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Abstract 

 

A study on shear banding instability and 

mass/momentum transport of particulate suspensions 

under non-uniform flow field 

 

Jin, Howon 

School of Chemical and Biological Engineering 

The Graduate School 

Seoul National University 

 

 

Non-uniform flow, where the velocity gradient is spatially 

inhomogeneous, gives rise to many complex transport phenomena in 

particulate systems. Though the non-uniform flow is unavoidable in 

many important manufacturing processes or micro fluidic flows of 

particulate system, relatively few studies have been focused on 

dynamics of particles under such inhomogeneous flow, because of 

limited approaches and analysis on non-uniform fields. In this thesis, 

mass and momentum transport of particles under non-uniform flow field 

are investigated, by using both theoretical and numerical approaches.  

First, mass transport due to the gradient of shear rate, which lead to 
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the shear banding instability, is investigated for hard sphere glasses. 

The origin of the mass flux is found to be shear-distorted pair 

correlation function during deformation, and the transport coefficients 

are derived in terms of pair-correlation function. The values of the 

correlation functions under various flow conditions are estimated by 

using Brownian dynamics simulation, in order to obtain explicit 

expression of the transport coefficients as a function of shear rate and 

concentration. Linear stability analysis gives stability criteria which 

comes from the obtained transport coefficients, and the criteria is 

compared to experimental results from previous researchers. Lastly, the 

numerical simulation of shear banding flow is performed and the unstable 

dynamics are analyzed. 

Second, the non-local of particulate suspension is investigated, which 

is the momentum transport due to non-uniform flow field. As a 

preliminary step, the non-local stress of dilute hard sphere suspension 

is derived by applying spatial Taylor-expansion of stress tensor under 

inhomogeneous flow field. The calculation gives rise to the Einstein 

analogous expression of non-local stress. In order to extend the result 

of dilute case to more complex material, again, Brownian dynamics 

simulation is performed. In the Brownian dynamics simulation external 

extra force which is sinusoidally varying in space is applied to each 

particle to achieve well controlled non-uniform flow of the suspension. 

During the simulation, the local shear rate profiles and stress profiles 

are estimated, and the profiles are least-squares fitted based on the 
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constitutive model with the non-local stress contribution. As a results, 

fore-obtained Einstein analogy, the proportionality between viscosity 

and non-local stress coefficient is again verified. 
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Particulate soft matter systems, such as colloid, gel or glasses are 

widely used in a lot of industrial applications. Also, these systems are 

attracting scientific interests due to their complex behaviors, which are 

various interaction between particles, thermal motion and hydrodynamic 

interaction via suspending medium [1-3]. Consequently, there have 

been extensive studies on microstructure of suspension, rheological 

properties or interaction with flow field for several decades. 

Many studies investigated the properties of particulate suspensions by 

using rheometric devices, which offer uniform and well-controlled flow 

field, for example, steady/ start-up / oscillatory shear flows. So far, a 

lot of successful analysis on the behaviors of particulate suspension has 

been reported, for example, phase behaviors of suspension under 

various flow condition, mechanism of shear thinning/thickening of 

suspension, yielding and structural evolution under shear flow and so on 

[4].  

However, materials would undergo much complex flow fields in real 

industrial situation, which is not spatially uniform. Moreover, some 

complex materials are inherently unstable, which cannot form stable 

homogeneous flow, so that the flow would be separated into several 

different states [5]. The highly non-uniform flow field gives rise to 

additional complicated behaviors, for example, mass transport due to the 

gradient of deformation rate, or extra contribution to stress, which is 
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so-called non-local stress [6,7]. Thus, it is important to understand a 

behavior of particulate suspension in non-uniform or unstable flow field. 

The example of non-uniform flow covered by this thesis is a shear 

banding instability which is shear-induced phase separation occurring in 

Couette flow, shear flow through the space between parallel plates [5]. 

The shear banding instability results in sharp interface between each 

‘shear bands’, where the gradient of shear rate is extremely high. In this 

highly non-uniform region, aforementioned mass and momentum 

transport phenomena play an important role. 

In addition to the shear banding instability, microchannel flow is an 

another famous example of non-uniform flow, which is recently 

spotlighted for various applications [8,9]. In the microchannel flow, there 

is huge gradient of flow profile due to the small length scale and 

stick/slip boundary condition. Recently, it has been reported that the 

flow profile cannot be predicted by classical constitutive models, which 

do not incorporate a concept of non-local stress, due to such high 

inhomogeneity of the flow field [10]. 

Though there are numerous reports about the effect of non-uniform 

flow in many soft matter systems, relatively few studies have focused on 

the microscopic origin of such non-local phenomena, especially for 

particulate suspension. The reason is, supposedly, due to the difficulties 

in controlling the inhomogeneity of flow filed and measuring the 
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response of the system. Only recently, some limited approaches on 

investigating non-local behaviors of soft matter system, by using optical 

visualization technique [11], however, still not clearly successful to 

elucidating the physical origins. 

In this thesis, to avoid the difficulties of measuring and investigating 

local spatially varying quantities in non-uniform field, theoretical 

modeling and particle simulation method are used, which allow 

simplification of complicated flowing system by applying adequate 

postulates, or controlling inhomogeneity of the flow itself. 

Firstly, mass transport of particle in colloidal glasses due to non-

uniform flow field is investigated in chapter 2. In this work, explicit 

relation between the transport coefficients and microstructure of the 

particles is developed by modeling the force exerted on the particle 

under inhomogeneous flow field, in terms of shear-distorted pair-

correlation function. And then, Brownian dynamics simulation is 

performed to calculate the pair-correlation function of hard sphere 

system under various shear rate and concentration. Based on both 

results, the stability criteria are constructed and compared with 

experimental result. Moreover, full equation of motions, both mass and 

momentum conservation equation are solved together and the results are 

analyzed. Here, the non-local stress, which will be discussed in chapter 

3, plays important role in the initial unstable dynamics of flow and 
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development of the stationary states. 

Secondly, to elucidate the presence of non-local stress of particulate 

suspension and its effect on non-uniform flow of the suspension, 

hydrodynamic modeling and Brownian dynamics simulation are used. In 

the modeling part, the non-local stress term is derived for dilute hard 

sphere suspension, by using the method of reflection and systematic 

expansion on the inhomogeneous flow field. The result is found to be 

analogous to Einstein viscosity of dilute hard sphere suspension. To 

expand the results for more complicated systems, Brownian dynamics 

simulation is again applied. In this simulation, small spatial perturbation 

is imposed on the shear flow of the suspension. And then, the response 

of the suspension, the local stress profiles are estimated by varying the 

wave-vector of the perturbation. By fitting the local stress profile based 

on the modeling result, which contains Einstein analogy, the non-local 

stress term and its coefficient are measured.  

In summary, the objectives of this thesis are, understanding the mass 

and momentum transport phenomena of particulate suspensions under 

non-uniform flow field, by using modeling and simulation approaches, 

and quantitatively analyzing the effect of such transport phenomena on 

flow instability of the suspensions, so that hopefully it helps the 

fundamental understanding of the complex flow of suspension in many 

processes. 
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Shear rate gradient induced mass flux and  
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2.1 Introduction 

As mentioned in the chapter 1, an example of shear banding instability 

which particulate system can undergo will be covered in this chapter. In 

classical point of view in the rheometry, due to the fact that the shear 

stress is constant everywhere in planar Couette flow, the shear rate may 

also be constant when materials sheared inside the Couette. However, it 

has been reported that some materials cannot maintain the uniform 

single phase and separated into multiple ‘shear bands’ [5]. The shear 

banding instabilities can be classified to 3 kinds, by the alignment 

direction of shear bands or the origin of the flow instability, which are 

gradient banding, vorticity banding and shear rate gradient-

concentration coupling instability [12]. 

The most well-studied shear banding instability is the gradient 

banding, which shows shear bands aligned in velocity-gradient plane of 

Couette flow. This type of instability is observed, for example, in worm-

like micellar systems, entangled polymeric systems, micellar cubic 

phases, transient networks, supra-molecular polymer solutions, liquid 

crystalline polymers, and surfactant solutions [13-15]. The gradient-

banding instability is the result of a decreasing stress of the 

homogeneously sheared matters with the increasing shear rate. Any 

system that exhibits very strong shear-thinning behavior that is 

necessary to give rise to such a decrease of the stress will exhibit 

gradient banding. 
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  A second relatively well understood instability is the so-called 

vorticity-banding instability, which leads to the formation of alternating 

bands which are stacked along the vorticity direction. It has been 

observed, for example, in systems of multi-lamellar vesicles, worm-like 

micelles, dispersions of rod-like colloids, nano-tube suspensions, and 

weakly aggregated colloidal suspensions [16]. There are several 

possible scenarios for the vorticity-banding instability, depending on the 

system under consideration. A possible mechanism underlying this 

instability is that hoop stresses are generated through the non-linear 

elastic deformation of the mesoscopic objects that are present in the 

dispersion [17], similar to the Weissenberg effect in polymeric systems. 

Instead of non-linear elastic deformation of polymer chains, mesoscopic 

objects are now elastically deformed, like worm-like micelles, 

aggregates, or inhomogeneities formed during the initial stages of phase 

separation. Elastic instabilities have been discussed at length in [18]. 

Other scenarios for the formation of vorticity bands is that, after the 

formation of interfaces due to gradient-banding, the interface between 

the gradient-bands is unstable, where undulation of the interface 

subsequently leads to band-formation along the vorticity direction [19], 

or where the high shear-rate branch is unstable [20]. 

A third instability, which is the objectives of this chapter, is shear rate 

gradient - concentration coupling (SCC-) instability, which has been 

discussed in [20, 21] within a phenomenological approach. The behavior 

of SCC instability is similar with the gradient banding, as SCC instability 
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also shows shear bands in velocity-gradient plane. However, the 

physical origin of the SCC instability differs from the gradient banding. In 

the SCC instability, an essential ingredient here is that a mass flux is 

induced by spatial gradients of the local shear rate. However, the 

previous studies postulate either a shear-rate chemical potential or 

osmotic pressure, and do not address the microscopic origin of the 

SCC-instability. The unexplained microscopic origin of the SCC-

instability is probably the reason why this type of instability has hardly 

been pursued. But recently, there has been reported that a paper in 

which experiments on colloids are interpreted as being the result of the 

SCC-instability [23], where the driving force for the shear rate gradient 

induced mass flux is formulated in terms of a shear rate dependent 

osmotic pressure. Such a shear rate dependent osmotic pressure has 

indeed been observed in experiments [24-26]. Brownian dynamics 

simulations on hard-sphere suspensions have been performed to 

quantify the shear rate dependence of this generalized osmotic pressure 

[27]. 

In the present paper the microscopic origin of the shear rate gradient 

induced mass flux due to direct inter-colloidal interactions is discussed 

in section 2.2.1, which can be formulated in terms of a shear rate 

dependent osmotic pressure. This leads to expressions for concentration 

and shear rate dependent transport coefficients in terms of the shear-

distorted pair correlation function. Brownian dynamics simulations for 

hard sphere suspensions are presented in section 2.2.2, from which 
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explicit expressions for these transport coefficients are obtained as 

functions of the concentration and shear rate. This in turn allows 

formulation of the advection–diffusion equation, which couples to the 

Navier–Stokes equation, as discussed in 2.2.3. Stability diagrams are 

constructed in Section 2.3.2 on the basis of these equations of motion. 

The coupled advection–diffusion equation and the Navier–Stokes 

equation are solved numerically for Couette geometry in section 2.3.3. 

In addition, an essential non-local contribution to the stress that 

accounts for stresses resulting from large gradients in the suspension 

flow velocity, is adopted. This non-local contribution stabilizes the 

system against the unphysical arbitrary fast growth of large wave-

vector Fourier components, and renders the numerical algorithms stable. 

The resulting kinetics and stationary states are discussed in terms of 

flow-velocity profiles and concentration profiles. 
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2.2 Modeling and numerical methods 

2.2.1 The origin of the SCC instability 

The self-amplifying mechanism that gives rise to the Shear rate 

gradient - Concentration Coupling (SCC-) instability can be understood 

intuitively as follows. [12, 16, 21, 23, 28] Consider a Couette cell, where 

the shear rate near the outer cylinder is smaller as compared to the 

inner cylinder. When a mass flux is induced by spatial gradients of the 

shear rate towards regions of smaller shear rates, mass will be 

transported towards the outer cylinder. The increase of concentration 

near the outer cylinder leads to an increase of the local stress. The 

response of the system is to decrease the stress by lowering the local 

shear rate. This amplifies the spatial gradients of the shear rate, and 

leads to an enhanced mass flux towards the outer cylinder. The 

enhanced mass flux in turn gives rise to an even larger concentration, 

resulting in an even lower local shear rate. This is the self-amplifying 

mechanism that underlies the SCC-instability. A stationary state is 

reached once the diffusive mass flux due to existing concentration 

gradients cancels the shear-gradient induced mass flux. 

