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Abstract 

Exploring Spatial Variations in the Influences of  

Health-threatening Anthropogenic Factors on Human Health:  

An ESDA Approach to Remote Sensing Data 

Lei Zhu 

Dept. of Social Studies Education 

Geography Major 

The Graduate School 

Seoul National University 

The distribution pattern of disease and health care delivery are the 

two major strands of health geography. A great deal of resources and 

geographic analytical techniques have been utilized to conduct research 

on these two principal concerns. Due to the abundant information and 

the wide spatiotemporal scale, remote sensing has been widely applied in 

the studies of health geography since the 1970s. By using remotely sensed 

data, the main objective of this study is to explore spatial variations in the 

influences of health-threatening anthropogenic factors on human health 

under the exploratory spatial data analysis (ESDA) framework. 

Diverse remote sensing data from Landsat 8 and the Visible Infrared 

Imaging Radiometer Suite (VIIRS) have been utilized in this study to extract 

potential health-threatening anthropogenic. In these two examples, the 

man-made impervious surface (IMS) and the exposure to artificial 

nighttime light (NTL) have been extracted as the most representative 
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potential health-threatening anthropogenic factors. Meanwhile, the 

discomfort index (DI) and non-accident mortality as well as the prevalence 

of breast cancer were considered as potential public health outcomes 

influenced by those factors.  

Based on this, the distributive characteristics of potential health-

threatening anthropogenic factors as well as their possible health 

outcomes and the spatial co-pattern detection between the two variables 

have been firstly analyzed. Results show that the potential health-

threatening anthropogenic factors have a tendency to concentrate in 

urban area, while their possible health outcomes have various spatial 

distributive features. These two variables tend to have a positive spatial 

association. Next, spatial variations in the influences of health-threatening 

anthropogenic factors on human health has been estimated by spatial 

regression analysis. The results indicate that man-made IMS and NTL are 

the main influencing factors for the increase of the DI value and the 

increase of the breast cancer prevalence rate.  

 

Keywords: health-threatening anthropogenic factors, human health, 

remote sensing, spatial variation, spatial association measure, health 

geography 

Student Number: 2015-30770 
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 Introduction 

1.1  General backgrounds 

Health is one of the basic prerequisites of a productive entity or 

community, and the health of a nation is strongly associated with the 

nation’s economy and living standard (Coombes, 1993). Since John Snow’s 

pioneering research on the communication of cholera in the 19th century, 

placing diseases and health conditions within the geographical framework 

has long been an integrated practice of public health (Lipton et al., 2009). 

Initially, studies on geography of health and disease remained a sub-field 

of medical and health service research, with being named geographic 

pathology, geographical epidemiology, geomedicine, to name a few. 

However, since 1940s, human geographers started to attend directly in 

disease and health studies by applying geographical disciplinary 

perspectives and developed medical geography as a recognized sub-

discipline of human geography (Andrews and Moon, 2005).  

Till now, there are two main tasks for medical geographers, one is 

mapping and modelling the spatial pattern of determinants and the 

diffusion of diseases, the other one is related to the location, distribution, 

accessibility and utilization of the health services (Kearns and Moon, 2002; 

Andrews and Moon, 2005; Gatrell and Elliott, 2014). Among which, 

researches on what are the distributive features of the diseases and what 
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are the relationships with other features can not only inform us the health 

inequalities among regions, present us the possible risk factors, and more 

essentially, assist us to make more accurate decisions and policy for human 

well-being.  

In the studies on health geography, cartographic and statistical 

methods are usually adopted in the studies on disease incidence and 

spatial diffusion, while qualitative methods are often applied to study how 

people cope with their environment (Gatrell and Elliott, 2014). In 1970, 

Cline published an overview article “New Eyes for Epidemiologists: Aerial 

Photography and Other Remote Sensing Techniques” as the first extensive 

review of the epidemiological application of the remote sensed data (Cline, 

1970). Whereafter, due to the launch of Landsat-1 about 50 years ago, an 

increasing number of health studies have utilized remotely sensed data to 

monitor, surveil, or map health risk factors (Cline, 1970; Beck et al., 2000). 

Various remote sensors like Landsat’s Multispectral Scanner (MSS) and 

Thematic Mapper (TM), the National Oceanic and Atmospheric 

Administration (NOAA)’s Advanced Very High Resolution Radiometer 

(AVHRR) and so on are used in the health geography studies (Thompson 

et al., 1996; Clarke et al., 1991; Beck et al., 2000; ). However, the main 

factors derived from remote sensed data are natural factors (Rogers and 

Randolph, 1991; Rodriguez et al., 1996; Dister et al., 1997 ), like vegetation 

cover, water bodies, soil wetness, to name a few, with little mention with 

the anthropogenic factors.  
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What’s more, in the previous studies on the health geographical 

application of remotely sensed data adopted statistical methods such as 

correlation, regression analysis to study the risk factors derived from the 

remotely sensed data and the health outcomes (Linthicum et al., 1987; 

Thompson et al., 1996; Thomson et al., 1997). But as Tobler (1970) 

proposed, everything is related to everything else, but near things are 

more related than distant things. The lack of the utilization of spatial 

statistical evaluation between the risk factors derived from remotely 

sensed data and the health outcomes is also a research gap to be solved. 

Based on the previous studies, the primary objective of this study is 

to detect the spatial statistical association between the possible health-

threatening anthropogenic factors derived from remote sensing and their 

possible health outcomes.  

 

1.2 The main objectives 

Based on the research background and the research limitations in the 

existing literatures proposed above, the objectives of this study are as 

follows: 

1. Recently, similar with the terminology of “remote sensing”, there are 

many similar succeeding researches termed as “social sensing (Liu et al., 

2015)”, which means the big geospatial data on individual-level and the 
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related methods; and “human sensing (Lopez et al., 2017)”, which means 

sensing human beings with various methods like communication data and 

so on. Based on the previous studies, due to the difficult availability of 

health-related data and the merits of remote sensing on both large spatial 

and temporal scales, I strive to build the bridge between the health and 

the remote sensing on the aspect of anthropogenic factors, which I prefer 

to name as “health sensing”. The expected results of “health sensing” are 

to quantify the health conditions through the remote sensing data, and 

thus take measures to lessen the possible health-threatening 

anthropogenic factors from both macro and micro scales.  

2. For the reason that the studies on detecting anthropogenic factors, 

especially the health-threatening anthropogenic factors in remote sensing 

is still on its emerging stage, and also there is little related researches in 

Korea, the second objective of this study is to detect the possible health-

threatening anthropogenic factors in Korea using remote sensing data. In 

this study, based on the previous researches, I chose “man-made IMS” and 

“exposure to NTL” as the possible health-threaten activities to detect in 

remote sensing data. 

3. The third objective of this study is to detect the spatial and temporal 

distribution pattern of the possible health outcomes which are induced by 

the possible health-threatening anthropogenic factors. In accordance with 

the previous studies, I postulate that the possible threats to human health 
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is the heat-related threats for man-made IMS and the hormone disease 

for exposure to NTL (here, we use breast cancer). 

4. The fourth objective of this study is to figure out the relation 

between the possible health-threatening anthropogenic factors in remote 

sensing and the possible health outcomes to human health. Besides the 

aspatial statistical methods, spatial statistical methods have been adopted 

to evaluate the spatial association between the variables. 

5. The final objective, which is also the fundamental objective is to 

contribute to the improvement of the human health conditions by coming 

up with some suggestions to the policy makers and the government. With 

the spatial association results between possible health-threatening 

anthropogenic factors and their possible health, besides general 

suggestions on the global scale, some detailed local suggestions can also 

be proposed, which could be more practical and with great assistance. 

 

1.3  The outline of this study 

The study contains mainly five parts, and the flow map of this study 

is shown as Figure 1-1.  

The first part is the introduction. In this part, I did a general 

introduction of this study, as well as the emerging questions and the 

objective of this study. 
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In the second part, I did the literature review and represented the 

theoretical background of this study.  

The third and fourth chapters are two cases of the possible health-

threatening anthropogenic factors derived in remote sensing and their 

possible threats to human health. For different cases, there are mainly four 

sections, including introduction, which introduce the research context, 

materials and methods used in the study, results, and conclusions and 

discussions.  

In the third part, man-made IMS is seen as one of the possible health-

threatening anthropogenic factors in remote sensing, and its possible 

threats to human health are represented by its spatial association with the 

discomfort index (DI) and non-accident mortality.  

In the fourth part, NTL is seen as one of the possible health-

threatening anthropogenic factors in remote sensing, and the breast 

cancer has been identifies as the possible threats to human health when 

excessive exposure to NTL.  

In the fifth part, I design models to identify the influences of health-

threatening anthropogenic factors on human health using both global and 

local regression models.  

In each case chapter, I first explain the spatial distribution pattern of 

the possible health-threatening anthropogenic factors derived from 
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remote sensing, then characterize the spatial distribution of the possible 

health outcomes, and finally, I demonstrate the spatial association 

between two variables by quantifying the spatial statistical association 

between them. 

The last chapter is the general conclusions and discussions. I gave a 

general conclusions, and some advantages as well as limitations in this 

study. What’s more, I also propose the follow-up studies of this study 

which should be continued.  
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Figure 1-1 Research flow of this study 

  

Influences of health-
threatening 

anthropogenic 
factors on human 

health 
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 Theoretical Underpinnings and 

Research Design 

2.1 Health geography, remote sensing, and spatial 

statistics  

2.1.1  Health geography 

The conceptual origins of geographies of health can be traced to the 

ancient Greece as Hippocrates’ “On airs, waters and places” (Hippocrates, 

2000). According to Porta (2014), health geography is “a branch of science 

concerned with the spatial variations in environmental conditions related 

to health and disease”. 

In the 20th century, researches on geography of health and disease 

developed rapidly. At first, it remained a sub-field of medical and health 

research, variously named as “geographic pathology”, “geomedicine”, and 

“geographical epidemiology”, to name a few. Whereas, by the 1940s, 

human geographers started to participate directly in disease and health 

researches, applying the geographical perspectives and developing 

“medical geography” as a recognizable sub-discipline of human 

geography (Andrews and Moon, 2005). 

There are two traditions of medical geography, one is the health 

system planning, or so-called health care geography, another one is 
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geographical epidemiology, or the so-called disease geography (Mayer, 

1982). Before 1960s, the medical geography has been dominated by the 

mapping of the disease (Gilbert, 1958; Howe, 1989; Brown et al., 2009) . 

For example, Valentine Seaman’s dot map of the yellow fever in New York 

in 1796 (Seaman, 1798), the well-known John Snow’s map of the deaths 

distribution from cholera in the Broad Street district of London in 1854 

(Snow, 1855), and Peterman’s map of deaths from cholera in London in 

1832 (Petermann, 1852). Beginning in the 1960s, quantitative analysis and 

newly developed theories began to be applied in the studies of medical 

geographies. For example, dislike the existing cholera studies , Pyle (1969) 

linked the society hierarchy with the cholera in the United States using the 

diffusion theory.  

For some researchers, the utilization of “medical” and “health” 

geography remains considerable slippage, while the terms could be 

interchangeable in other cases (Brown et al., 2009). However, for the 

staunch health geographers, health geography emerges since 1980s due 

to the shift from attention to medical world towards an increasing concern 

with wellbeing and “broader social models” of health and health care 

services. 

Health geography is a sub-discipline of diversity and distinction. Both 

of the two traditional streams of medical geography, that is to say, disease 

geography and health care geography are continued in contemporary 
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health geography. While its attentiveness to new theories, its wide-ranging 

empirical concerns, and its diverse and flexible methodological 

approaches, establish a substantively “new” area of geographical 

researches.  

2.1.2 Remote sensing techniques in health geography 

Remote sensing is the process of collecting data of objects or 

landscape features without coming into directly contact with them (Albert 

et al., 2003). The purpose of remote sensing is not only acquire 

information, but also the application of the acquired information. Human 

have used remotely sensed data to interpret the landscape even from the 

earliest hunter-gathers. Image data allows us to receive data that are 

difficult to receive by other means, such as measuring the sizes, areas, 

depths and heights, and seeing differences over time.  

Since 1960s, the remote sensing images have been used in diverse 

research fields. The most significant reason for the remote sensing 

application on the geography of health is that the medical geography is 

“rooted in the idea that disease-causing microbes, or the infected insects 

and other creatures that transmit these microorganisms to people or 

animals, normally reside in identifiable environments” (Travis, 1997)., and 

remote sensing offers the capability to measure many characteristics of 

these environments, and record them (Cline, 1970). 

Cline (1970) published an overview article “New Eyes for 
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Epidemiologists: Aerial Photography and Other Remote Sensing 

Techniques” as the first extensive review of the epidemiological application 

of the remote sensed data. In the following studies, the main factors they 

derived with remote sensing data are vegetation cover, landscape structure, 

and water bodies (Beck et al., 2000). 

The main application of remote sensing on health geography can be 

classified into two types in general: (1) remote sensing for disease vector 

research; (2) remote sensing for disease prevention. 

The remote sensing for disease vector research may be the most 

widely application of remotely sensed data on the health geography. 

Mosquitos, trematodes, tsetse flies and ticks are the main disease vector 

studied in these researches. For instance, Rodriguez et al. (1996) analyzed 

the relationship between aerial photography derived land cover type, 

which may be the breeding and resting places of malaria mosquito, and 

some village factors like density of cattle and horses, with the mosquito 

abundance. Results showed that breeding sites located at low elevation 

sites in flooded unmanaged pastures were the most important 

determinants of mosquito abundance. Dister et al. (1997) analyzed the 

relation of Ixodes scapularis nymphs (the vector of Lyme disease) 

abundance with vegetation structure, moisture (wetness) ad vegetation 

density (greenness) derived from remote sensed data and found that high-

risk regions were significantly greener and wetter. Rogers and Randolph 

(1991) found mortality of tsetse flies, the size of male and female tsetse 
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and the abundance were significantly correlated with the factors derived 

from meteorological remote sensing data and suggested that the 

information can be used to predict the mortality and abundance of tsetse 

and to produce maps of high risk areas of disease transmission. 

For the disease prevention, Barinaga (1993) published an article 

named “Satellite Data Rocket Disease Control Efforts Into Orbit”, arguing 

the possibility of application of remote sensing into the disease controlling. 

In this article, the author gave some examples like malaria distribution in 

the remote sensing images to evaluate the disease control capability of 

remote sensed data. Also, the author said “despite the growing enthusiasm, 

disease prevention by satellite still has to prove itself for actual disease 

control”.  

There are also some researches utilizing remotely sensed data on 

medical geography in South Korea (hereafter, Korea). For example, 

Sithiprasasna et al. (2005) used both QuickBird and Landsat remote sensed 

imagery to identify the larval and adult anopheline mosquito habits in 

Korea, and showed that the immature collections of Anopheles senensis 

were significantly associated with land-used. The author also highly 

evaluated the classified remotely sensed data in the use of estimate the 

distribution of immature and adult mosquito populations. In order to 

compare the costs of two malaria-controlling methods, Claborn et al. 

(2002) applied remote sensing and geographic information systems to 
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estimate the size of vector larval habits around two U.S. Army camps in 

Gyeonggi province, Korea, and demonstrated this method allowed 

extrapolation of larval surveillance data to a regional scale. 

All in all, as Cline (1970) suggested, “there may be a whole spectrum 

of applications on health geography awaiting the imaginative researchers”. 

2.1.3  Spatial statistical approach to health geography 

Unlike the general data, data observed or measured in specific 

locations or within specific regions are spatial data. Analyzing spatial data 

with general statistical techniques may be flawed because the general 

statistical techniques are based on the aspatial assumptions (Lee, 2002). 

Instead, spatial statistics is rational during spatial data analysis. As Lee 

(2002) suggested, “spatial statistics is not simply a bundle of methods or 

statistical techniques, but is a new perspective on geographically 

referenced data with a theoretical integrity centered on space.”  

