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ABSTRACT

The effect of tumor microenvironmental stress on
malignant mesothelioma

(Supervisor: Yongbaek Kim, D.V.M., Ph.D.)
Myung—-Chul Kim

Major in Veterinary Clinical Science (Veterinary Clinical Pathology)
Graduate School of Veterinary Medicine
Seoul National University

Compared to normal cells, cancer cells survive and acquire more
aggressive phenotypes under hostile tumor microenvironment in which
oxidative stress and tumor hypoxia are the most pervasive environmental
stress. Human malignant mesothelioma (HMM) is asbestos-related
aggressive cancer. The importance of tumor microenvironmental stress has
been relatively overlooked and rarely studied in HMM progression. In the
present study, we investigated the effect of oxidative stress and tumor
hypoxia on HMM. Upon the addition of hydrogen peroxide (H:03) to HMM
cells, epithelial to mesenchymal transition (EMT) was markedly induced, as

evidenced by upregulation of vimentin, SLUG, and TWIST1, and



downregulation of E-cadherin. Treatment of HMM cells with Hs0Os
significantly upregulated the expression of stemness genes, such as OC74,
SOXZ, and NANOG. Alteration of these genes was mediated via activation
of hypoxia—inducible factor 1 alpha (HIF-1a) and transforming growth factor
beta 1 (TGF-B1). Immunohistochemically, EMT-promoting protein TWIST1
was solely expressed to the nucleus of sarcomatoid cells in HMM tissues.
Hypoxic conditions (2.2% 0O) induced the expression of HIF-1a and HIF-
2a in parallel with the upregulation of their target GLUT-1 in HMM cells.
HMM cells under hypoxia showed more aggressive phenotypes regarding in
vitro clonogenicity, apoptosis, drug resistance, and mobility and
invasiveness. The enhancement of in vifro clonogenicity was mediated by
upregulation of HIF-2a, OCT4, and CD44 in hypoxic HMM cells. Meanwhile,
the expression of p—Akt and NOTCH1'® was not significantly altered in
hypoxic HMM cells. On the other hand, cisplatin rapidly degraded HIF-1a
and HIF-Z2a proteins, and HIFa expression was not detected in HMM cells
during hypoxic conditions. Hypoxia—-induced upregulation of Bcl-2 was
shown to decrease apoptotic potential, and the increased ratio of Bcl-2 to
Bax was suggested to mediate hypoxia—induced drug resistance in HMM
cells. Hypoxia significantly promoted EMT in HMM cells, as evidenced by
downregulation of E-cadherin, upregulation of vimentin, and acquisition of
sarcomatoid HMM morphology. Mitochondria within HMM cells were
hypothesized to be the potential candidate to overcome drug resistance

arising from tumor hypoxia. The viability of HMM cells cultured under



hypoxia (0.1% 0O,) was less affected by cisplatin treatment, compared to
those cultured under normoxia. Hypoxia significantly inhibited cisplatin—
induced apoptosis in HMM cells. HMM cells under hypoxia inhibited
cisplatin—induced detrimental effects on Awy, redox status, mitochondrial
DNA (mtDNA) integrity, and ultrastructure of mitochondria. Hypoxia
exhibited mitochondrial hyperpolarization and inhibited cisplatin—induced
mitochondrial depolarization in HMM cells. The mitochondrial
hyperpolarization by hypoxia was augmented by the addition of cisplatin.
The hyperpolarized phase of mitochondria was not related to ATP
production nor reversal of ATP synthase. The mitochondrial depolarization
was not due to the opening of mitochondrial permeability transition pore in
HMM cells. Hypoxia significantly inhibited cisplatin—induced mitochondrial
oxidative stress and consequent damages to mtDNA and mitochondrial
ultrastructure. Redox compartmentalization was observed within HMM cells
cotreated with cisplatin and hypoxia. Long—term treatment of low dose
ethidium bromide significantly depleted mtDNA in HMM cells. The mtDNA-
depleted HMM cells showed a significant reduction in cell proliferation, cell
viability, Ay, intracellular ATP content, mitochondrial ROS generation, and
mitochondrial mass, compared to parental cells. The p” HMM cells were
demonstrated to lose their ability to induce hypoxia—-induced drug
resistance. Also, p® HMM cells under hypoxia failed to mitigate cisplatin-—
induced mitochondrial oxidative stress. Taken together, our results clearly

demonstrate that oxidative stress and hypoxia are a critical part of cancer
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progression in HMM. A control measure for oxidative stress and tumor
hypoxia may be an effective therapeutic strategy to reduce the
aggressiveness of cancer cells in patients with HMM. In addition, it can be
concluded that mitochondrially encoded ETC subunits are the very core of
mitochondria, allowing HMM cells under hypoxia to induce drug resistance.
The present study is valuable to provide convincing evidence for the
therapeutic potential of mtDNA targeting to overcome drug resistance
arising from tumor hypoxia. Data presented in this study will also
scientifically contribute to the understanding of molecular mechanisms for
cell or organism adaptive response to hypoxic stress encountered during

normal and pathophysiological conditions.

Keywords: human malignant mesothelioma, hostile tumor microenvironment,
oxidative stress, tumor hypoxia, drug resistance, mitochondria, mtDNA,
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HMM: human malignant mesothelioma
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8-0HdG: 8-hydroxy—-2'-deoxyguanosine
HIFa: hypoxia inducible factor alpha

HIF-1a: hypoxia inducible factor 1 alpha
HIF-2a: hypoxia inducible factor 2 alpha
HIF-1/2a: hypoxia inducible factor 1 and 2 alpha
PHD: oxygen—-dependent prolyl-hydroxylase
VHL: von Hippel-Lindau

EMT: epithelial to mesenchymal transition
MET: mesenchymal to epithelial transition
ECM: extracellular matrix

CSCs: cancer stem cells

TGF-B1: transforming growth factor beta 1
OCT4: octamer—binding transcription factor 4
RT-PCR: reverse transcription polymerase chain reaction
gPCR: quantitative polymerase chain reaction
Glut—-1: glucose transporter 1

Bel-2: B-cell lymphoma 2

Bax: Bcl-2-associated X protein

Bcl-xL: B-cell lymphoma-extra large

GAPDH: glyceraldehyde 3-phosphate dehydrogenase



MMP: mitochondrial membrane potential, Ayy

MPT: mitochondrial permeability transition

mPTP: mitochondrial permeability transition pore

mtDNA: mitochondrial DNA

mtROS: mitochondrial reactive oxygen species

OXPHOS: oxidative phosphorylation

ETC: electron transport chain

TCA: tricarboxylic acid

EtBr: ethidium bromide

MAPK: mitogen—activated protein kinase

P-Akt: phosphorylated Akt

PKC: Protein kinase C

PI3K: phosphoinositide 3—kinase

PTEN: phosphatase and tensin homologue ()

AP-1: activator protein 1

NF-xB: nuclear factor kappa-light—chain—enhancer of activated B cells
MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
DCFDA: 2" ,7 "=Dichlorofluorescin diacetate

JC-1: 5,9',6,6'-tetrachloro-1,1",3,3' —tetraethyl-
benzimidazolylcarbocyanine chloride

[D5o: Half maximal inhibitory dose

CCCP: Carbonyl cyanide m—chlorophenyl hydrazone
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LITERATURE REVIEW

Tumor tissue oxygenation and abnormal tumor vasculature

Molecular oxygen (Os) is required for aerobic metabolism to maintain
intracellular bioenergetics and to serve as an electron acceptor in many
organic and inorganic reactions (Huang et al. 2006, Brahimi-Horn et al. 2007,
Bertout et al. 2008).

Ambient air is 21% O, (150 mm Hg) and most mammalian tissues exist at
2% to 9% O, (24 to 66 mm Hg; on average 40 mm Hg) (Vaupel et al. 1989,
Bertout et al. 2008). Hypoxia is defined as reduced O, levels and occurs in
a variety of pathological conditions, such as stroke, inflammation, and the
growth of the tumor (Bertout et al. 2008). Compared to corresponding
normal tissues, tumor tissue oxygenation is poor with the median pO; value
of less than 10 to 20 mm Hg in tumor tissues of patients (Vaupel et al. 1989,
Brahimi-Horn and Pouysségur 2007). Tumor hypoxia is a common feature
in human malignancies (Vaupel et al. 1987). Clinical investigations have
shown that 50% to 60% of locally advanced solid tumors have hypoxic and
ischemic regions (Brown et al. 2004, Bache et al. 2008, Walsh et al. 2014).

Tumor vasculature is poorly disorganized and structurally and functionally
abnormal, compared to normal vasculature (Vaupel et al. 1989, Fukumura et
al. 2007). Capillaries are frequently fenestrated and discontinuous, and
venules are often tortuous, saccular, and dilated (Jain 1988). The
arteriovenous anastomoses, a direct shunting of blood vessels from the

arterial to the venous side, are commonly found in tumor tissues (Jain 1988,



Vaupel et al. 2001). Consequently, these structural abnormalities contribute
to the chaotic tumor microcirculation, such as fluctuation in the bloodstream,
intermittent blood perfusion, and even blood flow stasis (Jain 1988, Vaupel
et al. 1989, Fukumura and Jain 2007). This perfusion-limited O, delivery to
tumor cells leads to transient acute hypoxia (Figure 1A) (Vaupel et al. 1989,
Fukumura and Jain 2007). Cancer cells that initially access blood-borne
oxygen (0Os) from preexisting host vessel start to stimulate
neovascularization during rapid tumor expansion (Vaupel et al. 1989). The
angiogenesis, however, usually does not overtake uncontrolled,
dysregulated proliferation of the cancer cells (Vaupel et al. 1989). Moreover,
the diffusion distance of Os is as low as approximately 70 to 150 uyM from a
vessel (Coleman 1988, Vaupel 2004). Thus, tumor cells beyond the diffusion
limit become hypoxic or anoxic (Moolgavkar et al. 1981, Vaupel et al. 1989).
Chronic hypoxia occurs as the size of tumor cell aggregates reaches the
diffusion limit of Oy from blood vessels (Figure 1B) (Vaupel et al. 1989).
Meanwhile, the reduction or the lack of transmural pressure due to
interstitial hypertension also aggravates the penetration and delivery of Og
to tumor cells (Yuan et al. 1994, Fukumura and Jain 2007). The high
hydrostatic pressure is a result of no functional lymphatic vessels in tumor

tissues (Leu et al. 2000, Padera et al. 2004, Jain et al. 2014)



Figure 1. Clinical evidence of acute and chronic hypoxia in human solid
tumor. (A) Acute hypoxia. Hoechst 33342 (blue) and DiOC7 (green) should
stain the same cells immediately adjacent to the well-perfused vasculature.
Staining disparity (arrow) represents heterogeneous chaotic
microcirculation and existence of acute hypoxia. A 20-minute period
between injection of the first Hoechst 33342 and second DiOC7 dyes. (B)
Chronic hypoxia. Red and green colors represent nitroimidazole—positive
hypoxic tumor cells and CD31-positive blood vessels, respectively. Human

soft tissue sarcoma. Adapted from (Brown 2002).



Tumor hypoxia and cancer progression

Tumor hypoxia is the most pervasive and best characterized of the hostile
environmental stresses (Vaupel et al. 1989, Harris 2002). The O,-depleted
areas can arise prior to nutrient deprivation during the very early growth
stages of xenografted human tumors (Vaupel et al. 1989). Although a study
has revealed that glucose depletion increases metastatic potential of tumor
cells (Cuvier et al. 1997), it is still controversial whether glucose starvation
plays a critical role in cancer progression 2 vivo (Vaupel 2010). Clinically,
glucose concentrations in tumor cells are rarely below 1 mM (Vaupel 1994).
Tumor hypoxia is the most independent prognostic factor for predicting
tumor behavior, response to treatment, and clinical outcome in advanced
disease progression (Hockel et al. 1996). Tumor hypoxia has a negative
impact on the effectiveness of curative treatment, leading to local failure
and recurrence (Teicher 1994, Kim et al. 2017).

Tumor hypoxia results in cancer progression (Cosse et al. 2008).
Accumulating evidence reveals that hypoxia affects most of the tumor cell
properties, such as cell proliferation, apoptosis, metabolism, Immune
responses, genomic instability, vascularization, and invasion and metastasis
(Graeber et al. 1996, Hockel et al. 1996, Vaupel et al. 2007, Wigerup et al.
2016). A variety of genes and/or proteins, as well as intracellular signaling
pathways, have been reported to mediate tumor cell adaptation to hypoxia,
leading to the acquisition of aggressive phenotypes in hypoxic tumor cells

(Vaupel 2008). Of the various molecules that sense and respond to hypoxia,



hypoxia-inducible factor (HIF) transcription factor has been extensively
recognized the master regulator of hypoxia-induced cellular responses
(Semenza 2000, Liu et al. 2012).

The HIF is a heterodimeric complex that consists of Os—labile a subunit,
including HIF-1a and HIF-2a, and an Os-stable 8 subunit (Wang et al. 1995).
The HIFa subunits are reported to share a high degree of sequence identity
and undergo a similar proteolytic regulation in a post—translational manner
(Wang et al. 1995, Pugh et al. 2003). Under the reduced O, availability,
prolines residues 402 and 564 within oxygen—dependent degradation
domain of HIFa are hydroxylated by oxygen—dependent prolyl-hydroxylase
(PHD) (Ivan et al. 2001, Jaakkola et al. 2001, JEWELL et al. 2001). The
hydroxylated HIFa is subjected to binding of von Hippel-Lindau (VHL)
tumor, an E3 ligase that ubiquitinates HIFa, which is degraded by 26S
proteasomal degradation pathway (Maxwell et al. 1999, Ohh et al. 2000).
The B subunit of HIF, also called aryl hydrocarbon receptor nuclear
translocator, is constitutively expressed in cells (Wang et al. 1995). HIF-1a
is translocated to the nucleus where it dimerizes with HIF-13, and the HIF-
1 o/B complex binds hypoxia-responsive elements in the promoter, 5 -
untranslated, or 3'—untranslated regions of its target genes (Semenza 2007).
There are hundreds of target genes of HIFa (Loboda et al. 2010, Keith et al.
2012, Liu et al. 2012). The HIF-1a and HIF-2a are reported to transactivate
overlapping but distinct set of their target genes (Sowter et al. 2003).

Among their targets, genes primarily involved in anaerobic glycolysis,



angiogenesis, proliferation, growth, survival, and apoptosis, are under the
control of HIF-1a (Liu et al. 2012). HIF-2a is reported to regulate genes
involved in proliferation, stemness, and migration and invasion (Covello et
al. 2006, Gordan et al. 2007, Kim et al. 2009).

Tumor cell adaptation to hypoxia has been well-documented as follows.
Cancer cells reprogram their energy metabolism by increasing anaerobic
glycolysis and decreasing mitochondrial oxidative phosphorylation (Zhang
et al. 2007). The metabolic shift is a beneficial trade—off for tumor cell
proliferation (Zhang et al. 2007). Firstly, anaerobic glycolysis provides free
energy, despite the low—yield, but high-speed ATP production (Pfeiffer et
al. 2001, Shestov et al. 2014). Secondly, the glycolysis provides
intermediates for biosynthesis of macromolecules, such as pyruvate that is
used for lipid or ribose synthesis (Denko 2008). Finally, glycolysis
generates less ROS, which contributes to mitigation of oxidative stress in
tumor cells (Brand et al. 1997, Zhang et al. 2008).

Tumor cells under hypoxia regulate cell cycle progression by affecting p53
and p21 (Guo et al. 2018). HIF-1a directly represses c-Myc activity, which
in turn activates p21 and leads to cell cycle arrest (Koshiji et al. 2004,
Gordan et al. 2007). At the same time, the c—Myc activity can be also
enhanced by HIF-2a under hypoxia, which is known to progress cell cycle
and proliferation (Gordan et al. 2007). Cell cycle arrest has been involved
in drug resistance (Tannock 1978, Amellem et al. 1991, Guo et al. 2018).

Hypoxia is responsible for clonal selection with diminished apoptotic



potential (Graeber et al. 1996). HIF-1a can facilitate the clonal dominance
and propagation of the apoptosis—resistant phenotype via tight regulation of
pro—and anti-apoptotic proteins (Erler et al. 2004, Sasabe et al. 2005) and
activation of key signaling pathways (Mazure et al. 1997, Richard et al. 1999,
Zhong et al. 2000, Alvarez-Tejado et al. 2001). In addition to HIF-1a, HIF-
2a also plays an important role in aggressive phenotypes of tumor cells,
including drug resistance (Holmquist—Mengelbier et al. 2006, Bertout et al.
2009, Rouault-Pierre et al. 2013).

Hypoxia i1s known to restrain differentiation and maintain the
undifferentiated status of tumor cells (Lin et al. 2006, Kim et al. 2009). In a
hypoxic niche, some cancer cells are transformed to cancer stem cells
(CSCs) with self-renewal capacity (Jordan et al. 2006). HIF-2a plays an
important role in the generation and maintenance of the hypoxia—-induced
stem cell-like phenotype via OCT4 activation (Covello et al. 2006,
Heddleston et al. 2009, Qing et al. 2009). The acquisition of stemness by
hypoxia is aso associated with cell survival and drug resistance by several
mechanisms, such as upregulation of ABC transporter MDR1 (Sakata et al.
1991, Comerford et al. 2002, Liu et al. 2008, Nardinocchi et al. 2009),
ABCG2 (Martin et al. 2008), human telomerase (WTERT) (Nishi et al. 2004),
and enhanced DNA repair system (Wagemaker 1995, Bao et al. 2006).

During hypoxia, EMT is strongly induced in tumor cells (Jiang et al. 2011).
The EMT is defined by the loss of epithelial cell polarity and gain of

mesenchymal phenotypes (Yang et al. 2008). The EMT process is



fundamentally associated with loss of cell to cell conjunction, which involves
in the enhancement of cell migration, invasion, and metastasis (Yang and
Weinberg 2008). Beyond its literal definition, EMT is also significantly
related to tumor aggressiveness (Yang and Weinberg 2008). A growing body
of evidence has shown that hypoxia and EMT are reciprocally linked to
acquisition of stemness of cancer cells and drug resistance (Singh et al.
2010, Jiang et al. 2011). Hypoxia and HIF-1a are reported to stimulate EMT
of cancer cells by regulating a variety of EMT-related molecules, such as
TGF-B, TNFa, NFkB, and TWIST (Yang et al. 2008, Jiang et al. 2011). HIF-
2a can increase the expression of several EMT genes, including SIP1,
SNAIL, ZEB1, and vimentin (Kim et al. 2009).

In the long term, hypoxia increases genomic instability (Vaupel et al. 2001,
Bristow et al. 2008). Although DNA repair system can be activated by
hypoxia in tumor cells (Walker et al. 1994), hypoxia is reported to
compromise DNA repair ability of tumor cells by decreasing gene
expressions involved in the DNA mismatch repair system, homologous
repair, and non-homologous end-joining (Bristow and Hill 2008, Li 2008,
Rodriguez-Jiménez et al. 2008). The increased frequency and genomic
instability might be harmful for immediate cancer cell survival (Greijer et al.
2004). However, at the same time, hypoxic tumor cells that are genetically
unstable are more likely to obtain DNA mutations (Greijer and Van der Wall
2004). The genetic instability is a potential source of the appearance of

cancer cells that are more malignant, more aggressive, and less susceptible



to apoptosis, thus rendering them resistant to various therapies (Vaupel et
al. 2001, Cosse and Michiels 2008).

Tumor hypoxia can be harmful for cell survival and growth, because rapid
onset of O, deficiency depletes intracellular ATP, leading to catastrophic
loss of intracellular K* and necrotic cell death (Boutilier et al. 2000).
Chronic and persistent hypoxia can also induce apoptosis via pb53, Bcl-2
related pro—apoptotic proteins, c—Jun NHs—terminal kinases, HIF-1a, and
ROS stress (An et al. 1998, Basu et al. 1998, Carmeliet et al. 1998, Kim et
al. 2003, Greijer and Van der Wall 2004). Nevertheless, a fraction of tumor
cells always adapt and survive under hypoxia, which is the main culprit for

the appearance of more aggressive phenotypes (Denko 2008).