The SCC-instability has not been further analyzed after the original 

publications, [21] and [29], which are probably due to the ad hoc 

introduction of a lift force and a shear-rate dependent chemical potential, 

respectively, of which the origin is uncertain. The aim of this section is 

to elucidate the origin of the shear-rate dependence of the relevant 
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transport coefficients. A microscopic derivation of the mass flux from 

first principles will be discussed, and the origin of the shear-gradient 

contribution to the mass flux will be unambiguously identified. As 

expected, mass fluxes must be formulated in terms of a generalized 

osmotic pressure, as has been assumed in the analysis in [23]. This 

allows for the microscopic modeling of the advection–diffusion equation, 

including the mass flux induced by spatial gradients of the shear rate. 

The driving force for mass transport induced by shear rate gradients 

considered here is not to be confused with the phenomenon described in 

[30, 31], where the mass flux is entirely described in terms of the 

shear-rate dependence of the Fick’s diffusion coefficient. Here, no 

explicit shear rate gradient contribution appears in the diffusion equation 

which is necessary for the SCC-instability. Mass transport for such 

“shear-induced diffusion processes” is only significant for large 

particles, and does not play a role in the SCC-instability as found in 

[23].  

The general form of the diffusion–advection equation for the number 

density   of colloids, which undergoes a flow u , reads (with the 

neglect of hydrodynamic interactions between the colloidal particles), 

2

0 0
( ) D D

t


  


      


u B        (1) 

where 
0 0

/
B

D k T   is the free single-particle diffusion coefficient and 

0
  is the friction coefficient, while interactions between colloidal 
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particles are accounted for by the body force B . The diffusion Eq. (1) 

complies with a continuity equation with a mass flux j v , where the 

thermally averaged velocity v  of a colloidal particle is equal to, 

0

1
ln

B
k T 

 

 
     

 

B
v u        (2) 

This expresses force balance on the diffusive time scale, where the 

friction force 0
 v  balances with the Brownian force (the first term 

between the square brackets) and the body force B  which is due to 

colloid–colloid interactions. The body force that is due to direct inter-

colloidal interactions is equal to,  

1

( , ) [ ] ( ) ,
N

i i

i

t 


    B r r r        (3) 

where   is the potential energy of an assembly of N  colloidal 

particles and   is the delta-distribution, with 
i

r  being the position 

coordinate of colloid i . 

The above general form of the diffusion equation is also given in [32], 

where the body force is referred to as “the particle contribution to the 

stress”. The body force that includes forces on the colloidal particles 

and the solvent molecules is the body force that appears in the Navier–

Stokes equation, and thus relates to the total stress.  

Now it will be shown how the expression (3) for the body force gives 

rise to a contribution in the mass flux that is proportional to   where 

  is the local shear rate. First of all, the ensemble average in Eq. (3) is 
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written in terms of an integral with respect to the probability density 

function 
N

P  of the position coordinates of N  spherical colloids, 

1 1 1
( , ) ... ( ).

N N
t N d d P      B r r r r r        

For a potential   that is a pair-wise additive sum of pair-interaction 

potentials V , it is readily found that, 

2 2 2 2
( , ) ( 1) ( , , ) (| |),t N N d P t V    B r r r r r r        

where, 

2 2 3 1 2
( , , ) ... ( , ,..., , ).

N N N
P t d d P t  r r r r r r r        

Introducing the pair-correlation function g , 

2 2 2 2

1
( , , ) ( , ) ( , ) ( , , ,[ , ]),

( 1)
P t t t g t

N N
   


r r r r r r  

where the notation [ , ]   is used to indicate functional dependence of 

the pair-correlation function on the density and shear rate (for the 

inhomogeneous systems under consideration), the body force on the 

colloidal particles can be written as, 

2 2 2 2
( , ) ( , ) ( , ) ( , , ,[ , ]) (| |).t t d t g t V      B r r r r r r r r  

Since the potential restricts the integration range to distances 
2

| |r r  

less than the range 
V

R  of the pair-interaction potential, only the short-

ranged shear-induced distortion of the pair-correlation needs be 

considered. For these small distances the shear-flow distortion of the 

pair-correlation function is to a good approximation affine, so that, 



15 

 

eq

2 2 0 2

2 2

1 2

2 2

( , , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

ˆ ( , ,[ , ]),
| | | |

g t g g

g

     

 

 

 
  

 

r r r r r r

r r r r
E r r

r r r r

     (5) 

where eq
g  is the equilibrium pair-correlation function in the absence of 

shear flow, 
0

g  is the isotropic shear-induced distortion, and 
1

g  

characterizes the anisotropic affine distortion of the pair-correlation 

function. Furthermore, Ê  is the symmetric part of the velocity-

gradient tensor divided by the local shear rate. As expression (5) for the 

pair-correlation function assumes an affine distortion, this expression is 

accurate only when the Peclet number corresponding to the radius of the 

colloidal spheres is not larger than order unity. For a simple shear flow 

in the x-direction and with y the gradient direction, this tensor is equal 

to, 

0 1 0
1ˆ 1 0 0 .
2

0 0 0

 
 


 
 
 

E  

The shear rate and colloid density vary only a little over distances less 

than 
V

R , so that the density appearing in the integral (4) for the body 

force, 
2

( , )t r  can be Taylor expanded around r  to a leading order in 

gradients,  

2 2
( , ) ( , ) ( ) ( , ).t t t     r r r r r       (6) 

For the same reason, the various contributions to the pair-correlation 

function in Eq. (5) are approximately equal to those in a homogeneous 
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system, with the density and shear rate taken in between the positions 

r  and 
2

r . For example,  

 0 2 0 2 2

2

1
( , ,[ , ]) | |, , , with ( ), ,

2

1
and ( ), ,

2

g g t

t

     

 

 
    

 

 
  

 

r r r r r r

r r

 

and similar to eq
g  and 

1
g . Here, the overbar on 

0
g  is used to indicate 

that this is the correlation function of a homogeneous system with 

density   and shear rate  . Since the temporal evolution of the long 

wave length density and shear rate variations are much slower that the 

relaxation time of the pair-correlation function for distances less than 

V
R , the pair-correlation function adjusts itself instantaneously to its 

local stationary form. The time dependence of the pair-correlation 

function is therefore entirely due to the time dependence of the local 

density and shear rate. Within a leading order gradient expansion, 

following is obtained (
2

 R r r ), 

 
   0 0

0 2 0

| , | ,1 1
( , ,[ , ]) | , ,

2 2

g R g R
g g R

   
     

 

 
    

 
r r R R (7) 

and similar to eq
g (for which the shear rate dependence is of course 

absent) and 
1

g . Here,   and   are now understood to denote the local 

density and shear rate (omitting the now overbar notation). Substitution 

of Eq. (6) and (7) into Eq. (4) for B , and performing the angular 

integrations gives, 
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0 0

1 1

( , ) ( , )
( , )

( , ) ( , )ˆ ˆ ,

B

P P
t k T

P P

   
 

 

   
 

 

  
      

  

 
   

 

B r

E E

      (8) 

up to the leading order in spatial gradients, where, 

2 3 eq

0 0
0

2 ( )
( , ) [ ( | ) ( | , )],

3
B

dV R
P k T dRR g R g R

dR


      



       (9) 

Eq. (8) can also be written as, 

0 1
ˆ( , ) [ ( , ) ] ( , )

B
t P k T P        B r E     (10) 

where the gradient operators act on the spatial dependence of the colloid 

density and shear rate. The only component of the body force of interest 

here is the component acting along the gradient direction, which is the 

contribution 
0

[ ]
B

P k T  , because the last term 
1

ˆ ( , )P   E  is acting 

along the flow direction, which results in more drag of particle against 

the flow velocity. 

 According to Eq. (2) and (8), the mass flux in the gradient direction is 

thus equal to,  

0 0

0 0 0

( , ) ( , )
( , ) ,

P P
D P D

   
       

 

  
         

  
j u u    (11) 

where 1/
B

k T  .  

The interpretation of the above result for the mass flux is as follows. 

From equilibrium statistical mechanics, a well-known expression for the 

equilibrium pressure in terms of the pair-correlation function eq
g  

reads,[33] 
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eq 2 3 eq

0

2 ( )
( , ) ( | ).

3
B

dV R
P k T dRR g R

dR


    



    

Since the correlation function relates to inter-colloidal interactions, 

this pressure is in fact the osmotic pressure [1]. This expression for the 

osmotic pressure is precisely the expression for 
0

P  in Eq. (9), except 

that the equilibrium pair-correlation function is now the shear-distorted 

pair-correlation function. This is why 
0

P   shall be referred to as a 

“generalized osmotic pressure”. In this sense, just like for 

inhomogeneous unsheared systems, the mass flux is proportional to the 

spatial gradient of the osmotic pressure. The shear rate dependence of 

this generalized osmotic pressure gives rise to the shear rate gradient 

contribution to the mass flux. It should be noted that this generalized 

osmotic pressure is different from the pressure that appears in the 

Navier–Stokes equation. The pressure in the Navier–Stokes equation 

relates to the body force that includes forces on both the colloids and the 

solvent molecules. The body force that appears in the advection–

diffusion equation is the force that results from forces on the colloids 

only. 

In the following, it is considered that the suspensions of hard spheres, 

for which the pair-interaction potential is either zero, when the cores do 

not overlap, or is infinite, when the cores overlap. For such hard-core 

interactions the integral in Eq. (9) for the generalized osmotic pressure 

can be evaluated in terms of the contact value of the pair-correlation 

function, that is, the value where the distance between two colloids is 
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equal to 2a , with a  being the radius of the cores. To this end the so-

called cavity function exp( )y g V  is introduced. This function is 

continuous at contact, and has the same contact value as the pair-

correlation function [33]. Since  exp( )V /dV dR B
k T  (exp( ))d V

/dR ( 2 )
B

k T R a   , with   being the delta distribution, it follows from 

Eq. (9) that, 

3 2

0

2
( , ) (2 ) ( , ),

3

c

B B iso
P k T a k Tg


           (12) 

where ( , )
c

iso
g    is abbreviated as (the superscript “ c ” stands for the 

“contact value”), 

eq

0
( , ) ( 2 | ) ( 2 | , )

c

iso
g g R a g R a        . 

The body force along the gradient direction is, according to Eq. (10) 

and (12), therefore equal to, 

   2

iso iso3 3 2
( , ) ( , )2 2

( , ) (2 ) (2 )
3 3

c c

B B

g g
t a k T a k T

     
  

 

 
   

 
B r . 

The mass flux in Eq. (11) can now be most conveniently written as, 

,
eff

D       j u      (13) 

where the effective diffusion coefficient eff
D  is equal to, 

 2

iso3

0

( , )2
( , ) 1 (2 ) ,

3

c

eff

g
D D a

  
 



 
  
 
 

    (14) 

and the shear-gradient coefficient is equal to, 
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3 2 iso

0

( , )2
( , ) (2 ) .

3

c
g

D a
 

   






    (15) 

The explicit density and shear-rate dependence of these transport 

coefficients will be obtained by means of Brownian dynamics simulations, 

from which the contact values of the pair-correlation function are 

obtained, which then allows to analyze the transient kinetics and 

stationary states resulting from the SCC-instability 
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2.2.2 Brownian dynamics simulation 

In this section, Brownian dynamics (BD) simulations are presented, in 

order to determine the concentration and shear-rate dependence of the 

contact value of the pair-correlation function under shear flow 

conditions. The simulation results will be used to establish the explicit 

concentration and shear rate dependence of the effective diffusion 

coefficient in Eq. (14) and the shear rate gradient coefficient (15). The 

governing equation for BD-simulations is the overdamped Langevin 

equation, 

,
H P B

i i i
  0 F F F  

where H

i
F , P

i
F  and B

i
F  are the hydrodynamic force, the inter-particle 

force, and the Brownian force exerted on the i th particle, respectively. 

On the diffusive time scale under consideration, inertial forces can be 

ignored. With the neglect of hydrodynamic interactions between the 

colloids, the hydrodynamic force is equal to, 

0
( ( )),

H

i i i
 F v u r  

where 
0 0

6 a   is the single-particle friction coefficient (with 
0

  

being the shear viscosity of the solvent and a the radius of the spheres), 

i
v  is the velocity of the sphere, and ( )

i
u r  is the externally imposed 

solvent velocity at the center coordinate of the i th sphere, 
i

r . For the 

inter-particle force P

i
F , the overlap-preventing potential free method is 
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employed [27]. Here, after a move of the particles leading to core-

overlap, they are forced to move back to a position where there is 

contact between the surfaces. The corresponding displacement is equal 

to (with the 
ij

r  vector connecting the two centers of the overlapping 

spheres),  

overlap 1
( 2 ), 2 .

2

ij

ij ij ij

ij

r a r a
r

   
r

r  

The Brownian force B

i
F  is generated as a random number, with zero 

average and variance complying with the equipartition of kinetic energy, 

,
B

i
 F 0  

0
ˆ( ) ( ') 2 ( '),

B B

i i B
t t k T t t   F F I  

where Î  is the identity tensor. 