Various spatial statistical approaches have been applied in the study 

of disease pattern and the health care delivery, which are the two basic 

themes of health geography. The central role of spatial statistics in health 

geography is to (1) evaluate the differences of disease data in different 

geographical regions; (2) identify disease “clusters”; (3) observe the 

patterns of disease; (4) assess the significance of the determinant factors 

(Waller and Gotway, 2004). According to Hungerford (1991), there are 
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three issues that are critical: whether a disease is clusterd; is there any 

similar distribution of two diseases or a disease and its potential risk factor; 

and whether there are any specific relationship between the values of the 

same variable in different regions. 

For the evaluating the differences of disease data among different 

regions, the spatial patterns of the disease are always the interests of both 

the epidemiologists and health geographers. For example, Walter (1993) 

used the spatial autocorrelation indices, which are Moran’s 𝐼, Geary’s 𝑐, 

and adjacency statistics to analyzed the different cancer incidence of 

different regions. Bhunia and Shit (2019) also adopted GIS and spatial 

statistic tools to analysis the spatial-temporal patterns and distribution of 

diseases. What’s more, disease mapping as the visualization of disease 

distribution, also attract the attention of researches since decades before. 

For example, Walter and Birnie (1991) create the disease atlases of 49 

different regions in 1991. Pickle et al. (1996) made an all-causes mortality 

atlas and Devesa et al. (1999) made a separate cancer mortality atlas of 

the United States.  

The disease cluster identifying is under studying for many decades. 

For example, Alexander et al. (1989) found an evidence of spatial clustering 

of Hodgkin disease, which was along with other epidemiologic evidence. 

Kulldorff and Nagarvalla (1995) develops a new methods to detect and 

inference foe the spatial clusters of a disease. Brooker et al. (2004) analyze 
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the spatial clusters of malaria and the potential risk factors in a highland 

area of western Kenya using spatial scan statistics approach. And Sankoh 

et al. (2001) also adopts this method to study the clustering of childhood 

mortality. Dearden et al. (2019) also evaluate the health status change in 

Britain from 1991 to 2011 by analyzing the spatial autocorrelation among 

the neighbor regions.  

Literatures on health geography in the mid-1980s revealed that quite 

a few literatures were interested in the spatial analytic approaches as aids 

in understanding both the disease distributive pattern and the health care 

delivery systems (Gesler, 1986). According to Albert et al. (2003), the spatial 

analysis approaches applied in health geography can be sorted as spatial 

analytic techniques for points, lines, areas and surfaces, as shown in Table 

2-1.  

Spatial statistics have both global and local scales. The global spatial 

statistical indicators indicate the “average” and the “integral” spatial 

association, while the local ones are the decomposition of the global ones, 

and can reflect the local instabilities in the overall association (Anselin, 

1995; Lee, 2001).  
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Table 2-1 Spatial analytical techniques  

Points Surfaces 
Mean center/ standard distance Isolines  
Standard deviational ellipse Trend surface analysis 
Gradient analysis   Power series polynomials 
Nearest neighbor    Fierier series 
Variance/ mean ratio test  
Quadrat analysis Map comparisons 
Space clustering  Lorenz curves 
Space-time clustering  Coefficient of area correspondence 
 Correlation coefficient 
Lines Difference maps 
Random walk  
Vectors Relative spaces 
Graph theory: Case-control matching 
  Nodality  Acquaintance networks 
  Connectivity Multidimensional scaling 
  Nodal hierarchies  Cluster analysis 
  Flow analysis   
  
Areas   
Location quotients  
Standardized mortality ratios  
Poisson probability  
Space clustering   
Space-time clustering  
Autocorrelation measure  

Source: Albert et al., 2003: 12. 
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2.2 Main concepts in this study 

2.2.1 Anthropogenic factors 

“Anthropogenic” refers to things have been generated by human 

(Wikipedia, https://en.wikipedia.org/wiki/Anthropogenic). Anthropogenic 

factor similarly means human activity. Health-threatening anthropogenic 

factors represent for those human activities that could be harmful to 

human health. Actually, the harmful influence of anthropogenic factor has 

been studied in various fields, such as the impact on vegetation (Smiet, 

1992; Skole et al., 1994; Wackernagel and Rees, 1998), animals (Gaston et 

al., 2013; Naguib, 2013; Eriksen et al., 2014), soil (Brookes, 1995; Bridges 

and Oldeman, 1999; Oldeman et al., 2017), waters (Novotny, 1994; 

Vörösmarty et al., 2010; Chenoweth et al., 2014), geomorphology (Walling, 

2006; Goudie, 2018), climate and the atmosphere (Arnfield, 2003; Berglund, 

2003).  

With the intensifying of the impact of health-threatening 

anthropogenic factors, there are more and more human morbidity and 

mortality due to the affected environment by human activity. In the ten 

largest contributors to global disability-adjusted life-years (DALYs), there 

are at least four of them which are affected by the consequence of human 

impact on the natural environmental (Forouzanfar et al., 2016). For 

example, Rosenthal et al. (2014)proved that the IMS cover had a significant 

positive correlation on the heat-related mortality ratio. Ibald-Mulli et al. 

https://en.wikipedia.org/wiki/Anthropogenic
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(2001) studied the effects of air pollution on blood pressure, and found 

that the exposure to ambient air pollution could be related to the change 

in cardiovascular autonomic control, and thus may have association to the 

high blood pressure. Ponticiello et al. (2015) also concluded that workers 

exposed to urban pollution have an additional risk for body mass index 

(BMI) increasing. In recent years, NTL pollution have attracted the attention 

of researchers, and studies have proven that the exposure to NTL can 

induce hormone-based cancers like breast cancer, prostate cancer and so 

on (Kloog et al., 2008; Kloog et al., 2009; Kloog et al., 2010).  

Therefore, the capabilities for frequent and rapid observation of those 

human activities on both large spatial and temporal scales could improve 

the understanding of human spatial distribution and its impact on 

environment. With its diverse spatial and temporal scales, remote sensing 

techniques can be adopted.  

Actually, many health-threatening anthropogenic factors can be 

detected using remote sensing techniques, such as the IMS (Bauer et al., 

2007; Lu et al., 2011; Zhang and Huang, 2018), NTL pollution (Kloog et al., 

2009; Kloog et al., 2010; Bennie et al., 2014), air pollution (Gupta et al., 

2006; Garland et al., 2008; Martin, 2008), water pollution (Ritchie et al., 

2003), to name a few. 
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2.2.2 Exploratory spatial data analysis 

As Tukey (1977) demonstrates, exploratory data analysis (EDA) is a 

detective work, which can be a numerical detective work, counting 

detective work or graphical detective work, and EDA usually can discover 

the indications, mostly quantitative ones. Anselin (1999) says that the EDA 

for statistical analysis is to let the data speak for themselves without 

imposing much on them. For the criticism of spatial data as “data rich but 

theory poor” (Openshaw, 1991; Anselin, 1999), the EDA seems to be a 

good solution. However, the characters of spatial data, such as the 

existence of the spatial autocorrelation, may violate the independent 

assumption in EDA studies. Therefore, it is necessary to develop the 

specialized approaches of exploratory spatial data analysis (ESDA) taking 

the nature of spatial data into account. 

One step endeavor to the real ESDA is the spatialized EDA for that 

the location information is combined, such as the spatial distribution of 

Chernoff faces on maps (Anselin, 1999). It becomes more close to ESDA 

with the description of the spatial heterogeneity or spatial trends, as 

suggests by Anselin (1999). 

The definition of ESDA is “ a collection of techniques to describe and 

visualize spatial distribution, identify stypical locations or spatial outliers, 

discover patterns of spatial association, clusters or hot spots, and suggest 
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spatial regimes or other forms of spatial heterogeneity” (Anselin, 1994; 

Anselin, 1998; Lee, 2002).  

According to Unwin (1996) and Lee (2002), the spatial data analysis 

(SDA) can be divided into exploratory spatial data analysis (ESDA), 

confirmatory spatial data analysis (CSDA), and prescriptive spatial data 

analysis (PSDA). ESDA is data-driven and inductive, while CSDA is model-

driven and deductive (Lee, 2002). Although the boundary between ESDA 

and CSDA is blurry, the ESDA is suggested to be more appropriate with 

the spatial data analysis. As Haining et al. (2000) and Lee (2002) stated, 

ESDA aims at seeking spatial patterns, identifying the clusters and outliers, 

formulating hypotheses and assessing spatial models based on spatial 

data. Together with the cooptation with GIS and other current research 

platform, ESDA can give full play to its advantages on the field of spatial 

analysis, especially on health geography (Owusu-Edusei and Owens, 2009; 

Yao et al., 2012). 

This study adopted ESDA to evaluate the spatial distribution of the 

possible health-threatening anthropogenic factors extracted in remote 

sensing and their possible health outcomes, as well as their spatial 

association. In the following part, I introduce the spatial analytical 

techniques I utilized in this study. 
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2.2.2.1 The standardized score of dissimilarity 

In order to give insight into the spatial distribution characteristics of 

health outcomes, it is necessary to quantify the proportion of disease 

cases in different regions. Several methods quantifying the proportion 

have been widely utilized. One of the methods is simply calculating the 

ratio of the observed population to the total population, which is also 

called the column-proportions (Lee, 2007). The standardization of the 

column-proportions and the Location Quotient (LQ) are also extensively 

employed. However, there is one common important drawback of these 

methods: it ignores the reality that the total population in different regions 

are different. That is to say, we cannot differentiate whether the ratios are 

to a region with a large population or a little one. So it is necessary to 

propose a method considering the different total populations of regions. 

The standardized score of dissimilarity (SSD) is a spatial separation 

statistical measure proposed by Lee (2007; 2008) by combining the spatial 

association measures and spatial chi-square statistics. Unlike previous 

segregation indexes like index of dissimilarity (Duncan and Duncan, 1955), 

SSD can detect the spatial dissimilarity patterns between two groups as 

well as the spatial dependence of the patterns. By standardizing the row-

proportions of some group into the population proportion of the region 

in the total population, SSD cannot only identity the representative regions 
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with high heterogeneity, but take the different population in different 

regions into account. The formula of SSD is as follows: 

𝑆𝑆𝐷 =

𝑋𝑖
𝑋

−
𝑌𝑖
𝑌

√∑ (
𝑋𝑖
𝑋

−
𝑌𝑖
𝑌

)2
𝑖

𝑛

 

Where 𝑋 is the total population of observed group; 𝑋𝑖 is the population 

of group 𝑋 in region 𝑖; 𝑌 is the total population of the criteria group; 𝑌𝑖 

is the population of group 𝑌 in region 𝑖 . The positive values of SSD 

indicate the absolute concentration of the observed group in this region, 

and the larger the value is, the higher the concentration degree is, and 

vice versa.  

 

2.2.2.2 Cluster detection  

𝐺𝑖 and  𝐺𝑖
∗ help us to detect local “pockets” of spatial dependence 

that may not be evident when using global statistics. The Moran’s 𝐼 

statistics has its own weakness that it isn’t able to discriminate between 

patterns that have high values dominant or low values dominant, but 𝐺𝑖 

and  𝐺𝑖
∗ statistics can (Getis and Ord, 1992; Ord and Getis, 1995). 

𝐺𝑖
∗ =

∑ w𝑖𝑗x𝑗
𝑛
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Where 𝑛 is the number of spatial units indexed by 𝑖 and j; x is the 

variable interest; �̅� is the mean of x; and w𝑖𝑗 is an element of a spatial 

weight matrix. 

 

2.2.2.3  Bivariate spatial association measure 

Correlation coefficients measure the linear association between two 

variables, but when they are spatial data, these correlation coefficients are 

deficient in that they are aspatial and disregard the spatial characteristics 

(Haining, 1991). But the presence of spatial autocorrelation indicates that 

a certain amount information is shared and not independent, which 

violates the independent prediction of many standard statistics (Lee, 2017). 

Bivariate spatial association measure estimates the relationship between 

two variables, with taking the spatial topological relationship among 

observations into account. A bivariate spatial association measure should 

capture the numerical co-varying (“point-to-point” association (Hubert et 

al., 1985)) as well as the spatial clustering (“spatial association”)(Lee, 2001). 

Although the bivariate spatial association problem has long been 

recognized, Wartenberg (1985) firstly did the comprehensive trial to devise 

a parametric bivariate spatial association measure, with proposing a matrix 

algebraic form for the bivariate Moran’s 𝐼, but the measure has some 

drawbacks. In order to refine the shortage, Lee (2001) developed a 

bivariate spatial association index 𝐿 for both global scale (for detecting 
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the bivariate spatial dependence) and local scale (for exploring the 

bivariate spatial heterogeneity). 

In this study, the bivariate spatial association measure Lee’s 𝐿 was 

used to detect the co-pattern between possible health-threatening 

anthropogenic factors extracted in remote sensing and the possible health 

threats. Both global 𝐿 and local 𝐿𝑖 were used, of which the formula are 

as follows: 

𝐿 =
𝑛

∑ (∑ 𝑣𝑖𝑗𝑗 )2
𝑖

×
∑ [(∑ 𝑣𝑖𝑗(𝑥𝑗 − �̅�)𝑗 ) × (∑ 𝑣𝑖𝑗(𝑦𝑗 − �̅�)𝑗 )]𝑖

√∑ (𝑥𝑖 − �̅�)2
𝑖 × √∑ (𝑦𝑖 − �̅�)2

𝑖

 

𝐿𝑖 =
𝑛 × [(∑ 𝑣𝑖𝑗(𝑥𝑗 − �̅�)𝑗 ) × (∑ 𝑣𝑖𝑗(𝑦𝑗 − �̅�)𝑗 )]

√∑ (𝑥𝑖 − �̅�)2
𝑖 × √∑ (𝑦𝑖 − �̅�)2

𝑖

 

Where 𝑛 is the number of spatial units indexed by i and j; x, y are the 

variables of interest; 𝑥,̅ 𝑦 ̅ are the mean of x, y; and v𝑖𝑗 is an element of 

a general spatial weight matrix V . 

 

2.2.2.4  Local Pearson’s 𝑟𝑖  

A local Pearson’s 𝑟𝑖  indicates the degree of numerical 

correspondence between two values at a location, which is also called 

“point- to-point” association (Hubert et al., 1985; Lee, 2001; Lee, 2004; Lee 

et al., 2013). The formula of local Pearson’s 𝑟𝑖 is as follows (Lee, 2004): 

r𝑖 = 𝑧𝑥𝑖 × 𝑧𝑦𝑖 
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Where 𝑥 and 𝑦 are two variables, and 𝑖 represents for the 𝑖𝑡ℎ location. 

And the z scores are standardized by the mean and standard deviation 

of each variable. The mean value of local Pearson’s 𝑟𝑖 is a global Pearson’s 

𝑟 between two variables. 

2.2.2.5 Spatial error model 

I adopt regression analysis in order to identify the influences of the 

health-threatening anthropogenic factors on human health. In the 

traditional regression, the error term have a mean of zero (E[𝜀𝑖] = 0, ∀𝑖), 

and they are identically and independently distributed (i.i.d.). Therefore, 

the variance of the error term is constant (Var[𝜀𝑖] = 𝜎2), and they are 

uncorrelated, E[𝜀𝑖𝜀𝑗] = 0, for all 𝑖, 𝑗 (Anselin, 2009). However, aggregated 

spatial data are characterized by dependence (or spatial autocorrelation) 

and heterogeneity (or spatial structure), which may invalidate certain 

classic methodologies (Anselin, 2013; Lee, 2017).  