ROS, oxidative stress, and cancer progression

ROS encompass a wide range of intermediate oxygen—carrying metabolites
with or without unpaired electrons (Policastro et al. 2013). The unpaired
electrons or O,—derived free radical include mainly superoxide anion (Og: ")
and hydroxyl radical (:-OH), while nonradicals mainly include hydrogen

peroxide (H,0,) (Policastro et al. 2013).

ROS is generated from various cellular sources, including mitochondrial
electron transport chain (ETC) complex, NADPH oxidase, cytochrome P450,
lipoxygenases, cyclooxygenases, xanthine oxidases, and peroxisomal
enzymes (Policastro et al. 2013). Among them, mitochondrial ETC and
NADPH oxidase are a major source of ROS production. Within cells, Oy is
converted to H,0Os spontaneously and/or enzymatically by superoxide
dismutase (SODs) (Policastro et al. 2013). The H;0; is finally decomposed
into H,O and Oy by a variety of antioxidant enzymes, such as catalase,

glutathione peroxidase, and peroxiredoxin (Policastro et al. 2013).

Compelling experimental and clinical evidence reveals that tumor cells
have underwent persistent oxidative stress, compared to their normal
counterparts (Figure 2) (Evans et al. 2004, Bahar et al. 2007, Fruehauf et
al. 2007, Lopez-Lazaro 2007, Chang et al. 2008). The increase in basal levels
of intracellular ROS is associated with genetic alterations, mitochondrial

dysfunction, aberrant metabolism, deregulation of the antioxidant system,
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and tumor microenvironments (Cook et al. 2004, Fiaschi et al. 2012).
Although excessive ROS accumulation induces oxidative stress and
damages to nucleic acids, proteins, and lipids, cancer cells are found to not
only sustain their growth, survival, and proliferation but also gain more
aggressive phenotypes (Hensley et al. 2000, Evans et al. 2004, Giannoni et

al. 2012).

A variety of redox—responsive protein kinases and phosphatase have been
reported to play a role in tumor cell growth and proliferation (Schieber et
al. 2014). The mode of action of ROS is largely dependent on oxidation—
reduction processes that involve oxidation of cysteine residues within
proteins (Rhee 2006). Representative examples include Ras—ERK, Ras-JNK,
mitogen-activated protein kinase (MAPK), and PI3K/Akt intracellular
pathways (Gius et al. 2006, Weinberg et al. 2009, Circu et al. 2010, Zhang

et al. 2011).

Oxidative stress promotes more aggressive phenotypes of cancer cells,
including apoptosis resistance, stemness, and migration and invasion
(Landriscina et al. 2009, Giannoni et al. 2012). For the mechanisms, p53
deficiency (Brown et al. 2001), antioxidant enzymes (Lazo et al. 1998), p—
glycoprotein (Ziemann et al. 1999), and PI3K/Akt signaling (Morag et al.
1998) have been implicated. The resistance to oxidative stress is directly
linked to development of drug resistance (Yokomizo et al. 1995, Lazo et al.

1998, Landriscina et al. 2009). In the long term, oxidative stress increases
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genomic instability and frequency of DNA mutation, which is a critical factor
in generation of heterogenous populations of cancer cells, such as cancer

cells with decreased sensitivity to drug (Szatrowski et al. 1991).

Oxidative stress is closely associated with EMT (Giannoni et al. 2012).
EMT 1is a critical factor in stemness, drug resistance, and metastasis in
cancer cells (Singh and Settleman 2010). A variety of redox-mediated
mediators or signaling pathways have been reported to promote EMT (Gius
and Spitz 2006, Jiang et al. 2011). Detailed information about the redox-—
mediated molecular events leading to EMT is well-documented (Giannoni et
al. 2012). TGF-B1 is a best—characterized EMT-related molecule (Xu et al.
2009, Giannoni et al. 2012). Exogeneous Hy0s activates TGF-B1 signaling
via mitochondrial Os'~ generation in lung cancer cells (Gorowiec et al. 2012,
Zhang et al. 2018). The TGF-B1 is an upstream regulator of NOX4
expression that produces Oy, which provides breast tumor cells with
migratory, invasive, and metastatic properties (Boudreau et al. 2012).
During EMT process, TGF-B1 also promotes acquisition of H-O,—mediated
stemness in breast cancer cells (Karicheva et al. 2016). The oxidative
stress—mediated enhancement of tumorigenicity or clonogenicity 1is
mediated by activation of OCT4, SOX2, or Snail (Mahalingaiah et al. 2015,
Kim et al. 2017). In addition to EMT and stemness, TGF-B1 is also involved

in drug resistance (Karicheva et al. 2016, Tang et al. 2018).
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Figure 2. Clinical evidence of ROS stress in human solid tumors. (A) Cancer
patients show relative high levels of peripheral blood 8-OHdG, which is
normalized to corresponding healthy controls.

Adapted from (Akcay et al. 2003, Amati et al. 2008, Chang et al. 2008,
Lagadu et al. 2010, Kumar et al. 2012, Borrego et al. 2013, Tabur et al.
2015, Woraruthai et al. 2018).
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Tumor microenvironment, tumor hypoxia, and drug resistance

For the drug resistance, tumor cell intrinsic factors exist, such as enhanced
drug efflux or DNA repair system (Gottesman 2002, Gatti et al. 2005).
However, numerous extrinsic factors also exist in tumor microenvironment
(Morin 2003, Trédan et al. 2007).

The heterogeneous microcirculation, poor perfusion, and interstitial
hypertension compromises the extravasation of drugs (Morin 2003). The
penetration and distribution of drugs into tumor tissues, especially high-
molecular weight agents, is physically impeded by ECM components in
tumor microenvironments (Berk et al. 1997, Kuh et al. 1999, Netti et al.
2000, Au et al. 2002, Grantab et al. 2006). A large fraction of tumor cells in
solid tumors cannot be exposed to lethal concentrations of drugs, including
the cases of doxorubicin, methotrexate, vincristine, vinblastine, cisplatin,
and some other drugs (Durand 1986). Acidic tumor microenvironment
negatively influences on the activity or transport of drugs, such as in the
cases of doxorubicin, mitoxantrone, paclitaxel, vincristine, and vinblastine
(Cowan et al. 2001, Mahoney et al. 2003, Trédan et al. 2007). On the other
hand, the lack of oxygen itself can reduce the efficacy of drugs, because
some drugs, such as bleomycin, etoposide, and doxorubicin, directly utilize
O, to fully elicit cytotoxicity via free radical generation and oxidative stress
(Teicher 1994, Wardman 2001, Shannon et al. 2003).

Despite the arrival of drugs into tumor cells, a fraction of tumor cells is

always problematic, because they are transformed to resist hypoxic stress
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and refractory to chemotherapy (Kim and Lee 2017). The mechanisms
underlying hypoxia—associated drug resistance are highly complex,
multifactorial, and different depending on drugs used, cell types, and
experimental conditions (Rohwer et al. 2011, Doktorova et al. 2015).
Currently, HIFa is considered as a central mediator of hypoxia—associated
drug resistance in multiple tumor types (Unruh et al. 2003, Brown et al.
2005, Hao et al. 2008, Liu et al. 2008, Sullivan et al. 2008, Nardinocchi et
al. 2009, Sullivan et al. 2009, Daskalow et al. 2010, Sasabe et al. 2010,
Deben et al. 2018). Apoptosis inhibition is a major phenotype of drug
resistance in hypoxic tumor cells (Rohwer and Cramer 2011), although
inhibition of other cell death forms, such as senescence (Sullivan et al. 2008)
or necroptosis (Huang et al. 2013), is also involved in hypoxia-induced drug
resistance.

Enhanced drug efflux is one of the important mechanisms underlying drug
resistance (Chen et al. 2016). It has been demonstrated that HIFa
contributes to low intracellular drug concentration via activation of ABC-
binding cassette (ABC) transporters, including multidrug resistance 1
(MDR1), ABCG2, and multidrug resistance—associated protein (MRP)
(Sakata et al. 1991, Comerford et al. 2002, Liu et al. 2008, Martin et al. 2008,
Chen et al. 2009, Chen et al. 2014, Lv et al. 2015).

Dysregulation in many pro— and anti—apoptotic Bcl-2 family members are
involved in hypoxia drug resistance in a HIFa—dependent or independent

manner, possibly due to inhibition of MPT or mPTP opening (Dong et al.
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2004, Cosse and Michiels 2008, Sermeus et al. 2012).

The p53 is a key player to induce apoptosis in response to DNA damages
in human cancers (Wang et al. 1996). Hypoxia is a potent selector of p53-
deficient apoptosis—defective tumor cells (Teicher 1994, Cavalli et al. 1997),
and suppression of pb3 induced by hypoxia results in cisplatin resistance
(Wang et al. 2006). HIFa is known to antagonize pb3-mediated apoptosis in
hypoxic tumor cells (Bertout et al. 2009, Rohwer et al. 2010, Sendoel et al.
2010, Nardinocchi et al. 2011). In addition, the cytoprotective effect of
hypoxia on cisplatin—induced apoptosis does not occur in pb53-mutant
cancer cells (Hao et al. 2008). However, the role of p53 in the drug
resistance under hypoxic condition is controversial. A recent study
suggested that pb3 plays a role in low—-dose cisplatin—induced drug
resistance of hypoxic lung cancer cells (Guo et al. 2018).

Inhibition of DNA damage is a drug resistance phenotype in hypoxic tumor
cells (Sullivan and Graham 2009). Previous studies have shown that HIF-1a
has a role in the repair of damaged DNA (Walker et al. 1994, Wirthner et al.
2008), and cell cycle arrest or decreased cell division contributes to
prevention of initial DNA damage (Valencia—-Cervantes et al. 2018). The
importance of cell cycle regulation can be noted in hypoxic CSCs (Schoning
et al. 2017). The quiescent CSCs in a hypoxic niche are demonstrated to be
highly resistant to drugs due to HIFa activation, altered metabolism,
enhanced drug efflux, and PI3SK/Akt and Wnt/Notch signaling pathway (Liao

et al. 2014, Schoning et al. 2017, Uribe et al. 2017, Yan et al. 2018).
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Meanwhile, inhibition of DNA damage might be unrelated to DNA repair or
cell cycle arrest (Shannon et al. 2003, Wohlkoenig et al. 2011, Cho et al.
2013).

Autophagy is a part of hypoxic adaptive mechanisms as an energy recycler
and a metabolic provider of cellular breakdown products to cells for
biosynthesis and survival (Zhang et al. 2008). Although it could be
controversial whether autophagy confers tumor cells drug resistance under
hypoxia, general consensus have indicated that autophagy induced by
hypoxia is cytoprotective against drug—-induced cytotoxicity (Liu et al. 2010,
Hu et al. 2012, Lee et al. 2015, Wu et al. 2015, Chen et al. 2017, Tan et al.
2017, Yang et al. 2018). HIF-1a is a central regulator of autophagy by
targeting BNIP3 and BNIP3L that are required for the induction of autophagy
(Bellot et al. 2009, Yang et al. 2018).

Mitochondria are a critical mediator of drug resistance, and inhibition of
mitochondrial activity or function is correlated with hypoxia—-induced drug
resistance (Indran et al. 2011). Mounting evidence have revealed that
remodeled mitochondrial ETC complexes by hypoxia plays an important role
in drug resistance (Wang et al. 2006, Oliva et al. 2010, Oliva et al. 2011,
Cho et al. 2013, Okamoto et al. 2017). HIF-1a is reported to modify
cytochrome ¢ oxidase (COX) IV activity, which contributes to decreased
ROS production and protection of tumor cells from oxidative stress in
hypoxia (Fukuda et al. 2007, Zhao et al. 2014). HIF-1a also inhibits

mitochondrial metabolism by PDK-induced PDH inhibition, which blocks the
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conversion of pyruvate into acetyl-coenzyme A, an initial respiratory

substrate for TCA cycle within mitochondria (Kim et al. 2006, Lu et al. 2008).

Inhibition of mPTP and prevention of intracellular acidification can be also
a cause of drug resistance under hypoxia (Brahimi-Horn et al. 2012,
Pellegrini et al. 2012, Ferecatu et al. 2018). On the other hand, in some
types of cells, mitochondrial inhibition by hypoxia can enhance drug-
induced apoptosis (Schwerdt et al. 2005).

Currently, experiments that are designed to overcome the hypoxia-—
induced drug resistance are largely depended on silencing of HIFa.
Although HIFa has been extensively investigated as an important factor to
underpin hypoxia—-induced drug resistance, it is also true that drug
resistance does develop independently of HIF (Doktorova et al. 2015).
Previous studies have shown that reactivation of the suppressed
mitochondria reverses hypoxia—mediated drug resistance (Lu et al. 2008,
Shin et al. 2013). Alternatively, direct perturbations of mitochondrial
metabolism or functional integrity appears to be promising to increase drug
efficacy of hypoxic cancer cells (Xu et al. 2005, Kumar et al. 2013, Kulikov
et al. 2014, Mitani et al. 2014, Xuan et al. 2014). The mitochondrial targeting
1s beneficial to circumvent the problem of apoptosis resistance upstream of
the intrinsic mitochondrial pathway without damaging nuclear DNA

(Wisnovsky et al. 2013).
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Human malignant mesothelioma and tumor microenvironment

Human malignant mesothelioma (HMM) is a rare but lethal cancer arising
from mesothelium lining of pleural space, pericardium, peritoneum, and
tunica vaginalis testis and ovarian epithelium (Robinson et al. 2005). More
than 80% of HMM cases arise from pleural cavity (Mery et al. 2014, Zhang
et al. 2015). Due to the long latency period more than 30 years between
exposure and presentation (Peto et al. 1995), no single causal factors
sufficiently explain HMM pathogenesis. However, general consensus
reveals that occupational or domestic exposure to asbestos is a critical
factor for mesothelial carcinogenesis (Wagner et al. 1960, Robinson et al.
2005). The most common types of asbestos fibers related to HMM induction
are chrysotile (Suzuki et al. 2002). Asbestos consists of short and long
fibers (Goodglick et al. 1990). Both types of fibers are cytotoxic as oxidant
in an iron-dependent mechanism (Goodglick and Kane 1990). Asbestos
fibers contain iron, which directly generates hydroxyl radicals via the
catalysis of the Fenton reaction on the surface in the hemoglobin (Kamp et
al. 1992, Maples et al. 1992). Uptake of asbestos fibers by mesothelial cells
contributes to further oxidative stress (Dong et al. 1994). Macrophages that
fail to uptake long fibers undergo cell death, which is an indirect source of
ROS along with inflammatory molecules (Donaldson et al. 2010). The ROS
production following the asbestos exposure leads to genomic damages in
mesothelial cells (Chew et al. 2015). On the other hand, simian virus 40

(SV40) is another important cofactor to promote HMM development
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(Carbone et al. 2000). Other fiber minerals, including erionite, may
contribute to HMM development (Attanoos et al. 2018).

Abnormal genetic features of HMM include homozygous deletion of tumor

6INK4a 4ARF

suppressors pl and pl and dysregulated neurofibromatosis type 2
(NF2) and tumor suppressor BRCA1 associated protein—-1 (BAP1) (Papp et
al. 2001, de Assis et al. 2014, Yap et al. 2017). Along with these genes,
activation of MAPKs, PI3K/Akt/mTOR, and other key signaling pathways are
reported to be critically involved in mesothelial tumorigenesis (de Assis et
al. 2014, Yap et al. 2017). The role of pb3 mutation in mesothelial
carcinogenesis remains to be elucidated (Metcalf et al. 1992, Jean et al.
2018).

Over 3,000 patients are newly diagnosed with HMM in North America
(Bianchi et al. 2014). The occurrence rate of HMM is anticipated to increase
worldwide (Bianchi et al. 2007, Bianchi and Bianchi 2014). The majority of
HMM cases show poor prognosis with survival of less than 1 year, which is
largely attributable to drug resistance (Fennell et al. 2008, Blomberg et al.
2015). In HMM, apoptosis resistance to drugs occurs due to various
mechanisms, including (a) enhanced drug efflux (Soini et al. 2001), (b)
upregulation of antioxidant enzymes (Kahlos et al. 2001, Jarvinen et al. 2002,
Kinnula et al. 2002), (c) existence of tumor—initiating cells (Cortes—Dericks
et al. 2014, Pasdar et al. 2015), (d) altered ratio of Bcl-2 family members

(O'Kane et al. 2006, Jin et al. 2010), (e) epigenetic impairment of p53

function (Kubo et al. 2011), (f) autophagy induction (Lee et al. 2016), (g)
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upregulation of specific molecules, such as heat shock proteins (Roth et al.
2009), Numb (Kang et al. 2013), and insulin-like growth factor 1 receptor
(Kai et al. 2009), and (h) signal transduction dysregulation, such as MAPKs,
Akt, and PTEN (Kai et al. 2009, Roth et al. 2009, Fischer et al. 2012).

Clinically, the elevated levels of 8-OHdG, a marker of oxidative DNA
damage, has been detected from peripheral leukocytes in early and
advanced HMM patients (Marczynski et al. 2000, Amati et al. 2008),
suggesting the potential involvement of oxidative stress in cancer
progression in HMM. Indeed, oxidative stress is demonstrated to play a
critical role in HMM cell survival, growth, and proliferation (Chew and
Toyokuni 2015, Tanaka et al. 2015). A variety of antioxidant enzymes
support adaptation to ROS stress in HMM cells (Kahlos et al. 1998, Kinnula
et al. 1998, Kahlos et al. 2001, Kahlos et al. 2001, Kinnula et al. 2002).
Various redox-regulated signaling pathways have been reported to expand
the initiated transformed HMM cell population (de Assis et al. 2014,
Benedetti et al. 2015, Chew and Toyokuni 2015). Adaptation to oxidative
stress is also related to chemoresistance in CD44-expressing HMM (Chew
et al. 2017).

HMM is extremely heterogeneous with regard to morphology, showing
three histological subtypes, including epithelioid type, which constitutes 60%
of HMM, sarcomatoid type (20%), and biphasic type (30%) (Law et al. 1982,
Attanoos et al. 1997). The morphologic transition from epithelioid to

sarcomatoid histologic subtypes 1is significantly associated with EMT
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process and cancer progression in HMM (Schramm et al. 2010, Fassina et
al. 2012, Ye et al. 2015). The EMT process is a significant part of the
acquisition of aggressive phenotypes of HMM cells, such as proliferation,
migration, invasion, and stemness (Casarsa et al. 2011, Fassina et al. 2012).
Previous studies have shown that TGF-B1, interleukin—-18, and HO,
promote EMT in human mesothelial cells (Yaiiez—Mo et al. 2003, Lee et al.
2007). HMM is demonstrated to undergo continuous oxidative stress
(Marczynski et al. 2000, Amati et al. 2008).

Clinical and biological evidence of tumor microenvironment exists in HMM
(Miselis et al. 2008, Burt et al. 2011, Wang et al. 2014, Ujiie et al. 2015).
Emerging studies have identified tumor hypoxia in HMM tissues i vivo
(Klabatsa et al. 2006, Ravenna et al. 2014, Francis et al. 2015, Nabavi et al.
2016). HIF-1a is commonly expressed in HMM (Klabatsa et al. 2006). HIF-
la is initially turned out to be not significantly associated with tumor
aggressiveness (Klabatsa et al. 2006). Moreover, it is found that hypoxia
increases the expression of the tumor suppressor, the estrogen receptor g,
with MET induction (Manente et al. 2015). However, a few independent
studies using HMM cell lines have next found that 1% to 3% hypoxic
conditions can enhance survival (Graziani et al. 2008, Goudarzi et al. 2013,
Zonca et al. 2017), drug resistance (Riganti et al. 2008, Giovannetti et al.
2016), and migration and invasion (Goudarzi et al. 2013). Mechanisms
underlying the hypoxia-induced aggressive properties of HMM cells are

found to relate HIF-la and its downstream action on Notchl/2, p-
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glycoprotein, transglutaminase 2, and MUC1 (Graziani et al. 2008, Riganti
et al. 2008, Goudarzi et al. 2013, Goudarzi et al. 2013, Zonca et al. 2017).
Inhibition of lactate dehydrogenase A is shown to overcome hypoxia—
induced gemcitabine resistance in HMM cells (Giovannetti et al. 2016).
Experiments have been conducted to increase drug efficacy of apoptosis—
resistant HMM. Antagonization of anti—apoptotic Bcl-2 family proteins was
effective to provoke apoptosis in HMM cells (Hopkins-Donaldson et al. 2003,
Cao et al. 2007, Littlejohn et al. 2008, Varin et al. 2010). Induction of
mitochondria oxidative stress was found to enhance drug-induced apoptosis
in HMM cells and their CSC populations (Tomasetti et al. 2004, Pasdar et
al. 2015, Lee et al. 2016, Lee et al. 2016, Lee et al. 2017). More selective
perturbations of mitochondrial ETC system or redox status have been
proved to overcome drug resistance in HMM (Cunniff et al. 2013, Kovarova
et al. 2014).