Introducing dimensionless variables by rescaling the length with the 

radius a , energy with 
B

k T , and time with 2

0
/a D  (the time required for 

a particle to diffuse over a distance equal to its own radius), the 

dimensionless displacement of the position of particle i  is (the over-

tilde symbols are used to indicate dimensionless variables), 

[ ] 2 ,
p

i i i i
d dt


  r v F W      (16) 

where, 

overlapp

i ij

j

 F r , 
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and where 
i

W is the random dimensionless displacement due to the 

Brownian force, such that, 

0,
i

 W  

ˆ( ) ( ') ( ')
i i

t t t t dt  W W I  

Furthermore, the dimensionless imposed solvent velocity 
i i


 v Γ r , 

where the dimensionless velocity gradient tensor Γ  has only one non-

zero component, the xy -element, which is equal to the Peclet number, 

2

0

Pe
a

D
    

Time integration of Eq. (16) extends over the interval 0 100t    with 

time-steps of 4
10dt


 , for shear rates in the range 0.01 10    and 

for volume fractions ranging from 0.25  to 0.55 . In this concentration 

and shear-rate range there is no SCC instability because uniform shear 

flow is forced throughout the simulation domain, and crystallization is not 

observed (probably because nucleation requires larger systems and/or it 

is too slow on the time scale during which the simulations are 

performed). In the simulation box, 3375N   particles were used under 

periodic boundary conditions. The number of particle, 3375N   is 

sufficiently large, by repeating simulations with 1000 particles, leading 

to results that are the same to within 2%. 

After the steady state is reached, the pair-correlation function ( )g r  
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is calculated from, 

2
1 1

1
( ) ,( )

N N

ij

i j
j i

g 
  



  r rr  

where   is the average number density of particles, and the brackets 

denote time-averaging.  

 

  



25 

 

2.2.3 Equation of motion  

 Brownian dynamics simulations cannot be used to analyze the SCC-

instability, since unrealistically large systems must be simulated to 

achieve this, and Navier-stokes equation for background fluid motion 

cannot be coupled with the forces exerted on the particles. Instead, 

equations of motion must be formulated which are then solved 

numerically. In this section the two necessary equations of motion will 

be formulated. In subsection 2.2.3.1, the advection–diffusion equation is 

stated, as obtained from the considerations in the previous sections, and 

in subsection 2.2.3.2, the equation of motion for the flow velocity is 

discussed. 

2.2.3.1 The advection–diffusion equation 

The advection–diffusion equation as derived in section 2.2.1 does not 

assume equilibrium, and is therefore also applicable within the glass 

state. In addition, since microstructural order in the glass is very similar 

to that in the fluid, the contact value for the pair-correlation function is 

expected to be reasonable also within the glass. The advection–diffusion 

equation, applicable to fluids and glasses, thus follows immediately from 

Eq. (13)–(15). 

eff
[ ] [ ] [ ],D

t


   


        


u     (17) 

where u  is the suspension flow velocity; the effective diffusion 
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coefficient in terms of dimensionless variables is equal to,  

 2

eff 0 iso
( , ) 1 4 ( , ) ,

c
D D g    



 
  

 
 

where   is local volume fraction of particle, which is given as 

3
4 / 3a   . And the shear-gradient coefficient is equal to, 

20 iso

0

( , )
( , ) 18 .

c

B

D g

k T

 
    







 

The concentration and shear-rate dependence of the contact value 

iso

c
g  of the isotropic part of the pair-correlation function is specified 

from the result of BD-simulations. 

As mentioned before, the shear-rate induced mass flux as described 

in [30] is entirely assumed to be due to the shear rate dependence of 

eff
D  in Eq. (17) [31]. This so-called shear induced diffusion leads to 

significant mass transport only for very large particles, larger than 

several tens of microns. There is no SCC-instability without the explicit 

contribution from shear rate gradient induced mass transport. The 

equation of motion (17) is coupled to the equation of motion for the 

suspension flow velocity u , which is discussed in the next subsection. 
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2.2.3.2 The equation of motion for the suspension flow velocity 

Although the rheological properties of concentrated hard sphere 

suspensions could in principle be obtained from similar Brownian 

Dynamics simulations as discussed in section 2.2.2, there is an 

abundance of literature on simulations and rheological experiments of 

hard-sphere systems available to be able to construct a reliable Navier–

Stokes equation. In this work, it is chosen that using this existing 

information to construct the Navier–Stokes equation, rather than to 

perform a separate Brownian Dynamics study, which would merely 

reproduce existing knowledge. 

The inertial contribution to the Navier–Stokes equations can be 

neglected for the low Reynolds numbers typical for colloidal systems. 

Furthermore, the relaxation of the fluid velocity is very fast in 

comparison to the temporal evolution of the colloid concentration, which 

can be seen as follows. The time 
sw

  that a shear wave needs traverse a 

distance l  is equal to 2
/l   (where 

m
  the specific mass density of 

the suspension). A lower bound for the time needed for the colloid 

concentration to change over a length scale l  is the time 2

diff eff
/l D   

needed for a colloidal sphere to diffuse over that distance. When the 

ratio 
diff sw m eff

/ / ( )D     is large, the flow velocity is enslaved by the 

colloid concentration. Substitution of typical numbers (shear viscosity 
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2
10 Pa s

 , mass density 3 3
10 kg m

 , and diffusion coefficient 11 2 1
10 m s

  ) 

shows that this ratio is of the order 6
10 . This validates the assumption 

that flow is enslaved by concentration, so that the explicit time 

derivative in the Navier–Stokes equation can be neglected. The Navier–

Stokes equation therefore reduces to, 

,0 Σ       (18) 

where Σ  is the stress tensor. The standard expression for the stress 

tensor is T

yield
[ ( ) ]    Σ Σ u u  (“ T ” stands for “ transposition”), 

where 
yield

Σ  is the yield-stress tensor, which is zero below the glass-

transition volume fraction 0.58
g

  , and where   is the shear-

viscosity. Spatial variations in the pressure are absent for the flow 

profiles under consideration here, which are therefore omitted. This 

expression for the stress tensor is the result of a leading order 

expansion with respect to gradients in the flow velocity u . In banded 

profiles, however, gradients may be large, so that the next higher order 

term in such a gradient expansion must be included. This non-local 

contribution to the stress turns out to be essential to be able to describe 

the formation of banded flow profiles, as it stabilizes the system against 

the arbitrary fast growth of large gradients in the flow velocity (this is 

shown in the linear stability analysis in section 2.3.2). This holds for 

gradient-banding as well as for the SCC-instability. The total stress 
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tensor is therefore equal to [6], 

2 T

yield
( )[ ( ) ],       Σ Σ u u     (19) 

where 0   is referred to as the shear-curvature viscosity. Both   

and   are functions of the concentration and shear rate, which is 

essentially different below and above the glass concentration. The non-

local stress will be further discussed in the next chapter. 

What has been neglected in the constitutive relationship in Eq. (19) 

are normal stresses. As the system is restricted to laminar flow within 

symmetric geometries like a Couette cell or parallel plates, and spatial 

gradients of the shear rate are essential for the SCC instability, these 

normal stresses are neglected. For flows in more complex geometries, 

where normal stresses affect the direction of flow velocities, and 

thereby spatial gradients in the shear rate, a more realistic constitutive 

relationship should be employed that includes normal stresses.  

For volume fractions 
g

   there is a Newtonian plateau up to Peclet 

numbers of approximately 0.1 to 1 up to volume fraction close to 
g

  [27, 

34-36], in agreement with the simulation data in Figure 4a. For values 

of Peclet numbers smaller than unity that are of interest here, within the 

Newtonian plateau, the viscosity in Eq. (22) is thus approximated by the 

zero-shear viscosity. There are several propositions that describe the 

concentration dependence for the viscosity of hard-sphere suspensions 

quite accurately, like an exponential dependence on the concentration 
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[37] and through generalized (Stokes–Einstein relationship [38]). Here 

the well-known Krieger–Dougherty relationship is used [39], 

0
( , ) (1 ) , ,

q

g
     

    

for the concentration dependence of the zero-shear viscosity, where h0 

is the solvent viscosity, and where the notation,  

m
/    

is adopted from [23] as a dimensionless concentration. The 

experimental values of q  that are reported vary from 
m

2.5 1.6   [35] 

to 2 [40], up to concentrations of about 0.59 . A theory for barrier 

formation and particle hopping predicts an exponent of 9.1 in the 

concentration range of 0.505 0.605 [41]. Here the value 2q   is 

adopted, which describes experimental data on hard-sphere silica 

dispersions quite accurately. The shear-curvature viscosity diverges 

similarly as the viscosity at the volume fraction 
m

 , while the range of 

shear rates where shear thinning occurs is similar for both [6]. 

Therefore, it is assumed that the same concentration dependence for the 

shear-curvature viscosity as for the shear viscosity, 

0
( , ) (1 ) , ,

q

g
     

    

where 
0

  is a constant. 

Contrary to fluid suspensions, there is no Newtonian plateau in hard-

sphere glasses. Shear thinning immediately sets in when flow is induced 
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by applying a stress just above the yield stress, which is reasonably well 

described by a Herschel–Bulkley form of the stress, which predicts that 

the viscosity in Eq. (19) varies like 
1/2

~  
 [23, 42, 43]. Therefore, the 

same Herschel–Bulkley form is adopted as used in [23], 

2

1/2 1/2

yield

0

( , ) 15 ( )(1 ) , .
g

a

D
     

   Σ  

The concentration dependence of the yield stress of hard sphere 

glasses is ~ (1 )
p

 , where p  is reported to vary between 1 and 3, 

while the pre-factor is equal to 
3

/ (100 )
B

k T a [23]. The same expression 

for the yield stress as in [23] will be used,  

yield 3
(1 ) ,

100

pB
k T

a


 Σ       (20) 

which is understood to act along the flow direction. The exponent is 

equal to, 3p  . The shear-curvature viscosity has again a similar 

shear-rate and concentration dependence as the shear viscosity, 

2

1/2 1/20

yield

0 0

( , ) 15 ( )(1 ) , .
g

a

D


    


 

   Σ  
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2.3 Results and discussion 

2.3.1 Pair-correlation function from BD simulation 

In this section, the concentration and shear rate dependence of the 

contact value of the pair-correlation function under shear flow 

conditions is calculated. The contact value will be used to establish the 

explicit expressions of the effective diffusion coefficient in Eq. (14) and 

the shear rate gradient coefficient (15). 

Firstly, to validate the results, equilibrium simulation without flow case 

is compared to well-known hard sphere model. An accurate description 

of the contact value of the pair-correlation function for hard spheres 

without shear flow up to concentrations of about 45% is given by the 

so-called Carnahan–Starling equation [44], 

eq,

3

2
( ) .

2(1 )

c
g










      (21) 

A comparison of the BD-equilibrium simulation results with the 

Carnahan–Starling equation is shown in Figure 2.1. There is a reasonable 

agreement, with small deviations at very high volume fractions above 

45%, similar to what is found in [27]. This slight overestimation is 

attributed in [27] to the effective softness that is introduced in the 

simulations through unresolved particle overlaps.  

Of interest for the calculation of the transport coefficients in Eq. (14) 

and (15) is the contact value of the isotropic part of the pair-correlation 
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function, which according to Eq. (5), is equal to the angular-averaged 

pair-correlation function at the core surface, 

eq

iso 0

1
ˆ( ) ( | ) ( | , ) ( ),

4
g R g R g R d g  


    r r  

where the integral ranges over the directions of r . 
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Figure 2.1 A comparison between the simulated contact values of the 

equilibrium pair-correlation function (the data points) and the Carnahan–

Starling Eq. (21) (the solid line). 
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Examples of the isotropic part of the shear-distorted pair-correlation 

function are plotted as a function of the inter-particle separation for two 

shear rates in Figure 2.2. An example of the effect of shear flow on the 

pair-correlation function is shown in Figure 2.3, for a volume fraction of 

45%. In Figure 2.3a the pair-correlation function without shear flow is 

shown, where the color code measures the value of the correlation 

function (blue is a low value and red is a high value). The dotted circle 

indicates the location of the core-surface. In Figure 2.3b the pair-

correlation in shear flow is plotted, and in Figure 2.3c the difference 

between the pair-correlation function under flow and its equilibrium 

value is shown. There is a pronounced increase of the pair-correlation 

function along the compressional direction, and a clear decrease along 

the extensional axis, as expected. Here, note that the shear-induced 

stripes and peaks exhibited by the pair-correlation function as found in 

[27] only occur at Peclet numbers larger than about 10. Here, the 

analysis is restricted to Peclet numbers less than 1, for which the same 

oval structure for the pair-correlation function as seen in Figure 2.3 is 

also found in [27]. The difference 
iso

g  between the angular averaged 

pair-correlation function and the equilibrium pair-correlation function is 

given in Figure 2.2 as a function of the inter-particle separation, for two 

Peclet numbers. As can be seen, the contact value is a strong function of 

the shear rate. 
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Figure 2.2 The difference g  between the angular averaged pair-

correlation function and the equilibrium pair-correlation function as a 

function of the inter-particle separation in units of the particle radius a . 