Spatial dependence is applied in the regression model in two major 

ways, one is the spatial lag model (SLM), and the other is the spatial error 

model (SEM). SLM is appropriate when the research focus is on the spatial 

interaction, while SEM is appropriate when the research is concerned with 

correcting for the biasing influence of the spatial dependence due to the 

use of spatial data (Anselin, 2013). For this study, spatial interaction is not 

the focus, instead, the biasing influences of the spatial data are to be 
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considered. Therefore, SEM is adopted in the influences analysis of health-

threatening anthropogenic factors on human health. 

The SEM is as follows: 

 

Where 𝜆 is the spatial autoregressive coefficient, 𝑊 is the spatial 

weight matrix, and 𝜂 is the random error term. 

2.2.2.6 Geographically weighted regression  

In order to estimate the influences of every factor in the specific 

locations, geographically weighted regression (GWR) model is utilized. In 

the classic linear regression a stationary process were assumed, that is, we 

purpose the same relationship throughout the entire study region and 

presume that the same stimulus will have same response in all units of 

the study region (Fotheringham et al., 2009). Consequently, if there is 

spatial dependence, the single resulting parameter represents for the 

average of the heterogeneous process operating over space. Instead, 

parameters estimated to vary over space is essential, and that is the core 

of GWR. The GWR model can be described in the following equation:  

𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑘

𝑝−1

𝑘=1

+ 𝜀𝑖 

 

𝛽′(𝑖) = (𝐗T𝐖(i)𝐗)−1𝐗T𝐖(i)𝐘 

𝑦 = 𝑋𝛽 + 𝜆𝑊𝜀 + 𝜂 
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Where 𝑦𝑖 is the dependent variable value at location 𝑖, 𝑥𝑖𝑘  is the value of 

the 𝑘 th covariate at location 𝑖, 𝛽𝑖0 is the intercept, 𝛽𝑖𝑘  is the regression 

coefficient for the 𝑘 th covariate, 𝑝 is the number of regression terms, 

and 𝜀𝑖 is the random error at location 𝑖. 𝐖(𝑖) is a spatial matrix of weights 

specific to location 𝑖 such that the nearer neighbors of 𝑖 are giver greater 

weight than the further ones.   

 

2.3 Research Design 

2.3.1 Health-threatening anthropogenic factors 

In this study, two of the most representative health-threatening 

anthropogenic factors in remote sensing are selected. One is man-made 

IMS, and the other is artificial NTL. There are two main reasons: the 

representativeness of two factors and the necessity. 

The representativeness of two factors 

IMS represents the anthropogenic features in which water cannot 

infiltrate through, such as roads and rooftops (Weng et al., 2008). 

According to previous studies, anthropogenic land cover takes up about 

40 percent of the Earth’s surface and large amount of natural-dominated 

landscapes have been transformed into IMS (Sterling and Ducharne, 2008; 

Xu, 2010). Therefore, IMS is identified as one of the most representative 

anthropogenic factors of the remote sensing. Also, many studies have 
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proved the relationship between IMS and heat. Consequently, IMS can be 

seen as one of the most representative health-threatening anthropogenic 

factors in remote sensing. 

NTL data is one of the few nocturnal remote sensing sources. NTL 

data have been frequently used as a proxy of human activities, such as 

population estimation (Sutton et al., 2001; Amaral et al., 2005; Yoo et al., 

2011), economic or energetic activities quantification (Amaral et al., 2005; 

Doll et al., 2006; de Miguel et al., 2014), and urban extraction or 

urbanization estimation (Liu et al., 2012; Kim, 2014; Sharma et al., 2016). 

Also, studies proved that the exposure to NTL can induce some hormone 

diseases. Therefore, NTL could also be seen as one of the most 

representative health-threatening anthropogenic factors in remote sensing. 

The necessity 

For IMS and possible heat-related threats, Meehl and Tebaldi (2004) 

predict that there will be more intense, more frequent and longer lasting 

heat waves in the near future. Therefore, studies on heat prevention and 

heat-related threats are necessary. Also, studies show that 83% of the 

world population and more than 99% of the American and European are 

under light pollution (Falchi et al., 2011). Thus, identifying the adverse 

effect of NTL on human health, and implementing measures to reduce the 

influences are of necessity. 
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2.3.2 Possible health outcomes 

According to the previous studies, this study selects the discomfort 

index (DI) and the non-accident mortality as possible heat-related health 

outcomes of man-made IMS, and the breast cancer prevalence as the 

possible health outcome due to the exposure to NTL. 

Discomfort Index was first proposed by Thom (1959) and was 

modifies by Sohar et al. (1963) and used to express the impact of climate 

factors on human. DI values are mainly influenced by temperature and 

humidity. Therefore, the possible increase in temperature due to man-

made IMS would influence the DI value, and influence human health 

subsequently. 

As one of the most common and serious health outcomes of heat, 

non-accident mortality is also receiving attention (Choi et al., 2005; Robine 

et al., 2008; Barriopedro et al., 2011; Rosenthal et al., 2014; Cao et al., 

2018). Thus, non-accident mortality is selected as a possible heat-related 

health outcome of the man-made IMS. 

Studies show that excessive exposure to NTL can increase the risk of 

breast cancer (Kloog et al., 2009; Stevens, 2009; Kloog et al., 2010; Falchi 

et al., 2011). The primary hypothesis of the carcinogenic characteristics of 

NTL is due to the suppression of melatonin, which can induce hormone-
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related cancers (Kloog et al., 2009; Kloog et al., 2010). Consequently, this 

study selects breast cancer as a possible health outcome of NTL. 

Therefore, the main research of this study consists of three parts in 

general. In Chapter 3 and 4, the detection of co-pattern between the 

health-threatening anthropogenic factors in remote sensing and their 

health outcomes are discussed. In chapter 5, models designed to identify 

the influences of the health-threatening anthropogenic factors on human 

health are discussed. 
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 Man-made Impervious Surface 

and Its Potential Heat-related Threats to 

Public Health 

3.1 Introduction 

Temperature distribution is determined by latitude, vegetation 

distribution, height above sea level, topography, city size and atmosphere 

stability (Stewart and Oke, 2009). The rapid urbanization leads to the 

alteration of natural landscapes to impervious land, with changing surface 

radiation, thermal characteristics and humidity over the urban areas (Meng 

et al., 2018). Actually, there have been many studies showing urban areas 

have high temperature, among which urban heat island effect is seen as 

one of the most important manifestations of urban-induced climate 

change (Cao et al., 2018). There are also studies indicating the 

development of urbanization have impacts on the heat-island effects and 

the global-warming caused effect in Korea (Gim et al., 2018; Nam et al., 

2018). 

Whereas, the global climate has been proved to be warmer in the 

past century, and this trend is predicted to be continued in the next 100 

years (Pachauri et al., 2014). Heat could be seen as the deadliest of all 

atmospheric phenomenon (Sheridan and Kalkstein, 2004). Many studies 
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have proved the adverse effects of heat on human health, regional 

economies and ecosystems, and even the lasting and intensifying of heat 

waves in the future due to the global temperature increases (Meehl and 

Tebaldi, 2004; Song and Wu, 2018).  Especially for health, studies show 

that exposure to the heat can be related to morbidity and mortality like 

heat syncope, cramps, exhaustion as well as heat stroke (Sheridan and 

Kalkstein, 2004). Robine et al. (2008) studied that the additional deaths 

exceeded 70,000 due to the heat wave in August 2003 in Europe. 

Barriopedro et al. (2011) also estimated that the extreme high temperature 

in summer 2010 have induced about 55,000 deaths. In Korea, there are 

also studies going into the exceed deaths due to the high temperature. 

Choi et al. (2005) have studied the summertime disease-related mortality 

due to the high apparent temperature and showed that blood circulation-

related and cancer-related mortality increased due to the increase of the 

apparent temperature, and the elderly persons over 65 years old are more 

vulnerable to mortality due to abnormal heat waves in Seoul.  

As mentioned before, DI was used to express the impact of climate 

factors (temperature, humidity) on human, and have been widely used in 

diverse studies. For example, Angouridakis and Makrogiannis (1982) 

studied the DI value from 1950 to 1975 during warm seasons (May to 

September) in Thessaloniki, Greece, and found a quite increase of DI values 

during June and August. Tselepidaki et al. (1992) also proved that the 



 

34 

 

discomfort degree was higher during June to September in Athens, Greece 

using DI values.  

Seoul Metropolitan Region (SMR) has long been the center of Korea 

for policies, economy and culture, and the population and the 

employment of SMR are shown to increase constantly (Kim et al., 2018). 

During the process of population intensifying, whether the urban-related 

heat have more serious influence on human health, and the degree of the 

impact are to be evaluated.  

Man-made impervious land (IMS) have long been recognized as the 

proxy of urbanization, and knowledge of impervious surface changes is 

important for understanding the urban environment and human 

activity(Zhang and Huang, 2018). For the importance of the IMS, many 

studies have focused on the monitoring of IMS, among which, remote 

sensing methods have been preferred for its long spatial and temporal 

resolution (Slonecker et al., 2001; Bauer et al., 2007; Lu et al., 2011; Zhang 

and Huang, 2018).   

This study aims to analyze the spatial distribution of man-made IMS 

and its possible threats to human health, such as DI values and mortality. 

Ultimately, we evaluate the spatial association between the man-made IMS 

and its possible threats to human health in order to find the co-pattern 

between the two variables.  

There are four sections in this chapter. In Section 2, I describe the 

data and methods used in this study. In Section 3, I provide an analysis of 
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the spatial distribution of man-made IMS as well as the spatial distribution 

of the possible threats to human health (DI values and non-accident 

mortality), and the results of the spatial bivariate correlation between the 

two variables. Section 4 is the discussion and conclusions, in which I 

suggest academic and practical implications and limitations of this study.  

 

3.2 Materials and Methods 

3.2.1 Data 

This study takes Seoul Metropolitan Region (SMR) as the study area, 

which includes Seoul, Inchon, and Gyeonggi-do. Seoul is the capital and 

the most developed city in Korea, and as the adjacent regions of Seoul, 

Inchon and Gyeonggi-do are being influenced highly by Seoul. Both 1Km 

by 1Km grid and Dong administrative unit have been used in this study. 

The data used in this study include remote sensing images used to 

extract IMS, heat-related mortality data to analysis the spatiotemporal 

distribution pattern of heat-related mortality and meteorological data as 

ancillary data. For the heat-related threats are the most representative in 

summer, data in summer season (from June to August) were used in this 

study. 
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Table 3-1 Data 

Category Data Source 

Remote 

sensing data 

Landsat 8 OLI/TIRS United States Geological 

Survey (USGS) 

https://glovis.usgs.gov/app 

Meteorological 

data 

Temperature(℃) 

Relative humidity (%) 

Korea Meteorological 

Administration 

http://www.kma.go.kr/ 

Mortality data Non-accident mortality Korea National Statistical 

Office 

http://kostat.go.kr/ 

 

3.2.1.1 Remote sensing data: man-made impervious surface 

In this study, man-made IMS is seen as one of the human activities in 

remote sensing. Due to the large spatiotemporal coverage and high 

temporal frequency, remote sensing data have been widely used to extract 

and monitor the impervious surfaces (Zhang and Huang, 2018). Remote 

sensing data with medium spatial resolution (10-100m) have been widely 

used in impervious surface extraction. For example, Powell et al. (2008) 

adopted Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and 

Enhanced Thematic Mapper Plus (ETM+) to estimate the amount of land 

that were converted into impervious surfaces due to the urbanization and 

residential development. Bauer et al. (2007) depicts the methods and 

https://glovis.usgs.gov/app
http://www.kma.go.kr/
http://kostat.go.kr/
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results for estimating and mapping the impervious surfaces using Landsat 

TM and ETM+ for the state of Minnesota in 1990 and 2000.  

Medium remote sensing images are usually used at a macro level of 

impervious surface extraction, i.e. the urban expansion, with ignoring 

subtle changes within urban areas (Zhang and Huang, 2018). In order to 

acquire the higher extraction accuracy and more detailed change of 

impervious surfaces, high resolution (<10m) remote sensing images have 

also been widely adopted. Cablk and Minor (2003) used high-resolution 

IKONOS imagery to directly detect impervious cover in South Lake Tahoe, 

California, USA and produced accurate identification for both commercial 

and residential impervious cover, and showed both high overall accuracy 

and user accuracy. Lu et al. (2011) selected two study areas with diverse 

urban developments, sizes and spatial patterns to explore suitable 

methods for extracting impervious surface using Quick bird imagery, and 

showed that spectral confusion of impervious surface with other land 

covers like water/wetland, bare lands, and the impacts of shadows are 

ineradicable and manual editing is necessary. Zhang and Huang (2018) 

applied high-resolution images with object-based classification integrating 

multiple features to monitor the impervious coverage in Shenzhen, China, 

and showed that there were some alteration of impervious surface to 

pervious surfaces, and there was also a decreasing trend of impervious 

surface after 2012. 
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Though subtle spatial distribution and change pattern of impervious 

surface is significant, this study only takes account of the general 

distribution and coverage of it, so medium-resolution images Landsat 8 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data 

are used. Landsat 8 OLI/TIRS images consist of nine spectral bands with a 

spatial resolution of 30m and two thermal bands with a downscaled spatial 

resolution of 30m (100m originally).  

Two scenes of images (path: 116, row: 34; path: 115, row: 34) cover 

the total study area, the images acquired on 26th August 2017 and 20th 

September 2017 respectively were downloaded from the the United States 

Geological System (USGS) Visualization Viewer (GloVis, 

https://glovis.usgs.gov/app?fullscreen=0) and conducted in the following 

analysis. Two scenes of images were pre-processed in ENVI 5.3 with 

mosaicking and subseting, and then converted into Universal Transverse 

Mercator projection. 

3.2.1.2 Health data: non-accident mortality 

According to the previous studies, non-accident mortality is tend to 

be utilized frequently as a proxy of the heat mortality (Choi et al., 2005; 

Son et al., 2016; Cao et al., 2018).  

Mortality data were downloaded from Korean National Statistical 

Office (KNSO, http://kostat.go.kr/). KNSO provides the Cause of Death 

https://glovis.usgs.gov/app?fullscreen
http://kostat.go.kr/
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Statistics every year, which includes the cause of death (the International 

Classification of Disease Revision 10, ICD-10: A00-Y89), the sex, the case 

and rate of mortality and the age standardized mortality rate of each Si-

Gun-Gu administrative boundary. Here, external causes of mortality (ICD-

10: V01-Y89) have been excluded, and all the other causes of mortality 

(non-accident mortality) (ICD-10: A00-R99) were taken into analysis.  

Annual mortality data of each Si-Gun-Gu administrative unit from 

January 1st 2015 to December 31st 2016 were downloaded and the average 

value of two years was used to do the following analysis. 

3.2.1.3 Meteorological data 

In this study we used temperature (℃)，relative humidity (%) to 

analyze the relationship between man-made impervious surface and the 

meteorological environment. The meteorological data were derived from 

the Korean Meteorological Administration (KMA, 

http://www.kma.go.kr/index.jsp). Automatic Weather System (AWS) is the 

equipment for observing real time meteorological condition by recording 

local temperature, wind, and precipitation etc. every minute. And there are 

about 480 AWS sites in total throughout Korea.  

There are totally 97 AWS sites in Seoul Metropolitan Region, and 

hourly meteorological information of these sites from Januray 1st 2015 to 

December 31st 2016 were downloaded and converted into daily average 

http://www.kma.go.kr/index.jsp
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values, which was used to calculated DI values between annual average of 

2015 and 2016 respectively. 

3.2.2 Methods  

3.2.2.1  Man-made IMS extraction  

For the estimating and mapping of impervious surface, pixel-based 

methods and object-based methods are the main methods utilized. 

