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ABSTRACT

Pharmacokinetics and pharmacodynamics of novel nanoformulations
for the proteasome inhibitor drug carfilzomib:

Expanding its therapeutic utility against solid cancers

1k=]-- (Ji Eun Park)
oFs}tu)| &} oFs}ty} oF#)| 28} (Pharmaceutics, College of Pharmacy)

The Graduate School

Seoul National University

Over two decades ago, the proteasome was considered a risky or even untenable therapeutic target.
Today proteasome inhibitors (PIs) are a mainstay in the treatment of multiple myeloma (MM) and have
sales in excess of three billion US dollars annually. More importantly, the availability of PIs has greatly
improved the survival and quality of life for patients with MM. Carfilzomib (CFZ) is the second-in-
class PI with much improved efficacy and safety profiles over bortezomib, the first-in-class PI, for MM
therapy. Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid
cancers yielded rather disappointing results with minimal clinical benefits. The potential for
improvement remains and the development and optimal use of PIs for solid cancer therapy continues to
be an active area of research. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites
is considered to be major factors limiting its efficacy against solid cancers. To expand the utility of CFZ
to solid cancer therapy, the aim was to overcome the pharmaceutical limitations of CFZ, and current
findings may provide important insights in the development of next-generation Pls. As one of
approaches to improve the pharmacokinetic profiles of CFZ, a novel polymer micelle-based formulation
of CFZ was developed. In the previous report, polymer micelles (PMs) composed of biodegradable
block copolymers poly(ethylene glycol)-poly(caprolactone) (PEG-PCL) were shown to improve the
metabolic stability of CFZ in vitro. In Chapter 1, in vivo anticancer efficacy and pharmacokinetic
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profiles were assessed using CFZ-loaded PM composed of PEG-PCL-deoxycholic acid (CFZ-PM).
Despite in vitro metabolic protection of CFZ, CFZ-PM displayed in vivo anticancer efficacy in mice
bearing human lung cancer xenograft (H460) comparable to that of the clinically used cyclodextrin-
based CFZ (CFZ-CD) formulation. The plasma pharmacokinetic profiles of CFZ-PM were also
comparable to those of CFZ-CD. The residual tumors that persisted in xenograft mice receiving CFZ-
PM displayed an incomplete proteasome inhibition. In summary, these results showed that despite its
favorable in vitro performances, CFZ-PM formulation did not improve in vivo anticancer efficacy and
accessibility of active CFZ to solid cancer tissues over CFZ-CD. Thus, it seems to be necessary to
consider potential confounding factors in translating in vitro results to in vivo settings and to develop
another type of nanoformulation with an enhanced in vivo stability. In Chapter I1, it was investigated
whether a nanocrystal (NC) formulation enhances in vivo stability and anticancer efficacy of CFZ
against breast cancer. The surface of NC was coated with albumin in order to enhance the formulation
stability and drug delivery to tumors via interactions with albumin-binding proteins located in and near
cancer cells. The novel albumin-coated NC formulation of CFZ (CFZ-alb NC) displayed improved
metabolic stability and enhanced cellular interactions, uptake, and cytotoxic effects in breast cancer
cells in vitro. CFZ-alb NC also showed greater anticancer efficacy in a murine 4T1 orthotopic breast
cancer model than CFZ-CD. Overall, these results demonstrated the potential of CFZ-alb NC as a viable
formulation for breast cancer therapy. These studies may provide valuable insights into the future efforts
to validate the potential of CFZ-based therapy for breast cancer and to develop effective CFZ delivery

strategies that can be used to treat solid cancers.

Keywords; proteasome inhibitor carfilzomib, nanoformulation, polymer micelle, nanocrystal, albumin,

solid cancers

Student Number; 2016-30511
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INTRODUCTION

The review of next-generation proteasome inhibitors

for cancer research

*This chapter (section 1 to 4.3.) includes the introductory sections that were published as
a review article ‘Next-generation proteasome inhibitors for cancer research’ in
Translational Research (Volume 198, pages 1-16, August 2018) and the newly added
section 4.4. that is focused on novel formulations and delivery systems for proteasome

inhibitor drugs, pertinent to the current thesis work.



1. Proteasomes

The proteasome is a large multi-protease complex and is responsible for the controlled degradation of
more than 80% of cellular proteins [1]. As such, the proteasome plays a key role in maintaining cellular
protein homeostasis and regulates numerous biological processes, such as cell survival, DNA repair,
apoptosis, signal transduction, and antigen presentation. Structurally, the 20S mammalian proteasome
consists of a cylinder made of four stacked rings: two identical outer a-rings and two identical inner -
rings, each containing seven distinct but related subunits (Figure 1). In mammalian proteasomes, each
B-ring harbors three catalytic B-subunits (B1, B2 and B5) which display different substrate preferences,
referred to as caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (CT-L) activities,
respectively [2]. The active sites of these catalytic subunits face inward, accepting peptide substrates
from the proteasome’s hollow inner chamber. By controlling which proteins enter its inner chamber,
the proteasome is able to degrade proteins in a highly-regulated fashion [3]. Proteins targeted for
proteasome-mediated degradation are typically tagged by the covalent attachment of polyubiquitin
chains (“ubiquitination”) before being recognized and degraded by the proteasome complex. The
concerted action of ubiquitination by a series of enzymes and proteolysis by the proteasome complex
is collectively known as the ubiquitin-proteasome system (UPS). Over the past three decades, the UPS
has been extensively explored as a target for drug discovery [4, 5], culminating in the remarkable
clinical success of proteasome inhibitor (PI) drugs in the treatment of hematological malignancies
including multiple myeloma (MM). Although a great amount of effort has been made to develop agents
which target other UPS components such as ubiquitin ligases and deubiquitinases, to date only the
proteasome has been successfully exploited as a therapeutic target to treat human disease.

Following the clinical success of proteasome-targeted therapies for cancer treatment, much
effort has been made to address the limitations associated with existing PI drugs. Like almost all cancer
therapeutics, cancer resistance, either acquired or de novo, is a major hurdle for PI drugs. So far, various
resistance mechanisms have been reported for PI drugs in preclinical and clinical settings [6, 7] but
remain unsettled. In recent years, there have been increasing attempts to design novel Pls that can

overcome resistance or bypass cross-resistance to existing PI drugs [8]. In addition, PI drugs have
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Figure 1. The structure and function of 26S proteasome in the ubiquitin-proteasome system (UPS).
Proteins targeted for proteasome-mediated degradation are typically tagged by the covalent attachment
of polyubiquitin chains of at least 4 ubiquitin (Ub) moieties (“ubiquitination”). This ubiquitination is
carried out by the concerted action of three distinct enzymes, E1 (Ub activation), E2 (Ub conjugation),
and E3 (Ub ligation). Subsequently, ubiquitinated proteins are recognized, unfolded and de-
ubiquitinated by the lid of 26S proteasome (19S regulatory particles composed of ATPase and non-
ATPase subunits). The proteolysis takes place at the inner chamber inside the 20S core, generating short
peptide fragments of typically 2 to 24 amino acid residues. The 20S core consists of two outer a rings
and two inner 3 rings, each containing seven distinct subunits. Each B ring harbors three catalytic -
subunits (B1, B2 and B5) which display different substrate preferences and their activities are commonly
referred to as caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (CT-L) activities,
respectively. Among the three catalytic f-subunits, 5 subunit is the major target of current proteasome
inhibitor drugs via their interactions with the catalytic threonine (Thr) residue.

shown exquisite efficacy in treating MM and other hematological malignancies, but not solid cancers

[9]. The lack of therapeutic efficacy of PI drugs against solid cancers has often been attributed in part
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to their poor pharmacokinetic (PK) profiles including their short circulation time and insufficient
distribution to proteasome targets located in solid tumor tissues [10]. Moreover, our understanding
remains limited on how the kinetics (both the magnitude and duration) and mode of proteasome
inhibition can impact the pharmacodynamic (PD, such as efficacy and safety) profiles of PI drugs.
Moving forward, an enhanced the understanding of the PKs and PDs of PI drugs and of the relationship
between them is needed. Here, we provide a brief overview of three clinically used PI drugs for cancer
therapy focusing on PK/PD considerations and also summarize current efforts to develop next-

generation PI drugs and to improve the current PI therapy via novel drug delivery systems.

2. Proteasome inhibitor drugs in clinical use for cancer therapy

Currently, three PIs are in clinical use, bortezomib (BTZ, Velcade®, the first-in-class PI drug with US
FDA approval in 2003), carfilzomib (CFZ, Kyprolis®, the second-in-class PI drug with US FDA
approval in 2012) and ixazomib (IXZ, Ninlaro®, the first oral PI drug with US FDA approval in 2015)
(Figure 2). Although these PI drugs have brought tremendous improvements to the treatment of MM,
earlier efforts to develop therapeutics targeting the proteasome had received considerable skepticism.
This skepticism was not unreasonable, given the fundamental roles and abundant presence of the
proteasome in all types of cells. Despite such skepticism, early preclinical results in models of human
cancer were very promising, especially for MM and other hematological malignancies [11, 12].
Propelled by exemplary academic-industrial partnerships, BTZ was successfully developed as the first-
in-class PI drug with record efficiency in drug development and became a blockbuster drug in cancer
therapy [13]. The clinical success of BTZ has prompted the development of CFZ and IXZ soon after.

Below is a brief account of discovery and development efforts of these clinically used PI drugs.

UAJW{%OH Oy é¢§\®§2 @*wv :H

Bortezomib (PS-341, Velcade®) Carfilzomib (PR-171, Kyprolis®) Ixazomib (MLN9708, Ninlaro®)

Figure 2. Structures of proteasome inhibitors in clinical use.



2.1. Bortezomib (BTZ, PS-341, Velcade®): Rise of proteasome inhibitors as an anticancer agent

The earliest efforts to identify specific PIs began in the late 1980°s [14, 15]. These early inhibitors were
used to probe the function of the proteasome itself and to examine its biological role within the cell.
The path towards Pls as therapeutic agents began with research into the role of the UPS in muscle
wasting. Goldberg et al. proposed that upregulation of the UPS could explain the muscle wasting
phenomenon observed in conditions such as sepsis, cancer, and burn injuries [16]. They further
suggested that muscle wasting could be treated with Pls by suppressing excessive proteolysis of muscle
proteins. In subsequent efforts, a highly potent PI, PS-341, now known as BTZ, was identified [17].
Pre-clinical studies soon revealed that BTZ is highly effective against various types of cancers [12, 18].
Structurally, BTZ is a dipeptide boronic acid that forms a coordinate covalent bond with the
catalytic threonine residue of the proteasome’s B5 and 1 subunits [19]. As a result, BTZ displays a
potent inhibitory effect on the CT-L activity and to a lesser extent on the C-L activity of the 20S
proteasome [20] (Table 1). In addition to its high affinity binding to the proteasome, BTZ also
demonstrated nanomolar cytotoxic potencies against a variety of cancer cell lines, in particular, those
derived from MM [12, 21]. These in vitro findings also translated into promising in vivo efficacies in
mouse xenograft models of both hematological and non-hematological malignancies [12, 18, 22].
Prompted by strong preclinical data, several early phase clinical trials had investigated BTZ
for its safety and tolerability in over 200 cancer patients by late 2001 [23]. BTZ was relatively well
tolerated with adverse events consisting of low-grade fever, fatigue, thrombocytopenia, and in some
patients, peripheral neuropathy. BTZ soon received US FDA fast-track approval for the treatment of
relapsed and refractory MM in 2003, based on the outstanding efficacy results from the phase Il open-
label SUMMIT trial [24]. BTZ’s clinical efficacy was further proven in combination with other
therapeutic agents, leading to a full US FDA approval in 2005 as a second-line MM therapy [25] and
in 2008 as a first-line therapy for patients with newly diagnosed MM [26]. BTZ also received approval
for use in patients with previously-treated mantle cell lymphoma from the US FDA in 2014 and from
the European Medicines Agency in 2012 [27]. Today BTZ is commonly used as a first-line agent in

combination with other anti-myeloma agents, for example, immunomodulatory agents such as



Table 1. Proteasome inhibitors in clinical use: Their interactions with the proteasome target

Drug name  Pharmacophore Binding mode ICso (nM)
CT-L C-L T-L
Bortezomib boronic acid reversible 2~3! 14.5 ~ 40" 1200'
7.9° 53 590°
Carfilzomib epoxyketone irreversible 51~57 2,400* 3,600*
Ixazomib boronic acid reversible 5° 40° > 10,000
2.8~4.1' 31 3500'

! Calu-6 cells were treated with PIs for 1 hr. Proteasome-Glo assay [28]

2 Purified human erythrocyte 20S proteasomes [29]

3 Purified human 20S proteasomes [30]

4 Purified human 20S proteasomes [31]

5 MM. 18 cells were treated with ixazomib for 3 h and harvested. Cell extracts were then analyzed for CT-L
(Chymotrypsin-like), C-L (Caspase-like), and T-L (Trypsin-like) activity assay [32]

thalidomide or lenalidomide, cytotoxic drugs like melphalan, and glucocorticoids such as
dexamethasone or prednisone. BTZ has also served as a proof-of-concept paving the way for two
additional US FDA-approved PI drugs. While a number of clinical trials have investigated the
possibility of extending the therapeutic effects of BTZ beyond MM, the results so far have been
disappointing [10, 33].

BTZ is currently formulated for intravenous or subcutaneous injections (as a lyophilized
powder with mannitol). An earlier study explored the possibility of oral administration [18], but this
approach was not further pursued due to low bioavailability (~11% in mice [34]). BTZ was shown to
have rapid and wide biodistribution profiles in preclinical studies [12]. Interestingly, a recent
publication reported that the biodistribution of BTZ in various tissues is impacted by the tissue density
of the proteasome which BTZ tightly and reversibly binds to [35]. This study further demonstrated that
saturation of proteasome binding sites at high doses of BTZ can contribute to non-dose-proportional
PK behaviors of BTZ. Similar to these preclinical findings, the results from a phase I clinical trial also
indicated that BTZ displays a large volume of distribution (> 400 L) in patients with solid cancers [36].
Subsequent clinical trials reported similar findings on the PK profiles of BTZ (detailed reviews

available [37], Table 2). When the metabolism of BTZ was investigated using human liver microsomes,

BTZ was converted to pharmacologically inactive metabolites primarily via oxidative deboronation,



mediated by multiple cytochrome P450 enzymes (CYPs) with their relative contribution in the
following order, CYP3A4, CYP2C19, CYP2D6, CYP1A2 and CYP2C9 [38, 39]. Consistent with these
results, the systemic exposure of BTZ was increased and decreased with co-administration of
ketoconazole (a CYP3A4 inhibitor) and rifampicin (a potent CYP3A4 inducer), respectively [40, 41].
On the other hand, co-administration of omeprazole (a CYP2C19 inhibitor) had only a minimal impact
on the PK profiles of BTZ in patients with advanced solid cancers [42]. Given the importance of hepatic
metabolism in the elimination of BTZ, patients with hepatic dysfunction may require dose adjustment,
but no guideline or recommendation is available yet. In preclinical studies, the majority of the radio-
labeled BTZ was excreted into bile duct (~66%) with the remainder excreted into the urine [12]. In a
clinical study, patients with renal impairment responded to BTZ therapy similar to those with normal
renal function [43].

Being the first-in-class PI drug, BTZ also became the first to be explored for the relationship
between proteasomal inhibition (both the magnitude and duration) and anticancer efficacy in vivo.
When the PK/PD profiles were compared in mouse xenograft models which responded differently to
BTZ, the results indicated that both drug penetration and proteasome inhibition were much attenuated
in mice carrying poorly perfused xenograft tumors which did not respond to BTZ treatment [44]. These
findings were applied to the development of next-generation PI drugs as well as novel drug delivery
systems. For example, in order to modulate the magnitude and duration of proteasome inhibition by
BTZ, several groups investigated the potential utility of nanoformulations including the design of
prodrugs or bone-targeting moieties [45-47]. However, the results from these efforts have yet to be
translated into clinical application.

Despite the remarkable clinical success achieved by BTZ, several limitations have emerged.
Like many other cancer therapies, a subset of patients responds to BTZ therapy while others do not.
Even those who initially respond to BTZ therapy almost inevitably develop resistance over time [48].
The median duration of clinical response was typically about 12 months [49, 50]. The mechanisms
underlying cancer resistance to BTZ have been actively investigated, yielding various potential
strategies to overcome resistance including the development of PI drugs based on novel structural

scaffolds [51]. In addition to drug resistance, BTZ therapy is associated with the severe adverse effect



of peripheral neuropathy, which was later attributed to its off-target interactions with a serine protease
(HtrA2/0Omi) involved in neuronal survival [52, 53]. This dose-limiting toxicity of BTZ was
substantially alleviated by administering the drug via subcutaneous injection [54] or by implementing
once-weekly dosing [55, 56]. These issues prompted the development of next-generation PIs with more
favorable safety profiles and fewer off-target interactions.

2.2. Carfilzomib (CFZ, PR-171, Kyprolis®): Novel mode of proteasome inhibition

The second-in-class PI drug CFZ (Kyprolis®, developed by Proteolix/Onyx Pharmaceuticals and now
available through Amgen) received its fast-track US FDA approval in 2012, based on its efficacy and
safety results in patients with relapsed and refractory MM [57]. The development of CFZ was initiated
by the identification of the proteasome as the major target of the natural product epoxomicin [58]. The
design and synthesis of a biotinylated chemical probe led to the discovery that the epoxyketone group
of epoxomicin covalently binds to the proteasome with an exceptional selectivity over other types of
proteases. Subsequent efforts were made to build a library of epoxomicin analogs and identified a lead
candidate, YU-101, based on their potent anticancer activities [59, 60]. Later, YU-101 was further
modified to yield CFZ which displayed very promising preclinical results [31].