The inset shows the equilibrium pair-correlation function. The volume 

fraction is 55% 
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Figure 2.3 (a) The pair correlation function for a volume fraction of 45% 

in equilibrium, without shear flow. The color code indicates the value of 

the pair-correlation function (blue is a low value and red is a high value). 

(b) the same as in (a), but now for a shear rate corresponding to a 

Peclet number equal to 0.5  . The arrows indicate the compressional 

and extensional directions. (c) The difference between the pair 

correlation functions under shear in (b) and without shear in (a). The 

blue color code now corresponds to a negative value and the red color 

code corresponds to a positive value. 
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Figure 2.4 (a) The contact value iso

c
g  of the isotropic part of the pair-

correlation function as a function of the Peclet number for various 

volume fractions. The data points are BD-simulation results for 0.25   

(the lower set of data points) up to 0.55   (the upper set of data 

points), increasing in steps of 0.05. (b) The difference iso

c
g  between 

the isotropic contact values of the pair-correlation function of the 

sheared and unsheared equilibrium system as a function of the Peclet 

number for various volume fractions. The slope of the straight lines in 

this double-logarithmic plot is equal to the exponent m  in Eq. (22). (c) 

The exponent m  as a function of the volume fraction. The solid curve is 

the second order polynomial in Eq. (22). (d) The quantity 
iso

/
c m

H g    

as a function of 
m

1 /  on a double-logarithmic scale. The slope of the 

straight line is equal to the exponent s  in Eq. (23). Some of the data 

points fall right on top of each other, so that they are not visible in this 

plot. 
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Concentration and shear-rate dependent contact values of the isotropic 

part of the pair-correlation function are shown in Figure 2.4a, where the 

data points are BD-simulation results for various volume fractions. As 

can be seen from Figure 2.4b, the shear-distorted part 

eq,

iso iso

c c c
g g g      of the isotropic contact value of the pair-correlation 

function varies as ~
m  for each volume fraction. The volume fraction 

dependence of m  is shown in Figure 2.4c, where the solid line 

corresponds to, 

2
0.43 5.26 8.80 .m          (22) 

Note that, according to Eq. (3), (12) and (23), the osmotic pressure 

varies as ~
m , where the Peclet number is to be interpreted as its 

absolute value, since reversal of the shear rate does not change the 

osmotic pressure. An approximate linear dependence of the shear-

induced osmotic pressure on the applied shear rate is found 

experimentally in [26] for volume fractions ranging from 0.30 to 0.50 

(see in particular Figure 2.3). The exponent m  is indeed found in 

Figure. 2.4c to be close to unity within this range of volume fractions. As 

hydrodynamic interactions are neglected in BD simulations, it thus 

seems that the functional shear rate dependence is not too much affected 

by such hydrodynamic inter-colloidal interactions. It should be 

mentioned, however, that the Peclet numbers in [26] are extremely high, 
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so that the agreement between the results and those experiments may 

be fortuitous. A linear dependence of the osmotic pressure on the shear 

rate for concentrations below g
  has also been proposed in [28]. 

Brownian dynamics simulations have been performed as in [27], likewise 

with the neglect of hydrodynamic interactions, where it is found that the 

pressure as obtained from the trace of the stress tensor corresponds to 

1.7m   for a volume fraction of 0.45 and for Peclet numbers ranging 

from 0.1 to 1. As the force in the advection–diffusion equation accounts 

for forces on the colloidal particles only, while the pressure obtained 

from the trace of the stress tensor includes in addition the forces on the 

solvent; the osmotic pressure discussed in the present paper is different 

from that in [27]. Gradients in the osmotic pressure as considered here 

lead to diffusive mass transport, while the pressure appearing in the 

Navier–Stokes equation in [27] leads to convective transport. This is the 

reason why a different exponent of 1.7 is reported in [27] as compared 

to the results. 

As glass is “frozen-in liquid”, the microstructural order in the 

quiescent glass state is very similar to that in a fluid. This is most 

probably the reason why molecular dynamics simulations on hard-

sphere systems find that the contact value of the pair-correlation 

function (without shear flow) changes smoothly from the fluid, to the 

meta-stable fluid region, to the glass state, on increasing the 
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concentration [45]. This also underlies the assumption in mode coupling 

theory that extrapolated structure factors from fluids to concentrations 

within the glass state can be used to assess the glassy dynamics. As yet, 

however, there are no rigorous arguments for smooth variations of 

structural variables from (meta-stable) fluids into the glassy state, for 

unsheared and for sheared systems. Here it is assumed that the same 

smooth variations as seen in simulations and often assumed for 

unsheared systems also hold true for sheared systems. As long as no 

crystallization occurs, the flowing branch of a glass most probably 

behaves very much like a concentrated flowing fluid. The concentration 

dependence of m within the fluid state is thus smoothly extrapolated into 

the glass state as shown in Figure 2.4c. 

In Figure 2.4d the quantity 
iso

/
c m

H g    is seen to vary like 

m
~ (1 / )

s  
 ,where 

m
0.64   is the maximum random close packing 

volume fraction of spheres, and with, 2.525s  , independent of the shear 

rate. Furthermore, H  is found to be independent of the shear rate. 

These results imply that, 

eq,

iso

m

( , ) 1 ,

s

c c m
g g A


  





 
   

 
    (23) 

is an accurate representation of the contact value of the isotropic part of 

the pair-correlation function. The value of the amplitude A  is found to 

be equal to, 0.0140.A    



42 

 

The solid lines in Figure 2.4a correspond to the representation (23), 

which is indeed seen to describe the BD-simulation data perfectly. The 

expression (23) for the pair-correlation function specifies the shear-

rate and volume fraction dependencies of the transport coefficients in Eq. 

(14) and (15), which will be solved numerically for the Couette 

geometry in section 2.3.3. 
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2.3.2 Linear stability analysis and stability diagram 

The linear stability analysis in previous work on the SCC-instability of 

colloids could only be done for zero wave vectors, since the non-local 

contribution, as quantified by the shear curvature viscosity, has not been 

included before. Without this contribution, the growth rate of 

variations/fluctuations of the flow velocity indefinitely increases with 

increasing wave vectors, which is unphysical. The non-local 

contribution renders variations/fluctuations of sufficiently large wave 

vectors stable, which is required to derive a physically meaningful 

dispersion relation. 

Consider a flow in the x -direction with gradients in density and flow 

velocity only in the y -direction. Within the glass, the applied shear 

stress is supposed to be larger than the yield stress. Substitution of 

0
      and 

0
u u u   into the advection–diffusion equation, where 

0
  and 

0
  are the constant initial density and shear rate respectively, 

and linearization with respect to the small perturbations   and u  

gives, 

2 3

eff 2 3
,

u
D

t y y

  


  
 

  
     (24) 

where 
eff

D  and   are understood to be evaluated at the density 
0

  and 

the shear rate 
0

 . The equation of motion for the flow velocity similarly 

gives,  
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2 4

2 4

0 0

0 ,
u u

y y y

   


 

    
  
    

    (25) 

where   and   are evaluated at 
0

  and 
0

 , and where, 

0 0 0
( , ), ,

g
         

yield 0 0 0 0
( ) ( , ), ,

g
         Σ  

are the shear–stress of the initially homogeneously sheared suspension, 

again at the density 
0

  and the shear rate 
0

 . The time dependence of 

the perturbations will be exponential due to the linearization. The 

exponents for the density and flow velocity are the same, as the velocity 

is enslaved by the concentration. Hence, for sinusoidal spatial 

perturbations, 

0
exp( ( ) ),iky k t     

0
exp( ( ) ).u u iky k t         (26) 

Substitution into Eq. (24) and (25) leads to the dispersion relationship, 

1

2 2

eff
( ) .

d d
k k D k

d d

 
  

 

  
    

   

    (27) 

According to Eq. (26), the initial density and flow profiles are unstable 

when 0  , that is, when, 

2

eff
unstable

d d
D k

d d

 
 

 

 
   

 
     (28) 

Since 0  , this result shows that perturbations corresponding to 

large spatial gradients, for which the corresponding wave vector k  is 
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large, are stable. Only sufficiently smooth variations in the density and 

shear rate will be unstable, while rapidly varying variations remain 

stable. It thus follows from Eq. (28) that the system is unstable against 

arbitrarily smooth spatially varying perturbations (for which 0k  ), 

when the stability factor, 

eff

/
,

/

d d
S

D d d

  

 
      (29) 

is larger than unity. This reproduces the SCC-stability criterion as 

derived similarly in [21-23]. The dispersion relationship (27) is most 

conveniently written in the dimensionless form as, 

2

2
1 ,

1

S
K

CK

 
    

 

where 
2

eff
( ) /k a D   is the dimensionless (negative) growth rate, 

K ka  is the dimensionless wave vector (with K  the radius of the 

colloidal spheres), S  is again the stability factor in Eq. (29), and 

2
/ ( / )C a d d   . The quantity 

2
/ K  is plotted in Figure 2.5a as a 

function of 
2

K  for the typical values of 2S   and 200C   (solid curve) 

and 400C   (dashed-dotted curve). Those wave vectors where 0   

are unstable, while larger wave vectors corresponding to large spatial 

gradients remain stable. The fastest growing Fourier mode is the mode 

where   attains its minimum as shown in Figure 2.5b. The stabilization 

of Fourier modes with large wave vectors is solely due to the non-local 

stress contribution as characterized by the shear-curvature viscosity  . 
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As can be seen, the larger the shear-curvature viscosity (to which C  

is proportional to), the smaller the wavevector range where the system 

is unstable. For 0   the growth rate increases indefinitely like 2
K  

with the increasing wave vector. Such an arbitrarily fast growth of large 

spatial gradients is unphysical. 

The critical wave vector 
c

k kc beyond which spatial variations are 

stable, for which ( ) 0k  , follows from Eq. (28) as, 

/
( 1), ( 1)

c

d d
k S S

 


        (30) 

while the fastest growing Fourier mode is the one with the wave vector 

m
k  for which / 0,d dk   and hence, 

 m

/
1 , ( 1).

d d
k S S

 


        (31) 

The above scenario for the initial banding kinetics is formally very 

similar to initial gas–liquid spinodal demixing kinetics as first described 

by Cahn and Hilliard [46, 47]. The equivalent of the shear-curvature 

viscosity is the square-gradient coefficient in the Cahn–Hilliard theory 

for spinodal decomposition. Similar to the higher order derivative in the 

expression for the stress tensor, the Cahn–Hilliard square-gradient 

coefficient multiplies a higher order spatial derivative in Fick's diffusion 

equation, which accounts for the increase in the free energy on 

formation of sharp concentration gradients. The shear-curvature 

contribution to the stress tensor was introduced in [6] to describe                      



47 

 

` 

 

 

 

 

Figure 2.5 (a) The dimensionless quantity 
2

/ K  and (b) the 

dimensionless(negative) growth rate   as a function of the squared 

dimensionless wave vector K ka . Here, 2S   and 200C   (solid 

curves) and 400C   (dashed-dotted lines). 
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gradient-banding. The stabilization of fast growth of large spatial 

gradients through the shear curvature viscosity is a necessary feature 

for the numerical stability of algorithms to solve the above discussed 

equations of motion. 

The stability criterion 1S   in Eq. (29) together with the explicit 

forms of the transport coefficients discussed before allows construction 

of the stability diagram. This diagram marks the combinations of shear 

rates and concentrations where the system turns from being (meta-) 

stable to unstable. There is an essential difference between a system 

where the initial uniform volume fraction is smaller or larger than the 

glass-transition concentration g
 . For g

  , it is given that 

/ ~d d   , while for g
  , / ~d d  constant (for small Peclet 

numbers). This difference is due to the yield-stress contribution that is 

only present within the glass, and leads to a marked difference between 

the stability diagram for concentrations below and above the glass 

transition. As can be seen from Figure. 2.6a, for concentrations below 

the glass transition the uniform system is stable at least up to Peclet 

numbers of the order 1. Within the glass, in contrast, there is a large 

range of concentrations and relatively small shear rates where the 

uniform system is unstable. The thick solid line in Figure 2.6b marks the 

shear rates and concentrations where 1S  . This line marks the 

transition from the stable ( 1S  ) to the unstable state ( 1S  ) of a 

uniform system. The white and black data points in Figure 2.6b 
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Figure 2.6 The stability diagrams in the shear-rate versus the 

concentration plane: (a) for 
g

   and (b) for 
g

  . The thick line 

marks the transition from stable to unstable (where 1S  ). The iso- S  

lines are indicated by their corresponding values for S , whose curves 

are separated by a color code(red is a relatively high value of S  and 

blue is a low value). The data points are experimental data for sterically 

stabilized PMMA particles: the white data points are for particles with a 

radius of 138 nm and the black data points for 150 nm, taken from [23]. 
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are experimentally determined transition points for PMMA spheres, 

taken from [23]. In view of the neglect of hydrodynamic interactions, 

these data compare reasonably well with theory. 

As will be seen in section 2.3.3, banding can also occur for 

concentrations very close to the glass transition concentration without a 

SCC-instability. The stability criterion (29) is thus a sufficient but not a 

necessary condition for a stationary banded flow. 