HMM is appreciated as a suitable model for the study of the effect of
tumor microenvironmental stress. It is supported by the fact that normal
mesothelial cells have a high capacity to cope with upon exposure to
hypoxia and oxidative stress, showing phenotypic and biochemical changes,
such as EMT (Molinas et al. 2000, Yafiez—Mo et al. 2003, Lee and Ha 2007,
Nagai et al. 2013). Moreover, normal tissue oxygenation of pleural and
peritoneal mesothelial cells is low compared to other tissues (Wang et al.
2005), and HMM cells undergo additional oxygen deficit (Ravenna et al.

2014, Francis et al. 2015). Currently, a few studies have addressed the
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correlation between tumor microenvironment and clinical behaviors of HMM.

Moreover, the cause of a poor patient outcome with regard to hypoxia—
induced cisplatin resistance remains largely unknown in HMM. Cisplatin is
the only established first-line chemotherapy for HMM (van Zandwijk et al.
2013). Time-dependent experiments have shown that nucleus is not a

primary target site of cisplatin (Janson 2008).
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Summary

Oxidative stress and tumor hypoxia are reciprocally associated with cancer
progression (Cook et al. 2004, Fiaschi and Chiarugi 2012). Clinical evidence
of prooxidant and hypoxic states exists in HMM 1 vivo (Marczynski et al.
2000, Amati et al. 2008, Francis et al. 2015). However, the effect of hostile
environmental stresses 1is largely unknown with regard to cancer
progression in HMM. Herein, we showed the impact of oxidative stress and
hypoxia on HMM cell biology and molecular mechanisms underlying
acquisition of more aggressive phenotypes. Particularly, the role of

mitochondria in the hypoxia-induced drug resistance was studied (Figure

3).
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Figure 3. Summary of the effect of tumor microenvironments on HMM.

Adapted and modified from (Ramachandran et al. 2015)
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CHAPTER L.

HYDROGEN PEROXIDE PROMOTES EPITHELIAL TO
MESENCHYMAL TRANSITION AND STEMNESS IN HUMAN
MALIGNANT MESOTHELIOMA CELLS
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Abstract

ROS are known to promote mesothelial carcinogenesis that is closely
associated with asbestos fibers and inflammation. EMT is an important
process involved in the progression of tumors, providing cancer cells with
aggressiveness. The present study was performed to determine if EMT is
induced by Hs05 in HMM cells. Cultured HMM cells were treated with H,Os,
followed by measuring expression levels of EMT-related genes and
proteins. Immunohistochemically, TWIST1 expression was confined to
sarcomatous cells in HMM tissues, but not in epithelioid cells. Treatment of
HMM cells with HsOs promoted EMT process, which was indicated by
increased expression levels of vimentin, SLUG and TWIST1, and decreased
E-cadherin expression. Expression levels of stemness genes such as OCT4,
SOX2 and NANOG were significantly increased by treatment of HMM cells
with H,Os. Alterations of these genes were mediated via activation of HIF-
la and TGF-B1. Considering that treatment with HsOs results in excessive
ROS, the present study suggests that ROS may play a critical role in HMM
carcinogenesis by promoting EMT process and enhancing the expression of

stemness genes.
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Introduction

ROS plays a central role in a variety of cellular processes, such as cell
cycle progression, apoptosis, and diabetic complications. Elevated ROS has
been found in many types of cancer cells, thus promoting carcinogenesis
(Clerkin et al. 2008, Maynard et al. 2008). Recently, it has been proposed
that ROS signaling contributes to a phenotypic conversion— so called EMT
that is an important process during embryonic development (Kang et al.
2004). EMT also occurs during the progression of epithelial tumors,
providing cancer cells with increased metastasizing capability (Tse et al.
2007). Defining molecular features of EMT include down-regulation of
epithelial markers like E-cadherin and up-regulation of mesenchymal
markers such as vimentin and fibroblast specific protein 1 (Edelman et al.
1983).

EMT program is controlled by various growth and differentiation factors
including TGF-B1 and HIF-1la (Xu et al. 2009), mediated through EMT
transcription factors such as SNAIL, SLUG, and TWIST1 (Cannito et al. 2008,
Yang et al. 2008). HMM cells are overexpressing TGF-B1 and its receptor
(Suzuki et al. 2007). Stabilization of HIF-1a transcription complex, caused
by intratumoral hypoxia, promotes tumor progression and metastasis via
promoting EMT through regulating the expression of TWIST1 (Yang and Wu
2008, Yang et al. 2008). The hypoxic condition recapitulates the HMM
microenvironment of the body cavity, and the HIF-la is commonly

expressed in HMM cells but not in normal mesothelial cells (Klabatsa et al.
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2006). It is well known that overproduced ROS induced by asbestos promote
EMT, producing more strong and resilient cells. Moreover, our results are
lined with the previous finding that HIF-1a mediates hypoxia—induced EMT
in mesothelial cells (Morishita et al. 2016).

The EMT-related pathways and molecules are also involved in mesothelial
carcinogenesis, suggesting the potential role for EMT in the development
and progression of HMM (Carbone et al. 2002). A receptor tyrosine kinase,
c—Met, which are known to induce EMT are highly expressed in most HMMs,
and the CD44, hyaluronic acid receptor, is regulated through the c—Met
signaling pathway (Ramos—-Nino et al. 2003). E-cadherin expression was
detected in 48 % of the epithelioid, 12 % of the mixed, and in only 7 % of
the sarcomatoid HMMs, illustrating differential expression patterns between
histological subtypes (Abutaily et al. 2003). Sivertsen et al. (2006) analyzed
the expression pattern of E-, N—, and P—cadherins, MPs and transcriptional
regulators of EMT in HMMs (Sivertsen et al. 2006). These published data
indicate that EMT may play a significant role in the progression of HMM,
however, its biological importance and the detailed mechanisms are not fully
characterized.

It has been proposed that carcinogenic effects of asbestos are mediated
both by direct interaction of target cells with asbestos fibers and by
generation, in response to asbestos, of ROS causing genetic alterations

(Huang et al. 2012). The present study was performed to determine whether
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the ROS induce EMT in malignant human mesothelioma cell lines and to

elucidate the underlying molecular mechanisms.
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Materials and Methods
Hydrogen peroxide (Hz02) treatment

Seven HMM cell lines with distinct morphologic and genetic properties
were selected for the present study. For example, H513 is epithelioid in
morphology with mutated p53 gene, whereas MS1 and MSTO-211 are
biphasic in morphology with wild type pb53 gene. The cell lines were cultured
in the RPMI 1640 (Mediatech Inc., Manassas, VA, USA) supplemented with
10% fetal bovine serum (FBS; Mediatech Inc.), 10 mM HEPES (Sigma-
Aldrich, St. Louis, MO, USA), 1.5 g/L sodium bicarbonate (Sigma-Aldrich),
2mM L-glutamine (Sigma-Aldrich), 1 mM sodium pyruvate (Sigma-Aldrich),
and 100U/100ug/ml penicillin/streptomycin (Gibco-Life Technology,
Gaithersburg, MD, USA) at 37°C in a humidified atmosphere containing 5%
COs. In order to explore the potential role of ROS in EMT induction, HMM
cells were cultured for 48 hours followed by addition of HyOs (Sigma-
Aldrich) to the media. After designated periods of further incubation, the
dead and viable cells were collected and processed for Western blot and
quantitative real time reverse transcription (RT) PCR assays as described

below.

Cytotoxicity assay
To determine the effects of HyO, treatment on the cell proliferation of H513
and MS1 cells, the cell proliferation assay using CellTiter 96 AQueous One

Solution (Promega, Madison, WI, USA) was performed according to the
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manufacturer's protocol. The 10° HMM cells (H513 and MS1) were seeded
in a 96-well plate with 100 pl of media, and treated with O to 100 pM
hydrogen peroxide (HyO0,) for designated hours. Then, a
methanethiosulfonate/phenazine methosulfate solution (20 pl/well) was
added and incubated for 1 h at 37°C, 5% COs. Absorbance was measured at
490 nm using a microplate reader (Genb, Epoch, Bio Tek, Winooski, VT,
USA). The percentage of growth suppression for each dose was calculated

by comparing to the same volume of media-treated control cells.

Quantitative real-time RT-PCR

Total RNAs from control, 10, and 20 pM H,0s-treated cells of H513 and
MS1 were isolated using Trizol reagents (Invitrogen, Carlsbad, CA, USA)
according to the manufacturers’ recommendations. Reverse transcription of
the extracted RNA into ¢cDNA were done using a commercial kit (Takara,
cat 6110a). Quantitative real time PCR was performed with QIAGEN SYBR®
Green PCR Kit (Cat. No. 204074, Qiagen, Valencia, CA, USA) according to
the manufacturer’s instructions and published methods (Kai et al. 2010).
Primers for all genes analyzed were listed in Table 1. Cycle conditions were
95°C for 5 min, and 40 cycles of 95°C for 10 sec and 60°C for 30 sec. Fold
increases or decreases in gene expression were determined by quantitation
of ¢cDNA from control cells. The GAPDH gene was used as the endogenous
control for normalization of initial RNA levels. To determine normalized

- (AACT)

value, 2 values were calculated for treated cells, where the changes
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in crossing threshold (ACt) = Ctrarget gene— Ctoappn, and AACt = ACt™™ -

ACt¥ea*d (Kim et al. 2006).
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Table 1. Primer sequences used for quantitative real time RT-PCR

Genes Direction Primer sequences (5'->3")
TWIST1 Forward TCTCGGTCTGGAGGATGGAG
Reverse GTTATCCAGCTCCAGAGTCT
SLUG Forward GAGCATTTGCAGACAGGTCA
Reverse CCTCATGTTTGTGCAGGAGA
B-Catenin Forward GCCGGCTATTGTAGAAGCTG
Reverse GAGTCCCAAGGAGACCTTCC
E-cadherin Forward GATTCTGCTGCTCTTGCTGT
Reverse CCTGGTCTTTGTCTGACTCTG
OCT4 Forward ACATGTGTAAGCTGCGGCC
Reverse GTTGTGCATAGTCGCTGCTTG
NANOG Forward TTCAGTCTGGACACTGGCTG
Reverse CTCGCTGATTAGGCTCCAAC
SOX2 Forward CGATGCCGACAAGAAAACTT
Reverse CAAACTTCCTGCAAAGCTCC
NOTCH1 Forward GCAGTTGTGCTCCTGAAGAA
Reverse CGGGCGGCCAGAAAC
GAPDH Forward CTGCACCACCAACTGCTTAG
Reverse AGGTCCACCACTGACACGTT
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Western blot assay

In order to evaluate expression levels of EMT-related molecules and their
inter—relationship in HMM cell lines, Western blot assay were performed
according to the published protocol (Kai et al. 2009). Seven HMM cell lines
with different phenotypes and genotypes were cultured in 6—cm plates with
appropriate cell culture media. The effects of 100 uM H3O, treatment on the
gene expression were evaluated in H513, MS1 and MSTO-211H cell lines,
as described above. Total cell lysates were obtained using RIPA buffer (1x
PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS) containing
complete protease inhibitors (Roche Applied Science, Indianapolis, IN, USA)
and phosphatase inhibitors (Pierce Biotechnology, Rockford, IL, USA). The
soluble protein concentrations were determined by the Bradford technique
(Bio-Rad Laboratories, Hercules, CA, USA). Primary antibodies include a
monoclonal anti-TWIST1 antibody (1:200, Santa Cruz Biotech, Inc., Santa
Cruz, CA), a polyclonal anti-E-cadherin antibody (1:1,000, Cell Signaling
Technologies), or a mouse monoclonal anti—-SNAIL antibody (1:200, Abcam
Inc., Cambridge, MA), HIF-1a (1:50, Cell Signaling), TGF-B1 (1:50, Cell
Signaling) and vimentin (1:200, Santa Cruz Biotech, Inc.). Antibodies against
GAPDH (Santa Cruz Biotech) and tubulin (Santa Cruz Biotech) were used as
a loading control. The blot was incubated with 1:1 ratio of SuperSignal West
Pico Substrate (Pierce) for 5 min, followed by the exposure to the CL-

Exposure film (Pierce) for 1 min to overnight at 4 °C. The intensities of the
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specific bands were analyzed using a VersaDoc Imaging System—-4000 (Bio-

Rad).

Immunohistochemistry

In order to assess the expression of TWIST1 in HMM tissues,
immunohistochemical staining was performed on tissue microarray slides
purchased from US Biomax Inc. (http://www.biomax.us/tissue—arrays).
Individual tissue microarray slide contained 20 HMMs, 2 normal mesothelia,
1 lymph node and 1 tonsil in duplicate. The immunohistochemistry for
TWIST1 was carried out according to the protocol routinely performed
(Hong et al. 2007) using mouse monoclonal antibody against TWIST1 (Santa
Cruz Biotech) at recommended dilutions (1:50). Negative control sections
were processed identically, with the exception of omitting the incubation

with the primary antibody.

Statistical analysis

All of the in vitro experiments described above were performed at least
three times and most data were presented as means * standard deviation
(SD). When the variances of the two populations were assumed to be equal
using an F test, a two-tailed Student’s f/-test was used for statistical
comparison. When two samples had unequal variances using the F test,
Welch's ¢ test was performed for statistical comparison. Z < 0.05 was

accepted as statistical significance.
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Results

Cytotoxicity

HMM cells were cultured in the presence of O, 10, 30, and 100 uM of H,04
for 24-72 hours, followed by assay using CellTiter 96 AQueous One
Solution. Treatment of MS1 and H513 cells with 10 and 30 uM H2O2 up to
72 hours did not significantly reduce cell viability (Figure 1). Treatment of
H513 and MS1 cells with 100 pM Hs0s for 48 and 72 hours significantly

reduced cell viability by 60 — 90% compared to control cells.

¥ [, -1 =1
38 .__|-1__]| a1



250 1
200

—
a1
[=]

Cell viability (%)

100 +

w
(=]
1

48 h

OuM 10 uM 30 uM 100 uM

-=-MS1
——H513

Cell viability (%)

150 ~

100 +

o
(@]
1

72h

OuM 10 uM 30 uM 100 uM

——MS1
-=-H513

Figure 1. Cell proliferation assay on mesothelial cells treated with H5Os.

Cells were cultured in reduced serum media (0.5% FBS) containing O, 10,

30 and 100 uM H:0,, followed by cell proliferation assay using the CellTiter

96 AQueous One Solution Cell Proliferation Assay. In MS1 and H513 cells,

treatment with 100 uM H»0, significantly reduced cell proliferation.
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Expression profile of EMT-related molecules reflected morphologic
phenotypes of HMM cells

Expression levels of TWIST1, SNAIL, E-cadherin and vimentin, and their
inter—relationships were assessed in cultured HMM cell lines without
chemical treatment. MetbA, H513 cells are classified as epithelioid type
with cuboidal shape, and H2373 is sarcomatous type with elongated
morphology. MSTO-211H, MS1, H2452, REN cells are classified as biphasic
type. On Western blot analysis of the HMM cell lines (Figure 2), TWIST1
expression was detected from high MSTO-211H) to low (H2452, LRK1A,
REN, and H2373), but not detected in MetSA and H513 cells. SNAIL
expression was detected in most of the HMM cell lines except LRK1 cell
line. E-cadherin expression was only detected in H513 and Met—-5A cell
lines that had no detectable TWIST1 expression, illustrating clear inverse
relationship between the expression levels of E-cadherin and TWIST1. All
of the HMM cell lines except H513 express vimentin. Expression profiles of
EMT-related genes in H513 and MSTO-211H reflect their own morphologic

features.
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Figure 2. Expression of EMT-related molecules in cultured HMM cell lines
determined by Western blot assay. TWIST1 is detected in MSTO-211H,
REN and H2373, and E-cadherin is expressed in MetbA, H513 and LRK1A.
SNAIL. Vimentin is detected in most of HMM cell lines. Note the inverse
relationship between TWIST1 and E-cadherin expression levels in HMM

cell lines.
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Expression profiles of EMT-related molecules was significantly altered by
H;0, treatment

HMM cells (H513 and MSTO-211H) were treated with 100 pM H,0, for
designated durations, followed by measurement of the expression levels of
EMT-related molecules using Western blot assays (Figure 3). Treatment of
MSTO-211H cells with H,Os significantly increased TWIST1 expression. In
H513 cells, treatment with Hy0Os transiently decreased E-cadherin
expression. E-cadherin and TWIST1 were not detected in MSTO-211H and
H513, respectively. In both H513 and MSTO-211H cells, treatment with 100
uM Hs0s significantly increased HIF1la. In MS-1 cells, expression levels
pre-TGFB and HIF-1a were significantly increased after treatment with 100
uM Hs0, (Figure 4). Following treatment with HsO,, expression level of E-
cadherin was decreased, while vimentin was significantly increased (Figure
4).

Following 100 uM Hs0, treatment of MS1 and H513, expression levels of
multiple genes related to EMT (e.g., SLUG, TWIST1, E-cadherin, B-catenin)
and stemness (e.g., OCT4, SOX2, NANOG, NOTCH1) were determined using
real time RT-PCR methodology. Overall extent of expression changes for
EMT and stemness genes was more dramatic in MS1 cells (Figure 5) than
in H513 cells (data not shown). In MS1 cells treatment with H0,
significantly increased the expression levels of SLUG and TWIST1, and
decreased E-cadherin expression. In H513 cells, the expression levels of

SLUG, TWIST1, and E-cadherin were not significantly affected by HsOs
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treatment. B—Catenin expression was not affected by treatment with H,0O-
in both cell lines. For stemness genes, OCT4, SOX2, NANOG and NOTCH1
were evaluated. In MS1 cells, H;O, treatment significantly increased
expression levels of OCT4, SOX2, and NANOG, while NOTCH1 was not
affected. In H513 cells, Hs0Os treatment significantly increased the
expression levels of OCT4 and NANOG, but SOX2 and NOTCH1 were not

affected.
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Figure 3. The changes of expression levels of EMT-related genes in HMM
cells following treatment with 100 uM H20; for indicated periods. Lanes 2—
4 are H513 and lanes 5-8 are MSTO-211H. Note that TWIST1 expression
was significantly increased in MSTO-211H cells at 10 min treatment, while
E-cadherin expression was decreased in H513 at 30 min treatment. HIF-1a
expression was increased by HoOg treatment in both H513 and MSTO-211H

cells.
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Figure 4. Western blot analysis on the expression levels of signaling
molecules induced by Hz0,. In MS1 cells, expression levels of HIF-1a and
TGF-B1 were significantly increased by treatment with 100 utM H»Os for 30
min. Following treatment of H513 cells with 100 uM H,0,, expression level

of E-cadherin was decreased, while vimentin expression was increased.
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Figure 5. Expression levels of EMT and stemness-related genes measured
by real time quantitative RTPCR in HMM cells treated with O, 10, or 20 yM
H2O, for indicated periods. MS1 cells. H,Os treatment significantly enhanced

EMT promoting genes such as SLUG, TWIST1, and decreased E-cadherin.
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H-0, treatment significantly enhanced expression of stemness genes, such
as OCT4, SOXZ2 and NANOG. The degree of the changes in the gene

expression levels induced by HyO, treatment was significant (* indicates p

< 0.05).
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TWIST1 expression in HMM tissues

In cancer tissues, EMT is manifested as spindle-shaped, mesenchymal
morphology of cancer cells. TWIST1 was strongly expressed in the nucleil
of a subset of mesothelioma cells exhibiting mesenchymal morphology, but
not in epithelioid cells (Figure 6). Positive staining for TWIST1 was detected
in 6 out of 20 (30%) mesotheliomas which are included in the tissue
microarray. Some of the epithelioid mesothelioma cells revealed mild diffuse

cytoplasmic staining.
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Figure 6. TWIST1 expression detected by immunohistochemical staining of
tissue microarray slides containing HMMs. Left panel: Epitheliomatous
HMM cells did not show nuclear staining, instead weak diffuse cytoplasmic
staining is present (arrowhead). A few spindle cells (arrows) separating the
groups of neoplastic epithelioid cells exhibit positive nuclear staining for
TWIST1. x 400. Scale Bar = 50 um, enlarged. Right panel: Most of the
sarcomatous mesothelial cells reveal positive staining in their nuclei

(arrows). x 200. Scale Bar = 100 um, enlarged.
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Discussion

It has been shown that ROS contribute to the progression of various tumors.