Structurally, CFZ is a tetrapeptide harboring an epoxyketone as its pharmacophore and it forms
an irreversible, covalent bond with proteasome catalytic subunits, predominantly B5 (Table 1). The
exquisite selectivity of CFZ toward the proteasome is achieved by the formation of two covalent bonds,
one with the catalytic Thr1O" nucleophile and a second with the adjacent Thr1N amino group. Based
on high-resolution co-crystal structures between the proteasome and various epoxyketone-based
inhibitors, the formation of a 1, 4-oxazepano adduct has been identified between the epoxyketone of
these inhibitors and the catalytic threonine residue within the B5 active site [61, 62]. Due to this
proteasome-selective mechanism of action, CFZ has afforded much improved safety profiles.
Additionally, the irreversible nature of the interaction between CFZ and the proteasome allows it to
achieve sustained and durable proteasome inhibition, which may contribute to its efficacy even in the
presence of resistance to BTZ [63]. Of note, the irreversible modification of the proteasome target by
CFZ or other peptide epoxyketones have also been exploited to develop activity-based probes (ABPs)

that allow for covalent labeling of functional proteasomes or profiling of proteasome activity under



Table 2. Clinically used dosing regimens and pharmacokinetic (PK) parameters reported for FDA-approved proteasome inhibitor drugs.

Current clinical

Tested dosing regimens and reported PK parameters

Drug name . . Ref.
dosing regimens Tested dosing regimens PK parameters Notable characteristics
Bortezomib 1.3 mg/m? IV on 1.45 mg/m?, IV (C1D1) CL, 75.3 (51.2) L/h; Vs, 416 (158) L; t12, 8.68 (4.16)  Phase I trials in patients with [36]
(Velcade®, days1,4,8 & 11 of h advanced solid cancers; dose-
PS-341) 21-day cycles 1.6 — 2.0 mg/m?, IV (C1D1) CL, 63.7-112 (29.8-126) L/h; Vs, 696-979 (357-473)  proportionality in PK parameters not
L; tiz, 10.4-14.8 (4.96-10.4) h established
1.3 mg/m?, IV. single dose: CL, 111.6 (73.6) L/h; Vss, 1540 (2730) L;  Upon repeated dosing, CL decreased  [64]
single dose (C1D1) vs. tin, 11.5(12.7) h while the systemic exposure and ti2
multiple doses (C1D11, C1D3, multiple doses: CL, 18.2-28.0 (9.2-19.8) L/h; Vs;, increased.
& C3D11) 1613-2213 (1125-2730) L; ti2, 75.6-108.6 (34.6-64.8)
h
1.0 mg/m? IV (C1D11) vs. SC: Cmax, 20.4 (8.87) ng/mL; Tmax, 30 (5-60) min; Phase III study in patients with [54,
2.5 mg/m? SC (C1D11) AUClast, 155 (56.8) ng-h/mL RRMM. Equivalent systemic 65]
1V: Ciax, 223 (101) ng/mL; Tmax, 2 (2-5) min; AUCrs;, exposure between SC and IV groups.
151 (42.9) ngd-h/mL
Carfilzomib 20 mg/m?on days 1 20 mg/m?, IV (C1D1) CL, 659 (353) L/h; Vss, 108 (71) L; ti2, 0.66(0.48) h  Phase I trial in patients with RRMM.  [66]
® e
g,lgll’;"ll)ls ’ f‘s ilgsglgaztgd’ 20 mg/m’, 2-10 min IV DI: CL, 146 (22) L/h CL exceeded hepatic blood flow. 671
mg/m? (IV infusion, infusionon D1, 2, 8,9, 15 & DIi6: CL, 136 (53) L/h
2-10 min) or 56 6 S , , —
mg/m? (IV infusion, 2-10 manIV infusion. 20 mg/m” (D1): CL, 263 (398) L/h; Vs, 27.7 (48.6) L;  Phase /I tngls in patients with [68]
30 min) on day 8 of 20 mg/m*on D1 & 2 > 27 and  ti2, 0.44(0.15-2.20) h advanced solid cancers.
cycle 1; followed by 36 mg/m?on D8, 9, 15 & 16 20 mg/m’ (D16): CL, 136 (52.8) L/h; Vs, 7.75 (3.77) Rapid systemic CL, large Vss and
tolerated dose on L; tin, 1.10(1.00-1.13) h very short elimination half-lives.
days 9, 15 & 16 of a 27 mg/m? (D16): CL, 150 (30.9) L/h; Vss, 11.1 (4.45)
28-day cycle and L; tin, 0.35 (0.26-0.92) h
next cycles 30 min IV infusion. 20 mg/m? (C1DI1): CL, 143 (56.67) L/h; t12, 0.837 h Phase I trial in patients with RRMM.  [69]
(additional variations 20 mg/m?on D1 & 2 = 36,45, 27 mg/m? (C2D16): CL, 102 L/h; t12,0.973 h Comparable PK properties between
possible in 56 or 70 mg/m? on D8, 9, 15 & 56 mg/m? (C2DI16): CL, 118 (27.71) L/h; t12,0.875h 30 min and 2-10 min infusion.
subsequent cycles) 16 . . . R— . .
30-min IV infusion. 20 mg/m? (DI): CL, 146 (30.47) L/h; ti2, 0.64 (0.193-  Phase I/II trials in patients with [70]

20 mg/m?on D1 =
45, 56, 70 or 88 mg/m? on D8
& 15

1.29) h; AUClast, 260 (27.67) ng-h/mL
70 mg/m? (D15): CL, 131 (28.61) L/h; ti, 0.95
(0.572-1.29) h; AUClas, 1030 (20.5F) ng-h/mL
88 mg/m? (D15): CL, 138 (34.31) L/h; ti2, 0.848
(0.648-0.952) h; AUChst, 1190 (29.1%) ng-h/mL

RRMM. Dose-proportional increase
in AUC.




Ixazomib 4 mg orally 0.24-3.95 mg/m? on D1, 8 & DI: Tmax, 1 (0.5-8.0) h Rapid absorption and long terminal [71]
(Ninlaro®,  administered on days 15 DI5: tin, 3.6- 11.3 days half-lives.
MLN9708) 1,8, & 150f28-day 0.24-2.23 mg/m?’onD1,4,8 & 2 mg/m? (D1): Tmax, 0.65 (0.25-3.97) h 2.23 mg/m? is equivalent to 4.0 mg [72]
cycles 11 of 21-d cycles 2 mg/m’ (D11): Timax, 1 (0.5-23.6) h; tin2, 3.3- 7.4 days
4mgonDI,8 & 15 CL, 2.0 (4.9%) L/h; BA, 60%; Tmax, 1.5 (0.3-8) h Results from population PK [73]
modelling.
4mgonDI,8 & 15 Model parameter: CL, 1.86 L/h; BA, 58%; Combination treatment with [74]

lenalidomide & dexamethasone in
RRMM

Abbreviations: IV, intravenous; SC, subcutaneous; CL, clearance; Vss, volume of distribution at steady-state; ti2, terminal half-life; Cimax, maximum plasma concentration; Trmax,
time to Cmax; AUClast, area under the concentration—time curve from time 0 to the last time point; BA, bioavailability; RRMM, refractory or relapsed multiple myeloma; D,

Day(s); C, cycle(s)

Values reported as means (standard deviation, % coefficient of variation (1) or % standard error (I)) except for Tmax and ti2, which are expressed as median (range).
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diseased conditions or in response to cellular stimuli [75]. Such ABPs may be potentially used as
diagnostics to detect disease or monitor response to therapy [76-78].

In 2005, phase I clinical trials with CFZ began and successfully identified the phase II
recommended doses and dosing schedules that were further investigated in subsequent clinical trials
[66, 79]. From early on, it was observed that a subset of patients who did not respond to BTZ-based
therapy could still benefit from CFZ. Recently completed phase III clinical trials provided further
evidence that CFZ-containing regimens can be effective against relapsed MM, including those patients
who relapsed after receiving prior therapies including BTZ [80, 81]. In particular, the phase III
ENDEAVOR trial was a head-to-head comparison of CFZ and BTZ in patients with relapsed or
refractory MM [81]. In this trial, CFZ was shown to be superior to BTZ in extending overall survival
of patients in the relapsed setting. In addition to its superior efficacy, the CFZ-containing regimen
showed much improved safety profiles, especially in terms of peripheral neurotoxicity. While
cardiovascular events were observed in CFZ-treated patients, no evidence was found of cumulative
cardiac injury or ventricular dysfunction in the CFZ group. With these outstanding outcomes, CFZ is
now part of a standard of care for relapsed or refractory MM and will likely evolve as part of frontline
therapy in the near future.

When the PK profiles of CFZ were initially assessed in rats, the results indicated very rapid
clearance, short circulation time (plasma half-lives less than 1 h) and wide biodistribution [31, 82]. At
all dose levels tested, the clearance of CFZ exceeded rat hepatic flow. In line with these in vivo results,
CFZ was found to be rapidly metabolized in rat hepatocytes, but also in rat blood and in homogenates
prepared from other tissues [82]. The major metabolites of CFZ were peptide fragments and the diol of
CFZ, formed via peptidases and epoxide hydrolases, respectively. Similar to these preclinical results,
early phase clinical trials also indicated that CFZ displays very short half-lives (12 ~ 40 min), rapid
systemic clearance (116 ~ 263 L/h) and large volumes of distribution at steady state (9 ~ 28 L) at all
dose levels tested (11, 15, 20, and 27 mg/mz) [66, 68] (Table 2). Plasma clearance of CFZ in humans
also exceeded hepatic blood flow, further indicating a considerable contribution of extrahepatic
mechanism to the overall elimination of CFZ [67]. Consistent with in vitro results showing only minor

roles of CYP-mediated metabolism or renal excretion in the overall disposition of CFZ, the PK profiles
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of CFZ were not impacted by co-administration with CYP inhibitors or inducers [67] or by renal
impairment [83, 84].

Along with its structural and mechanistic differences from BTZ, CFZ offers a treatment option
with greatly reduced risk of peripheral neuropathy. CFZ treatment is associated with different types of
adverse effects including cardiovascular complications, hypertension, and heart failure, but overall
these adverse effects are reversible and manageable with careful monitoring [85]. CFZ shares several
adverse events with BTZ such as anemia, fatigue, and diarrhea. One potential downside of CFZ is its
poor aqueous solubility. Despite the incorporation of a N-terminal morpholine ring to improve solubility,
CFZ remains practically insoluble and the current formulation requires the use of a 50-fold excess of a
[-cyclodextrin derivative to prepare an injectable solution. As with BTZ, CFZ is not suitable for oral
administration and is susceptible to drug resistance in clinical use. These problems have prompted the
development of additional next-generation Pls.

2.3. Ixazomib (IXZ, MLN9708, Ninlaro®): First oral proteasome inhibitor drug

With both BTZ and CFZ being administered only via intravenous or subcutaneous injection, there has
been an unmet need for orally available PI drugs. In 2015, IXZ (Ninlaro®, Takeda Pharmaceuticals
Limited) received its US FDA approval as the first orally bioavailable PI drug. Based on the promising
efficacy observed in preclinical studies, IXZ rapidly advanced to clinical trials [28, 32]. IXZ, orally
administered once a week (4 mg on days 1, 8, and 15 of 28-day cycles) in combination with
lenalidomide plus dexamethasome, has now been approved in 40 countries including USA and the EU
for the treatment of MM patients who have received one prior therapy, based on the superior results in
clinical trials [72, 86]. IXZ also displayed a good safety profile with no significant inhibitory effect on
HtrA2/Omi, a non-proteasomal target of BTZ previously linked to peripheral neuropathy [32, 86, 87].
IXZ is currently being investigated in several clinical trials as a single agent and in combination with

other agents against multiple types of cancer (https://clinicaltrials.gov).

Structurally, IXZ is a capped dipeptide boronic acid and preferentially and reversibly inhibits
the CT-L activity of the proteasome as well as the C-L and T-L activities at high concentrations with

potencies similar to BTZ [32]. However, the dissociation half-life of IXZ was significantly shorter than
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that of BTZ (18 vs. 110 min), which may account for the faster recovery of proteasome activity (IXZ
vs. BTZ, 69 vs. 20%) in cell-based assays and its larger volume of distribution in mice (IXZ vs. BTZ,
20.2 vs. 4.3 L/kg) [28]. Although not examined, some of these differences may have contributed to the
improved safety profiles of IXZ over BTZ, despite sharing the boronic acid residue as their
pharmacophore.

For oral administration, IXZ is formulated as a citrate ester prodrug (MLN9708) which is
rapidly hydrolyzed to the pharmacologically active form (MLN2238) under physiological conditions
[28]. In phase I clinical trials, orally administered [XZ was rapidly absorbed (mean Tmax, 0.5 ~ 1 h) and
had a long terminal half-life (mean Ti5, 3.3 ~ 7.4 days in twice-weekly dosing; 3.3 ~ 11.3 days in
weekly dosing) [71, 72] (Table 2). When tested using recombinant CYP enzymes in vitro, IXZ was
metabolized by multiple CYPs at concentrations exceeding those observed clinically and deemed
unlikely to incur potential drug-drug interactions [88]. Yet, co-administration with rifampin, a strong
CYP3A inducer, led to substantial changes in the PK profiles of XZ (Cnax and AUC decreased by 54%
and 74%, respectively) [88]. Overall, the PK profiles of IXZ showed dose-proportional behaviors.
Using the compiled clinical data from 755 patients treated with IXZ, Gupta et al. conducted population
PK analyses and reported the following average estimates for PK parameters: absolute bioavailability
(58%), volume of distribution (543 L), terminal phase half-life (9.5 days), and systemic clearance (1.86
L/h) [74]. Systemic exposure to IXZ was affected by moderate or severe hepatic impairment [89], but
not by renal impairment [74]. While IXZ has the potential to greatly improve the quality of life for
patients with MM, its therapeutic advantages over BTZ or CFZ have yet to be investigated in

randomized clinical trials.

3. Drug resistance (acquired or de novo): Major hurdles in improving PI therapy

Common in many cancer therapies, the issues of drug resistance also pose major hurdles for PI
therapies. MM patients who initially respond to PI therapy almost inevitably develop resistance over
time (acquired resistance). Once patients relapse with MM refractory to Pl-based therapy, there are

currently few effective treatment options left. While a subset of MM patients responds well to PI
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therapy, others do not (de novo resistance). Several potential mechanisms for resistance to PI therapy
have been proposed using cell-based model systems. Yet, those mechanisms await further validation
in patients with MM and also in patients with solid cancers. For the lack of clinical benefits of PI
therapy for solid cancers, it has been postulated that active PI drugs may have insufficient access to
the proteasome target located in solid cancer cells (related to the PK issues). This possibility was
supported in part by the preclinical results showing effective tumor growth suppression following
direct intratumoral injection of PI drugs [12, 90]. In addition, intravenous dosing of BTZ was effective
in mice harboring highly perfused xenograft tumors, but not poorly perfused ones [44]. Alternatively,
it was also proposed that solid cancer cells may be inherently less sensitive to PI therapy than MM
cells known for their elevated levels of proteotoxic stress or ER stress [91, 92]. To tease out why
patients with solid cancers do not benefit from PI therapy, it would be necessary to develop PI drugs
that can afford sufficient access to the proteasomes in solid cancer cells and/or to develop targeted
drug delivery systems.

Current understanding of resistance mechanisms for PI drugs, although not complete, has
provided important platforms to screen for PI drugs that can potentially overcome resistance to existing
PI drugs. Several reports observed the presence of mutations in the PSMBS5 gene encoding the 5
catalytic subunit from cancer cell line models resistant to BTZ and low levels of Xbp1, a key regulator
of one arm of the unfolded protein response (UPR), in primary cells isolated from MM patients
following BTZ therapy [93-96]. For cancer cell line models resistant to CFZ and epoxomicin, the
upregulation of P-glycoprotein was reported to be causally linked to drug resistance [97, 98]. This
information provided important guidance during the development of another epoxyketone-based PI,
OPZ [30, 93]. The screening and optimization processes for OPZ and related compounds included the

testing in cell lines expressing P-glycoprotein.
4. Development strategies for next-generation proteasome inhibitors
As discussed above, the discovery of next-generation Pls with improved PK/PD profiles could improve

clinical outcomes for MM patients (especially those with resistance to existing PI therapy) and extend
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therapeutic benefits to patients with solid cancers where existing PI drugs have proved largely
ineffective. To achieve this goal, the following development strategies have been actively explored.
Given that comprehensive reviews are already available on the first two strategies, we focused on the
recent efforts to develop non-peptide-based Pls and drug delivery system.

4.1. Immunoproteasome-selective inhibitors

The immunoproteasome (iP) is a variant of the constitutive proteasome in which the constitutive
catalytic subunits 1, 2 and B5 are replaced by their respective inducible counterparts B1i, f2i and B5i,
under inflammatory conditions and certain pathological states including cancer. By targeting the iP, it
may achieve more selective inhibition of the proteasomal activity in cancer cells, thereby widening the
therapeutic window. Although iP inhibitors have been studied in the preclinical setting, to date none
have entered clinical trials [99]. As the iP is strongly implicated in inflammatory pathways, iP-selective
inhibitors are currently being investigated as potential anti-inflammatory agents. Detailed reviews on
iP inhibitors are already available [100-102].

4.2. Peptide-based proteasome inhibitors

The vast majority of existing PIs utilize a peptide backbone and an active warhead that interacts with
the catalytic Thr residues of B-subunits with different mechanisms of action (e.g., aldehydes, vinyl
sulfones or esters, boronates, epoxyketones, B-lactones). With the successful clinical development of
the peptide boronates (BTZ and IXZ) and epoxyketone (CFZ), intense efforts have been underway to
further refine the structure-activity relationship (SAR) and to identify compounds with optimal
pharmacological profiles among peptide-based proteasome inhibitors. For further information on
peptide-based Pls, comprehensive reviews are already available [103, 104].

4.3. Non-peptide-based proteasome inhibitors

From one of the earliest efforts to identify structurally-novel Pls via high-throughput screening, PI-083
was identified as a non-peptide PI [105]. Utilizing a 2-chloro-1,4-naphthoquinone scaffold, PI-083
preferentially inhibited the CT-L activity of the 20S proteasome (ICso: 1.0 uM) and inhibited T-L and
C-L activities at slightly higher concentrations (ICso: 4.5 uM for both). When tested against a panel of

10 solid cancer cell lines, PI-083 exerted cytotoxic effects with ICso values ranging from 1.7 to 11 uM.
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PI-083 was also effective in suppressing in vivo tumor growth in mouse xenograft models at a dose of
1 mg/kg twice weekly. Based on docking results and the compound’s SAR, it is postulated that PI-083
may act as a covalent PI with the chlorinated 2-carbon undergoing nucleophilic attack by the
proteasome’s catalytic threonine residue [106]. Recovery of proteasome activity following incubation
with PI-083 was slow, with only partial recovery of activity after 18 h. Attempts to improve PI-083’s
inhibitory potency were generally unsuccessful and the SAR was highly sensitive to modification.

