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Abstract
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Although the proportion of renewable energy resources is 

accelerating, fossil fuels are still expected to account for 77% of energy use in 

2040. Recently, methane is in the spotlight because of its abundance in shale 

gas and natural gas. However, methane has a strong C–H bond. It is hard to 

selectively break the bond and directly transform into desirable chemicals 

other than CO or CO2.

Conversion of methane into substituted derivatives and higher 

hydrocarbons is a most desirable goal. The conversion of CH4 into high-value 

chemicals via the syngas route is the main industrial process currently in use. 

Since the syngas route must overcome the high thermodynamic barrier, 

resulting in the large energy consumption, researchers have been trying to 
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directly convert methane into chemical products other than CO or CO2 via 

oxidative methane coupling, direct methane aromatization, or halogenation of 

methane. Among them, halogenation of methane has the advantage over the 

others due to the relatively low reaction temperature.

Chlorine (Cl) is an important element for manufacturing important 

industrial chemicals and consumer products. Chloride chemicals of C2 and C3 

have been used in industry, and oxychlorination of C2, C3 has been 

investigated for a long time since it has weaker C-H bond than methane.

Here, the oxidative chlorination of methane to produce 

chloromethane (CH3Cl, CM) over CeO2 and metal oxychloride catalysts was 

investigated.

We focused on CeO2 catalyst since it was reported to have higher 

oxidative chlorination of methane. Oxychlorination of methane was 

performed over CeO2 catalyst while changing different reactant ratios. The 

reactions were carried out at 480℃ by changing O2 and HCl concentrations 

at fixed CH4 concentration. It was found that the ratio of O2:HCl (1:2) is the 

most important parameter to obtain high CH4 conversion and CH3Cl 

selectivity. Note that excessive HCl gives rise to the formation of the 

increased amount of more chlorinated products, such as CH2Cl2 or CHCl3, due 

to the subsequent chain reaction with HCl and excessive O2 promoting the 

oxidation of methane to CO and CO2. The optimum reactant ratio of 
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CH4:O2:HCl was 4:1.5:3, with the highest CH3Cl yield (14.3%). Various 

characterization results indicated that CeO2 catalyst was slightly sintered and 

had no carbon and chlorine deposition on the surface after the reaction.

Also, oxidative chlorination of methane over metal oxychloride 

catalysts was studied since they showed good performance on C2-3

oxychlorination. CeOCl, LaOCl, and EuOCl were applied to oxidative 

chlorination of methane in the range of 480-520℃. It was found that CeOCl 

showed the highest CH4 conversion and CM yield although the CM yield was 

lower than CeO2. Ni was doped on the oxychlorides catalysts to improve the 

activity. However, it was found that Ni doping only improved CO2 formation 

rather than CM production.

From these two studies, we can conclude that CeO2 is the best 

catalyst for oxidative chlorination of methane since it has high reactivity. Also, 

oxychloride catalysts suppress COx generation than CeO2. Ni addition is not 

desirable since it showed CO2 production when the support-only experiments 

showed no CO2 formation.

Keywords: Oxidative chlorination, methane, CeO2, metal oxychloride (M-

OCl), chloromethane (CH3Cl)

Student Number: 2013-30290
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Chapter 1. Introduction

1.1. Methane

The utilization of fossil fuels, such as coal, petroleum, and natural 

gas, has provided a large amount of energy and useful chemicals for industry 

and our daily lives, however, it has caused serious impacts on the environment. 

In addition, the depletion of fossil fuels has been accelerated due to the high 

dependency in energy consumption for several decades. Renewable and 

environmentally friendly alternative resources are under development, but it is 

still highly dependent on fossil fuels.

Methane is one of the most abundant and low-cost carbon-based 

feedstocks available (shown in Figure 1-1) [1]. Methane, which takes the most 

part of the natural or shale gas (shown in Figure 1-2), is regarded as an 

important raw material for the synthesis of chemicals or fuels in the future. 

Since CH4 has the most stable structure among organic molecules, CH4

activation is much more difficult than other hydrocarbons [2]. As the 

emerging number of untapped and unconventional natural gas reserves are 

recently found, the development of efficient and selective methane conversion 

processes to fuels and chemicals has become critical in the recent years [3].
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To dissociate the first C-H bond of CH4 to CH3
*+H is the main issue 

associated with utilization of methane, since C-H bond activation has a large 

associated energy of 440 kJ/mol. From this point of view, an optimum catalyst 

is required to lower the energy and facilitate the bond dissociation process [4].
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Figure 1-1. Primary sources of methane release. [5]
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Figure 1-2. World natural gas resources, Jan. 2010 (tcm) [6]
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1.2. Methane activation

Chemical processes based on methane activation are getting more 

economically attractive. Because most of the methane is burned for heating 

and electrical generation and a tiny fraction is used as a fuel in vehicles, the 

carbon and hydrogen contents in methane are not utilized to their full potential 

in the chemical industry.

Presently, in industry, methane is transformed into bulk chemicals by 

the both direct and indirect routes [7]. Nowadays, methane activation which 

converts methane into syngas (H2+CO) at high temperature (>700℃) is 

popular, followed by making chemical feedstocks from the produced syngas

(see Fig. 1-3 and Table 1-1). Steam reforming (SR) is promising because of its 

high productivity (more than 75% of hydrogen gas) and high efficiency. Also, 

it is easy to operate stably in various reaction conditions. However, it needs 

long time to reach the stable reaction condition and consumes lots of energy. 

