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Molecular Analysis of Cell Death 

 Induced by Autoactive Pepper Nucleotide-

binding Leucine-rich Repeat Genes 

 

Hye-Young Lee 

 

Department of Plant Science, Seoul National University 

 

ABSTRACT 

 

Plants possess hundreds of intracellular immune receptors encoding 

nucleotide-binding domain and leucine-rich repeat (NLR) proteins that can 

recognize pathogen effectors. Activated NLRs confer disease resistance that 

is often accompanied by localized cell death termed by hypersensitive 

response. NLR proteins typically consist of three major domains, an N-
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terminal TOLL/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, a 

central nucleotide binding (NB-ARC) domain, and a C-terminal leucine-rich 

repeat (LRR) domain. The CC domain is known to function as a signal 

inducer and remains in an auto-inhibited state through intramolecular 

interaction with NB-ARC and LRR domains in absence of pathogen infection. 

In this study, cell death induced by genome-wide autoactive pepper NLRs 

and their N-terminal domain was analyzed by transient overexpression in 

Nicotiana benthamiana. The screening assay revealed that CC domain of 

group 10 (G10)-NLRs specifically trigger HR-like cell death. Moreover, 

G10-CC domain from other Solanaceae plants (tomato and tobacco) induced 

cell death. The G10-NLR or G10-CC domain-mediated cell death appears to 

mimic the HR cell death triggered by resistance protein and effector as 

demonstrated by the requirement of molecular chaperone complex for NLR 

immune signaling and upregulation of HR- and defense-related genes. VIGS-

based screen designed to identify G10-NLR signaling components revealed 

that cell death induced by G10-NLR and G10-CC domain occurred in a 

SA/JA-independent manner. In addition, deletion and mutation analyses 

showed that the primary α-helix in G10-CC domains contribute to cell death 

signaling rather than to the proper targeting of the protein to the plasma 

membrane. To understand the molecular basis of G10-NLR-mediated ell 
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death, I identified S-adenosyl homocysteine hydrolase (SAHH) as a candidate 

of interacting protein with G10-CC domain using pull-down experiment 

coupled with LC-MS/MS analysis. Cell death induced by G10-NLR and G10-

CC domain was compromised by co-expression with SAHH, suggesting that 

SAHH may function as a negative regulator of G10-NLRs. In addition, the 

SAHH-silenced plants exhibited constitutive H2O2 accumulation in absence 

of pathogen, implying that SAHH is a negative regulator of reactive oxygen 

species production. How G10-NLRs trigger cell death response remains 

unclear, but this study gives a clue to understand the molecular mechanisms 

underlying HR cell death induced by activated NLRs and the distinct role of 

G10-NLRs in plant immune responses. 

 

Keywords: Pepper NLR, Autoactive NLR, Cell death, Coiled-coil domain, SAHH, 

Reactive oxygen species 

 

Student number: 2013-30326 
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LITERATURE REVIEW 

 

Plant immune system 

Plants lack an adaptive immune system or specialized immune cells. 

Instead, in order to effectively protect themselves against pathogen, plants 

have established multi-layered defense mechanisms through the co-evolution 

with adapted pathogens (Schulze-Lefert, 2004). These include constitutive 

(preformed) defenses and induced defenses. 

Constitutive defenses are usually non-specific and effective against a 

broad range of pathogens, and include not only physical barriers such as the 

thick cuticle layer, wax layer and cell wall but also antimicrobial compounds 

called phytoanticipins (van Hulten et al., 2006). Induced defense responses 

begin when plants perceive warning signal molecules derived from pathogens, 

leading to both accumulation of antimicrobial compounds called as 

phytoalexins and initiation of various defense responses. These defense 

reactions often culminate in a form of localized cell death termed the 

hypersensitive response (HR). 



２ 
 

There are two layers of surveillance system to induce defense response 

by specifically detecting invasion signals. First, plasma membrane-localized 

receptors can perceive ‘non-self’ by detection of conserved pathogen 

structures called pathogen-associated molecular patterns (PAMPs) or 

‘damaged-signal’ (damage-associated molecular patterns (DAMPs) defined 

as endogenous molecules released by not only cellular injury in plant-microbe 

interaction but also damages by herbivory or wounding) (Raaymakers and 

Van den Ackerveken, 2016). These patterns are recognized via pattern-

recognition receptors (PRRs) that activate pattern-triggered immunity (PTI) 

(Zipfel, 2009). Reactive oxygen species (ROS) burst and callose deposition 

at the infection site are general defense mechanism in response to pathogen 

invasion in PTI. To dampen this defense responses, successful pathogens 

secrete a number of effector proteins into host cells (Dodds and Rathjen, 

2010). In turn, plants induce a second rise in the defense level, effector-

triggered immunity (ETI), via recognition of effectors by intracellular 

immune receptors called resistance (R) proteins, which mostly belong to the 

nucleotide-binding domain, leucine-rich repeat (NLR) family (Meyers et al., 

1999). ETI is often followed by localized cell death that restrict the spread of 

pathogens at the infection site (Jones and Dangl, 2006). Activation of PTI and 

ETI triggers downstream defense signaling such as generation of ROS and 



３ 
 

activation of mitogen-activated protein kinases (MAPKs) cascade, hormone 

synthesis and transcriptional reprogramming of defense-related genes (Jones 

and Dangl, 2006). The coordination of these defense responses is of 

importance for successful defense against pathogens. 

  

Nucleotide-binding domain and leucine-rich repeat (NLR) genes in plant 

immunity 

The NLR genes form a large gene family in the plant kingdom and 

usually possess a central NB-ARC domain (Nucleotide-Binding adaptor 

shared by Apaf-1, Resistance proteins, and CED-4), a C-terminal LRR 

(Leucine-Rich Repeat) domain, and a variable N-terminal domain. Plant 

NLRs are divided into two groups, depending on their N-terminal domain, 

CNL (CC-NB-LRR) with a coiled-coil (CC) domain and TNL (TIR-NB-LRR) 

with a Toll/interleukin-1 receptor domain (TIR) (Meyers et al., 2003). TIR 

domain has homology with the Drosophila toll and human interleukin-1 

receptor. Although CC domains lack a conserved structure, canonical CC 

domains contain a ‘EDVID’ motif (Rairdan et al., 2008). The non-canonical 

CC domains without a EDVID motif, is referred to as CCR, because CCR 

domain is similar to Arabidopsis RESISTANCE TO POWDERY MILDEW 
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8 (RPW8) which has been proposed to be implicated in broad spectrum 

resistance to powdery mildew (Xiao et al., 2001; Collier et al., 2011). 

Plant NLR proteins are activated either by direct binding to pathogen 

effectors, or by indirect detection of effector-induced modification in the 

target proteins of effectors (Mackey et al., 2002). Previously, both domain 

swap analysis and biochemical study of NLR proteins demonstrated that LRR 

domain plays an essential role in the recognition of pathogen-derived 

effectors (Ellis et al., 1999; Jia et al., 2000; Shen et al., 2003; Rairdan and 

Moffett, 2006; Rentel et al., 2008; Tomita et al., 2011). Upon recognition of 

effector protein(s), the central NB-ARC domain induces a conformational 

change to activate NLR protein (Tameling et al., 2006). Subsequently, the 

activated NLRs may expose the N-terminal domain to trigger downstream 

signaling (Qi et al., 2012).  

There are several lines of evidence that support the signaling role of N-

terminal domain. Mutation of the ‘EDVID’ motif in the CC domain of the 

barley resistance gene MLA10 compromises MLA10-mediated cell death 

(Bai et al., 2012). In addition, overexpression of the CC or the TIR domain of 

several NLRs causes cell death in absence of a cognate effector (Weaver et 

al., 2006; Krasileva et al., 2010; Bernoux et al., 2011; Collier et al., 2011; 

Maekawa et al., 2011; Wang et al., 2015; Cesari et al., 2016; Hamel et al., 
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2016). Recently, it has been proposed that the N-terminal domains could also 

play a role for effector recognition. For example, CC domain of Arabidopsis 

RPM1 detects RIPK-dependent phosphorylation of RIN4 (RPM1-interacting 

protein 4) by AvrB and AvrRPM1 (Mackey et al., 2002). Moreover, CC 

domain of Arabidopsis RPS2 (Resistance to Pseudomonas syringae 2) is 

capable to sense the fragment of RIN4 cleaved by AvrRpt2 (Mackey et al., 

2003). It is highly plausible that N-terminal domains of NLRs might be 

responsible for monitoring effector-induced posttranslational modification of 

their target protein. 

As mentioned above, NLR proteins activate the ETI signaling upon 

recognition of pathogen attack. For the last several decades, many studies 

have focused on understanding the molecular basis of ETI. Nevertheless, the 

molecular mechanism of ETI in plant-microbe interaction is still largely 

unknown. 

 

Hypersensitive response in disease resistance 

Pathogen recognition via NLRs leads to resistance and the inhibition of 

pathogen proliferation. Plant resistance response is often, but not always, 

accompanied by rapid cell death of the infected cell and surrounding cells. 

This response is called HR which is a form of programmed cell death. The 
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observation of HR was first reported in the wheat-brown rust pathosystem in 

1902. This phenomenon was termed as ‘hypersensitiveness’ by Stakman 

(Ward, 1902; Stakman, 1915). Morphologically, HR presents specific 

features of programmed cell death which is characterized by cell shrinking, 

chromatin condensation, DNA fragmentation, mitochondrial swelling, 

vacuolization and chloroplast disruption. A series of these cellular processes 

in HR-cell death in plant is known to be similar to those of apoptosis in animal 

(Reape et al., 2008; Coll et al., 2011). 

Although HR is suicide mechanism upon plant-microbe interaction, 

plants have evolved it as common and effective defense mechanism to let 

neighbor cells be aware of the pathogen invasion for the benefit of the whole 

plant. By rapidly sacrificing infected cells, the plant restricts the supply of 

nutrients required for survival and growth of biotrophic or hemibiotroph 

pathogen in host cells. 

However, it is important to note that whether HR cell death is required 

for resistance to pathogens remains unclear. Cell death often seems not to be 

required for successful activation of resistance although HR cell death may 

be genetically controlled by the host. For example, disease resistance can 

occur in the absence of macroscopic HR-like cell death in nature, which is 

called an extreme resistance (Longstaff et al., 1993; Sekine et al., 2008). 
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Moreover, mutation of the Arabidopsis ndr1 (non-race-specific disease 

resistance1) rendered the plant susceptible to Pseudomonas spp. and 

Peronospora spp., although HR-like cell death was still induced (Century et 

al., 1995). Conversely, Arabidopsis dnd2 (defense, no death 2) mutants did 

not exhibit HR but gained broad spectrum resistance against Pseudomonas in 

association with constitutively elevated levels of both endogenous salicylic 

acid (SA) contents and PR1 gene expression (Jurkowski et al., 2004).  

However, it has been getting clear that cell death induced by activated 

NLR is apparently connected with resistance to pathogens. Mutations of CC 

domain in MLA10 lead to an impaired cell death activity resulting in the loss 

of disease resistance to Blumeria graminis f. sp. Hordei (Maekawa et al., 2011; 

Bai et al., 2012). In addition, most of HR cell deaths are accompanied by 

transcriptional activation of various defense-related genes, accumulation of 

SA and ROS generation (Mur et al., 1997; Tornero et al., 1997). These 

responses are typical ETI features that enable to distinguish between HR and 

a necrotic cell death. Furthermore, several effectors delivered from bacteria 

and oomycete are capable of suppressing HR in plants (Abramovitch et al., 

2003; Bos et al., 2009; Guo et al., 2009). Therefore, HR cell death generally 

has been regarded as a consequence of the rise in a series of defense responses 

rather than physical restriction of pathogen spread-out at the infection site. 
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Autoactivation of NLRs 

When exposed to biotic stresses, plants invest their energy in a variety of 

stress-related cellular and biochemical processes rather than into their growth 

and development. This reduction of growth and reproduction is called a 

‘fitness cost’. Most studies have shown that the tradeoff for the fitness costs 

appears to be regulated by manipulating the SA and the JA signaling pathway, 

which play an important role in defense response (Heil and Baldwin, 2002).  