A subsequent report from the same group identified PI-1840, a structurally-unrelated non-
peptide compound which potently and selectively inhibited the CT-L activity of the 20S constitutive
proteasome (ICso: 27 nM) [107]. PI-1840 showed no appreciable inhibition of 20S proteasome T-L or
C-L activity and had an ICsy value of greater than 1 pM against the CT-L activity of the iP. Analysis
via mass spectrometry and dialysis confirmed that PI-1840 acts as a fully-reversible inhibitor. A panel
of solid cancer cell lines displayed varying degrees of sensitivity to PI-1840 (ICso: 2.2 ~ 45.2 uM), and
the cytotoxic potency appeared to correlate with the degree of proteasome inhibition achieved by PI-
1840. When tested in mice bearing MDA-MB-231 human breast cancer xenografts, PI-1840 (150
mg/kg daily via intraperitoneal injection) effectively suppressed tumor growth, in contrast to no
appreciable suppression in the control groups that received either BTZ (1 mg/kg twice weekly via
intraperitoneal injection) or the vehicle only. No observable toxicity was noted in animals receiving
high doses of PI-1840. The safety profiles observed with PI-1840 may be related to its high degree of
selectivity for the constitutive 5 subunit relative to the iP subunit $5i and its lack of inhibition of T-L
or C-L activities. Given that the existing PI drugs tend to target both B5 and 51 subunits with relatively
low selectivity, it awaits further investigations to determine whether the selective inhibition of 5 by
PI-1840 may be advantageous or disadvantageous in terms of anticancer efficacy. The PK profiles of
PI-1840 have not yet been published.

Another non-peptide PI dubbed G4-1, based on a tri-substituted pyrazole scaffold, was reported
by our own research group [108]. Identified via the combination of structure-based virtual screening
and in vitro kinetic assays, G4-1 inhibits both 5 and B5i catalytic activities with ICso values of 1.6 and
2.4 uM, respectively. Bl and Pli subunits (C-L activity) were also inhibited at low micromolar

concentrations, with minimal inhibition of T-L activity. G4-1 exerted cytotoxic effects against a variety
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of solid cancer and MM cell lines, regardless of acquired resistance to BTZ and CFZ. Further structural
analyses indicated that G4-1 is a reversible, non-covalent inhibitor. As expected from its non-peptide-
based structure, G4-1 displayed much improved in vitro metabolic stability over BTZ or CFZ when
tested using mouse and human liver microsomes. In a mouse xenograft model of human prostate cancer,
G4-1 (5 mg/kg, twice-weekly) was effective in suppressing tumor growth with no overt signs of toxicity.
Additional PK or PD profiles of G4-1 have not yet been published.

In addition to those described above, there have been several other recent reports of efforts to
develop non-peptide Pls but further investigations are still needed to validate their mode of interaction
with the proteasome, their extent of interaction with non-proteasomal targets and their in vivo efficacy.
While there is also a body of research covering peptide-based non-covalent Pls, such as those described
by Blackburn et al. [109, 110], it is expected that these compounds will be susceptible to the same rapid,
often extrahepatic, clearance as existing peptide-based Pls. Peptide-based PIs may also be less likely to
penetrate poorly-perfused tumors due to either their physiochemical properties or their interactions with
efflux transporters [111]. Moving forward, significant research efforts will be required to identify non-
peptide PlIs which display optimal PK/PD profiles and suitability for clinical use.

4.4. Application of drug delivery system on proteasome inhibitors

In improving the PK profiles of the existing Pls, the nanoparticle-based drug delivery systems (NDDS)
may prove useful by prolonging the circulation time and changing the biodistribution profile, thereby
enhancing the delivery of Pls to solid cancer tissues and reducing the toxicity in normal tissues. In
cancer therapy, there exist several examples of successfully applying NDDS: doxorubicin (Doxil™,
Janssen, liposomal formulation), irinotecan (Onivyde™, Merrimack Pharmaceuticals, liposomal
formulation), paclitaxel (Genexol-PM™, Samyang Biopharmaceuticals, polymeric micelle
formulation; Abraxane™, Celgene, albumin bound nanoparticle) [112].

For the first-in-class PI drug BTZ, there have been a number of attempts to apply novel NDDS
and extend the therapeutic utility of BTZ. Polymeric micelle-based formulation of BTZ showed an
improved tolerability and efficacy against triple negative breast cancer [46]. In another report, BTZ-
containing polymeric micelles were prepared using poly(D,L-lactic-co-glycolic acid) (PLGA) and

polyethylene glycol with a bone-targeting ligand alendronate. The results showed an extended
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circulation time as well as enhanced survival and decreased tumor burden in the MM mouse model [47].
A similar approach was attempted using PLGA-based nanoparticles conjugated with transferrin as a
tumor-targeting ligand and the results showed an enhanced delivery of BTZ to pancreatic cancer cells
[113]. Taking advantage of slightly acidic tumor microenvironment compared to normal tissues, pH-
sensitive polymer carriers were used to design novel delivery options for BTZ (where the drug release
is triggered under acidic condition) [114-116]. The liposomal nanoparticles were also explored and the
encapsulation of a BTZ prodrug in the liposomal nanoparticles demonstrated tumor growth suppression
with reduced toxicity compared to BTZ in the mice carrying MM xenografts [45]. Another report used
a liposomal BTZ formulation conjugated with NGR peptides and showed improvements in terms of
toxicity and survival in the orthotopic mouse model of neuroblastoma [117]. Other types of NDDS
applied to BTZ include hollow mesoporous silica nanospheres [118] and solid-lipid nanoparticles [119].
However, the NDDS for BTZ reported so far await further validation and careful examination for their
clinical translation.

For CFZ, the NDDS may offer potential benefits of extending the therapeutic utility beyond
MM, but also of developing an alternative, cyclodextrin-free formulation (the current CFZ formulation
contains 16-fold molar excess of sulfobutyl ether f-cyclodextrin (Captisol®) to CFZ). During the past
several years, our laboratory and others have made efforts to develop the NDDS to CFZ. Tethered
polymer nanoassemblies were prepared for CFZ, but the results showed a modest improvement in the
cytotoxic effects against human lung cancer cells [120]. Another study examined a dual drug-loaded
liposomal formulation to deliver CFZ and doxorubicin [121]. The dual drug-loaded liposomes were
more effective in suppressing tumor growth in a mouse model of MM xenograft than co-administration
of single drug-loaded liposomes [121]. A more recent report developed CFZ nanoparticles coated with
neutrophil membranes [122]. The results showed quite promising suppression of early metastasis, but
the limitations included the multi-step preparatory processes that may not be cost-effective and
amenable for scale-up [122]. Thus, there is a clear need for novel, cost-effective NDDS which can

expand the therapeutic utility of CFZ.
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CHAPTER L.

Polymer Micelle Formulation for the Proteasome Inhibitor Drug
Carfilzomib:

Anticancer efficacy and pharmacokinetic studies in mice

* The work from Chapter I was published in PLoS ONE 12(3):e0173247 on March,

2017.
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1. Introduction

The proteasome, a multisubunit protease complex, is an anticancer target validated by remarkable
clinical successes of proteasome inhibitor drugs. Since its fast-track FDA approval in 2003, the first-
in-class proteasome inhibitor drug bortezomib (Velcade™) has become a mainstay of multiple
myeloma (MM) therapy, despite drawbacks including severe neurotoxicity caused by off-target
interactions with neuronal proteases [123]. In 2012, the second-in-class proteasome inhibitor drug
carfilzomib (Kyprolis™, CFZ) received an accelerated FDA approval for patients who have
relapsed/refractory MM after receiving at least two prior therapies including bortezomib. CFZ in
combination with other immunomodulatory agents such as lenalidomide and dexamethasone
demonstrated good response profiles and several clinical trials are ongoing for its use as frontline
therapies [124-126]. Compared to BTZ, CFZ is well tolerated with acceptable toxicity profiles and
few instances of dose-limiting neurotoxicity, likely due to the selective interactions of its epoxyketone
pharmacophore with the proteasome target [127].

Despite the notable benefits with CFZ, there remains much room for improvement. CFZ is
practically insoluble in aqueous media and the current formulation contains 60 mg of lyophilized CFZ
powder with 3,000 mg of sulfobutylether-B-cyclodextrin (Captisol®™). Additionally, CFZ is rapidly
inactivated in vivo; the majority (> 95%) of CFZ is eliminated from systemic circulation within 30
min following intravenous injection due to its peptide backbone cleavage and epoxide hydrolysis
[128]. The poor in vivo stability and short half-lives of CFZ have been considered major culprits for
its lack of efficacy in patients with solid cancers by limiting the access of the active drug to
proteasome targets within solid tumor tissues [129, 130]. Thus, novel drug delivery strategies that can
improve solubility, in vivo stability of CFZ and the accessibility of active drug to targeted tumor sites
may potentially extend its therapeutic benefits in patients with solid cancers.

Polymeric micelles (PMs) composed of amphiphilic block copolymers have gained much
attention for their application in drug delivery, especially due to their biocompatibility and utility in
improving drug solubility and stability in the biological system and achieving passive tumor targeting,

commonly referred to as enhanced permeability and retention (EPR) effect [131, 132]. In the case of
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CFZ, it was previously reported that several CFZ-loaded PM formulations composed of
biodegradable block copolymers poly(ethylene glycol)-poly(caprolactone) (PEG-PCL) displayed
improved metabolic stability and anticancer efficacy profiles in vitro [133]. Given these results, the
logical next step was to examine whether these in vitro improvements achieved by CFZ-loaded PM
formulations would be recapitulated in vivo.

In this report, we examined the anticancer efficacy and plasma pharmacokinetic (PK) profiles
of the CFZ-loaded PM formulation (CFZ-PM, composed of PEG-PCL 5-5.5 KDa with deoxycholic
acid added) in vivo. Despite our previous results showing in vitro metabolic protection with CFZ-PM
[133], its in vivo performances in terms of anticancer efficacy, plasma PK profiles and proteasome
inhibition in residual tumor tissues did not show notable improvements over the cyclodextrin (CD)-
based CFZ formulation (CFZ-CD). Careful consideration of these results and confounding factors
may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy

for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers.

2. Materials and Methods

2.1. Cell lines and reagents

A human lung adenocarcinoma cell line H460 was obtained from Korean Cell Line Bank (KCLB, Seoul,
Korea) and maintained according to the KCLB-recommended culture conditions. CFZ was purchased
from LC laboratories (Woburn, VA, USA). Block polymer PEG-PCL with molecular weight 5-5.5 kDa
was purchased from Polymer Source (Montreal, QC, Canada). 2-hydroxypropyl-p-cyclodextrin, EDTA,
chloropropamide, deoxycholic acid (DCA) and formic acid were purchased from Sigma-Aldrich (St.
Louis, MO, USA). The fluorogenic substrate, N-Succinyl-Leu-Leu-Val-Tyr-7-amino-4-
methylcoumarin (Suc-LLVY-AMC), was purchased from Bachem (Torrance, CA, USA). All solvents
for HPLC were obtained from Burdick & Jackson Company (Morristown, NJ, USA).

2.2. Preparation and characterization of CFZ-PM formulation

The CFZ-PM formulation was prepared using PEG-PCL 5-5.5 KDa with DCA through the thin film

method as previously described [133]. The particle size distribution and zeta potential values were
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measured for CFZ-PM or empty PM (prepared without CFZ) using an electrophoretic light scattering
method (DLS, Zetasizer Nano ZS, Malvern, UK). Critical micelle concentrations (CMCs) of CFZ-PM
and empty PM were determined using the pyrene I3/ [; method [134]. Briefly, pyrene solution in acetone
(2 uM) was added to PM solution in water at varying PM concentrations and left to equilibrate at 37 °C
overnight. The fluorescence signal intensities of pyrene in the solution were measured at the first (I; at
372 nm) and third (Is at 383 nm) peaks following excitation at 334 nm using a SpectraMax M5
microplate reader in order to determine the encapsulation of pyrene corresponding to micelle formation
(SpectraMax M5, Molecular Devices, CA, USA).

2.3. Anticancer efficacy of CFZ-PM in NOD/SCID mice harboring human lung cancer (H460)
Xenografts

Animal procedure was performed using the protocol approved by the Seoul National University
Institutional Animal Care and Use Committee (approval No. SNU-151127-3). NOD/SCID mice were
obtained from Japan SLC, Inc. (Hamamatsu, Japan). Briefly, H460 cells (3x10° cells/spot) were
subcutaneously injected into the flank of mice (NOD/SCID, 6-7 weeks old). After the tumor volume
reached 50 — 150 mm?®, the mice were randomized into 6 different treatment groups (n=4-5) as follows;
CFZ-PM at the dose of 3 or 6 mg/kg, CFZ-CD (complexed with 20% (v/w) 2-hydroxypropyl-B-
cyclodextrin in 10 mM citrate buffer, pH 3) at the dose of 3 or 6 mg/kg, vehicle (10 mM citrate buffer,
pH 3), and empty PM. Drug was dosed via tail vein injection (two consecutive days/week for 3 weeks).
Tumor growth was assessed by measuring the short and long diameters of the tumor with a caliper and
using the following formula: tumor volume (mm?®) = 0.5 x (short diameter, mm)? x (long diameter, mm).
Mice were sacrificed on day 18 and tumor tissues and whole blood samples were collected for
proteasome activity assay and immunoblotting analysis.

2.4. Assessment of proteasome target inhibition/modification in excised xenograft tumor tissues from
mice that received drug treatment

In order to assess whether CFZ-PM improved the accessibility of the active drug to tumor tissues, the
proteasome target inhibition was measured in excised tumor tissues and whole blood samples from

mice that received drug treatment. Tumor tissues and whole blood samples were collected 48 h after
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the injection of the respective treatments on the last day of the in vivo efficacy experiment. The excised
tumor tissues were homogenized with passive lysis buffer (Promega, WI, USA) using a hand-held tissue
grinder on ice. The homogenates were centrifuged at 3,000g for 20 min at 4°C and the resulting
supernatant was used for proteasome activity assay and immunoblotting analysis. The proteasome
activity was determined by monitoring the cleavage rate of fluorescent 7-amino-4-methylcoumarine
(AMC) from Suc-LLVY-AMC. Briefly, lysates of excised tumor tissues (10 ug of total protein) or
whole blood (1 pL) were incubated with Suc-LLVY-AMC (100 uM dissolved in 20 mM Tris-Cl buffer
(pH 8.0) containing 500 uM EDTA). Fluorescence signals of liberated AMC were monitored for a
period of 60 min using excitation and emission wavelengths of 360 and 460 nm on a SpectraMax M5
microplate reader (Molecular Devices, CA, USA).

Since CFZ irreversibly inhibits the proteasome via covalent modification, the presence of covalently

modified catalytic subunit 5 can also be used to assess the extent of the proteasome inhibition. Briefly,

tumor tissue lysates (10 pg of total protein) were resolved using 12.5% SDS-PAGE and transferred

onto a PVDF membrane (Bio-Rad Laboratories). Membranes were blocked in 5% milk in Tris-buffered

saline containing 0.05% Tween-20 (TBST) and probed with the following antibodies; for B5 (dilution

1:1000, Abcam) and B-actin (dilution 1:1000, Cell Signaling). Membranes were washed with TBST

and probed with the corresponding secondary antibodies conjugated with horseradish peroxidase.

Bound antibodies were visualized using an enhanced chemiluminescence substrate (Thermo Fisher

Scientific).

2.5. Assessment of plasma PK profiles of CFZ-PM in mice

PK studies in mice were carried out following the protocol approved by the Seoul National University
Institutional Animal Care and Use Committee (approval No. SNU-160512-5). The CFZ-PM and CFZ-
CD were injected via tail vein into ICR mice obtained from Samtako (Gyeonggido, Korea) at doses of
3 or 6 mg/kg (n=4-5 per group), respectively. At the pre-determined time points (2, 5, 20, 60, 120, 360,
600 and 1,440 min), whole blood samples were collected from the retro-orbital plexus of the mice using
microhematocrit tubes. To minimize blood loss due to sampling, approximately 50 uL. of whole blood

was drawn at each sampling time and individual mice did not have more than 6 times of blood sampling.

23 A 1|



Plasma samples (20 pL) separated from whole blood were quenched with acetonitrile (60 pL)
containing chlorpropamide (2 ug/mL, an internal standard) and mixed by vortexing for 15 min. After
the mixture was centrifuged at 9,000 g for 15 min at 4°C, the concentration of CFZ in the supernatant
was measured using an HPLC interfaced with mass spectrometry (Shimadzu LCMS-8050). Briefly, 10
uL of the resulting supernatant was injected and separation of CFZ and chlorpropamide was achieved
using a Phenomenex C18 column and the mobile phase composed of H»O:acetonitrile (40:60, v/v)
containing 0.1% formic acid (flow rate = 0.35 mL/min). CFZ and chlorpropamide were detected in the
ESI mode (positive ion mode, CFZ: 720.20—100.15 m/z; chlopropamide: 277.05—175.10 m/z). The
detailed report on analytical conditions and assay validation parameters including accuracy and
precision is currently in preparation. PK parameters were calculated using non-compartmental methods
(WinNonLin version 5.0.1, Pharsight).

2.6. Statistical analyses

The results were expressed as the mean with standard deviation. Statistical significance between groups
was determined using ANOVA followed by Dunnett’s or Tukey’s post hoc test (GraphPad Prism,
GraphPad Software Inc., CA, USA). P values less than 0.05 were considered to indicate statistical

significance.

3. Results

3.1. Physicochemical properties of CFZ-PM

The particle size distribution and zeta potential of CFZ-PM and empty drug-free PM were determined
using dynamic light scattering. The mean diameters of CFZ-PM and empty PM were comparable (56.0
+6.1 vs 41.2 £ 5.7 nm) and so were zeta potential values (-0.1 £0.4 vs -0.5 £ 0.3 mV) (Table 1). These
results indicated that both size distribution and zeta potential were not substantially altered by CFZ drug
loading. In addition, particle sizes did not show substantial changes in cell culture media containing
fetal bovine serum compared to phosphate-buffered saline (data not shown). These results suggest that

PEGylation of micelles may have decreased the tendency for nanoparticles to aggregate. The critical
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micelle concentration (CMC) values measured by fluorescence spectrophotometry with pyrene were
also comparable between empty PM and CFZ-PM with 0.18 and 0.14 mg/mL, respectively (Table 1).