However, detailed molecular mechanisms underlying the effect of ROS
generated by asbestos fibers on the mesothelial cells remained uncovered.
The present study determined the molecular events occurred in the HyOo—
treated HMM cells. H,O, treatment, a model for excessive ROS production,
altered expression levels of EMT-related genes in HMM cells. Additionally,
stemness—related genes that may be involved in the survival and
aggressiveness of the cancer cells also are significantly increased by
treatment with H»O,. These data indicated that ROS induced conversion of
cellular phenotypes, EMT, resulting in more aggressive and resilient HMM
cells.

HMM is invariably lethal tumor arising from the serosal lining cells and is
closely associated with exposure to asbestos fibers that induces production
of ROS (Ramos-Nino et al. 2006). Although usage of asbestos fibers was
banned in the United States and most western European countries in 1970s,
the regulation on the asbestos usage has not been forced in many
developing countries. Moreover, the asbestos is still common in homes,
schools and office buildings that were built prior to the regulation. It is well-
known that overproduced ROS from asbestos fibers not only kill mesothelial
cells, but also promote mesothelial carcinogenesis. Additionally, previous
study showed that ROS induced EMT process in non—malignant mesothelial

cells (Lee and Ha 2007). The present study provided additional molecular
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evidences involving ROS-induced EMT in malignant mesothelial cells.

Down-regulation of E-cadherin has been widely accepted as a defining
molecular feature of EMT (Edelman et al. 1983). Key inducers of EMT are
transcription factors that repress E—cadherin expression, such as SNAIL,
SLUG, SIP1 and TWIST (Peinado et al. 2007). TWIST1 is a master regulator
of EMT and down-regulation of TWIST1 is able to revert EMT, inducing
mesenchymal-to—epithelial transition (MET) (Peinado et al. 2007). Our
study demonstrated that HMM cell lines differentially expressed TWIST1.
TWIST1 expression was detected in HMM cells with biphasic and
sarcomatous morphology, but not in H513 with epithelioid morphology. In
contrast, E-cadherin expression was observed in H513 but not in biphasic
and sarcomatous cells. These expression profile of EMT-related genes
clearly reflects the morphologic phenotypes of HMM cells. In support of the
notion, the expression of TWIST1 in HMM tissues was confined in the
sarcomatous tumor cells. Considering that sarcomatous HMM exhibits
poorer prognosis than epithelioid HMM, our data propose that ROS—-induced
EMT may involve in the progression of HMM carcinogenesis.

Highly aggressive tumor cells should adapt to and survive the hypoxic
conditions that enhance ROS generation by increasing HIF-1la activity
(Shimojo et al. 2013). Published study shows that HIF-1a is overexpressed
in HMM cells, but not in normal mesothelial cells (Klabatsa et al. 2006). In
the present study, treatment of HMM cells with H.O, induce the activation

of HIF-1a, resulting in EMT. ROS also are known to stimulate TGF-(1,
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initiating EMT in a variety of cell types (Kim et al. 2012). Consistent with
these published reports, H:O, treatment increased expression of TGF-£1,
concurring with induction of the expression of EMT-biomarkers. ROS
generated by cells can function as both an upstream signal that triggers p53
activation and a downstream factor that mediates function of p53 (Liu et al.
2008). In our study, MS-1 cells with wild type p53 gene exhibited more
dramatic change of the gene expression levels compared to the H513 cells
with mutated p53 genes, suggesting the potential role of p53 in the ROS-
mediated EMT and stemness.

Through EMT cancer cells acquire drug-resistant, invasive and metastatic
properties (Singh and Settleman 2010). As epithelial cells are adherent to
each other via E-cadherin, loss of the E-cadherin may be associated with
detachment of individual cells from neighboring cells (Cannito et al. 2008),
stimulating migration and metastasis. Induction of EMT confers resistance
to apoptosis and promotes anchorage-independent growth in epithelial cell
lines (Robson et al. 2006, Yang et al. 2006). Depletion of E-cadherin
protects mammary cells against anoikis (Geiger et al. 2009). SNAIL
represses the cell cycle and enhances resistance to cell death (Vega et al.
2004). TWIST1 promotes intracavitary dissemination of ovarian cancers,
which require resistance to anoikis (Terauchi et al. 2007). Taken together,
EMT may be a crucial process in the metastasis of HMM cells via
Intracavitary dissemination. Biological properties of the survived HMM cells

following H»O, treatment warrant further studies.
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ROS, especially H,O,, play an important role in maintaining stemness and
differentiating capacity of stem cells. The effect of ROS on the stem cell
functions appears to be context and cell type dependent. Lower level of
H-0, contributes to maintaining their stemness, whereas a higher level of
H-0, promotes differentiation, proliferation and migrations and survival of
stem cells (Kobayashi et al. 2012). Recent studies have suggest that cancer
stem cells of several tumor types have similar redox patterns to normal
stem cells (Kobayashi and Suda 2012). Consistent with the present study,
hypoxia enhances the expression of stemness genes such as Sox2 and Oct4
in glioblastoma (McCord et al. 2009). Furthermore, it has been shown that
HIF-1a interacts with Notch under hypoxic conditions to maintain a stem
cell phenotype and Notch signaling is enhanced by hypoxia (Gustafsson et
al. 2005).

In summary, the present study demonstrated that H.O, promoted EMT
program, which was mediated through HIF-1a and TGF-B1. Simultaneously,
the HsOs increased the expression of stem cell-related genes, suggesting
the enhanced potential of survival and proliferation of the HMM cells. These
data support the notion that ROS may promote HMM carcinogenesis and
progression. The present study provides a background information that may
crucial to devise a strategy for preventive or therapeutic interventions of

HMM and other ROS-related diseases.
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CHAPTER I
HYPOXIA PROMOTES ACQUISITION OF AGGRESSIVE
PHENOTYPES IN HUMAN MALIGNANT MESOTHELIOMA
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Abstract

Hypoxia is a hallmark of the solid tumor microenvironment and is
associated with poor outcomes in cancer patients. The present study was
performed to investigate mechanisms underlying the hypoxia—induced
phenotypic changes using HMM cells. Hypoxic conditions were achieved by
incubating HMM cells in the air chamber. The effect of hypoxia on
phenotype changes in HMM cells were investigated by performing i vitro
clonogenicity, drug resistance, migration and invasion assays. Signaling
pathways and molecules involved in the more aggressive behaviors of HMM
cells under hypoxia were investigated. A two-tailed unpaired Student’s ¢~
test or one—-way ANOVA with Bonferroni post—test correction was used in
this study. Hypoxic conditions upregulated HIF-1a and HIF-Z2a in parallel
with the upregulation of its target, Glut-1, in HMM cells. /n vitro
clonogenicity of HMM cells was significantly increased in hypoxic
conditions, but the proliferation of cells at a high density in hypoxia was
lower than that in normoxic conditions. The expression levels of HIF-2a
and Oct4 were increased in hypoxic HMM cells. The percentage of cells
with high CD44 expression was significantly higher in HMM cells cultured
in hypoxia than those cultured in normoxia. Meanwhile, the expression of
p-Akt and NOTCH1' was not significantly altered in hypoxic HMM cells.
Hypoxia significantly enhanced the resistance of HMM cells to cisplatin,
which occurred through cytoprotection against cisplatin—induced apoptosis.

While cisplatin treatment decreased the ratio of Bcl-2 to Bax in normoxic
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condition, hypoxia conversely increased the ratio in HMM cells treated with
cisplatin. Cisplatin treatment rapidly degraded both HIF-1a and HIF-2Za in
hypoxic HMM cells. Hypoxia increased the mobility and invasiveness of
HMM cells. Epithelial to mesenchymal transition was promoted, which was
indicated by the repression of E-cadherin and the concomitant increase of
vimentin in HMM cells. The data illustrated that hypoxic conditions
augmented the aggressive phenotypes of HMM cells at the biological and
molecular levels. The present study provides valuable background
information beginning to understand aggressiveness of HMM in tumor
microenvironments, suggesting that a control measure for tumor hypoxia
may be an effective therapeutic strategy to reduce the aggressiveness of

cancer cells in HMM patients.
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Introduction

Hypoxia is a common feature of tumor microenvironment (Ruan et al. 2009).

There are two types of hypoxia in solid tumors, intermittent hypoxia and
chronic hypoxia. Intermittent hypoxia results from abnormal blood flow
associated with transient fluctuations in tumor perfusion and the high
permeability of tumor vessels with interstitial hypertension (Fukumura and
Jain 2007). Chronic hypoxia arises due to the inability of the vascular system
to supply the growing tumor mass with adequate amounts of oxygen (Cosse
and Michiels 2008). Both types of tumor hypoxia have been reported to be
correlated with poor outcomes in many cancer patients (Vaupel and Mayer
2007). Hypoxia enhances cancer cell survival, metastasis, and drug
resistance in multiple tumor types (Vaupel and Mayer 2007, Ruan et al.
2009).

One of the adaptive cellular responses to hypoxia is to increase the
expression of HIFa, a subunit of the heterodimeric transcription factor HIF
(Zhou et al. 2006). In normoxia, the HIFa subunit is hydroxylated by PHD
and recognized by an E3 ubiquitin ligase, VHL protein, which proteasomally
degrades the HIFa protein (Lee et al. 2004). Under hypoxia, however, HIFa
becomes stable and starts to accumulate in cancer cells by blocking the von
Hip—mediated ubiquitin—proteasome pathway (Lee et al. 2004). HIFa
heterodimerizes with HIF-1 and migrates to the nucleus. The heterodimer
recognizes and binds the hypoxia responsive element located in the

promotor of hundreds of genes (Lee et al. 2004). Transcriptional activity of
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HIF in cancer cells is largely mediated by HIF-1a and HIF-2a (Keith et al.
2012). The function of HIF-1a has been extensively investigated in nearly
every stage of tumor progression (Semenza 2010). Recently, growing
evidence has suggested that HIF-2a is also a critical mediator of aggressive
cancer phenotypes including metastasis and dedifferentiation (Qing and
Simon 2009). Although HIF-1la and HIF-2a activate numerous hypoxia—
induced genes harboring HIF binding motifs, each HIFa subunit has its own
preferential targets. For example, HIF-1a induces genes primarily involved
in anaerobic glycolysis, angiogenesis, and apoptosis (Cosse and Michiels
2008, Semenza 2010). On the other hand, HIF-2a regulates genes that
promote invasion and stemness (Covello et al. 2006, Qing and Simon 2009).
Depending on tumor types or hypoxic duration, the HIFa isoforms are
mutually cooperative or exclusive for biological functions and phenotypes
(Keith et al. 2012).

Human malignant mesothelioma (HMM) is an aggressive malignancy arising
from the mesothelium on the surface of the body cavity (Robinson et al.
2005). Exposure to asbestos fibers increases the risk of HMM, but simian
virus 40 may also have a role in HMM tumorigenesis (Robinson et al. 2005).
The occurrence rate of HMM is anticipated to increase worldwide (Bianchi
and Bianchi 2007). HMM is highly resistant to traditional anticancer drugs
(Mujoomdar et al. 2010). Several mechanisms of drug resistance have been
proposed in HMM, including drug transporters, anti—apoptosis, and

antioxidant defenses (Fennell et al. 2004 ). Despite the advances in systemic
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chemotherapy using an antifolate—platinum regimen have improved clinical
outcomes in HMM patients, overall prognosis remains poor with median
survival times of 4 to 13 months from the initial diagnosis (Fennell et al.
2008, Blomberg et al. 2015).

The existence of hypoxic cells within a tumor is associated with modulation
of the malignant process in many cancers (Zhou et al. 2006, Ruan et al.
2009). Recent studies have revealed that HMM contains hypoxic regions,
suggesting a potential link between tumor hypoxia and ineffective
therapeutic efficacy (Klabatsa et al. 2006, Francis et al. 2015). However,
the mechanism underlying the effect of hypoxia on HMM remains largely
unknown. The present study showed that hypoxia promotes aggressive
phenotypes of HMM cells. Hypoxia enhances in vitro clonogenicity,
migration, invasion, and drug resistance through inhibition of apoptosis in
HMM cells. Various signaling networks and molecular candidates were
suggested for the aggressive biological behaviors of HMM cells, including
HIF-1/2a and Oct4 signaling pathways, EMT, and Bcl-2 regulation.
Exploiting tumor hypoxia may be an alternative therapeutic strategy to

reduce the aggressive behavior of HMM cells.
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Materials and Methods
Cell culture and cell lines

MS1 and H513 cell lines were kindly provided by Dr. Jablons (University
of California, San Francisco) and Dr. R Kratzke (University of Minnesota),
respectively. The cell lines were cultured in RPMI 1640 medium (Mediatech
Inc.) containing 10% FBS (Mediatech Inc.), 10 mM of glucose, 10 mM of
HEPES (Sigma-Aldrich), 1.5 g/L sodium bicarbonate (Sigma—-Aldrich), 1 mM
of sodium pyruvate (Sigma-Aldrich), and 100 U/100 pug/mL
penicillin/streptomycin (Gibco-Life Technology) at 37°C in a humidified
atmosphere containing 5% COgy. To establish a glucose-starved condition,
HMM cells were cultured in DMEM medium (Gibco-Life Technology)
supplemented with O or 1 mM of D- (+)-glucose (Sigma-Aldrich). The HMM
cell lines were determined to be free of mycoplasma contamination by using
e-Myco Mycoplasma PCR detection kit (e-Myco, iNtRON Biotechnology,

Sungnam, Korea).

Hypoxic condition

Hypoxia was generated by infusing a pre-analyzed air mixture (2.2% O5/5%
C02/92.8% Ny) at a flow rate of 5 L/min for 15 minutes into an air chamber
(Billups—Rothenberg Inc., Del Mar, CA, USA) with inflow and outflow valves.
Hypoxic treatment of cells was achieved by incubating the cells in the air
chamber maintained in a humidified environment at 37°C. The culture

medium was replaced just before carrying out hypoxic treatment.
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Cell proliferation and cytotoxicity assay

Cell proliferation was determined by counting the number of cells and/or
measuring cell metabolic activity using MTT dye in each well at defined
intervals. Cells were seeded on 6-well plates or 96—well plates at a different
density per well. For cell proliferation by manual counting and MTT assay,
each group was replicated in five and six separate wells, respectively. The
following day, the cells were subjected to normoxia or hypoxia for the
indicated periods either without drugs or with varying concentrations of
cisplatin (Dong—A Pharm, Seoul, the Republic of Korea). For cytotoxicity
assay, each group was replicated in three separate wells. After the
treatment, the cells were enumerated using a hemocytometer under an
Olympus CK2 microscope (Optical Co., Ltd., Tokyo, Japan). After incubation
in MTT dye (5 mg/mL) for 2 h at 37°C, protected from the light, the
absorbance values were determined at 570 nm by the microplate reader
(Genb). The absorbance from untreated control cells under each normoxic
and hypoxic condition was considered representative of 100% cell viability.
All other measurements were expressed as a percentage of the control cell

value £ SD.

Clonogenicity assay
To prevent cell to cell contact or the overlapping of too many colonies, 200

cells were chosen to seed on 6-well plates, as previously described
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(Franken et al. 2006). Each group was replicated in four separate wells.
When attached to the plate, the cells were subjected to incubation for 48 h
under normoxia or hypoxia. After the incubation, the culture medium was
replaced, and the cells were further incubated at 37°C for 5 days. The cells
were fixed with methanol for 5 minutes, stained with Diff-Quik solution
(Merck, Darmstadt, Germany), and dried. Groups of more than 50 cells were
counted as viable colonies. The colony forming ability was determined by
calculating the percentage of surviving cells based on the plating efficiency
that is a ratio of the number of colonies to the number of cells seeded

(Franken et al. 2006).

Wound healing assay

HMM cells were seeded on 24-well plates at cell densities of 10° cells per
well in triplicate. When the cells reached 90% confluence, the culture
medium was replaced with one containing mitomycin C (Sigma—-Aldrich) at
a final concentration of 2 pg/mL, followed by further incubation for 2 h.
Mitomycin C was used to minimize the proliferative effect of cancer cells,
and the concentration used in this study was found to be non—cytotoxic
(Jampel 1992). The cell monolayer was manually scratched with a 1,000 pl
pipette tip. The cells were subjected to further incubation in normoxia or
hypoxia for 48 h. The area of the scratch distance was photographed under
a phase contrast microscope using an Olympus CK2 camera (Optical Co.) at

0 and 48 hr of incubation. Cell migration was determined by measuring the
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migration distance. The results were normalized to the initial scratch

distance and presented as % with normoxic condition set at 100%.

Invasion assay

The 24-transwell plates (8.0 uM pore size with poly—carbonate membrane;
Corning Costar, Lowell, MA, USA) covered with 2 mg/ml basement
membrane Matrigel matrix (BD Biosciences, Bedford, MA, USA) were used
for the invasion assay. Each group was replicated in three separate wells.
The coated trans—well was hydrated with culture medium for 2 hr prior to
cell seeding. HMM cells were resuspended in serum-—free medium and
seeded at a cell density of 2.5 x 10? into the upper invasion chamber. Culture
medium containing 10% FBS was then added to the lower chamber. The
cells were incubated at 37°C for 24 h under normoxia or hypoxia. After a
day of incubation, the cells that had invaded the lower surface of the
membrane were fixed with methanol for 5 min, stained with Diff-Quik
solution (Merck), and quantified by counting five random fields using a phase
contrast microscope. Invasion was expressed as the ratio of invading cells

incubated under hypoxia compared to the controls in normoxia.

Apoptosis assay
HMM cells were seeded on 60 mm? petri dishes with a confluency of 60%
density in quadruplicate. On the following day, the cells were incubated in

normoxia or hypoxia for 48 h either with or without cisplatin (10 pM). After
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the incubation, apoptosis was evaluated using the Annexin V-FITC
apoptosis detection kit (Komabiotech, Inc, Seoul, Korea). Briefly, cells were
harvested, washed, and incubated in binding buffer containing a saturating
concentration of FITC-conjugated Annexin V in the dark for 15 minutes at
room temperature. After being washed with a binding buffer, the cells were
resuspended and incubated with 500 ul of binding buffer containing 10 pl of
propidium iodide (PI) on ice. The cells were immediately analyzed for the
fluorescence of FITC and PI using flow cytometry (Becton Dickinson, San

Jose, CA, USA). Cells undergoing early and late apoptosis were determined.

Cell cycle analysis

HMM cells were plated on 6-well plates at a confluency of 50% density in
triplicate. After a day of incubation, the cells were subjected to normoxia or
hypoxia for 24 and 48 hrs. At the indicated time points, cells were harvested
and fixed with ice—cold 70% ethanol for 2 hr at —20°C. After being washed
with PBS, the cells were incubated with PI/RNase staining buffer (BD
Pharmingen, BD Biosciences) for 15 minutes at room temperature. The cells
were immediately subjected to analysis using a flow cytometer (BD

Biosciences) for the determination of their DNA contents.