Compare with SR, Partial oxidation (POX) needs short time to reach the 

stable reaction condition. Also, it is operated in low reaction temperature, so 

the energy consumption was low. On the other hand, it only produces few 

hydrogen gas, and is hard to control the operation. From this, many research 

groups tried to overcome the disadvantages by using better catalysts, however, 

it is still on investigation [8]. Hot spots appear often in this reaction, so that 
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the efficiency of POS is low. Autothermal reaction (ATR) also easily reach the 

reaction condition as POX. Also, in this reaction, endothermic and exothermic 

reaction occurs at the same time, beneficial in heat management. However, 

similar with POX, low hydrogen production and difficulty in reaction control 

are its disadvantage. Carbon dioxide reforming (CDR) is promising since it 

uses carbon dioxide who is the greenhouse gas as the reactant. But it produces 

too much CO after the reaction. Coke formation makes catalysts deactivated 

in a short time. Low efficiency and high energy consumption of CDR are the 

problems to be solved [9].

This process is energy intensive and the cost is high, so that it is 

needed to develop one-step process to make methane converted into useful 

chemicals.

One-step technologies, such as oxidative coupling of methane 

(OCM), selective oxidation of methane and halogenation, have been proposed. 

Both OCM and selective oxidation make methane react with oxygen, however, 

the product is easy to react and turn into other chemical, so the kinetic 

protection or the selective separation of the product is necessary. Studies on 

both OCM and selective oxidation has been investigated for a long time, and 

still needs more work to do [10].

Halogenation has been studied from 19th century, found out 

iodination is inactive, and fluorination is explosively reactive. Since it is hard 

to control the reaction on iodination and fluorination, bromination and 
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chlorination has
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Figure 1-3. Various ways of methane activation. [7]
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Table 1-1. Methane activation reactions to produce syngas

Reaction Equation

Steam reforming CH4 + H2O = CO + 3H2 (endothermic)

Partial oxidation CH4 + 0.5 O2 = CO + 2H2 (exothermic)

Autothermal reforming
CH4 + H2O = CO + 3H2

CH4 + 0.5 O2 = CO + 2H2

Carbon dioxide reforming CH4 + CO2 = 2CO + 2H2 (endothermic)
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been studied [11, 12]. (shown in Figure 1-4) Bromination of methane is 

preferred over chlorination as the former provides a higher selectivity for 

mono-haloalkanes and more facile halogen elimination than the latter because 

of the weaker C-Br bond (284.9 kJ/mol) than C-Cl bond (338 kJ/mol) [13].

However, chlorination of methane attracts more attention since chlorine is 

currently being used as one of the most important chemical elements in the 

production of numerous chemicals, either directly as component or as 

production intermediates (shown in Figure 1-5) [14].
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Figure 1-4. Chronological development of halogen-mediated processes (left) and
their implementation in industry (right) for hydrocarbon conversion 

to comodities. [15]
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Figure 1-5. Chlorine tree. [15]
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1.3. Oxychlorination of methane

Usually, halogenation of hydrocarbons produces hydrogen halide, so 

that it needs additional reaction to make halogen gas from hydrogen halide.

Since methane has strong C-H bonding energy, C2 or C3 was introduced as 

the hydrocarbon reactant.

Ethylene oxychlorination was studied by various research groups, 

and their results are shown in the Table 1-2.
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Table 1-2. Catalysts for Ethylene Oxychlorination [15]

Catalyst
Reactivity Conditions

X (%) S (%) reactor GHSV (h-1) T (K)

CuNaRClx/Al2O3 99
94 

(EDC)
fluidized – 533

CuKClx/MgO-SiO2 34
95 

(EDC)
fluidized 760 633

CuMgNaClx/r-Al2O3 99
97 

(EDC)
fixed – 553

CuPdNaClx/Al2O3 97
82 

(EDC)
fixed 200 547

PdFeNaClx/Al2O3 88
60 

(VCM)
fixed 200 560

RhFeZnLiClx/α-Al2O3 29–46
42–77 
(VCM)

fluidized – 623

LaOCl 33
87 

(VCM)
fluidized 62 672

CeO2 35
85 

(EDC)
fixed – 673

CeO2-ZrO2 60
50 

(VCM)
fixed – 673
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However, oxyhalogenation of methane do not need such recycling 

step since it uses HX instead of X2 (X=F, Cl, Br, and I). Moreover, it is 

thermodynamically more stable than halogenation [15]. Considering such 

economical point of view, oxyhalogenation of hydrocarbon is more favorable 

than halogenation in industry.

Oxychlorination is a key-process in the modern chemical industry, 

playing an important role for incorporation of chlorine atoms into both 

saturated and unsaturated hydrocarbons, such as methane, ethylene and 

benzene [16]. Chlorine-mediated process for the one-step conversion of light 

alkanes into ethylene and propylene is shown in the Figure 1-6.