Table 1. Physicochemical characterization of drug-free and carfilzomib (CFZ)-loaded polymeric
micelles (PM).

Group Size (nm) Zeta potential (mV) CMC (mg/mL)
Drug-free PM 41.2+5.7 -0.5+0.3 0.18
CFZ-PM 56.0+6.1 -1.0+0.4 0.14

Data are shown as means + S.D. (n=3). CMC, critical micelle concentration

3.2. In vivo anticancer efficacy of CFZ-PM in H460 xenograft mice

The doses and dosing schedules of CFZ-PM and CFZ-CD (3 or 6 mg/kg, intravenous administration on
two consecutive days per week) were based on clinically used regimens and available information in
the literature [135]. The tumor size was substantially smaller in the groups that received CFZ-PM or
CFZ-CD than in the control groups that received empty PM or vehicle only, but no difference was
observed between the groups that received CFZ-PM and CFZ-CD at the dose of 3 mg/kg (Fig 1A). It
was unable to compare tumor growth suppression of CFZ-PM to that of CFZ-CD at the dose of 6 mg/kg
since 4 out of 6 mice that received 6 mg/kg of CFZ-CD died during the treatment period. The mice that
received 6 mg/kg of CFZ-PM survived with no sign of substantial toxicity, at least based on body weight
changes (Fig 1D). The tumor growth suppression by CFZ-PM was not however dose-dependent; tumor
growth curves for 3 and 6 mg/kg doses overlapped and weights of excised tumors for both doses were
similar (Figs 1B and 1C).

3.3. Proteasome inhibition in post-treatment xenograft tumor tissues and whole blood samples
collected from mice that received CFZ-PM or CFZ-CD

In order to probe possible reasons for no enhancement of anticancer efficacy with CFZ-PM over CFZ-
CD, we compared the extent of proteasome inhibition in the excised xenograft tumor tissues and whole
blood samples collected from the xenograft mice receiving different drug treatments (collected 48 h
following the last injection). In the groups that received CFZ-PM (3 or 6 mg/kg) or CFZ-CD (3 mg/kg),

the inhibition of the proteasome activity in tumor lysates was modest (and not reaching statistical
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Figure 1. Effects of polymeric micelle formulation containing carfilzomib (CFZ-PM) vs cyclodextrin-
based carfilzomib formulation (CFZ-CD) on tumor growth in H460 xenograft mice. NOD/SCID mice
harboring H460 xenograft tumors were randomized to 5 different groups and received respective
intravenous injections on two consecutive days per week; CFZ-PM at the dose of 3 (00) or 6 (m) mg/kg,
CFZ-CD at the dose of 3 (A) mg/kg, vehicle (citrate buffer @) and empty PM (dissolved in saline o).
The upper arrow symbol (1) indicates the day of drug injection. (A) Tumor growth curves. (B, C)
Weights and images of excised tumor tissues on day 18. (D) Body weights. Data are shown as means
+ S.D. (n=4-5). *, p <0.05 vs. vehicle control using ANOVA followed by Dunnett’s post hoc test.

significance), with more than 50% of the activity remaining relative to the control group (Fig 2A). It
should be noted that these results were obtained from the residual tumor tissues collected 48 h after last
injection of the respective treatments. Thus, the measured proteasome activity in tumor lysates may
represent that from tumor cells where active CFZ did not reach. Alternatively, the measured proteasome
activity may come from the recovery following the initial inhibition. For instance, the previous report
by Demo et al. [31] showed that the proteasome activity in major organs can substantially recover 24 h
after intravenous injection of the single CFZ dose of 5 mg/kg. However, these results differ from those
obtained by other investigators. With a repeated dosing schedule (clinically used and same as our
current study), the proteasome activity in patients displayed only a minimal recovery [136]. The slow
recovery of proteasome activity is also in line with rather slow proteasome de novo biogenesis rates
taking at least several days [137-140]. Given the irreversible nature of proteasome inhibition by CFZ
and a relatively long time for de novo proteasome biogenesis to replace the covalently modified
proteasomes, the observed proteasome activity in residual xenograft tissues is unlikely from the

recovery following initial inhibition [141]. In contrast, the proteasome activities in whole blood samples
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collected 48 h after the last injection of the respective treatments showed an almost complete inhibition
in all three tested groups, CFZ-PM (3 or 6 mg/kg) and CFZ-CD (3 mg/kg) (Fig 2B, p < 0.001, each

treatment different from the control).
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Figure 2. Proteasome activities in the post-treatment tumor tissue lysates (A) and whole blood samples
(B) collected from H460 xenograft mice that received the intravenous injections of polymeric micelle
formulation containing carfilzomib (CFZ-PM) or cyclodextrin-based carfilzomib formulation (CFZ-
CD). The tumor tissues and whole blood samples were collected 48 h after the last injection of the
respective treatments. Proteasome activities in tumor tissue lysates or whole blood lysates were assessed
by measuring the cleavage rate of the fluorogenic substrate Suc-LLVY-AMC. *, p <0.001 vs. all other
groups using ANOVA followed by Dunnett’s post hoc test.

In addition to measuring post-treatment proteasome activities, we also probed the extent of CFZ-
induced covalent modification of the major proteasome catalytic subunit 5. This assay takes advantage
of the altered electrophoretic mobility of the covalently modified 5 protein by CFZ as previously
described [142]. The band of the positive control (tumor lysates incubated with 50 nM CFZ for 2 h in
vitro) showed a mobility shift compared to the negative control (tumor lysates incubated with the
vehicle DMSO for 2 h) (Fig 3). No detectable 5 band shift was observed in the post-treatment tumor
lysates collected 48 h after the last drug treatment in either CFZ-PM or CFZ-CD groups. Altogether,
these results suggest that CFZ-PM did not enhance the access of active CFZ to cancer cells in xenograft

tumors and the extent of proteasome inhibition in vivo.
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Figure 3. Immunoblotting analyses showing that the proteasome catalytic subunit 5, a primary target
of carfilzomib remains unchanged in post-treatment tumor tissue lysates collected from the xenograft
mice that received different treatments. (CFZ-CD: cyclodextrin-based carfilzomib formulation; CFZ-
PM: polymeric micelle formulation containing carfilzomib) The tumor tissues were collected 48 h after
the last injection of the respective treatments.
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3.4. Comparison of plasma PK profiles of CFZ-PM and CFZ-CD in ICR mice

Given that CFZ-PM did not suppress tumor growth more effectively than CFZ-CD (Fig 2), it
was examined whether the plasma PK profiles differ between CFZ-PM and CFZ-CD. Following the
intravenous injection of CFZ-PM or CFZ-CD to ICR mice, the plasma concentration-time curves for
both groups displayed a rapid decline. During early time points (up to 2 h), the mice that received CFZ-
PM (either 3 or 6 mg/kg) showed higher drug concentrations than those that received CFZ-CD (Fig 4).
However, this trend was reversed in later time points (6, 12 and 24 h after injection); the mice that
received CFZ-PM injection (3 or 6 mg/kg) showed lower CFZ concentrations in plasma than those that

received CFZ-CD.
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Figure 4. Plasma concentration-time profiles of carfilzomib after the intravenous administration of
polymeric micelle formulation containing carfilzomib (CFZ-PM) or cyclodextrin-based carfilzomib
formulation (CFZ-CD) to mice (A, 3 mg/kg and B, 6 mg/kg). Data are shown as means + S.D. (n=4-5).
The inset figures show the plasma concentration-time profiles up to 2 h.

Table 2. Pharmacokinetic parameters of carfilzomib after the intravenous administration of polymeric
micelle formulation containing carfilzomib (CFZ-PM) and cyclodextrin-based carfilzomib formulation
(CFZ-CD) to ICR mice.

CFZ-PM CFZ-CD
Pharmacokinetic Parameters
3 mg/kg 6 mg/kg 3 mg/kg 6 mg/kg
AUC.2n (nmolxmin/mL) 38.6 1.2 118.1 £25.3 33.3+7.7 552 +£21.1
AUC.24n (nmolxmin/mL) 39.8+0.8 121.4 £27.2 35.4+£8.0 58.8 £21.8
AUCnr (nmolxmin/mL) 39.9+0.8 121.8 £27.4 36.4 £8.0 62.6 £22.9
CL (mL/min/kg) 105+2 71 £ 15 119 £29 152+ 71°

Data are shown as means £ S.D. (n=4-5). AUCo.2n, Area under the plasma concentration-time curve (AUC) from
time 0 to 2 h; AUCo-24n, AUC from time 0 to 24 h; AUCr, AUC extrapolated to infinity; CL, clearance. *, p <
0.05 vs. all other groups using ANOVA followed by Tukey’s post hoc test.
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For detailed comparison, the PK parameters were obtained using non-compartmental methods (Table
2). As expected from the rapid initial decline in the plasma concentration-time curves, the AUCy.on
values accounted for approximately 96.7% and 97.0% of the AUCwr values in the CFZ-PM groups at
the doses of 3 and 6 mg/kg, respectively. In the case of the CFZ-CD groups, the AUCy.on values
accounted for approximately 91.4% and 88.1% of the AUCr values at the doses of 3 and 6 mg/kg,
respectively. The CL values of CFZ in all four groups exceeded the average hepatic blood flow in mice,
suggesting substantial extrahepatic metabolism of CFZ. These results are in line with the previous
reports in rats and humans [128, 130]. The systemic exposure of CFZ-PM and CFZ-CD at the dose of
3 mg/kg appeared to be comparable based on the similar AUCnr and CL values between the two groups.
When the AUCnr values of 3 and 6 mg/kg doses were compared, the CFZ-PM group displayed
approximately 3-fold increases (39.9 + 0.8 vs 121.8 + 27.4) while the CFZ-CD group displayed
approximately 1.7-fold increases (36.4 * 8.0 vs 62.6 £ 22.9). These differences in the AUCr values
led to a slower CFZ clearance in the CFZ-PM group at the dose of 6 mg/kg than the other groups (p <

0.05).

4. Discussion

The proteasome is well accepted as a critical player in several traditional hallmarks of cancer, defined
by Hanahan and Weinberg [143]. More recently, proteotoxic stress triggered by imbalances in protein
homeostasis has been annotated as another hallmark of cancer [144]. In this regard, CFZ with improved
efficacy and safety profiles merits further investigations to extend its therapeutic utility beyond MM.
In particular, recent reports suggested that certain solid cancers render proteasome addiction as
vulnerability, thereby a potential target for therapeutic interventions. Using genome-wide siRNA
screening, the knockdown of proteasome genes was found to cause lethality in basal-like triple-negative
breast cancer cells [145]. This particular study examined the effectiveness of bortezomib administered
via different dosing routes in suppressing in vivo tumor growth and metastasis. Only intratumoral
injection, but neither intraperitoneal nor intravenous route, displayed an efficient proteasome inhibition
associated with enhanced anticancer efficacy [145]. An early report with bortezomib also indicated that

intratumoral injection of the drug leads to an effective proteasome inhibition and growth suppression
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in mice harboring prostate cancer xenografts [146]. Altogether, these findings provide an impetus to
develop novel delivery strategies that can effectively target proteasomes in solid cancer tissues and
validate the potential of CFZ-based therapy for solid cancer patients.

Previously, we developed several CFZ-loaded PM formulations displaying improved metabolic
stability and anticancer efficacy in vitro [133]. In this study, we investigated in vivo anticancer efficacy
and PK profiles of CFZ-PM (CFZ-loaded PEG-PCL 5-5.5 KDa with DCA) in mice. In the tumor
xenograft model, CFZ-PM did not show substantial improvements in the anticancer efficacy and
proteasome inhibition at the tumor sites over CFZ-CD (Figs 2 and 3). In addition, the plasma PK profiles
of CFZ-PM were for the most part comparable to those of CFZ-CD at the dose of 3 mg/kg except
showing slightly higher drug concentrations at early time points (Fig 4). These results indicated an
incomplete proteasome inhibition in the post-treatment tumor tissues collected from H460 xenograft
mice 48 h after the last injection of CFZ-PM (Figs 2 and 3). In further probing possible reasons for the
lack of improvements with CFZ-PM over CFZ-CD, it would be important to examine whether the
xenograft model employed in the current study allowed for sufficient passive targeting effect. The
particle size distribution of CFZ-PM (56.0 + 6.1 nm, Table 1) is sufficiently small to pass through the
pore size of vascular membranes (60 ~ 100 nm) [147, 148]. However, these results suggest that CFZ-
PM was not more effective in providing the access of active CFZ into tumor sites than CFZ-CD. It is
increasingly recognized that tumor types, tumor vascular heterogeneity, abnormal tumor blood vessels
or high interstitial fluid pressure may influence the access of chemotherapy to cancer cells [149, 150].
To overcome such variability, various pharmacological and physical strategies including focal radiation
and sonoporation have been exploited in the field [151-153]. It would be important to obtain more
detailed biodistribution data and to consider combining approaches to improve tumoral penetration of
active CFZ in future investigations.

The extent and rate of CFZ release from CFZ-PM in vivo may also be a factor influencing
anticancer efficacy. The plasma PK profiles of CFZ-PM after a single intravenous administration
displayed higher drug concentrations during the initial phase (up to 2 h) than those of CFZ-CD at the

dose levels of both 3 and 6 mg/kg (Fig 4). When the plasma PK parameters were compared, mice that
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received CFZ-PM (6 mg/kg) displayed a greater systemic exposure and a slower CFZ clearance than
those that received CFZ-CD (6 mg/kg) (Table 2). However, the systemic toxicity appeared to be more
severe in xenograft mice treated with CFZ-CD (6 mg/kg) than those treated with CFZ-PM (6 mg/kg);
four out of six mice receiving 6 mg/kg repeated doses of CFZ-CD died. Although these results need to
be interpreted with caution due to the small sample size, these results suggest that CFZ-PM may have
the potential to increase maximum tolerated dose levels and possibly CFZ release kinetics and
biodistribution profiles different from CFZ-CD. Given the relatively low drug loading efficiency (2.3%)
of the current CFZ-PM [133], the initial micelle concentrations (upon immediate dilution of the CFZ-
PM 3 mg/kg dose in an average mouse blood volume of approximately 2 mL) are estimated to be well
above the measured CMC value (0.14 mg/mL, Table 1). However, as polymers are cleared from blood,
micelle concentration will decrease and micelles could degrade and release CFZ. Thus, it might be
necessary to explore polymer-based nanoparticles stabilized with various structural/functional
modifications [132, 147]. For the docetaxel-loaded PM formulation composed of the same block
copolymer, PEG-b-PCL, the CMC value of 0.02 mg/mL was reported in in vitro conditions [154]. Thus,
it may be feasible to lower CMC values for CFZ-loaded PM formulations by carefully optimizing
various factors (e.g., drug-to-polymer ratios, addition of excipients stabilizing hydrophobic cores) using
the current block copolymer or by using different types of block copolymers.

In summary, the results in this study showed that the current CFZ-PM does not enhance anti-
cancer efficacy in vivo. Careful consideration of these results and confounding factors may provide
valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer

and to develop effective CFZ delivery strategies that can be used to treat solid cancers.
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CHAPTERIL

Expanding Therapeutic Utility of Carfilzomib for Breast Cancer

Therapy by Novel Albumin-coated Nanocrystal Formulation

* The work from Chapter 1l is currently under revision in Journal of Controlled

Release (Manuscript number: JCR-D-18-01200).
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1. Introduction
Breast cancer is ranked first in the incidence of disease and second in cancer-related deaths in women
worldwide [1, 2]. Among different subtypes of breast cancer, triple-negative breast cancer (TNBC),
which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth
factor receptor 2 (HER?2), is notorious for its aggressive behavior and resistance to endocrine and anti-
HER?2 therapies (e.g., tamoxifen, trastuzumab) [3, 4]. Thus, novel and effective therapies for TNBC are
urgently needed. A growing body of preclinical evidence supports that the proteasome is an effective
therapeutic target against breast cancers including TNBC [5, 6]. Bortezomib, the first-in-class
proteasome inhibitor, reversibly inhibits the proteasome with its boronic acid pharmacophore. While
bortezomib has shown remarkable successes in multiple myeloma therapy, it has brought only marginal
therapeutic benefits to patients with solid cancers including breast cancer [7]. The lack of clinical
efficacy of bortezomib is attributed in part to its poor penetration into the targeted solid tumor tissues
and the narrow therapeutic window due to dose-limiting toxicities arising from proteasomal inhibition
in normal tissues and off-target interactions with non-proteasomal targets [5, 8].

Carfilzomib (CFZ, Kyprolis®) is the second-in-class proteasome inhibitor and has received the
FDA approval a decade after the approval of bortezomib. Unlike bortezomib, CFZ covalently and
irreversibly inhibits the proteasome with its epoxyketone pharmacophore and displays minimal
interactions with non-proteasomal targets, thereby improving safety profiles over bortezomib [9]. Due
to the poor solubility of CFZ (log P =4.13, ~ 10 uM in PBS [10]), the current injectable formulation of
CFZ contains 16-fold molar excess of sulfobutyl ether 5-cyclodextrin (Captisol®) as a solubilizer. When
administered as the current cyclodextrin (CD)-based formulation, CFZ has a very short circulation time
(plasma half-lives of 0.5 — 1 h in humans and preclinical species) due to the extensive hepatic and extra-
hepatic metabolism and wide tissue distribution [11]. As an alternative formulation, previous studies
have surveyed the feasibility of CFZ nanoformulations including liposomes, polymer micelles, tethered
polymer nanoassemblies, and neutrophil membrane-coated nanoparticles [12-15]. The shortcomings of
these approaches however include the low drug loading efficiency, burst release of the drug in blood

circulation, and no-to-marginal improvement in in vivo anticancer efficacy. Thus, there is a clear need
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for a new nanoformulation of CFZ with improved pharmacokinetic (PK) and biodistribution (BD)
profiles as well as pharmacodynamics, such as anticancer efficacy and proteasome target modulation.