Measurement of cell surface CD44 expression
HMM cells were plated on 6—well plates in triplicate. After 48 h of hypoxia

incubation, HMM cells resuspended in PBS were incubated with primary
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antibody against CD44 (Genetex, CA, USA) at 4°C for 1 h in the dark.
Secondary antibody goat anti-rat [gG-PE (Santa Cruz Biotech) for CD44
analysis was incubated at room temperature for 30 min in the dark. After
washing with PBS, HMM cells were resuspended in PBS and subjected to
flow cytometric analysis for CD44 expression. Unstained cells were used to
gate on live cells. After excluding cell debris from the gated populations, a

minimum of 10,000 events per condition were collected for the analysis.

Western blot analysis

After washing cells with cold PBS twice, cell lysates were obtained using
RIPA lysis buffer containing complete protease inhibitors. The nuclear
proteins were extracted by using Cell Fractionation Kit (Abcam) according
to manufacturer’s instruction. The same amounts of protein were subjected
to sodium dodecyl sulfate-polyacrylamide gel electrophoresis;
subsequently, the protein bands were transferred onto a nitrous membrane
by a wet transfer apparatus. After blocking with 5% non—fat milk at room
temperature for 60 minutes, the nitrous membrane was placed in 0.1%
Tween 20 PBS (T-PBS) containing primary antibodies including HIF-1a
(1:1000, Cell Signaling), HIF-2a (1:1000, Cell Signaling), E-cadherin
(1:1000, Cell Signaling), Bcl-2 (1:1000, Cell Signaling), Bax (1:1000, Cell
Signaling), Bel-xL (1:1000, Cell Signaling), Oct4 (1:1000, Cell Signaling),
NOTCH1* (1:1000, Santa Cruz Biotech), p—Akt (1:1000, Santa Cruz

Biotech), HDAC2 (1:1000, Santa Cruz Biotech), Lamin A/C (1:1000, Santa

65 .__:lx_g _'-\..':_ '||



Cruz Biotech), and vimentin (1:1000, Cell Signaling) and incubated overnight
at 4°C. An antibody against B—actin (1:1000, Cell Signaling) was used as a
loading control. After the blot was washed with T-PBS three times for 10
minutes each, peroxidase—labeled secondary anti-rabbit or anti—mouse
antibodies (1:2000) were applied to the blot for 90 minutes. The protein
levels were detected on CL-Exposure film with the use of enhanced
chemiluminescence detection reagents (Advansta, Menlo Park, CA, USA)
according to the manufacturer’s instructions. Densitometric analysis was
performed using the Imagel] program (Imagel, US National Institutes of

Health, Bethesda, MD; http://imagej.nih.gov/ij/).

Gene expression and quantitative Real-time RT-PCR

Total RNA was isolated from the HMM cell lines using the RNeasy Plus Mini
Kit protocol (Qiagen). The quality and quantity of the total RNA were
assessed using Nanodrop (Nanodrop Technologies, Wilmington, DE, USA).
Total RNA of 500 ng was used to synthesize cDNA using QuantiTect
Reverse Transcription Kit (Qiagen). Quantitative real-time PCR was
performed using the Rotor-Gene SYBR Green RT-PCR Kit (Qiagen). PCR
conditions were as follows: 1 cycle at 95°C for 10 min, followed by 45 cycles
of 95°C for 10 seconds, and then 60°C for 30 seconds. The expression level

of each gene was normalized based on endogenous GAPDH expression. The

—AA
analysis of relative gene expression was determined according to the 2  Ct

66 .__:lx_g _'-\..':_ T



method, as previously described (Kim et al. 2013). The primer sequences

used in this study are listed in Table 1.
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Table 1. The list of primers used in this study

Target genes Direction Primer sequences (5'->3")

Oct4 Forward GGAGATATGCAAAGCAGAAAC
Reverse GAACAAATTCTCCAGGTTGCC

Sox2 Forward CGATGCCGACAAGAAAACTT
Reverse CAAACTTCCTGCAAAGCTCC

Nanog Forward TTCAGTCTGGACACTGGCTG
Reverse CTCGCTGATTAGGCTCCAAC

Smo Forward GAATGAGGTGCAGAACATCAAG
Reverse GTCCTCGTACCAGCTCTTG

Glil Forward GAGCCCATCTCTGGGATTC
Reverse GTCCAGCTCAGACTTCAGC

Shh Forward CAGAGGTGTAAGGACAAGTTG
Reverse CGTAGTGCAGAGACTCCTC

B catenin Forward GCCGGCTATTGTAGAAGCTG
Reverse GAGTCCCAAGGAGACCTTCC

Notchl Forward GCAGTTGTGCTCCTGAAGAA
Reverse CGGGCGGCCAGAAAC

Bmil Forward CCGGGATTTTTTATCAAGCAG
Reverse GTTGTGGCATCAATGAAGTACC

GAPDH Forward CTGCACCACCAACTGCTTAG
Reverse AGGTCCACCACTGACACGTT
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Statistical analysis

All data were presented as the means £ SD. Statistical analyses were done
by using Microsoft Excel (Microsoft, Seattle, WA, USA) and SPSS software
(IBM, Armonk, NY, USA). P values were calculated by a two-tailed unpaired
Student’s t-test or one—~way ANOVA with Bonferroni post—test correction.
The results were confirmed in at least three independent experiments and

considered to be statistically significant when P value was less than 0.05.
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Results
Experimental induction of hypoxia in vitro

Experimental establishment of hypoxia was verified by HIFa induction in
HMM cells. Western blot analysis confirmed the upregulation of HIF-1a and
the de novo synthesis of HIF-2a under hypoxia (Figure 1A). As hypoxia was
prolonged, HIF-1/2a target Glut-1 expression was also elevated,
suggesting a functional transcriptional activity of HIF-1a in the hypoxic
state (Figure 1B). Glucose starvation was used as a positive control for

Glut-1 expression.
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Figure 1. The experimental establishment of tumor hypoxia in HMM cells.
(A) Hypoxia markedly increased HIF-1a expression and induced HIF-2a
expression de novo in HMM cells. (B) A HIF-1/2a target Glut-1 increased
in response to hypoxia and glucose starvation in MS1 cells. Abbreviations:

N, normoxia; H, hypoxia.
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Hypoxia enhanced in vitro clonogenicity but reduced proliferation of HMM
cells

The plating efficiency of the untreated control was approximately 0.6 in
HMM cells. Hypoxia significantly increased the surviving fraction by 34%
and 37% in MS1 and H513 cells, respectively, compared to that of normoxic
cells (Figure 2A). Because the ability of tumor cells to form a single colony
1s related to the acquisition of stemness properties, the levels of a variety
of stemness genes were investigated. Among them, Oct4 gene expression
was significantly increased in HMM cells under hypoxia (Figure 2B). The
Oct4 protein was also significantly elevated under hypoxia (Figure 2C). We
also attempted to determine cell surface markers that correlate with stem
cell signatures, and hypoxia was found to significantly increase the
percentage of HMM cells with the high CD44 expression, a putative marker
of cancer stemness of HMM (Figure 3) (Ghani et al. 2011, Cortes—Dericks
et al. 2014). It has been previously reported that HMM cells survive in
hypoxic conditions by activating NOTCH]1 that subsequently phosphorylates
Akt (p—Akt) (Graziani et al. 2008). In the present study, however, the
expression of p—~Akt and NOTCH1' was not significantly altered in hypoxic
HMM cells (Figure 4). On the other hand, chronic hypoxia did not enhance
the proliferative capacity of HMM cells. As the cell density increased, an
inhibitory effect of hypoxia on cell growth was detected (Figure 5A). The
parallel measurement using MTT dye also confirmed the significant

reduction in cell proliferation of HMM cells under hypoxia. The absorbance-
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based cell viability was decreased after 48 h of hypoxia from the initial
seeding density of 1,000 and 5,000 in MS1 and H513 cells, respectively
(Figure 5B). The reduced proliferation under hypoxia was not attributable
to the cell cycle arrest at the G,/p phase (Figure 5C). The data indicated that
hypoxia improved single cell survivability that was mediated through

stemness acquisition in HMM cells.
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Figure 2. The effect of hypoxia on in vitro clonogenicity in HMM cells. (A)
Hypoxia enhanced the colony forming ability of HMM cells. Representative
microscopic examinations are presented. P value was calculated by
Student’s #test. Hypoxia significantly upregulated the expression of Oct4
at transcriptional (B) and translational (C) levels in HMM cells. P value was
calculated by one-way ANOVA with Bonferroni post-test. * P value < 0.05,

=% P value < 0.01. Abbreviations: N, normoxia; H, hypoxia.
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Figure 3. The effect of hypoxia on the abundance of HMM cells with CD44
expression. The percentage of cells with high CD44 expression is
significantly higher in HMM cultured in hypoxia than those cultured in
normoxia. Representative histogram of CD44 expression is presented. * P

value < 0.05, as calculated by Student’s #-test.
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Figure 4. The effect of hypoxia on the expression of NOTCH1* and p-Akt
in HMM cells. (A) The expression of NOTCH1' is not significantly different
between HMM cells under normoxic and hypoxic conditions. (B) Hypoxia
does not significantly alter the expression of p—Akt in MS1 cells, but
significantly downregulate the p—Akt expression in H513 cells, compared to
those in normoxic conditions. ** P value < 0.01, as calculated by Student’s

—test.
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Figure 5. The effect of hypoxia on cell proliferation in HMM cells. Hypoxia
significantly decreased proliferation and viability in HMM cells at high cell
seeding density. (A) Counting cell numbers. (B) MTT assay. Number of cells
initially seeded is presented in parentheses. Cell cycle profiles did not
appreciably differ between normoxic and hypoxic HMM cells (C). * P value
< 0.05, =x P value < 0.01, as calculated by Student’s ¢-test. Abbreviations:

N, normoxia; H, hypoxia.
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Hypoxia induced drug resistance in HMM cells

In the normoxic state, cisplatin treatment decreased the cell viability of
HMM cells in a dose-dependent manner, but hypoxia significantly reduced
the sensitivity of the cells to the drug (Figure 6A and 6B). Among HMM cell
lines, MS1 and H513 cells are the most sensitive to cisplatin treatment, and
these cell lines displayed the highest response to hypoxia, leading to drug
resistance (Figure 6C). Because apoptosis has been used for the evaluation
of the chemotherapeutic efficacy of cisplatin (Fennell and Rudd 2004), a
bivariate Annexin V/PI analysis was performed. Following cisplatin
treatment, a major form of cell death was apoptosis in HMM cells where
necrosis occurred less than 3% of total cell death. Compared to the
apoptosis of cells exposed to cisplatin in normoxia, hypoxia not only
decreased apoptosis in HMM cells without cisplatin treatment but also
significantly inhibited cisplatin-induced apoptosis (Figure 7A). The
expression levels of representative pro— and anti—apoptotic Bcl-2 family
members were determined by immunoblot analysis. As shown in Figure 7B,
the Bcl-2 level was increased in HMM cells under the hypoxic state
compared to the level in HMM cells under normoxic conditions. However,
the level of Bcl-xL remained almost unchanged in hypoxic MS1 cells, and
the increase of Bcl-xL was much less in hypoxic H513 cells, compared to
that in normoxic H513 cells. A profound elevation of Bax expression was
detected in hypoxic MS1 cells, but it remained almost unchanged in H513

cells. Due to the high Bax expression under hypoxia, the ratio of either Bel-
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2 or Bcl-xL to Bax was decreased in MS1 cells. The Bcl-2 to Bax ratio was
remained as increase in H513 cells following hypoxia, but the increase in
the ratio of Bcl-xL to Bax was not significant. Figure 7C shows expression
profiles of the Bcl-2, Bel-xL, and Bax in HMM cells treated with cisplatin.
In the normoxic state, cisplatin reduced the expression of Bcl-2, but
hypoxia increased and maintained the Bcl-2 expression in HMM cells
treated with cisplatin. With cisplatin treatment, Bcl-xL. expression was
decreased in HMM cells as hypoxia was prolonged. Densitometric analysis
confirmed the upregulation of Bax expression following cisplatin treatment
in MS1 cells. The extent of increase in Bax expression was diminished in
hypoxic MS1 cells, compared to the level in MS1 cells in normoxia. While
the Bcel-2 to Bax ratio decreased in the normoxic state following cisplatin
treatment, hypoxia increased the ratio. The Bcl-xL to Bax ratio was
lowered in hypoxic HMM cells treated with cisplatin, compared to that of
HMM cells treated with cisplatin in normoxia. It has been previously
reported that HIFa is a critical regulator of Bcl-2 family members (Cosse
and Michiels 2008). However, HIF-1/2a begun to rapidly degrade by
cisplatin and were rarely expressed in HMM cells under normoxic and
hypoxic conditions (Figure 7D). Taken together, these results indicated that
hypoxia promoted the resistance of HMM cells to cisplatin by regulating

Bcl-2 family members.
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Figure 6. The effect of hypoxia on drug sensitivity in HMM cells. The
sensitivity to cisplatin was decreased in HMM cells under hypoxia for 24 h

(A) and 48 h (B), compared to the sensitivity of those in normoxia. (C) The
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results of IDsy for cisplatin in HMM cell lines. * indicates a significant
difference compared with the corresponding normoxic cisplatin—treated

control. * P value < 0.05, #=* P value < 0.01, as calculated by Student’s #

test.

83 ; H e 1_'_” O



MS1 H513
__ 100 __ 100 —
X o X
» 50 » 50
2 2
2 0 2 0
S N H N H S N HNH
<< CisCis < CisCis
Hypoxia (48 h) Hypoxia (48 h)
C
MS1 H513 MS1 H513
N N H H
MS1 H513
i H + + + +
i I Cisplatin N N N
Time (h) 0 24 48 0 24 48 Time (h) 0 24 48 0 24 48 0 24 48 0 24 48
10 29 26 10 35 37 10 07 04 10 12 04 10 51 40 10 21 16
Bol-2 [om e o] [ ] Be-s[ - Jeeaid] [ mes]eaad]
B-actin [ v e o] [ -] Bactin [em e e o -— [ e | [ - |
10 13 13 10 17 17 10 20 19 10 10 06 10 15 09 10 09 06
Bel-xL [ e o @] [ o ot a Bel-xL [ s dlie]| s s aa | [ D 9 |[ s e o
Bractin | s-———| W.l B-actin | ————— r-..| — i GET | | s o |
10 323 336 10 13 13 10 167 130 10 12 10 10 91 19 10 10 06
Bax = =] -] Bax| - - ww ==/ g G aud - | ot o
B-actin [ e [ S B-actin [ - - o o | -
2.50MS1®H513 2 10MS1mH513 3 7o0MS1 mH513 - 15 1oMS1 mH513
o e [} 1
E : :, :
% 1.5 % % 5
s al o a
S 1 3 S %05
5 0.5 g ﬁ g
2 Cis latigl + + Cis lati(r)l * +
Time 0 24 48  Time 0 24 48 2 + P +
) () Time () 0 24 48 0 24 48 Time (1) 0 24 480 24 48
N H N H
4 h 48 h
N H N H
Cisplatin + + Cisplatin + +
HIF-1o (S B0 HIF-1a | -— |
HIF-2a | s | HIF-2a | B |

Lamin A/C [ =S|

HDAC2 | e e i @9 |

.-“ B-actin

B-actin

84



Figure 7. The effect of hypoxia on cisplatin—induced apoptosis in HMM cells.

(A) Hypoxia significantly reduced apoptosis either with or without cisplatin
in HMM cells. (B) Hypoxia upregulated the expression of anti—apoptotic
Bel-2, whereas Bcl-xL levels remained almost unchanged in HMM cells.
Marked increase of pro—apoptotic Bax expression was detected in MS1 cells
only. The ratio of Bcl-2 and Bel-xL to Bax increased in H513 cells. (C)
Hypoxia increased Bcl-2 levels and maintained the expression during
exposure to cisplatin treatment in HMM cells, compared to the expression
level in cells in normoxia. With cisplatin treatment, Bcl-xL expression either
tended to decrease or remained unchanged in HMM cells under hypoxia,
compared to the level in cells in normoxia. The cisplatin—induced increase
in Bax expression was less under hypoxia than under normoxia in MS1 cells.
The Bcl-2 to Bax ratio increased in HMM cells under hypoxia following
cisplatin. All protein expression was normalized to endogenous P-actin
level and is presented as densitometric values at the top of each protein
blot. (D) Rapid degradation of nuclear HIF-1/2a is detected during 48 h of
hypoxia in HMM cells. * P value < 0.05, as calculated by one-way ANOVA

with Bonferroni post—test.
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Hypoxia enhanced migration, invasion, and EMT of HMM cells

In the wound healing assay, HMM cells in hypoxia displayed a smaller gap
distance than did cells under normoxia (Figure 8A). Under hypoxia, H513
cells showed increased invasiveness (Figure 8B). The H513 cells were
round to oval or occasionally polygonal with a small amount of cytoplasm,
showing high nucleus to cytosol ratio. The MS1 cells were generally spindle
to polygonal (Figure 8C). The HMM cells exposed to hypoxia underwent a
morphologic change, showing a neuron-like appearance characterized by
pseudopodia protrusions (Figure 7C). To investigate the mechanisms
underlying hypoxia—induced cell migration, the expression levels of two
representative  EMT-related markers, E-cadherin and vimentin, were
analyzed. Western blot analysis revealed that hypoxia reduced the
expression of E-cadherin and concomitantly increased the expression of
vimentin in HMM cells (Figure 8D). Vimentin was upregulated in MS1 cells,
but E-cadherin was not detected. It might be due to the infrequent
expression of E-cadherin in HMM cell lines or primary tumors with
mesenchymal cell phenotype (Kim et al. 2013). These results showed that
hypoxia enhances the acquisition of migratory and invasive phenotypes that

are associated with EMT process in HMM cells.
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Figure 8. The effect of hypoxia on migration and invasion in HMM cells. (A)
Hypoxia significantly increased migration in HMM cells. (B) Hypoxia
significantly enhanced invasion in H513 cells. (C) Phase contrast images
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Discussion

Tumor cell adaptation to hypoxic condition leads to cancer progression
(Zhou et al. 2006, Fukumura and Jain 2007, Ruan et al. 2009). The present
study demonstrates that hypoxia causes HMM cells to behave more
aggressively at the biological and molecular levels. Hypoxia enhanced in
vitro clonogenicity, migration, invasion, and drug resistance to cisplatin in
HMM cells. Various signaling pathways and molecular targets were
associated with the hypoxia—-induced aggressive behaviors, including HIF-
1/2a, EMT, Oct4, and anti—apoptotic Bcl-2. The data presented in this study
emphasize the clinical importance of hypoxia in the biology of HMM.
Exploiting molecular signaling pathways affected by the hypoxia may help
to overcome the low efficacy of traditional anticancer therapy for HMM
patients.

Hypoxia enhanced the in vitro colony forming capability of HMM cells. Bel-
2 antagonization reduces in vitro clonogenicity through apoptosis induction
(Campos et al. 1994, Cao et al. 2008). In this context, the present study
showed that the increased Bcl-2 activity likely provided an additional
survival advantage to individual HMM cells during colony formation in
hypoxia. On the other hand, a published study showed that NOTCH and Akt
signaling plays a crucial role in hypoxic cell survival in primary HMM
cultures (Graziani et al. 2008). Different cell types and experimental
conditions may be responsible for the discordant response to hypoxia with

regard to the molecular change seen ex vivo. The effect of hypoxia on the
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proliferation of HMM cells in culture condition has been reported (Goudarzi
et al. 2013). Hypoxia enhances tumor stemness by reprogramming non-
stem cancer cells to be cancer stem cells (CSCs) with tumor initiating
capacity (Mimeault et al. 2013). The increase of cells with high CD44
expression supports the notion that hypoxia enhanced the stemness of HMM
cells (Ghani et al. 2011, Cortes—Dericks et al. 2014). The transformation to
CSCs is through the activation of HIFa and stemness-related transcriptional
factors, including Oct4, c=Myc, and Notch (Mimeault and Batra 2013). In the
present study, the enhanced clonogenicity of HMM cells might be associated
with increased Oct4 expression, which was mediated through the
transcriptional activity of HIF-2a. The upregulation of Oct4 at mRNA level
in hypoxic condition contributes to the formation of more viable colonies
with different origins of CSCs (Ma et al. 2011, Yeung et al. 2011, Li et al.