In the oxychlorination reaction, methane is reacted with HCl and 

oxygen over a catalyst to produce mono-chloromethane and water (eq. 1):

CH4 + 1/2 O2 + HCl = CH3Cl + H2O (△H0
298K = - 685.8 kJ/mol) (eq. 1)

However, it is not easy to have the high selectivity of methyl 

chloride since the subsequent chain substitution can occur in the reaction 

condition to produce di-or tri-substituted chlorinated products.

There were previous studies about oxyhalogenation of C1-3 alkane. 

Ramirez et al. studied ethane and propane oxyhalogenation over EuOCl, 

showing high olefin selectivity [17]. Their study found out that ethane
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Figure 1-6 Closed-loop chlorine-mediated process for the one-step conversion of 
light alkanes into ethylene and propylene [18]
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oxychlorination showed lower COx than oxybromination. They also 

reported that the apparent activation energy of C2H6 oxychlorination (128 

kJ/mol) over EuOCl is lower than the oxybromination (220 kJ/mol) over 

EuOBr, implying that oxychlorination is better than oxybromination again. 

Lercher et al. used LaOCl for methane oxychlorination and found out that it 

turned into LaCl3 which acted as the catalyst to produce methyl chloride [19].

In addition, since CeO2 showed good performance in oxychlorination of 

hydrocarbon, CeOCl was also tried as catalyst for methane oxychlorination.

FeOx/CeO2 was also studied on oxychlorination of methane [20]. It 

showed the highest CM yield at 510℃ and found out Fe restrained the 

sintering of catalyst because of the Fe-Ce solid solution.
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1.4. Objective

In this study, we investigate the catalytic performance of oxidative 

chlorination of methane over several metal oxychloride catalysts which 

showed good performance in oxidative chlorination of C2 and C3. Nickel, who 

is cheap and widely used in methane activation, was loaded on the prepared 

metal oxychloride catalysts to figure out whether it can promote the reactivity 

of the metal oxychloride catalysts for the methane oxychlorination.

As global warming has become a serious environmental problem, 

and greenhouse gases such as CH4 and CO2 are primarily responsible for it 

[21, 22], studies on methane oxychlorination over catalysts will be helpful 

both on environmental and chemical engineering aspects.
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Chapter 2. Effect of reactant ratios on methane

oxychlorination over CeO2 catalyst

2.1. Introduction

Although the proportion of renewable energy resources is 

accelerating, fossil fuels are still expected to account for 77% of energy use in 

2040 [23]. Recently, natural gas or shale gas in which methane is the major 

component has received attention due to its abundance on earth.[24] Methane 

has a strong C–H bond, so that it is hard to selectively break the bond and 

directly transform into desirable chemicals other than CO or CO2. Hence, the 

conversion of CH4 into high-value chemicals via the syngas route is the main 

industrial process currently in use [25-27]. Since the syngas route must 

overcome the high thermodynamic barrier, resulting in the large energy 

consumption, researchers have been trying to directly convert methane into 

products other than CO or CO2 via oxidative methane coupling, direct 

methane aromatization, or halogenation of methane [3, 28]. Among them, 

halogenation of methane has the advantage over the others due to the 

relatively low reaction temperature.

In the 20th century, halogenation of methane by X2 (X=F, Cl, Br, and 
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I) was examined [29-31]. Among the halogen molecules, it was found that 

iodine was too inactive and that fluoride was too explosively reactive to 

control the reaction [28]. Hence, bromine and chlorine were regarded as better 

candidates for halogenation [32]. Especially, chlorination of methane received 

more attention due to the more familiar chlorine-based processes in industry, 

such as the production of vinyl chloride. However, since chlorination of 

methane must use the dangerous Cl2 gas and, moreover, requires the 

additional step of recovering the molecular Cl2 by catalytic HCl oxidation 

(Deacon reaction)[33], the oxychlorination reaction is regarded as a more 

feasible approach that can produce chloromethane in one step using HCl and 

O2.[15]. The reaction of methane oxychlorination is as follows:

CH4 + 1/2 O2 + HCl = CH3Cl + H2O (△H0
298K = - 685.8 kJ/mol)

Methane oxidative chlorination has been investigated recently over 

Pd(II) complexes-heteropolyacids-silica gel,[34] supported acid [29], Pt metal

[29], and metal oxide catalysts [35]. Meanwhile, CeO2 was found as the most 

promising catalyst among many single metal oxide candidates for methane 

oxychlorination because of its high CH4 conversion and CH3Cl selectivity

[35-37]. However, the previous study fixed the reactant ratio of CH4:O2:HCl 

to 4:1:2. A question arises as to how the reactant ratios affect the activity and 

selectivity of methane oxychlorination over CeO2. Therefore, this study aims 

at finding the optimum reactant ratio for producing more CH3Cl with less 
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byproducts, such as CH2Cl2, CO, and CO2, over CeO2 catalyst.
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2.2. Experimental

2.2.1. Preparation of catalysts

The CeO2 catalyst was acquired in various ways. Some was 

manufactured by Sigma Aldrich, Alfa Aesar, Samchum, and TCI (Tokyo 

Chemical Industry Co., LTD.). Also, CeO2 provided by Rhodia was examined. 

The CeO2 catalysts were calcined at 600℃ for 6 h in a muffle furnace.