To develop a cost-effective nanoformulation with an improved circulation time and anticancer
efficacy in vivo, we designed a CD-free, nanocrystal (NC)-based formulation of CFZ. NC formulations
exploit poor water solubility of anticancer drugs to produce injectable nanoparticles with a high drug
content [16-18]. NCs with sufficiently high lattice energy can circulate for a prolonged period and may
gain selective access to solid tumors via leaky vasculature. To facilitate favorable interactions of NCs
with cancer cells (thereby enhancing the delivery of NCs to cancer cells), the surface of NCs can be
modified with various molecules. In particular, albumin has gained considerable interest as a potential
surface modifier, due to low toxicity, biocompatibility, and the ability to reduce interactions with
phagocytes in the reticuloendothelial system (RES) [19-21]. Moreover, albumin can interact with
cancer cells based on its increased use as an energy source in rapidly proliferating cancer cells [22]. It
has been reported that nano-albumin-bound-drugs (nab-drugs) can aid drug permeation across tumor
vessels [23, 24]. Albumin-bound paclitaxel (nab-paclitaxel) displayed promising efficacy and safety
profiles in patients with breast cancers including TNBC [25]. Although the exact mechanisms by which
nab-drugs reach cancer cells are not fully understood, it is suggested that albumin facilitates the
movement across the endothelial cell membrane by binding to the gp60 receptor and sequentially
interacting with other albumin-binding proteins such as SPARC (Secreted Protein Acidic and Rich in
Cysteine) abundantly expressed in and near cancer cells [26]. Importantly, our previous studies support
that albumin coating helps deliver paclitaxel and docetaxel NCs to solid tumors through the interaction
with those albumin-binding proteins [27, 28].

In this study, we examined whether NCs with albumin coating could enhance the delivery of
CFZ to breast cancers. Using albumin-coated CFZ NCs (CFZ-alb NC), we observed that CFZ-alb NC
enhanced cytotoxic effects in breast cancer cell lines and tumor growth suppression in a murine 4T1
orthotopic breast cancer model, compared to the CD-based formulation of CFZ (CFZ-CD). We also
observed the improved BD profiles of CFZ-alb NC in 4T1 orthotopic breast cancer model and

investigated potential involvement of SPARC in the enhanced tumoral accumulation of CFZ-alb NC.
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2. Material and methods

2.1. Materials

CFZ was purchased from Shenzhen Chemical Co. Ltd. (Shanghai, China). Pluronic F127 (F127) was a
gift from BASF (New York, NY, USA). Human serum albumin (HSA; > 96% purity assessed by
agarose gel electrophoresis, Cat. No. A1653) and (2-hydroxypropyl)-p-cyclodextrin were from Sigma-
Aldrich (St. Louis, MO, USA). All other reagents were from Thermo Fisher Scientific (Waltham, MA,

USA).
2.2. Preparation of CFZ-alb NC

CFZ-alb NC was prepared by crystallizing CFZ in the presence of F127 and coating the resulting CFZ-
NC with HSA, as reported previously [28]. Briefly, 6 mg of CFZ and 48 mg of F127 were dissolved in
a mixture of 3 mL of chloroform and 1 mL of methanol and dried in a round-bottom flask by rotary
evaporation at 40 °C for 10 min. The dry drug-polymer film was hydrated with 6 mL of water and
sonicated in a water bath for 10 s. The NC suspension was further probe-sonicated for 5 min with an
amplitude of 40% and a 4:1 duty cycle every 5 s in an ice bath. Subsequently, the suspension was
incubated with 48 mg of HSA for 24 h at room temperature on a rotating shaker. Excess surfactant and

albumin were removed by centrifugation at 135,700 g for 15 min at 4 °C.

Optionally, CFZ-alb NC was fluorescently labeled by adding rhodamine B as 0.1 mg/mL
aqueous solution during the film hydration step. The rhodamine B-labeled CFZ-alb NC was called
*CFZ-alb NC. To quantify the incorporated rhodamine B, the fluorescence intensity (Aex/Aem= 540
nm/625 nm) of a known amount of CFZ-alb NC dissolved in acetonitrile (ACN) was measured with a
SpectraMax M3 microplate reader (Molecular Devices, CA, USA). Most in vitro studies were
performed with freshly prepared CFZ-alb NC. For in vivo studies, CFZ-alb NC was lyophilized with
trehalose as a cryoprotectant (CFZ-alb NC:trehalose = 1:5 (w/w)) (Fig. S1). The lyophilized product of
CFZ-alb NC was dissolved in PBS before administration. The concentration of trehalose in the dosing
solution (containing 0.8 mg/ml of CFZ) was estimated to be around 4.3 mOsm/L, which is unlikely to

compromise the isotonicity (approximately 300 mOsm/L).
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2.3. Characterization of CFZ-alb NC

2.3.1. Size, surface charge, and morphology

The size and surface charge of CFZ-alb NC diluted in phosphate buffer (1 mM, pH 7.4) were measured
with a Zetasizer Nano-ZS90 (Malvern Instruments, Westborough, MA, USA). The morphology of
CFZ-alb NC was examined with a FEI Tecnai G2 20 Transmission Electron Microscope (FEI Company,
Hillsboro, OR, USA) at 200 keV. Samples were mounted on a 400-mesh Cu grid with Formvar/carbon
supporting film, followed by negative staining with 1% uranyl acetate. Images were captured with a
SIA L3-C2 megapixel CCD camera (Scientific Instruments and Application, Duluth, GA, USA). The
length of CFZ-alb NC was analyzed from TEM images with ImageJ] (National Institutes of Health,

Bethesda, MD, USA).

2.3.2. Powder X-ray diffraction (PXRD)

CFZ and CFZ-alb NC were analyzed with a Rigaku SmartLab diffractometer (Rigaku Americas, The
Woodlands, TX, USA) equipped with a Cu-Ka radiation source. The powder samples were placed on

glass holder, and diffraction patterns were obtained from 5 to 40° 26 at a scan speed of 4° per min and

a step size of 0.02°. The voltage and current used were 40 kV and 44 mA, respectively.

2.3.3. Contents of CFZ and albumin in CFZ-alb NC

The CFZ content in CFZ-alb NC was determined by HPLC. CFZ-alb NC with a pre-measured mass
was dissolved in a 50:50 mixture of ACN and water and filtered with 0.45 pm syringe filter. HPLC was
performed with an Agilent 1100 HPLC system (Agilent, Palo Alto, CA, USA), equipped with Ascentis
C18 column (25 cm x 4.6 mm, particle size: 5 pum). The column was initially equilibrated with 40% of
ACN, followed by a linear gradient of ACN from 40% to 80% over 10 min and from 80% to 40% over
the next 10 min at a flow rate of 0.7 mL/min. CFZ was detected with a UV detector at a wavelength of

210 nm.

The albumin content in CFZ-alb NC was quantified with SDS-PAGE. CFZ-alb NC with a
known mass or albumin standard solutions were mixed with 4x Laemmli sample buffer and heated at

95 °C for 5 min to separate albumin from CFZ-alb NC. The samples were resolved in a 12%
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polyacrylamide gel and stained with QC Colloidal Coomassie Stain (Bio-Rad, Hercules, CA, USA).
The stained gel was imaged with Azure C300 (Azure Biosystems, Dublin, CA, USA), and albumin
bands were subjected to densitometric analysis using the AzureSpot Analysis Software (Azure
Biosystems, Dublin, CA, USA). The albumin content was determined by comparing the band intensity

of CFZ-alb NC and albumin standards.

2.4. Stability of CFZ-alb NC

2.4.1. Physical stability

To predict the physical stability of CFZ-alb NC, we resorted to a linear relationship between the number
of particles and light scattering intensity [29]. The derived count rate (i.e., absolute light scattering) of
CFZ-alb NC suspension with a concentration equivalent to CFZ 7.2 — 72 pg/mL was measured in
phosphate-buffered saline (PBS) or undiluted fetal bovine serum (FBS) at 37 °C over 24 h with a
Zetasizer Nano-ZS90 (Malvern Instruments, Westborough, MA, USA). The derived count rate of FBS
was subtracted from each measurement made in FBS. In a separate experiment, the dissolution of CFZ-
alb NC in FBS was monitored by measuring the count rate continuously over 20 min at the final
concentration equivalent to 7.2 or 30 pug/mL of CFZ. Measurements were made twice every two seconds

at the measurement position of 4.65 nm and with an attenuator setting of 10.

2.4.2. In vitro metabolic stability

To compare the in vitro metabolic stability in CFZ formulations (CFZ solution, CFZ dissolved in
dimethyl sulfoxide (DMSO); CFZ-CD, CFZ dissolved in 10 mM citrate buffer (pH 3.1) containing 20%
(w/v) 2-hydroxypropyl-p-cyclodextrin); and CFZ-alb NC dissolved in PBS), the whole blood and the
liver were collected from a male Sprague Dawley rat. The whole blood was treated with heparin (25
IU/mL) and kept on ice until the assay was performed. The isolated liver was washed and homogenized
in ice-cold PBS (pH 7.4, a 1:5 ratio of liver weight (g) to PBS volume (mL)). Each of CFZ formulations
(4 uL) was added to the whole blood (396 pL) or liver homogenates (396 pL) to result in the final CFZ
concentration equivalent to 1 uM. A reaction mixture (40 pL) was taken at 0, 5, 10, 30, and 60 min at

37 °C, and snap-frozen in liquid nitrogen until the measurements of the remaining CFZ concentration.
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2.5. Cell cultures and treatments

Human breast cancer cell lines (MDA-MB-231, MCF-7, HCC1943, and HCC1937) were obtained from
Korean Cell Line Bank (KCLB, Seoul, Korea). Mouse breast cancer cell line 4T1 was purchased from
ATCC (Manassas, VA, USA). All cell lines were maintained in RPMI-1640 medium supplemented
with 10% FBS and penicillin-streptomycin (100 IU/mL-100 pg/mL) at 37 °C in a humidified incubator

operating at 5% CO».
2.5.1. Cellular uptake study for rhodamine B-labeled CFZ-alb NC (*CFZ-alb NC)

Cells were seeded in a 35 mm glass bottom dish (MatTak, Ashland, MA, USA) at a density of 50,000
cells per dish. After 24 h, the medium was replaced with fresh medium, and the cells were incubated
with *CFZ-alb NC equivalent to 30 pg/mL CFZ or free thodamine B solution at a comparable level for
2 hin complete medium. After washing twice with PBS, the cells were fixed with 4% paraformaldehyde
in PBS for 10 min. Following nuclear staining with Hoechst 33342 (2 pg/mL; Cat. No. H1399), cells
were imaged with a Nikon AIR confocal microscope (Nikon America Inc., Melville, NY, USA).
Hoechst 33342 and *CFZ-alb NC or free thodamine B were detected with Acx/Aem 0f 407 nm/425 — 475
nm and 561 nm/570 — 620 nm, respectively. For quantitative analysis, cells were prepared in the same
manner and analyzed with an Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA). At
least 10,000 gated events were acquired, and FL-2 channel (Aex/Aem 488 nm/585 nm) was monitored to

determine the cellular level of rhodamine B.
2.5.2. Cell viability assay

Cancer cells were seeded on 96-well plates (4T1, 2000 cells/well; MDA-MB-231 and MCF-7, 5000
cells/well; HCC1640, HCC1937, and U887MG, 8000 cells/well) 24 h prior to drug treatment. For the
continuous drug treatment condition, cells were continuously exposed to CFZ solution or CFZ-alb NC
for 72 h. For the pulse treatment condition, cells were treated with CFZ solution or CFZ-alb NC for 2
h, then washed twice with PBS, and grown in drug-free media for 72 h. Viable cells were measured
with the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA)

using Synergy HT plate reader (BioTek, Winooski, VT, USA).
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2.6. Animal experiments

BALB/c mice (female, 5 — 6 weeks of age, 19 — 21 g), ICR mice (male, 8 weeks of age, 35 —38 g), and
Sprague Dawley rats (male, 8 weeks of age, 250 — 260 g) were obtained from Nara Biotech Co., Ltd.
(Seoul, Korea) or Envigo (Indianapolis, IN, USA), and were acclimatized at the animal research facility
in Seoul National University (SNU) or Purdue University (PU) for at least one week. All animal

experiments were performed in accordance with the protocols approved by the Institutional Animal

Care and Use Committee of SNU and PU (SNU-161205-2-1, SNU-170424-2-1, and PU-1503001212).
2.6.1. In vivo anticancer activity

To establish an orthotopic breast cancer mouse model, 4T1 cells (1.5 x 10° cells suspended in 50 pL of
complete media) were inoculated into the inguinal mammary fat pad on both left and right sides of
BALB/c mice (on day 0). When the palpable knob with a similar size appeared on day 4, the mice
bearing 4T1 xenograft were randomly assigned to different groups (n= 5 — 6 per group) as follows:
vehicle only group (10 mM citrate buffer (pH 3.1)), CFZ-CD at a dose of 3 mg CFZ/kg, and CFZ-alb
NC at a dose of 3 mg CFZ/kg. The drug was administered two consecutive days a week for three weeks
via tail vein injection. Tumor size was measured using a digital caliper; tumor volume =
lengthx(width)?/2. The body weight of mice was monitored every 2 — 3 days until day 22. Whole blood
samples and harvested major organs were snap-frozen and stored at -80 °C until analysis or fixed in 4%

paraformaldehyde and embedded in paraffin for histological examination.
2.6.2. Plasma pharmacokinetic study

CFZ-alb NC and CFZ-CD were injected via tail vein into ICR mice at the dose of 3 mg/kg (n=3 -4
per group). At the pre-determined time points (2, 5, 20, 60, 120, 360, 600, and 1,440 min), blood
samples (10 — 20 uL) were collected from the retro-orbital plexus of the mice using microhematocrit
tubes. The detailed analytical conditions and assay validation parameters were previously reported [30].
PK parameters were calculated by non-compartmental method using WinNonlin software (Pharsight

Corp., Version 5.0.1).
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2.6.3. Biodistribution study

CFZ-alb NC and CFZ-CD were injected via tail vein into BALB/c mice harboring orthotopic xenografts
(described in 2.6.1.) at an equivalent dose of 3 mg/kg when the tumor size became approximately 200
—300 mm’. After 0.5, 2, and 6 h, the mice were anesthetized with isoflurane/oxygen mixture (3 — 5%:95
— 97%; v/v). At least 800 uL of blood was collected with a heparinized syringe via cardiac puncture.
Tumor and major organs were harvested, weighed, and snap-frozen until analysis. To measure the CFZ
amount accumulated in tissues, the tissue homogenates were prepared on ice by adding the following
proportion of PBS; 0.2 g tissue per mL PBS for all tissues except the lung (0.17 g tissue per mL PBS)
and adrenal glands (0.1 g tissue per mL PBS). Tissue homogenates (100 puL) were extracted with cold
tert-butyl methyl ether (600 nL) containing an internal standard (carfilzomib-ds 250 ng/mL; Cayman
Chemical, Ann Arbor, MI, USA) by vortex mixing. After centrifugation at 3,724 g for 10 min, 400 pL
of organic phase was transferred to a new tube, and evaporated. The samples were reconstituted in 100
uL of ACN and transferred to a new vial for LC-MS/MS analysis. To measure the CFZ concentration
remaining in plasma, 5 uL of plasma was mixed with H,O (15 pL) and ACN (40 pL) containing an
internal standard (carfilzomib-ds 250 ng/mL; Cat. No. 22558). After vortex mixing, samples were
centrifuged at 13,000 g for 10 min. The supernatant (50 pL) was transferred to a new vial for LC-

MS/MS analysis.
2.6.4. Quantification of CFZ in tissue homogenates

Samples were analyzed by the HPLC system coupled to Agilent 6460 QQQ LC-MS/MS (Agilent, Palo
Alto, CA, USA) equipped with an electrospray ionization interface operated in a positive ion mode.
The chromatographic separation was performed on a C18 column (50 x 2.0 mm id, 3 mm) with a mobile
phase that consisted of 0.1% formic acid in water (A)-0.1% formic acid in ACN (B) at a flow rate of
0.3 mL/min. The gradient was set up as follows: 0.5 min 85% A, 15% B; 3 min 100% B; 4 min 100%
B; 5.5 min 85% A, 15% B; 6 min 85% A, 15% B. The autosampler temperature was set at 4 °C, and
the injection volume was 10 pL. The optimized source-dependent mass parameters were set as follows:
nebulizing gas 45 psi; gas flow, 9 L/min; sheath gas flow, 7 L/min; capillary voltage, 4 kV; gas

temperature, 330 °C. The compound-dependent parameters, fragment voltage and collision energy,
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were set at 180 V and 60 V for CFZ and carfilzomib-ds with the dwell time of 50 ms. Quantification
was performed in the selected reaction monitoring (SRM) mode. The SRM transitions were as follows:
for CFZ, m/z 720.3 > 100.1 (quantifier) and m/z 720.3 > 289.1 (qualifier); for the internal standard, m/z

728.3 > 108.1 (quantifier) and m/z 728.3 > 297.1 (qualifier).
2.6.5. Proteasome activity measurement in tissue homogenates from mice that received drug treatment

The homogenized tissue samples in PBS (prepared as described in the section 2.6.3.) were mixed with
the same volume of ice-cold passive lysis buffer (Promega, Madison, WI, USA; Cat. No. E1941). After
centrifugation of tissue mixtures at 3,000 g for 10 min at 4 °C, the supernatant was collected and used
for proteasome activity assay (50 — 150 ug total protein/uL verified to be within the linear range of the
assay using serial diluted samples). For blood samples, the whole blood (0.2 pL) was mixed with ice-
cold passive lysis buffer (1.8 puL), and used for proteasome activity assay. To assess the proteasome
activity, the tissue supernatant or blood mixture (2 pL) was incubated with 100 uM Suc-LLVY-AMC
(Bachem, Bubendorf, Switzerland) in the assay buffer (48 pL; 20 mM Tris-ClI buffer (pH 8.0) and 500
uM EDTA). The proteasome activity was determined by monitoring the initial cleavage rate of
fluorescent 7-amino-4-methylcoumarine from Suc-LLVY-AMC. Fluorescence signals were detected
every min for 60 min using a SpectraMax M3 microplate reader (Molecular Devices, CA, USA) at the

wavelengths of Acx/Aem = 360/460 nm with the cut-off filter set at 420 nm.
2.7. Involvement of SPARC in the cellular uptake of CFZ-alb NC
2.7.1. Quantification of mRNA expression of hSPARC