2013). Heddleston et a/. demonstrated the functional significance of HIF-2a
and Oct4 in the maintenance of the CSC state under hypoxia (Heddleston et
al. 2009).

The weak correlation between Oct4 mRNA and protein expression may
suggest the involvement of post—-transcriptional modification of Oct4 and/or
another stemness factors in enhancing the clonogenicity of HMM cells under
hypoxia (Saxe et al. 2009). CSC factors like c—=Myc or Notch are tightly
regulated together with Oct4 by competitive cooperation of HIF-1a and
HIF-2a in hypoxic tumor cells (Gordan et al. 2007, Hu et al. 2014). Further

studies are warranted to elucidate the functional relationship between HIFas

89 .__:lx_g _'-\..':_ T



and stem cell factors including Oct4 in HMM cells. On the other hand, once
the HMM cells proliferated in high cell populations after completing colony
formation, cell growth was decelerated by hypoxia. This phenomenon may
be attributable to the insufficient supply of energy required for cellular
proliferation under hypoxia. One of the principal actions of HIF-1a is to shift
tumor metabolism from oxidative phosphorylation to anaerobic glycolysis
(Semenza 2010). The hypoxic cancer cells consume more glucose by
augmenting glucose influx through the upregulation of glucose transporters,
such as Glut-1 (Zhou et al. 2006, Ruan et al. 2009). Accordingly, Glut-1
overexpression induced by hypoxia suggested the high energy demand or
hypoxia—associated nutrient deprivation of HMM cells in this study. Because
cell cycle arrest was not determined in hypoxia in this study, the process
of protein synthesis could be inhibited, resulting in the decelerated
proliferation of HMM cells, as previously suggested (Goudarzi et al. 2013).
An acquired apoptosis resistance is closely associated with ineffective
cancer therapy (Cosse and Michiels 2008). Hypoxia inhibits apoptosis in
many cancer types following drug treatment (Rohwer and Cramer 2011).
The present study showed that HMM cells acquired a drug-resistant
phenotype through inhibition of cisplatin—induced apoptosis under hypoxia.
In particular, alteration of Bcl-2 might be responsible for the hypoxia-
induced chemoresistance in HMM cells. The Bcl-2 family is a potential
blocker of apoptosis and plays a key role in the drug resistance of multiple

tumor types (Gross et al. 1999). The anti—apoptosis by Bcl-2 is largely due
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to the inhibition of mitochondrial membrane permeabilization, which can also
be activated by pro—apoptotic molecules upon various stimuli that initiate
apoptosis (Brunelle et al. 2009). Due to its hydrophobic BH3 binding groove,
Bcl-2 engages in multiple anti— and pro—apoptotic Bcl-2 protein—protein
interactions, l.e., by binding and sequestering the pro—apoptotic Bax
(Brunelle and Letai 2009). In this context, the increase of Bcl-2 expression

relative to Bax may represent an aspect of hypoxia—induced drug resistance

involved in mitochondrial protection upon exposure to cisplatin in HMM cells.

In this study, the role of Bcl-xL in promoting drug resistance under hypoxia
1s unclear. The inability of H513 cells to induce Bax expression in response
to external stimuli may be attributable to the p53 mutation. It has been
reported that tumor cells with mutant p53 do not induce Bax expression
upon apoptotic stimuli (Miyashita et al. 1995). This is consistent with the
previous findings that H513 cells failed to induce Bax expression during
TNF-related apoptosis—inducing ligand—-mediated apoptosis induced by a
histone deacetylase inhibitor (Reddy et al. 2007). On the other hand, the
present study contradicts the previous finding that drug resistance
occurring in hypoxia is a HIF-la-dependent in HMM cells (Riganti et al.
2008). Our results are supported by a previous finding that HIF-1la is
required for aggressive cancer phenotype, including apoptosis resistance,
but it is not mandatory for an initial selection of an apoptotic resistance
phenotype (Coffey et al. 2005). Although HIF-1la has been extensively

investigated as the most important factor in hypoxia—-induced drug
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resistance, it also holds true that drug resistance does develop
independently of the HIF-1a in hypoxic conditions (Doktorova et al. 2015).

Similar to the previous study (Goudarzi et al. 2013), hypoxia enhanced the
migratory and invasive properties in HMM cells. Additionally, the present
study showed that hypoxia promoted EMT process in HMM cells. In HMM,
it was shown that the miR-205-mediated reduction of ZEB1 and ZEB2
increased the expression of E-cadherin, which inhibited migration and
invasion (Fassina et al. 2012). The EMT is closely associated with hypoxia
and is regulating a more aggressive behavior of cancer cells (Jiang et al.
2011). In HMM carcinogenesis, HIF-1a stabilization promotes EMT process
and stemness via an increased expression of TGF-8 and stem cell factors
(Kim et al. 2013). Moreover, EMT is associated with the emergence of CSCs
in HMM cells (Casarsa et al. 2011). Tumor hypoxia is known to recapitulate
the HMM microenvironment of the body cavity with HIF-1a expression, and
EMT has been potentially implicated in mesothelial carcinogenesis
(Klabatsa et al. 2006, Schramm et al. 2010). HIF-1la regulates the
expression of a variety of genes involved in EMT-triggering pathways,
including TGF-83, Notch, and NF-kB, and EMT-promoting transcription
factors, including Twist, Snail, Slug, and, Sip (Jiang et al. 2011). In the same
vein, HIF-2a is also implicated in the stimulation of EMT-related factors,
such as E-cadherin, LOX, CXCR4, Twist, and Zebl (Qing and Simon 2009,
Jiang et al. 2011, Keith et al. 2012). On the other hand, a published study

showed that hypoxia induced MET through the activation of HIF-2a in
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MSTO-211H cells, an HMM cell line (Manente et al. 2016). Cell types and
experimental conditions may be responsible for the distinct response to
hypoxia with regard to the phenotypic change. Although further studies are
required to determine the underlying mechanisms, EMT phenotypes under
hypoxia can shed light on understanding how the hypoxic microenvironment
governs the malignant progression of HMM.

In conclusion, like other tumors, HMM contains significant areas of hypoxia,
but little information is available on the relationship between hypoxia and
tumor aggressiveness. The present study illustrated the importance of
hypoxia in progression of HMM cells. Understanding about the signaling
pathways and molecular mechanisms affected by hypoxia may contribute to
the development of therapeutic strategies targeting the microenvironmental

influence on HMM biology.
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CHAPTER III.

HYPOXIA INDUCES DRUG RESISTANCE THROUGH
PRESERVATION OF MITOCHONDRIAL INTEGRITY IN HUMAN
MALIGNANT MESOTHELIOMA CELLS
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Abstract

The present study was performed to investigate the role of mitochondria
in the hypoxia—mediated drug resistance in human malignant mesothelioma
(HMM). The viability of HMM cells cultured under hypoxia was less affected
by cisplatin treatment compared to those cultured under normoxia. Hypoxia
significantly inhibited cisplatin—induced apoptosis in HMM cells. Hypoxia
induced mitochondrial hyperpolarization, while cisplatin caused
mitochondrial depolarization in HMM cells. The mitochondrial
hyperpolarization by hypoxia was augmented by the addition of cisplatin in
HMM cells. Mitochondrial depolarization was not related to the opening of
mitochondrial permeability transition pore in HMM cells. The generation of
mitochondrial hyperpolarization was not related to ATP production or
reversal of ATP synthase. Hypoxia significantly inhibited cisplatin—induced
mitochondrial ROS stress in HMM cells, while hypoxia enhanced cisplatin—
induced ROS stress defined by DCF signals in HMM cells. Amplification
efficiency for mitochondrial DNA (mtDNA) revealed that hypoxia
significantly decreased cisplatin—induced mtDNA damage in HMM cells.
Also, hypoxia inhibited cisplatin—-induced degradation of mitochondrial
internal structure in HMM cells. Long-term treatment of low dose ethidium
bromide depleted mtDNA in HMM cells. The mtDNA-depleted HMM cells
showed a significant reduction in cell proliferation, cell viability,
mitochondrial membrane potential, intracellular ATP levels, mtROS, and

mitochondrial mass. The HMM cells lacking mtDNA were found to lose their
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ability to induce drug resistance in hypoxia. Moreover, mtDNA-depleted
HMM cells under hypoxia failed to mitigate hypoxia failed to cisplatin—
induced mtROS stress. The present study demonstrates that mtDNA-
encoded ETC subunits are the core of mitochondria, leading to hypoxia-
induced drug resistance in HMM cells. Data in this study may suggest the
potential for the therapeutic potential of mtDNA targeting to overcome drug

resistance arising from tumor hypoxia.
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Introduction

Tumor hypoxia is a hallmark of almost all types of tumor (Hockel et al.
2001). The hypoxic condition is significantly associated with tumor
aggressiveness (Vaupel and Mayer 2007). Drug resistance arising from
tumor hypoxia is a major obstacle for effective therapy in cancer patients
(Cosse and Michiels 2008). The mechanisms underlying the drug resistance
in hypoxia are multifactorial, complex, and different depending on cell types,
drugs used, and experimental settings (Rohwer and Cramer 2011,
Doktorova et al. 2015). Although HIFa has been extensively investigated as
an important factor to underpin hypoxia-induced drug resistance, drug
resistance can occur independently of HIFa (Doktorova et al. 2015).
Mitochondria are a double-membraned intracellular organelle (Wallace
2012). Mitochondria participate in various physiological functions, including
ATP production, apoptosis, lonic homeostasis, reactive oxygen species
(ROS) generation, and various intracellular signaling pathways (Wallace
2012). The fact that mitochondria are involved in the regulation of both cell
survival and death pathways makes them an attractive target for cancer
chemotherapy (Fulda et al. 2010). Direct perturbation in mitochondrial
integrity has been suggested to be a promising approach to overcome
hypoxia-induced drug resistance (Kumar et al. 2013, Kulikov et al. 2014,
Xuan et al. 2014). Mitochondrial have their own genome known as
mitochondrial DNA (mtDNA), which encodes 13 polypeptides involved in

respiration and oxidative phosphorylation, 2 ribosomal RNAs, and a set of
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22 tRNAs that are essential for the protein translation and synthesis in
mitochondria (Attardi et al. 1988). The electron transfer chain system is
closely associated with modulation of apoptosis (Kwong et al. 2007).

Human malignant mesothelioma (HMM) is an aggressive cancer arising
from mesothelium lining of body cavities (Robinson et al. 2005).
Occupational exposure to asbestos is closely linked to HMM pathogenesis
(Robinson et al. 2005). HMM is highly resistant to traditional anticancer
drugs, and cisplatin combined with pemetrexed is the only established first-
line chemotherapy (van Zandwijk et al. 2013). Although advances in
systemic chemotherapy and diagnostic method have improved clinical
outcomes, overall prognosis is still dismal with a mean survival of 9 to 17
months from diagnosis (Blomberg et al. 2015). The major obstacle in a
clinical oncology of HMM is an apoptosis resistance to cisplatin (Fennell and
Rudd 2004). Published studies have shown that hypoxia is a causal factor
for the inefficacy of drugs in HMM, suggesting the potential involvement of
mitochondria in drug resistance in hypoxia (Riganti et al. 2008, Giovannetti
et al. 2016, Kim et al. 2018). At present, there is no study reporting the role

of mitochondria in hypoxia—induced cisplatin resistance in HMM.

In the present study, we scrutinized mitochondrial events affected by
hypoxia during cisplatin exposure to HMM cells. We confirmed that hypoxia
protects mitochondrial integrity against cisplatin toxicity in HMM cells. In
particular, we performed mtDNA depletion, which demonstrated that

mtDNA-encoded ETC subunits are a critical part of mitochondria in
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hypoxia—-induced drug resistance in HMM cells. Data presented in this study
are valuable to provide evidence that mitochondrial targeting may be a
breakthrough to improve therapeutic efficacy for HMM cells refractory to

cisplatin treatment due to tumor hypoxia.
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Materials and Methods
Cell culture and reagents

HMM cell lines, MS1 and H513 cells, were maintained at a subconfluent
state in RPMI 1640 medium (Mediatech Inc.) with 10% FBS (Mediatech Inc.)
and supplements at 37°C in a humidified atmosphere containing 5% CO,, as
previously described (Kim et al. 2018). Cisplatin was purchased from Dong—
A pharm. Unless stated otherwise, HMM cells were treated with 10 uyM
cisplatin. After cisplatin treatment, only attached cells were subjected to
experimental analysis. Ethidium bromide (EtBr), uridine, MTT, and
Oligomycin were from Sigma-Aldrich. Inhibitor of pan—-caspases (zVAD-fmk)
was purchased from MBL (Nagoya, Japan). HMM cells were preincubated

with zVAD-fmk for 1 h before the addition of cisplatin or hypoxia.

Hypoxic condition
Hypoxic condition (0.1% 05/5% C05/94.9% N,) was established, as
previously described (Kim et al. 2018). HMM cells were incubated in the air

chamber and maintained with a humidified environment for 48 h at 37°C.

Flow cytometry analysis

Flow cytometric analysis was performed based on FACS system (Becton
Dickinson) equipped with a 488-nm argon laser. Unstained cells were used
to gate on live cells. After excluding cell debris from the gated populations,

a minimum of 10,000 events per condition were collected for the analysis.
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Flowing Software version 2.5.1 (www.flowingsoftware.com) was used to
calculate the mean fluorescence intensities of fluorochromes, and the

results were represented as an arbitrary unit.

Measurement of cell viability and drug response

The cell viability and drug response were determined by MTT assay, as
previously described (Kim et al. 2018). Briefly, HMM cells were subjected
to MTT reduction after cisplatin treatment under normoxia or hypoxia. The
absorbance values were determined at 570 nm by the Microplate Reader
(Genb). The absorbance from drug-untreated cells under normoxia or
hypoxia was normalized to 100%, and all other measurements were
expressed as the percentage obtained by comparing the value of control

cells with SD.

Apoptosis assay

Apoptosis assay was performed, as previously described (Kim et al. 2018).
Briefly, HMM cells were subjected to Annexin V-FITC and PI staining after
cisplatin treatment under normoxia or hypoxia. The annexin V or PI positive
cells on flow cytometric analysis were considered to be apoptotic and

presented as the percentage of apoptotic cells with SD.

Measurement of DNA fragmentation
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HMM cells in the log-phase of growth were cultured in normoxia or
hypoxia either with or without cisplatin. The cells were harvested and fixed
with cold 70% ethanol at —20°C for 2 h. After washing with PBS, the cells
were incubated with 500 pl PI/RNase staining buffer (BD Pharmingen) for
15 min at room temperature. Cell suspensions were analyzed by flow
cytometry to determine the cellular DNA contents. Sub G1 phase was
considered to be DNA hypoploidy and was presented as the percentage of
cells using Modfit LT software (Verity Software House Inc., Topsham,

Maine, USA).

Measurement of mitochondrial membrane potential

Mitochondrial membrane potential (MMP, Awy,) was evaluated by JC-1
assay (Molecular Probes, Invitrogen) according to manufacturer’s
instruction. After the exposure to cisplatin or hypoxia, HMM cells were
subjected to the staining of JC-1 at a final concentration of 2 pM at 37°C for
30 min, protected from light. The HMM cells incubated with JC-1 in the
presence of carbonyl cyanide 3—-chlorophenylhydrazone (CCCP) at 50 mM
were used as a positive control for JC-1 assay. HMM cells were harvested,
resuspended, and analyzed on a flow cytometer. The MMP was calculated
by the ratio of JC—-1 aggregates to monomer. The JC-1 ratio less than 1 in
CCCP-treated cells was considered to be a dissipation of membrane
potential. The JC-1 ratio of untreated control cells under normoxia was

considered as 100% MMP, and all other measurements were expressed as
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the percentage of the control cell value with SD. For determination of mode
of action of F1Fy ATP synthase activity, HMM cells were incubated with JC-

1 in the presence of oligomycin, an inhibitor of the ATP synthase.

Semi—quantification of intracellular ATP

Cellular ATP level was semi—quantified using ATP-based CellTiter—
Glo Luminescent Cell Viability Kit (Promega) according to manufacturer’s
instruction. Briefly, Cell Titer—Glo reagent was added to HMM cells that
were treated with cisplatin under either normoxia or hypoxia. The
luminescence values were determined by using luminescent plate reader

(Thermo Lab system, Franklin, MA, USA).

Measurement of mitochondrial permeability transition pore opening
Calcein AM fluorescent dye (Molecular Probes) at a final concentration of
2 uM was used to determine mitochondrial permeability transition pore
(mPTP) opening. All of procedure in mPTP assay was done according to
manufacturer’s instruction. After the exposure to cisplatin or hypoxia, HMM
cells were harvested and resuspended in pre-warmed Hanks’ balanced salt
solution (HBSS) containing 2 mmol/L Ca*". The cells were loaded with
calcein AM for 15 min at 37°C in the presence of CoCly, protected from the
light. After washing with HBSS, the cell resuspension was analyzed for

calcein fluorescence by flow cytometry. The cells loaded with calcein AM
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in the presence of ionomycin were used as a positive control of mPTP

opening.

Measurement of mitochondrial mass

Mitotracker Deep Red (Molecular Probes) at the final concentration of 200
nM was used to determine mitochondrial mass. After the exposure to
cisplatin or hypoxia, HMM cells were incubated with mitotracker dye at 37°C
for 30 min, protected from light. The stained cells were harvested,

resuspended, and immediately subjected to flow cytometric analysis.

Measurement of cellular oxidative stress

Cellular oxidative stress was assessed by measuring the fluorescent
intensity of ROS with various fluorochromes designed to selectively detect
ROS. HMM cells after cisplatin or hypoxia exposure were incubated with 2
uM of cellular hydrogen peroxide H;O, indicator CM-DCFDA (Molecular
Probes) for 30 min, 2 uM of mitochondrial superoxide O, indicator MitoSox
Red (Molecular Probes) for 15 min, and 5 uM of mitochondrial hydrogen
peroxide Hy0s indicator Mito PY1 (Sigma—Aldrich) for 30 min for 30 min at
37 °C, protected from light. After harvest, the cells were suspended in PBS

and analyzed by flow cytometry to determine changes in ROS levels.

Measurement of mitochondrial DNA damage
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MtDNA damage was measured based on the amplification efficiency for a
large fragment mtDNA relative to a short amplicon of mtDNA where various
types of DNA lesions slow down or block the progression of DNA
polymerase (Mutlu 2012). Total DNA was extracted by using DNeasy Blood
and Tissue Kit (Qiagen) according to manufacturer’s instruction. The DNA
quality and quantity were determined wusing Nanodrop 1000
Spectrophotometer (Nanodrop Technologies). The mitochondrial long
fragment was amplified by using GoTag® Long PCR Master Mix kit
(Promega) according to manufacturer’s instruction. Ten nanograms of
genomic DNA were subjected to long PCR reaction (94°C for 2 min 20 s and
19 cycles of 65°C for 9 min and 72°C for 10 min) using the following primer
sequences: for 8.9 kb mitochondria fragment, 5'-TCT AAG CCT CCT TAT
TCG AGC CGA-3" sense and 5'-TTT CAT CAT GCG GAG ATG TTG GAT
GG-3’ antisense (Mutlu 2012). After gel electrophoresis, quantification of
PCR products was archived with Image J software. To account for the
alteration in mtDNA copy number between samples, long PCR amplification
values were normalized to the geometric mean by combining levels of COXI,
tRNA-Leu (UUA), and short PCR result that is the beginning site of
corresponding 8.9 kb mitochondrial genome. The primer sequences for the
small fragments used in this study were as follows: 5’'~-CCC CAC AAA CCC
CAT TAC TAA ACC CA-3" sense and 5'-TTT CAT CAT GCG GAG ATG
TTG CAT GG-3’ antisense (Mutlu 2012). The mtDNA copy number was

normalized to amplification of nuclear B2-microglobulin fragment using the
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following primer sequences: 5'-TGC TGT CTC CAT GTT TGA TGT ATC
T-3" sense and 5'-TCT CTG CTC CCC ACC TCT AAG T-3  antisense
(Mutlu 2012). The mitochondrial short fragments were amplified by a
quantitative, real-time PCR based on delta delta Ct method (Kim et al. 2018).
Ten nanograms of total genomic DNA were subjected to PCR reaction (95°C
for 10 min, 45 cycles of 95°C for 10 s, 60°C for 15 s, and 72°C for 30 s).
Each PCR reaction contained 10 pl of SYBR Green Mix, 1 ul of each 10 M

primer, and 7 pl of DNA in RNase free water.

