementation of HILS for Anti-Heave Control System

Fig. 5.7 shows the implementation of the HILS environment for AHC sys-

tem. The virtual mechanical system module displays the outside view of the

OSV and the subsea equipment. One PC is in charge of the virtual model in-

cluding the virtual actuator, virtual sensor, and virtual mechanical system. The

other one is a control system capable of AHC control algorithm. An integrated

simulation interface is working in the background.

Figure 5.7: Simplified geometry of the system of the OSV-knuckle boom crane.
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Table 5.2: Wave conditions for maintaining the depth of the subsea equipment

at a constant lever.

Case Motion type
Wave height

[m]

Wave period

[s]

Wave direction

[deg]

Target depth

[m]

1-1

Regular wave
1.0 10

0

-197.11-2 45

1-3 90

1-4 4.0 10 0

5.2.2 Simulation Result of HILS for Anti-Heave Control Sys-

tem

Table. 5.2 lists the simulation cases according to the regular wave condi-

tions. Wave conditions, such as wave height, period can induce different motions

of the OSV.

Fig. 5.8 shows graphs of the heave motion of the OSV in Case 1-1. Ac-

cording to the wave direction, the OSV crane uses the wire rope to maintain

and lower the subsea equipment from the sea surface to the seabed. In other

words, the motion of the OSV is affected not only by the wave force, but also

by the spring force. As a result, the motion responses of the OSV show irregular

phenomena, in spite of the regular wave.

Fig. 5.9 Fig. 5.11 show the graph of the heave motion of the suspended

subsea equipment in Case 1-1, Case 1-2, Case 1-3, and Case 1-4. The error of

heave motion are reduced by 83.7 % approximately from 0.43 m to 0.07 m in

Case 1-1. Therefore, we can conclude that the performance of the AHC system

for maintaining of the depth of the subsea equipment at a constant level has an

error reduction ratio of more than 80 %.
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Figure 5.8: Graphs of heave motion of the subsea equipment in Case 1-1.
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Figure 5.9: Graphs of heave motion of the subsea equipment in Case 1-2.
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Figure 5.10: Graphs of heave motion of the subsea equipment in Case 1-3.
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Figure 5.11: Graphs of heave motion of the subsea equipment in Case 1-4.
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Table 5.3: Wave conditions for maintaining the depth of the subsea equipment

at a constant lever.

Case Motion type
Wave height

[m]

Wave period

[s]

Wave direction

[deg]

Target depth

[m]

2-1

Irregular wave

(JONSWAP)

1.0 10

0

-197.1
2-2 45

2-3 90

2-4 4.0 10 0

Table. 5.3 lists the simulation cases according to the irregular wave condi-

tions. Wave conditions, such as wave height, period can induce different motions

of the OSV.

Figure 5.12: Graphs of heave motion of the subsea equipment in Case 2-1.

Fig. 5.12 Fig. 5.15 show the graph of the heave motion of the suspended

subsea equipment in Case 2-1, Case 2-2, Case 2-3 and Case 2-4. The error

of the standard deviation of heave motion is reduced by 92 % approximately
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Figure 5.13: Graphs of heave motion of the subsea equipment in Case 2-2.

from 0.095 m to 0.0076 m in Case 2-1. Therefore, we can conclude that the

performance of the AHC system for maintaining of the depth of the subsea

equipment at a constant level has an error reduction ratio of more than 90 %.

152



Figure 5.14: Graphs of heave motion of the subsea equipment in Case 2-3.

Figure 5.15: Graphs of heave motion of the subsea equipment in Case 2-4.

153



Table 5.4: Wave conditions for maintaining the depth of the subsea equipment

at a constant lever.

Case Motion type Wave height Period Direction Target depth

3-1

Regular wave

0.01 [m] 6.0 [s] 0 [deg]

-0.569 [m]3-2 0.01 [m] 8.0 [s] 0 [deg]

3-3 0.01 [m] 10.0 [s] 0 [deg]

Using the same PID controller as illustrated in Table. 5.2 and Table. 5.3.

We applied it to the small scale OSV model which is same to the hardware

simulation model. Table. 5.4 lists the simulation Cases according to the wave

conditions. Wave conditions, such as wave height, period can induce different

motions of the OSV.