Since plants utilize NLR proteins to recognize specific pathogen 

effectors for activation of immunity in response to biotic stress, activated 

NLR proteins trigger strong immune responses such as HR. Therefore, it is 

necessary for plants to develop elaborate mechanisms which control 

expression level of NLR genes and protein stability. NLRs must be strictly 

regulated not only to avoid uncontrolled immune activation but also to 

prevent growth inhibition (Karasov et al., 2017). 

NLR proteins exist in an autoinhibited state (OFF state) to avoid the 

activation of immune responses in the absence of pathogen infection. The 

central NB-ARC domain in a NLR protein has an important role to switch 

between ON/OFF states (Takken et al., 2006). In the OFF state when bound 

to adenosine diphosphate (ADP), the nucleotide-binding pocket in the NB-

ARC domain has a closed form. After pathogen recognition, the nucleotide-
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binding pocket is partially opened, allowing to replace the ADP with 

adenosine triphosphate (ATP). The ATP-bound form is able to return to the 

ADP bound conformation via intrinsic ATPase activity in the absence of a 

pathogen effector. Mutations of the NB-ARC domain disrupting the inhibited 

state causes autoactivation of several NLRs, resulting in constitutive immune 

responses without the interaction between hosts and microbe (Bendahmane, 

2003; Howles et al., 2005; Van Ooijen et al., 2008; Gao et al., 2011; Williams 

et al., 2011). 

Inactive state of NLR protein is also tightly maintained by intramolecular 

interactions with other subdomains of NLRs (Heidrich et al., 2013; Cesari et 

al., 2014; Sukarta et al., 2016). Activity of the CC domain or NB-ARC is 

usually suppressed by intramolecular interaction with LRR domain (Moffett 

et al., 2002; Leister et al., 2005; Slootweg et al., 2013; Chen et al., 2016; Kim 

et al., 2018). It has been shown that deletion of LRR domain of several NLRs 

causes autoactivation (Rairdan et al., 2008; Qi et al., 2012; Kim et al., 2018). 

In addition, domain-swap between closely related NLRs, such as Rx1 and 

Gpa2 from potato, and RPS5 (Resistance to Pseudomonas syringae 5) and 

RPS2 from Arabidopsis, resulted in constitutive activation due to 

incompatibility between subdomains (Rairdan and Moffett, 2006; Qi et al., 

2012; Slootweg et al., 2013).  
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This inactive state is also controlled by intermolecular interactions with 

other NLR proteins. Overexpression of the full length RGA4 in rice or either 

RPS4 in Arabidopsis trigger cell death in N. benthamiana. However, co-

expression of their partner NLR, full-length RGA5 or full-length RRS1 

respectively, compromises an autoimmune response through formation of the 

heterodimerized complex (Zhang et al., 2004; Day et al., 2005; Cesari et al., 

2014). In case of RPS4, heterodimerization between TIR domains of RPS4 

and RRS1 enables to retain the inactive state of RPS4 (Williams et al., 2014). 

Recently, it was revealed that hybrid necrosis is caused by autoimmune 

responses due to the cooperation between natural genetic variants of NLRs. 

Arabidopsis DM1 and DM2d are two TNLs from two different Arabidopsis 

ecotypes, Uk-3 and Uk-1, and the interaction between these proteins results 

in autoactive immune responses leading to necrosis and hybrid 

incompatibility during a cross between two ecotypes (Chae et al., 2014; Tran 

et al., 2017) 

 

Cell death induced by the Autoactive N-terminal domain of NLRs 

The N-terminal domain of NLRs is proposed to serve as signal initiator 

based on several experimental evidences. Overexpression of the N-terminal 

domain of different NLRs has been shown to induce cell death in absence of 
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a corresponding effector protein. Frost et al., 2004 demonstrated that TIR 

domain and extra 39 amino acids (aa) of flax (Linum usitatissimum) L10 

resistance protein trigger effector-independent cell death in tobacco. 

Similarly, the fragments of TIR domain in polymorphic L loci, L6 and L7, 

grape RPV1, Arabidopsis RPS4, RPP1 and SNC1 were reported to induce the 

effector-independent cell death (Weaver et al., 2006; Krasileva et al., 2010; 

Bernoux et al., 2011; Williams et al., 2016; Zhang et al., 2017). These results 

indicate that TIR domain itself triggers cell death in absence of pathogen 

recognition. Taken together, the TIR domain appears to play an important 

role as an inducer of death signal. 

TIR domain–triggered cell death depends on defense-related signal 

pathway. For example, cell death induced by the RPS4-TIR domain was 

notably impaired in plants silenced for EDS1, HSP90 and SGT1 genes which 

are known to function in NLR-mediated resistance (Swiderski et al., 2009). 

Stunted plant phenotype was also observed in L10-TIR domain 

overexpressing plants correlated with a high level of PR1 transcripts and 

constitutive expression of defense genes (Frost et al., 2004). 

Similar to the TIR domain, the transient expression of CCR domain of 

Arabidopsis ADR1 and tobacco NRG1 and the typical CC domains of barley 

MLA10, wheat Sr33 and potato Rp1 trigger cell death in N. benthamiana 
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(Collier et al., 2011; Maekawa et al., 2011; Wang et al., 2015; Cesari et al., 

2016). Recently, CC domains derived from several I2-like NLRs in 

Solanaceae were also shown to induce cell death (Hamel et al., 2016). 

Cell death induced by the autoactive N-terminal domain of NLRs often 

associates with self-association activity (Bernoux et al., 2011; Maekawa et al., 

2011; Casey et al., 2016). The crystal structure of the TIR domain of L6 

revealed an interface for TIR homodimerization (Bernoux et al., 2011). 

Analysis of the crystal structure combined with site-directed mutagenesis in 

the TIR-TIR interface revealed that self-association is necessary to trigger 

cell death. Similarly, the CC domain of MLA10 is also able to form 

homodimer and mutations of residues at the dimer interface between CC 

domains disrupted the activation of cell death (Maekawa et al., 2011). 

Moreover, TIR domain of RPP1 and CC domain of maize RP1-D21 and RP1-

D trigger cell death when fused to a wild type GFP (green fluorescent protein) 

tag which can form dimer in planta, implying that auto-association through 

the eGFP tag mimics the activated state of the N-terminal domain (Krasileva 

et al., 2010; Wang et al., 2015).   
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INTRODUCTION 

 

As the first step of the elaborated and multi-layered defense mechanism 

activated upon pathogen attack, plants have developed a surveillance system 

to recognize the presence of ‘non-self’ molecules or endogenous ‘danger 

signals’, which are released as by-products from damaged cells (Cook et al., 

2015). The second mode is triggered by recognition of pathogen-derived 

effector proteins which are translocated into host cells from pathogen to 

modulate host defense system in a variety of ways (Jones and Dangl, 2006). 

One of the monitoring system is based on a resistant (R) protein including 

nucleotide-binding and leucine-rich repeat (NLR) composed of three major 

domains - a variable N-terminal domain, a central nucleotide binding (NB-

ARC) domain and a C-terminal leucine-rich repeat (LRR) domain. NLR 

genes belong to one of the largest gene families in planta and can be divided 

into two major groups based on the N-terminal domain (Jones and Dangl, 

2006; Meyers et al., 2003). One group contains the Toll/interleukin-1 receptor 

(TIR) domain at the N-terminus, referred to as TIR type-NLR (TNL), the 

other possesses N-terminal domain with a coiled-coil (CC) structure, referred 
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to as CNL type-NLR (CNL) (Jones and Dangl, 2006). In CNL type NLRs, 

NLRs with the N-terminal CC domains resembling Arabidopsis resistance 

protein RPW8 were considered as a distinct subclass RPW8-type CNL (CNL-

R) based on their function in the downstream signaling (Peart et al., 2005; 

Bonardi et al., 2011; Collier et al., 2011).  

NLR proteins can sense the presence of effector proteins by binding them 

directly or indirectly as well as by perceiving posttranslational modification 

of the host target proteins. Following recognition of the effectors, NLR 

proteins undergo a conformational change by replacing ADP with ATP at the 

central NB-ARC domain, resulting in activation of NLR proteins. Activated 

NLRs enables to initiate a variety of intracellular biochemical and 

physiological changes such as upregulation of defense-related genes and 

generation of various reactive oxygen species (ROS) (Mestre and Baulcombe, 

2006; Bernoux et al., 2011; Maekawa et al., 2011). Consequently, these 

features culminate in a hypersensitive response (HR) at the infection site to 

arrest pathogen growth. 

NLRs require well conserved downstream signaling components, 

including the nucleocytoplasmic lipase-like protein Enhanced disease 

susceptibility 1 (EDS1) or the plasma membrane-localized protein Non-race 

specific disease resistance 1 (NDR1) for TNL and CNL classes, respectively 
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(Jones and Dangl, 2006). These two branches of NLR signaling require 

conserved chaperone complex containing SGT1 (Suppressor of the G2 allele 

of SKP1), HSP90 (Heat shock protein 90) and Rar1 (Required for MLA12 

resistance 1), which play a role as a hub to maintain homeostasis of NLR 

proteins (Shirasu, 2009). NLRs have also shown a requirement for the defense 

hormone, salicylic acid (SA) for disease resistance and induction of systemic 

acquired resistance (SAR).  

To activate NLR-mediated immunity, N-terminal domain of NLR 

proteins plays multiple regulatory roles. In case of several NLRs, the N-

terminal domain physically interacts with host target proteins which are 

manipulated by effector proteins (Mucyn et al., 2006; Ade et al., 2007; Burch-

Smith et al., 2007; Sacco et al., 2007). Arabidopsis RIN4 is phosphorylated 

or cleaved by AvrRpm1 or AvrRpt2 from different pathovars of 

Pseudomonas syringae, which are recognized respectively by RPM1 or RPS2 

through their N-terminal domains (Mackey et al., 2002; Day et al., 2005). In 

addition, interaction between homotypic N-terminal domains contribute to 

form high-order complexes of NLRs upon activation (Mestre and Baulcombe, 

2006; Bernoux et al., 2011; Meakawa et al., 2011). For example, mutation in 

CC domain of barley MLA10 impairs dimerization and consequently affects 

full-length MLA10-mediated cell death (Maekawa et al., 2011). Moreover, 
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N-terminal domain of NLRs is also involved in transducing cell death signal. 

Overexpression of the N-terminal region only of several NLRs is sufficient 

to trigger cell death signaling (Peart et al., 2005; Bernoux et al., 2011; Bonardi 

et al., 2011; Collier et al., 2011, Maekawa et al., 2011; Casey et al., 2016; 

Hamel et al., 2016). However, it still remains unclear how the N-terminal 

domain of NLRs transduces the defense signal and what components are 

required to trigger cell death. 

