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ABSTRACT 

 

Pharmacokinetics and pharmacodynamics of novel nanoformulations  

for the proteasome inhibitor drug carfilzomib:  

Expanding its therapeutic utility against solid cancers 

 

박지은 (Ji Eun Park) 

약학대학 약학과 약제과학 (Pharmaceutics, College of Pharmacy) 

The Graduate School  

Seoul National University 

 

Over two decades ago, the proteasome was considered a risky or even untenable therapeutic target. 

Today proteasome inhibitors (PIs) are a mainstay in the treatment of multiple myeloma (MM) and have 

sales in excess of three billion US dollars annually. More importantly, the availability of PIs has greatly 

improved the survival and quality of life for patients with MM. Carfilzomib (CFZ) is the second-in-

class PI with much improved efficacy and safety profiles over bortezomib, the first-in-class PI, for MM 

therapy. Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid 

cancers yielded rather disappointing results with minimal clinical benefits. The potential for 

improvement remains and the development and optimal use of PIs for solid cancer therapy continues to 

be an active area of research. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites 

is considered to be major factors limiting its efficacy against solid cancers. To expand the utility of CFZ 

to solid cancer therapy, the aim was to overcome the pharmaceutical limitations of CFZ, and current 

findings may provide important insights in the development of next-generation PIs. As one of 

approaches to improve the pharmacokinetic profiles of CFZ, a novel polymer micelle-based formulation 

of CFZ was developed. In the previous report, polymer micelles (PMs) composed of biodegradable 

block copolymers poly(ethylene glycol)-poly(caprolactone) (PEG-PCL) were shown to improve the 

metabolic stability of CFZ in vitro. In Chapter I, in vivo anticancer efficacy and pharmacokinetic 
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profiles were assessed using CFZ-loaded PM composed of PEG-PCL-deoxycholic acid (CFZ-PM). 

Despite in vitro metabolic protection of CFZ, CFZ-PM displayed in vivo anticancer efficacy in mice 

bearing human lung cancer xenograft (H460) comparable to that of the clinically used cyclodextrin-

based CFZ (CFZ-CD) formulation. The plasma pharmacokinetic profiles of CFZ-PM were also 

comparable to those of CFZ-CD. The residual tumors that persisted in xenograft mice receiving CFZ-

PM displayed an incomplete proteasome inhibition. In summary, these results showed that despite its 

favorable in vitro performances, CFZ-PM formulation did not improve in vivo anticancer efficacy and 

accessibility of active CFZ to solid cancer tissues over CFZ-CD. Thus, it seems to be necessary to 

consider potential confounding factors in translating in vitro results to in vivo settings and to develop 

another type of nanoformulation with an enhanced in vivo stability.  In Chapter II, it was investigated 

whether a nanocrystal (NC) formulation enhances in vivo stability and anticancer efficacy of CFZ 

against breast cancer. The surface of NC was coated with albumin in order to enhance the formulation 

stability and drug delivery to tumors via interactions with albumin-binding proteins located in and near 

cancer cells. The novel albumin-coated NC formulation of CFZ (CFZ-alb NC) displayed improved 

metabolic stability and enhanced cellular interactions, uptake, and cytotoxic effects in breast cancer 

cells in vitro. CFZ-alb NC also showed greater anticancer efficacy in a murine 4T1 orthotopic breast 

cancer model than CFZ-CD. Overall, these results demonstrated the potential of CFZ-alb NC as a viable 

formulation for breast cancer therapy. These studies may provide valuable insights into the future efforts 

to validate the potential of CFZ-based therapy for breast cancer and to develop effective CFZ delivery 

strategies that can be used to treat solid cancers. 