Fig. 5.16 shows graphs of the heave motion of the OSV in Case 3-1. Ac-

cording to the wave direction, the OSV crane uses the wire rope to maintain

and lower the subsea equipment from the sea surface to the seabed. In other

words, the motion of the OSV is affected not only by the wave force, but also

by the spring force. As a result, the motion responses of the OSV show irregular

phenomena, in spite of the regular wave.

Fig. 5.17 shows the graph of the heave motion of the suspended subsea

equipment in Case 3-1. The error of heave motion are reduced by 81.81 %

approximately from 0.011 m to 0.002 m in Case 3-1. Therefore, we can conclude

that the performance of the AHC system for maintaining of the depth of the

subsea equipment at a constant level has an error reduction ratio of more than

80 %.

In Case 3-2, the wave height is 0.01 m, wave period is 8.0 s. Fig. 5.18

shows the graph of the heave motion of the OSV. Fig. 5.19 shows the graph
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Figure 5.16: Graphs of heave motion of the OSV in Case 3-1.

of the heave motion of the subsea equipment in Case 3-2. The heave motion

with control is reduced by approximately 80.3 % from (0.01 m to 0.31 m) in

the regular wave.

In Case 3-3, the wave height is 0.01 m, wave period is 10.0 s. Fig. 5.20

shows the graph of the heave motion of the OSV. Fig. 5.21 shows the graph

of the heave motion of the subsea equipment in Case 1-2. The heave motion

with control is reduced by approximately 70 % from (0.01 m to 0.31 m) in the

regular wave.
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Figure 5.17: Graphs of heave motion of the subsea equipment in Case 3-1.

Figure 5.18: Graphs of heave motion of the OSV in Case 3-2.
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Figure 5.19: Graphs of heave motion of the subsea equipment in Case 3-2.

Figure 5.20: Graphs of heave motion of the OSV in Case 3-3.
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Figure 5.21: Graphs of heave motion of the subsea equipment in Case 3-3.
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Figure 5.22: Hardware setup for validation of the AHC system.

5.3 Validation of HILS for Anti-Heave Control System

5.3.1 Hardware Setup

To validate the effectiveness of the AHC system, we conduct an experiment

with a real dynamixel motor and sensor, which is represented in Fig. 5.22.

The control system, proposed in the HILS environment, was used to control

the dynamixel motor. The dynamixel motor connect with a payload by the wire

rope. We used a ultrasonic sensor, which is controlled by an Arduino controller,
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to measure the current position of the payload. Moreover, we used a motion

platform to simulate the wave motion.

Compared with HILS for AHC system, we replaced the virtual actuator

and motor with a real ones. The whole procedure is shown in Fig. 5.23.

Figure 5.23: Validation procedure of AHC system.

The validation procedure for AHC system is summed up as follows:

1. Start the ROS master in Linux, and create three nodes. Every node reg-

ister with the ROS master to be able to communicate with the rest of the

network.

2. The ultrasonic sensor measures the current position of the payload, then

the sensor node use a publisher to send current position data to the topic

(/distance) and the control system node will use a subscriber to receive

the same topic.

3. Based on the transferred data, desired angular velocity to control dy-

namixel motor is calculated. The control system node publish the topic
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(/desired angular velocity) to the dynamixel motor node. As a result,

angular velocity of the dynamixel motor will be changed.

4. Finally, the position of the payload will reach the desired position.

Table 5.5: Data transmission.

From (publisher) To(subscriber) What(Topic)

Ultrasonic

sensor
Arduino Electrical current

Arduino /sensor node /desired angular velocity

/sensor node /control system node /distance

/control system node /dynamixel motor node /desired angular velocity

/dynamixel motor node Dynamixel motor Angular velocity

5.3.2 Comparison Result

Figure 5.24: Graphs of comparison result the heave motion of the subsea equip-

ment.
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5.4 Configuration of Anti-Sway Control System

5.4.1 Mechanical System for Knuckle Boom Crane

The motion of the OSV-mounted knuckle boom crane in an inertial coor-

dinate system is depicted in Fig. 5.25. The formulation can be found in Zhao

et al. (2017). To establish the whole mechanical system, the OSV equation,

knuckle boom crane, and subsea equipment including the wave loads as an

external force must be formulated. They should be calculated simultaneously

because these bodies are closely related to each other by joints and wire rope. It

is difficult, however, to directly apply the Newton–Euler equation to the multi-

body system because of the existing constraints and constraint forces, so an

embedding technique that leads to the elimination of the constraint forces is

chosen Shabana (2009). A number of equations that are equal to the number

of the systemic degrees of freedom can be obtained.