The Solanaceae family is a large plant family that consists of about 2,300 

species encompassing economically important crops such as potato, tomato 

and pepper (Chiarini and Bernardello, 2006). Comparative analysis of NLR 

genes across Solanaceae genomes revealed that the NLR gene family can be 

classified into 14 subgroups, including one TIR-NLR (TNL) subgroup and 13 

CNL subgroups (Seo et al., 2016). Among them, CNL-Group 10 (G10) is 

composed of 34 genes including a known pepper resistance gene, Pvr4, which 

confers resistance to Potyviruses such as Potato virus Y (PVY) and Pepper 

mottle virus (PepMoV) through the recognition of a viral effector, NIb (Kim 

et al., 2015; Kim et al., 2017). Recently, structural domain analysis revealed 

that the CC domain of Pvr4 is sufficient to activate cell death in absence of 

NIb (Kim et al., 2018). 
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In a genome-wide screening for autoactivity of pepper NLRs and their 

N-terminal domains, we found that CC domains of distinct G10-NLRs 

specifically induce cell death at a high rate. To better understand the signaling 

pathway associated with this cell death response, I performed pull down assay 

coupled with LC-MS/MS and identified S-adenosyl homocysteine hydrolase 

(SAHH) as a candidate for G10-CC domain-interacting protein. 

SAHH is one of the most conserved enzymes in all organisms and 

catalyzes the hydrolysis of S-adenosyl homocysteine (SAH) to adenosine and 

L-homocysteine (Palmer and Abeles, 1979). Since homocysteine is used for 

a recycling reaction to produce S-adenosylmethionine (SAM) which 

functions as a primary methyl donor, SAHH plays a pivotal role as a key 

enzyme to activate methylation processes on proteins, nucleic acids, and 

polysaccharides. SAM also serves both as a precursor for the production of 

ethylene and as a substrate in the biosynthesis of polyamines (Smadar harpaz-

Saad, 2012). Indeed, Arabidopsis SAHH1 mutant shows embryo-lethal 

phenotype, therefore SAHH is necessary in vital processes in the cell (Rocha 

et al., 2005). It has been reported that SAHH also engages in plant defense 

response. Transgenic tobacco expressing antisense RNA for SAHH showed 

inhibition of viral replication and resistance against a variety of plant viruses 

including Tobacco mosaic virus, Potato virus X, Cucumber mosaic virus and 
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PVY (Masuta et al., 1995). The resistance may be driven by inhibition of 5’ 

capping in viral RNA replication or given by high accumulation of cytokinins. 

Moreover, SAHH transcript level was highly increased in a potato cultivar 

susceptible to Phytophthora infestans, but not in a resistant cultivar 

(Arasimowicz-Jelonek et al., 2013). Furthermore, SAHH-silenced tomato 

showed significantly increased SA contents in both infected and uninfected 

plants. SAHH-silenced tomato also exhibited constitutively activated immune 

responses accompanied by up-regulated defense-related genes, callose 

deposition and ROS accumulation (Li et al., 2015). Although all of these 

evidences imply that SAHH negatively regulates defense responses in plants, 

it is still unknown how plants regulate SAHH activity in response to 

pathogens.  

In this study, SAHH-silenced N. benthamiana plant exhibits cell death 

speckles and accumulation of ROS. In addition, co-expression of SAHH 

reduced cell death induced by pepper G10-NLR and G10-CC. Although the 

evidence for direct interaction of G10-CC domain with a SAHH protein is not 

presented here, these results imply that G10-CCs induce cell death by having 

a negative effect on SAHH activity.  
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CHAPTER III. MATERIALS AND METHODS 

 

Plant materials and growth condition 

N. benthamiana plants were grown under a 16-hr/8hr photoperiod at 

25°C in horticultural bed soil (Baroker, Seoul Bio Co., Ltd., Seoul, Korea). 

Four-week old plants were used for transient overexpression. For Virus-

Induced Gene Silencing (VIGS) experiments, foliage leaves of 2-week old 

plants were inoculated with Agrobacterium. 

 

Plasmid construction 

Pepper NLRs were amplified from genomic DNA of Capsicum annuum 

L. cv Criollo de Morelos 334 (CM334) based on pepper reference annotation 

v.1.55. N-terminal domain of NLRs were defined from methionine to just 

before the first motif (p-loop) in NB-ARC domain. cDNAs from the N. 

benthamiana expressing G10-NLRs or CC domains, or silenced plants were 

used as templates for PCR amplification using PrimeSTAR pfu polymerase 

(TaKaRa, Shiga, Japan). 
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For transient overexpression in N. benthamiana, PCR fragments were 

cloned in the pCAMBIA2300-LIC vector containing cauliflower mosaic 

virus 35S promoter and nopaline synthase terminator by ligation-independent 

cloning (LIC) method (Aslanidis and de Jong, 1990; Oh et al., 2010). The 

ccdB (lethal) gene was inserted into pCAMBIA2300 vector to facilitate LIC 

system. Gene specific primers carrying the LIC adaptor sequence were used 

to amplify DNA fragment. PCR products purified by magnetic bead type PCR 

cleanup kit (Biofact, Daejeon, Korea) and PstI-digested pCAMBIA2300-LIC 

or pCAMBIA2300-3xFLAG-LIC vector were treated with T4 polymerase to 

create single-stranded overhangs on vector and DNA insert. Treated vector 

and DNA insert were mixed to annealed to each other and the mixture was 

transformed into Escherichia coli DH5α strain. The N-terminal substitutional 

mutations were generated using primers carrying the mutations. PCR 

products were cloned into pCAMBIA2300-LIC or pCAMBIA2300-

3xFLAG-LIC vector. All constructs used in this study were sequenced to 

confirm their identity.  

 

Agrobacterium-mediated transient overexpression in N. benthamiana 

Agrobacterium tumefaciens GV3101 strains carrying the various 

constructs are prepared for transient overexpression in N. benthamiana. 
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Agrobacteria were grown overnight at 28°C in LB media supplemented with 

kanamycin (50 µg/ml) and rifampicin (50 µg/ml). Agrobacteria cultures were 

precipitated and resuspended in infiltration buffer (10 mM MES (pH 5.6) and 

10 mM MgCl2 with 150 µM acetosyringone) at optical density at 600 nm 

(O.D600) = 0.3 for CC domains or 0.8 for Pvr4 or 0.4 for NIb. Agrobacterial 

suspensions were infiltrated on the abaxial leaves of 4-week-old N. 

benthamiana plants with a needleless syringe. Macroscopic cell death 

phenotypes were scored at 5-day post infiltration. 

 

Measurement of electrolyte leakage 

Three leaf discs were collected with a No. 7 corer from three independent 

plants infiltrated 24 hr earlier. Leaf discs were washed briefly in water, and 

moisture on leaf discs was gently removed with a paper towel. Washed leaf 

discs were submerged in 5 mL of distilled water with 0.001 % silwet L-77 at 

room temperature (three replicates per sample). Twenty-four hours later, 

electrolyte leakage was measured with an Orion Model 215 (Thermo 

scientific, Waltham, MA, USA). 

 

Virus-induced gene silencing (VIGS) 
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The target gene region was amplified from N. benthamiana cDNA and 

cloned into the pTRV2-LIC vector using a LIC method (Dong et al., 2007). 

VIGS constructs were transformed into Agrobacterium tumefaciens strain 

GV3101 by the freeze-thaw method. Agrobacteria carrying pTRV1 and 

pTRV2 containing a specific gene fragment were grown overnight in Luria-

Bertani (LB) broth with 50 µg/ml kanamycin and 50 µg/ml rifampicin at 28°C 

with vigorous shaking. Agrobacteria cultures were precipitated and 

resuspended in infiltration buffer (10 mM MES (pH 5.6) and 10 mM MgCl2 

with 150 µM acetosyringone). A suspension of pTRV1 and pTRV2 carrying 

a target gene fragment were mixed at final optical density at 600 nm (O.D600) 

= 0.15 respectively. Two leaves of 3-week old N. benthamiana seedlings were 

infiltrated with Agro-suspension culture. Two weeks later, top leaf of silenced 

plants was collected to confirm the silencing of the target gene. 

 

Quantitative RT-PCR 

Total RNA was extracted using TRIzol reagent (MRC, OH, USA) and 

complementary DNA was synthesized using Superscript III (Invitrogen, CA, 

USA). Gene-specific primers were used in quantitative RT-PCR at 95 � for 

5 min, followed by 40 cycles with denaturation at 95 � for 15s, 55 � for 1 

min. Power SYBR green PCR master mix (Applied biosystems, Foster city, 
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CA). Nucleotide sequences of all primers used in this study are listed in Table 

1. Level of gene transcripts was normalized to that of elongation factor gene, 

NbEF1-α.  

 

Confocal laser scanning microscopy 

Plant tissues expressing eGFP-tagged proteins were examined with a 

Leica confocal microscope SP8X (Leica Microsystem, Germany). eGFP was 

imaged using 488 nm excitation and its emission signal was detected from 

500 nm to 530 nm. Simultaneous excitation of eGFP and plasma membrane 

marker dye, FM4-64 (Invitrogen, CA, USA) was performed using the 488 nm 

excitation and emission signal was collected 500-530 nm and 600-650nm for 

eGFP and FM4-64, respectively.  

 

Immunoprecipitation 

Leaves were ground in liquid nitrogen and extraction buffer (50 mM 

Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM EDTA, 1% (v/v) IGEPAL CA-630, 

10 % glycerol, 5 mM DTT, 1 mM NaF, 1mM PMSF, 1x protein phosphatase 

inhibitor cocktail (P9599, SIGMA, Darmstadt, Germany) was added at 2 

mL/g tissue powder. Samples were incubated at 4� for 1 h with gentle rolling 

to solubilize the plasma membrane and then clarified by 20 min centrifugation 
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at 12,000 rpm. Supernatants were diluted to 3 mg/ml protein using extraction 

buffer and incubated with 100 µL of anti-FLAG M2 magnetic beads (M8823, 

SIGMA, Darmstadt, Germany). Following incubation for 1 hr, magnetic 

beads were washed five times with extraction buffer. Elution buffer 

containing 500 ng/µL FLAG peptide were added to beads and incubated with 

gently shaking for 1 hr at 4�. LC-MS/MS analysis was performed using 

Orbitrap mass spectrometers (Thermo Scientific, Massachusetts, U.S.A). 

 

DAB staining 

Accumulation of hydrogen peroxide (H2O2) was detected with 3,3’-

Diaminobenzidine (DAB) staining. N. benthamiana leaves were detached and 

incubated in DAB-HCl solution (1 mg/ml, pH 3.8) overnight at 25°C in the 

dark. After staining, the leaves were soaked in 95% ethanol to remove 

chlorophyll. 

 

Quantification and statistical analysis 

Error bars in all of the figures represent standard deviations of mean. 

Number of replicates is reported in the figure legends. Statistical comparison 

among different samples is carried out by one-way ANOVA with Tukey’s 
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HSD (honest significant difference) test. Samples with statistically significant 

differences (p < 0.05) are marked with different letters (a, b, c etc.).
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Table 1. List of primers used in this study 

Primer name Forward(5'"3') Reverse(5'"3') Ref. 