Keywords; proteasome inhibitor carfilzomib, nanoformulation, polymer micelle, nanocrystal, albumin, 

solid cancers 

Student Number; 2016-30511 
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INTRODUCTION 
 
 

The review of next-generation proteasome inhibitors  
 

for cancer research 
 
 
 
 
 
 
 
 
 
*This chapter (section 1 to 4.3.) includes the introductory sections that were published as 

a review article ‘Next-generation proteasome inhibitors for cancer research’ in 

Translational Research (Volume 198, pages 1-16, August 2018) and the newly added 

section 4.4. that is focused on novel formulations and delivery systems for proteasome 

inhibitor drugs, pertinent to the current thesis work. 
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1. Proteasomes 

 
The proteasome is a large multi-protease complex and is responsible for the controlled degradation of 

more than 80% of cellular proteins [1]. As such, the proteasome plays a key role in maintaining cellular 

protein homeostasis and regulates numerous biological processes, such as cell survival, DNA repair, 

apoptosis, signal transduction, and antigen presentation. Structurally, the 20S mammalian proteasome 

consists of a cylinder made of four stacked rings: two identical outer α-rings and two identical inner β-

rings, each containing seven distinct but related subunits (Figure 1). In mammalian proteasomes, each 

β-ring harbors three catalytic β-subunits (β1, β2 and β5) which display different substrate preferences, 

referred to as caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (CT-L) activities, 

respectively [2]. The active sites of these catalytic subunits face inward, accepting peptide substrates 

from the proteasome’s hollow inner chamber. By controlling which proteins enter its inner chamber, 

the proteasome is able to degrade proteins in a highly-regulated fashion [3]. Proteins targeted for 

proteasome-mediated degradation are typically tagged by the covalent attachment of polyubiquitin 

chains (“ubiquitination”) before being recognized and degraded by the proteasome complex. The 

concerted action of ubiquitination by a series of enzymes and proteolysis by the proteasome complex 

is collectively known as the ubiquitin-proteasome system (UPS).  Over the past three decades, the UPS 

has been extensively explored as a target for drug discovery [4, 5], culminating in the remarkable 

clinical success of proteasome inhibitor (PI) drugs in the treatment of hematological malignancies 

including multiple myeloma (MM).  Although a great amount of effort has been made to develop agents 

which target other UPS components such as ubiquitin ligases and deubiquitinases, to date only the 

proteasome has been successfully exploited as a therapeutic target to treat human disease.  

Following the clinical success of proteasome-targeted therapies for cancer treatment, much 

effort has been made to address the limitations associated with existing PI drugs. Like almost all cancer 

therapeutics, cancer resistance, either acquired or de novo, is a major hurdle for PI drugs. So far, various 

resistance mechanisms have been reported for PI drugs in preclinical and clinical settings [6, 7] but  

remain unsettled. In recent years, there have been increasing attempts to design novel PIs that can 

overcome resistance or bypass cross-resistance to existing PI drugs [8]. In addition, PI drugs have 



 3 

 

Figure 1. The structure and function of 26S proteasome in the ubiquitin-proteasome system (UPS).  
Proteins targeted for proteasome-mediated degradation are typically tagged by the covalent attachment 
of polyubiquitin chains of at least 4 ubiquitin (Ub) moieties (“ubiquitination”). This ubiquitination is 
carried out by the concerted action of three distinct enzymes, E1 (Ub activation), E2 (Ub conjugation), 
and E3 (Ub ligation). Subsequently, ubiquitinated proteins are recognized, unfolded and de-
ubiquitinated by the lid of 26S proteasome (19S regulatory particles composed of ATPase and non-
ATPase subunits). The proteolysis takes place at the inner chamber inside the 20S core, generating short 
peptide fragments of typically 2 to 24 amino acid residues. The 20S core consists of two outer α rings 
and two inner β rings, each containing seven distinct subunits. Each β ring harbors three catalytic β-
subunits (β1, β2 and β5) which display different substrate preferences and their activities are commonly 
referred to as caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (CT-L) activities, 
respectively. Among the three catalytic β-subunits, β5 subunit is the major target of current proteasome 
inhibitor drugs via their interactions with the catalytic threonine (Thr) residue. 

 

shown exquisite efficacy in treating MM and other hematological malignancies, but not solid cancers 

[9]. The lack of therapeutic efficacy of PI drugs against solid cancers has often been attributed in part 
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to their poor pharmacokinetic (PK) profiles including their short circulation time and insufficient 

distribution to proteasome targets located in solid tumor tissues [10]. Moreover, our understanding 

remains limited on how the kinetics (both the magnitude and duration) and mode of proteasome 

inhibition can impact the pharmacodynamic (PD, such as efficacy and safety) profiles of PI drugs. 