Object-based methods aims at delineating reality usable objects from 

remote sensing imagery, and studies show that it outperforms the pixel-

based methods (Blaschke, 2010). Therefore, object-based classification and 

the combination of traditional pixel-based methods and object-based 

methods become more and more pervasive. Shackelford and Davis (2003) 

have built an object-based method upon a pixel-based fuzzy classification 

to extract the roads, buildings, and non-road, non-building impervious 

surface in dense urban areas using IKONOS imagery, and got high 

classification accuracies. Wang et al. (2004) mapped mangroves with 

IKONOS imagery using pixel-based method, object-based method and a 

hybrid method that integrates pixel-based and object-based method, and 

results showed that the combination of pixel-based and object-based 

method achieved the best accuracy. Zhang and Huang (2018) monitored  
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Figure 3-1 The description of object-based feature extraction 
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the impervious surface using object-based classification method 

integrating multiple features, including spectral, textural, shape and class-

related features within high-resolution remote sensing images, and 

showed an accurate and reliable impervious surface information.  

Object-based classification is based on image segmentation (Blaschke, 

2010). In the data processing, segmentation is the first step. Segmentation 

is the process of partitioning the image into objects corresponding to real-

world features by grouping neighboring pixels which have common 

characteristics. Then example-based feature extraction and rule-based 

feature extraction have been used. Example-based feature extraction is the 

process of using supervised training data to assign unknown objects to 

one or more known features. Rule-based feature extraction is the process 

of taking a segmented image in to groups using one or more rules that 

users can build based on the users knowledge or certain features. 

By testing, Edge segment algorithm with a scale level of 50, and Full 

Lambda Schedule merge algorithm with a merge level of 60 is the most 

proper settings for our remote sensing images to be segmented. For the 

example-based feature extraction, all attributes of spectral, texture and 

spatial of all bands were selected, and Support Vector Machine (SVM) 

algorithm with radial basis kernel type was utilized.  
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Figure 3-2 The process of object-based segmentation 
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3.2.2.2 Land surface temperature extraction  

In order to improve the accuracy to extract the man-made IMS, land 

surface temperature (LST) was used as ancillary data. The LST were derived 

from Landsat 8 TIRS 1and TIRS 2 bands. The main difference between the 

new TIRS and previous TM/ETM sensors (apart from the differences of the 

sensor design) is the presence of two TIR bands in the atmosphere window 

between 10 and 12 μm, which shows an advancement over the previous 

single thermal band (Jiménez-Muñoz et al., 2014). In order to acquire the 

LST, at-satellite brightness temperature (T𝐵) and the land emissivity are 

needed. The following equation is used to get the spectral radiance from 

the digital number (DN) of the TIRS bands(USGS, 2015): 

L𝜆 = 0.0003342 ∗ 𝐷𝑁 + 0.1 

where L𝜆 is the spectral radiance, and 𝐷𝑁 is the digital number. 

The next step is to convert the spectral radiance to T𝐵(USGS, 2015): 

T𝐵 =
𝐾2

ln (
𝐾1
𝐿𝜆

+ 1)
 

where T𝐵  is effective at-satellite temperature in𝐾 , L𝜆  is the spectral 

radiance in W/m2 ster μm); and 𝐾1 and 𝐾2 are the pre-launch calibration 

constants. For Landsat 8, the 𝐾1 for band 10 is 774.8853 Mw cm-2sr-1μm-

1, 𝐾2 for band 10 is 1321.0789 K; and the 𝐾1 for band 11 is 480.8883, 𝐾2 

for band 11 is 1201.1442 K.  
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The above temperature values are referenced to a black body, 

therefore, corrections for spectral emissivity ( ε ) became necessary 

according to the nature of land cover (Weng et al., 2004). The emissivity 

corrected land surface temperature (LST) is calculated as follows (Artis and 

Carnahan, 1982): 

LST =
T𝐵

1 + (𝜆 ×
T𝐵
𝜌 ) 𝑙𝑛𝜀

 

where 𝜆 is the wavelength of emitted radiance (𝜆 = 11.5μm) ((Markham 

and Barker, 1985) will be used), 𝜌 = h × c/σ(1.438×10-2m K), σ=Boltzmann 

constant (1.38 × 10-23J/K), h =Planck’s constant (6.626 × 10-34Js), and 

c=velocity of light (2.998×108m/s)(Weng et al., 2004). 

LST for TIRS 1 and TIRS 2 were calculated respectively, and then the 

average of them was used as the final estimated LST. 

3.2.2.3 Discomfort Index 

DI was first proposed by Thom (1959) and was adjusted by Sohar et 

al. (1963) as the following: 

DI = 0.5𝑇𝑎 + 0.5𝑇𝑤 

where 𝑇𝑎  ( ℃ ) is dry-bulb temperature, and 𝑇𝑤 ( ℃ ) is wet-bulb 

temperature.  

Dry-bulb temperature refers to the air temperature measured by a 

thermometer exposed to the air, but shielded from moisture and radiation. 



 

46 

 

In this study, air temperature is used as the dry-bulb temperature (Song 

and Wu, 2018). The wet-bulb temperature is the temperature a parcel of 

air will have when it were cooled to saturation with a 100% relative 

humidity by the evaporation of water into it, with the latent heat being 

supplied by the parcel (Song and Wu, 2018). 

In this study, wet-bulb temperature was calculated according to Stull 

(2011) ‘s method which can be expressed as follows: 

𝑇𝑤 = 𝑇𝑎 × atan[0.15977(𝑅𝐻 + 8.313659)0.5] + atan(𝑇𝑎 + 𝑅𝐻)

− atan(𝑅𝐻 − 1.676331) + 0.00391838 × 𝑅𝐻1.5

× atan(0.023101𝑅𝐻) − 4.686035 

Where 𝑇𝑎 (℃) is dry-bulb temperature, 𝑅𝐻 is relative humidity (%); and 

𝑇𝑤(℃) is wet-bulb temperature. 

 

3.3 Analytical results  

3.3.1 Spatiotemporal distribution of man-made IMS 

Man-made IMS was extracted to 1Km by 1Km grids and each Dong 

unit. The area of man-made IMS and the area proportion to the Dong 

unit area were calculated, meanwhile the hot spots and cold spots of man-

made IMS were evaluated, as shown in Figure3-3. 

For the 1Km by 1Km grid unit, we can see the detail distribution of 

man-made IMS in the whole SMR. The total area of the study region is 
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11960 km2, within which there are 2,675.3 km2 (about 22.4% of the total 

area) man-made IMS. In Seoul, the total area is 611 km2 (with 609 grids 

in total), while the area of man-made IMS area is 386.7 km2 (about 63.3% 

of the area of Seoul, and about 14.5% of the total man-made IMS in the 

study area), and there are 582 grids have man-made IMS (about 95.7% of 

the total grids of Seoul), which shows a high density of man-made IMS in 

Seoul. On the other hand, the total area of Incheon is about 950 km2 (with 

950 grids), while the total area of man-made IMS in Incheon is 329.4 km2 

(about 34.7% of the total area of Incheon). However, 894 grids (about 94.1% 

of the total grids of Incheon) have man-made IMS. This indicates the 

relative decentralization of man-made IMS in Incheon. This situation 

seems more severe in Gyeonggi-do. The total area of Gyeonggi-do is 

about 10,400 km2, with a total man-made IMS of 1,959.2 km2 (about 18.8% 

of the total area). However, there are 8343 grids (about 80% of the total 

grids) distributed with man-made IMS, showing the high decentralization 

of man-made IMS. 

Among the 11,960 girds, 484 girds with a high man-made IMS above 

0.9 km2 (90% of 1Km2), of which 197 grids (40.7% of the total grids above 

0.9 km2, about 183.9km2) are in Seoul, which takes up to 47.6% of the 

total man-made IMS area in Seoul. In Incheon, 94 grids (19.4% of the total 

grids above 0.9 km2, about 90.2km2) also have an area above 0.9 km2, and 

193 grids (39.9% of the total grids above 0.9 km2, about 184km2) with an 

area above 0.9 km2 distribute in Gyeonggi-do, which only covers 9.4% of 
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the total man-made IMS area in Gyeonggi-do. Results show that the grid 

with man-made IMS above 0.9 km2 are mainly distributed in Seoul and 

Gyeonggi-do, and there is a high centralization of man-made IMS in Seoul.  

A cluster detection of man-made IMS for the 1Km by 1Km grid was 

conducted, as shown in Figure. 3-3 (b). Almost all regions in Seoul (except 

for the northern part of Gwanak-gu, and the southern part of Eunpyeong-

gu, Jongno-gu, Gangbuk-gu and Dobong-gu respectively), all regions of 

Incheon except for Ganghwa-gun, and Goyang-si, Bucheon-si, 

Gwangmyeong-si, Siheung-si, Ansan-si, Suwon-si, Guri-si and other 

regions around Seoul in Gyeonggi-do are mainly distributed with hot 

spots. Meanwhile, the colds spots are mainly distributed in Ganghwa-gun 

of Incheon, and the peripheries of Gyeonggi-do, such as Yeoncheon-gun, 

Pocheon-si, Yangpyeong-gun and Gapyeong-gun.  

In regard to the Dong unit, there are 1,128 units in total, of which 746 

units (66.1%) have a man-made IMS area ratio higher than 50%, and 320 

units (28.3%, 174 units in Seoul, 57 units in Incheon and 89 units in 

Gyeonggi-do), have an area ratio above 90%. The units with a high man-

made IMS area ratio are mainly distributed in Nam-gu, Dong-gu of 

Incheon, Yeongdeungpo-gu, Guro-gu, and Yangcheon-gu of Seoul, and 

Paldal-gu of Suwon-si and so on. The Dong units with a man-made IMS 

area ratio above 90% are distributed discretely, as shown in Figure 3-4.
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(a) (b) 

Figure 3-3 The spatial distribution of the man-made IMS: (a) the man-made IMS area in 1Km by 1Km 
grid; (b) cluster detection of the man-made IMS 1Km by 1Km in grid unit 
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(a) (b) 

Figure 3-4 The spatial distribution of the man-made IMS in Dong unit: (a) man-made IMS ratio in 
Dong unit; (b) Dong units with man-made IMS above 90% 
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3.3.2 Spatial distribution of health-threatening risk 

3.3.2.1 Spatial distribution of DI 

The 1Km by 1 Km grid and the Dong unit were analyzed. The spatial 

distribution of the DI value, and the spatial cluster detection of DI in both 

the grid unit and the Dong unit have been conducted.  

The results in the grid unit can show us the particular spatial 

distribution of DI, as shown in Figure 3-6. Natural break was used in the 

classification of the DI value. We can see that in general, the high DI values 

concentrate in Seoul. Most regions of Seoul, regions in Incheon except for 

Ganghwa-gun and Jung-gu, and some southern regions of Gyeonggi-do, 

like Hwaseong-si, Pyeongtaek-si, Anseong-si and Icheon-si have high DI 

values. On the other hand, Yeoncheon-gun, Pocheon-si, Gapyeong-gun 

and Yangpyeong-si have relatively low DI values.  

By conducting spatial cluster analysis, we can see that the hot spots 

are concentrated mainly in Seoul, and some regions in southern 

Gyeonggi-do, such as Pyeongtaek-si, Ansan-si and Icheon-si. Cold spots 

are mainly distributed in the northeastern Gyeonggi-do, such as 

Yeoncheon-gun, Pocheon-si, Gapyeong-gun. 

 

 



 

52 

 

 

 

 

(a) (b) 

(a) (b) 

Figure 3-5 The spatial distribution of the DI value in 1Km by 1Km 
grid unit: (a) spatial distribution of DI; (b) cluster detection of DI 

Figure 3-6 The spatial distribution of the DI value in Dong unit: (a) 
spatial distribution of DI; (b) cluster detection of DI 
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In order to have a clearer understanding of the DI distribution, DI has 

also been analyzed in Dong units, as shown in Figure 3-6 and Table 3-2. 

By classifying the average DI value in each Dong unit using Natural Break 

method, we can see that the highest values are concentrated within Seoul. 

Ten regions with highest DI values are all distributed in Yeongdeungpo-

gu, Yangcheon-gu and Gangnam-gu. On the other hand, ten regions with 

lowest DI values are mainly concentrated in the peripheries of Gyeonggi-

do, which are Gapyeong-gun, Pocheon-si and Yangpyeong-gun. Similarly, 

the result of the spatial cluster analysis of DI values in the Dong unit shows 

that hot spots of DI values are centralized in majority regions in Seoul and 

a few regions surrounding Seoul, while cold spots are mainly in the 

peripheries of Gyeonggi-do.  

Table 3-2 Regions with the top and bottom 5 DI values 

Rank 

(Top) 
Si-Do Si-Gun-Gu Eup-Myeon-Dong DI 

1 Seoul Yeongdeungpo-gu Yangpyeong 1-dong 23.648 

2 Seoul Yangcheon-gu Muk 1-dong 23.646 

3 Seoul Yeongdeungpo-gu Dangsan 1-dong 23.640 

4 Seoul Yangcheon-gu Muk 5-dong 23.62 

5 Seoul Gangnam-gu Cheongdam-dong 23.61 

Rank 

(Bottom) 
Si-Do Si-Gun-Gu Eup-Myeon-Dong DI 

1 Gyeonggi-do Pocheon-si Ildong-myeon 21.92 

2 Gyeonggi-do Pocheon-si Idong-myeon 21.93 

3 Gyeonggi-do Pocheon-si Yeongbuk-myeon 21.99 

4 Gyeonggi-do Pocheon-si Yeongjung-myeon 22.00 

5 Gyeonggi-do Yangpyeong-gun Danwol-myeon 22.00 
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3.3.2.2 Spatial distribution of mortality  

Non-accident mortality data have been analyzed in the Si-Gun-Gu 

spatial unit. The total number of mortality, the mortality rate and the SSD 

which represent the concentration of the mortality, have been studied, as 

shown in Figure 3-7. The results of the spatial distribution of total non-

accident mortality numbers indicate a dense concentration in Seoul, and 

its surrounding regions such as Suwon-si, Seongnam-si, Bucheon-si and 

so on, suggesting a high mortality density in these regions. Opposite with 

the distribution of mortality population, the spatial distribution of the non-

accident mortality shows a relatively low proportion of mortalities to the 

regional population in most regions of Seoul and Incheon, and some 

regions of Gyeonggi-do such as Goyang-si, Uiljeongbu-si, Suwon-si and 

so on. However, the peripheral Gyeonggi-do shows a relatively high 

mortality rate. The mortality rate can demonstrate the proportion of 

mortalities to the total population of each region, but it does not consider 

the difference of the total population in each region. That is to say, even 

with a constant mortality rate between two regions, the region that has a 

smaller population show a higher risk of mortality. Thus, the SSD of 

mortality has also been analyzed, which represents the mortality 

concentration of each region. The result shows that most peripheral 

regions of Gyeonggi-do have a high concentration degree of non-accident 

mortality, of which Nam-gu and Ganghwa-gu in Incheon, Yangpyeong-gu 

and Gangbuk-gu in Seoul, and Pocheon-si have the highest concentration 
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degree of non-accident moratlity, while Gangnam-gu, Songpa-gu in Seoul, 

Yeongtong-gu in Suwon-si, Hwaseong-si, and Seocho-gu in Seoul have 

the lowest concentration degree of non-accident mortality. 