For VIGS 

NbHSP90 
AGAAGCACTCTGAGT

TCATCAG  

ATCAACCATGTAAAG

AACCTC 

(Liu et al., 

2004) 

NbSGT1 
ATATACGAGAGCGTC

TGCTG 

CAGTCCCATTAGATT

CCACA 

(Anand et al., 

2012) 

NbICS2 
ATCTTAAACTCATCA

TCTTCAGCC 

GCAGGCTTCGCCGGC

ATTCATTGG 

(Zhu et al., 

2014) 

NbNPR1 
GCTGTGGCATTCCTG

GTT 

GTGAGCCTCTTGGCG

ATT 

(Zhu et al., 

2014) 
 

NbCOI1 
AGAGGTTGCTATAAG

CTTAGA 

TCAGTGGCAACAACT

CGTCT 

(Yoon et al., 

2009) 
 

NbWIPK 
CGCCAGCAGTTAGCA

AATG 

GTCGAAGGAGAATG

GAACG 

(Li et al., 

2015) 
 

NbSIPK 
GCTGCAATTGATCTT

GTCGAG 

GGCATGCTGTTCAAA

GTCGA 

(Li et al., 

2015) 
 

NbNDR1 
CATGTCAAACTATGG

ATCCAA 

GTCATGACCTTGGTA

AAAGCCAGGTA 
  

NbEDS1 
GAGAATCCAGATGCT

GTTCTGCAG 

GAACCACATCCTGCA

TCTCTAAGC 
  

GFP 
ACGTAAACGGCCACA

AGTTC 

GGGGTGTTCTGCTGG

TAGTG 
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For qRT-PCR 

NbHSP90 
CAACCCGGAG 

AATGCTATTA  

TCCATCTTGCTACCTT

CAGC 
  

NbSGT1 
TTTGTGGAATCTAAT

GGGAC 

CAAACAAAACAAAC

GTCAC 
  

NbICS2 
TTGATGAGCTTGAAG

GAAGT 

GGGACATGAGTACTC

GCG 
  

NbNPR1 
TAAGGTGGAATTAAA

GGAAATA 

TAGGTGAAGGCCTAA

TTTTT 
  

NbHIN1 
GCCATGCCGGAATCC

AATTT 

TTGCAGAGGCAGCCA

AAGAGA 

(Moon et al., 

2016) 
 

NbPR1 
AATAGGGTAGCGGCC

TTTGC 

CGGCGGCTAGGTTTT

CG 

(Moon et al., 

2016) 
 

NbCYP71D20  
CCGCACCATGTCCTT

AGAG 

CTTGCCCCTTGAGTA

CTTGC 

(Heese et 

al., 2007) 
 

NbWRKY8  
AACAATGGTGCCAAT

AATGC 

TGCATATCCTGAGAA

ACCATT 

(Heese et 

al., 2007) 
 

NbEF1-a  
GTATGCCTGGGTGCT

TGAC 

ACAGGGACAGTTCCA

ATACCA 

(Heese et 

al., 2007) 
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CHAPTER IV. RESULTS 

 

The autoactive N-terminal domain of pepper G10-NLRs causes cell death 

in N. benthamiana 

Previously, 755 pepper NLR genes were predicted and divided into 15 

subclasses based on amino acid sequences of their NB-ARC domain by 

phylogenetic analysis and clustering program (Seo et al., 2016). Among 755 

NLRs, genomic fragments of 468 genes which contain an intact form of 

domain structures were subjected to amplification and 415 were successfully 

inserted into binary vector pCAMBIA2300. 

It was reported that overexpression of several NLR-type functional 

resistance (R) genes induce cell death in absence of the cognate effector, the 

so called autoactivity (Axtell et al., 2003; Cesari et al., 2014; Heidrich et al., 

2013). In addition, overexpression of only N-terminal domain of several R 

proteins induces cell death, suggesting that the N-terminal domain of NLR 

proteins plays a role in defense signaling (Collier et al., 2011; Maekawa et al., 

2011; Wang et al., 2015; Cesari et al., 2016).  
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To screen out autoactive pepper NLRs to induce cell death, 415 full-

length NLRs were transiently overexpressed in N. benthamiana. Only 16 full-

length NLRs induced cell death (Table 2). These genes belong to diverse 

groups such as group TNL (GT) group, CNL-G1, G5, G9, G10, G11 and 

CNL-none-grouping (NG). The group containing the largest number of 

autoactive NLR was GT (six genes) followed by CNL-G10 (three genes) and 

CNL-NG (three genes). 

 Next, to investigate cell death caused by their N-terminal domains 

(NTDs), more than 10 % of pepper NLRs assigned to each group were 

selected as representative NLRs based on phylogenetic tree analysis. Out of 

131 tested NTDs, 21 NTDs were found to induce cell death when 

overexpressed in N. benthamiana. Interestingly, 17 out of 21 NTDs inducing 

cell death were included in G10. Therefore 70.8% CC domains of G10 pepper 

NLRs are likely trigger of cell death in N. benthamiana (Figure 1, Table 2). 

These results suggest that overexpression of the CC domains of pepper G10-

NLRs specifically leads to autoactivity.  

To verify that the G10-NLRs tested in this screening are transcriptionally 

expressed genes, transcript level of G10-NLRs was analyzed in pepper upon 

infection of Phytophthora capsici (Figure 2) (Kim et al., 2018). Although 

transcript level of most of G10-NLRs was sustained low (less than RPKM 
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value 40), two third of G10-NLR tested in this study were expressed in pepper, 

suggesting that G10-NLRs might be functional genes. Expression level, 

however, was not correlated with autoactivity of G10-NLRs and rather tends 

to be lower upon infection of P. capsici (Figure 2). 

Additionally, phylogenetic tree was constructed using the amino acid 

sequences of G10-CC domains by maximum likelihood method. G10-CC 

domains divided into three subclades (Figure 3). Most of non-autoactive G10-

CC domains were included in subclade I, whereas most of autoactive CC 

domains were grouped in subclade II or III (Figure 3). The G10-NLRs which 

belong to subclade I, II or III are physically clustered at chromosome 9, 1, 

and 10, respectively (data not shown), suggesting that G10-NLRs might 

undergo tandem or proximal gene duplication (Seo et al., 2016).  

To see whether cell death induced by the G10-CC domains is specific in 

pepper or not, CC domains of G10-NLRs were identified from other 

Solanaceae species such as tomato, tobacco (Nicotiana tabacum) and N. 

benthamiana. Eight CC domains from tomato G10-NLRs and two from 

tobacco and two from N. benthamiana, were overexpressed in N. 

benthamiana in the same way as tested for the pepper G10-CCs. Interestingly, 

half of tested CC domains of tomato and tobacco G10-NLRs, but not those of 

N. benthamiana G10-NLRs, triggered cell death (Figure 4). These results 
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suggest that G10-NLRs in N. benthamiana may have lost cell death- inducing 

activity through the CC domain after speciation events. However, I could not 

exclude the possibility that N. benthamiana G10-NLRs carrying the 

autoactive CC domain were missed in this screening due to low quality of the 

annotated gene set of N. benthamiana. Nevertheless, the capability to induce 

cell death for G10-CC domains seems conserved in most of Solanaceae plants.  
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Table 2. Screening for cell death-inducing activity of full-length or N-
terminal domain of pepper NLRs in N. benthamiana 

Group* 
No. 

assigned 
NLR 

Full-length NLR** N-terminal domain 

No. Tested 
NLR 

No. 
autoactive 

NLR 

Autoactive 
NLR, % 

No. tested 
NTD 

No. 
autoactive 

NTD 

Autoactive 
NTD, % 

TNL 54 44 6 13.7 16 2 12.5 

CNL-G1 75 63 1 0 10 0 0 

CNL-G2 91 77 0 0 14 0 0 

CNL-G3 23 20 0 0 8 0 0 

CNL-G4 32 29 0 0 9 0 0 

CNL-G5 10 10 1 9.1 4 0 0 

CNL-G6 26 24 0 0 5 0 0 

CNL-G7 18 16 0 0 7 0 0 

CNL-G8 14 14 0 0 6 0 0 

CNL-G9 48 46 1 2.2 9 0 0 

CNL-G10 34 30 3 10 24 17 70.8 

CNL-G11 7 7 1 14.3 5 1 20 

CNL-G12 9 9 0 0 5 0 0 

CNL-G13 1 1 0 0 1 0 0 

CNL-NG 24 24 3 12.5 8 2 25 

Total 466 414 16  131 21  

*Seo et al., 2016 
**Choi, 2017  
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Figure 1. The CC domain of pepper G10-NLRs induce cell death when 
expressed in N. benthamiana. 
(A) G10-CC domains were expressed by Agrobacterium-mediated transient 
expression method in N. benthamiana. Leaf discs were photographed at 3 
days after infiltration. (B) Cell death activity was quantified by measuring 
electrolyte leakage at 48 hour post infiltration (hpi) as an indication of cell 
death in plants shown in (A).  
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Figure 2. Transcript accumulation of the pepper G10-NLRs upon pathogen 
infection. 
Heatmap represents the digital expression profiles of the pepper G10-NLRs 
over a time course of Phytophthora capsici infection. Color key represents 
reads per kilobase per million mapped reads (RPKM) values. Intensity of 
autoactivity of the G10-NLRs are represented at the left. 
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Figure 3. Phylogenetic tree of pepper G10-CC domain. 
A phylogenetic tree was constructed using amino acid sequences of pepper 
G10-CC domains. Maximum likelihood model was used and bootstrap 
analysis was performed with 1000 replicates. The intensity of cell death was 
represented at the left side of gene ID (closed circle, strong; shaded circle, 
medium; open circle, no cell death). 
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Figure 4. The CC domain of the tobacco and tomato G10-NLRs induce cell 
death in N. benthamiana. 
The CC domains of NLRs in N. tabacum (Tobacco), N. benthamiana and 
Solanum lycopersicum cv. Heinz (Tomato) were overexpressed in N. 
benthamiana by Agrobacterium-mediated transient expression method.  
Leaf sectors were photographed at 3 days after infiltration. Induction of cell 
death was scored as presence (+) or absence (-). 
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Cell death induced by G10-NLR or G10-CC domain is associated with 

defense signaling pathway 

Pepper G10-NLRs include a known R protein, Pvr4, which confers 

resistance against Potyviruses such as PVY and PepMoV by recognition of a 

viral effector protein NIb (Kim et al., 2017). It was recently shown that co-

expression of both Pvr4 and NIb triggers HR-like cell death in an HSP90-, 

and SGT- dependent manner (Kim et al., 2018). HSP90 and SGT1 are 

components of molecular chaperon complex and required for NLR-mediated 

disease resistance (Austin et al., 2002; Kadota et al., 2010).  

To characterize types of cell death induced by autoactive G10-CC, I first 

tested whether the G10-CC domain-mediated cell death is involved in defense 

responses or not. HSP90 and SGT1 were silenced in N. benthamiana using 

virus-induced gene silencing (VIGS), followed by the transient 

overexpression of one of autoactive G10-CC, CC309. Silencing efficiency 

was confirmed by qRT-PCR using gene-specific primers (Figure 5B). INF1, 

an elicitin from Phytophthora infestans which was reported to require HSP90 

and SGT1 to trigger cell death (Shibata et al., 2011) was used as a positive 

control. Remarkably, CC309-mediated cell death was significantly 

diminished in both HSP90- and SGT1- silenced plants, compared with TRV- 

ΔGFP (green fluorescent protein)-silenced plant (Figure 5A). This result 
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suggests that cell death triggered by overexpression of CC309 occurred 

through NLR-mediated cell death mechanism.  