Moving forward, an enhanced the understanding of the PKs and PDs of PI drugs and of the relationship 

between them is needed. Here, we provide a brief overview of three clinically used PI drugs for cancer 

therapy focusing on PK/PD considerations and also summarize current efforts to develop next-

generation PI drugs and to improve the current PI therapy via novel drug delivery systems. 

 

2. Proteasome inhibitor drugs in clinical use for cancer therapy 

Currently, three PIs are in clinical use, bortezomib (BTZ, VelcadeÒ, the first-in-class PI drug with US 

FDA approval in 2003), carfilzomib (CFZ, KyprolisÒ, the second-in-class PI drug with US FDA 

approval in 2012) and ixazomib (IXZ, NinlaroÒ, the first oral PI drug with US FDA approval in 2015) 

(Figure 2). Although these PI drugs have brought tremendous improvements to the treatment of MM, 

earlier efforts to develop therapeutics targeting the proteasome had received considerable skepticism. 

This skepticism was not unreasonable, given the fundamental roles and abundant presence of the 

proteasome in all types of cells. Despite such skepticism, early preclinical results in models of human 

cancer were very promising, especially for MM and other hematological malignancies [11, 12]. 

Propelled by exemplary academic-industrial partnerships, BTZ was successfully developed as the first-

in-class PI drug with record efficiency in drug development and became a blockbuster drug in cancer 

therapy [13]. The clinical success of BTZ has prompted the development of CFZ and IXZ soon after. 

Below is a brief account of discovery and development efforts of these clinically used PI drugs.   

 

Figure 2. Structures of proteasome inhibitors in clinical use. 
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2.1. Bortezomib (BTZ, PS-341, VelcadeÒ): Rise of proteasome inhibitors as an anticancer agent 

The earliest efforts to identify specific PIs began in the late 1980’s [14, 15]. These early inhibitors were 

used to probe the function of the proteasome itself and to examine its biological role within the cell. 

The path towards PIs as therapeutic agents began with research into the role of the UPS in muscle 

wasting. Goldberg et al. proposed that upregulation of the UPS could explain the muscle wasting 

phenomenon observed in conditions such as sepsis, cancer, and burn injuries [16]. They further 

suggested that muscle wasting could be treated with PIs by suppressing excessive proteolysis of muscle 

proteins. In subsequent efforts, a highly potent PI, PS-341, now known as BTZ, was identified [17]. 

Pre-clinical studies soon revealed that BTZ is highly effective against various types of cancers [12, 18].  

Structurally, BTZ is a dipeptide boronic acid that forms a coordinate covalent bond with the 

catalytic threonine residue of the proteasome’s β5 and β1 subunits [19]. As a result, BTZ displays a 

potent inhibitory effect on the CT-L activity and to a lesser extent on the C-L activity of the 20S 

proteasome [20] (Table 1). In addition to its high affinity binding to the proteasome, BTZ also 

demonstrated nanomolar cytotoxic potencies against a variety of cancer cell lines, in particular, those 

derived from MM [12, 21]. These in vitro findings also translated into promising in vivo efficacies in 

mouse xenograft models of both hematological and non-hematological malignancies [12, 18, 22].  

Prompted by strong preclinical data, several early phase clinical trials had investigated BTZ 

for its safety and tolerability in over 200 cancer patients by late 2001 [23]. BTZ was relatively well 

tolerated with adverse events consisting of low-grade fever, fatigue, thrombocytopenia, and in some 

patients, peripheral neuropathy. BTZ soon received US FDA fast-track approval for the treatment of 

relapsed and refractory MM in 2003, based on the outstanding efficacy results from the phase II open-

label SUMMIT trial [24]. BTZ’s clinical efficacy was further proven in combination with other 

therapeutic agents, leading to a full US FDA approval in 2005 as a second-line MM therapy [25] and 

in 2008 as a first-line therapy for patients with newly diagnosed MM [26]. BTZ also received approval 

for use in patients with previously-treated mantle cell lymphoma from the US FDA in 2014 and from 

the European Medicines Agency in 2012 [27]. Today BTZ is commonly used as a first-line agent in 

combination with other anti-myeloma agents, for example, immunomodulatory agents such as 
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Table 1. Proteasome inhibitors in clinical use: Their interactions with the proteasome target 