 

Table 3-3 Rankings of the non-accident mortality 

Rank 

(Top) 
Si-Gun-Gu Case 

Rank 

(Bottom) 
Si-Gun-Gu Case 

1 Bucheon-si 3158 1 Gwacheon-si 238 

2 Nowon-gu 2526 2 Yeoncheon-gu 394 

3 Namyangju-si 2461 3 Dong-gu of Incheon 472 

4 Bupyeong-gu 2390 4 Gapyeong-gun 530 

5 Gangseo-gu 2317 5 Uiwang-si 578 

  Rate (%)   Rate (%) 

1 
Ganghwa-gun of 

Incheon 
1.04 1 

Yeongtong-gu of 

Suwon-si 
0.22 

2 Yeoncheon-gun 0.86 2 Suji-gu of Yongin-si 0.27 

3 Gapyeong-gun 0.85 3 Gangnam-gu 0.28 

4 Yangpyeong-gun 0.79 4 Osan-si 0.29 

5 Yeoju-si 0.69 5 
Giheung-gu of 

Yongin-si 
0.30 

  SSD   SSD 

1 Nam-gu of Incheon 1.79 -1 Gangnam-gu -2.51 

2 Yangpyeong-gun 1.71 -2 Sopa-gu -2.41 

3 
Ganghwa-gun of 

Incheon 
1.70 -3 

Yeongtong-gu of 

Suwon-si 
-2.23 

4 Pocheon-si 1.56 -4 Hwaseong-si -2.12 

5 Gangbuk-gu 1.40 -5 Seocho-gu -1.66 
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(c) (a) (b) 

Figure 3-7 The spatial distribution of the non-accident mortality: (a) the mortality cases; (b) the mortality rate; (c) the 
mortality concentration degree 
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3.3.3 Detection of the co-pattern between man-made IMS with 

DI value and the non-accident mortality 

Bivariate spatial association measure Lee’s 𝐿 was used to seek the 

relationship between man-made IMS and health-threatening risk. During 

the calculation process, man-made IMS was set as X and the DI value and 

the SSD of mortality were Y. 

3.3.3.1 The detection of co-pattern between IMS ratio and DI values 

When analyzing the bivariate spatial autocorrelation between IMS 

ratio and the DI values, two spatial units, the 1Km by 1Km grid and Dong 

unit were both analyzed. The global Lee’s 𝐿 shows the global spatial 

dependence between two variables, while the local Lee’s 𝐿𝑖 indicates the 

bivariate heterogeneity. High 𝐿  values mean high spatial dependence 

between two variables, and high 𝐿𝑖 values mean high positive bivariate 

spatial associations (high X with high Y, and vice versa).  

The value of global Lee’s 𝐿 of man-made IMS and DI in the grid unit 

is 0.52 (with p<0.000), showing there is a relatively high positive spatial 

dependence between the two variables, and indicating the co-distribution 

of two variables. The scatterplot of 𝐿𝑖 between two variables is shown as 

Figure3-8. High-high means high value of man-made IMS and the high 

value of DI, shown in deep pink, is mostly distributed in high-developed 

regions, such as most regions of Seoul, and some regions of Incheon and 



 

58 

 

Gyeonggi-do around Seoul. High-low means there is a high property of 

man-made IMS, but there is a low DI, indicating the environment is more 

comfortable for human. These regions are shown in pink, which are  

distributed in some regions of Jung-gu of Incheon, Dongducheon-si, 

Dongan-gu of Anyang-si, and so on. The low-high indicates although 

there is little man-made IMS, there is high DI, which is colored in light 

green, and Anseong-si, Icheon-si, Gwangju-si and Yeoju-si have some 

regions with this characteristics. And low-low means low man-made IMS 

area with low DI, and these regions are mainly distributed in the 

peripheries of Gyeonggi-do, such as Yeoncheon-gun, Pocheon-si, 

Gapyeong-gun, Yangpyeong-gun and so on.  

We can see the bivariate spatial association pattern between man-

made IMS and DI in the Dong unit from the Figure 3-8 (b). In the Dong 

unit, the global Lee’s 𝐿 is 0.48 (with p<0.000), and there are less hot spots 

and more cold spots. Similarly, regions that have high man-made IMS with 

high DI value, are distributed mainly in Seoul, like Seongdong-gu, 

Gangnam-gu, Songpa-gu, Yeongdeungpo-gu, Yangcheon-gu and so on. 

Others like Bupyeong-gu and Nam-gu of Incheon, Wonmi-gu of Bucheon-

si also display a high density of man-made IMS with high DI values. The 

majority of peripheries of Gyeonggi-do shows low man-made IMS with 

low DI values, indicating a livable environment. 



 

59 

 

 

(a) (b) 

Figure 3-8 The scatterplot of local 𝐿𝑖 between the man-made IMS and the DI value: (a) 1Km by 
1Km grid unit; (b) Dong unit 
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Table 3-4 Rankings of the local Li in different quadrants (X: ratio of man-made IMS; Y: DI) 

High-High High-Low 

Rank Si-Gun-Gu Eup-Myeon-Dong Local Li Rank Si-Gun-Gu Eup-Myeon-Dong Local Li 

1 Yeongdeungpo-gu Mullae-dong 1.78 1 Anyang-si Hogye 2-dong -1.45 

2 Yeongdeungpo-gu Yeongdeungpo-dong 1.77 2 Anyang-si Pyeongan-dong -1.39 

3 Yeongdeungpo-gu Dorim-dong 1.66 3 Anyang-si Bukgye-dong -1.28 

4 Gangseo-gu Hwagok 8-dong 1.63 4 Anyang-si Sinchon-dong -1.27 

5 Yeongdeungpo-gu Singil 3-dong 1.60 5 Anyang-si Hogye 2-dong -1.24 

Low-High Low-Low 

Rank Si-Gun-Gu Eup-Myeon-Dong Local Li Rank Si-Gun-Gu Eup-Myeon-Dong Local Li 

1 Anseong-si  Miyang-myeon -0.82 1 Pocheon-si Idong-myeon 5.32 

2 Anseong-si Seoun-myeon -0.70 2 Gapyeong-gun  Buk-myeon 5.24 

3 Seochok-gu Naegok-dong -0.66 3 Pocheon-si Ildong-yeon 2.03 

4 Anseong-si Gongdo-eup -0.61 4 Pocheon-si Yeongbuk-myeon 5.02 

5 Anseong-si Anseong 2-dong -0.58 5 Gapyeong-gun  Jojong-myeon 4.94 
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3.3.3.2 The detection of co-pattern between IMS ratio and the non-

accident mortality 

When analyzing the bivariate spatial autocorrelation between IMS 

ratio and the non-accident mortality, Si-Gun-Gu administrative unit has 

been used.  

The global Lee’s 𝐿  between the man-made IMS ratio and the 

concentration degree of non-accident mortality is -0.08, with a p value 

less than 0.001. The result shows that there is little correlation between 

the man-made IMS ratio and the non-accident mortality.  

From the spatial distribution of the Local Lee’s 𝐿𝑖  shown as Figure3-

9, we can see that some regions in Seoul show a high man-made IMS 

area ratio with a high concentration degree of non-accident mortality. 

Many regions also show a high man-made IMS area ratio with low non-

accident mortality concentration degree, so as Suwon-si. Hwaseong- si, 

Yongin-si, Ansan-si are mainly distributed with cold spots with a low man-

made IMS area ratio with a low concentration of non-accident mortality. 

The peripheral Gyeonggi-do mainly shows a low proportion of man-made 

IMS with a high concentration of non-accident mortality.  
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(a) (b) 

Figure 3-9 The spatial distribution of local 𝐿𝑖  between the man-made IMS and the non-accident 
mortality concentration degree: (a) distribution of local 𝐿𝑖 ; (b) scatterplot map 
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Table 3-5 Rankings of the local 𝐿𝑖 in different quadrants  

(X: ratio of man-made IMS; Y: concentration degree of non-accident mortality) 

High-High High-Low 

Rank Si-Gun-Gu Local 𝐿𝑖 Rank Si-Gun-Gu Local 𝐿𝑖 

1 Jung-gu of Incheon 0.40 1 Yangcheon-gu -0.48 

2 DonGdaemun-gu 0.37 2 Gangnam-gu -1.47 

3 Jung-gu 0.37 3 Gwangjin-gu -0.39 

4 Jongno-gu 0.34 4 Yongsan-gu -0.34 

5 Jungnang-gu 0.28 5 Guro-gu -0.30 

Low-High Low-Low 

Rank Si-Gun-Gu Local 𝐿𝑖 Rank Si-Gun-Gu Local 𝐿𝑖 

1 Gapyeong-gun -1.54 1 Giheung-gu of Yongin-si 0.52 

2 Yangcheon-gun -1.45 2 Suji-gu of Yongin-si 0.43 

3 Dongducheon-si -1.41 3 Danwon-gu of Ansan-si 0.40 

4 Yeoju-si -4.10 4 Sangnok-gu of Ansan-si 0.27 

5 Pocheoin-so -1.02 5 Cheoin-gu of Yongin-si 0.24 
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3.4 Discussions and conclusions 

Analyzing man-made IMS helps us to understand urban development 

and human activity (Zhang and Huang, 2018). However, IMS can also give 

rise to a more serious heat problem in urban regions including the heat 

island effect, which can threaten human health in various aspects. In this 

study, man-made IMS has been seen as possible health-threatening 

anthropogenic factors and have been extracted using remote sensing data. 

On the other hand, DI and non-accident mortality have been used as a 

proxy of possible threats to human health. Local correlations between the 

factors have also been analyzed. The main results are as follows: 

(1) The total man-made IMS in the SMR is 2,675.3 km2, which covers 

about 22.4% of the total area, while the proportion of man-made IMS is 

63.3% for Seoul, 34.7% for Incheon, and 18.8% for Gyeonggi-do. For the 

grid unit, the spatial distribution pattern of man-made IMS in Seoul is 

more centralized, while those in Incheon and Gyeonggi-do are 

decentralized. The hot spots of man-made IMS mainly are distributed in 

the majority regions of Seoul, Incheon, and some surrounding regions of 

Seoul in Gyeonggi-do such as Suwon-si and so on. In the Dong unit, 66.1% 

of the regions have a man-made IMS area ratio above 50% and 28.3% 

above 90%. The units with a high man-made IMS area ratio are mainly 

distributed in Nam-gu, Dong-gu of Incheon, Yeongdeungpo-gu, Guro-gu, 

and Yangcheon-gu of Seoul, and Paldal-gu of Suwon-si and so on. The 
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regions with a man-made IMS area ratio above 90% have a discrete 

distribution pattern. 

(2) The spatial distribution of DI has also been analyzed in the 1Km 

by 1Km grid and Dong administrative unit. For both spatial units, the 

general trend of DI distribution has a high DI value concentrations in Seoul. 

For the grid unit, most regions of Seoul and Incheon (except for Ganghwa-

gun and Jung-gu), and some regions in Gyeonggi-do, such as Hwaseong-

si, Pyeongtaek-si and so on have high DI values, while the north-east 

regions of Gyeonggi-do, such as Yeoncheon-gun, Pocheon-si etc. have low 

DI values. The hot spots of DI values are mainly concentrated in Seoul and 

some regions in Gyeonggi-do like Pyeongtaek-si, Ansan-si and Icheon-si, 

while regions in northeastern Gyeonggi-do like Yeoncheon-gun, Pocheon-

si, Gapyeong-gun etc. are distributed with cold spots. For the Dong unit, 

the hot spots of man-made IMS are concentrated in Seoul, while majority 

of Gyeonggi-do are distributed with cold spots. 

(3) The value of global Lee’s 𝐿 of man-made IMS and DI in the grid 

unit is 0.52, indicating a high positive spatial dependence between the 

two variables. The hot spots are mainly distributed in Seoul and some 

surrounding regions of Seoul, while the cold spots are mainly distributed 

in the peripheral Gyeonggi-do. For the Dong unit, the global Lee’s 𝐿 is 

0.48, which shows a high positive bivariate spatial autocorrelation between 

the two variables. However, the majority of Gyeonggi-do shows a low 
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methods in the previous studies, this study was proposed. The purpose of 

this study is to detect the spatial co-pattern between NTL and the 

prevalence of breast cancer, different with the preexist studies, the human 

exposure to NTL, which was used to modified with the residential buildings 

have been used in this study, which is expected to respect for the exposure 

to NTL more accurately.  

There are mainly four parts in this study. Besides the background 

introduction in the first section, I demonstrated the data and methods 

used in this study in the second section. In the third section, I analyzed 

the spatial distribution of the human exposure to NTL, and the prevalence 

rate of breast cancer, and demonstrated the results of the co-pattern 

between two variables. And in the fourth section, I concluded this study 

and addressed some discussions. 

 

4.2 Materials and Methods 

4.2.1 Data 

The study takes Seoul Metropolitan Region as the study area, which 

includes Seoul, Incheon and Gyeonggi-do. Here, Si-Gun-Gu administrative 

unit is used as the basic unit. Except for the distant islands, there are 78 

spatial units in total. 

Data used in this study are the NTL remote sensing data to qualify 

people’s exposure to NTL, the building data to identify the residential 
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buildings, and the morbidity of breast cancer in each spatial unit to 

evaluate its relationship with NTL. 

4.2.1.1  NTL data 

In 2011, NASA and NOAA launched the first Visible Infrared Imaging 

Radiometer Suite (VIIRS) instrument carried on the Suomi National Polar 

Partnership (SNPP). The VIIRS collects low light imaging data and study 

shows that VIIRS data has improvements over the U.S. Air Force Defense 

Meteorological Satellite Program (DMSP) Operational Linescan System 

(OLS)(Elvidge et al., 2013). Version 1 suite of average radiance composite 

images of NTL are being produced from VIIRS Day/Night Band (DNB) by 

the Earth Observation Group. Before averaging, the DNB data is 

conducted to exclude the impact of stray light, lightning, lunar illumination 

and cloud cover. The version 1 monthly series data has two different 

configurations: vcm and vcmsl, between which vcm excludes any data 

impacted by stray light and has a higher quality (Mills et al., 2013).  

Monthly average composite of VIIRS DNB data from Apirl 2012 to 

December 2015 with a spatial resolution of 15 arc seconds (about 500m) 

was downloaded from National Center for Environmental Information of 

National Oceanic Atmospheric Administration (NOAA) 

(https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html). Due to  

the bad quality of monthly average composites of May, June and July in 

2012, 2013, 2014, and 2015 respectively, we excluded these data, and got 

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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33 scenes of NTL imagery data in total. All the images were converted to 

the WGS 1984 UTM zone 52N and resampled into 500m. In order to 

evaluate the long-term exposure to NTL, we take the average NTL value  

from Apirl 2012 to December 2015 to respect for the long-term average 

NTL, as Figure.4-1. 

Figure 4- 1 Average NTL, 2012~2015 
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4.2.1.2 Building use data 

In order to evaluate the people’s exposure to NTL, building use data 

were used to identify the residential buildings. Ministry of Public 

Administration and Security of Korea is producing the Information Map 

(digital map) of the Road Name Address in order to promote the cognition 

and application of the Road Name Address. In the digital map of the Road 

Name Address, there are several layers such as building, building cluster, 

road interval, and actual width of road and so on. Shape files with UTM-

K coordinate and Bessel ellipsoid in each Si-Do administrative unit are 

available. The layer of building includes information of each building like 

building use, number of floors, and date of construction and so on. By 

utilizing the building layer data derived from the Road Name Address 

system, we can identify the residential buildings in each study unit. In this 

study, building use data of 2015 were obtained from the Road Name 

Address System(https://www.juso.go.kr/addrlink/devLayerRequestWrite.do)  

and residential buildings are extracted in each Si-Gun-Gu unit, as shown 

in Figure 4-2. 

https://www.juso.go.kr/addrlink/devLayerRequestWrite.do
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Figure 4-2 Residential buildings in NTL 
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4.2.1.3 Breast cancer data 

Judgement results of breast cancer checkup in each Si-Gun-Gu 

administrative unit are provided from 2010 to 2016 in Korea Statistical 

Information Service (KOSIS, http://kosis.kr/). Yearly value of normal case, 

benign disease case, breast cancer suspicion case, defer judgement case, 

and existing breast cancer case are included. Here, we choose preexistent 

breast cancer cases of each year to represent for the breast cancer cases. 

Data from 2012 to 2015 were used, and prevalence rate of each year, and 

the increase of prevalence rate of breast cancer were calculated. 