To corroborate this result, I examined if cell death induced by autoactive 

G10-NLR or G10-CC domain is similar to HR cell death mediated by 

expression of an R protein and its cognate effector. Transcript level of 

defense-related genes were monitored in CC309-, non-autoactive CC10-1-, 

autoactive full-length NLR620- and Pvr4 with NIb-expressing leaves at 

various time points after agro-infiltration. CC10-1 was included for 

comparison due to no activation of cell death. Interestingly, overexpression 

of the autoactive CC309 and NLR620 resulted in transcript accumulation of 

cell death marker gene, Hin1 (Gopalan et al., 1996), and defense-related 

genes, PR1, WRKY8 and CYP71D20 (Weitzel and Simonsen, 2015) as 

observed in expression of Pvr4 with NIb (Figure 6B). However, these genes 

were not upregulated in leaves expressing CC10-1. These data indicate that 

cell death induced by autoactive G10-NLR and G10-CC domain may occurr 

as a consequence of the activation of defense responses similar to the HR. 
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Figure 5. Cell death induced by G10-CC domain is associated with the 
components of defense-related pathway. 
(A) The G10-CC domain-induced cell death was largely decreased in 
NbHSP90 and NbSGT1-silenced N. benthamiana. (B) Silencing efficiency in 
NbHSP90 or NbSGT1-silenced plants. Two week-old seedlings were 
infiltrated with Agrobacteria carrying TRV-NbHSP90, NbSGT1 or TRV-
GFP constructs and leaf samples were collected 2 weeks after infiltration. 
Transcript levels for each gene were analyzed by qRT-PCR using a NbEF1-
a gene as an internal control.  
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Figure 6. HR- and defense-related genes are up-regulated dramatically in cell 
death induced by CC309, NLR620 and Pvr4 with NIb overexpressed leaves.  
(A) Phenotype of cell death induced by CC309, CC10-1, full-length NLR620 
and Pvr4 with NIb. (B) Relative gene expression for a cell death marker gene 
Hin1, defense response-related genes, PR1 and WRKY8, and a capsidiol 
biosynthesis gene, CYP71D20, was assessed by quantitative reverse 
transcription polymerase chain reaction (qRT-PCR) at 0, 9, 12, 18, 24, 30, 36, 
42 hr after infiltration of Agrobacterium carrying the empty vector, CC309, 
CC10-1, NLR620, Pvr4+NIb. Transcript levels of the analyzed genes were 
normalized to the levels of the NbEF1-α transcript. 
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The N-terminal motif of G10-CCs is critical for autoactivity 

To understand the molecular basis underlying cell death induced by 

autoactive G10-CC domain, CC309 and CC10-1 were used for further studies. 

Although these domains share high similarity at the amino acid sequence 

level (90 % identity), overexpression of the CC309 caused cell death 28~30 

hr after agro-infiltration, while expression of the CC10-1 failed to trigger cell 

death (Figure 7A and 7B). Although transcript level of CC309 and CC10-1 

in leaves overexpressing these fragments were similar (Figure 7C), CC10-1 

protein accumulated less than CC309 protein. To stabilize CC10-1 protein 

accumulation, a proteasome inhibitor, MG132, was applied. However, 

MG132 treatment did not affect protein stability nor cell death-inducing 

activity of CC10-1. This result suggests that CC10-1 protein is not targeted 

to proteasome-dependent degradation machinery (Figure 7D). 

To identify an essential region for inducing cell death, amino acid 

sequences of CC10-1 and other autoactive CC domains in the subclade III 

were aligned (Figure 8A). Compared with other autoactive CC domains, 

frequent polymorphisms were detected in N-terminal region of CC 10-1, 

corresponding to 1-12 aa in CC309. To verify these sequence variations are 

associated with autoactivity, amino acids in 1-12 aa region of CC309 were 

replaced with corresponding residues of CC10-1. Interestingly, substitution 
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in 7-12 aa (mCC3097-12) and 1-12 aa (mCC3091-12) region of CC309, but not 

substitution in 1-6 aa region (mCC3091-6), compromised cell death-inducing 

the activity (Figure 8B). Immunoblot confirmed the protein accumulation of 

all variants (Figure 8C). 

In addition, substitution of N-terminal region in CC10-1 with ‘TAILSP’ 

motif which is a corresponding sequence of 7-12 aa in CC309 slightly acquire 

cell death-inducing activity (Figure 8D). Furthermore, to see if ‘TAILSP’ 

motif affects HR cell death triggered by R protein-effector association, 

mutations were introduced in both the Pvr4 and Pvr4 CC domain, CC322. 

Transient overexpression in N. benthamiana showed that these mutations 

completely abolished cell death activity of CC domain and full-length Pvr4 

(Figure 9). There results suggest that ‘TAILSP’ motif at 7-12 aa region in 

G10-CCs and G10-NLR is critical to trigger cell death. 

Next, each amino acid in ‘TAILSP’ in CC309 was replaced with alanine 

or glutamate to identify residue responsible for autoactivity. As a result, I7E, 

L8E and P10A totally abolished autoactivity of CC309 (Figure 10A). 

Immunoblot confirmed the protein accumulation of all variants (Figure 10B). 

Ternary structural modeling of the CC309 predicted that these residues might 

be important to form a α-helix structure and be exposed to the surface (Figure 

11). This prediction assumes that N-terminus of G10-CCs may function as an 
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interface to allow interaction with other components required for inducing 

cell death. Taken together, these results suggest that ‘TAILSP’ motif at the 

N-terminal domain of G10-CC domains is crucial for cell death signaling.  
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Figure 7. Differential cell death activity of CC309 and CC10-1. 
(A) Alignment of amino acid of the CC309 and CC10-1. (B) CC309 and 
CC10-1 fragments fused to FLAG tag were transiently expressed in N. 
benthamiana. 100 µM MG132 was treated 24 hr after infiltration of 
Agrobacterium carrying CC10-1. Empty vector (EV) were used for negative 
control. The photograph was taken 3 days post Agrobacterium infiltration. (C) 
Transcripts level of CC309 and CC10-1 were quantified by RT-PCR in the 
infiltrated leaves. Leaf sectors were collected 26 hr post infiltration. (D) 
Western blot showing protein expression level of CC309 and CC10-1 in 
infiltrated leaves. Equal protein loading was confirmed by membrane staining 
by Ponceau solution. 
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Figure 8. The N-terminal region of G10-CCs is crucial for cell death activity.  
(A) Alignment of amino acid of the N-termini of clade III in G10-CCs. (B) 
Amino acids substitution mutation of N-terminal region of CC309 for 
corresponding region of CC10-1. mCC3091-6, 1st to 6th amino acids were 
replaced; mCC3097-12, 7th to 12th amino acids were substituted; mCC3091-

12 ,1st to 12th amino acids were replaced. Empty vector (EV) and necrosis-
inducing protein (NIP) from P. sojae were used for negative control and 
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positive control, respectively. (C) Total protein was extracted from 
Agrobacterium-infiltrated tissues and used for western blot to detect the 
expression level of the fused protein using FLAG antibody. Leaf samples 
were taken 26 hr post Agrobacterium infiltration. Equal protein loading was 
confirmed by membrane staining by ponceau solution. (D) CC10-1 and 
mutated CC10-1 protein fragments were transiently expressed in N. 
benthamiana. The photographs were taken 72 hr after infiltration. 
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Figure 9. The N-terminal region plays crucial role in induction of HR cell 
death. 
(A) CC322 (CC domain of Pvr4) and mCC3225-10, replaced with 5-10 aa 
region was expressed in N. benthamiana. (B) Wild type Pvr4 and mutated 
Pvr4 were co-expressed with NIb of PepMoV. Empty vector (EV) and 
necrosis-inducing protein (NIP) from P. sojae were used for negative control 
and positive control, respectively. The photographs were taken 72 hr after 
infiltration. 
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Figure 10.  Mutation of leucine, isoleucine and proline residue in N-
terminal region of CC309 abolishes cell death-inducing activity. 
(A) Each of six amino acids was replaced with alanine or glutamate. (B) 
Protein accumulation of the CC309 mutants fused to FLAG tag was examined 
by western blot analysis. Equal protein loading was confirmed by membrane 
staining by ponceau solution.  
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Figure 11. Molecular surface view of the homology model of CC309. 
The predicted structure of N-terminal region (6-91 aa) within CC309 was 
constructed based on the crystal structure of barley MLA10 by SWISS-
MODEL program. The side chain of I, L and P residues were present on the 
surface on the structure. 
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The ‘TAILSP’ motif does not affect the localization of G10-CCs 

The topology of G10-CCs was predicted using the computer programs 

such as TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/), 

TMpred (https://embnet.vital-it.ch/software/TMPRED_form.html) and 

TMMOD (http://liao.cis.udel.edu/website/servers/TMMOD). TMpred 

program predicted that G10-CCs contain a transmembrane domain in N-

terminus, whereas TMMOD and TMHMM could not predict the 

transmembrane domain. To confirm the subcellular localization of G10-CCs, 

N- or C-terminal GFP fusion of G10-CCs were generated. Since tagging of 

N-terminal GFP to G10-CCs impaired their autoactivity (data not shown), C-

terminal GFP fused G10-CCs were used for localization study. The GFP-

fused CC309, CC322 and CC10-1 were transiently expressed in N. 

benthamiana and fluorescence was imaged by confocal laser scanning 

microscopy at 26 hr post infiltration before onset of cell death. GFP signal 

was observed at the boundary of the cell expressing G10-CCs (Figure 12A). 

To determine the localization of G10-CCs, FM4-64, membrane-binding 

fluorescent dye, was applied to the infiltrated leaves (Fischer-Parton et al., 

2000). GFP fluorescence for G10-CCs completely merged with FM4-64-

labeled signal, suggesting that G10-CCs are localized at the plasma 

membrane. To more precisely determine subcellular localization, cells 
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expressing respectively CC309-GFP, CC322-GFP and CC10-1-GFP were 

plasmolysed following with 1 M NaCl. The cells showed shrinking of the 

protoplast surrounded by a fluorescent plasma membrane connected to the 

cell wall by Hechtian strands (Figure 12B). 

Because ‘TAILSP’ motif is part of a predicted transmembrane domain, 

fluorescence of CC10-1-GFP was assumed not to be present at the plasma 

membrane. However, fluorescence of CC10-1-GFP was also detected at the 

plasma membrane despite lack of ‘TAILSP’ motif. This result implies that 

‘TAILSP’ motif might be not responsible for subcellular localization of G10-

CCs to the plasma membrane.  
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Figure 12. G10-CCs localize at the plasma membrane. 
(A) Confocal microscopy image illustrating GFP fused G10-CC domains 
with the FM4-64 dye at the plasma membrane. Bar=40 µm (B) Plasmolysis 
of cells carried out by incubating leaf sectors in 1 M NaCl solution. Asterisks 
indicate Hechtian strands.  
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Defining minimal region of G10-CC as a signaling module 

The G10-CC domains generally contain 4~5 α-helix motifs. In case of 

CC309, five helixes are present and one coiled-coil structure is predicted 

(Figure 13A). To define a minimal functional region triggering cell death, N-

terminal and C-terminal deletion mutants of CC309 were generated and then 

expressed in N. benthamiana leaves to assess their cell death-inducing 

activity. C-terminal deletion fragments C1 and C2, but not C3, were still 

functional (Figure 13B), suggesting that 4 α-helixes are indispensable for 

autoactivity. To quantify cell death, the leakage of ions caused during cell 

death was measured in the infiltrated leaves. Interestingly, C2 mutants 

showed higher activity than C1 mutants (Figure 13C), implying the region 

from 140 to 165 aa may negatively affect cell death-inducing activity. 

Moreover, all deletions from the N-terminus (N1, N2 and N3) compromised 

the autoactivity of CC309 (Figure 13B). These results revealed that the 

fragment from 1 to 140 aa could be defined as a minimal region of CC309 to 

induce cell death.  

Immunoblot was conducted to verify expression level of all deletion 

mutants. Since all N-terminal mutants exhibited relatively low stability, I 

could not exclude the possibility that their malfunction might be resulted from 

low protein accumulation. To increase stability, all deletion mutants were 
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fused to the GFP tag which enables further accumulation of small size protein. 

However, GFP-fused N1, N2, and N3 mutants still showed no activity (Data 

not shown). Consistent with N-terminal mutation analysis, this result suggests 

that N-terminus of G10-CC domain is important to induce cell death. 