2.2.2. Characterizations

N2 adsorption and desorption isotherms were measured at -196℃ on 

a Micromeritics ASAP 2010 apparatus. The average pore diameter, average 

pore volume, and specific surface area were calculated by using the Barrett–

Joyner–Halenda (BJH) and Brunauer–Emmett–Teller (BET) methods, 

respectively.

The powder X-ray diffraction (XRD) patterns were taken by using a 

Rigaku (Smart Lab) diffractometer with Cu Kα radiation (λ=0.1542nm). The 

voltage and current of X-ray were 40 kV and 50 mA, respectively. The 

patterns were collected with a scanning step size of 0.02° at a speed of 

2.5°/min.
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Temperature-programmed reduction (TPR) measurements were 

made in a flow system. 50mg catalyst was placed in a TPR cell and pretreated 

in Ar at 300℃ for 30 min, followed by 60-minute-long air zero treatment at 

the same temperature condition. The water produced by the reduction was 

captured in the drierite trap. The temperature of the sample was programmed 

to rise at a constant rate of 10℃/min and the amount of H2 uptake during the 

reduction was measured by a thermal conductivity detector (TCD).

2.2.3. Catalyst reaction tests

The reaction system is shown in Figure 2-1.

All catalytic reactions were performed in a 3/8-inch quartz tubular 

reactor at a reaction temperature of 480℃. The sieved catalyst (180~250㎛, 

0.1g) was located on the filter in the middle of the quartz reactor. The reaction 

temperature was controlled by a thermocouple placed just above the catalyst 

bed. To protect the thermocouple from HCl in the reactant, a narrow glass cap 

covered the thermocouple, which was inserted into the quartz reactor. Each 

reactant, such as HCl (40%, Ar balance), CH4, and O2 balanced with N2, was 

introduced into reactor via mass flow controllers (MFC) with a gas hourly 

space velocity of 30,000h-1. During the reaction, the effluent gas was analyzed 
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by gas chromatography (GC, Agilent 6890N). The GC was equipped with two 

detectors and two columns: thermal conductivity detector (TCD) with packed 

column (Carboxen 1000) and flame ionization detector (FID) with capillary 

column (HP-Plot Q). After the GC analysis, the effluent gas passed through 

the sodium carbonate trap so that the corrosive gas could be neutralized before 

venting out.
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Figure 2-1. The methane oxychlorination reaction system.
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2.3. Results and discussion

2.3.1 Selection of CeO2

CeO2 from various manufacturers were examined.

Before the reaction, CeO2 catalysts which were calcined at 600℃

for 6hr were sieved with the particle size of 180-250 ㎛. Catalytic 

characterization before the reaction was performed, found out different 

surface area and pore size among the CeO2 catalysts, shown in the Table 2-3.

All the CeO2 catalysts before the reaction showed light-yellow color.

During the reaction, all CeO2 catalysts showed good performance 

compared with other metal oxide catalysts, such as MgO, Al2O3, and TiO2. 

However, each catalyst showed different result. After the reaction, the CeO2

catalysts was analyzed using BET and XRD.

Since results of each used CeO2 catalysts from various manufacturers 

showed difference (shown in Table 2-4), the catalysts before the reaction was 

examined by temperature-programmed reduction (TPR) to figure out 

quantitative information on the reducibility of each CeO2 catalysts. The TPR 

graph of CeO2 catalysts from Rhodia, Sigma Aldrich, and Junsei is presented 

in Figure 2-2. As shown in the figure, for pure CeO2, the peak at a temperature 
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of 525℃ represents surface reduction of CeO2 [38-42]. CeO2 from Rhodia,

Sigma Aldrich, and Junsei showed H2 consumption, however, the peak 

intensity of each CeO2 catalysts sample was different.



28

Table 2-3. Surface area, average pore diameter, and average pore volume of 
CeO2 catalysts from different manufacturers: before the reaction

Manufacturer
Surface area 

(m2/g)

Pore diameter 

(nm)

Pore volume 

(cm3/g)

Sigma Aldrich 118.6 8.2 0.33

Alfa Aesar 105.5 8.9 0.24

Rhodia 128.7 9.2 0.30

Jungwoo 123.9 7.2 0.30

Junsei 55.4 0.7 0.10

Kanto 78.8 0.1 0.20
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Table 2-4 Surface area, average pore diameter, and average pore volume of CeO2

catalysts from different manufacturers: after the reaction

Manufacturer
Surface area 

(m2/g)
Pore diameter 

(nm)
Pore volume 

(cm3/g)

Sigma Aldrich 54.8 0.17 10.7

Alfa Aesar 20.7 15.9 0.09

Rhodia 87.2 15.2 0.34

Jungwoo 97.0 9.4 0.34

Junsei 47.1 1.0 0.11

Kanto 62.5 0.5 0.20
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Chapter 3. Methane oxychlorination over 

metal oxychloride catalysts

3.1. Introduction

Methane takes the most part of the natural or shale gas, so that it is 

regarded as an important raw material for the synthesis of chemicals or fuels 

in the future. Since CH4 has the most stable structure among organic 

molecules, CH4 activation is much more difficult than other hydrocarbons [2].