 

4.2.2 Methods 

4.2.2.1  Prevalence rate 

For a given disease, prevalence means the total number of existing cases 

within a specific time period, which can provides a summary of the current burden 

of the interested disease within the population (Waller and Gotway, 2004).  

The formula of the prevalence rate is as follows: 

𝑝𝑖 =
𝑝𝑜𝑝𝑖

𝑐𝑎𝑠𝑒

𝑝𝑜𝑝𝑖
𝑡𝑜𝑡𝑎𝑙 

Where 𝑝𝑖 means the prevalence rate of the disease in region 𝑖; 𝑝𝑜𝑝𝑖
𝑐𝑎𝑠𝑒 means 

the existing case number of the disease in region 𝑖, and 𝑝𝑜𝑝𝑖
𝑡𝑜𝑡𝑎𝑙 means the total 

population of the observed group in region 𝑖. Here, we use the number of the 

existing breast cancer cases in each region as 𝑝𝑜𝑝𝑖
𝑐𝑎𝑠𝑒 , and the total women 

http://kosis.kr/
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population of each region as 𝑝𝑜𝑝𝑖
𝑡𝑜𝑡𝑎𝑙 , to calculate the breast cancer prevalence 

rate in each study region. 

 

4.3 Analytical results 

4.3.1 Human exposure to NTL  

The average image of NTL from 2012 to 2015 were generated to 

signify long-term NTL. The exposure of residential buildings to NTL has 

been analyzed by extracting the residential buildings in the building use 

data and overlaying them with NTL images, which was used to represent 

the human exposure to NTL. The residential buildings’ exposure to NTL in 

each Si-Gun-Gu unit have been extracted, and the average value of the 

residential buildings’ exposure to NTL in each unit was used for the human 

exposure to NTL in this unit.  

As shown in Table 4-1,  the region with the highest human exposure 

to NTL is Jung-gu in Seoul, which is 107.27 nanoWatts/cm2/sr averagely, 

while the lowest human exposure is in Gapyeong-gun in Gyeonggi-do, 

the value of which is only 3.49 nanoWatts/cm2/sr. We can see that Seoul, 

Incheon (except for Ganghwa-gun), and some surrounding cities of Seoul 

in Gyeonggi-do such as Uiijeongbu-si, Goyang-si, Bucheon-si, 

Gwangmyeong-si, Anyang-si, Gunpo-si, Seongnam-si, Suwon-si and so on 

are showing high human exposure to NTL. The result shows a high 
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concentration of human exposure to NTL with Seoul as the center. Similarly, 

the result of the cluster detection of human exposure to NTL also shows 

that the hot spots, which means the high human exposure to NTL clusters, 

are mainly distributed in regions of Seoul, and Jung-gu and Nam-gu of 

Incheon. The low human exposure to NTL values are mainly concentrated 

in the peripheries of Geyeonggi-do.   

 

 

Table 4-1 Rank of human exposure to NTL (unit: nanoWatts/cm2/sr) 

Rank 

(Top) 
Si-Gun-Gu 

Human 

exposure to 

NTL 

Rank 

(Bottom) 
Si-Gun-Gu 

Human 

exposure to 

NTL 

1 Jung-gu 107.27 1 Gapyeong-gun 3.49 

2 
Paldal-gu of 

Suwon-si 
73.22 2 Yeoju-si 3.59 

3 
Yeongdeungp

o-gu 
72.92 3 

Yangpyeong-

gun 
3.62 

4 Gwangjin-gu 65.89 4 
Yeoncheon-

gun 
4.61 

5 
Wonmi-gu of 

Becheon-si 
64.42 5 Ganghwa-gun 5.38 
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(b) 

 

(b) 

(a) 

 

(b) 

Figure 4-3 The spatial distribution of human 
exposure to NTL in Si-Gun-Gu unit: (a) human 

exposure to NTL; (b) cluster detection of human 
exposure to NTL 
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4.3.2 Spatiotemporal distribution of the breast cancer 

prevalence rate 

Prevalence refers to the total existing cases over a specific time frame 

and indicates the current burden of the disease within the population 

(Waller and Gotway, 2004). Here, we use the breast cancer prevalence rate 

in women in each unit to represent for the current burden of breast cancer. 

The proportion of existing breast cancer to the total population of women 

in each unit was calculated from 2012 to 2015, which is the prevalence 

rate in each year. The prevalence change rate is also calculated by dividing 

the prevalence rate of 2012 by using that of 2015 to show the breast 

cancer prevalence rate trend. 

By analyzing the breast cancer prevalence in 2015, we can see that 

regions with the high prevalence rate are mainly concentrated in Seoul, 

Goyang-si, Gimpo-si,  Bucheon-si and Suwon-si, among which Jangan-gu 

of Suwon-si, Jongno-gu, Yongsan-gu of Seoul, Paldal-gu of Suwon-si and 

Nam-gu of Incheon show highest breast cancer prevalence rates in 2015, 

while Gyeyang-gu, Seo-gu and Yeonsu-gu of Incheon, Siheung-si, Ansan-

si show the lowest values, as shown in Table 4-2. 

The clusters of breast cancer prevalence in 2015 were detected, with 

the hot spot showing the clusters of high breast cancer prevalence rate 

and cold spot showing the clusters of low ones. Result shows that hot 

spots are maily distributed in northwestern regions of Seoul, such as  



 

81 

 

  

Figure 4-4 The spatial distribution of (a) the breast cancer prevalence rate 
in 2015; (b) the clusters of the breast cancer prevalence rate in 2015; and (c) 
the clusters of the breast cancer prevalence rate change from 2012 to 2015 
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Table 4-2 Rankings of the breast cancer prevalence rate  

(BCPR, per 10000 women) 

Rank 

(Top) 
Si-Gun-Gu BCPR 

Rank 

(Bottom) 
Si-Gun-Gu BCPR 

1 
Jangan-gu of 

Suwon-si 
8.27 1 

Gyeyang-gu of 

Inchoen 
2.28 

2 Jongno-gu 8.03 2 Siheung-si 2.32 

3 Yongsan-gu 7.74 3 Ansan-si 2.38 

4 
Paldal-gu of 

Suwon-si 
7.47 4 

Seo-gu of 

Incheon 
2.48 

5 
Nam-gu of 

Incheon 
6.79 5 

Yeonsu-gu of 

Incheon 
2.57 

 

 

Table 4-3 Rankings of the breast cancer prevalence rate increase 

(BCPRI, per 10000 women) 

Rank 

(Top) 
Si-Gun-Gu BCPRI 

Rank 

(Bottom) 
Si-Gun-Gu BCPRI 

1 Jongno-gu 4.53 1 Hanam-si -0.5 

2 
Nam-gu of 

Incheon 
3.96 2 

Manan-gu of 

Anyang-si 
-0.08 

3 
Jangan-gu of 

Suwon-si 
3.92 3 Anseong-si 0.02 

4 
Paldal-gu of 

Suwon-si 
3.69 4 

Yeoncheon-

gun 
0.02 

5 Yongsan-gu 3.57 5 Gwangju-si 0.13 
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Yeongdeungpo-gu, Yongsan-gu, Mapo-gu, Seongdong-gu, Seodaemun-

gu, Dongdaemun-gu, Jung-gu, Jongno-gu, Eunpyeong-gu and Seongbuk-

gu. Also, Deogyang-gu of Goyang-si and Suwon-si also show the clusters 

of the high breast cancer prevalence in 2015. On the other side, regions 

like Yeoncheon-gun, Danwon-gu of Ansan-si, Manan-gu of Anyang-si, 

Gunpo-si, Sujeong-gu and Bundang-gu of Seongnam-si, Cheoin-gu of 

Yongin-si, and Anseong-si show the clusters of low breast cancer 

prevalence rate in 2015. 

From 2012 to 2015, Jongno-gu of Seoul, Nam-gu of Incheon, Jangan-

gu and Paldal-gu of Suwon-si, Yongsan-gu of Seoul show the highest 

increase of breast cancer prevalence rate throughout the whole regions, 

while Hanam-si and Manan-gu show a decreasing trend, together with 

Anseong-si, Yeoncheon-gun and Gwangju-si, they rank the bottom in the 

breast cancer prevalence increase, as described in table 4-3. 

The change clusters of breast cancer prevalence rate from 2012 to 

2015 were also analyzed. Here, hot spot means the clusters of high 

increase of breast cancer prevalence rate, which mainly distribute in 

Deogyang-gu in Goyang-si, Jongno-gu, Jung-gu, Seodaemun-gu, 

Dongdaemun-gu etc. in Seoul and Suwon-si, while cold spot indicates the 

concentration of the low change of breast cancer prevalence rate, which 

mainy distribute in Yeoncheon-gun, Gapyeong-gun, Namyangju-si and so 

on, as shown in Figure 4-4 and Table 4-3. 
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4.3.3 Detection of the co-pattern between human exposure to 

NTL and the prevalence of breast cancer  

4.3.3.1 Local Pearson’s 𝒓𝒊 between human exposure to NTL and the 

breast cancer prevalence in 2015 

Local Pearson’s 𝑟𝑖 between human exposure to NTL and the breast 

cancer prevalence rate of 2015, as well as that between human exposure 

to NTL and the breast cancer prevalence change between 2012 to 2015 

were analyzed to figure out the local correlation between human exposure 

to NTL and the prevalence rate of breast cancer.  

The global Pearson’s 𝑟 between human exposure to NTL and the 

breast cancer prevalence rate is 0.39, showing a moderate positive 

correlation between the two variables, which indicates that regions with 

high human exposure to NTL have the high possibility of a high breast 

cancer prevalence rate, and vice versa. Spatial distribution of local 

Pearson’s 𝑟𝑖 was shown in Figure 4-5. 46 regions of the total 78 regions 

(59%) show a local positive correlation between human exposure to NTL 

and breast cancer prevalence, such as most regions of Gyeonggi-do and 

Incheon, and some regions in Seoul. However, 32 regions (41%) display a 

negative correlation between the two variables, and these regions mainly 

distributed in Goyang-ri, Uijeongbu-si, Namyangju-si, Seongnam-si and 
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so on. The results of the cluster detection of local Pearson’s 𝑟𝑖 between 

the two variables show high positive values of 𝑟𝑖 cluster in Yeoncheon-

gun, Dongducheon-si, Anseong-si, Jangan-gu and Paldal-gu in Suwon-si, 

and some regions in Seoul like Yongsan-gu, Mapo-gu and so on. 

Among those regions with positive local Pearson’s 𝑟𝑖 there are 23 

regions show a high human exposure with high breast cancer prevalence 

in 2015, shown in Figure 4-6, such as regions in Seoul like Jung-gu, 

Jongno-gu and so on, and Suwon-si, and Jung-gu and Nam-gu in Incheon. 

While other 23 regions show low human exposure to NTL and low breast 

cancer rate in 2015. At the same time, 32 regions show a negative 

correlation, 22 regions show a high human exposure to NTL and a 

relatively low breast cancer prevalence rate in 2015. Those regions are 

mainly concentrated in Seoul and its surrounding regions. The regions 

with low human exposure to NTL but high breast cancer prevalence in 

2015 were also detected, which mainly distributed in Gyeonggi-do, such 

as Gimpo-si, Goyang-si, Uijeongbu-si, Namyangju-si, Yeoju-si, Osan-si and 

Gwacheon-si etc.
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Table 4-4 Rankings of the local 𝑟𝑖 in different quadrants (X: human exposure to NTL; Y: BCPR) 

 High-High  High-Low 

Rank Si-Gun-Gu Local 𝑟𝑖 Rank Si-Gun-Gu Local 𝑟𝑖 

1 Jung-gu 5.33 1 Gwangjin-gu -1.11 

2 Yongsan-gu 2.75 2 
Jungwon-gu of 

Seongnam-si 
-0.96 

3 Paldal-gu of Suwon-si 2.54 3 Guri-si -0.70 

4 Nam-gu of Incheon 1.48 4 Gangnam-gu -0.63 

5 Jongno-gu 1.47 5 
Bupyeong-gu of 

Incheon 
-0.54 

 Low-High  Low-Low 

Rank Si-Gun-Gu Local 𝑟𝑖 Rank Si-Gun-Gu Local 𝑟𝑖 

1 Gimpo-si -0.67 1 Anseong-si 2.59 

2 
Deogyang-gu of 

Goyang-si 
-0.57 2 Pocheon-si 1.68 

3 
Ilsandong-gu of 

Goyang-si 
-0.28 3 Yeoncheon-gun 1.63 

4 Gwacheon-si -0.22 4 Paju-si 1.54 

5 
Ilsanseo-gu of Goyang-

si 
-0.1 5 Yangju-si 1.10 
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Figure 4-5 The spatial distribution and the cluster distribution of local 
Pearson's 𝑟𝑖 between human exposure to NTL and the breast cancer 

prevalence 

Figure 4-6 The scatterplot of local Pearson's 𝑟𝑖 between human exposure 
to NTL and the breast cancer prevalence 
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4.3.3.2 Local Pearson’s 𝑟𝑖 between human exposure to NTL and the 

breast cancer prevalence change from 2012 to 2015 

In order to detect the co-relation between human exposure to NTL 

and the breast cancer prevalence further, the bivariate correlation between 

human exposure to NTL and the breast cancer prevalence change from 

2012 to 2015 have been studied.  

The global Pearson’s 𝑟 between the two variables is 0.31, showing a 

moderate positive correlation, which indicates that in the regions where 

human are highly exposed to NTL, there are possibilities that the breast 

cancer prevalence rate will increase, and vice versa. The spatial distribution 

of local Pearson’s 𝑟𝑖 is shown as Figure 4-7. There are 44 regions out of 

78 regions (56%) have a positive correlative value between human 

exposure to NTL and the breast cancer prevalence increase. Regions in 

Seoul (Jung-gu, Jongno-gu, Yongsan-gu etc.), and those in Incheon (Seo-

gu, Jung-gu etc.) as well as regions in Gyeonggi-do (Paju-si, Pocheon-si, 

Hanam-si etc.) are included. While there are 34 regions (44%), such as 

Gangnam-gu, Seocho-gu etc. in Seoul, Ganghwa-gun etc. in Incheon and 

regions like Yeoju-si, Yangju-si and Guri-si in Gyeonggi-do, indicate a 

negative correlation between human exposure to NTL and the breast 

cancer prevalence rate increase. By detecting the cluster of local Pearson’s 

𝑟𝑖  between two variables, hot spots, which mean the cluster of high 

positive correlation, concentrate in Seodaemun-gu, Jung-gu, Jongno- gu 
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Table 4-5 Rankings of the local ri in different quadrants (X: human exposure to NTL; Y: BCPRI) 

 High-High  High-Low 

Rank Si-Gun-Gu Local 𝑟𝑖 Rank Si-Gun-Gu Local 𝑟𝑖 

1 Jung-gu 4.88 1 Gwangjin-gu -1.34 

2 
Paldal-gu of Suwon-

si 
2.11 2 Gangnam-gu -1.19 

3 Yongsan-gu 1.96 3 Guri-si -1.12 

4 Namgu of Incheon 1.82 4 Dong-gu of Incheon -0.98 

5 Jongno-gu 1.47 5 
Jungwon-gu of 

Seongnam-si 
-0.61 

 Low-High  Low-Low 

Rank Si-Gun-Gu Local 𝑟𝑖 Rank Si-Gun-Gu Local 𝑟𝑖 

1 Yeoju-si -2.00 1 Yeoncheon-gun 2.69 

2 
Ganghwa-gun of 

Incheon 
-1.47 2 Anseong-si 2.62 

3 
Deogyang-gu of 

Goyang-si 
-0.88 3 Pocheon-si 2.34 

4 Gwacheon-si -0.73 4 Yangpyeong-gun 2.13 

5 Yangju-si -0.71 5 Gwangju-si 1.89 
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Figure 4-7 The spatial distribution and the cluster detection of local 
Pearson's 𝑟𝑖 between human exposure to NTL and the breast cancer 

prevalence change 

Figure 4-8 The scatterplot of Pearson's 𝑟𝑖 between human exposure to 
NTL and the breast cancer prevalence change 
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and Seongdong-gu in Seoul, as well as Yeoncheon-gun and Gapyeong-

gun in Gyeonggi-do. While the cold spots, indicating the cluster of high 

negative correlation, distribute in Guri-si and Gwangjin-gu in Seoul. 