As mentioned before, G10-CCs possess a putative transmembrane 

domain at N-terminus. To see if the loss of function of all N-terminal deletion 

mutants is due to improper targeting to the plasma membrane, subcellular 

localization of these deletion mutants was examined. Unexpectedly, 

fluorescence signal of all mutants was detected at the plasma membrane 

regardless of presence of transmembrane domain and their autoactivity 

(Figure 14). This result suggests that G10-CC domains might be localized at 

the plasma membrane by interacting with peripheral protein(s). Taken 

together, N-terminus of G10-CC is important to cell death signaling rather 

than targeting to the plasma membrane. 
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Figure 13. Defining the functional region of CC309. 
(A) A schematic diagram of the CC309 showing helix structures and the 
positions of the deletion mutants used in (B) are shown at the top. (B) Deletion 
mutants of CC309 were transiently expressed in N. benthamiana. (C) 
Electrolyte leakage was measured at 48 hr post agro-infiltration. Data show 
average and SD of three replicates. (D) Protein accumulation of the CC309 
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deletion mutants fused to FLAG tag was examined by western blot analysis. 
Equal protein loading was confirmed by membrane staining by ponceau 
solution.   
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Figure 14. Subcellular localization of deletion mutants of CC309. 
Confocal microscopy image illustrating GFP-fused CC309 deletion mutants 
colocalization with the FM4-64 dye at the plasma membrane. Bar=20 µm  
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The G10-NLR mediated cell death does not require EDS1, NDR1 and 

SA-related signaling pathway  

NLRs activate downstream signaling components to trigger ROS 

production, activation of hormone signaling and transcription reprogramming 

and onset of cell death. In many cases, downstream signaling components of 

NLR genes are well conserved. Among them, EDS1 (Enhanced Disease 

Susceptibility 1) and NDR1 (Non race-specific Disease Resistance 1) 

positively regulate basal immunity against virulent pathogens and known to 

be important regulators in TNL or CNL-mediated immunity, respectively 

(Aarts et al., 1998).  

In order to examine the genetic components required for G10-CC-

triggered cell death, EDS1 and NDR1-silenced N. benthamiana plants were 

used. EDS1 is known to be a TNL-specific signaling component, however, 

also contributes to CNL RPS2-mediated immunity (Cui et al., 2017). Gene 

fragments of EDS1 and NDR1 were amplified from N. benthamiana cDNA, 

and then cloned into TRV2 vector for VIGS. Although expression levels were 

significantly reduced in silenced plants (Figure 15B), cell death induced by 

CC309 and co-expression of Pvr4 and NIb were observed in these gene-

silenced plants (Figure 15A). These results suggest that cell death induced by 
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G10-NLR or G10-CC domain are not associated with EDS1 or NDR-

dependent pathway. 

However, a typical SA-responsive marker gene, PR1 was highly 

upregulated during cell death induced by both G10-NLR and G10-CC domain 

(Figure 6), implying that SA-related pathway may be associated with G10-

NLR-mediated cell death. There are several genes important to the SA 

signaling. including a SA biosynthesis gene, Isochorismate synthase 2 (ICS2), 

a SA-signaling component genes, SA-binding proteins 2 (SABP2) which 

converts methyl SA (inactive) into SA, and Non-expressor of pathogenesis-

related genes 1 (NPR1), a transcriptional regulator of SA-mediated systemic 

acquired resistance. To test SA-signaling pathway is involved in G10-CC-

mediated cell death, ICS2-, NPR1-and SABP2-silenced plants were used. 

Unexpectedly, cell death induced by CC309 and Pvr4 with NIb was 

significantly enhanced in ICS2-, NPR1-and SABP2-silenced plants compared 

with TRV-GFP plants (Figure 16A). Silencing efficiency in silenced plants 

was confirmed by qRT-PCR using gene-specific primers (Figure 16B). To 

further confirm that endogenous SA level affects the G10-CC-mediated cell 

death, transgenic plants expressing the bacterial NahG gene which encodes 

salicylate hydroxylase that degrades SA, were examined. NahG transgenic 

plants accumulate very little SA and are defective to systemic acquired 
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resistance (SAR) (Delaney et al., 1994). As observed in ICS2-, NPR1-and 

SABP2-silenced plants, cell death caused by the G10-CC domain was 

enhanced in NahG transgenic plants (Figure 17A). To quantify cell death, the 

leakage of ions caused during cell death was measured in the infiltrated site 

(Figure 17B). Interestingly, ICS2, SABP2 and NPR1-silenced plants also 

showed accelerated cell death induced by INF1-mediated cell death. Since 

both ICS2 and SABP2 gene are involved in synthesis of SA and production of 

active SA respectively, low accumulation of SA might affect the virulence of 

Agrobacterium, which results in increasing the expression level of G10-CCs. 

Indeed, ICS2-, NPR1-, and SABP2-silenced N. benthamiana was reported to 

exhibit the increased susceptibility to Agrobacterium (Anand et al., 2008). 

While ICS2-, NPR1-, and SABP2-silencing enabled significant reduction in 

transcript level of these genes compared to the GFP-silenced plant, these 

silenced plants did not lose the ability to mount cell death in response to G10-

NLR and G10-CC domain. These data suggest that cell death induced by 

G10-NLR or G10-CC domain was not associated with SA-signaling pathway.  
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Figure 15. Cell death induced by G10-CC or G10-NLR does not require 
EDS1 and NDR1. 
Agrobacterium carrying CC309 and Pvr4 with NIb were transiently infiltrated 
in NbEDS1 and NbNDR1-silenced N. benthamiana. The photographs were 
taken 72 hr after infiltration. (B) Silencing efficiency in NbEDS1 and 
NbNDR1-silenced plants. Samples were collected 2 weeks after 
Agroinfiltration. Transcript level for each gene were analyzed by qRT-PCR 
using a NbEF1-a gene as an internal control. 
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Figure 16. Cell death induced by G10-CC domain or G10-NLR is enhanced 
in salicylic acid biosynthesis or signaling related genes-silenced plants. 
(A) Agrobacterium carrying G10-CC domain and G10-NLR were transiently 
infiltrated in NbICS2, NbNPR1 or NbSABP2-silenced N. benthamiana. (B) 
Silencing efficiency in NbICS2, NbNPR1 or NbSABP2-silenced plants. 
Samples were collected 2 weeks after Agroinfiltration. Transcript level for 
each gene were analyzed by qRT-PCR using a NbEF1-a gene as an internal 
control. 
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Figure 17. Cell death induced by G10-CC domain or G10-NLR is enhanced 
in NahG transgenic plant. 
(A) G10-CC domains and G10-NLRs were transiently expressed in WT and 
NahG transgenic plant. The photograph was taken 48 hr post infiltration. (B) 
Electrolyte leakage was measured at 30 hr post infiltration. Data show 
average and SD of three replicates.  
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SAHH is a candidate interacting protein of G10-CCs 

To better understand the molecular basis of cell death of G10-CCs, 

protein pull down assay was performed to identify binding partners of G10-

CCs in the N. benthamiana expressing 3xFLAG-tagged CC309 protein 

(Table 2). Unexpectedly, most of candidate proteins were predicted to be 

localized to chloroplast, even though CC309 were localized at the plasma 

membrane. For further study, S-adenosyl homocysteine hydrolase (SAHH) 

was chosen, because the peptides of SAHH were detected in duplicate IP 

(immunoprecipitation) samples and cytoplasmic SAHH was expected to be 

likely to interact with plasma membrane-localized CC309 (Lee et al., 2012). 

SAHH is a key enzyme in cycle to synthesis of S-adenosyl-methionine 

(SAM), which donates its methyl group to numerous methylation reactions. 

Li et al., 2015 reported that expression of tomato SAHH genes is induced by 

virulent bacterial pathogen, Pseudomonas syringae pv. Tomato (Pst) DC3000 

and by the hormones such as SA, JA and precursor of ethylene in tomato. 

Moreover, SAHH-silenced tomato plants exhibited increased SA level and 

enhanced resistance to Pst DC3000. 

There are three copies of the SAHH genes in N. benthamiana genome and 

two of them were detected by LC-MS/MS analysis. To test if N. benthamiana 

SAHHs are also involved in defense responses, two NbSAHH genes were 
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silenced in N. benthamiana using VIGS system. Silencing of NbSAHHs 

resulted in inhibition of developmental growth with aberrant leaf expansion 

showing an epinastic phenotype (Figure 18A). Additionally, the leaves of 

NbSAHH-silenced plant became wilted and some death spot was exhibited on 

the silenced leaves. To explore the involvement of these phenotypes in 

defense responses, accumulation of ROS in NbSAHH-silenced plants was 

examined by DAB staining. Compared with control plants, H2O2 

accumulation was observed in SAHH-silenced plants without any inoculation 

of pathogen (Figure 18B). These data suggest that inactivation of SAHHs 

might induce constitutive activation of immune responses.  

To assess the effect of SAHH on the G10-CC domain-mediated cell death, 

C-terminal GFP-tagged SAHH and CC309 were co-expressed in N. 

benthamiana. When Agrobacterium contacting SAHH-GFP and CC309 were 

co-infiltrated in N. benthamiana, CC309-mediated cell death was slightly 

decreased in infiltrated leaves. The possibility was considered that CC309 

rapidly induced cell death before SAHH had not been sufficiently expressed 

or fully maturated to function properly. To rule out this possibility, 

Agrobacterium harboring CC309 was infiltrated 4 hr after transient 

expression of SAHH or GFP alone by agroinfiltration. In contrast with GFP, 

cell death triggered by CC309 was clearly compromised by co-expression 
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with SAHH-GFP (Figure 19A). In addition, cell death induced by CC322 (the 

CC domain of Pvr4) or Pvr4 with NIb was also affected co-expression with 

SAHH in N. benthamiana (Figure 19B). However, cell death induced by INF1 

was not affected by co-expression of SAHH. These results suggest that SAHH 

may be involved in the G10-NLR mediated cell death, but not INF1-mediated 

cell death in N. benthamiana. 

However, it is necessary to confirm that the G10-CC domain directly 

interacts with SAHHs and how the G10-CC domain regulates the activity of 

SAHH. Nonetheless, these results suggest that SAHH may function as a 

repressor of cell death induced by G10-CC domain and G10-NLRs and serve 

as a potential target of G10-CC domain to trigger cell death.  
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 Table 3. Candidate proteins identified as interactor proteins with CC309 
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CC309   23000 0 0 0 0 6 166 7 57 1.00E
+00 

1.00E
+00 

3.70E
+09 

2.80E
+08 

995000000 43261 

GFP   26869 27 987 29 135
2 0 0 0 0 6.00E

+10 
2.50E
+11 

1.00E
+00 

1.00E
+00 0 0 

NbS00015312g
0005.1 

WrbA 
_quinone 
reductase 

Plastid 25559 0 0 0 0 0 0 8 47 1.00E
+00 

1.00E
+00 

1.00E
+00 

2.90E
+07 7250000 284 

NbS00002207g
0005.1 

WrbA 
_quinone 
reductase 

Plastid 20397 0 0 0 0 0 0 6 41 1.00E
+00 

1.00E
+00 

1.00E
+00 

2.10E
+07 5250000 257 

NbS00040464g
0006.1 

WrbA 
_quinone 
reductase 

Plastid 21576 0 0 0 0 0 0 4 20 1.00E
+00 

1.00E
+00 

1.00E
+00 

1.80E
+07 4500000 209 

NbS00028438g
0001.1 

Thioredoxin 
M precursor Plastid 12885 0 0 0 0 1 1 4 13 1.00E

+00 
1.00E
+00 

4.20E
+04 

7.60E
+06 1910500 148 

NbS00014241g
0002.1 

AtpA 
_ATP 

synthase 
subunit α 

Plastid 21833 0 0 0 0 1 3 1 4 1.00E
+00 

1.00E
+00 

3.90E
+06 

1.70E
+06 1400000 64 

NbS00056676g
0007.1 

WrbA 
_quinone 
reductase 

Plastid 13891 0 0 0 0 0 0 1 5 1.00E
+00 

1.00E
+00 

1.00E
+00 

3.10E
+06 775000 56 

NbS00019029g
0008.1 APX1 Plastid 27448 0 0 0 0 1 8 8 32 1.00E

+00 
1.00E
+00 

3.80E
+05 

5.20E
+06 1395000 51 
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_Ascorbate 
peroxidase 