To obtain the differential equations, it is necessary to use a velocity trans-

formation matrix. Here, the chosen independent coordinates are q = [ExB/A,

EyB/A, θA/E , θB/A, θC/B, ExP , EyP ]T , as these represent the positions and

angular positions of the mechanical systems. Since mechanical systems are uti-

lized for the antisway-controller design, only the heave, sway, and roll motions

of the vessel that play a pivotal role in the pendulum motion of the subsea

equipment are considered. The OSV with the crane can be modeled as a planar

mechanism using revolute joints, as shown in Fig. 5.25. According to the kine-

matic structure, the knuckle boom crane can be treated as three links that are

connected by two revolute joints. The bottom of the crane is fixed at the OSV,

and the points B and C represent the revolute joints that are actuated by two

hydraulic-motor systems. By controlling the two revolute-joint angles θB/A and

θC/B, the points P and D can be kept at the same vertical line. As a result,
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the swaying motion of the subsea equipment can be reduced.

Figure 5.25: Simplified geometry of the system of the OSV-knuckle boom crane.

To derive the motion equations, the coordinate systems must be clearly

defined. The A-Frame, B-Frame, and C-Frame are placed at the points A, B,

and C, respectively. Gi is the center of the mass of each body. The notation

of i = 1 represents the OSV hull; i = 2 and 3 represents the two crane links.

The position vectors from the inertial coordinate system, the E-Frame, to the

points A, B, and C are defined as ErA, ErB, and Erc, respectively. Therefore,

the position vector ErGi can be expressed by Eqs. 5.28 to 5.30, as follows:

ErG1 =E rA +E RA
ArG1 (5.28)

ErG2 =E rA +E RA
ArB +E RB

BrG2 (5.29)
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ErG3 =E rA +E RA
ArB +E RB

BrC +E RC
CrG3 (5.30)

where the matrices ERA, ERB, and ERC are the respective rotational

transformations. It is convenient to determine the coordinates of the mass cen-

ters that correspond to the inertial coordinate system using the rotational trans-

formations. Using these relationships, the velocity-transformation matrix J can

be obtained, as shown in the appendix.

The equations of the systemic motions can be written in a matrix form by

inserting J, as follows:

M̃q̈ + K̃ =E F̃e + τ (5.31)

where

M̃ = JTMJ (5.32)

K̃ = JTMJ̇ (5.33)

EF̃e = JT EFe (5.34)

EFe = Fhydrodynamic + G + Fs (5.35)

The first term in Eq. 5.31 represents the inertial forces, the second term

represents the Coriolis and centrifugal forces, EFe represents the external forces

including the hydraulic dynamic force acting on the OSV, and G and Fs rep-

resent the gravity force of the bodies and the wire-rope tension, respectively. τ

is the applied torques on the joints B and C that are driven by the hydraulic-

motor system and can be calculated by the antisway controller (Murray et al.

1993). In addition, the hydrodynamic force can be divided into two parts: the

wave-exciting force Fexciting that is exerted by the incident wave, and the ra-

diation force Fradiation from the wave that is generated by the motion of the

vessel itself. The Cummins equation( Cummins (1962)) can be used to calculate
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the radiation force, for which the floater impulse response in the time domain

is considered:

Fhydrodynamic = Fexciting + Fradiation (5.36)

The motion equations for the subsea equipment are given by Eq. 5.37. The

position coordinates of the subsea equipment that are relative to the inertial

coordinate system can be obtained as follows:

ME r̈P = Fs + GP (5.37)

where the matrix M is the inertia matrix of the subsea equipment and GP

is the gravitational force. It should be noted that Fs is the tension vector acting

at both ends of the wire rope that is of the opposite direction.