Total RNA of breast cancer cells was isolated using PureLink RNA Mini Kit and transcribed to cDNA
using SuperScript Il First-Strand Synthesis kit. The mRNA level of hSPARC was assessed by
quantitative real-time PCR using TOPreal™ qPCR 2X PreMIX (Enzynomics, Seoul, Korea), the primer
pair (forward, 5’-tcgacagtcagcegeatct-3'; reverse, 5'-ccgttgactccgaccttca-3”), and StepOnePlus™ Real-
Time PCR system (Applied Biosystems, Foster city, CA, USA). The hGAPDH level was similarly
measured as a house-keeping control (forward primer, 5’-gggacttcgagaagaac-3’; reverse primer, 5'-

agaggtacccgtcaatg-3"), and the relative hSPARC levels were then calculated using the AACt method.
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2.7.2. Immunoblotting analysis for hRSPARC

Cell lysates were prepared in RIPA buffer, mixed with 4x Laemmli sample buffer, and heated at 95 °C
for 5 min. Cell lysates containing the equivalent protein amount of 30 pug were resolved using 10%
SDS-PAGE and transferred onto PVDF membranes (Bio-Rad, Hercules, CA, USA). After blocking
using 5% milk in Tris-buffered saline containing 0.05% Tween-20 (TBST), the membranes were
probed with the antibodies for hSPARC (1:200; R&D Systems, Minneapolis, MN, USA; Cat. No.
AF941) and B-actin (Cell Signaling Technology, Danvers, MA, USA; Cat. No. 4970). After washing
with TBST, the membranes were incubated with the corresponding secondary antibodies conjugated
with horseradish peroxidase. Bound antibodies were visualized with an enhanced chemiluminescence

substrate using ImageQuant™ LAS4000 (GE Healthcare, Little Chalfont, United Kingdom).
2.7.3. Immunohistochemical analysis for mSparc

Tissue antigen was retrieved by boiling deparaffinized slides in 10 mM Tris, | mM EDTA, and 0.03%
Tween 20 (pH 9.0) using a pressure cooker. After washing with water and blocking with 4% bovine
serum albumin in PBS Tween-20 (PBST), slides were incubated with the mSparc antibody (1:20; R&D
Systems, Minneapolis, MN, USA; Cat. No. AF942) for 60 min at room temperature. After washing
slides with PBST, a streptavidin-biotin system was used according to the manufacturer's instructions
(BioGenex, San Ramon, CA, USA). The slides were counterstained with Mayer’s Hematoxylin (Sigma-
Aldrich, St. Louis, MO, USA). All sections were examined under a Vectra imaging system

(PerkinElmer, Waltham, MA, USA).
2.7.4. Association between hSPARC expression and overall survival in the TCGA dataset

To explore a potential association between the hSPARC expression and the outcomes in breast cancer

patients, the datasets available from the ONCOMINE (www.oncomine.org) were analyzed; the datasets

were sorted based on the gene name (hSPARC), the analysis type (cancer vs normal analysis), and the
cancer type (breast cancer). The case dataset containing the hSPARC expression levels and overall
survival of breast cancer patients was downloaded from a breast cancer meta-data set (reported in

TCGA, The Cancer Genome Atlas) [31, 32].
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2.7.5. Impact of hSPARC knockdown on cellular uptake of CFZ-alb NC in U87MG cells

To achieve the stable knockdown of hSPARC, U87MG cells were transduced using a lentiviral vector-
based shRNA system targeting hSPARC (obtained from Santa Cruz Biotechnology, Dallas, TX, USA)
(Detailed experimental methods were reported in the thesis of JH Jo and will soon be published; the
thesis available at [http://hdl.handle.net/10371/138009]. To assess the cellular uptake of CFZ-alb NC,
U87MG cells with hSPARC knockdown or wildtype control were seeded on a poly-L-lysine-coated 12-
well plate (at a density of 1x10° cells/well) in complete media containing FBS. After 24 h, cells were
rinsed with Opti-MEM media, exposed to unformulated CFZ or CFZ-alb NC in Opti-MEM media for
2 h, and then washed 3 times with PBS. After harvesting cells with 50% methanol (200 pL), aliquots
of cell lysates were transferred to separate tubes for the measurement of CFZ via LC-MS/MS analysis
(100 pL) or the protein quantitation assay (30 uL). For LC-MS/MS analysis, cell lysates (100 pL) were
subject to probe sonication and extracted with ice-cold ACN (100 pL) containing an internal standard
by vortex mixing. After centrifugation at 3,000 g for 10 min, 150 pL of supernatant was transferred to

a new vial for LC-MS/MS analysis.
2.8. Statistical analysis

All data are presented as mean + standard deviation (SD) of the replicates from independent
experiments unless stated otherwise. Student’s ¢-test or ANOVA with a post-hoc test was performed to
determine statistical significance using GraphPad Prism (GraphPad Software, version 7.0.3.). A p-value

< 0.05 was considered significant.

3. Results and discussion
3.1. Preparation and characterization of CFZ-alb NC

CFZ-alb NC was prepared following the two-step method as reported previously [28]. In the first step,
CFZ and F127 (an amphiphilic triblock co-polymer of poly(ethylene oxide)-poly(propylene oxide)-
poly(ethylene oxide)) were dissolved in a mixture of chloroform and methanol and subsequently

evaporated to form a dry film. Incipient CFZ nanocrystal (CFZ-NC) was formed by hydration of the
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film. F127 played dual roles: it helped hydrate and retrieve the film from the container (without F127,
a dry film of CFZ resisted hydration and only 0.02 wt% of CFZ was retrieved from the film) and
prevented excessive crystal growth of CFZ-NC by binding to the NC surface [17, 33]. In the second
step, the incipient CFZ-NC was further functionalized with HSA, and the excess HSA and F127 were
removed by multiple washing.

The TEM images of CFZ-alb NC showed a rod-like structure with an average length and width
0f 352 + 195 nm and 58 + 15 nm, respectively (n=135, analyzed using the Image J software) (Fig. 1A).
When measured with a dynamic light scattering (DLS), the size and polydispersity index of CFZ-alb
NC were 270.8 + 21.5 nm and 0.27 + 0.06, respectively (n = 10 independently prepared batches) (Fig.
1B and Table 1). Although the average size of CFZ-alb NC is relatively large compared to other
nanoformulations, the current size may still be sufficient for extravasation through peritumoral

vasculature with the reported cut-off size in the range of 200 — 1,200 nm [34-36]. Even if CFZ-alb NC
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Figure 1. Physicochemical properties of CFZ-alb NC. (A) Representative TEM image of CFZ-alb
NC and size distribution (analyzed from TEM images, n=135). (B) The average size and zeta
potential of CFZ-alb NC, measured by DLS. Mean values + SD (n=10 identically prepared batches).
(C) The particle size of CFZ NC with or without human serum albumin added during the three
repeated procedures of centrifugation and washing, measured by DLS. (D) Powder X-ray diffraction
of CFZ powder (black) and CFZ-alb NC (red). Arbitrary unit (a.u.). (E) Content (%) of CFZ and
albumin in CFZ-alb NC. Mean values + SD (n = 6 — 10 independently prepared batches).
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Table 1. Physicochemical properties of CFZ-alb NC and *CFZ-alb NC.

Polydispersity ~ Zeta potential Formulation content (wt%)
Formulation Size (nm)
Index (mV) CFZ albumin  rhodamine B
CFZ-alb-NC 270.8 £21.5 0.27 +0.06 -13.7+3.2 74+6 20+4 -
*CFZ-alb NC  328.0+48.6 0.21 +0.09 -8.5+1.1 82+4 16 £3 0.34+0.11

Mean values + SD from different batches for CFZ-alb NC (n = 10) and *CFZ-alb NC (n = 3).

does not freely traverse the tumor interstitium, CFZ-alb NC may undergo gradual disintegration and
release CFZ near cancer cells. The shape of NC appears to depend on the drug itself rather than process
parameters. In the previous reports, docetaxel and paclitaxel form crystals with sheet- and rod-like
structures, respectively, even with similar procedural methods [27, 28]. The elongated shape of CFZ-
alb NC is also considered advantageous for transvascular flux as compared to the spherical shape at an
equivalent volume [37, 38] and for resisting uptake by macrophages [39]. CFZ-alb NC was lyophilized
with trehalose as a cryoprotectant for a long-term storage of the formulation and verified to redisperse
to the original size (Fig. S1).

The zeta potential of CFZ-alb NC was -13.7 £ 3.2 mV, likely due to the HSA present on the
surface of NCs (Fig. 1B and Table 1). The surface-bound HSA protected F127-coated CFZ-NC from
aggregation (Fig. 1C). In the absence of HSA, CFZ-NC aggregated upon repeated centrifugation and
washing procedures, as F127 was gradually removed from the NC surface [40]. Under the same
conditions of multiple centrifugation and washing, the size of CFZ-alb NC did not increase. When
PXRD patterns were assessed, CFZ powder displayed multiple sharp peaks, indicative of crystalline
solids, while CFZ-alb NC showed much attenuated peak intensities, indicative of surface-bound HSA
(Fig. 1D) [28]. The contents of CFZ and albumin in CFZ-alb NC were 74 £ 6 % (w/w) and 20 + 4 %
(w/w), respectively (n = 6 independently prepared batches) (Fig. 1E and Table 1). When the weight
ratio of CFZ to albumin is considered, it is estimated that the albumin content corresponds to

approximately 1.5 continuous layers of albumin covering the NC surface (Table S1).
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3.2. Enhanced physical and metabolic stability of CFZ-alb NC

We next examined whether CFZ-alb NC can display the physical and metabolic stability. In assessing

the physical stability of NCs in aqueous media, light scattering intensity can serve as a convenient and

reliable indicator [28, 29]. Stable NCs maintain the light scattering capability, thereby a constant

derived count rate, whereas disintegrating or dissolving NCs show a decreasing derived count rate.

When tested in PBS, CFZ-alb NC maintained a linear relationship between the derived count rates the

concentration within the tested range (7.2 to 72 pg/mL CFZ) up to 24 h (Fig. S2A). In undiluted FBS,

similar trends were observed with comparable slopes up to 4 h and slightly decreasing slopes at 7 or 24

h (Fig. 2A). When the derived count rates were continuously monitored over 20 min, CFZ-alb NC (7.2

pg/mL CFZ, Fig. 2B; 30 pg/mL CFZ, Fig. S2B) yielded the signals consistently greater than those of

FBS alone. These results support the physical stability of CFZ-alb NC at its concentrations as low as
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Figure 2. Physical and metabolic stability profiles of CFZ-alb NC. (A) In the presence of undiluted
FBS, the derived count rates of CFZ-alb NC maintained linear relationships over the concentrations
ranges tested (7.2 to 72 pg/mL CFZ) for 24 h. (B) The derived count rates of CFZ-alb NC (equivalent
to 7.2 pg/mL CFZ, in the presence of undiluted FBS) were obtained by continuous monitoring for
the first 20 min. (C and D) Remaining amount of CFZ following the incubation with CFZ-alb NC,
cyclodextrin-based CFZ formulation (CFZ-CD), and unformulated CFZ solution in rat liver
homogenates (C) and whole blood (D). Mean values + SD (n=3 independently prepared batches of

CFZ-alb NC).
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7.2 ng/mL CFZ, even in the presence of serum proteins. When CFZ-alb NC (3 mg/kg, based on the
CFZ content) is administered to a mouse with a typical blood volume of 1.5 — 2.5 mL [41], the initial
blood concentration of CFZ-alb NC can be roughly estimated to be 24 — 40 pg/mL CFZ. If the current
in vitro results measured in undiluted serum were to reflect the physical stability of CFZ-alb NC in vivo,
one may expect CFZ-alb NC to circulate as intact particulate forms in blood, especially during the early
hours after drug administration.

CFZ displays a very short circulation time due to its rapid metabolic inactivation by epoxide
ring opening and peptide hydrolysis [42]. To assess whether CFZ-alb NC can improve metabolic
stability, CFZ-alb NC was incubated with rat liver homogenates. As a control, separate reactions were
performed with CFZ solution (dissolved in DMSO) or clinically used CD-based CFZ formulation
(CFZ-CD, CFZ dissolved in 10 mM citrate buffer (pH 3.1) containing 20% (w/v) 2-hydroxypropyl-p-
cyclodextrin). At a concentration equivalent to CFZ 1 uM, both CFZ solution and CFZ-CD displayed
very rapid disappearance of CFZ (<10% remaining after 10 min) in the presence of rat liver
homogenates (Fig. 2C). These results are consistent with the previous reports showing the half-lives of
CFZ in various rat tissue homogenates in the ranges of 4 — 39 min [41]. On the other hand, CFZ-alb
NC displayed much improved stability with approximately 40% of the active drug remaining even at
60 min in the liver homogenates (Fig. 2C). The disappearance of CFZ after addition of CFZ-alb NC
and CFZ-CD was quite rapid at early time points and became slower at later time points. The rapid
disappearance of CFZ at early time points may arise from the readily available portion of CFZ near the
outer layer of NC formulation. At later time points, the drug release from the disintegration of NC
formulation may take longer time. Given the results were obtained using liver homogenates (containing
a variety of metabolizing enzymes and proteins including the proteasome), it is unknown what
contributes to this biphasic pattern of CFZ disappearance and further investigations are warranted. The
metabolic stability profiles in whole blood displayed similar trends, finding CFZ-alb NC most stable
(Fig. 2D). These results indicate that CFZ-alb NC can confer both physical and metabolic stability,

rendering a promising potential to extend the circulation time of CFZ in vivo.
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3.3. Enhanced cellular uptake and cytotoxic effects of CFZ-alb NC in breast cancer cell lines

In order to assess its cellular uptake, CFZ-alb NC was fluorescently labeled using a small quantity of
rhodamine B. The rhodamine B-labeled CFZ-alb NC (*CFZ-alb NC) was comparable to the unlabeled
CFZ-alb NC in terms of the average size, zeta potential, and morphology (Table 1 and Figs. S3A and
S3B), similar to the previous reports with other drugs and nanoformulations [43, 44]. The content of
incorporated rhodamine B in *CFZ-alb NC was 0.34 £0.11 wt% (n = 3). Established breast cancer cell
lines (murine, 4T1; human, MCF7, HCC1937) were incubated with *CFZ-alb NC (30 ug/mL) for 2 h
and observed by confocal microscope imaging (Fig. 3A and Fig. S3C). Little signal was obtained from
the incubation of *CFZ-alb NC in the dish without cells (data not shown), ruling out the possibility that
the signal obtained with 4T1 cells may come from protein adsorption and subsequent fixation of protein.
The incubation with *CFZ-alb NC yielded red fluorescence signals localized in the cytoplasm (Fig. 3A,
d-f), indicating cellular uptake of *CFZ-alb NC (merged images shown in Fig. 3A, f). As a control, free
rhodamine B solution was tested at an equivalent dye concentration (0.1 pg/mL). As shown in Fig. 3A
(g-1), the treatment of free rhodamine B showed little signal in all three cell lines (Fig. 3A and S3C).
No signal from the incubation of *CFZ-alb NC in the dish without cells (data not shown) ruled out the
plausible signal from protein adsorpition and subsequent fixation of protein. In quantitative analysis by
flow cytometry, the fluorescent signal intensities were higher in cells treated with *CFZ-alb NC than
those in the control groups (no treatment or free rhodamine B) for all three cell lines (Fig. 3B). Of the
*CFZ-alb NC-treated cell lines, HCC1937 cells showed the highest fluorescence signal intensity,
followed by 4T1 and MCF-7 cells.

Next, we tested whether the enhanced cellular uptake of CFZ-alb NC leads to greater cytotoxic
effects in breast cancer cells. When treated with unformulated CFZ, five breast cancer cell line models
(human: MCF7, MDA-MB-231, HCC1143, and HCC1937; murine: 4T1) displayed ICso values of low
nano-molar ranges for CFZ (Fig. S4A). With regard to the expression levels of the proteasome catalytic
subunits (B1, B2, and B5), the four human breast cancer cell lines tested were comparable to human
multiple myeloma RPMI8226 cells (well-known for its abundant expression of the proteasome and

sensitivity to proteasome inhibitor drugs) (Fig. S4B). In addition, the four human breast cancer cells
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Figure 3. Cellular uptake of rhodamine B-labeled CFZ-alb NC (*CFZ-alb NC) in breast cancer cell
lines. (A) Representative confocal microscopy images of HCC1937 cells following 2 h incubation
with *CFZ-alb NC (30 pg/mL CFZ) (d, e, and f). Free thodamine B (Rho B) was used as a negative
control (g, h, and i). Scale bar = 10 pm. (B) Intensities of fluorescent signals associated with breast
cancer cells (4T1, MCF7, HCC1937) after 2 h incubation with *CFZ-alb NC, measured by flow
cytometry. Arbitrary unit (a.u.). Two-way ANOVA followed by Tukey’s post hoc test. **p < 0.0021,
**%p <0.0002. Mean values = SD (n= 3 independently and identically performed experiments).

displayed comparable proteasome activities (chymotrypsin-like, trypsin-like, and caspase-like activity,
typically attributed to 5, B2, and 1 subunits, respectively) to the RPMI8226 cells (Fig. S4C). Although
the expression and activity of proteasomes were similar across the tested cell lines, MCF7 cells were
least sensitive to CFZ based on 2D colony formation assay (Fig. S4E). MCF7 cells were also shown to
be resistant to bortezomib [5]. The mechanism of MCF7 resistance to proteasome inhibitors remains
unclear. Since CFZ is a known substrate of P-glycoprotein (P-gp) [44], the P-gp mediated drug efflux
was initially suspected as a possible resistance mechanism in MCF7 cells, but this was excluded given
the lack of P-gp expression (Fig. S4D). Cells under 3D spheroid culture conditions are known to enrich
stem-like cancer cells [45, 46], and the 3D spheroid formation was highest with CFZ-treated MCF7
cells (Fig. S4F). These results can be cautiously interpreted that a sub-population of stem-like cancer

cells existing in MCF7 cells may play a role in the resistance to proteasome inhibitors.