NbS00018155g
0020.1 

Glyoxylate 
reductase Cytosol 50719 0 0 0 0 0 0 2 3 1.00E

+00 
1.00E
+00 

1.00E
+00 

9.00E
+06 2250000 44 

NbS00026910g
0004.1 

Nucleoside 
diphosphate 

kinase 1 

Mitochon
dria 

16288 0 0 0 0 0 0 5 12 1.00E
+00 

1.00E
+00 

1.00E
+00 

2.70E
+06 675000 41 

NbS00053747g
0002.1 

SAHH 
_S-adenosyl 
homosystein 

hydrolase 

Cytosol 10537 0 0 0 0 1 2 1 4 1.00E
+00 

1.00E
+00 

1.10E
+05 

1.50E
+06 402500 38 

NbS00008945g
0004.1 

Pyruvate 
kinase 

Cytosol 
/Chloropl

ast 
57368 0 0 0 0 0 0 14 36 1.00E

+00 
1.00E
+00 

1.00E
+00 

6.70E
+06 1675000 29 

NbS00010360g
0001.1 

AtpA 
_ATP 

synthase 
subunit α 

Plastid 10741 0 0 0 0 1 3 1 2 1.00E
+00 

1.00E
+00 

1.00E
+06 

2.00E
+05 300000 28 

NbS00038282g
0004.1 

PSAN 
_Photosyste
m I reaction 

centre 
subunit N "; 

Plastid 18046 0 0 0 0 0 0 1 3 1.00E
+00 

1.00E
+00 

1.00E
+00 

1.90E
+06 475000 26 

NbS00016819g
0006.1 

CYP20-1 
_cyclophilin
-like protein 

Unknown 26379 0 0 0 0 0 0 1 6 1.00E
+00 

1.00E
+00 

1.00E
+00 

2.30E
+06 575000 22 

NbS00035717g
0012.1 

PRXQ 
_Peroxiredo

xinQ 
Plastid 23572 0 0 0 0 0 0 2 6 1.00E

+00 
1.00E
+00 

1.00E
+00 

2.00E
+06 500000 21 

NbS00009002g
0109.1 

UGP_ 
glucose-1-
phosphate 

uridylyltrans
ferase 

Plastid 43052 0 0 0 0 1 1 12 30 1.00E
+00 

1.00E
+00 

2.40E
+04 

3.60E
+06 906000 21 

NbS00001322g
0010.1 

AtpA 
_ATP 

synthase 
subunit α 

Plastid 35443 0 0 0 0 2 4 2 3 1.00E
+00 

1.00E
+00 

1.90E
+06 

7.90E
+05 672500 19 
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NbS00033013g
0010.1 

UPTG2 
_ Alpha-1 
4-glucan-

protein 
synthase  

Plastid 44207 0 0 0 0 2 2 3 9 1.00E
+00 

1.00E
+00 

7.20E
+04 

3.20E
+06 818000 19 

NbS00014507g
0009.1 

PRXIIF 
_Peroxiredo

xin 2F 
Plastid 20957 0 0 0 0 0 0 2 6 1.00E

+00 
1.00E
+00 

1.00E
+00 

1.50E
+06 375000 18 

NbS00042478g
0005.1 

SHMT 
_Serine 

hydroxyl 
methyltransf

erase 

Unknown 57324 0 0 0 0 1 3 6 22 1.00E
+00 

1.00E
+00 

1.50E
+05 

3.70E
+06 962500 17 

NbS00054073g
0003.1 

PRXIIC 
_Peroxiredo

xin 2C 
Plastid 13942 0 0 0 0 1 1 3 7 1.00E

+00 
1.00E
+00 

1.30E
+04 

8.80E
+05 223250 16 

NbS00018070g
0006.1 

AtpE 
_ATP 

synthase 
CF1 epsilon 

subunit 

Plastid 8814 0 0 0 0 2 4 1 3 1.00E
+00 

1.00E
+00 

2.90E
+05 

2.30E
+05 130000 15 

NbS00003479g
0020.1 

COMT 
_catechol O-
methyltransf

erase 

Unknown 39715 0 0 0 0 2 4 2 7 1.00E
+00 

1.00E
+00 

1.30E
+05 

2.10E
+06 557500 14 

NbS00025946g
0006.1 

AtpF 
__ATP 

synthase 
subunit I 

Plastid 11207 0 0 0 0 2 5 1 2 1.00E
+00 

1.00E
+00 

5.80E
+05 

4.80E
+04 157000 14 

NbS00060910g
0004.1 

PRXQ 
_Peroxiredo

xinQ 
Plastid 22999 0 0 0 0 0 0 4 10 1.00E

+00 
1.00E
+00 

1.00E
+00 

1.20E
+06 300000 13 

NbS00005125g
0015.1 

Glycolate 
oxidase Plastid 38806 0 0 0 0 0 0 7 15 1.00E

+00 
1.00E
+00 

1.00E
+00 

2.00E
+06 500000 13 

NbS00013149g
0011.1 

PRO3 
_Profilin 3 Unknown 14455 0 0 0 0 0 0 1 4 1.00E

+00 
1.00E
+00 

1.00E
+00 

7.20E
+05 180000 12 

NbS00011498g
0005.1 

THF1 
_Thylakoid 
formation 1 

Plastid 17161 0 0 0 0 0 0 1 1 1.00E
+00 

1.00E
+00 

1.00E
+00 

8.20E
+05 205000 12 
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NbS00017897g
0003.1 Unknown Unknown 13135 0 0 0 0 0 0 1 3 1.00E

+00 
1.00E
+00 

1.00E
+00 

6.20E
+05 155000 12 

NbS00017162g
0026.1 

Peptidyl-
prolyl cis-

trans 
isomerase 

Unknown 23463 0 0 0 0 0 0 5 18 1.00E
+00 

1.00E
+00 

1.00E
+00 

1.10E
+06 275000 12 

NbS00028134g
0008.1 

Eif3ja 
_Translation 

initiation 
factor eIF3 

subunit 

Nucleus 25161 0 0 0 0 2 5 4 8 1.00E
+00 

1.00E
+00 

4.60E
+05 

6.60E
+05 280000 11 

NbS00035350g
0004.1 

Pyruvate 
kinase 

Cytosol 
/Chloropl

ast 
14890 0 0 0 0 0 0 2 8 1.00E

+00 
1.00E
+00 

1.00E
+00 

6.40E
+05 160000 11 

NbS00027882g
0011.1 

LAPA2 
_Leucine 

aminopeptid
ase 

Cytosol 
/Chloropl

ast 
60648 0 0 0 0 0 0 15 45 1.00E

+00 
1.00E
+00 

1.00E
+00 

2.60E
+06 650000 11 

NbS00004640g
0017.1 

Pyruvate 
kinase 

Cytosol 
/Chloropl

ast 
49776 0 0 0 0 1 3 8 19 1.00E

+00 
1.00E
+00 

1.80E
+04 

2.10E
+06 529500 11 

NbS00009456g
0023.1 

CLEB3J9 
_Ascorbate 
peroxidase 

Plastid 39656 0 0 0 0 1 2 5 9 1.00E
+00 

1.00E
+00 

3.50E
+04 

1.50E
+06 383750 10 

NbS00001892g
0060.1 

SOD 
_Manganese

/iron 
superoxide 
dismutase 

Mitochon
dria 

25987 0 0 0 0 1 2 1 3 1.00E
+00 

1.00E
+00 

5.60E
+04 

9.40E
+05 249000 10 

*: Peptide-spectrum match 
**: Sum intensity of peptide areas for a given protein 
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Figure 18. NbSAHH-silenced plants exhibit inhibition of growth and 
enhanced H2O2 accumulation.  
(A) Silencing of NbSAHHs inhibited developmental growth with the aberrant 
leaf expansion showing an epinastic phenotype. 
(B) Leaves of silenced plants were stained with diaminobenzidine (DAB) to 
visualize accumulation of hydrogen peroxide. 
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Figure 19. NbSAHH impairs cell death induced by G10-CC domain and G10-
NLR. 
Transient expression of GFP and SAHH-GFP were followed 4 hr later by 
infiltration of Agrobacterium carrying CC309 (A), CC322, Pvr4 with NIb and 
INF1 (B). Photos were taken 48 hr after agroinfiltration.  
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CHAPTER V. DISCUSSION 

 

Distinct role of G10-NLRs in plant immunity 

Screening for pepper autoactive NLR revealed that 16 out of 415 NLRs 

induced cell death when overexpressed in N. benthamiana (Table 2). Among 

them, only two and three autoactive NLR genes in GT and G10 respectively, 

contain an autoactive N-terminal domain, whereas none of N-terminal 

domains of autoactive NLRs in the other groups induced cell death. Similarly, 

although overexpression of the full-length Arabidopsis RPS2 and RPS5 

induced HR-like cell death in absence of the corresponding effectors, 

expression of the CC-NB domain, not the CC domain alone, induces cell 

death (Day et al., 2005; Ade et al., 2007). In this cases, the CC domains of 

RPS2 and RPS5 seemed not to be sufficient for cell death induction. 

Moreover, overexpression of NB domain of potato Rx resistance protein 

induces HR-like cell death, suggesting that other subdomains in NLR also has 

the property to trigger cell death signaling. Therefore, these observations 

indicate that NLR protein might transduce a downstream signaling in diverse 

way. 



７４ 
 

Recently, transient overexpression of the CC domains from I2-like genes 

in tomato and tobacco was reported to induce cell death in N. benthamiana, 

but never with the CC domains of the pepper I2-like NLRs (Hamel et al., 

2016). Interestingly, fusion of the enhanced yellow fluorescent protein (YFP) 

to the C-terminal of CC domain of pepper I2-like NLRs (note that the pepper 

I2-like NLRs belong to G4) trigger strong cell death upon transient 

overexpression in N. benthamiana. This tag-dependent autoactivity has been 

observed in several CC domains of NLRs regardless of the level of protein 

accumulation (Wang et al., 2015). The GFP and YFP are known to have a 

weak dimerization tendency, which might have affected the activity of CC 

domain to induce cell death. Since cell death activity of N-terminal domain 

with no tag was screened in this study, the G4-CC domains in pepper were 

not identified. 

G10-NLRs have different features from typical CNLs. Most of the CNL-

type functional R proteins contain the conserved ‘EDVID’ motif in their CC 

domain and disruption of this motif compromised disease resistance (Rairdan 

et al., 2008). However, like CCR type NLRs, G10-CC domain lacks ‘EDVID’ 

motif which plays an important role in intramolecular interaction with NB-

ARC or LRR domain and intermolecular interaction (Rairdan et al., 2008). In 

addition, phylogenetic tree constructed by NLRs from 3 pepper species 
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(Capsicum annuum, C. baccatum and C. chinense), tomato, potato and rice 

revealed that G10-NLRs was branched out from typical CNL groups and 

closely related to TNLs and CCR group (Figure 20). NRG1 and ADR1, 

members of CCR-NLR group, are evolutionally ancient and conserved in 

angiosperm (Collier et al., 2011b). Recently, these genes have been known to 

function as ‘helper’ NLRs required for some NLR-mediated resistance. 

Moreover, transient overexpression of their CCR domains is sufficient to 

induce HR responses. Taken together, these findings opened up the possibility 

that G10-NLRs may have a distinct role in plant immunity especially in terms 

of cell death.  