Among those 44 regions with positive correlation between human 

exposure to NTL and the increase of breast cancer prevalence, there are 

23 regions showing the high human exposure to NTL with high increase 

of breast cancer prevalence, which are mainly concentrated in Seoul, like 

Gwanak-gu, Gangseo-gu, Yangcheon-gu etc., as well as Suwon-si, and a 

few regions of Incheon and Seongnam-si. At the same time, 21 regions 

show low human exposure to NTL with low increase of breast cancer rate, 

like Seo-gu of Incheon, Paju-si, Anseong-si etc. On the other hand, 22 

regions have a high human exposure to NTL but low breast cancer 

prevalence increase, and these regions mainly distributed in Seoul and 

surrounding regions, as shown in Figure 4-8. And low human exposure to 

NTL but with high breast cancer prevalence increase occur in 12 regions 

such as Gwanghua-gu of Incheon, Gimpo-si, Uijeongbu-si, Namyangju-si 

and so on. 
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4.4 Discussions and conclusions 

This study used NTL as a proxy of human activities, studied the spatial 

distribution of residential building modified human exposure to NTL 

during 2012 to 2015, and the prevalence rate of breast cancer in 2015 and 

the prevalence change during the study period. In addition, I analyzed the 

spatial co-pattern between residential building modified human exposure 

to NTL and the prevalence and the prevalence change of breast cancer. 

The main results are as follows: 

(1) Local Pearson’s 𝑟𝑖  can detect the “point-to-point” correlation 

between two variables well. 

(2) High human exposure to NTL are mainly concentrated in Seoul, 

Incheon (except for Ganghwa-gun), and the surrounding cities of Seoul in 

Gyeonggi-do. The region with the highest human exposure to NTL is Jung-

gu in Seoul, which is 125.22 nanoWatts/cm2/sr averagely, while the lowest 

human exposure is in Ganghwa-gun of Incheon, the value of which is only 

3.03 nanoWatts/cm2/sr. Hot spots of human exposure to NTL distribute in 

regions of Seoul like Jung-gu, Jongno-gu etc, and Jung-gu and Nam-gu 

of Incheon, while the cold spots are mainly distributed in the peripheries 

of Gyeonggi-do. 

(3) The results of spatiotemporal distribution of breast cancer prevalence 

show that regions with the high prevalence rate are mainly concentrated 
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in Seoul, Goyang-si, Gimpo-si,  Bucheon-si and Suwon-si, among which 

Jongno-gu and Yeongdeungpo-gu of Seoul, as well as Jangan-gu and 

Paldal-gu of Suwon show highest breast cancer prevalence rates in 2015. 

Hot spots of breast cancer prevalence rate in 2015 are mainly distributed 

in northwestern regions of Seoul, while some regions in Ansan-si, Anyang-

si, Gunpo-si, -si, Yongin-si, and Anseong-si show the clusters of low breast 

cancer prevalence rate in 2015. On the other hand, hot spots of breast 

cancer prevalence increase are detected in some regions of Seoul, 

Goyang-si and Suwon-si, while cold spots are detected in regions in 

Gyeonggi-do like Gwangmyeong-si, Yeoncheon-gun etc. 

(4) The global Pearson’s 𝑟 between human exposure to NTL and the 

breast cancer prevalence rate in 2015 is 0.39, showing there is a moderate 

positive correlation between two variables. For the local Pearson’s 𝑟𝑖 

analysis, 46 regions shows positive correlation. There are 23 regions such 

as Jung-gu, Jongno-gu in Seoul, Suwon-si etc. show a high human 

exposure with high breast cancer prevalence in 2015. While other 23 

regions show low human exposure to NTL and low breast cancer rate in 

2015. At the same time, there are 32 regions (mainly concentrated in Seoul 

and its surrounding regions) show a negative correlation, among which 22 

regions show a high human exposure to NTL and relatively low breast 

cancer prevalence rate in 2015. While some regions of Gyeonggi-do like 

Gimpo-si, Goyang-si etc. show low human exposure to NTL but high 

breast cancer prevalence in 2015. 
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(5)  The global Pearson’s 𝑟 between human exposure to NTL and the 

increase of breast cancer prevalence is 0.31, showing a moderate positive 

correlation. For the local Pearson’s 𝑟𝑖 analysis, there are 44 regions have a 

positive correlative value between two variables, within which there are 23 

regions like Gwanak-gu, Gangseo-gu in Seoul and Suwon-si etc. showing 

the high human exposure to NTL with high increase of breast cancer 

prevalence. 21 regions like Seo-gu of Incheon, Paju-si, Anseong-si etc. 

show low human exposure to NTL with low increase of breast cancer rate. 

On the other hand, there are 34 regions showing negative correlation. 

Among those 22 regions (Seoul and surrounding regions) have a high 

human exposure to NTL but low breast cancer prevalence increase while  

low human exposure to NTL but with high breast cancer prevalence 

increase occur in 12 regions such as Ganghwa-gu of Incheon, Gimpo-si, 

Uijeongbu-si, Namyangju-si and so on. 

The results implied the concentration of human exposure to NTL in 

Seoul and its surrounding regions, including some cities in Gyeonggi-do 

such as Suwon-si, Seongnam-si and so on. Inevitably, the human 

exposures to NTL are also different and even have the same degree of 

NTL. For example, the frequency outdoor activity, and the setting and 

quality of the curtain and its quality all have influences on the exposure 

to NTL. However, this study only consider the average NTL degree of the 

residential buildings. Therefore, the results of this study may be biased 

due to the different behaviors.  
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The relatively high spatial association between exposure to NTL and 

the prevalence and prevalence change of breast cancer indicate that we 

should consider some actions to reduce the unnecessary light at night 

and night-shift work, and rouse the awareness of the disadvantages of 

excessive exposure to NTL.  
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 The Influences of Health-

threatening Factors on Human Health 

5.1 Introduction 

After the detection of the co-pattern between health-threatening 

anthropogenic factors and health outcomes, models are designed to 

detect the influences of health-threatening anthropogenic factors on 

human health. The influences have been examined on the IMS ratio on 

the DI value, the IMS ratio on the non-accident mortality and NTL on the 

breast cancer prevalence rate, respectively. The health outcomes have 

been considered as dependent variables, while the possible influencing 

factors according to previous studies have been selected as the 

independent variables. Global and local regression models are all designed 

to figure out the influences both in the whole region and in each local 

unit level. The influences of health-threatening anthropogenic factors are 

analyzed in detail according to the objectives of this study. 

5.2 The influence of man-made IMS on the DI value 

In order to figure out the influence of the man-made IMS on the DI 

value, the DI value is define by the temperature and relative humidity. 

Therefore, factors impacting temperature or relative humidity could be 

seen as an influencing factor of the DI value. Studies show that the 
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vegetation has a relationship with the reduction in the land surface 

temperature (Kaufmann et al., 2003; Yue et al., 2007), and also vegetation 

has a relationship with precipitation (Yang et al., 1997). Elevation and 

population are also an obvious influencing factor of temperature. 

Therefore, we take the DI value as the dependent value, while vegetation, 

elevation and population are selected as the independent variables. 

5.2.1 Model description 

Ordinary least square (OLS) and SEM are used to evaluate the 

influences of the vegetation, elevation, population and man-made IMS to 

the DI value. While the data and sources are as shown as table 5-1. In 

addition, GWR is used to calculate the influence of the factors in every 

unit, which can explain the spatial heterogeneity of factors and processes 

in detail. 

Here, the IMS ratio is calculated by dividing the total region of every 

unit by the man-made IMS area in this region, and NDVI and the DEM 

are the average value of the unit. 
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Table 5- 1 Data and sources 

 Category Data Source Date 

Dependent 

variable 
DI value ○ ○ ○ 

Independent 

variable 

IMS ratio ○ ○ ○ 

Vegetation NDVI 
MOD13A1 

https://lpdaac.usgs.gov/ 

2015.01.01-

2016.12.31 

Elevation DEM 
SRTM DEM 

http://srtm.csi.cgiar.org/ 
2016 

Population Population 
KOSIS 

http://kosis.kr/ 

2015.01.01-

2016.12.31 

 

5.2.2 Analytical results 

By calculation, the IMS ratio, NDVI, and population all show positive 

correlation with the DI value, while DEM shows a negative correlation with 

DI value. Due to the merits of SEM on processing spatial data, a lower 

Akaike information criterion (AIC) value is demonstrated. For the OLS 

model and SEM, the IMS ratio and population show significant positive 

correlation, while DEM show significant negative correlation, indicating the 

increase of IMS ratio and population will increase the DI value, and 

increase of DEM will reduce the DI value, and vice versa. Therefore, the 

IMS ratio has the strongest influence on the DI value, with the highest 

standardized coefficient. 
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Table 5- 2 Results of OLS and SEM 

 OLS SEM 

 Coefficient 
Standardized 

Coefficient 
p-value Coefficient 

Standardized 

Coefficient 
p-value 

Intercept 22.503  0.000 22.851  0.000 

IMS ratio 0.714*** 0.461*** 0.009 0.361** 0.233** 0.042 

NDVI 0.046 0.044 0.963 0.010 0.002 0.987 

DEM -0.002* -0.292* 0.076 -0.001* -0.194* 0.097 

Population 0.000*** 0.193*** 0.023 0.000* 0.085* 0.064 

𝑹𝟐 0.62 0.88 

AIC 150.218 86.463 

* p value≤0.1; ** p value≤0.05; ***p value≤0.01 

The distribution of the coefficient of the IMS ratio in Figure 5-1 shows 

most regions have a positive correlation between the IMS ratio and DI 

values, expect for some regions in Seoul, like Gangnam-gu, Seocho-gu etc. 

and some regions in Gyeonggi-do like Seongnam-si, Gwangju-si and so 

on. 

For the distribution of the highest influencing factors on the DI value 

shown in Figure 5-2, we can see that the IMS ratio is the strongest 

influencing factor on the DI value in some regions of Seoul, Incheon, and 

the majority regions of north Gyeonggi-do. However, the DI values in the 

other regions are mostly influenced by the average DEM. 
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Figure 5- 1 The spatial distribution of regression coefficients of the IMS ratio 

 

 

Figure 5- 2 The spatial distribution of strongest influencing factors on the DI 
value  
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5.3 The influence of man-made IMS on the non-

accident mortality 

Man-made IMS is assumed to influence non-accident mortality 

indirectly due to the positive influence of man-made IMS to temperature 

(Gabriel and Endlicher, 2011). In addition, other factors influence on the 

mortality, such as the age structure (Jeong and Jun, 2013), and the 

accessibility to the medical organizations. Therefore, this study designates 

non-accident mortality as the dependent variable, and the impervious 

land ratio, the elderly and the accessibility to the medical organizations as 

the independent variables. 

5.3.1 Model description 

OLS and SEM are used to evaluate the influences of the man-made 

impervious surface, elderly ratio and the accessibility to the hospital. While 

the data and sources are as shown as Table 5-2. In addition, GWR is used 

to calculate the influence of the factors in every unit, which can explain 

the spatial heterogeneity of factors and processes in detail. 

Here, population above 65 years old are seen as elderly population 

(Jeon, 2017), and the elder SSD is calculated to represent for the 

concentration of elders. For the accessibility of the medical organization, 

hospitals (병원) and the general hospitals (종합병원) in the SMR are 

selected as the destination, while the residential buildings in each unit are 
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taken as the origins, the average value of the OD distance in every unit 

was taken as the distance to hospital.   

 

Table 5- 3 Data and sources 

 Category Data Source Date 

Dependent 

variable 

Non-accident 

mortality 

Mortality 

data 

Korea National Statistical 

Office 

http://kostat.go.kr/ 

2015.01.01-

2016.12.31 

Independent 

variable 

IMS ratio ○ ○ ○ 

Elder SSD Elder 

Korea National Statistical 

Office 

http://kostat.go.kr/ 

2015 

Hospital 

accessibility 
Hospital 

Local data 

https://www.localdata.kr/ 

2015.01.01-

present 

 

5.3.2 Analytical results 

SEM also performs better than OLS according to the results. By 

calculation, the IMS ratio, elderly SSD and the distance to the hospital all 

a have positive correlation with non-accident mortality. However, the IMS 

ratio and the distance to the hospital are only significant in the OLS model, 

and among those factors, elderly SSD has the strongest influence on non-

mortality.  

We can figure out the model fitness of every unit, and the strongest 

influence factors of every unit for the results of GWR, as seen in Figure 5-

3 and Figure 5-4. 
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Table 5- 4 Results of OLS and SEM 

 OLS SEM 

 Coefficient 
Standardized 

Coefficient 
p-value Coefficient 

Standardized 

Coefficient 
p-value 

Intercept -0.2160  0.044 0.1500  0.3656 

IMS ratio 0.0030* 0.1220* 0.100 0.0006 0.0980 0.3189 

Elder SSD 0.7720*** 0.7750*** 0.000 0.8670*** 0.8630*** 0.0000 

Hosdis 0.0000* 0.1400* 0.092 0.0000 -0.0250 0.7800 

𝑹𝟐 0.621 0.769 

AIC 147.313 121.270 

* p value≤0.1; ** p value≤0.05; ***p value≤0.01 

For the GWR results of coefficient distribution of IMS ratio, we can 

see that for the most regions of Seoul and Gyeonggi-do, there is a 

negative correlation between the IMS ratio and the non-accident mortality, 

while Incheon, Gimpo-si, Hwaseong-si etc. show positive correlation 

between the two factors. Regions like Incheon, Siheung-si, Bucheon-si and 

so on show stronger correlation between them.   

For the strongest influencing factors, we can see that for the majority 

of Gyeonggi-do, the elder concentration is the strongest influencing 

center of non-accident mortality, while most regions in Seoul, Seo-gu, 

Gaeyang-gu of Incheon, and Gimpo-si, Bucheon-si, Guangmyeong-si etc. 

have the distance to the hospital as the strongest influencing factor of 

non-accident mortality, which is the most concentrate region of hospitals. 

However, Seocho-gu, Gangnam-gu of Seoul and Gwacheon-si, Seongnam-

si etc. show the IMS ratio as the highest influencing factors of non-

accident mortality.   
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Figure 5- 3 The spatial distribution of regression coefficients of the IMS ratio 

 

Figure 5- 4 The spatial distribution of the strongest influencing factors on the 
non-accident mortality 
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5.4 The influence of NTL on the breast cancer 

prevalence 

One study shows that there are one million new breast cancer cases, 

which occupies about 18% of all female-type cancers (McPherson et al., 

2000). Breast cancer is the primary cause of cancer death among women 

globally (Bray et al., 2004). Studies show that excessive exposure to NTL 

can increase breast cancer risk (Davis et al., 2001; Kloog et al., 2008; Pauley, 

2004; Stevens, 1987; Stevens, 2005). In order to figure out the influence of 

NTL exposure to breast cancer, I apply the prevalence rate of breast cancer 

(BCPR) as the dependent variable, and possible influencing factors such 

as fertility, per capita GRDP (Kloog et al., 2008), obesity (Kim, 2008), female 

education lever, and alcohol intake as independent variables.  