5.4.2 Anti-Sway Control System Design

We applied the sliding-mode control to the underactuated system in this

study. Fig. 5.26 shows a block diagram of the selected control law that will en-

sure the convergence of the four controlled state variables of q = [θB/A, θC/B,
E xP ,

E yp]
T

to the desired values of q = [θB/Ad , θC/Bd ,
E xPd ,

E ypd ]
T .

Figure 5.26: Block diagram of the sliding-mode control system.
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The objective of the controller is to force all of the state variables to a

sliding-surface plane on the state space. Therefore, the sliding-surface plane s,

which is given by Eq. 5.38 Bergerman and Xu (1996) and Utkin et al. (2009),

is denoted as follows:

s = ė + λe = (q̇d − q̇) + λ(qd − q) (5.38)

where e is the error between the desired and current values of the state variables,

and λ is the gain matrix. In terms of designing the desired state variables qd,

the main strategy is shown as follows. At first, it is desirable to maintain the

crane tip (point D) at a fixed position in space, despite the movement of the

crane base. By using the kinematic relation, Eqs. 18 and 19 can be obtained as

follows:

ErDinitial = F0,3
CrD, (5.39)

F0,3 =


cos θA/E − sin θA/E

ExA

sin θA/E cos θA/E
EyA

0 0 1

×


cos θB/Ad − sin θB/Ad
AxB

sin θB/Ad cos θB/Ad
AyB

0 0 1



×


cos θCBd − sin θCBd

BxC

sin θCBd cos θCBd
ByC

0 0 1

 (5.40)

where ArB = [AxB,
A yB]T is the local position of the crane base B in the

A-Frame, and BrC = [BxC ,
B yC ]T is the local position of main boom C in the B-

Frame. The desired joint angles qd1 = [θB/Ad , θC/Bd ]
T can be obtained by solving

the inverse kinematics equation. The desired position vector in the global co-

ordinate space of the crane tip is denoted by ErDinitial
= [ExDinitial

,E yDinitial]
T .
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CrD = [CxD,
C yD]T is the position vector of the crane tip in the local coor-

dinate space. Then, the lateral position between the crane tip and the subsea

equipment must satisfy the following equation to stabilize the subsea-equipment

position:

qd2 =

ExPd
EyPd

 =

 ExD

EyD − l

 (5.41)

where ErD = [ExD,
E yD]T describes the position vector of the crane tip D

in the global coordinate space. Using Eq. 5.42, ErD is written in terms of the

state variables q, as follows:

ErD =E rA +E RA
ArB +E RB

BrC +E RC
CrD

=E rA +

cos θA/E − sin θA/E

sin θA/E cos θA/E

AxB
AyB


+

cos θA/E + θB/A − sin θA/E + θB/A

sin θA/E + θB/A cos θA/E + θB/A

 ·
BxC
ByC


+

cos θA/E + θB/A + θC/B − sin θA/E + θB/A + θC/B

sin θA/E + θB/A + θC/B cos θA/E + θB/A + θC/B

 ·
CxD
CyD

 (5.42)

As a result, the desired position vector of the subsea equipment P (qd2)

can be calculated. Notably, CrD = [CxD,
C yD]T is the local position of the

crane tip D in the C-Frame. To analyze whether or not the controlled state

variables reach the sliding-surface plane, the differentiation of the Lyapunov

function V = sT s should be considered as follows:

V̇ = sT ṡ < 0 (5.43)

Furthermore, Eq. 5.44 was used to guarantee the systemic stability, as
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follows:

ṡ = −K1s−K2sgn(s) (5.44)

where K1 and K2 are the gain matrices. Moreover, ṡ can be written as

ṡ = s̈ + λṡ = q̈d − q̈ + λ(q̇d − q̇) (5.45)

By substituting q̈ and q̇ of Eq. 5.31 with and from Eq. 5.38 and Eq. 5.44,

respectively, the following equation can be obtained:

τ = M̃(q)(q̈d − λq̇ + λq̇d) + JTMJ̇(s + q̇d − λq + λqd)

+E Fe(q) + Mq(−K1s−K2sng(s)) (5.46)

Thus, the control force in Eq. 5.46 guarantees the convergence of the con-

trolled state variables to their desired values.