Transmission electron microscopy

Transmission electron microscopy (TEM) examination was performed as
previously described (Morris 1965). Briefly, HMM cells were harvested and
fixed by Karnovsky's solution for overnight. After washing with 0.05 M
sodium carcodylate, the cells were post—fixed by 2% osmium tetroxide for
2 h. The cells were subsequently dehydrated in an ascending alcohol series
and finally embedded in Spurr’s resin. After complete ultrathin section by
EM UC-7 Ultramicrotome (Leica Microsystems, Vienna, Austria), HMM
cells were examined by a transmission electron microscope (LIBRA 120,

Carl Zeiss, Jena, Germany).

Western blot analysis

Western blot analysis was performed to HMM cells, as previously described

without modifications (Kim et al. 2018). Briefly, protein samples were
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suspended in sodium dodecyl sulfate loading buffer. After boiling, equal
amounts of the proteins were run on sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and then transferred onto a nitrous membrane by a wet
transfer apparatus. The membranes were probed with primary antibodies
using standard techniques. Antibodies against GAPDH -actin, SOD2, TRXZ2,
PRX3, PINK1, MFNI1, and DRP1 were obtained from Santa Cruz
Biotechnology (Santa Cruz Biotech); antibody against cleaved Caspase-3
from Cell Signaling Technology (Cell Signaling); antibodies against y—-H2AX
and cleaved PARP-1 from Abcam Technology (Abcam); antibody against
LC3 from Novus Biologicals (Novus Biologicals, Littleton, CO, USA). The
B-actin or GAPDH was used for a loading control. The protein bands
were visualized using enhanced chemiluminescence detection reagents
(Advansta) on LAS (Las 4000 mini, GE Health Care, USA). The

densitometric analysis was performed using the Imagel program.

Depletion of mitochondrial DNA

Depletion of mtDNA was performed, as previously described (Hashiguchi
et al. 2009). HMM cells were cultured in the presence of 50 ng/ml EtBr with
50 pg/ml uridine for more than 4 weeks. The mtDNA-depleted HMM cells,
also referred to p” cells, were maintained under EtBr treatment with uridine
throughout the entire experiment. PCR analysis using mtDNA specific
primers verified mtDNA depletion of H513 p” cells, compared to parental

cells. The primer sequences used in this study are listed in Table 1. The
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mtDNA copy number was normalized to amplification of nuclear B2-

microglobulin.
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Table 1. Primer sequences used for measurement of mtDNA copy number

in this study.
Genes Direction Primer sequences (5'->3")
ND1 Forward AACATACCCATGGCCAACCT
Reverse GGCAGGAGTAATCAGAGGTG
ND2 Forward TAAAACTAGGAATAGCCCCC
Reverse TTGAGTAGTAGGAATGCGGT
ND3 Forward CACAACTCAACGGCTACATA
Reverse TTGTAGTCACTCATAGGCCA
ND4 Forward TCTTCTTCGAAACCACACTT
Reverse AAGTACTATTGACCCAGCGA
ND6 Forward TCCGTGCGAGAATAATGATG
Reverse ATAACCTATTCCCCCGAGCA
Cytochrome b Forward AGTCCCACCCTCACACGATTC
Reverse ACTGGTTGTCCTCCGATTCAGG
COXI Forward ACACGAGCATATTTCACCTCCG
Reverse GGATTTTGGCGTAGGTTTGGTC
COXII Forward ATCAAATCAATTGGCCACCAATGGTA
Reverse TTGACCGTAGTATACCCCCGGTC
COXIII Forward ACATCCGTATTACTCGCATC
Reverse AACCACATCTACAAAATGCC
ATPase 6 Forward CTCACCAAAGCCCATAAA
Reverse AGGCGACAGCGATTTCTA
ATPase 8 Forward TGCCCCAACTAAATACTACC
Reverse ATGAATGAAGCGAACAGATT
tRNA-Leu (UUA) Forward CACCCAAGAACAGGGTTTGT
Reverse TGGCCATGGGTATGTTGTTA
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Statistical analysis

All data are presented as the means = SD. The bars in the graphs represent
at least three biological replicates and representative experimental results
were present. P values were calculated by a two—tailed unpaired Student’s
t—test or one—-way ANOVA with Bonferroni post-test correction. Statistical
analyses were done by using Microsoft Excel (Microsoft) and SPSS software
(IBM). The results were considered to be statistically significant when P

value was less than 0.05: * P < 0.05 and ** P < 0.01.
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Results
Hypoxia induces drug resistance through apoptosis inhibition after cisplatin
treatment in HMM cells

Hypoxia significantly reduced cell viability of HMM cells (Figure 1A). The
viability of HMM cells cultured under hypoxia was significantly less affected
by cisplatin at 10 uM, compared to those cultured under normoxia (Figure
1B). We next investigated whether hypoxia affected the apoptosis in HMM
cells following cisplatin treatment. Apoptosis analysis showed that hypoxia
tended to slightly induce apoptosis, but it did not reach statistical
significance (Figure 2A). Cisplatin showed a significant increase in
apoptosis, and hypoxia significantly inhibited cisplatin—induced apoptosis in
HMM cells (Figure 2A). Parallel measurements of DNA fragmentation also
revealed that hypoxia induced a significant reduction in cisplatin—induced
sub G1 populations that represent the DNA hypoploidy (Figure 2B). The
western blotting analysis also supported that hypoxia protected HMM cells
from apoptosis caused by cisplatin. Hypoxia remarkably inhibited the
cisplatin—induced formation of caspase 3 and proteolytic fragments of its
substrate PARP-1 (Figure 2C). The caspase activation was also confirmed
by the treatment of pan—caspase inhibitor, which appreciably prevented
apoptosis execution in HMM cells following cisplatin treatment (Figure 2D).
Based on these results, it was evident that hypoxia induces drug resistance

through inhibition of cisplatin—induced apoptosis.
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Figure 1. Hypoxia decreases cell viability but reduces the drug sensitivity
to cisplatin in HMM cells. (A) HMM cells exposed to hypoxia show a
significant reduction in the cell viability. (B) HMM cells under hypoxia
significantly decreased the drug sensitivity to cisplatin at 10 uM, compared
to cells under normoxia. *P value < 0.05, #*P value < 0.01, as calculated by

Student’s t—test. Abbreviations: N, normoxia; H, hypoxia; Cis, cisplatin.
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Figure 2. Hypoxia induces apoptosis resistance to cisplatin in HMM cells.
(A) Cisplatin induces apoptosis in HMM cells, but hypoxia significantly
inhibits the apoptotic induction after the cisplatin treatment. Representative
scatter plot for H513 cells is present. (B) Hypoxia reduces the cisplatin—
induced increase in sub G1 populations that represent DNA fragmentation
in HMM cells undergoing apoptosis. (C) Hypoxia inhibits the cisplatin—
induced cleavage of caspase-3 and PARP-1. (D) Treatment of pan—-caspase
inhibitor Z-VAD-FMK (20 uM) significantly blocks the apoptosis induction
in HMM cells. P value was calculated by one-way ANOVA with Bonferroni
post—test. *P value < 0.05, **P value < 0.01. Abbreviations: N, normoxia; H,
hypoxia; Cis, cisplatin. # significant different from control groups without

treatment. #P value < 0.05.
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Hypoxia inhibits cisplatin—induced mitochondrial depolarization and induces
mitochondrial hyperpolarization in HMM cells

We investigated mitochondrial membrane potential (MMP, Awyy) as an
integrated appraisal of mitochondrial function in HMM cells. Cisplatin
dramatically induced mitochondrial depolarization, as manifested by a
decrease of JC—-1 red to green fluorescence ratio in HMM cells (Figure 3A).
In contrast, hypoxia did not induce the collapse of Ayy but exhibited
mitochondrial hyperpolarization. Moreover, when HMM cells were co-
exposed to cisplatin and hypoxia, the mitochondrial hyperpolarization was
further augmented (Figure 3A). These MMP results were not resulted from
an increase in mitochondrial mass. The extent of increase in mitochondrial
mass was the highest in cisplatin—treated HMM cells in normoxia (Figure
3B). Collectively, these results indicated that hypoxia prevents the
disruption of Awyy caused by cisplatin and induces hyperpolarization of

mitochondrial inner membrane.
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Figure 3. Hypoxia induces mitochondrial hyperpolarization while cisplatin
disrupts the membrane potential of mitochondria in HMM cells. (A) Hypoxia
prevents cisplatin—induced mitochondrial depolarization. Hypoxia induces
mitochondrial hyperpolarization. Hypoxia-induced mitochondrial
hyperpolarization is augmented by cisplatin in HMM cells. Representative
JC-1 dot plots for MS1 cells are present. (B) The increase of mitochondrial
mass 1s the highest in cisplatin—-treated HMM cells. Representative
mitotracker histogram for MS1 cells is present. P value was calculated by
one-way ANOVA with Bonferroni post—test. * P value < 0.05, *x P value <
0.01. # significant different from control groups without treatment. # P value

< 0.05. Abbreviations: N, normoxia; H, hypoxia; Cis, cisplatin.
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Hypoxia—induced mitochondrial hyperpolarization is a nonenergetic
phenotype of HMM cells to resist cisplatin-induced apoptosis
Mitochondrial membrane potential is known to reflect energetic
functionality of mitochondria (Wallace 2012). We investigated whether
mitochondrial hyperpolarization is related to ATP production. Semi-
quantification of intracellular ATP, however, showed that Ayy did not reflect
mitochondrial energy production. It was turned out that cisplatin similarly
decreased intracellular ATP amount in HMM cells regardless of oxygenated
conditions (Figure 4A). On the other hand, mitochondrial depolarization was
not due to opening of mitochondrial permeability transition pore (mPTP),
but it appeared to be related to inner membrane integrity of mitochondria
(Mancini et al. 2001). In HMM cells, mPTP remained inactivated following
treatment of hypoxia or cisplatin where hypoxia significantly decreased the
degree of cisplatin-induced mPTP inactivation (Figure 4B). Meanwhile,
mitochondrial hyperpolarization can occur due to either inhibition of
electron transfer chain (ETC) system or severe ETC dysfunction (Huber et
al. 2011, Forkink et al. 2014). In severely damaged cells, F1Fy ATP synthase
is converted into FoF; ATPase, which hydrolyzes ATP and maintains the
Ayy by H' efflux from the mitochondrial matrix into intermembrane space.
The mode of action of ATP synthase was further investigated in cisplatin—
treated hypoxic HMM cells. As a result, co-incubation of JC-1 and
oligomycin was found to further increase the Ayy (Figure 4C), confirming

H" influx into mitochondrial matrix by a forward—-mode of ATP synthase
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activity. Taken together, these results indicate that hypoxia—-induced
mitochondrial hyperpolarization is nonenergetic but associated with
preservation of inner membrane integrity of mitochondria. Moreover, our
results suggest that HMM cells under hypoxia endure cisplatin—induced

mitotoxicity via ETC inhibition.
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Figure 4. Mitochondrial hyperpolarization is unrelated to mitochondrial
energetics, mPTP opening, and reverse mode of action of F;Fo ATP
synthase in HMM cells. (A) HMM cells exposed to either cisplatin or hypoxia
show a significant reduction in intracellular ATP reduction. The degree of

cisplatin—induced ATP reduction is not significantly different in HMM cells
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under normoxia or hypoxia. (B) The mPTP remained inactivated in HMM
cells following cisplatin or hypoxia treatment. Hypoxia attenuates the mPTP
inactivation in cisplatin—treated HMM cells. Representative histograms of
mPTP results for MS1 cells are present. (C) Oligomycin additionally
increases the Ay in cisplatin—treated hypoxic HMM cells, which confirms
the forward mode of F,Fy ATP synthase, not the reversal of ATP synthase.
P value was calculated by one-way ANOVA with Bonferroni post-test. * P
value < 0.05, =* P value < 0.01. # significant different from control groups
without treatment. # P value < 0.05. Abbreviations: N, normoxia; H, hypoxia;

Cis, cisplatin.

119 1] © 11 =1
. -_I 1__]| y |



HMM cells under hypoxia mitigate cisplatin—induced mitochondrial ROS

stress

Mitochondrial respiratory chain is a potential source of ROS (Wallace 2012).

We hypothesized that mitochondrial ETC inhibition by hypoxia contributes
to drug resistance via attenuation of cisplatin—induced oxidative stress in
HMM cells. Cytofluorimetric analysis with DCF signals showed that cisplatin
or hypoxia significantly induced ROS production (Figure 5A). Unexpectedly,
however, hypoxia enhanced the cisplatin—induced oxidative stress in HMM
cells (Figure 5A). Because DCF signals are lacking specificity for the
detection of mitochondria ROS (Chen et al. 2010, Cardoso et al. 2012), we
decided to use mitochondrial-targeted ROS probes. Consistent to our initial
hypothesis, hypoxia was found to significantly mitigate cisplatin—induced
mitochondrial oxidative stress (Figure 5B and 5C). To investigate whether
mitochondrial antioxidant enzymes are involved in the redox homeostasis,
western blot analysis was performed. Hypoxia tended to upregulate the
expression of mitochondrial antioxidant enzymes, including superoxide
dismutase 2 (SOD2), thioredoxin 2 (TRX2), and peroxiredoxin 3 (PRX3)
(Figure 5D), although it did not reach statistical significance. However, the
expression levels of these proteins were not significantly altered between
normoxic and hypoxic HMM cells when treated with cisplatin (Figure 5D).
Collectively, these results indicated that hypoxia blocks cisplatin—induced
mitochondrial oxidative stress in a possibly non—enzymatic manner in HMM

cells.
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Figure 5. Hypoxia mitigates cisplatin-induced mitochondrial oxidative
stress in HMM cells. (A) Cisplatin remarkably increases the ROS levels in
HMM cells. Hypoxia enhances the cisplatin—induced ROS accumulation in
the cytosolic compartment within HMM cells. In contrast, however, hypoxia
significantly inhibits cisplatin-induced accumulation of Oy-~ (B) and H05 (C)

in mitochondrial compartment within HMM cells. (D) Immunoblot analysis of
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mitochondrial redox enzymes. Hypoxia does not upregulate the expression
of mitochondrial antioxidant enzymes in cisplatin—treated HMM cells. P
value was calculated by one—-way ANOVA with Bonferroni post—test. * P
value < 0.05, ** P value < 0.01. Abbreviations: N, normoxia; H, hypoxia; Cis,

cisplatin.
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Hypoxia protects cisplatin—induced oxidative damages to mtDNA in HMM
cells

Mitochondrial oxidative stress results in damages to mitochondrial
components, including mtDNA, lipid, or protein (Lenaz 1998). We next
investigated the mtDNA damages by measuring mtDNA amplification
efficiency in which decreased mtDNA amplification efficiency refers to
presence of oxidative mtDNA damages (Mutlu 2012). Analysis of relative
mtDNA PCR amplification revealed that cisplatin significantly decreased the
mtDNA amplification efficiency in HMM cells, but hypoxia did not affect the
amplification efficiency (Figure 6A). However, HMM cells under hypoxia

significantly prevented the cisplatin—induced reduction in mtDNA

amplification efficiency, compared to those cultured in normoxia (Figure 6A).

Figure 6B showed the changes in mtDNA of HMM cells. Cisplatin
significantly increased mtDNA content in HMM cells, while hypoxia
maintained mtDNA copy number at the basal levels. These results indicated
that hypoxia is beneficial for preservation of mtDNA integrity in cisplatin—

treated HMM cells.
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Figure 6. Hypoxia reduces cisplatin—-induced mtDNA damage in HMM cells.
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normoxia; H, hypoxia; Cis, cisplatin.
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Hypoxia inhibits cisplatin—induced degradation of mitochondrial internal
ultrastructure in HMM cells

We also performed to TEM examination in order to investigate whether
hypoxia is involved in the preservation of mitochondrial structures in HMM
cells. Compared to well-formed cristae of normal mitochondria (Figure 7A),
cisplatin caused vesicular structures of mitochondria with a lucent-swelling
matrix (Figure 7B). Following cisplatin treatment, mitochondria also
contained large electron-lucent space and disorganized few cristae (Figure
7B). Under hypoxia, HMM cells showed almost normal morphologies of
mitochondria (Figure 7C). In combination of cisplatin and hypoxia, HMM
cells revealed hyper—condensed mitochondria characterized by spherical,
bean, or tubular shaped electron—-dense matrix (Figure 7D). Moreover, the
rarefaction of the matrix and degeneration of internal cristae were rarely
observed in cisplatin—treated hypoxic HMM cells. Taken together, these
results indicated that hypoxia protects structural integrity of mitochondria

in HMM cells following cisplatin treatment.
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Figure 7. Hypoxia protects internal ultrastructure of mitochondria against
cisplatin mitotoxicity in HMM cells. (A) Normal mitochondria with well-
formed cristae are present in H513 cells. (B) Abnormal mitochondria with
membrane disruption and degraded internal structures are present in H513
cells after cisplatin treatment. (C) A few small electron—lucent spaces were
observed in hypoxic mitochondria within H513 cells. (D) Mitochondria
display thickening of cristae with spherical, bean, or tubular shaped
electron—dense matrix within H513 cells exposed to cisplatin and hypoxia

together.
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Mitochondrial dynamics is not involved in hypoxia-induced drug resistance
in HMM cells

Mitochondrial dynamics, such as fusion, fission, and mitophagy, has been
reported to involve drug resistance. Autophagic elimination of damaged
mitochondria contributes to prevention of cells from apoptosis
(Jangamreddy et al. 2012). Autophagy induction was investigated by the
expression of the microtubule-associated protein 1 light chain 3 (LC3)-II.
During hypoxia or cisplatin treatment, there was no significant alteration in
the expression of LC3-1I in MS1 cells (Figure 8A). In H513 cells, however,
cisplatin significantly reduced the LC3-II expression, and hypoxia inhibited
the cisplatin-induced downregulation of LC3-II (Figure 8A). Meanwhile, the
expression levels of PINK1 were decreased by cisplatin or hypoxia
treatment (Figure 8B). On the other hand, the expression levels of MFN1
and DRP1 were downregulated by hypoxia or cisplatin treatment (Figure
8C). Hypoxia did not significantly affect the expression of MEN1 and DRP1
in cisplatin—treated HMM cells (Figure 8C). Taken together, these results
indicated that mitochondrial dynamics is unlikely to play a critical role in

hypoxia drug resistance in HMM cells.
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Mitochondrial DNA depletion overcomes hypoxia—induced drug resistance
in HMM cells

Mitochondrial ETC complex is a potential site with regard to ROS
production, Ayy generation, and apoptosis modulation (Kwong et al. 2007).
We hypothesized that mitochondrial ETC complex would be a critical factor
in hypoxia drug resistance in HMM cells. Long—term exposure of low—dose
EtBr to HMM cells significantly depleted large mtDNA regions (Figure 9A).
The p” HMM cells showed a significant reduction in the cell proliferation
(Figure 9B), cell viability (Figure 9C), Awy (Figure 9D), intracellular ATP
(Figure 9E), mitochondrial ROS production (Figure 9F), and mitochondrial
mass (Figure 9G), compared to parental cells. Finally, we investigated the
impact of mtDNA depletion on hypoxia drug resistance in p® HMM cells.
Hypoxia still induced drug resistance in parental HMM cells, but p” cells
failed to develop hypoxia drug resistance (Figure 9H). Moreover, it was
found that hypoxia significantly enhances cisplatin-induced apoptosis in p°
H513 ells. Western blot analysis also supported these phenotype changes.
The expression levels of caspase 3 and PARP-1 proteolytic fragments were
similar between normoxic and hypoxic p° cells following cisplatin treatment
(Figure 91). With cisplatin treatment, on the other hand, hypoxia significantly
decreased the cisplatin—induced upregulation of y—-H2AX, a marker of
nuclear DNA double-strand breaks, in both parental and p® HMM cells

(Figure 9I). Taken together, these results indicate that mtDNA-encoded
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ETC subunits are critical for the development of drug resistance under

hypoxia in HMM cells.
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Figure 9. MtDNA depletion abrogates apoptosis resistance to cisplatin in

hypoxic HMM cells. (A) Establishment of mtDNA-depleted HMM cells.
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Treatment of low concentration of EtBr significantly depletes mtDNA copy
numbers in HMM cells. The mtDNA-depleted MS1 cells rarely proliferate
(B). The H513 cells lacking mtDNA show a significant reduction in cell
viability (C), a Awy (D), intracellular ATP levels (E), mitochondrial ROS
production (F), and mitochondrial mass (G), compared to that of parental
cells. () The mtDNA depletion abrogates hypoxia-induced apoptosis
resistance to cisplatin in HMM cells. While parental HMM cells under
hypoxia shows apoptosis resistance to cisplatin, a considerably greater
increase in apoptosis was found in cisplatin—treated hypoxic p® H513 cells.
In p” MS1 cells, hypoxia does not significantly decrease cisplatin-induced
apoptosis. (I) Western blot analysis. In p’ H513 cells, hypoxia does not
inhibit the cisplatin—induced activation of caspase 3 and PARP-1, compared
to parental cells. Also, it is noteworthy that hypoxia shows a similar degree
of reduction in nuclear DNA damage after cisplatin treatment in parental and
p” H513 cells. P value was calculated by Student’s f~test or one-way
ANOVA with Bonferroni post-test. * P value < 0.05, #* P value < 0.01.