To dissociate the first C-H bond of CH4 to CH3
*+H is the main issue 

associated with the utilization of methane, because C-H bond activation has a 

large dissociation energy of 440 kJ/mol. From this point of view, an optimum 

catalyst is required to lower the energy barrier for methane activation and 

facilitate the selective bond dissociation process [4].

As the emerging number of untapped and unconventional natural gas 

reserves are recently found, the development of efficient and selective 

methane conversion processes to fuels and chemicals has become critical in 

the recent years [3].

Bromination of methane is preferred over chlorination as the former 

provides a higher selectivity for mono-haloalkanes and more facile halogen 
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elimination than the latter because of the weaker C-Br bond (284.9 kJ/mol) 

than C-Cl bond (338 kJ/mol) [13]. However, chlorination of methane attracts 

more attention since chlorine is currently being used as one of the most 

important chemical elements in the production of numerous chemicals, either 

directly as component or as production intermediates [14]. Usually, 

halogenation of alkane produces hydrogen halide, so that it needs additional 

reaction to recover halogen gas from hydrogen halide. However, 

oxyhalogenation of methane do not need such recycling step since it uses HCl 

instead of Cl2. Moreover, oxyhalogenation is better than halogenation since 

the former enables 100% halogen atom efficiency [15]. Considering such 

economical point of view, oxyhalogenation of hydrocarbon is more favorable 

than halogenation in industry.

In the methane oxychlorination reaction, methane is reacted with 

HCl and oxygen over a catalyst to produce mono-chloromethane and water 

(eq. 1):

CH4 + 1/2 O2 + HCl = CH3Cl + H2O (△H0
298K = - 685.8 kJ/mol)  (eq. 1)

However, it is not easy to have the high selectivity of methyl 

chloride since the subsequent chain substitution can occur in the reaction 

condition to produce di- or tri-substituted chlorinated products.

There were previous studies about the oxyhalogenation of C1-3

alkane. Ramirez et al. studied ethane and propane oxyhalogenation over 
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EuOCl, which showed high olefin selectivity.[17] They found that ethane 

oxychlorination produced lower COx than oxybromination. They also reported 

that the apparent activation energy of C2H6 oxychlorination (128 kJ/mol) over 

EuOCl is lower than the oxybromination (220 kJ/mol) over EuOBr, implying 

that oxychlorination over EuOCl is a promising route to convert methane. 

Lercher et al. reported that LaOCl catalyst is active for methane 

oxychlorination [19, 20]. In addition, since CeO2 showed good performance 

in the oxychlorination of hydrocarbon, CeOCl is also selected as a potential 

catalyst for methane oxychlorination. Hence, we applied CeOCl, EuOCl and

LaOCl catalysts to the methane oxychlorination in this study.

This study aims at investigating the catalytic performance of the 

oxidative chlorination of methane over several metal oxychloride catalysts 

which showed good performance in oxidative chlorination of C1-3 alkane. 

Nickel, which is cheap and widely used in methane activation, was loaded on 

the prepared metal oxychloride catalysts to figure out whether it can promote 

the reactivity of the metal oxychloride catalysts for the methane 

oxychlorination.

3.2. Experimental

3.2.1 Preparation of metal oxychloride (M-OCl) catalysts
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LaOCl was prepared by following the method reported by Lercher

[19]. At room temperature, NH4OH base solution was added dropwise into the 

LaCl3 precursor solution. The mixed suspension was stirred for 1hr and then 

precipitated. After centrifuging the solution, obtained precipitate was washed 

with ethanol to remove residual base, followed by freeze drying. The sample 

was calcined at 550℃ for 8hr.

CeOCl was prepared by solid state reaction between CeO2 (Sigma 

Aldrich) and CeCl3∙6H2O (Junsei), following the previous literature [46].

Before powder mixture of two precursors was ground in mortar, CeCl3∙6H2O 

was dried in an oven at 80℃ to remove moisture. After drying the mixture, 

the powder was calcined in N2 flow (50ml/min) at 750℃ for 10hr. The 

obtained powder was washed with distillated water (DIW) to remove 

unreacted CeCl3, then dried in air at 80℃.

EuOCl was prepared by treating Eu2O3 (Sigma Aldrich, 99.5%) at 

540℃ for 4hr under HCl (40%, Ar balance) atmosphere.

Nickel was impregnated on all prepared metal oxychloride catalysts 

by using incipient wetness impregnation method. Each support was loaded 

with 5 mol% of Ni, using an aqueous solution of nickel (II) nitrate 

hexahydrate.
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3.2.2 Characterization

3.2.2.1 BET

N2 adsorption / desorption was performed to figure out the specific 

surface area of each catalysts before and after the reaction, referred as fresh 

and used sample. This characterization was performed in a Micromeritics 

ASAP 2010 apparatus. The BET surface area was obtained by using 

Brunauer–Emmett–Teller (BET) methods. Prior to the measurement, all 

samples were degassed under evacuated condition at 200 °C for 3 h.

3.2.2.2 XRD

The powder X-ray diffraction (XRD) patterns were taken from 

Rigaku (Smart Lab) diffractometer with Cu Kα radiation (λ=0.1542nm) under 

the voltage of 40kV and the current of 50 mA. The patterns were collected 

with a scanning step size of 0.02° at a speed of 2.5°/min.