 

Downstream signaling of G10-NLR mediated cell death 

Downstream signaling components for ETI are well conserved. Among 

them, molecular chaperone components, HSP90 and SGT1 are essential for 

proper folding and accumulation of NLRs. Previously, it was shown that 

Pvr4-mediated HR cell death was abolished in SGT1- and HSP90- silenced 

plants (Kim et al., 2018). As expected, cell death induced by overexpression 

of G10-CC was also compromised in HSP90- and SGT1-silenced plants 

(Figure 6). Thus, both cell death induced by G10-NLR with effector and G10-

CC alone requires SGT1 and HSP90 to initiate the defense signaling. 
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To investigate more essential component of G10-NLR signaling, cell 

death induced by G10-NLR or G10-CC was examined in plants where 

transcription level of SA signaling genes, and defense signaling hub genes 

(EDS1 and NDR1) were reduced by VIGS. Unexpectedly, G10-NLR 

mediated cell death was not affected these genes (Figure 15 and 16). These 

results can be explained by a functional redundancy. Especially, redundancy 

between EDS1 and NDR1 disease resistance pathways were reported in 

Arabidopsis RPP7- and RPP8-mediated immunity against the oomycete 

pathogen Hyaloperonospora arabidopsidis (McDowell et al., 2000). 

Moreover, cell death induced by G10-NLRs did not seemed to require 

accumulation of SA, though SA-responsive gene PR1 was highly expressed 

during induction of cell death by G10-NLR or G10-CC domain (Figure 17). 

These results implied G10-NLR-mediated cell death is not associated with 

SA accumulation and may require others yet undiscovered signaling 

component of immune signaling. 

 

Potential role for SAHH in the regulation of HR cell death 

SAHH is a key enzyme hat catalyzes the hydrolysis of S-adenosyl 

homocysteine (SAH) to adenosine and L-homocysteine in transmethylation 

reactions. Homocystein is converted to methionine, a precursor of S-
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adenosylmethionine (SAM) which is an important molecule involved in 

various biological reactions including 5’ end cap methylation, polyamine 

biosynthesis, methionine salvation cycle and ethylene biosynthesis (De et al., 

2018). SAHH acts to recycle the SAH in methionine synthesis cycle. Given 

that a large set of methyl acceptor compounds such as nucleic acids, lipids 

and cell wall components in the cell, knock-out of some genes involved in 

this cycle results in developmental abnormalities or completely sterile. 

Actually, mutations of Arabidopsis methionine adenosyltransferase 4 

(MAT4), which encodes SAM synthase and Arabidopsis SAHH1 are embryo- 

lethal, indicating these SAM cycle genes are essential genes in plant (Rocha 

et al., 2005; Meng et al., 2018). 

In this study, SAHH was screened out as a candidate protein interacting 

with the G10-CC domain by the protein pull-down experiment with LC-

MS/MS analysis. Since the by-products from SAM cycle are involved in 

numerous reactions in the cell, it is not easy to definitely explain how SAHH 

will associate with cell death induced by G10-NLR or G10-CC. However, the 

following scenario can be proposed to explain the possible roles of SAHH in 

HR-like cell death. 

The G10-NLR or G10-CC mediated cell death was almost completely 

abrogated by co-expression of SAHH in N. benthamiana. This result 
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demonstrated that SAHH act as a negative regulator of cell death induced by 

G10-CC or G10-NLR. G10-CC may lead to inactivation of SAHH protein by 

regulating the protein stability or blocking the active sites of this enzyme. The 

inactivation of SAHH may then build up the cellular environment to be 

favorable for cell death. Previous reports showing that SAHH knock-down 

plants exhibited enhanced defense responses corroborated this hypothesis (Li 

et al. 2015). Transgenic plant with low expression level of SAHH showed a 

pleiotropic phenotype including developmental abnormalities and 

hypomethylation of DNA (Tanaka et al., 1997). Genome-wide analysis of 

gene expression pattern in Arabidopsis SAHH1 mutant revealed that a subset 

of gene transcripts was up-regulated (Jordan et al., 2007). Many of the 

differential expressed genes were mapped to pathways essential to plant 

growth and development including those of primary, secondary and hormone 

metabolisms (Ouyang et al., 2012). However, it is difficult to conclude that 

global expression change by hypomethylation of DNA directly causes cell 

death. 

The second aspect is a ROS accumulation. ROS functions as ‘redox 

messengers’ to trigger programmed cell death in plant. SAHH-silenced plant 

showed increased accumulation of H2O2 (Figure 18B), indicating that SAHH 

functions as a negative regulator for ROS accumulation. Recently, De et al., 
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2018 presented that SAM synthase and SAHH silencing caused a significant 

reduction in glutathione level in PVX-infected plants (De et al., 2018). 

Glutathione is oxidized by ROS and functions as an antioxidant agent that 

prevents excessive oxidation of sensitive cellular components (Noctor et al., 

2012). At present, it is not clear how disruption of methylation biosynthesis 

pathway can affect glutathione concentration. In animal and fungi, reverse-

transsulfuration enzyme which catalyzed homocysteine to cysteine and 

glutathione biosynthesis is present whereas that enzyme could not be detected 

in plant and bacteria. It was, however, reported that plants possess an 

alternative to the reverse-transsulfuration pathway via methanethiol (Goyer 

et al., 2007), supporting that methionine pathway could have an effect on 

glutathione biosynthesis by regulating biosynthesis of cysteine, a precursor 

of glutathione. To address this hypothesis, further study is necessary to verify 

if inactivation of SAHH actually links to reduction of glutathione level and 

ROS accumulation. 

The third scenario is high accumulation of cytokinins. Previously, SAHH 

was found to be present in a cytokinin-binding protein complex purified from 

tobacco leaves, thus SAHH was proposed to be a cytokinin-binding protein 

(Mitsui et al., 1993). It was also reported that partial loss-of function mutation 

of the Arabidopsis SAHH1 gene and antisense of tobacco SAHH resulted in 
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accumulation of cytokinins (Masuta et al., 1995; Li et al., 2008). It can be 

assumed that reduction of SAHH amount resulted in increase in the number 

of free active cytokinin molecules. Moreover, plants overexpressing 

cytokinin synthesis gene, Arabidopsis isopentenyltransferase (ipt) developed 

necrotic lesion and severe wilting as similar to the phenotype of SAHH-

silenced N. benthamiana (Figure 18A). These evidences indicate the 

possibility that cytokine mediates cell death induced by G10-NLR or G10-

CC. 

Several scenarios were proposed to explain how SAHH affects to 

mediate cell death induced by G10-NLR. However, more experiments need 

to be conducted to prove these hypotheses. Above all, direct evidence 

demonstrating the interaction between SAHH and G10-CCs should be 

presented in order to establish molecular mechanism underlying G10-NLR 

mediated cell death. 

In this study, molecular mechanism in which G10-NLR or G10-CC 

domains induce HR-like cell death was examined. Autoactive G10-CC 

domains are suitable materials to study how NLRs trigger HR cell death, a 

most extreme type of plant defense responses. The results in this study will 

provide the clues to understand the distinct role of G10-NLRs in plant 

immunity.  



８１ 
 

 

 

Figure 20. Phylogenetic tree of NLRs in six plant species. 
All NB-ARC domains of NLRs in pepper (Capsicum annuum, C. baccatum 
and C. chinense), tomato, potato and rice were used for the phylogenetic 
relationship analysis. This phylogenetic tree was constructed by a neighbor-
joining method with MEGA6. Subgroups were classified into 17 groups 
according to Seo et al., 2016. 
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ABSTRACT IN KOREAN 

 

식물은 오랜 시간 동안 병원균에 대응해오면서 다양한 저항성 기작을 진

화시켜 왔다. 그 중 nucleotide-binding domain and leucine-rich repeat 

(NLR) 유전자는 병원균이 식물에 병을 내기 위해 식물 세포 내로 분비하

는 effector 단백질을 인지하여, 식물이 저항성 반응들을 나타낼 수 있

도록 하는 대표적인 저항성 유전자이다. Effector 를 인지한 NLR 단백질

은 구조 변화를 통해 활성 상태로 전환되고 그 이후 저항성 반응을 유도

하게 하는데, 그 중 가장 강력한 저항성 반응으로 세포사멸 

(hypersensitive cell death)이 있다. 

NLR 은 크게 3 개의 주요 도메인으로 구성되어 있다. C-말단에는 LRR

도메인, 중앙에는 NB-ARC 도메인, 그리고 N-말단에는 TIR 또는 CC 도메

인이 존재한다. NLR 은 N-말단 도메인에 따라 TNL 과 CNL 로 나누어 진

다. N-말단 도메인은 NLR 단백질의 신호를 전달하는 역할을 하며 병원균

이 존재하지 않은 상황에서는 NB-ARC 또는 LRR 도메인과 상호작용을 통

해 그 기능이 억제 되고 있다고 알려져 있다. 

본 연구에서는 고추에 존재하는 NLR 유전자 415 개에 대하여 NLR 전체

와 N-말단 도메인의 세포사멸활성을 Agrobacterium 을 이용한 일시적 과
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발현을 통해 스크리닝하였다. 그 결과 그룹 10 번 NLR 의 CC 도메인이 특

이적으로 높은 비율로 세포사멸활성을 가지는 것으로 확인되었다. 고추 

외 다른 가지과 식물인 토마토와 담배의 그룹 10 번 NLR 의 CC 도메인도 

세포사멸활성을 가지는 것으로 나타났다. 그룹 10 번 NLR 의 CC 도메인이 

유도하는 세포사멸이 일어나는데 있어 NLR 의 molecular chaperone 

complex 가 필요하며, 세포사멸이 진행되는 동안 식물의 저항성반응에 

관여하는 유전자들의 발현이 증가됨을 통해 그룹 10 번 NLR 의 CC 도메인

의 과발현을 통해 유도된 세포사멸이 식물의 저항성 기작과 관련 있음을 

입증하였다. 다음으로 그룹 10 번 NLR 의 CC 도메인이 유도하는 세포사멸

에 관여하는 하위 신호전달 체계를 규명하기 위하여 VIGS 를 이용한 스

크리닝을 진행하였다. NLR 타입 저항성 유전자가 매개하는 저항성의 중

요 조절인자인 EDS1 과 NDR1, 그리고 SA 호르몬 생합성 및 하위 신호전달

은 그룹 10 번 NLR 의 CC 도메인이 유도하는 세포사멸에 있어 필수적이지 

않음을 밝혔다. 

 또한 그룹 10 번 NLR 의 CC 도메인들의 구조 분석을 통한 기능 연구를 

통해 CC 도메인의 첫번째 α-helix 가 세포사멸활성에 중요함을 확인하였

다. 그룹 10 번 NLR 의 CC 도메인의 세포사멸 기작을 이해하기 위하여 CC 

도메인의 상호작용인자를 동정하기 위한 pull-down 및 LC-MS/MS 실험을 

진행한 결과 S-adenosyl homocysteine hydrolase (SAHH) 가 CC 도메인의 
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상호작용 후보 유전자로 동정되었다. SAHH 는 CC 도메인과 동시 과발현시 

CC 도메인이 유도하는 세포사멸을 억제하는 것으로 보아 CC 도메인의 세

포사멸활성의 negative regulator 로서의 역할을 하는 것으로 추측된다. 

SAHH 유전자의 발현이 감소한 담배식물체에서는 병원균 접종 없이도 ROS

가 과다 축적되었고, 이를 통해 CC 도메인이 SAHH 를 비활성화 시킴으로

써 ROS 가 증가되어 세포사멸을 유도하는 것으로 유추할 수 있었다. 

  본 연구를 통해 그룹 10 번 NLR 의 CC 도메인이 특이적으로 세포사멸을 

유도한다는 것이 밝혀졌다. 그룹 10 번 NLR 의 CC 도메인이 유도하는 세

포사멸기작에 대한 연구는 NLR 단백질이 어떻게 세포사멸을 유도하는 

지, 더 나아가 식물의 병 저항성에 있어 고추의 그룹 10 번 NLR 유전자들

의 기능에 대한 이해를 돕는 데 실마리가 될 것이다. 
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