Abbreviations: N, normoxia; H, hypoxia; Cis, cisplatin.
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Hypoxia enhances cisplatin—-induced mitochondrial ROS stress in mtDNA-
depleted HMM cells

We next investigated biochemical alterations of mitochondria that may be
related to the diminishment of the hypoxia—-induced drug resistance in
mtDNA-depleted HMM cells. The p® HMM cells tended to recover the Ayy
following exposure to hypoxia or cisplatin, but it still remained completely
depolarized, compared to Ayy of parental HMM cells (Figure 10A). In p°
HMM cells, intracellular ATP contents continued to decrease by the addition
of cisplatin or hypoxia (Figure 10B). The ATP level was approximately 3%
of that of parental HMM cells when p® HMM cells were treated with cisplatin
and hypoxia together. In contrast to parental HMM cells (Figure 5C), it was
noteworthy that hypoxia did enhance cisplatin—induced mitochondrial
oxidative stress in p° HMM cells (Figure 10C). Taken together, these results
finally confirm that hypoxia is closely related to mitochondrial redox control

involved in hypoxia—-induced drug resistance in HMM cells.
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Intracellular ATP levels continue to reduce in p” HMM cells as an external
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calculated by Student’s #test or one-way ANOVA with Bonferroni post-
test. * P value < 0.05, ** P value < 0.01. Abbreviations: N, normoxia; H,

hypoxia; Cis, cisplatin.
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Discussion

Clinical and biological evidence of tumor hypoxia exists in HMM (Francis
et al. 2015). Previous studies reported that hypoxia promotes the acquisition
of more aggressive behaviors in HMM cells, including drug resistance
(Riganti et al. 2008, Giovannetti et al. 2016, Kim et al. 2018). The present
study was performed to investigate the role of mitochondria in the hypoxia-
induced cisplatin resistance in HMM cells. In the present study, it is
demonstrated that hypoxia mitigates cisplatin—-induced detrimental effects
on mitochondrial integrity in HMM cells. Moreover, mtDNA-encoded ETC
subunits are proved the very core of mitochondria, allowing HMM cells
under hypoxia to induce apoptosis resistance to cisplatin.

Mitochondrial hyperpolarization is commonly found in various types of cells
that show resistance to diverse death stimuli (Zamzami et al. 1995, Liang et
al. 1999, Beltran et al. 2000, Bonnet et al. 2007, Huang et al. 2013). The
hyperpolarized mitochondria are also a phenomenological feature of
cisplatin—resistant cancer cells (Andrews et al. 1992, Zinkewich-Péotti et
al. 1992, Isonishi et al. 2001). Currently, it is not completely understood
whether mitochondrial hyperpolarization has a direct role in cell fate
decision or are indirectly involved. However, mounting evidence favors
pro-survival nature of mitochondrial hyperpolarization. The maintenance of
Ay 1s important to preserve mitochondrial integrity upon hostile conditions,
including hypoxia (Boutilier and St-Pierre 2000, Huang et al. 2013).
Mitochondrial hyperpolarization 1s suggested to protect further
mitochondrial damages in cells (Zamzami et al. 1995). Disruption of Ay is
closely related to the Kkilling of cancer cells, including HMM cells (Hopkins-
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Donaldson et al. 2003, Stewart IV et al. 2007, Kovarova et al. 2014, Lee and
Lee 2016). In the present study, hyperpolarized phase of mitochondria was
not related to severe bioenergetic crisis occurring just before a terminal
stage of cell death (Huber et al. 2011). Based on these results, mitochondrial
hyperpolarization is believed to represent a phenotypic manifestation of
hypoxic HMM cells that evade cisplatin—induced apoptosis. Conflicting data,
however, have been also presented regarding the biological implication of
mitochondrial hyperpolarization in cell survival. Few reports argued that
mitochondrial hyperpolarization is an initial, transient phenomenon
occurring in dying cells (Gergely Jr et al. 2002, lijima et al. 2003). In this
regard, mitochondrial hyperpolarization might not be a unifying protective
mechanism of all types of cells undergoing mitochondrial apoptosis. For
these inconsistent results, cell types and variety of conditions, such as
duration or intensity of death—inducing signals used, might be involved,
which warrants further investigation.

Mitochondrial hyperpolarization appears when mitochondrial respiration is
inhibited (Beltran et al. 2000, Forkink et al. 2014). The inhibition of
mitochondria has been correlated with drug resistance in which reduced
mtROS generation and oxidative damages are suggested to have a role
(Santamaria et al. 2005, Chen et al. 2007, Oliva et al. 2010, Oliva et al. 2011,
Cho et al. 2013, Okamoto et al. 2017). Pharmacologic inhibition of
mitochondrial respiratory chain also experimentally demonstrated the
protective effect of hypoxia against cisplatin-induced apoptosis (Wang et al.
2006). Likewise, reactivation of mitochondria showed increased therapeutic
efficacy of cisplatin in hypoxic lung cancer cells (Shin et al. 2013). Thus,
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based on these results, it is highly likely that inhibition of mitochondria is a
central mechanism of HMM cells under hypoxia to induce drug resistance.
The consequence of mitochondrial inhibition would be related to mitigation
of cisplatin—induced oxidative stress to mitochondria. The results of mtDNA
damage and ultrastructural examination of mitochondria strongly support
this notion. The direct correlation between less presence of oxidative
mtDNA lesions and drug resistance has been proved (Hirama et al. 2006,
Cao et al. 2007). Loss of mitochondrial ultrastructure is interpreted to be a
failure of cell adaptation to mitochondrial oxidative toxicity (Mancini et al.
2001, Li et al. 2005, Graves et al. 2012). The observation that mtDNA
depletion reversed the pattern of cisplatin—induced mtROS generation also
supports the relation between hypoxia and mitochondrial redox control with
regard to drug resistance in HMM cells. Meanwhile, a published study
argued that hypoxia enhances cisplatin—-induced apoptosis in renal
collecting cells (Schwerdt et al. 2005). Mitochondria from different cell
types and experimental conditions might be responsible for the contrary
response to hypoxia.

Considering high stability and membrane permeability of HsO,, redox
compartmentalization observed in this study is noteworthy. Our finding is
quite similar to that of previous study in that mitochondrial ROS starts to
excessively accumulate in cytosol following mitochondrial hyperpolarization
(Zorov et al. 2006). Although underlying mechanisms have not been
elucidated in detail, hypoxia and mitochondria might be involved in active
redistribution of intracellular ROS between organelles. Growing body of
evidence has shown that hypoxia facilitates the shift of mitochondrial ROS
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release from mitochondrial matrix toward intermembrane space and cytosol
in tumor cells (Muller et al. 2004, Guzy et al. 2006). Moreover, there is
evidence that hyperpolarized mitochondria at least in part participate in
non-enzymatic O+ dismutation and efflux of the expedited H2O into the
cytosol (Zorov et al. 2006, Afanas' ev 2012, Cardoso et al. 2012, Policastro
et al. 2013). In the present study, extramitochondrial ROS alone did not
explain cisplatin—induced apoptosis in hypoxic HMM cells. Conceivably, it
is plausible that redox status of mitochondria is bona fide the most critical
for apoptosis determination. Indeed, cytosol and nuclear compartments are
better durable to oxidative stress than mitochondria (Kaludercic et al. 2014).
On the other hand, our notion is also supported by the fact that either
formation of nuclear DNA adduct alone cannot solely explain the execution
of apoptosis after cisplatin treatment (Wohlkoenig et al. 2011). For the ROS
burst in the cytosol, there might be a noncytotoxic role of ROS at least in
our experimental conditions. A study suggested that elevated Ay triggers
signaling transduction that modulates drug sensitivity in cisplatin—resistant
cancer cells (Andrews and Albright 1992). Another study also demonstrated
that hypoxia augments H>0O5 signaling in the cytosol while reducing oxidative
stress in the mitochondria (Waypa et al. 2010). Indeed, H;O, can be non-
apoptotic, contrary to Oy~ (Sawada et al. 2001, Devadas et al. 2002, Afanas'
ev 2009). Thus, it might be possible that cytosolic ROS acts as a signaling
molecule. Redox processes, such as modification of protein kinases or
phosphatases of enzymatic cascades (Rhee 2006) or mitochondrial

retrograde signaling pathway (Liu et al. 2006), might be involved in
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hypoxia—mediated drug resistance in HMM cells. Further insight into this
aspect is left to future work.

The mtDNA depletion was performed to verify the role of mitochondria.
The EtBr treatment successfully depleted mtDNA in HMM cells, followed
by mitochondrial defects, which were consistent to previous studies using
HMM cell lines (Tomasetti et al. 2014, Lim et al. 2015). In the present study,
the sensitivity of HMM cells to cisplatin remained unaffected by mtDNA
depletion. Consistent to our results, a study reported no alteration Iin
cisplatin sensitivity between parental and mtDNA-depleted HMM cells (Lim
et al. 2015). The sensitivity to drugs, including cisplatin, in mtDNA-depleted
tumor cells, can be highly variable depending on different cell origins,
conditions, and compensatory mechanisms, and the specific reason 1is
unclear (Cavalli et al. 1997, YEN et al. 2005, Yang et al. 2006).

Data presented in this study confirms the requirement of all ETC subunits
for hypoxia—induced drug resistance in HMM cells. Previous studies favor
this finding. Mammalian p° cells with defective OXPHOS system cannot cope
with hypoxic conditions (Brunelle et al. 2005). Intact mitochondria are
required for hypoxia-induced cisplatin resistance in kidney cells (Schwerdt
et al. 2005). At present, no study satisfactorily explains our finding, but
remodeled ETC complexes have the possibility of the loss of mitochondrial
ability to induce drug resistance in hypoxic conditions (Oliva et al. 2010,
Oliva et al. 2011). For example, chronic inhibition of complex I and sustained
low activity of other complexes underlie mitocondrial inhibition (Forkink et
al. 2014). The complex [ is particularly critical for adaptation to hypoxia
(Calabrese et al. 2013). Likewise, cellular oxygen sensing and hypoxic
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adaptation requires complex III (Guzy et al. 2005, Guzy and Schumacker
2006). Analysis of a single mtDNA mutation further strenghens the
importance of the presence of the respiratory chain subunits. The mutation
of mitochondrial NADH dehydrogenase (ND) 6 gene resulted in abnormality
in complex I activity and assembly, which leads to a defective response of
glioma cells to hypoxia (DeHaan et al. 2004). The complex I defect arising
from non—assembled ND1 subunit was demonstrated to impair apoptosis
resistance (Stiburek et al. 2012). The mutation of cytochrome b gene has
potential to cause a combined deficiency of complex I and III (Lamantea et
al. 2002). Mitochondrial ATP6 and ATP8 subunits are key constituents for
complex V whose repression is involved in apoptosis resistance in human
carcinomas (Santamaria et al. 2005). The mutation in mitochondrial ATP6
or ATPS8 gene results in mtROS generation due to impairments of Fo part of
ATP synthase (Baracca et al. 2007). Either generation of trans-
mitochondrial cybrid, characterized by the fusion of a p° cell line with
enucleated cells that contain mitochondria with an interest of mtDNA
mutation, or mitochondrial genome editing appears to be promising to
scrutinize the role of a mtDNA-encoded subunit (Taylor et al. 2005, Jo et
al. 2015). On the other hand, it cannot be excluded that rRNAs or tRNAs
encoded by mtDNA produced generalized mitochondrial respiratory chain
deficiency.

In the present study, mitochondria do not appear to be actively involved in
compensatory energy production under severe hypoxia, as previously
described (Schwerdt et al. 2005). Published studies have shown that
hyperpolarized mitochondria are energetically nonfunctional (Hirama et al.
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2006, Marrache et al. 2014). Moreover, Ayy and ATP can change
independently (Beltran et al. 2000, Poppe et al. 2001, Wang et al. 2006).
ATP-independent processes, such as substrate availability, ionic
homeostasis, protein import, or membrane topology, might be potentially
related to mitochondrial inhibition underlying hypoxia—induced drug
resistance in HMM cells (Hunter Jr et al. 1956, Young 1973, Skulachev

1988). Of interest, ATP was not a limiting factor or significant consideration
for apoptosis despite severe ATP depletion predicted in p® HMM cells
encountered during cisplatin and hypoxia treatment. A minimum level of
ATP enough to execute apoptosis in HMM cells seemed to be maintained in
our experimental condition.

The biological implication of mPTP inactivation is unclear in this study.
According to Fennell ef al, the closure of mPTP pore might be a result
resulting from disruption of core apoptosis machinery in HMM (Fennell and
Rudd 2004). The increase of mitochondrial mass and mtDNA contents
following external stimulus is interpreted to be a mitochondrial adaptive
response. A previous study reported that during apoptosis proliferation of
hypofunctional mitochondria appears in a redox—-dependent manner
(Mancini et al. 2001). Our preliminary data alluded that mitochondrial
dynamics less likely plays a role in hypoxia—-induced drug resistance.
However, morphology study of mitochondria using fluorescence confocal
microscopy is additionally needed to consolidate our conclusion.

Clinically relevant concentration of cisplatin is found to target only
mitochondria in head and neck cancer (Cullen et al. 2007). Apoptosis still
occurs even in enucleated cells during cisplatin treatment (Fuertes et al.
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2003). Moreover, there is a large body of data documenting that
mitochondrial targeting breaks through hypoxia-mediated problem of
apoptosis resistance in multiple cancer types (Xu et al. 2005, Kumar et al.
2013, Kulikov et al. 2014, Mitani et al. 2014, Xuan et al. 2014). Currently,
there is no study to focus on mtDNA depletion aimed at examining the
importance of mitochondria in hypoxia and drug resistance. Generation of
oY cell lines has been reported in multiple types of cancer. Thus, our
experimental approach is novel, and data will be valuable to provide
convincing evidence for the therapeutic potential of mtDNA targeting to
overcome drug resistance arising from tumor hypoxia. Mutational study of
mtDNA gene will be useful to identify specific function and mode of action
of mitochondrially encoded subunits as well as their actual contribution to
hypoxia-induced drug resistance. Finally, results presented in this study
will contribute to the understanding of molecular mechanisms for cell or
organism adaptive response to anaerobic stress encountered during normal

and pathophysiological conditions.
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GENERAL CONCLUSION

Contrary to normal cells, cancer cells survive in hostile tumor
microenvironments characterized by high oxidative stress and O
deprivation (Cerutti 1985, Vaupel et al. 1989). The adaptation to hostile
conditions plays an important role in cancer progression. In the present
study, tumor hypoxia and oxidative stress are demonstrated to be a critical
part of cancer progression in HMM. Moreover, mitochondria are the key
component responsible for hypoxia—-induced drug resistance in HMM cells.
Thus, a control measure of oxidative status and hypoxia will be valuable to
establish an effective therapeutic strategy to reduce the aggressiveness of
HMM. The present study next highlights that mtDNA can be an ideal
prospect for therapeutic intervention in advanced cancer. Finally, our data
will be precious to understand molecular mechanisms for cell or organism
adaptive response to anaerobic stress encountered during normal and

pathophysiological conditions.

Chapter 1.

1) Hy0,-induced oxidative stress induces EMT and acquires stemness in

HMM cells.

2) H.Os-induced oxidative stress upregulates EMT-related signaling

molecules HIF-1a and TGF-£1 in HMM cells.

3) HIF-1la and TGF-B1 is an upstream regulator of EMT-related
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molecules, including E-cadherin, vimentin, SLUG, and TWIST1, in

H-O,-treated HMM cells.

4) TWIST1 represents ROS—-mediated EMT and cancer progression in

HMM in vivo.

5) Oxidative stress enhances stemness through upregulation of OCT4,

SOX2, and NANOG genes in HMM cells.

Chapter II.

1) Hypoxia is a critical factor in the acquisition of more aggressive
behaviors of HMM cells, including in vitro clonogenicity, migration,

invasion, anti—apoptosis, and drug resistance.

2) HIF-2a enhances OCT4-induced stemness in HMM cells under

hypoxia.

3) HMM cells under hypoxia enhance motility and invasiveness through

HIF-1/2a and EMT activation.

4) Anti—apoptotic Bcl-2 plays an important role in hypoxia—induced drug

resistance in HMM cells.

5) It is unlikely that HIF-1a and HIF-2a have a critical role in hypoxia-

induced drug resistance in HMM cells.

Chapter III.

1) Hypoxia induces drug resistance through apoptosis resistance to
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cisplatin in HMM cells.

2) Hypoxia is critical for the protection of mitochondrial integrity
regarding Awyy, redox status, mtDNA, and ultrastructure, against

cisplatin cytotoxicity in HMM cells.

3) Mitochondrial inhibition sustained by respiratory complex activities is
believed to be a central mechanism that allows HMM cells under

hypoxia to induce drug resistance.

4) Redox compartmentalization may be a strategy of HMM cells under

hypoxia to evade cisplatin—induced apoptosis.

5) Targeting of mtDNA has the potential to overcome hypoxia—induced

drug resistance in HMM cells.

Limitations and future directions

A potential limitation of this study is the establishment of hypoxia, because
the setting of hypoxia in a cell culture incubator does not perfectly reflect
in vivo physiological situations, including intermittent hypoxia or
reoxygenation (Wenger et al. 2015). Another limitation of our study is that
underlying mechanisms have not been addressed in detail. For example, it
should be answered how mitochondria govern protein signaling network that
elicits the protection schemes of HMM cells in hypoxic conditions against

cisplatin cytotoxicity. Additional investigations might be also required to

145 :'_:‘l _'\-\.:_'I-!



study whether parameters for mitochondrial function are involved
independently or in association with each other. Validation of our findings
using both i vitro and in vivo different types of cancer models will draw
more consolidate and general conclusion. Introduction of future
technologies designed to precisely delete specific mtDNA region will
identify distinct subsets of ETC subunits that play a key role in hypoxia—
induced drug resistance. This will substitute the method of chemically—
induced large mtDNA depletion, which opens an avenue for experimental
manipulation of mitogenome in various normal and pathophysiological

conditions.
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