The cytotoxic effects of CFZ-alb NC was tested with either continuous or pulse treatment.
Upon continuous exposure at low CFZ concentrations (equivalent to 20 and 50 nM for 72 h), CFZ-alb

NC and unformulated CFZ solution (dissolved in DMSO) displayed similar cytotoxic effects (Fig. 4A).
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Figure 4. Cytotoxic effects of CFZ-alb NC in breast cancer cell lines. Cell viability was measured
following the treatment of human breast cancer cell lines with CFZ-alb NC or unformulated CFZ
solution under continuous treatment (Tx) conditions for 72 h (A) or pulse Tx conditions for 2 h
followed by washout (B). Two-way ANOVA followed by Sidak’s post hoc test. *p < 0.0332, **p <
0.0021, ****p < 0.0001. Mean values + SD (n= 4~5 independently and identically performed

experiments).

These results were expected in that CFZ-alb NC would dissolve over time at sufficiently low CFZ

concentrations. Upon intravenous injection, however, CFZ-alb NC will be present initially at high

concentrations and rapidly decline, featuring more dynamic changes over time [47, 48]. To mimic such

conditions, cells were subject to a pulse treatment at high CFZ concentrations (equivalent to 200 or 400

nM) and grown without CFZ: cells were initially exposed to CFZ-alb NC or CFZ solution for 2 h, rinsed,
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and grown in drug-free medium for 72 h prior to the measurement of cell viability. Upon a pulse-
treatment, CFZ-alb NC displayed a greater cytotoxic effect than unformulated CFZ solution (Fig. 4B).
When the intracellular CFZ content was determined by LC-MS/MS after a pulse treatment in HCC1937
cells, CFZ-alb NC led to a greater amount of CFZ than unformulated CFZ solution (Fig. S7E; CFZ-alb
NC vs unformulated CFZ solution; 12.7 vs 7.0 pmol/mg protein). These results collectively suggest that
CFZ-alb NC gains cellular entry during the initial short exposure to a greater extent than unformulated
CFZ solution and possibly serves as an intracellular drug reservoir during the incubation in drug-free

medium.

3.4. Enhanced in vivo anticancer efficacy of CFZ-alb NC in BALB/c bearing 4T1 breast cancer cells

The in vivo anticancer efficacy of CFZ-alb NC was assessed using the murine 4T1 orthotopic breast
cancer model established by the transplantation of 4T1 cells in the mammary fat pad of BALB/c mice,
which mimic human cancer pathology with tumors growing at the location of human disease in the
presence of the proper stromal environment compared to the subcutaneous model [49]. Similar to the
clinical dosing schedule of CFZ [50], intravenous injections of CFZ-alb NC and CFZ-CD (at the
equivalent CFZ dose of 3 mg/kg) were carried out on two consecutive days per week for three weeks
(Fig. 5A). CFZ-alb NC or CFZ-CD suppressed tumor growth compared to the vehicle only (Fig. 5B).
On day 19, the tumor volumes of the mice receiving CFZ-alb NC were smaller than those receiving
CFZ-CD (p = 0.0024) or the vehicle only (p < 0.0001), while the vehicle- and CFZ-CD-treated groups
did not show statistical difference. On day 22, all three groups showed difference from each other: CFZ-
CD (p < 0.0001 vs the vehicle only; p < 0.0001 vs CFZ-alb NC) and CFZ-alb NC (p < 0.0001 vs the
vehicle only; p < 0.0001 vs CFZ-CD). Similar results were obtained for the weight of dissected tumor
tissues (Figs. 5C and S5A) and specific tumor growth rates (Fig. S5B). During the span of experiment,
the body weight of mice showed no major difference among the three groups (the overall changes from
the initial weight was = 10%, Fig. 5D), suggesting no signs of gross toxicity. The weight loss observed
near the end of experiment (in all three groups) are likely due to distant metastasis commonly occurring
in 4T1 tumor models (Fig. S5C). Histological examination of major organs (liver and lung) also showed

no signs of major toxicities in three groups (Fig. S5D).
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Figure 5. [In vivo anticancer efficacy of CFZ-alb NC in BALB/c mice bearing 4T1 orthotopic
xenograft tumors. (A) Experiment schedule including drug treatments. Mice received intravenous
injections of CFZ-alb NC (n = 5; 3 mg/kg), CFZ-CD (n = 5; 3 mg/kg), or vehicle control (n = 6) on
two consecutive days per week for three weeks. (B) Tumor growth curves. Two-way ANOVA
followed by Tukey’s post hoc test. On day 19: CFZ-alb NC vs vehicle, *p <0.0001; CFZ-alb NC vs
CFZ-CD, fp = 0.0024. On day 22: CFZ-alb NC vs vehicle, *p < 0.0001; CFZ-CD vs vehicle, §p <
0.0001; CFZ-alb NC vs CFZ-CD, fip < 0.0001 (C) The weight of tumor tissues harvested on day
22. One-way ANOVA followed by Tukey’s post hoc test. **p < 0.0021, ****p < 0.0001. (D) The
body weight of mice during the span of experiment. (E) The concentration of CFZ from plasma

collected on day 22 (n.d.; not detected). Mean values + SD.

At the end of the in vivo anticancer efficacy experiments described above, we collected the

tumor tissues and blood samples on day 22 (3 days following the last drug dosing on day 19) and

attempted to quantify the CFZ levels by LC-MS/MS. The levels of CFZ in tumor tissues were below

the lower limit of quantitation (< 1 ng/mL), but those of CFZ in plasma samples were higher in mice

receiving CFZ-alb NC than CFZ-CD (Fig. SE). Because CFZ is a covalent modifier, which forms an
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irreversible CFZ-proteasome complex undetectable by LC-MS/MS [51, 52], the drug amount measured
by LC-MS/MS may not accurately represent the total amount of CFZ reaching a particular tissue (as
depicted in Fig. 6B). The recovery of the proteasome activity following inhibition is known to take at
least several days due to the slow de novo biogenesis rates of proteasomes [53]. Thus, we examined the
inhibitory extent of the proteasomal activity in tissues as another indicator of the CFZ distribution. In
whole blood samples, the inhibitory extent of the proteasome activity was greater in the CFZ-alb NC
group than in the CFZ-CD group (p <0.0001) (Fig. S5B), consistent with the blood levels of CFZ (Fig.
5E). These results suggest that CFZ-alb NC increased the formation of the irreversible, long-lasting
complex between CFZ and the proteasome in whole blood (mainly located in red blood cells), likely

from the enhanced stability and cellular uptake of CFZ-alb NC over CFZ-CD.
3.5. Comparison of PK and BD profiles of CFZ-alb NC with CFZ-CD

In the previous study, albumin-coated paclitaxel NC was superior in anticancer efficacy and showed
more favorable plasma PK and BD profiles compared to Abraxane® at the equivalent paclitaxel dose
level [21]. To examine whether CFZ-alb NC confers similar advantages, we first examined the plasma
PK profiles of CFZ-alb NC relative to those of CFZ-CD (an equivalent CFZ dose of 3 mg/kg) in ICR
mice. Following a single intravenous administration, the plasma CFZ concentrations declined very
rapidly in both groups (Fig. 6A). The PK parameters obtained via non-compartmental analysis did not
show major differences between the two groups (Table 2). The volume of distribution at steady-state
(Vss, 19.85 £ 0.04 L/kg and 17.01 £ 9.40 L/kg for CFZ-alb NC and CFZ-CD, respectively) and the
plasma half-lives (ti/2, tcrminal, 387 = 49 min and 796 + 393 min; ti/, inital, 21 £ 4 min and 19 = 5 min for
CFZ-alb NC and CFZ-CD, respectively). The Vs and tis, iniial values of CFZ-CD were comparable to
the previously reported values [11, 41, 48]. The ti/, erminal Values tended to be longer with CFZ-alb NC
than with CFZ-CD, but the differences did not reach statistical significance due to large variability. The
systemic exposure of CFZ (assessed by AUCiyr) was slightly greater with CFZ-alb NC (57.5 = 14.0
min-nmol/mL) than with CFZ-CD (45.4 = 6.9 min-nmol/mL), although the difference did not reach
statistical significance. Likewise, the systemic clearance was slightly slower with CFZ-alb NC than

with CFZ-CD but did not show statistical significance (76 = 21 mL/min/kg and 94 + 15 mL/min/kg for
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CFZ-alb NC and CFZ-CD, respectively). Similar to the previous reports [11, 41], the clearance of both
CFZ-alb NC and CFZ-CD was considerable fast, almost approximating to the hepatic blood flow in
mice [54]. These results suggest that the extrahepatic metabolism likely plays an important role in the
elimination of CFZ in both groups. Overall, CFZ-alb NC appeared to have a modest improvement over

CFZ-CD with regard to the plasma PK profiles.

Table 2. Pharmacokinetic (PK) parameters following the intravenous administration of CFZ-alb NC or
CFZ-CD at an equivalent CFZ dose of 3 mg/kg to ICR mice.

PK parameter (unit) CFZ-alb NC (n=3) CFZ-CD (n=4)
AUC:yf (minxnmol/mL) 57.5+14.0 454+6.9
CL (mL/min/kg) 76 £21 94 £ 15
Vs (L/kg) 19.85+0.04 17.01 £9.40
t1/2, terminal (IMIN) 38749 796 + 393
t1/2, initial (MIN) 21+4 19+5
MRT (min) 192 £ 125 274 + 67

AUCyy, area under the concentration-time curve from time 0 to infinity; Vss, volume of distribution at steady state;
t1/2, terminal, half-life from the terminal phase; t1.2, iniiar, half-life from the initial decline phase (0 — 120 min); MRT,
mean residence time; CL, clearance. Student’s ¢-test indicated no significant difference. Mean values + SD.

To examine whether CFZ-alb NC can enhance tumor distribution of CFZ, BALB/c mice
bearing 4T1 tumors were injected with a single intravenous dose of CFZ-alb NC or CFZ-CD (an
equivalent CFZ dose of 3 mg/kg). Tumor tissues and major organs were harvested at 0.5, 2, or 6 h post-
injection, processed to make tissue homogenates, and subsequently analyzed with respect to the CFZ
levels by LC-MS/MS (the remaining CFZ quantity as either NC or released CFZ) and the proteasome
activity by the enzyme kinetics assay (likely representing the cumulative CFZ access to a given tissue
and the formation of the CFZ-proteasome complex in a given tissue). In tumor tissues, the CFZ-alb NC
group displayed significantly higher CFZ levels than the CFZ-CD group at 0.5 h post-dosing (9.2 + 1.7
vs 6.8 + 1.1 nM CFZ/g tissue, p = 0.028) (Fig. 6C). However, this trend was reversed at 2 and 6 h post-
dosing, where CFZ-alb NC group displayed lower CFZ levels than the CFZ-CD group (at2 h, 4.3+ 0.4
vs 8.2 £2.2 nM CFZ/g tissue, p = 0.0003; at 6 h, 1.4 £ 0.5 vs 7.0 £ 1.2 nM CFZ/g tissue, p < 0.0001).
When we compared the extent of proteasomal activity inhibition (by forming the irreversible CFZ-

proteasome complex) in tumor tissues, the CFZ-alb NC group displayed a greater or comparable extent
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Figure 6. Comparison of pharmacokinetic and biodistribution profiles between CFZ-alb NC and
CFZ-CD following the intravenous administration (a single equivalent CFZ dose of 3 mg/kg). (A)
The plasma concentration-time profiles of CFZ after the administration of CFZ-alb NC (n = 3) or
CFZ-CD (n = 4) in ICR mice. Inset, plasma concentration-time profiles of CFZ for the first 2 h.
(B) Diagram depicting the irreversible biding of CFZ with the proteasome in tissues. The resulting
CFZ-proteasome complex is not measurable by LC-MS/MS, but can be indirectly assessed by
measuring the inhibitory extent of the proteasomal activity. (C, D, and E) The results showing the
measured amount of CFZ and the inhibitory extent of the proteasome activity in tumor tissues and
major organs in BALB/c mice harboring 4T1 xenograft at 0.5, 2, and 6 h following the
administration of CFZ-alb NC or CFZ-CD (n = 4 — 5 per group). The measured amount of CFZ
(C) and the inhibitory extent of the proteasomal activity (D) in tumor tissues. (E) The measured
amount of CFZ in major organs. Two-way ANOVA followed by Sidak’s post hoc test. *p <0.0332,
*H*p <0.0002, ****p <(0.0001. Mean values =+ SD.
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of the proteasomal inhibition than the CFZ-CD group (2 h post-dosing, 27% + 5% for CFZ-CD vs 45%
+ 9% for CFZ-alb NC, p =0.0112) (Fig. 6D). The CFZ levels and proteasome activity in tumors, taken
together, suggest that CFZ-alb NC was rapidly entrapped into tumor tissues after administration,
subsequently releasing CFZ, and forming the CFZ-proteasome complex.

In both CFZ-alb NC and CFZ-CD groups, CFZ was predominantly distributed to the liver, the
lung, and the spleen at 0.5 h post-dosing with a minor distribution into the kidney, the heart, adrenal
glands, and the brain (Figs. 6E and S6A). CFZ-alb NC recognized and sequestered by mononuclear
phagocytic system (MPS) as exogenous materials likely to be accumulated in MPS-rich organs, such
as the liver, the lung, and the spleen [18]. Similar to the plasma PK profiles, CFZ levels in various
tissues rapidly declined within 6 h post-injection. At 2 and 6 h post-injection, the CFZ-CD group
resulted in CFZ levels in the liver, lung, and spleen comparable to or even higher than CFZ-alb NC
group (Figs. 6E and S6A). In the liver (at 2 and 6 h post-dosing), the CFZ-alb NC group showed more
pronounced inhibition of the proteasome activity than the CFZ-CD group (Fig. S6B). CFZ-alb NC
group had lower CFZ levels than CFZ-CD group in the liver, reminiscent of the results obtained in
tumor tissues (Figs. 6C and 6D). No apparent organ toxicity of CFZ-alb NC was observed based on
histological examinations (Fig. S5D). For CFZ-alb NC, the initial accumulation in the RES organs and
very limited distribution to the brain were observed as expected from typical nanoparticle interactions
and uptake by liver sinusoidal endothelial cells and Kupffer cells, mechanical filtration [55, 56], and
poor penetration through the blood brain barrier [57].

The results in CFZ-CD group were rather surprising. Currently, the quantitative data of CFZ
BD profiles by LC-MS/MS is limited. An early study used whole-body autoradiogram in rats after an
intravenous injection of [*'H]-CFZ (a total CFZ dose of 2 mg/kg, prepared as an injectable CFZ-CD
solution) and found predominant distribution of the radioactivity in the liver and lung [58]. It is
unknown whether these observed profiles are attributable to the intrinsic properties of CFZ or CD itself.
CD derivatives are generally assumed to have a minimal impact on the PK profiles of drugs [59].
However, there are cases where the complexation with CD alters the systemic exposure of certain
compounds, especially those with high affinity for CD derivatives [60]. It remains to be determined

whether the complexation with CD enhanced the distribution of CFZ to the liver and lung.
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3.6. SPARC-dependent uptake of CFZ-alb NC to cancer cells

In line with the proposed role of SPARC present in the tumor microenvironment facilitating tumor
accumulation of nab-drugs [23, 61], a positive association was reported between SPARC expression
and response to nab-paclitaxel in multiple types of cancers (e.g., human head-and-neck cancer, non-
small cell lung cancer, HER2-positive breast cancer) [62-64]. However, SPARC-independent pathways
may also play a role in delivering nab-drugs to cancer cells [65, 66]. The relative importance of SPARC
and non-SPARC pathways may well vary depending on cellular context and cancer types. In the case
of breast cancer, the results from publicly available databases indicated that the hSPARC expression
was higher in breast cancer tissues than in non-malignant control tissues (Fig. 7A). From the dataset
collected from 498 breast cancer patients, the sub-groups with high and low hSPARC levels (top 10%
and bottom 10% in the SPARC expression levels, respectively; n = 50 each) were identified and
compared for their median survival. The higher hSPARC expression level was associated with poorer
outcomes (median survival times of 23 and 31 months in the high and low hSPARC expression groups,
respectively) (Fig. 7B; Fig. S7A showed similar trend in another dataset (n = 418)).