In the notation of [23], n  is the exponent appearing in the shear rate 

dependent stress for 
g

  . In our case 1/ 2n   (the exponent -1/2 in 

the expression for the shear rate dependent part of the viscosity, plus 1 

as the viscosity is multiplied by the shear rate to obtain the stress). A 

similar value for 0.4 0.5n    is adopted in [23]. The value for m  in Eq. 

(22) and (23), which describes the shear rate dependence of the 

osmotic pressure, is chosen in eqn (5) of [23] to be slightly smaller than 

n . The resulting value 0.4 0.5m    is similar to what we find in Figure 

2.4c within the glass. The value of m , however, is found to be 

concentration dependent, varying from 0.5 for 
g

   to 0.18 for 
m

  . 

The difference m n  determines whether the 1S   stability curve in 

the stability diagram in Figure 2.6b slopes to the left or to the right: for 

0m n   the 1S   curve has a negative slope, for 0m n   a positive 

slope. In the latter case the uniform glass becomes unstable on lowering 

the shear rate, which has been observed experimentally in [23]. Such a 

negative value of m n  is also found in our analysis. The small 
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difference between m and n  leads to the essentially shear rate 

independent location of the stability curve for the lower concentrations, 

as discussed in [23]. 

Note that Eq. (5) for the pair-correlation function is only accurate for 

Peclet numbers typically less than unity. The SCC instability within the 

glass state indeed occurs at Peclet numbers smaller than unity, as can be 

seen from Figure 2.6b. For fluids, however, the instability occurs at most 

at quite high Peclet numbers, as can be seen from Figure 2.6a. To 

analyze the SCC instability below the glass transition requires therefore 

a representation of the pair-correlation function that is also accurate at 

much higher Peclet numbers, which is beyond the scope of the present 

study. 
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2.3.3 Numerical results for concentration- and flow-profiles 

It has not been possible in previous work on colloids to calculate the 

velocity and concentration profiles. There are no theoretical predictions 

yet concerning the velocity and concentration profiles resulting from the 

SCC-instability. An essential ingredient for the calculation of velocity 

and concentration profiles is the non-local contribution to the stress, as 

characterized by the shear-curvature viscosity, which stabilizes the 

system against arbitrary fast growth of variations/ fluctuations with 

large spatial gradients. Without this non-local contribution to the stress 

any numerical algorithm would be inherently unstable. 

To solve the non-linear differential equations, a 2nd order central 

finite difference method is used to evaluate spatial derivatives, and a 

Newton–Rapson iteration is used to account for the non-linear term in 

the Navier–Stokes equation, while the time derivative is determined 

using the predictor–corrector iteration scheme based on the Crank–

Nicolson method (Adams method) [48]. In the numerical calculation, a 

spatial discretization is used that sets the maximum value of the wave 

vector 
max

k . When the number of grid points over an interval of length L  

is 
d

N , this maximum value of the wave vector is equal to 
max

/
d

k N L . 

In case 
max

k  is less than the critical wave vector 
c

k  in Eq. (30), not all 

unstable Fourier modes are accounted for, and the numerical solutions 

are not realistic. A sufficiently fine grid must be chosen to assure that all 

unstable Fourier modes are accounted for. This is confirmed by 
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comparing numerical solutions with a different number of grid points. In 

this simulation, 200
d

N   and 
3

2 10dt


  , while 400
d

N   and 

4
2 10dt


   are used to verify convergence. 

The two coupled equations of motion for the concentration and flow 

velocity as discussed in section 2.2.3 will be solved numerically for a 

cylindrical Couette geometry (see Figure 2.7). Such a geometry features 

the inherent shear-gradients to induce the onset of the SCC-instability 

mechanism as explained in section 2.2 All variables are assumed to be 

fully-developed in the  –direction (around the cylinder axis), and 

homogeneous in the z –direction (along the cylinder axis). The only 

relevant spatial coordinate is therefore the radial distance from the 

cylinder axis, which will be denoted by r . The simulation domain in this 

direction is set by the radii 
1

R  and 
2

R  of the inner and outer cylinder, 

respectively. The gap width 
2 1

R R  is chosen as 1000a  (with a  being 

the radius of the colloids), while 
2 1

/ 0.98R R  . As will be seen later, the 

spatial varying volume fraction deviates at most of the order of 0.005 

around the initial uniform volume fraction, so that banded flow profiles 

can be calculated from numerical solutions of equations of motion by 

taking m  in Eq. (22) equal to its value corresponding to the initial 

volume fraction, independent of the position. To verify this procedure, 

the additional contributions due to the concentration dependence of m  

to the equations of motion can be estimated from the numerical solutions 

using a constant m .  
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Figure 2.7 The cylindrical Couette geometry. The radius of the inner, 

rotation cylinder is 
1

R , the outer radius of the stationary cylinder is 
2

R . 

The gap width is chosen to be 1000 times the radius a  of the spherical 

colloids, and 
1 2

/ 0.98R R  . 
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The equation of motion for the concentration in terms of the radial 

cylindrical coordinate reads,  

eff

( , ) 1 ( , ) 1 ( , )
.

r t r t r t
rD r

t r r r r r r

  


       
    

       
 

The stress is the sum of the yield-stress and a viscous-stress 

contribution,  

yield visc
, Σ Σ Σ  

where the yield stress is given in Eq. (23), while,  

visc

1
( , ).r r t

r r r
  
    

    
   

Σ  

The Navier–Stokes equation reads, 

 2
0,r

r





Σ  

provided that the total local stress is larger than the yield stress. No-

slip is assumed at both the walls of the inner and outer cylinder, that is, 

the suspension flow velocity is zero at the stationary outer wall where

2
r R , and equal to the non-zero wall velocity of the inner wall for 

1
r R . The applied stress at the rotating inner cylinder will be fixed. 

There is no principle difference between the controlled stress and 

controlled shear rate experiments (contrary to gradient-banding in the 

absence of coupling to concentration, where banding does not occur 

under controlled stress conditions). The applied stress is hereafter 

specified by the dimensionless stress,  
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
Σ

Σ      (32) 

There are no mass fluxes through the walls of both cylinders: 

1 2
( ) ( ) 0j R j R  . Due to the inclusion of the shear-curvature 

contribution, a third set of boundary conditions is necessary. As the gap 

width is relatively small compared to the inner cylinder radius, so that 

variations of the shear rate are relatively small in the non-banded state, 

the third boundary condition is that the shear rates that are constant in 

the vicinity of the walls: / 0r    for both 
1

r R  and 
2

r R . 

The remaining parameter that needs to be specified is the shear-

curvature viscosity 
0

 . The interface thickness in a stationary shear-

banded state is of the order 
0 0

/  , so that the dimensionless quantity, 

0

0

1
,

a




   

is a measure for the interface thickness in units of the radius a of the 

colloids. The interface thickness is probably much larger than the size of 

the colloids, so that 100   in the numerical analysis. 

Stationary flow- and concentration-profiles for an initially 

homogeneous state are given in Figure 2.8. The initial overall 

concentration is 0.60, which is well within the glass. The dashed line in 

Figure 2.8a is the flow profile for the pure solvent, and the solid blue line 

corresponds to an initially stable suspension with an applied 

dimensionless stress at 
1

R  of 1
( ) 50R   (see Eq. (32)), while the red 
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curve corresponds to an initially unstable state with a dimensionless 

stress of 200. The velocities are normalized with respect to the velocity 

wall
u  of the inner cylinder. The Newtonian velocity profile is essentially 

linear for the small gap width under consideration. The stable flow 

profile is somewhat curved, which is due to the shear-gradient induced 

mass flux. For the initially unstable state the final flow profile (the red 

curve in Figure 2.8a) exhibits a banded structure, where one band is 

non-flowing. The self-amplified mass flux leads to an increase of the 

concentration near the outer cylinder to an extent that the local yield 

stress becomes larger than the local applied stress, leading to an arrest 

of the local flow. The slight curvature within the flowing band near the 

non-flowing band is related to the width of the interface which is set 

equal to a tenth of the total gap width. In Figure 2.8b the difference 

between the velocity of a Newtonian fluid and the local velocity is 

plotted. The stationary concentration profiles are shown in Figure 2.8c. 

As can be seen, the variation of the concentration around the overall 

concentration is limited to about 0.01, which justifies using the value of 

the exponent m corresponding to the overall concentration. These small 

changes in the concentration are sufficient to induce a banded flow due 

to the strong concentration dependence of transport coefficients and 

viscometric functions.  
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Figure 2.8 Stationary profiles for a volume fraction of 0.60, well within 

the glass. (a) Velocity profiles: the dashed blue curve is for a Newtonian 

fluid, the blue solid line is for a stable initial state where the applied 

dimensionless stress is equal to 200, and the red solid curve is for an 

unstable initial state with an applied stress equal to 1
( ) 50R  . The 

corresponding Peclet numbers are 1.0 and 0.0078, respectively. 

Velocities are normalized with respect to the velocity of wall
u  of the 

rotating inner cylinder. (b) The difference of the flow velocity of a 

Newtonian fluid and the local velocity. (c) The position dependent 

volume fraction. 

 

  



59 

 

Banded flows can also occur for initially stable systems. For an overall 

concentration of 0.582 and an applied dimensionless stress of 1
( ) 14R  , 

the stability parameter is always around 0.6. It is never larger than unity, 

neither in the initial state nor in the transient states. Nevertheless, a 

banded structure with very much the same features is found as the 

banded flow profile in the case of SCC-instability, as can be seen in 

Figure 2.9a (the red curve). The banded flow is now not due to the 

SCC-instability. The stability criterion discussed in Section 2.3.2 is thus 

a sufficient but not a necessary condition for banding. The reason for 

banding in this case is as follows. The local dimensionless stress at the 

outer cylinder is 13.446. This is just above the yield stress of 13.440 

for the initial concentration. The shear-induced mass flux towards the 

outer cylinder, without self-amplification, is now sufficient to increase 

the local concentration to a value that leads to a local yield stress that is 

larger than the local stress, so that the local velocity vanishes, resulting 

in a banded flow profile. The slight increase in concentration at the outer 

cylinder is illustrated in Figure 2.9b (the red curve). For the small 

increase of the concentration that is necessary to lower the local stress 

at the outer cylinder below the yield stress, there is no need for self-

amplifying the increase of concentration. For larger initial concentrations, 

the SCC-self-amplification mechanism is necessary to give rise to a 

sufficiently large increase of the local concentration such that the local 

yield stress becomes larger than the actual local stress at the outer 
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Figure 2.9 Stationary profiles starting from a stable state, for a 

concentration just above the glass transition, for an overall volume 

fraction of 0.582  . (a) The velocity profile and (b) the volume fraction, 

for applied stresses of 1
( ) 14R   (the red curves) and 20  (the blue 

curves). The resulting apparent Peclet numbers   are indicated in the 

figure. The velocities are normalized by the velocity of the rotating inner 

cylinder wall
u . The black dashed line is the profile for a Newtonian fluid.  
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cylinder. The blue curves in Figure 2.9a and b are for a larger applied 

dimensionless stress of 20. For this relatively high applied stress, the 

local stress is always larger than the local yield stress so that there is 

no banding. As before, the curvature of the flow profile is now entirely 

due to the shear-curvature contribution to the stress.  

It is, in principle, possible that in one part of the system, the 

concentration is above, and in the other part of the system, the 

concentration is below the glass-transition concentration. This only 

happens when the initial volume fraction is within 0.001 in the vicinity of 

the glass-transition concentration, and is therefore hardly of 

experimental relevance. A numerical solution for such cases would also 

require an entirely new computer algorithm in order to match the regions 

where the concentration is above and below the glass-transition 

concentration. 

In analogy with thermodynamically driven phase transitions in the 

absence of flow, spinodals and binodals can be defined in the case of 

banding transitions [49, 50]. The spinodal is generally defined as the 

points where the system becomes unstable (this is the line where 1S   

in Figure 2.6b). As banding can also occur outside the unstable region 

where 1S  , as seen above, one might define the region where 1S   

but nevertheless banding occurs, as the meta-stable region, which is 

bounded by the binodal. Contrary to gradient-banding, however, the 

location of the binodal is not an intrinsic property of the system under 

consideration, but also depends on the shear-cell geometry. For 



62 

 

example, when the gap width of a Couette is increased, the natural 

spatial gradients in the shear rate are increased, which increases the 

shear-gradient induced mass flux, so that the banding of the SCC type 

for hard-sphere glasses occurs at lower concentrations. The binodal 

thus shifts to lower concentrations as the cell gap width is increased. 

The temporal evolution of the flow and concentration profiles of the 

unstable system, for which stationary profiles are given in Figure 2.8, 

are shown in Figure 2.10. The initial condition here is a spatially 

constant concentration. The stability factor in the initial state is equal to 

1.00077 and 1.00540, at 2
r R  and 1

r R , respectively. The typical 

wave length m
2 / k  of the (position dependent) most rapidly growing 

Fourier component is thus found from Eq. (31) to be of the order of the 

gap width. This explains the smooth growth of the profiles in Figure 

2.10a and b. Similar smooth growth kinetics is found in the experiments 

in [23]. As the applied stress is fixed, the overall shear rate changes 

during band formation. This apparent Peclet number is plotted in Figure 

2.10c. The temporal increase of the shear rate shows that the viscosity 

of the suspensions as a whole decrease during banding.  