5.4.3 Implementation and Simulation Result of Anti-Sway Con-

trol

The performance analysis of the ASC was conducted using the proposed

simulation framework. The principal dimensions of the OSV and the subsea

equipment that are used in this study are illustrated in Table. 5.6. When the

subsea equipment and the crane tip produce a displacement difference, the

control system will use these errors to calculate the corresponding voltage of

each motor. The control system then sends a voltage to regulate the rotational

speed of the motor so that the crane joints on the OSV crane will be actuated. As

a result, the sway angle of the suspended subsea equipment, which is calculated

by the displacement errors in both directions, can be reduced.

168



Table 5.6: Dimensional principle of the autonomous OSV and subsea equipment.

Autonomous OSV

Length O.A 90.0 m

Length at waterline 86.6 m

Breadth 18.0 m

Depth 7.85 m

Design draft 6.30 m

Deadweight 4,213 tons

Subsea equipment

Weight 30 tons

The simulation cases according to the wave condition are listed in Table.

5.7. The wave conditions including the wave amplitude and the wave period

can induce different OSV motions.

Fig. 5.27 shows the graphs of the sway angle of the subsea equipment under

different wave conditions. The simulation result demonstrates that it is suitable

to utilize the sliding-mode control for a nonlinear system, as it is effective under

uncertain conditions.

Table 5.7: Wave conditions for controlling the sway motion of the subsea equip-

ment.

Case
Wave height

(m)

Wave period

(s)

Heading angle

(deg)

Heave motion of

OSV barge

(m)

Roll motion of

OSV barge

(deg)

1 1.0 10 90 0.6 1.14

2 1.5 10 90 1.0 1.43

3 1.0 12 90 0.7 1.19
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Similarly, Fig. 5.28 shows the comparison results of the displacement error

in the x coordinate of the subsea equipment in Case 1. The displacement error

in the x coordinate of the subsea equipment is a significant factor in the presen-

tation of the effect of the proposed ASC system. It is possible to conclude that

the displacement error in the x coordinate of the suspended subsea equipment

can be minimized when the controller is running.

Figure 5.27: Graphs of sway angle of the subsea equipment in Case 1.

Additionally, Fig. 5.29 shows the trajectory of the suspended subsea equip-

ment along the x and y coordinates. The subsea equipment moves like a pendu-

lum in the absence of a control system, and the maximum range of the motion

along the x coordinate is 1 m. When the sliding-mode control method works

on the crane, the range along the x coordinate can be reduced to 0.008 m. At

the same time, a slight oscillation occurs along the y coordinate that is caused

by the movement of the crane tip.

Fig. 5.30, Fig. 5.31, and Fig. 5.32 show the comparison results of the anti-
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Figure 5.28: Graphs of displace error in the x coordinate of the subsea equipment

in Case 1.

sway control of the subsea equipment when the sliding-mode control methods

are used in Case 2, and the sway motions of the subsea equipment are reduced

by approximately 98 %. The last case of the ASC, Case 3, is illustrated in

Fig. 5.33, Fig. 5.34, and Fig. 5.35. The errors of the sway angle are reduced by

approximately 99%.

The analysis and control design for the ASC of subsea equipment that is

suspended by the OSV crane are presented in this chapter.
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Figure 5.29: Trajectory of the subsea equipment in Case 1.

Figure 5.30: Graphs of sway angle of the subsea equipment in Case 2.
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Figure 5.31: Graphs of displace error in the x coordinate of the subsea equipment

in Case 2.

Figure 5.32: Trajectory of the subsea equipment in Case 2.
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Figure 5.33: Graphs of sway angle of the subsea equipment in Case 3.