Drug name Pharmacophore Binding mode IC50 (nM) 

CT-L C-L T-L 

Bortezomib boronic acid reversible 2 ~ 31 14.5 ~ 401 12001 

7.92 532 5902 

Carfilzomib epoxyketone irreversible 5.1 ~ 5.73 2,4004 3,6004 

Ixazomib boronic acid reversible 55 405 > 10,0005 

2.8 ~ 4.11 311 35001 

1 Calu-6 cells were treated with PIs for 1 hr. Proteasome-Glo assay [28]  
2 Purified human erythrocyte 20S proteasomes [29]  
3 Purified human 20S proteasomes [30]  
4 Purified human 20S proteasomes [31]  
5 MM.1S cells were treated with ixazomib for 3 h and harvested. Cell extracts were then analyzed for CT-L 
(Chymotrypsin-like), C-L (Caspase-like), and T-L (Trypsin-like) activity assay [32] 
 

thalidomide or lenalidomide, cytotoxic drugs like melphalan, and glucocorticoids such as 

dexamethasone or prednisone. BTZ has also served as a proof-of-concept paving the way for two 

additional US FDA-approved PI drugs. While a number of clinical trials have investigated the 

possibility of extending the therapeutic effects of BTZ beyond MM, the results so far have been 

disappointing [10, 33].   

BTZ is currently formulated for intravenous or subcutaneous injections (as a lyophilized 

powder with mannitol). An earlier study explored the possibility of oral administration [18], but this 

approach was not further pursued due to low bioavailability (~11% in mice [34]). BTZ was shown to 

have rapid and wide biodistribution profiles in preclinical studies [12]. Interestingly, a recent 

publication reported that the biodistribution of BTZ in various tissues is impacted by the tissue density 

of the proteasome which BTZ tightly and reversibly binds to [35]. This study further demonstrated that 

saturation of proteasome binding sites at high doses of BTZ can contribute to non-dose-proportional 

PK behaviors of BTZ.  Similar to these preclinical findings, the results from a phase I clinical trial also 

indicated that BTZ displays a large volume of distribution (> 400 L) in patients with solid cancers [36]. 

Subsequent clinical trials reported similar findings on the PK profiles of BTZ (detailed reviews 

available [37], Table 2). When the metabolism of BTZ was investigated using human liver microsomes, 

BTZ was converted to pharmacologically inactive metabolites primarily via oxidative deboronation, 
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mediated by multiple cytochrome P450 enzymes (CYPs) with their relative contribution in the 

following order, CYP3A4, CYP2C19, CYP2D6, CYP1A2 and CYP2C9 [38, 39]. Consistent with these 

results, the systemic exposure of BTZ was increased and decreased with co-administration of 

ketoconazole (a CYP3A4 inhibitor) and rifampicin (a potent CYP3A4 inducer), respectively [40, 41]. 

On the other hand, co-administration of omeprazole (a CYP2C19 inhibitor) had only a minimal impact 

on the PK profiles of BTZ in patients with advanced solid cancers [42]. Given the importance of hepatic 

metabolism in the elimination of BTZ, patients with hepatic dysfunction may require dose adjustment, 

but no guideline or recommendation is available yet. In preclinical studies, the majority of the radio-

labeled BTZ was excreted into bile duct (~66%) with the remainder excreted into the urine [12]. In a 

clinical study, patients with renal impairment responded to BTZ therapy similar to those with normal 

renal function [43].  

Being the first-in-class PI drug, BTZ also became the first to be explored for the relationship 

between proteasomal inhibition (both the magnitude and duration) and anticancer efficacy in vivo. 

When the PK/PD profiles were compared in mouse xenograft models which responded differently to 

BTZ, the results indicated that both drug penetration and proteasome inhibition were much attenuated 

in mice carrying poorly perfused xenograft tumors which did not respond to BTZ treatment [44]. These 

findings were applied to the development of next-generation PI drugs as well as novel drug delivery 

systems. For example, in order to modulate the magnitude and duration of proteasome inhibition by 

BTZ, several groups investigated the potential utility of nanoformulations including the design of 

prodrugs or bone-targeting moieties [45-47]. However, the results from these efforts have yet to be 

translated into clinical application. 