3.2.3 Reaction system setup and condition

By using the reaction system as shown in Figure 2-1, oxidative 
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chlorination of methane over metal oxychloride was performed. Reactants 

were introduced in a 3/8-inch quartz tubular reactor via MFC (mass flow 

controller). On the catalyst bed (180~250㎛, 0.1g), reaction was carried out in 

the temperature range of 480 and 520℃ at 1 atm. The ratio of reactants was 

set to CH4:O2:HCl of 4:1:2 with the GHSV of 30,000h-1. The effluent gas was 

analyzed by gas chromatography (GC, Agilent 6890N), equipped with two 

detectors and two columns: thermal conductivity detector (TCD) with packed 

column (Carboxen 1000) and flame ionization detector (FID) with capillary 

column (HP-Plot Q). The effluent gas passed through the sodium carbonate 

aqueous solution trap so that the corrosive gas could be neutralized before 

venting out.

3.3. Results and discussion

3.3.1 Metal oxychloride catalysts

In the previous work, we tested CeO2 for methane oxidative 

chlorination since it showed good activity among the various metal oxide 

catalysts [35, 48]. Accordingly, we applied various oxychloride catalysts to 

the methane oxychlorination in comparison of CeO2. The prepared 

oxychloride catalysts and CeO2 were tested under the same condition.
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As presented in Table 1, the increase in reaction temperature resulted 

in the increased CH4 conversion under all reaction temperatures. CeOCl, 

LaOCl, and EuOCl showed the increase in CH4 conversion from 6.6 to 14.3%, 

1.8 to 9.3%, 1.4 to 2.9 % when the reaction temperature increased from 480 to 

520℃, respectively. Methane conversion over CeO2 was higher than those 

over oxychloride catalysts, especially at lower temperature (480℃). When the 

reaction temperature increased from 500 to 520℃, CM yield over CeOCl 

increased markedly from 6.2 to 9.6%, while the CM yield decreased slightly 

from 14.4 to 13.9% over CeO2, because of the saturated CH4 conversion.

In Figure 3-1, the activity results of all metal oxychlorides and CeO2

catalysts at 520℃ were compared. As seen, CeOCl showed the highest CM 

selectivity (67.5%) among the metal oxychloride catalysts, even higher than 

CeO2 (44.2%). In addition, we can figure out that, although CeO2 has higher 

conversion (31.4%) than metal oxychloride catalysts (CeOCl=14.2%, 

LaOCl=9.3%, EuOCl=2.9%), CeO2 produces more COx (selectivity=49.3%) 

than CM (44.2%) at 520℃. From this point of view, CeOCl is promising since 

it has higher target product selectivity with less production of CO and CO2.

N2 physisorption results of the catalysts before and after the reaction 

are shown in Table 2. The surface area of post-reaction CeOCl was decreased 

negligibly (29.9 to 28.8 m2/g), although LaOCl and EuOCl showed the drastic 

decrease in surface area, from 31.1 to 2.9 m2/g and 14.7 to 5.6 m2/g, 
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respectively. In addition, CeO2 demonstrated the significant decrease in BET 

surface area by 50% after the reaction.

XRD pattern of oxychloride catalysts and CeO2 catalyst before and 

after the reaction is shown in Figure 3-2. XRD patterns of all catalysts before 

and after the reaction did not change too much. Both the XRD pattern of the 

fresh and used CeO2 catalyst showed diffraction peaks corresponding to the 

cerium oxide phase with a fluorite crystal structure (JCPDS number of 43-

1002). Also, fresh and used CeOCl, LaOCl and EuOCl catalysts showed same 

XRD patterns of theie references with JCPDS number of 52-1843, 08-0477, 

and 12-0163, respectively. Note that all metal oxychloride catalysts 

maintained their original phase after the reaction.
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Table 3-1. Comparison of CeO2 and M-OCl (M=Ce, La, and Eu) catalysts. 
(Reaction conditions: CH4:O2:HCl=4:1:2, GHSV=30,000h-1, Time-on-

stream=2hr, P=1atm)

Catalyst_temp.
Yield (%) CH4 conversion 

(%)CM DCM TCM CO CO2

CeOCl 480 4.9 0.5 0.0 0.8 0.3 6.6

CeOCl 500 6.8 1.1 0.0 1.1 0.2 9.2

CeOCl 520 9.6 2.0 0.0 2.1 0.5 14.2

LaOCl 480 1.2 0.1 n.d. 0.5 n.d. 1.8

LaOCl 500 3.7 0.5 0.0 3.3 n.d. 7.5

LaOCl 520 4.2 0.7 0.1 4.3 n.d. 9.3

EuOCl 480 0.8 0.0 n.d. 0.6 n.d. 1.4

EuOCl 500 0.9 0.0 n.d. 1.0 n.d. 1.9

EuOCl 520 1.1 0.1 n.d. 1.7 n.d. 2.9

CeO2 480 9.8 2.4 0.1 1.7 1.2 15.2

CeO2 500 14.4 2.4 n.d. 7.9 5.6 30.4

CeO2 520 13.9 2.0 0.0 9.0 6.5 31.4

* n.d.: not detected
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Figure 3-1. The product yield over CeO2, CeOCl, LaOCl, and EuOCl for
methane oxychlorination. (Reaction conditions: CH4:O2:HCl=4:1:2, 

GHSV=30,000h-1, Time-on-stream=2hr, P=1atm, TRXN=520℃)
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Table 3-2 Surface area of oxychloride catalysts before and after the reaction.