Under the initial conditions in the above examples, a spatially uniform 

density was chosen. Under a randomly chosen initial condition for the 

concentration (and hence the corresponding flow velocity), as a 

superposition of Fourier modes with wavelengths up to the gap width, 

leads to the same final state as for the uniform initial state. Higher order 
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Fourier modes decay fast, while the smooth variations slowly grow very 

much as for the uniform initial state. This is due to the value of the 

stability factor S, which is close to unity, so that according to the 

discussion in this section, only smooth spatial variations are unstable.  
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Figure 2.10 Temporal evolution of (a) the concentration profile, (b) of 

the velocity profile, and (c) of the apparent Peclet number. The various 

times 
2

0
/t tD a  are indicated in (b). The overall volume fraction of 

0.60, and the applied stress of 1
( ) 50R  , of which the stationary 

profiles are given in Figure 2.8, (the red curves). 
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Chapter 3. 

Non-local stresses in highly non-uniformly 

flowing suspensions:  

The shear-curvature viscosity 
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3.1 Introduction 

Complex fluids can exhibit flow profiles in which there are unusually 

large spatial gradients in the local shear rate. For these highly non-

uniformly flowing systems, there are contributions to the stress that 

arise from spatial variations of the shear rate, which are referred to as 

non-local stresses. Such large spatial gradients in the shear rate occur, 

for example, in micro-channel fluidics devices. Due to these large 

gradients, flow profiles in micro-channels cannot be described on the 

basis of the standard expression for the stress tensor. It is shown in [10] 

that non-local stresses are a necessary ingredient to describe the flow 

profiles of worm-like micellar systems in micro-channels with 

sufficiently large dimensions to describe the micellar solution as a 

continuum. Highly non-uniform flow profiles also occur when a fluid 

exhibits an instability that leads to gradient-banded flows. In the 

stationary state, two regions with spatially constant shear rates coexist. 

The shear rates within the bands are different for the two bands. The 

bands are connected by a sharp interface, where gradients in the shear 

rate are very large. There are two types of gradient-banding 

instabilities. A uniform flow profile is unstable when the stress 

decreases with increasing shear rate. In such cases, a transition occurs 

to a stable gradient-banded flow profile. Gradient-banding can also 

occur due to shear-gradient induced mass transport. Migration of 
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particles from regions of high shear rate to regions of low shear rate 

leads to concentration variations that in turn give rise to gradient-

banded flow profiles. Two recent theoretical developments on shear-

gradient induced diffusion of colloids and polymers can be found in [51] 

and [52], respectively. For both types of shear-banding scenarios, it is 

essential to include non-local stresses in the constitutive modeling of 

gradient-banding transitions, in order to account for the rapid spatial 

variations of the shear rate within the interface that connects the two 

bands. 

The standard expression for the deviatoric part of the stress tensor 

for isothermal incompressible fluids reads  

2p   Σ I D       (33) 

where p  is the pressure, I  is the identity tensor,   is the viscosity, 

and T
(1 / 2)[ ]  D v v  (where “T” stands for transpose) is the 

symmetric part of the velocity gradient tensor v  of the fluid velocity 

v . This standard expression is obtained by formally expanding the 

stress tensor to first-order in gradients of the fluid velocity. There are 

two ways in which non-local stresses can be formulated. (i) A diffusive 

term can be added to the equation of motion for the stress tensor (see, 

for example, [53-56]), where the corresponding diffusion coefficient is 

referred to as the stress-diffusion coefficient. Such a constitutive 

approach has been used to determine the stress diffusion coefficient for 
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a micellar system from the kinetics of band formation [57]. This 

formulation of non-local stresses has also been applied to analyze the 

stability of the interface between gradient-bands [58], where an 

undulation instability of the interface can give rise to vorticity banding 

[59]. (ii) Another possibility to include non-local stresses is to simply 

extend the formal expansion of the stress tensor with respect to spatial 

gradients to include the next higher-order spatial derivative of the flow 

velocity, as compared to the leading order expansion in Eq. (33) [6, 56, 

60]. For incompressible systems, this leads to, 

2
2 ,p        Σ I D       (34) 

where   is referred to as the shear-curvature viscosity, as defined in 

previous chapter. The minus sign in the non-local stress contribution 

renders   positive. This is the constitutive equation that has been 

successfully used in [10] to describe the flow profiles of worm-like 

micellar systems in micro-channels.  

So far there are no (semi-)microscopic considerations to derive the 

constitutive relation in Eq. (34), which allow us to predict the magnitude 

of non-local stresses in bulk and, in particular, to predict or estimate the 

numerical value of the shear-curvature viscosity. It is the purpose of 

this paper to verify that the non-local stress contributions are of the 

form, as given in the constitutive equation (34), and to show that the 

shear-curvature viscosity   is proportional to the shear viscosity  . 
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Brownian dynamics (BD) simulations are performed on a relatively 

simply system of spherical particles. To derive an approximate 

theoretical expression for the shear-curvature viscosity, an effective-

medium argument is invoked in which each particle in the system is 

considered as being immersed in a continuum that represents the rest of 

the system. In preparation to apply this effective-medium theory, a 

system is solved, which is corresponding to hydrodynamic problem in 

section 3.2 of a single sphere in a continuum fluid, where the velocity of 

the fluid prior to insertion of the sphere is highly non-uniform. This 

analysis confirms the proposed structure for the constitutive equation in 

Eq. (34) and leads to an explicit expression for the shear-curvature 

viscosity. The effective medium approximation is further specified in 

section 3.3. The structure of the constitutive equation as well as the 

proportionality of the shear-curvature viscosity to the shear viscosity is 

verified by BD simulations of a relatively simple system of Brownian 

particles in section 3.4. 
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3.2 Non-local stresses for dilute suspensions:  

the Einstein analog for the shear-curvature viscosity 

Consider a sphere that is inserted in a fluid (hereafter referred to as 

the “solvent”) that undergoes, prior to insertion of the sphere, 

significant spatial variations over a length scale comparable to the size of 

the sphere. On insertion of the sphere, stresses will be generated that 

not only depend on the local shear rate of the fluid at the position of the 

sphere before insertion but also on the local spatial variations of the 

local shear rate. The latter contributions to the stress are the non-local 

stresses.  

In order to evaluate the stress tensor for a system that consists of a 

strongly inhomogeneously flowing solvent in which an assembly of 

spheres is embedded, an expression for the divergence of the stress 

tensor is brought that is valid for inhomogeneous systems, as derived in 

[61], 

0

1

ˆ( ) [2 ] ' ( ') ( ')
p

N
h

ss p
V

p

P dS 




        Σ r D I r r f r     (35) 

where the shear stress 
0

2 D  (with 
0

  as the shear viscosity of the 

solvent) and the pressure 
ss

P  are due to solvent-solvent molecule 

interactions (hence the subscript “ss”). The last term is the contribution 

of the colloidal particles to the stress, where N  is the number of 
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colloids under consideration, the integral ranges over the surface p
V  of 

the colloids, h

p
f  is the local force per unit area that the solvent exerts 

onto the surface elements of colloid p , and   is the Dirac delta 

function. The brackets       denote averaging with respect to the 

position coordinates (and the orientations in the case of non-spherical 

particles) of the N  colloids. This expression generalizes Batchelor’s 

expression [62, 63] for the stress of homogeneously sheared systems 

to non-uniformly flowing systems. Batchelor’s classic expression for 

the stress is obtained from Eq. (35) in the case of a constant shear rate 

and concentration. The interpretation of Eq. (35) for the stress tensor is 

rather straightforward: the integrals represent (minus) the force with 

which the surfaces of the colloids act onto the solvent, and the Dirac 

delta function counts only those colloids whose surfaces are located at 

position r  where the divergence of the stress is evaluated. This is what 

is expected for the force per unit volume (which is by definition the 

divergence of the stress tensor) produced by the colloids. In this section, 

an assembly of spheres embedded in a strongly inhomogeneously 

flowing solvent is considered, where the spheres do not mutually 

interact. For such very dilute suspensions, each sphere can be 

considered as being embedded in an otherwise unbounded solvent since 

the presence of the remaining spheres does not affect the flow for the 

sphere under consideration. 
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Note that when the solvent velocity varies over distances comparable 

to the size of the colloids, their Brownian motion results in quite large 

temporal fluctuations of the local stress. The brackets       in Eq. (35) 

represent the thermal average over these fluctuations and are thus only 

applicable for macroscopic time-dependent flows which vary sufficiently 

slow, as compared to the time required for the colloids to diffuse over 

distances comparable to their size. 

In order to obtain an expression for the shear-curvature viscosity, the 

stress tensor needs to be expanded up to third order in the spatial 

gradient of the suspension flow velocity. Such a gradient expansion of 

the stress tensor with respect to spatial gradients is obtained by 

expanding the Dirac delta function in Eq. (35) according to 

1

( 1)
( ') ( ) ( ' ) ( ),

!

n

n n

p p p

n n
  






      r r r r r r r r     (36) 

where the “ ” denotes the contraction with respect to the polyadic 

products ( ' ) ( ' )( ' ) ( ' )
n

p p p p
     r r r r r r r r and 

n
  . Substitution 

into Eq. (35) leads to the following spatial-gradient expansion of the 

divergence of the stress tensor: 

( )

0

0

ˆ( ) [2 ] ,
n

ss

n

P




        Σ r D I Σ       

( ) ( )

0

1
( ) ,

!

N
n n n

p p

pn




    Σ r r T      (37) 



73 

 

where the force moments ( )n

p
T T (n) p are defined as  

( ) 1
( 1) '( ' ) ( ').

p

n n n h

p p p
V

dS



  T r r f r      (38) 

The calculation of the surface force density on the sphere and the 

resulting force moments for the inhomogeneous flow under consideration 

is a technical mathematical problem. The resulting expressions for the 

force moments, up to contributions of fourth-order in spatial gradients 

of the flow velocity, are formulated in terms of the flow velocity u  of 

the solvent and the corresponding velocity gradient tensor 

T
(1 / 2)( )  D u u .  Substitution of Eq. (36) to (38) into Eq. (35) 

leads to,  

(0)
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(2) 2 2
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     (39) 

where the volume fraction of colloids ( ) r  is introduced, 

34
( ) ( )

3
a


 r r        (40) 

The detail formulation procedure is in appendix A of [7], which applies 

‘method of reflection’ [1] for the solvent velocity u . 

The leading gradient contributions to the divergence of the stress 

tensor are proportional to first-order gradients in the concentration and 
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to fourth-order in the flow velocity, in accordance with Eq. (34). 

Therefore only such leading order gradient contributions to the non-

local stress will be kept, so that mixed terms like  D  are neglected. 

Adding all terms in Eq. (39) for the various contributions to the body 

force originating from the colloids thus leads to 

0

2

2

0

ˆ( ) 2 [ ]

5 ( ) 1 ( ).
25

B ss
k T P

a
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 

  

 
   

 

Σ r D I

r D r
     (41) 

It is thus finally found that the stress tensor takes the form (34) that 

was phenomenologically suggested in [6],  

2ˆ 2 ,P        Σ I D       (42) 

where the pressure P  is equal to  

,
ss B

P P k T      

   (43) 

the viscosity   is given by  

0

5
1

2
  

 
  

 
,      (44) 

and the shear-curvature viscosity is equal to 

2

0
10

a
          (45) 

Equation (43) reproduces the ideal gas law for the osmotic pressure of 

dilute suspensions, Eq. (44) reproduces Einstein’s expression for the 
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shear viscosity, and Eq. (45) is the corresponding analogous low-

concentration expression for the shear-curvature viscosity. 

Hence, on insertion of a sphere in a solvent with a constant shear rate 

(see Figure 3.1a), the additional stress caused by the presence of the 

sphere is equal to 
0

5   D  [see Eqs. (42) and (44)]. On insertion of a 

sphere in a solvent with a curved flow profile [see Figure 3.1b], the 

curvature of the flow leads to yet another stress contribution equal to 

2 2

0
(2 / 5)a   D  [see Eqs. (42) and (45)], which is the non-local 

contribution to the stress of dilute hard sphere suspension. In conclusion, 

the non-local contribution can be originated from the distorted stresslet 

distribution on the surface of particle. 

However, still, this this formulation lacks the contribution from the 

interaction between the particles, which stands for the true origin og 

non-local stress. Though it seems that adding force density due to 

particle interaction into Eq. (35) would lead to such non-local stress, it 

is not feasible because of the difficulties in considering the non-uniform 

flow field within the interaction range of the particles. 
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Figure 3.1 Insertion of a sphere into a flowing solvent (the gray sphere 

before insertion and the blue sphere after immersion). This sketch 

pictures the solvent’s flow velocity in the x -direction (the blue solid 

lines) that varies in the y -direction for (a) a solvent flow velocity with 

a constant shear rate and (b) for a spatially varying shear rate. The red 

lines schematically depict equidistant stress areas corresponding to the 

flow fields generated after insertion of the sphere. The corresponding 

expressions for the suspension stress tensor are indicated in the figures. 