Despite the remarkable clinical success achieved by BTZ, several limitations have emerged. 

Like many other cancer therapies, a subset of patients responds to BTZ therapy while others do not. 

Even those who initially respond to BTZ therapy almost inevitably develop resistance over time [48]. 

The median duration of clinical response was typically about 12 months [49, 50]. The mechanisms 

underlying cancer resistance to BTZ have been actively investigated, yielding various potential 

strategies to overcome resistance including the development of PI drugs based on novel structural 

scaffolds [51]. In addition to drug resistance, BTZ therapy is associated with the severe adverse effect 



 8 

of peripheral neuropathy, which was later attributed to its off-target interactions with a serine protease 

(HtrA2/Omi) involved in neuronal survival [52, 53]. This dose-limiting toxicity of BTZ was 

substantially alleviated by administering the drug via subcutaneous injection [54] or by implementing 

once-weekly dosing [55, 56]. These issues prompted the development of next-generation PIs with more 

favorable safety profiles and fewer off-target interactions.  

2.2. Carfilzomib (CFZ, PR-171, Kyprolis®): Novel mode of proteasome inhibition   

The second-in-class PI drug CFZ (Kyprolis®, developed by Proteolix/Onyx Pharmaceuticals and now 

available through Amgen) received its fast-track US FDA approval in 2012, based on its efficacy and 

safety results in patients with relapsed and refractory MM [57]. The development of CFZ was initiated 

by the identification of the proteasome as the major target of the natural product epoxomicin [58]. The 

design and synthesis of a biotinylated chemical probe led to the discovery that the epoxyketone group 

of epoxomicin covalently binds to the proteasome with an exceptional selectivity over other types of 

proteases. Subsequent efforts were made to build a library of epoxomicin analogs and identified a lead 

candidate, YU-101, based on their potent anticancer activities [59, 60]. Later, YU-101 was further 

modified to yield CFZ which displayed very promising preclinical results [31].  

Structurally, CFZ is a tetrapeptide harboring an epoxyketone as its pharmacophore and it forms 

an irreversible, covalent bond with proteasome catalytic subunits, predominantly β5 (Table 1). The 

exquisite selectivity of CFZ toward the proteasome is achieved by the formation of two covalent bonds, 

one with the catalytic Thr1Oγ nucleophile and a second with the adjacent Thr1N amino group. Based 

on high-resolution co-crystal structures between the proteasome and various epoxyketone-based 

inhibitors, the formation of a 1, 4-oxazepano adduct has been identified between the epoxyketone of 

these inhibitors and the catalytic threonine residue within the β5 active site [61, 62]. Due to this 

proteasome-selective mechanism of action, CFZ has afforded much improved safety profiles. 

Additionally, the irreversible nature of the interaction between CFZ and the proteasome allows it to 

achieve sustained and durable proteasome inhibition, which may contribute to its efficacy even in the 

presence of resistance to BTZ [63]. Of note, the irreversible modification of the proteasome target by 

CFZ or other peptide epoxyketones have also been exploited to develop activity-based probes (ABPs) 

that allow for covalent labeling of functional proteasomes or profiling of proteasome activity under 



  

 

Table 2. Clinically used dosing regimens and pharmacokinetic (PK) parameters reported for FDA-approved proteasome inhibitor drugs. 

Drug name Current clinical 
dosing regimens 

Tested dosing regimens and reported PK parameters 
Ref. 

Tested dosing regimens PK parameters Notable characteristics 
Bortezomib 
(VelcadeÒ, 
PS-341) 

1.3 mg/m2 IV on 
days 1, 4, 8 & 11 of 
21-day cycles 

1.45 mg/m2, IV (C1D1) CL, 75.3 (51.2) L/h; Vss, 416 (158) L; t1/2, 8.68 (4.16) 
h 

Phase I trials in patients with 
advanced solid cancers; dose-
proportionality in PK parameters not 
established 

[36] 

1.6 – 2.0 mg/m2, IV (C1D1) CL, 63.7-112 (29.8-126) L/h; Vss, 696-979 (357-473) 
L; t1/2, 10.4-14.8 (4.96-10.4) h 

1.3 mg/m2, IV. 
single dose (C1D1) vs. 
multiple doses (C1D11, C1D3, 
& C3D11) 

single dose: CL, 111.6 (73.6) L/h; Vss, 1540 (2730) L; 
t1/2, 11.5 (12.7) h 
multiple doses: CL, 18.2-28.0 (9.2-19.8) L/h; Vss, 
1613-2213 (1125-2730) L; t1/2, 75.6-108.6 (34.6-64.8) 
h 

Upon repeated dosing, CL decreased 
while the systemic exposure and t1/2 

increased. 