Figure 5.34: Graphs of displace error in the x coordinate of the subsea equipment

in Case 3.
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Figure 5.35: Trajectory of the subsea equipment in Case 3.
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Chapter 6

Conclusions and Future Works

The Autonomous ship that operate in changing and stochastic environ-

ments must adapt to new situations and be equipped with fast decision making

processes. In this study, we adopted model-free RL algorithm to solve the path

following and collision avoidance problem which can compensate for the envi-

ronmental disturbances. The autonomous ship is expected to follow the exist-

ing guidelines based on the International Regulations for Preventing Collisions

at Sea (COLREGs), so that we present the COLREGs-based collision avoid-

ance method, which can autonomously avoid encounter target ships followed by

COLREGs. Moreover, we extend the trained RL framework to multiple ships,

the simulation results show that all the ships have the ability to avoid each

other and then back to the predefined paths.

When the autonomous ship arrive at a on-site construction, due to the

environmental forces, the install operations will become difficult. We present

the solution to AMC system to reduce the heave and sway motion. In addition,

a HILS environment for AHC system is formulated, which can validate the

proposed control system.

There are two main future lines of work which are currently being worked

on. On the one hand, we would focus on improving the model-free RL algorithm

we have adopted. This algorithms have been shown to be capable of learning

176



a wide range of tasks, however, these suffer from very high sample complex-

ity, often requiring millions of samples to achieve good performance. The high

sample complexity of purely model-free RL algorithms has made them difficult

to use for learning in the real world, where sample collection is limited by the

constraints of real-time operation. In additional, model-based RL are known in

general to outperform model-free RL regarding sample complexity, and in prac-

tice have been applied successfully to control robotic systems both in simulation

and in the real world. As a result, we can combine the benefits of model-based

and model-free RL by using the model-based agent to initialize a model-free

agent. To build a robust, safety and efficient autonomous ships path following

and collision avoidance system, I will focus on developing a hybrid algorithm

which combines the sampling efficiency of model-based approach, with the high

task-specific performance of model-free approach. I hope that the hybrid al-

gorithm can accelerate model-free learning for sample-efficient and encourage

future research in this area. Furthermore, we will implement the target tracking

mission integrate with the target tracking filter.

On the other hand, a hardware experiment would be to validate the ef-

fectiveness of the proposed method for path following and collision avoidance

system.
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Appendix A

Appendix

This section provides a brief overview of the main operational requirements

from COLREGs Commandant (1999), relevant of our purpose:

• Rule 6: Safe speed. The following should be considered: Visibility, traffic

density, stopping distance and turning ability, wind/waves/current, nav-

igational hazards, draught vs. depth, radar/sensor state.

• Rule 8: Actions to avoid collision. Actions shall be made in ample time.

If there is sufficient sea-room, alteration of course alone may be most

effective. Safe distance required. Reduce speed, stop or reverse if necessary.

Action by the ship is required if there is risk of collision, also when the

ship has right-of-way.

• Rule 13: Overtaking. Any vessel overtaking any other shall keep out of

the way of the vessel being overtaken. A vessel shall be deemed to be

overtaking when coming up with another vessel from a direction more

than 22.5 degrees abaft her beam.

• Rule 14: Head-on situation. When two power-driven vessels are meeting

on nearly reciprocal courses so as to involve risk for collision, then alter

course to starboard so that each pass on the port side of each other.
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• Rule 14: Crossing situation. When two power-driven vessels are crossing

so as to involve risk of collision, the vessel which has the other on her own

starboard side shall keep out of the way.

• Rule 16: Actions by give-way vessel. Take early and substantial action

to keep well clear.

• Rule 17: Actions by stand-on vessel. Keep course and speed (be pre-

dictable) if possible. If it is necessary to take action, then the ship should

try to avoid to alter course to port for a vessel on her own port side.

• Rule 18: Responsibilities between vessels. Except for Rules 9, 10, and

13, a power-driven vessel shall keep out of the way of: a vessel not under

command, a vessel restricted in her ability to manoeuvre, a vessel engaged

in fishing, and a sailing vessel.