Catalyst

CeOCl LaOCl EuOCl CeO2

Fresh Used Fresh Used Fresh Used Fresh Used

Surface 
Area (m2/g)

29.9 28.8 31.1 2.9 14.7 5.6 123.9 61.3
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Figure 3-2. XRD pattern of fresh (black) and used (red) oxychloride catalysts. 
(Reaction conditions: CH4:O2:HCl=4:1:2, GHSV=30,000h-1, Time-on-

stream=2hr, P=1atm)
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3.3.2 Ni supported on metal oxychloride catalysts

Many researchers examined various metals to convert methane into 

value-added product, and reported that noble metal like Pt, Ru, Rh, Ir and 

transition metals like Ni, Fe, Co are very reactive for the methane oxidation

[49]. Especially, since Lercher et al. reported the promotional effect of Ni 

loading on LaOCl in methane oxychlorination, we impregnated Ni on the 

prepared metal oxychloride catalysts.

After CeOCl, LaOCl, and CeOCl catalysts were impregnated with 5 

mol% of Ni, their reaction activity was examined at 520℃, which are

summarized in Table 3-3. When Ni was loaded on CeOCl or LaOCl, the 

methane conversion decreased from 14.2 to 9.1% and 9.3 to 7.4%, 

respectively, although the methane conversion over Ni/EuOCl was enhanced 

from 2.9 to 5.0%. In the case of CO2 formation, all the Ni-containing metal 

oxychloride catalysts showed higher CO2 selectivity than non-Ni metal 

oxychloride catalysts. Both Ni/LaOCl and Ni/EuOCl demonstrated the 

enhanced CM yield, in good agreement with Lercher et al.[19] However, in 

case of Ni on CeOCl, Ni did not improve CM yield probably because Ni-

supported CeOCl showed lower CH4 conversion (9.1%) than CeOCl (14.2%).

Lercher et al. mentioned that doping with Ni over the parent LaOCl 

sample reduced the catalytic activity and a rate of methane conversion of 0.16 
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mmol/(h∙gcat)[19]. Oxygen uptake was also lower on Ni/LaOCl (1.45x10-

3mmol/gcat) than LaOCl (1.49x10-3mmol/gcat) according to their report. From 

this, we can conclude that the ability to bind and activate oxygen on the 

surface is weak on Ni/LaOCl catalyst, resulted in lower methane conversion 

than LaOCl catalyst. It will cause less methane oxidation on the Ni/LaOCl 

catalyst and make CH3Cl selectivity higher than other metal oxychloride 

catalysts.
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Table 3-3 The catalytic activity comparison between metal oxychloride catalyst 
and Ni-containing metal oxychloride catalyst. (Reaction conditions: 

CH4:O2:HCl=4:1:2, GHSV=30,000h-1, Time-on-stream=2hr, P=1atm, 
Temperature=520℃)

Catalyst
Yield (%)

CH4

conversion (%)CM DCM TCM CO CO2

CeOCl 9.6 2.0 0.0 2.1 0.5 14.2

Ni/CeOCl 6.0 0.8 0.1 1.5 0.7 9.1

LaOCl 4.2 0.7 0.1 4.3 n.d. 9.3

Ni/LaOCl 4.8 0.7 0.0 1.5 0.4 7.4

EuOCl 1.1 0.1 n.d. 1.7 n.d. 2.9

Ni/EuOCl 1.6 0.1 n.d. 2.3 0.2 5.0

* n.d.: not detected
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Chapter 4. Conclusions

The oxychlorination of methane was performed with different 

catalysts: i) CeO2, in order to study the effect of each reactant gas on the 

production of methyl chloride, which can be used for the value-added 

chemical production, and ii) metal oxychloride catalysts, in order to study the 

effect of each metal oxychloride for the higher monochloromethane yield.

This study clearly demonstrates that the oxidative chlorination of 

methane can be significantly affected by the reactant ratio. The best condition 

for the highest CM yield was CH4:O2:HCl=4:1.5:3. It was found that the ratio 

of O2 to HCl (1:2) is the most important parameter to obtain high CH4

conversion and CH3Cl yield. However, HCl above the optimum ratio gives 

rise to the formation of CH2Cl2 (dichloromethane, DCM), and excessive O2

leads to production of CO/CO2 with remarkably higher CH4 conversion. Too 

much oxygen will cause catalytic combustion, so when the reaction is carried, 

the oxygen concentration should be carefully adjusted.