[64] 

1.0 mg/m2 IV (C1D11) vs.  
2.5 mg/m2 SC (C1D11) 

SC: Cmax, 20.4 (8.87) ng/mL; Tmax, 30 (5-60) min; 
AUClast, 155 (56.8) ng·h/mL 
IV: Cmax, 223 (101) ng/mL; Tmax, 2 (2-5) min; AUClast, 
151 (42.9) ng9·h/mL 

Phase III study in patients with 
RRMM. Equivalent systemic 
exposure between SC and IV groups. 

[54, 
65] 

Carfilzomib 
(KyprolisÒ, 
PR-171) 

20 mg/m2 on days 1 
& 2; if tolerated, 
escalated to 27 
mg/m2 (IV infusion, 
2-10 min) or 56 
mg/m2 (IV infusion, 
30 min) on day 8 of 
cycle 1; followed by 
tolerated dose on 
days 9, 15 & 16 of a 
28-day cycle and 
next cycles 
(additional variations 
possible in 
subsequent cycles) 

20 mg/m2, IV (C1D1) CL, 659 (353) L/h; Vss, 108 (71) L; t1/2, 0.66 (0.48) h Phase I trial in patients with RRMM. [66] 

20 mg/m2, 2-10 min IV 
infusion on D1, 2, 8, 9, 15 & 
16 

D1: CL, 146 (22) L/h  
D16: CL, 136 (53) L/h 

CL exceeded hepatic blood flow. [67] 

2-10 min IV infusion. 
20 mg/m2 on D1 & 2 à 27 and 
36 mg/m2 on D8, 9, 15 & 16 

20 mg/m2 (D1): CL, 263 (398) L/h; Vss, 27.7 (48.6) L; 
t1/2, 0.44 (0.15-2.20) h 
20 mg/m2 (D16): CL, 136 (52.8) L/h; Vss, 7.75 (3.77) 
L; t1/2, 1.10 (1.00-1.13) h 
27 mg/m2 (D16): CL, 150 (30.9) L/h; Vss, 11.1 (4.45) 
L; t1/2, 0.35 (0.26-0.92) h 

Phase I/II trials in patients with 
advanced solid cancers. 
Rapid systemic CL, large Vss and 
very short elimination half-lives. 

[68] 

30 min IV infusion.  
20 mg/m2 on D1 & 2 à 36, 45, 
56 or 70 mg/m2 on D8, 9, 15 & 
16  

20 mg/m2 (C1D1): CL, 143 (56.6†) L/h; t1/2, 0.837 h 
27 mg/m2 (C2D16): CL, 102 L/h; t1/2, 0.973 h 
56 mg/m2 (C2D16): CL, 118 (27.7†) L/h; t1/2, 0.875 h 

Phase I trial in patients with RRMM. 
Comparable PK properties between 
30 min and 2-10 min infusion. 

[69] 

30-min IV infusion.  
20 mg/m2 on D1 à  
45, 56, 70 or 88 mg/m2 on D8 
& 15 
 

20 mg/m2 (D1): CL, 146 (30.4†) L/h; t1/2, 0.64 (0.193-
1.29) h; AUClast, 260 (27.6†) ng·h/mL 
70 mg/m2 (D15): CL, 131 (28.6†) L/h; t1/2, 0.95 
(0.572-1.29) h; AUClast, 1030 (20.5†) ng·h/mL 
88 mg/m2 (D15): CL, 138 (34.3†) L/h; t1/2, 0.848 
(0.648-0.952) h; AUClast, 1190 (29.1†) ng·h/mL 

Phase I/II trials in patients with 
RRMM. Dose-proportional increase 
in AUC.  