To investigate the potential involvement of SPARC in the delivery of CFZ-alb NC to cancer
cells, we first compared the SPARC level among four human breast cancer cell lines used in our study.
HCC1937 cells were highest in the mRNA and protein level of hRSPARC, followed by HCC1143, MDA-
MB-231, and MCF7 cells (Figs. 7C and 7D). hSPARC showed an apparent positive correlation with
cellular uptake of CFZ-alb NC (HCC1937 taking up a greater amount of CFZ-alb NC than MCF7) (Fig.
3B) and also with cytotoxicity of CFZ-alb NC (HCC1937 displaying the greatest enhancement of
cytotoxicity by CFZ-alb NC over the unformulated CFZ solution, followed by HCC1143, MDA-MB-
231, and MCF7) (Figs. 4B and S7B). hSPARC expression was detected mainly on the plasma
membrane of HCC1937 cells (Fig. S7C), and mSparc was abundantly expressed in the 4T1 tumor tissue
sections (Fig. 7E). Based on these results, it was postulated that the SPARC expressed in or near cancer
cells may facilitate cellular interactions and internalization of CFZ-alb NC, potentially accounting for

the enhanced inhibition of the proteasome activity shown in vivo (Figs. 5B and 5C).
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Figure 7. Role of SPARC in the uptake of CFZ-alb NC into cancer cells. (A) The relative expression
of hSPARC gene in normal vs cancerous breast tissues (from a dataset in the TCGA database, n =
64; the detailed description provided in the methods). (B) The Kaplan-Meier curves depicting
overall survival for breast cancer patients with a high and low levels of hSPARC (n = 498, the
dataset from the previous report [31]). (C and D) The mRNA (C) and protein (D) expression level
of hSPARC in breast cancer cell lines. (E) Immunohistochemical staining of mSPARC (positive
staining visualized as brown colors using 3,3'-diaminobenzidine) in 4T1 tumor tissue sections.
Normal lung tissue section showed a weak staining signal for mSparc under the same experimental
condition (representative images, scale bar = 100 um). (F) The protein levels of hSPARC in
HCC1937 and US7MG cells following the lentiviral transduction of SPARC-targeting shRNA. (G
and H) Comparison of the cellular uptake of CFZ (G) and cell viability (H) in U§7MG cells where
SPARC was completely knocked down following exposure to CFZ-alb NC or unformulated CFZ
solution. Two-way ANOVA followed by Tukey’s post hoc test. ***p < 0.0002, ****p < (.0001.
Mean values + SD.
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To obtain experimental evidence on the involvement of SPARC in the cellular uptake of CFZ-
alb NC, we examined changes in cellular uptake and cytotoxicity of CFZ-alb NC in breast cancer cells
by modulating their SPARC levels. When SPARC was partially knocked down by transient siRNA
transfection in HCC1937 cells (Fig. S7D), no appreciable change was observed in cellular uptake (Fig.
S7E) or cytotoxicity (Fig. S7F) of CFZ-alb NC. Boosting SPARC levels using decitabine (Fig. S7G)
[63] also did not change the cellular uptake (Fig. S7TH) and cytotoxic effects (Fig. S7I) of CFZ-alb NC.
In order to obtain more conclusive evidence on the involvement of SPARC in the cellular uptake of
CFZ-alb NC, we employed a model system that allows for a complete knockdown of SPARC from its
high basal expression level. High levels of endogenous SPARC have been reported in glioma [67, 68],
especially in US7MG cell lines derived from human glioblastoma. Upon lentiviral transduction of
SPARC-targeting shRNA, US7MG cells showed an almost complete knockdown of SPARC at the
protein level (Fig. 7F), making it suitable for the proof-of-concept study. When the cellular uptake and
cytotoxicity of CFZ-alb NC were assessed in US7MG cells with complete SPARC knockdown, CFZ-
alb NC displayed dramatic increases in both the cellular uptake (Fig. 7G) and cytotoxicity (Fig. 7H)
compared to the control US7MG cells. These results provide clear evidence supporting the important
role of SPARC in delivering albumin-containing nanoparticles to cancer cells and may warrant further
exploration of albumin coating for the therapy of SPARC-overexpressing tumors including gliomas.

Taken together, our results support that CFZ-alb NC enhances pharmacodynamics of CFZ
compared to CFZ-CD formulations by improving its physical and metabolic stability and enhancing
cellular uptake by cancer cells. The extent by which CFZ-alb NC improved the anticancer efficacy
compared to CFZ-CD was not as pronounced as albumin-coated paclitaxel NC (reported as Cim-F-alb
[21, 28]). Possible reasons include the followings: (a) The size of CFZ-alb NC was larger than Cim-F-
alb (270 vs 198 nm). It was previously shown that the cellular uptake of paclitaxel NCs significantly
decreased as the particle size increased [28]. (b) The conformational status of surface-bound albumin
was shown to be an important factor to determine the efficacy of NCs [21]. When the extent of
proteolysis by thermolysin was compared using the pulse proteolysis method [28], the surface-bound
albumin in CFZ-alb NC was comparable to native albumin (23.9 + 3.9% vs 15.8 £5.1%, n=3), whereas

denatured albumin (boiled at 95 °C for 10 min as a positive control) showed significantly higher extent
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of proteolysis than native albumin (42.0 £ 9.5% vs 15.8 £ 5.1%, n=3). Given the slightly elevated
proteolysis, the possible impact of albumin conformation changes on the performance of CFZ-alb NC
may not be completely ruled out, but the majority of albumin in CFZ-alb NC appears to maintain its
native conformation. (c) Different levels of albumin-interacting proteins including SPARC may impact
the extent by which the surface-bound albumin facilitates cellular uptake. Cim-F-alb was tested in
C57BL/6 mice harboring xenografts of B16F10 melanoma cells [21], which showed much greater
SPARC expression level than 4T1 cells used in our current study [69]. (d) The improvement in the
circulation time might have been less with CFZ-alb NC than albumin-coated paclitaxel nanocrystal.
Given that paclitaxel has aqueous solubility even lower than CFZ, albumin-coated paclitaxel
nanocrystal may have had a longer circulation time as NCs than CFZ-alb NC. Moreover, albumin-
coated paclitaxel nanocrystal was administered at 30 mg/kg, much higher than 3 mg/kg for CFZ-alb-
NC. Consideration of these possibilities may assist in optimizing CFZ formulations containing albumin
for the treatment of breast cancer and other types of solid cancer. Nonetheless, our results indicate a
promising potential for CFZ-alb NC as an alternative, CD-free formulation which can improve in vivo

anticancer efficacy.

4. Supporting information

4.1. Supporting experimental methods
4.1.1. Cytotoxic effects of CFZ solution

Breast cancer cells were seeded onto 96-well plates 24 h prior to drug treatment. Cells were treated with
CFZ solution (dissolved in DMSO; CFZ concentrations ranging from 1 to 500 nM; the DMSO content
did not exceed 0.5% v/v) for 72 h and the cell viability was measured with the CellTiter 96 AQueous One
Solution Cell Proliferation Assay (Promega, Madison, WI, USA) using Synergy HT plate reader
(BioTek, Winooski, VT, USA). The ICsy (half maximal inhibitory concentration) value was obtained

using GraphPad Prism software 7.0.3.
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4.1.2. Immunoblotting analysis

Cell lysates were prepared in the RIPA buffer, mixed with 4x Laemmli sample buffer, and heated at 95
°C (for the proteasome subunits) or 50 °C (for P-glycoprotein, P-gp) for 5 min. Cell lysates containing
the equivalent protein amount (10 pg for proteasome subunits, 60 pg for P-gp) were resolved using 7.5
— 12% SDS-PAGE and transferred onto PVDF membranes (Bio-Rad, Hercules, CA, USA). After
blocking using 5% milk in Tris-buffered saline containing 0.05% Tween-20 (TBST), the membranes
were probed with the following antibodies: Pl (1:1,000 dilution, #PW8140; Enzo Biochem,
Farmingdale, NY, USA), B2 (1:1,000 dilution; #PW8145; Enzo Biochem, Farmingdale, NY, USA), B5
(1:1,000 dilution; #PA1-1962; Thermo Fisher Scientific) and P-gp (1:200 dilution; #903701;

BioLegend, San Diego, CA, USA).

4.1.3. Proteasome activity measurement in breast cancer cell lines

Cell lysates were prepared in the ice-cold passive lysis buffer (Promega, Madison, WI, USA). After
centrifugation of cell lysates at 3,000 g for 10 min at 4 °C, the resulting supernatant was collected and
used for the proteasome activity assay (10 pg total protein). To assess the proteasome activities, the
supernatant (2 pL) was incubated in the assay buffer (48 uL) with the following fluorogenic substrates:
100 uM Suc-LLVY-AMC (Bachem, Bubendorf, Switzerland) for the chymotrypsin-like activity, 100
uM Ac-nLPnLD-AMC (Bachem, Bubendorf, Switzerland) for the caspase-like activity, and 20 uM Ac-
RLR-AMC (BostonBiochem, Cambridge, MA, USA) for the trypsin-like activity. The proteasome

activities were monitored as described in section 2.6.5.

4.1.4. 2-dimensional (2D) colony formation assay

Breast cancer cells were seeded onto a 6-well plate at a density 1,000 — 2,000 cells per well. After
treated with CFZ solution for 2 h and subsequently washed twice with DPBS, cells were maintained in
drug-free complete media for 11 — 14 days. After the removal of media, cell plates were placed on ice,
washed twice with ice-cold DPBS and fixed with cold methanol for 10 min. The fixed cells were

strained with crystal violet solution.
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4.1.5. 3-dimenstional (3D) spheroid formation assay

Cells were seeded onto a 6-well plate at a density 5x10* cells per well in complete media. Cell were
treated with CFZ (50 nM) and doxorubicin (100 nM) for 16 h, and then washed twice with DPBS. Cells
were collected using trypsin and 500 — 2,000 cells were re-plated per well in ultra-low attachment 96
well plates (Corning, New York, USA). Cells were maintained in HUIMEC Ready Medium
supplemented with B-27 Supplement, epidermal growth factor (20 ng/mL; Sigma-Aldrich, St. Louis,
MO, USA), basal fibroblast growth factor (20 ng/mL), heparin (4 pg/mL; Sigma-Aldrich, St. Louis,
MO, USA), and penicillin-streptomycin at 37 °C in a humidified incubator operating at 5% CO,. After
10 — 14 days, spheroids were visualized using Operetta imaging system (PerkinElmer, Waltham, MA,

USA) and the number of spheroids with their size > 500 nm was counted.
4.1.6. h\SPARC imaging in HCC1937 cells

HCC1937 cells were seeded in 35 mm petri dish at 1x10° cells per dish and incubated overnight. The
cells were fixed in 4% paraformaldehyde at 4 °C for 15 min, rinsed twice with PBS, and incubated with
10 pg/mL of polyclonal goat anti-human SPARC antibody (R&D Systems, Minneapolis, MN, USA)
overnight at 4 °C in 5% milk in TBST. After washing, the primary antibody was visualized with Alexa
Fluor 488 conjugated-polyclonal rabbit anti-goat IgG (10 pg/mL; Invitrogen, Carlsbad, CA, USA) by
incubating for 1 h at 4 °C. The stained cells were imaged with a Nikon A1R confocal microscope (Nikon
America Inc., Melville, NY, USA), and Hoechst 33342 and Alexa Fluor 488 were detected with Acx/Aem

of 407 nm/425 — 475 nm and Aex/Aem 0f 488 nm/500 — 550 nm, respectively.
4.1.7. siRNA-based hSPARC knockdown in HCC1937 cells

HCC1937 cells at the confluency of approximately 60% were transfected with hSPARC-targeting
siRNAs (25 picomole; OriGene, Rockville, MD, USA) or scrambled siRNAs using Lipofectamine®
RNAIMAX Reagent following the recommended protocol. At 48 h post-transfection, cells were
harvested for the immunoblotting analysis of SPARC protein. To assess the cytotoxicity and cellular

uptake of CFZ-alb NC, the transfected HCC1937 cells were treated with CFZ-alb NC or CFZ solution
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for 2 h. After washing 2 — 3 times with PBS, cells were either grown for 72 h in drug-free media

(cytotoxicity) or harvested with 50% methanol (uptake assay).
4.1.8. SPARC upregulation in HCC1143 cells

HCC1143 cells (confluency of approximately 50%) were pre-treated with decitabine solution in DMSO
(5 uM; Shenzhen Chemical Co. Ltd., Shanghai, China) or DMSO (as a control) for three consecutive
days. After 24 h, cells were either harvested for verifying the upregulation of hSPARC (by
immunoblotting analysis) or re-plated on 96-well-plates. After 24 h, the HCC1143 cells were treated
with CFZ-alb NC or CFZ solution for 2 h. After washing 2 — 3 times with PBS, cells grown for 72 h in
drug-free media were accessed cytotoxicity.

4.2. Supporting table

Table S1. Theoretical calculation of the amount of human serum albumin (HSA) needed for coating

CFZ NCs.

Surface area of occupying HSA molecule [1] 39 nm?
Total surface area of each NC particle (352 nm x 58 nm) x 4 + (58 nm x 58 nm) x 2
= 8.84 x 10*nm?

Theoretical maximum number of HSA on each NC  approximately 2,267

particle
Volume of each NC particle 352 nm x 58 nm x 58 nm = 1.18 x10° nm?
Density of CFZ 1.2 g/em?

For CFZ-alb NC

74% CFZ (74 g/1.2 g cm™) x (10* nm? cm?) / (1.18 x 10° nm?)
=5.23x10'* NC
20% HSA (20 g/66,437 g mol?) x (6.022 x 10* molecules/mol)

= 1.81x10?° HSA molecules

Numbers of HSA per NC particle 3,468 (153% coverage)
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4.3. Supporting figures
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Figure S1. (related to Figure 1) The particle size of CFZ-alb NC reconstituted after
lyophilization, measured by DLS. Trehalose was added at varying weight ratios prior to
lyophilization.
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Figure S2. (related to Figure 2). (A) The derived count rates of CFZ-alb NC in PBS maintained
linear relationships over the concentrations ranges tested (7.2 to 72 pg/mL CFZ) for 24 h. (B)
The derived count rates of CFZ-alb NC (equivalent to 30 pg/mL CFZ, in the presence of
undiluted FBS) were obtained by continuous monitoring for the first 20 min. Mean values + SD.
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Figure S3. (related to Figure 3). (A) Representative TEM image of rhodamine B-labeled CFZ-
alb NC (*CFZ-alb NC) (B) The average size and zeta potential of *CFZ-alb NC, measured by
DLS. (C) Cellular uptake of *CFZ-alb NC in breast cancer cell lines (4T1 and MCF7).
Representative confocal microscopy images following 2 h incubation with *CFZ-alb NC (30
pg/mL CFZ). Free rhodamine B (Rho B) was used as a negative control. Scale bar = 10 pm.
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values + SD.
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Figure S6. (related to Figure 6) (A) The amount of CFZ per gram tissue in the major organs. (B)
The amount of CFZ (left y-axis, shown as a bar graph) and the inhibitory extent of the proteasomal
activity (right y-axis, shown as a dot plots) in the respective tissues. Mean values + SD.
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Figure S7. (related to Figure 7). (A) Kaplan-Meier curves depicting the overall survival of breast
cancer patients with the low and high expression levels of hSPARC (n = 418, extracted from [3]).
(B) Correlation between the mRNA expression level of ASPARC and the extent of enhanced
cytotoxicity of CFZ-alb NC relative to unformulated CFZ solution at the concentration of 400 nM.
(C) SPARC expression on the plasma membrane in HCC1937 cells. Green: anti-human SPARC
antibody. Blue: nuclei stained with Hoechst 33342. (D) hSPARC expression in HCC1937 cells
transfected with scrambled (sc) siRNA (negative control) or two different siRNAs targeting
hSPARC. (E & F) The amount of CFZ (E) and cell viability (F) in HCC1937 cells transfected with
hSPARC-targeting siRNA following the exposure to CFZ-alb NC or CFZ solution. Two-way
ANOVA followed by Tukey’s post hoc test (H) or Sidak’s post hoc test (I). (G) hSPARC
expression in HCC1143 cells pre-treated with decitabine. (H & I) The amount of CFZ (H) and cell
viability (I) in HCC1143 cells which showed a modest upregulation of SPARC following the
exposure to CFZ-alb NC or CFZ solution. *p < 0.0332, **p < 0.0021. Mean values + SD.
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CONCLUSION

With the clinical successes of three FDA-approved proteasome inhibitor (PI) drugs (bortezomib, BTZ;
carfilzomib, CFZ; ixazomib, IXZ), the PI therapy is firmly established as a mainstay for the treatment
of multiple myeloma (MM) and other hematological malignancies. Yet, there remains much room for
further improvement, especially with regards to drug resistance (intrinsic and acquired), poor efficacy
against solid cancers and adverse effects (via on-target and off-target interactions). For CFZ, its
pharmacokinetic aspects (namely, rapid metabolic inactivation and short circulation time) have also
been suspected as a factor limiting its efficacy against solid cancer. To improve upon existing PI drugs,
a number of next-generation PIs are currently under clinical and preclinical development. With data
accumulating from new PI drug candidates, it has become increasingly evident that the clinical efficacy
of PI drugs is impacted not only by their inhibitory potency, but also by the mode, extent and duration
of proteasome inhibition. Moving forward, a careful examination of the pharmacokinetic (PK) and
pharmacodynamic (PD) profiles of PI drug candidates may provide important insights in bridging the
current gap between initial preclinical results and eventual clinical outcomes.

Many of the oncology-based nanoformulations are designed to enhance the drug delivery to
tumor tissues, thus broadening the therapeutic window. In this thesis work, both of novel CFZ
nanoformulations (polymer micelle-based formulation, CFZ-PM (Chapter I); nanocrystal with albumin
coating, CFZ-alb NC (Chapter 1)) improved metabolic stability in vitro. In the case of CFZ-PM, the
improvement observed in vitro however did not yield a similar improvement in vivo (in terms of plasma
PK profiles and anticancer efficacy in a mouse model carrying lung cancer xenografts). The lack of
translatability from in vitro to in vivo may be attributed to multiple factors, but it would be important
to keep in mind that in vitro results may not predict the in vivo performances of nanomedicine-based
chemotherapeutics (especially, the stability in circulation and drug distribution at the tissue/cellular
levels).

So far, the accumulating body of information suggests that novel approaches including

previously unexplored structural scaffolds may address limitations of Pls and further expand the utility
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of existing PI drugs harboring peptide scaffold. As an approach to improve bio- and/or physico-
chemical properties of peptide-based drugs, macrocyclization (yielding so-called constrained peptides)
can be applied to CFZ or next-generation PI drug candidates. Macrocyclization of peptide-based
compounds may improve the plasma stability of peptide- or peptidomimetic-based small molecules
compared to linear peptides [155][DR Cary et al., J-STAGE, 2017]. In an attempt to develop orally
available and metabolically stable PIs, a recent report synthesized the structurally diverse PI-
derived macrocyclic peptides containing epoxyketone pharmacophore and the compounds displayed
superior in vivo metabolic stability with potent proteasome inhibition [156]. Additionally, alternative
targets in the ubiquitin-proteasome system (other than the catalytic subunits of the proteasome) present
promising therapeutic potential and preclinical evaluation of compounds targeting such targets is
underway. In particular, deubiquitinases (DUBs), an essential component in the UPS, have emerged as
a novel target in cancer therapy, especially for cancers refractory to existing PI drugs. These efforts
may yield therapeutic agents targeting non-proteasomal components of the UPS, used on their own or
in combination with PI drugs.

In this thesis work, our efforts of developing CFZ nanoformulations (i.e., polymer micelles and
nanocrystals coated with albumin) did not achieve the marked efficacy against lung and breast cancer
falling short of our initial expectations. However, other drug delivery systems may still offer further
improvements of the pharmacokinetics, biodistribution and pharmacodynamics of CFZ. In exploring
other drug delivery systems, it would be important to consider the exposure and release profiles (the
extent and kinetics) of the drug in circulation and in tumor tissues. With continuing efforts, it is hoped
that next-generation PIs with improved pharmacokinetic and pharmacodynamic profiles will eventually

bring therapeutic benefits to patients with MM as well as other types of cancer.
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