Here, we examined oxychloride catalysts for methane 

oxychlorination. Among CeOCl, EuOCl, and LaOCl catalysts, CeOCl showed 

the best performance with high CM selectivity, and less CO and CO2

production, compared with CeO2 reference catalyst. LaOCl and EuOCl 

showed no CO2 formation, although methane conversion was lower than 

CeOCl. Unlike other metal oxychloride catalysts, CeOCl catalyst did not 
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change structural and textural property after the reaction, indicating its 

excellent stability.
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국문초록

세리아 및 금속 산염소화물 촉매를 통한

메탄의 산화염소화반응

재생가능한 에너지자원의 비율이 증가되고 있지만, 

화석연료는 2040년에도 여전히 총 에너지 사용량의 77%를 차지할

것으로 예상된다. 최근에는, 셰일가스나 천연가스에 다량 함유된

메탄이 각광받고 있다. 그러나, 메탄은 강한 C-H 결합을 갖는다. 

선택적으로 결합을 끊고 바로 CO나 CO2 이외의 바람직한 화합물로

전환하는 것은 어렵다.

메탄을 치환된 유도체나 탄화수소로 전환하는 것이 가장

바람직한 목표다. 메탄을 합성 가스로 전환한 후 고부가가치

화학물질로 만드는 것이 현재 널리 사용되고 있는 주요 산업

공정이다. 합성가스를 거치는 경로는 높은 열역학적 문제점을

극복해야 하여 에너지 소비량이 많아지기 때문에, 메탄의

산화커플링, 직접 메탄 방향족화 또는 메탄의 할로겐화 등의 연구가

진행되고 있다. 그 중에서도, 메탄의 할로겐화는 비교적 낮은 반응

온도로 인해 다른 반응들보다 유리하다.

염소 (Cl)는 산업적 화학물질 및 소비재를 제조하는 데

중요한 요소이다. C2 와 C3 의 염화물이 산업에서 사용되었고, 

메탄보다 C-H 결합이 약한 C2, C3 의 산화염소화는 오랫동안

연구되어왔다.
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이 논문에서는 CeO2 및 금속 산화클로라이드 촉매를 사용하여

클로로 메탄 (CH3Cl; CM)을 생성하는 메탄의 산화 염소화가

연구되었다.

CeO2 촉매는 메탄의 산화 염소화 반응에서 다른

금속산화물 촉매보다 더 좋은 성능을 보이는 것으로 보고되었기

때문에 CeO2 촉매에 중점을 두었다. 반응물의 비율에 따른 변화를

관찰하기 위해 CeO2 촉매를 사용한 메탄의 산화 염소화가

수행되었다. 반응은 고정된 CH4 농도에서 O2 와 HCl 농도를

변화시키며 480 ℃에서 수행되었다. 높은 CH4 전환율과 CH3Cl 

선택성을 얻기 위해서는 O2:HCl=1:2 의 비율이 가장 중요한 매개

변수라는 사실이 밝혀졌다. 과량의 HCl 은 부가적으로 생성물과

HCl 사이의 연쇄 반응으로 인해 CH2Cl2 또는 CHCl3 과 같은 더

많은 양의 염소화 된 생성물의 형성을 야기한다. 과량의 산소는

산화를 촉진하여 CO 및 CO2 를 생성하는 것을 보였다. CH4 : O2 : 

HCl 의 최적 반응물 비율은 4 : 1.5 : 3 이었고, 이때 가장 높은

CH3Cl 수율 (14.3 %)을 보였다. 다양한 특성 분석 결과, CeO2

촉매가 약간 소결되었고 반응 후에 표면에 탄소와 염소 침착이

없음을 알 수 있었다.

또한, 금속 산화염화물 촉매를 사용한 메탄의 산화염소화

반응이 진행되었다. 이 촉매는 C2-3 산화염소화에서 양호한 성능을

나타내었다. CeOCl, LaOCl 및 EuOCl 을 촉매로 사용하여 480-

520℃의 반응온도범위내에서 메탄의 산화 염소화를 수행하였다. 

CeOCl 은 비록 CM 수율이 CeO2 보다 낮았지만, 금속 산화염화물

촉매 중 가장 높은 CH4 전환율과 CM 수율을 나타내었다. 활성을

향상시키기 위해 금속 산화염화물 촉매에 Ni 를 담지했다. 그러나, 
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Ni 담지는 CM 생성보다는 CO2 형성만을 향상시킨다는 것이

발견되었다.

이 두 연구에서 우리는 CeO2 가 높은 반응성을 가지기

때문에 메탄의 산화 염소화를 위한 최상의 촉매라고 결론 내릴 수

있다. 또한, 산화염화물 촉매는 CeO2 보다 COx 생성을 억제하여

니켈 첨가는 메탄 활성화가 저하된다.

주요어: 산화염소화 반응, 메탄, 세리아, 금속 산염화물, 클로로메탄

학  번: 2013-30290
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Abbreviations and Acronyms

ATR Autothermal reforming

BET Brunauer-Emmett-Teller

BJH Barrett-Joyner-Halenda

CDR Carbon dioxide reforming

CM Chloromethane (CH3Cl)

DCM Dichloromethane (CH2Cl2)

EOC Ethane oxidative chlorination

FID Flame ionization detector

MFC Mass flow controller

MOC Methane oxidative chlorination

OCM Oxidative coupling of methane

POX Partial oxidation

SR Steam reforming

TCD Thermal conductivity detector

TCM Trichloromethane (chloroform, CHCl3)

TPR Temperature Programmed Reduction

XRD X-ray diffraction
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