The additional curved flow in (b) gives rise to an additional stress equal 

to 
2

2  D  
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3.3 An effective medium approximation for the shear-

curvature viscosity 

Within an effective-medium approach, the inhomogeneously flowing 

solvent in the considerations in section 3.2 is replaced by the suspension 

of colloidal spheres which are identical to the sphere that is inserted. 

The suspension is thus considered as an effective medium that behaves 

like a solvent for the inserted sphere. The viscosity 
0

  of the solvent in 

Eq. (45) is thus simply replaced by the shear viscosity   of the 

suspension at the given volume fraction   and shear rate  . According 

to Eq. (45), 
0

~  , that is, the contribution to the shear-curvature 

viscosity per colloidal sphere is linearly related to the shear viscosity. 

Since in concentrated suspensions each sphere on average contributes 

equally to the stress (corresponding to the particle-surface integrals in 

Eq. (35)), the effective-medium approach thus states that the additive 

contribution of each sphere to the shear-curvature viscosity is 

proportional to the suspension viscosity. This leads to the following 

effective-medium approximation for the shear-curvature viscosity:  

2 5
4

( , ) ( , ) ( , )
10 30 10

a a
                 (46) 

where the volume fraction, the number concentration  , and the shear 

rate are understood to be evaluated at position r . This expression for 
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the shear curvature viscosity quantifies the non-local stress due to 

spatial variations of the shear rate and the concentration and will be 

compared to simulations in section 3.4. Note that the above effective 

medium approximation predicts a shear rate dependence of the shear 

curvature viscosity that is similar to that of the shear viscosity.  

It is important to realize that the radius a  in the effective medium 

approach differs from the hard core radius of the sphere. A sphere that 

is inserted in a suspension does not behave like a sphere with stick 

boundary conditions precisely at the geometrical boundary of that sphere. 

The volume fraction in the first equation in (46) is therefore not the 

volume fraction that corresponds to the hard-core radius of the sphere. 

In a comparison with simulations in section 3.4, it is therefore necessary 

to make the distinction between a  in Eq. (46) and the hard-core radius 

of the spheres. Hereafter a  is referred as the effective radius, which is 

the radius of a sphere that leads to an increase in the stress on insertion 

into the suspension when the suspension for that sphere behaves like a 

solvent with stick boundary conditions. The effective radius will be 

larger, but of the same order of magnitude, as the hard-core radius, 

which will be discussed in more detail later. 

The effective medium result (46) for the shear curvature viscosity 

will be validated against Brownian dynamics simulations in section 3.4.   
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3.4 Brownian dynamics simulation 

The effective-medium approach discussed above is an approximation, 

the accuracy of which will be tested against Brownian dynamics (BD) 

simulations. In principle, one may perform simulations where the 

interactions between the colloids and their coupling to the stress lead to 

gradient banding [64-66]. Since non-local stresses are only significant 

within the sharp interface that separates the two shear-bands and only a 

small fraction of the colloids reside within the interface, such simulations 

would suffer from bad statistics. Therefore, the simulation between 

parallel plates is chosen, which may be considered as a two-dimensional 

analog of the type of flow encountered in micro-fluidics devices. 

Essentially all the colloidal spheres now experience a highly non-linear 

flow. In order to probe the non-local stress with sufficient statistics for 

a quantitative comparison to the effective-medium prediction, a large 

number of particles must be simulated. Including full hydrodynamic 

interactions between the colloidal particles would therefore require 

unrealistically long computation times. The simulated fluid of Brownian 

spheres plays the role of the effective medium into which the sphere is 

immersed. On a continuum level, this Brownian fluid acts as a 

hydrodynamic medium. Therefore, as a proof of principle, the particle 

simulation is conducted with Brownian spheres that are subject to a 

spatially sinusoidally varying driving body force in the direction parallel 
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to the confining plates in the absence of a solvent. The imposed body 

force is nothing but a means to induce a non-linear flow profile, which 

does not affect the measured shear-stress directly, but only indirectly 

through inter-particle interactions. Thus, the fundamental evolution 

equation for the BD-simulation is given as following, which is same with 

BD simulation in chapter 2, subsection 2.2.2, except for the extra 

sinusoidal force field. 

  0 ,

1
2

imp p

i i i
d dt D dt


  r F F W      (47) 

where   is the friction coefficient and 
0

D  is the diffusion coefficient 

that sets the time scale of Brownian motion, and 
i

W  is a Gaussian 

variable with average zero and variance unity. Furthermore, 
imp

i
F  is the 

above mentioned imposed force on particle i  in the x -direction with its 

gradient in the y -direction. The imposed force gives rise to an imposed 

velocity 
imp

i
v  of particle i  equal to 

0 ˆsin ,
imp

i i i x

G
y ky

k

 

  
 

v e      (48) 

with 
i

y  as the y -component of the position coordinate 
i

r  of particle i  

and ˆ
x

e  as the unit vector in the x -direction. The first term 

corresponds to a simple shear velocity with shear rate  , and the 

second term is a superimposed sinusoidally varying velocity with wave 



81 

 

number k  and amplitude 0
/G k . 

p

i
F  is the force on particle i  due to 

direct interactions with other particles, 

1

(| |)
N

p

i i i j

j
j i

V



   F r r      (49) 

with ( )V r  being the inter-colloidal pair interaction potential. For the 

pair-interaction potential, a hard-core potential corresponding to a 

sphere with radius R is chosen, augmented with a standard DLVO 

potential as, 

overlap el vdW
V V V V    

where 

 

overlap

2 2 2 2

vdW

2 2 2 2

el

0 2

2

4 4 4
2 ln

12 4

exp ( 2 )

H

B D

r R
V

r R

A R R r R
V

r R r r

V k T r R


 

 

  
     

   

  

, 

where 
H

A  is the Hamaker constant, 
D

  is the Debye length, and 

2 0

2 2

32
tanh

4
B

zeR
E

z e k T

   
  

 
 

is the electrostatic potential energy in units of 
B

k T at contact of two 

sphere. The interaction parameters are chosen as 0.77
H B

A k T , 

1
0.1

D
R 

 , and 50E   (corresponding to 1 m  spheres with a surface 

potential of 7 mV in monovalent ionic aqueous solution). 
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The simple linear shear flow is maintained by Lees-Edwards boundary 

conditions, while the wave number 2 /k n L  with n   1, 2, . . . and L

L is the height of the simulation box. 

To calculate ensemble averaged quantities at a given position r , the 

simulation domain is divided into 200 slabs that are stacked along the 

gradient direction, spanning the flow vorticity plane. The ensemble 

averaged macroscopic velocity profiles are thus obtained from 

 

slab( )

1
( ) ( )

( )
i

p

i

y y

v y v y
N y 

       (50) 

where the summation ranges over particles which reside within the slab 

with its position at 
i

y  and with a velocity ( )
p

i
v y  and where ( )N y  is 

the number of spheres within the same slab. The local macroscopic 

stress ( )y  is determined in the same way, where stresses arising from 

interactions with particles outside the slab are accounted for the 

averaging procedure, where inter-particle forces of particles whose line 

segment intersects with the slab under consideration are included in the 

stress computation, and account for contributions to the stress 

originating from spatial inhomogeneities [67]. The BD simulations are 

also used to obtain the shear rate dependence of the viscosity, for which 

0
0G  . All simulations start from equilibrated states, which are achieved 

from simulations without flow over an extended period of time (more 
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than 20 times 
2

0
/R D ). The stationary state under flow conditions is 

subsequently reached after an additional simulation under flow 

conditions over a time period of at least 100 × 
2

0
/R D  for homogeneous 

shear flow and 1000 × 
2

0
/R D  for inhomogeneous shear flow. Flow and 

stress profiles are obtained once the stationary state is attained in the 

way described above. The dimensionless time interval 
* 2

0
( / )dt D R dt  

is chosen as 
5

5 10


 , which is verified to be sufficiently small. The 

number of BD simulation time steps for an inhomogeneous flow is at 

least equal to 
7

2 10 . The system consists of 16,000 spheres, dispersed 

within a rectangular box. The length of the box along the shear gradient 

direction is twice larger than that in the other two directions, in order to 

achieve a sufficiently finely divided set of values of the wave numbers 

2 /k n L . The volume fraction corresponding to the hard-core radius 

R  of the spheres is 0.30, so that the size of the cube along the gradient 

direction is about 100 times the particle radius. The simulation box size 

is much larger than the distance over which particles are correlated. 

True bulk properties are therefore probed, assuring that the shear-

curvature viscosity as obtained from the simulations is a true material 

function. 
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3.5 Results and discussion 

In this section, the results of BD simulations is presented and it is 

compared with the effective-medium approximation presented in section 

3.3. All results will be presented in the dimensionless form in identical 

way with chapter 2, except for characteristic stress. Here, stresses are 

non-dimensionalized by 
3

/ 6
B

k T R , rather than 
3

/
B

k T R  for convenience. 

Hence, the expression for the shear stress  , that is, the xy -

component of the stress tensor in Eq. (34) is  

*

* * *2 *

*
1


   



 
   

 
      (51) 

where the dimensionless gradient operator 
*

  is equal to R  and the 

“relative viscosity” is equal to  

* 0
6

B

RD

k T


        (52) 

Note that for a Brownian particle in a solvent, 
*

0
/   , with 0

  being 

the shear viscosity of the solvent, while the dimensionless shear-

curvature viscosity is defined as  

*

* 0

2

6

B

D

R k TR


  

 
  .      (53) 
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where 
3

4 / 3R    is the hard-core volume fraction. Note that this 

volume fraction differs from the volume fraction   in sections 3.2 – 3.4, 

which is based on the effective radius. 

As a first step, the viscosity of a homogeneously sheared system (for 

which 0
0G  ) is simulated as a function of the shear rate, for a given 

volume fraction of 0.3  . The relative viscosity as a function of the 

Peclet number   is given in Figure 3.2. The black solid line is a fit of 

the blue simulation data points to the empirical Carreau-Yasuda 

viscosity equation, which has been shown before to accurately describe 

viscosity data [68], 

*

2
( )

1 ( )

q

m

 
  








 

  

      (54) 

where q
  is the zero-shear viscosity,   is the high-shear viscosity, 

  is a relaxation time, and m  is a power-law index. The Carreau-

Yasuda fit will be used later in order to analyze the numerical results for 

inhomogeneously sheared systems. 
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Figure 3.2 The relative viscosity of a homogeneously sheared system 

with a volume fraction of 0.3   as a function of the Peclet number  . 

Blue data points are simulation results, and the black solid line is a fit to 

the empirical Carreau-Yasuda function (54). The values of the fitting 

parameters are 5.6
q

  , 0

 , 4.87  , and 0.24m  . 
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Since the imposed velocity in Eq. (48) for the inhomogeneously 

sheared systems is sinusoidal, the corresponding resulting particle 

velocities will be similarly sinusoidal, with an amplitude of approximately

0
/G k . The local shear rate is, therefore, equal to 0

cosG ky  . In the 

simulation, 0
G  is a constant, in order to fix the values of local shear 

rates for each different wave number. The amplitude of the sinusoidal 

flow-velocity perturbation is chosen to be small as compared to the 

linear flow velocity corresponding to the shear rate  . The reason for 

this is to clearly separate the local and non-local stresses. In case the 

amplitude of the sinusoidal flow velocity would be relatively large, there 

would be a significant sinusoidal variation of the stress due to the spatial 

variation of the shear viscosity itself on top of the non-local stress. The 

lower limit of the amplitude 0
G  to obtain accurate results is about 

2

0 0
/ (10 )G D R . The local shear-rate amplitude is not exactly equal to 

0
G  since direct inter-colloidal interacti1ons change the flow profile. The 

local velocity is therefore written as  

( ) sin ,
G

v y y ky
k

        (55) 

where the amplitude /G k  is determined from a fit of the simulated flow 

profile. The local shear rate is obtained by the differentiation of Eq. (55),  
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( ) cos ,y G ky         (56) 

or in dimensionless variables  

* * * * * *
( ) cos ,y G k y         (57) 

where dimensionless quantities are introduced as before. An example of 

a velocity and shear-rate profile is shown in Figure 3.3 for a Peclet 

number 
*

0.5   and a wave number of 4 /k L . The velocity profile is 

plotted in Figure 3.3a, from which the amplitude 
*

/V G k  is 

determined by a fit to Eq. (55), which is indicated by the red solid curve. 

The corresponding shear rate profile as obtained from numerical 

differentiation of the simulation data is plotted in Figure 3.3b. 