5.4.1 Model description 

This study also adopted OLS and SEM as the global regression model, 

while GWR as the local regression model to estimate the influence of NTL 

to the breast cancer prevalence rate. The data and sources are as shown 

as Table 5-5. The mean_NTL is the mean nighttime light in each unit from 

2012 to 2015, in that there may be a time lag between the exposures to 

NTL and the inducing of breast cancer, and also there will be an incubation 

period of breast cancer. The fertility is the birth rate of every unit by 

dividing the fertile women by the number of births. While the obesity, 
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education, and workrate of female are considered. Thereinto, education is 

the rate of females with education degree higher than bachelor.  

 

Table 5- 5 Data and sources 

 Category Data Source Date 

Dependent 

variable 
BCPR Breast cancer 

Korea National 

Statistical Office 

http://kostat.go.kr/ 

2015 

Independent 

variable 

Mean_NTL NTL ○ ○ 

Fertility Birth rate 

Korea National 

Statistical Office 

http://kostat.go.kr/ 

2015 

per cap 

GRDP 
GRDP 2015 

Alcohol 
High Alcohol 

intake rate 
2015 

Obesity Obesity rate 2015 

Education 
Education 

degree 
2015 

Workrate Worker rate 2015 

 

5.4.2 Analytical results 

We can see that for the mean_NTL, per capita GRDP, and alcohol have 

a positive correlation with breast cancer prevalence, while fertility, obesity, 

education, and workrate all have a negative correlation with the breast 

cancer prevalence rate. Among which, mean_NTL, fertility and alcohol have 

significant correlation with breast cancer prevalence rate for both OLS and 
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SEM, and mean_NTL and fertility have stronger influences. SEM also shows 

a better performance than OLS.  

 

Table 5- 6 Results of OLS and SEM 

 OLS SEM 

 Coefficient 
Standardized 

Coefficient 
p-value Coefficient 

Standardized 

Coefficient 
p-value 

Intercept 58.910**  0.037 58.97**  0.011 

Mean_NTL 0.129** 0.356** 0.016 0.142*** 0.460*** 0.006 

Fertility -22.555*** -0.511*** 0.002 -21.793*** -0.434*** 0.001 

Per capita 

GRDP 
0.106 0.651 0.259 0.088 0.506 0.302 

Alcohol 1.285** 0.334** 0.043 1.005* 0.206* 0.067 

Obesity -0.688 -0.155 0.455 -14.377 -0.161 0.394 

Education -7.525 -0.082 0.688 -13.419 -0.273 0.405 

Workrate -15.853 -0.650 0.273 0.055 -0.589 0.311 

𝑹𝟐 0.508 0.523 

AIC 151.569 148.812 

 

For GWR, we can see that the coefficient of mean_NTL is higher than 

0.31, with an increasing trend from the southern to the northern region, 

with the highest coefficient distributed in the Pocheon-si, Yeonchen-gun 

Paju-si and so on. For the strongest influencing factors in each unit, we 

find that most regions of Seoul, Incheon, and norther Gyeonggi-do have 
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NTL as the strongest influencing factor for the breast cancer prevalence 

rate, while other regions have fertility as the strongest influencing factors. 

 

Figure 5- 5 The spatial distribution of regression coefficients of the mean NTL 

 

Figure 5- 6 Distribution of the strongest influencing factors on the breast 
cancer prevalence rate 
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5.5 Discussions and conclusions 

Regression modeling is conducted to detect the influences of health-

threatening anthropogenic factors on human health, after the detection 

of co-pattern between the two factors. For the global regression model, 

OLS and SEM and the local regression model, GWR are performed to 

identify the influencing factors, in order to emphasize the influences of 

health-threatening anthropogenic factors on human health. The results for 

anthropogenic factors in GWR are discussed. And the results are as follows. 

First, the IMS ratio, DEM and population have significant influences 

on the modelling of influencing factors of DI value. However, the IMS ratio 

and population have a positive correlation, and DEM has a negative 

correlation. Among the influencing factors, the IMS ratio has the strongest 

influence on the DI value. Through the results of GWR, we can see that a 

majority of the regions have a positive correlation between the two factors, 

and the regions in Gyeonggi-do like Yeoncheon-gu, Pocheon-si and so on 

have the highest coefficient. Some regions of northern Seoul, Incheon and 

most regions of northern Gyeonggi-do show that the strongest 

influencing factors of DI values are the IMS ratio. 

Second, the IMS ratio, elder concentration and the distance to the 

hospital have a positive correlation for the influencing factors of non-

accident mortality. However, the strongest influencing factors of non-

accident mortality is the concentration of the elderly. For the results of 
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GWR, we can see that only some regions in Incheon, and Gyeonggi-do 

such as  Gimpo-si, Bucheon-si and so on show a positive correlation 

between the IMS ratio and non-accident mortality, while other regions are 

almost negative. The strongest influencing factors of non-accident 

mortality are the elder concentration in most Gyeonggi-do regions, the 

distance to the hospital in Ginpo-si and some regions in Incheon and 

Seoul and so on, and the IMS ratio in Gangnam-gu, Seocho-gu and some 

regions in Gyeonggi-do like Seongnam-si and Gwacheon-si. 

Third, mean_NTL, and alcohol show a significant positive relationship 

with for the modeling of the influencing factors of the breast cancer 

prevalence rate, with fertility showing a negative correlation. The mean-

NTL also shows a strong influence. For GWR, we can see an increasing 

trend of influences of mean_NTL from the southern to the northern 

regions. For most regions of Seoul, Incheon, and northern Gyeonggi-do, 

the highest influencing factors of the breast cancer prevalence rate is the 

NTL. 

The results show a positive correlation of health-threatening 

anthropogenic factors and the potential health outcomes, and a strong 

influence on health outcomes. Therefore, some measures should be 

considered to reduce the health-threatening anthropogenic factors for 

reducing their influences on human health. Vegetation and other 

measures can be adopted to reduce the heat effect for man-made IMS. 
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Publicity in the harm of NTL and the forced outage of some types of 

unnecessary artificial lightings like some commercial lighting can be 

considered for reducing NTL. 
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 General Conclusions and 

Discussions 

The consistent increase of the population in urban regions can scale 

up the adverse impact of humans to the natural environment, including 

bad air quality, ocean pollution, water security, to name a few. Those 

environmental problems can and already have counteracted our health, 

by increasing the risks of morbidity and mortality. Two major challenges 

are how to quantify and figure out the distribution of humans and human 

activities. Remote sensing has the capability to give insight into biotic and 

abiotic components on the earth for large temporal and spatial scales. 

Since the availability of remote sensing in scientific research conducted on 

the application of remote sensing on human health. However, there are 

limitations of the existence studies, including the lack of anthropogenic 

factors extraction and analysis on remote sensing and the infrequent use 

of spatial statistical measures when quantifying the relationship between 

the factors derived from remote sensing and possible health outcomes. 

Based on previous research and limitations, I extracted the possible 

health-threatening anthropogenic factors in remote sensing and their 

possible health outcomes, and I analyzed the spatial distribution of the 

two variables and the spatial association between the two variables. And 

the main conclusions are as follows: 
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(1) When application remote sensing on the health-related analysis, 

remote sensing techniques can be utilized to extract the possible health-

threatening anthropogenic factors, like the man-made IMS, the artificial 

light at night, to name a few, instead of extracting natural factors like 

vegetation, wetness etc. only. 

(2) Remote sensing can give insight into the spatial and temporal 

distribution of the possible health-threatening anthropogenic factors in 

large spatial and temporal scales of less cost and time consumption.  

(3) Instead of the traditional proportion and statistical methods used 

in the previous studies, row-standardized proportion method can give a 

more accurate result by taking the different total populations in different 

regions. And the utilization of spatial statistical methods, and the local 

statistical methods can acquire more rigorous and detailed relation 

between the variables. 

(4) Man-made IMS have shown a high concentration in majority 

regions of Seoul, Incheon and some surrounding regions of Seoul in 

Gyeonggi-do. Similarly, the high DI values are also have a trend of 

concentration with Seoul as the center, while the spatial distribution 

pattern of non-accident mortality show low value cluster in Seoul and high 

value clusters in the peripheral Gyeonggi-do. The results proved a high 

spatial bivariate association between the man-made IMS ratio and the DI 

values, showing high ratio of man-made IMS accompanies with high DI 
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values, while it showed little relation between the man-made IMS ratio 

and the non-accident mortality, , which assumed to be associated with the 

high income and the better accessibility to the health care.  

(5) For the exposure to NTL, the residential building modified 

exposure to NTL are mainly concentrated in majority regions in Seoul and 

Incheon, and some major cities in Gyeonggi-do. The distribution pattern 

of breast cancer prevalence rate also tend to concentrated in and around 

Seoul. The results have shown high spatial bivariate correlation between 

the exposure to NTL and the breast cancer prevalence rate, and a high 

local correlation between the NTL and the prevalence rate change.  

(6) Models of the influencing factors on DI value, non-accident 

mortality and the breast cancer prevalence rate are designed to figure out 

the influences of the health-threatening anthropogenic factors. Results 

show that the man-made IMS and NTL have strong influence on the 

increase of DI value and the breast cancer prevalence, indicating the 

influences of the health-threatening anthropogenic factors on human 

health. For the non-accident mortality, although man-made IMS shows 

positive correlation, the strongest influencing factors is the elder 

concentration degree, instead of the man-made IMS. 

There are some implications and limitations of this study. The main 

contribution of this study is the innovation of application of remote 

sensing to health-related research by extracting the anthropogenic factors 
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instead of the natural factors in remotely sensed data. With the merits of 

remotely sensed data, we can derive the possible health-threatening 

anthropogenic factors in large temporal and spatial scale, which can be of 

great help for decision-making. The utilization of spatial association 

measures and the new data standardization method are also advantages 

of this study. What's more, the human activities extracted in remote 

sensing are very practical and closely relate to our practical life, which can 

give us more practical implications in our life. The results are also expected 

to improve the environment impacted on human activities and give the 

basis for decision-making. 

 There are also limitations in this study. This study only researched on 

the correlation between the two variables, with little considering on the 

cause and effect. The pathogenic factors of the diseases are greatly diverse, 

therefore, analyzing the pathogenic factors of the diseases is beyond the 

scope of this study. However, the analysis on the correlation between the 

two variables also proved to be valuable. Another limitation is the 

limitation of the research data, including the lack of data in smaller spatial 

unit and more accurate information of the patients.  

This study has analyzed the spatial and temporal distribution of the 

possible health-threatening anthropogenic factors in remote sensing and 

their possible threats, with the spatial association measure between the 

two variables. Therefore, there are some follow-up studies that can be 
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conducted. For example, based on the distribution of health-threatening 

anthropogenic factors in remote sensing, the risk map of human activities 

to human health can be generated. Other factors can also be introduced 

for more detailed analysis of the pathogenic factors of diseases. These 

studies are all expected to contribute in building a better human-

environment relationship.   
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Appendix 2: The distribution of regression coefficients in the model on 

the non-accident mortality  
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Appendix 3: The distribution of regression coefficients in the model on 

the breast cancer prevalence rate (significant coefficients) 
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국문초록 

인류발생적 건강위협 인자가 인체건강에 미치는 영향력의 

공간적 변동 탐색:  

원격탐사 데이터에 대한 ESDA 적 접근 

주뢰  

사범대학 사회교육과 지리전공 

서울대학교 대학원 

 

질병과 보건서비스 제공의 공간적 분포는 보건지리학의 두 가지 

주요 주제이다. 두 가지 주요 관심사에 관한 연구를 수행하기 위해 많은 

자료와 공간적 분석 기법들이 사용되어 왔다. 그 중에 원격탐사 기술은 

다양한 정보와 광범위한 시·공간적 스케일의 장점으로 인해 1970년대 

이후 보건지리학에서 널리 사용되어 왔다. 본 연구는 탐색적 공간 

데이터 분석(exploratory spatial data analysis, ESDA)의 관점에서 

원격탐사 데이터를 사용하여 잠재적인 인류발생적 건강위협 인자가 인체 

건강에 미치는 영향에 있어서의 공간 변동을 파악하고자 한다. 

이 연구에서는 잠재적인 인류발생적 건강위협 인자를 추출하기 위해 

Landsat 8과 Visible Infrared Imaging Radiometer Suite(VIIRS) 

로부터 얻어진 다양한 원격탐사 데이터를 사용하였다. 두 가지 위성영상 

자료에서 잠재적인 인류발생적 건강위협 인자를 추출한 결과, 인공 

불투수면(impervious surface, IMS)과 인공 야간 조명(nighttime light, 

NTL)에 대한 노출이 가장 대표적인 인자로 추출되었다. 한편, 
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불쾌지수(discomfort index, DI), 비사고 사망률, 그리고 유방암 

유병률은 이들 요인들에 의해 영향을 받는 잠재적인 건강 결과로 

여겨진다.  

이를 바탕으로 본 연구는 우선 잠재적인 인류발생적 건강위협 

인자와 건강결과의 공간적 분포 특성 및 공간적 연관성을 파악하였다. 

그 결과, 잠재적인 인류발생적 건강위협 인자들은 도시 지역에 집중되는 

경향이 있는 반면, 건강결과는 다양한 공간적 분포 특징들을 가진 

것으로 나타났다. 그리고 공간적 연관성에 있어 이들 두 변수들은 

양(+)의 공간적 상관관계를 갖는 경향을 보였다. 다음으로 본 연구는 

공간회귀분석을 이용하여 인류발생적 건강위협 인자가 건강에 미치는 

영향력에 대한 공간적 변동을 분석하였다. 분석 결과, 인공 불투수면과 

야간 불빛은 불쾌지수 및 유방암 유병률 증가의 주된 요인으로 

파악되었다.  

 

주요어: 인류발생적 건강위협 인자, 인체 건강, 원격탐사, 공간적 변동, 

공간적 연관성, 보건지리학 

학번: 2015-30770 
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中文摘要 

人为健康威胁要素对健康影响的空间分布特征研究： 

“探索性空间数据分析（ESDA）”方法对遥感数据的应用 

朱蕾 

师范学院 社会教育学科 地理专业 

首尔国立大学 

疾病和医疗保健服务的空间分布是健康地理研究的两大主要部分。各种

数据资源和地理分析技术已经在这两个问题的研究中广泛应用。其中，因丰

富的信息量以及大尺度的时空范围，遥感技术自 20 世纪 70 年代以来已经广

泛应用于健康地理学研究中。通过使用遥感数据，本研究的主要目的是利用

探索性空间数据分析（Exploratory Spatial Data Analysis, ESDA）检测潜

在的人为健康威胁要素对人体健康影响的空间异质性。 

本研究利用 Landsat 8 影像和 Visible Infrared Imaging Radiometer 

Suite (VIIRS)影像提取遥感影像中潜在的人为健康威胁要素。在这两个影像

应用中，人工不透水面 (impervious surface, IMS)和夜间灯光 (nighttime 

light, NTL)被提取为最具代表性的潜在人为健康威胁要素。同时，不适指数

(discomfort index, DI)，非事故死亡率以及乳腺癌的发病率被认为是这些因

素对健康可能造成的影响。 

首先，本研究分析了上述人为健康威胁要素的分布特征，以及不透水面

与不适指数，非事故死亡的空间相关性，夜间风光与乳腺癌发病率的空间相

关性。其次，本研究用空间回归模型分别分析了不透水面对不适指数，非事
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故死亡的影响，以及夜间灯光对乳腺癌发病率的影响。结果表明，潜在的人

为健康威胁要素倾向于集中在城市地区，而其对健康的影响则有明显的地理

分布的异质性。两个变量之间倾向于具有正向的空间关联性。同时，人工不

透水面和夜间灯光被证明是分别影响不适指数及乳腺癌发病率的主要因素。 

关键词：人为健康威胁要素，健康，遥感技术，空间异质性，空间相关性，健康地

理学 

学号：2015-30770 
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