• Rule 19: Conduct of vessels in restricted visibility. Avoid alteration of

course to port for a vessel forward of the beam, and avoid alteration of

course towards a vessel abeam or abaft the beam, if possible.
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국문초록

해양 작업 지원선 (Offshore Support Vessel: OSV)의 경우 극한의 환경에도

불구하고 출항하여 해상에서 작업을 수행해야 하는 경우가 있다. 이러한 위험에의

노출을 최소화하기 위해 자율 운항에 대한 요구가 증가하고 있다. 여기서의 자율

운항은 선박이 출발지에서 목적지까지 사람의 도움 없이 이동함을 의미한다. 자율

운항 방법은 경로 추종 방법과 충돌 회피 방법을 포함한다. 우선, 운항 및 작업

중 환경 하중 (바람, 파도, 조류 등)에 대한 고려를 해야 하고, 국제 해상 충돌 예

방 규칙 (Convention of the International Regulations for Preventing Collisions

at Sea, COLREGs)에 의한 선박간의 항법 규정을 고려하여 충돌 회피 규칙을

준수해야 한다. 특히 연근해의 복잡한 해역에서는 많은 선박을 자동으로 회피할

필요가 있다. 기존의 해석적인 방법을 사용하기 위해서는 선박들에 대한 정확한

시스템 모델링이 되어야 하며, 그 과정에서 경험 (experience)에 의존하는 파라미

터 튜닝이 필수적이다. 또한, 회피해야 할 선박 수가 많아질 경우 시스템 모델이

커지게 되고 계산 양과 계산 시간이 늘어나 실시간 적용이 어렵다는 단점이 있다.

또한, 경로 추종 및 충돌 회피를 포함하여 자율 운항 방법을 적용하기가 어렵다.

따라서 본 연구에서는 강화 학습 (Reinforcement Learning: RL) 기법을 이용하여

기존해석적인방법의문제점을극복할수있는방법을제안하였다.경로를추종하

는 선박 (agent)은 외부 환경 (environment)과 상호작용하면서 학습을 진행한다.

State S0 (선박의 움직임과 관련된 각종 상태) 가지는 agent는 policy (현재 위치

에서 어떤 움직임을 선택할 것인가)에 따라 action A0 (움직일 방향) 취한다. 이에

environment는 agent의 다음 state S1 을 계산하고, 그에 따른 보상 R0 (해당 움직

임의 적합성)을 결정하여 agent에게 전달한다. 이러한 작업을 반복하면서 보상이

최대가 되도록 policy를 학습하게 된다.

한편,해상에서크레인을이용한장비의이동이나설치작업시위험을줄이기
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위해 크레인의 거동 제어에 대한 요구가 증가하고 있다. 특히 해상에서는 선박의

운동에 의해 크레인에 매달린 물체가 상하 동요 (heave)와 크레인을 기준으로 좌

우 동요 (sway)가 발생하는데, 이러한 운동은 작업을 지연시키고, 정확한 위치에

물체를놓지못하게하며,자칫주변구조물과의충돌을야기할수있다.이와같은

동요를 최소화하는 Anti-Motion Control (AMC) 시스템은 Anti-Heave Control

(AHC)과 Anti-Sway Control (ASC)을 포함한다. 본 연구에서는 해양 작업 지원

선에 적합한 AMC 시스템의 설계 및 검증 방법을 연구하였다. 먼저 상하 동요를

최소화하기 위해 크레인의 와이어 길이를 능동적으로 조정하는 AHC 시스템을 설

계하였다. 또한, 기존의 제어 시스템의 검증 방법은 실제 선박이나 해양 구조물에

해당제어시스템을직접설치하기전에는그성능을테스트하기가힘들었다.이를

해결하기 위해 본 연구에서는 Hardware-In-the-Loop Simulation (HILS) 기법을

활용하여 AHC 시스템의 검증 방법을 연구하였다. 또한, ASC 시스템을 설계할

때 제어 대상이 under-actuated 시스템이기 때문에 제어하기가 매우 어렵다. 따

라서 본 연구에서는 sliding mode control 알고리즘을 이용하며 다관절 크레인

(knuckle boom crane)의 관절 (joint) 각도를 제어하여 좌우 동요를 줄일 수 있는

ASC 시스템을 설계하였다.

주요어: 해양 작업 지원선; 자율 운항; 충돌 회피; 경로 추종; 강화 학습; 다물체

시스템; Hardware-in-the-Loop Simulation (HILS); 상하 동요 저감 시스템; 좌우

동요 저감 시스템; 슬라이딩 모드 제어

학번: 2014-31430
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