Substitution of Eq. (57) for the inhomogeneous shear rate into Eq. (51) 

for the stress leads to  

*

* * * * * * * *2 * *

*
( ) ( ( )) 1 cos ,y y G k k y


    



  
    

  

    (58) 

where the relative shear viscosity is evaluated at the local shear rate 

given in Eq. (57). Examples of inhomogeneous shear stress profiles are 

given in Figure 3.4a for an average shear rate of 
*

0.5   and for n   1, 

2, 3, 4 (the black, green, blue, and red data points and fits, respectively).  
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Figure 3.3 (a) The velocity profile obtained from a simulation with 
*

0.5   and with a wave number equal to 4 /k L . The black solid line 

corresponds to a linear flow with a constant shear rate 
*

0.5  , and the 

red line is a sinusoidal fit to the actual velocity profile. The inset shows 

the corresponding plot for 
* * * *

v v y   , where the open data points are 

simulation data. (b) The shear rate profile obtained from numerical 

differentiation of the data points shown in the inset in (a). The red solid 

line is obtained from the fitted curve in (a), which corresponds to Eq. 

(57). 
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The solid lines in Figure 3.4a are the result of a global least square 

fitting of all the stress profiles simultaneously. One fit parameter is the 

dimensionless parameter, 

*

0 * 2
R

 

 
         (59) 

According to the effective-medium approximation (46), this 

dimensionless parameter should be equal to  

5

0

1
.

10

a

R

 
   

 
      (60) 

As before, a  is the effective radius, while R  is the hard-core radius 

of the spheres. The effective-medium approximation thus predicts that 

0
  is independent of the applied mean shear rate  . Two more fitting 

parameters are introduced, which are necessary to correct for the errors 

involved in the independently obtained simulated viscosity data, for 

which the Carreau-Yasuda fit in Eq. (54) is used. Thus, following 

square is minimized, 

*

* *,mod el * * * *,sim * * *

0 1 2 0 1 2
( , , | ) [ ( | , , | , ) ( | , )

j j

jk

C C y C C k y k         (61) 

where the first sum ranges over all the different wave numbers 

(corresponding to all the stress profiles shown in Figure 3.4a and the 
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second sum ranges over all positions where the stress is evaluated. 

Here, *,sim * * *
( | , )

j
y k   is the simulated stress, and 

*,model * * * * * * * * *2 * *

0 1 2 1 2 0
( | , , | , ) ( ( ))[ (1 )cos ]

j j j
y C C k y C C G k k y          (62) 

corresponds to the stress in Eq. (58), except for the two additional 

fitting parameters 1,2
C  which account for the inaccuracy of the viscosity 

BD simulation results. The fitting values of these two parameters should 

be close to unity. A fit for each separate wave vector (using the values 

for 1,2
C , as found in the global fits) gives numerical values for 0

  in Eq. 

(62), where the linear dependence on 
*2

k  in Eq. (62) at the constant of 

cosine term is the prediction from the theory.  

Figure 3.4c shows the global fitting result for one of the stress profiles 

that is also given in Figure 3.4a(with 4n  ). The inset shows the 

difference between the fitting results including the non-local stress and 

that without the contribution from the non-local stress. The comparison 

between these fits shows that non-local stresses are essential to 

describe the simulated stress profiles. 
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Figure 3.4 (a) The local shear stress 
*  under inhomogeneous shear 

flow for an average shear rate 
*

0.5   and for four different wave 

numbers 2 /k n L  with n  1, 2, 3, 4, corresponding to the black, 

green, blue, and red simulation data points, respectively. The solid lines 

are global fits for all wave vectors simultaneously to Eq. (62). (b) The 

simulated stress profile as in (a) for 4n  , where now the solid line is 

the best global fit result with the neglect of non-local stress 

contributions. The inset shows the difference between the fitting result 

for the stress profile with and without contributions from the non-local 

stress. 
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Results for the fitting parameters for three different values of the 

Peclet number 
*  are given in Figure 3.5a. As can be seen from this 

figure, the values of 1,2
C  are quite close to unity, as they should, while 

the value of 0
3.8 0.5    is constant and independent of 

*  to within 

simulation errors, as predicted by the effective-medium approximation 

(see Eq. (60)). According to Eq. (60), the numerical value of 0
  found 

in Figure 3.5a corresponds to 
5

( / ) 38 5a R   , and hence 

/ 2.07 0.06a R   . That is, the effective radius of a sphere in the 

simulated system in the absence of hydrodynamic interactions is about 

two times larger than its hard-core radius. This is of the same order as 

the distance from a sphere over which the hydrodynamic behavior of a 

suspension sets in as found in simulations of Brownian hard-spheres 

without hydrodynamic interactions in 2D [69]. The relative viscosity 

* 2
10 / ( )a    that follows from the effective-medium prediction in Eq. 

(46) with the numerical value of 0
3.8   and / 2.07a R   is plotted in 

Figure 3.5b. This plot confirms the proportionality ~  , as predicted 

by the effective-medium expression for   in Eq. (46), within a shear-

rate range where the viscosity significantly shear-thins. 
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Figure 3.5 (a) Results of the least-square fits for 0
 , 1

C , and 2
C  (the 

red stars, green circles, and blue triangles, respectively) for three 

values of the Peclet number 
*  0.2, 0.5, and 1.0. The horizontal red 

line is the weighted average of the three data points for 0
 . (b) The 

relative viscosity (in blue) as compared to the relative viscosity 
*

  as 

obtained from the numerical values for 0
3.8   and / 2.07a R   (in red) 

according to the effective-medium approximation in Eq. (46). 
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Chapter 4. 

Concluding remark 
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In this thesis, the mass flux and the extra stress due to non-uniform 

flow field is investigated. In chapter 2, physical origin of shear rate 

gradient induced mass flux is elucidated. It is found that the ‘spatial 

gradient’ of shear distorted pair correlation function gives rise to the 

gradient of ‘generalized’ particle pressure, which push the particles from 

high shear rate region to low shear rate region. The values of shear-

distortion of pair correlation function under various flow conditions are 

obtained from Brownian dynamics simulation, so that the mass flux 

coefficient are given as a function of shear rate and concentration. And 

then, the shear banding dynamics due to the coupling between the mass 

flux and momentum is analyzed by numerical simulation using finite 

difference scheme.  

In chapter 3, the constitutive relation of particulate suspension 

including the non-local contribution is derived first for dilute hard 

sphere suspension, applying non-uniform flow condition and spatial 

expansion to the most general expression of particle stress tensor. The 

result shows that the shear curvature viscosity is proportional to the 

shear viscosity, which can be regarded as extended Einstein equation. 

Brownian dynamics simulation with sinusoidally varying velocity field is 

performed to check the validity of such proportionality in more 

complicated system. In the Brownian dynamics, regression of local shear 

stress profiles with respect to the constitutive model with non-local 
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stress gives the shear curvature viscosity as a function of shear rate. As 

a result, the aforementioned proportionality is again observed. 

Both studies in chapter 2 and 3 are closely related to a development of 

more general constitutive relation between deformation, concentration 

and stress, which can be extended to spatially inhomogeneous flow 

situation. The results of this thesis suggest detailed expression of mass 

and momentum transport coefficients in terms of microstructure of 

particulate suspension under various concentration and deformation rate. 

Though both studies do not take account of the multi-body 

hydrodynamic interaction between particles in order to simplify the 

complicated non-uniform flow, fortunately, the modeling predictions 

show very acceptable match with the experimental result or the particle 

simulation. Such accordance might be valid until the hydrodynamic 

interaction is not crucial, for example, in case the concentration is 

sufficiently low or high, or the inter-particle force is the dominant force 

exerted on the particle.  

The exact effects of the hydrodynamic interactions, which may 

complement the accuracy of the predictions made by this thesis, can be 

done by more rigorous theoretical analysis or enhanced particle 

simulation methods including hydrodynamic momentum coupling between 

particle and surrounding solvent, for examples, multi-particle collision 

dynamics, lattice Boltzmann, or dissipative particle dynamics. In those 
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simulation with inclusion of hydrodynamic interaction, it would also be 

worthwhile to investigate not only the effect of hydrodynamic interaction 

between particles, but also the hydrodynamic effect of wall to the 

suspending particles, so that the stick-slip boundary condition at the 

walls may lead to huge velocity gradient, which means considerable 

contribution of the non-local effects. 

On the other hand, still an unanswered question remains; The 

framework used in this thesis is only focused on particulate suspension 

dispersed in Newtonian medium. However, as mentioned in chapter 2, 

many complex flows, for example, shear banding instability, are results 

of not only viscous effect like severe shear thinning, but also coupling 

with elastic effect of macromolecules consisting the soft matter system. 

Although some traditional Maxwell type constitutive models contain 

non-local contribution or coupling with concentration/configuration of 

micro-structure, those models are limited in ad-hoc phenomenological 

level. Therefore, the next step toward more widely applicable model 

should incorporate the viscoelastic behaviors of suspensions. In this 

case, the simple modeling, as treated in chapter 3, may not valid due to 

the complicity and non-linearity, but, some advanced particle simulation 

including viscoelastic effect may help in the future study. 
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국문 초록 

불균일한 유동장은 다양한 복잡 전달 현상에 영향을 미친다. 불균일 유동은

입자계 현탁액을 이용한 여러 산업 공정 유동이나 미세관 유동 등 중요한 유

동 상황들에서 필연적으로 나타나기 때문에 불균일 유동장 하에서 나타나는 

전달 현상들을 이해하는 것은 중요하다고 할 수 있다. 그러나, 불균일 유동장 

하에서 현탁액의 거동에 대한 연구는 아직 많이 이루어지지 못하였는데, 이는 

불균일한 유동, 농도장에 대한 실험적 분석이 제한적이기 때문이다. 

본 학위 논문에서는 불균일한 유동장 하에서 입자계 현탁액에 나타나는 물

질 및 운동량 전달을 이론적 모델링 및 전산 모사 방법론을 사용하여 탐구하

였다. 먼저, colloidal glass 시스템에서 나타나 shear rate gradient 

concentration coupling instability에 대해 다루었다. 이 유동 불안정 현상은 

불균일한 유동장에 의해 유발된 입자의 물질 전달이 유체의 점도와 응력 균

형에 영향을 주고 이로 인해 왜곡된 유동장이 다시 물질전달을 일으키는 증

폭 상호작용에 의해 일어난다. 본문에서는 이 물질 전달이 일어나는 원인을 

미시적 수준에서 규명하였다. 이 과정에서 입자의 물질전달 계수에 대한 표현

식을 입자계의 미시 구조 인자에 대하여 나타내었다. 이어서, Brownian 

dynamics simulation을 이용해 여러 유동조건 하에서 입자계의 미시 구조를 

계산하였고 이를 이용해 물질전달 계수들을 유동 조건인 변형률과 농도에 대

한 함수로 얻어낼 수 있었다. 또한, 이렇게 유도된 물질전달 계수를 활용하여 

유동 해석 시뮬레이션을 수행하여 본 유동 불안정 현상의 거동을 관찰하였다. 

이때, 후술할 non-local stress가 중요한 역할을 하였다. 

두 번째로, 입자계 현탁액에서 불균일한 유동장이 유발하는 추가적인 응력

인 non-local stress에 대해 다루었다. Non-local stress는 유동 불안정 현

상을 설명하거나 복잡 유체의 모세관 유동을 다룰 때 중요하게 작용하는 응
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력이지만 입자계에서는 다루어진 바 없었다. 본 연구에서는 입자계 현탁액의 

non-local stress를 유도하기 위해 우선 입자간 상호작용을 무시할 수 있는 

묽은 현탁액에서 불균일 유동장에 수력학 모델링을 적용하여 non-local 

stress를 계산하였다. 그 결과, 묽은 용액에서의 점도식으로 잘 알려진 

Einstein viscosity와 대응되는 non-local stress 항이 도출되는 것을 확인하

였다. 이 결과를 더 복잡한 현탁액으로 확장하기 위해 effective medium 가

정을 도입하였다. 이 가정은 복잡한 현탁액의 non-local stress가 묽은 현탁

액에서와 마찬가지로 현탁액의 점도와 비례 관계를 가질 것이라는 가정이다. 

이 가정의 타당성을 검증하기 위하여 Brownian dynamics simulation을 이용

하여, shear thinning 거동을 보이는 현탁액에 불균일한 유동장을 가하였다. 

불균일한 유동장 하에서 현탁액 내부의 local stress의 분포를 측정하여 

non-local stress를 포함하는 구성방정식과 최소 자승(least squares 

regression) 회귀분석을 통해 현탁액의 non-local stress를 측정하였다. 그 

결과, shear rate의 증가에 따른 shear thinning과 함께, non-local stress 계

수의 감소가 정비례하게 나타났고, 이를 통해 앞서 도출한 Einstein analogy

를 다시 한 번 확인할 수 있었다. 

본 연구를 통하여 입자계 현탁액의 불균일한 유동장 하에서의 복잡 전달 

현상에 대한 기초적인 이해를 돕고, 더 나아가 실제 복잡 유체의 공정의 개선

에 도움을 줄 수 있을 것으로 기대된다. 

 

주요어 : shear banding instability, 불균일 유동장, 입자계 현탁액, 물질 및 

운동량 전달, 구성방정식, Brownian dynamics 시뮬레이션, 미세 구조 

학번 : 2012-20980 
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