[70] 
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Ixazomib 
(NinlaroÒ, 
MLN9708) 

4 mg orally 
administered on days 
1, 8, & 15 of 28-day 
cycles 

0.24-3.95 mg/m2 on D1, 8 & 
15  

D1: Tmax, 1 (0.5-8.0) h 
D15: t1/2, 3.6- 11.3 days 

Rapid absorption and long terminal 
half-lives. 
2.23 mg/m2 is equivalent to 4.0 mg 

[71] 

0.24-2.23 mg/m2 on D1, 4, 8 & 
11 of 21-d cycles 

2 mg/m2 (D1): Tmax, 0.65 (0.25-3.97) h  
2 mg/m2 (D11): Tmax, 1 (0.5-23.6) h; t1/2, 3.3- 7.4 days 

[72] 

4 mg on D1, 8 & 15 CL, 2.0 (4.9‡) L/h; BA, 60%; Tmax, 1.5 (0.3-8) h Results from population PK 
modelling. 

[73] 

4 mg on D1, 8 & 15 Model parameter: CL, 1.86 L/h; BA, 58%;  Combination treatment with 
lenalidomide & dexamethasone in 
RRMM 

[74] 

Abbreviations: IV, intravenous; SC, subcutaneous; CL, clearance; Vss, volume of distribution at steady-state; t1/2, terminal half-life; Cmax, maximum plasma concentration; Tmax, 
time to Cmax; AUClast, area under the concentration–time curve from time 0 to the last time point; BA, bioavailability; RRMM, refractory or relapsed multiple myeloma; D, 
Day(s); C, cycle(s)  
Values reported as means (standard deviation, % coefficient of variation (†) or % standard error (‡)) except for Tmax and t1/2, which are expressed as median (range).  
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diseased conditions or in response to cellular stimuli [75]. Such ABPs may be potentially used as 

diagnostics to detect disease or monitor response to therapy [76-78]. 

In 2005, phase I clinical trials with CFZ began and successfully identified the phase II 

recommended doses and dosing schedules that were further investigated in subsequent clinical trials 

[66, 79]. From early on, it was observed that a subset of patients who did not respond to BTZ-based 

therapy could still benefit from CFZ. Recently completed phase III clinical trials provided further 

evidence that CFZ-containing regimens can be effective against relapsed MM, including those patients 

who relapsed after receiving prior therapies including BTZ [80, 81]. In particular, the phase III 

ENDEAVOR trial was a head-to-head comparison of CFZ and BTZ in patients with relapsed or 

refractory MM [81]. In this trial, CFZ was shown to be superior to BTZ in extending overall survival 

of patients in the relapsed setting. In addition to its superior efficacy, the CFZ-containing regimen 

showed much improved safety profiles, especially in terms of peripheral neurotoxicity. While 

cardiovascular events were observed in CFZ-treated patients, no evidence was found of cumulative 

cardiac injury or ventricular dysfunction in the CFZ group. With these outstanding outcomes, CFZ is 

now part of a standard of care for relapsed or refractory MM and will likely evolve as part of frontline 

therapy in the near future.  

When the PK profiles of CFZ were initially assessed in rats, the results indicated very rapid 

clearance, short circulation time (plasma half-lives less than 1 h) and wide biodistribution [31, 82]. At 

all dose levels tested, the clearance of CFZ exceeded rat hepatic flow. In line with these in vivo results, 

CFZ was found to be rapidly metabolized in rat hepatocytes, but also in rat blood and in homogenates 

prepared from other tissues [82]. The major metabolites of CFZ were peptide fragments and the diol of 

CFZ, formed via peptidases and epoxide hydrolases, respectively. Similar to these preclinical results, 

early phase clinical trials also indicated that CFZ displays very short half-lives (12 ~ 40 min), rapid 

systemic clearance (116 ~ 263 L/h) and large volumes of distribution at steady state (9 ~ 28 L) at all 

dose levels tested (11, 15, 20, and 27 mg/m2) [66, 68] (Table 2). Plasma clearance of CFZ in humans 

also exceeded hepatic blood flow, further indicating a considerable contribution of extrahepatic 

mechanism to the overall elimination of CFZ [67]. Consistent with in vitro results showing only minor 

roles of CYP-mediated metabolism or renal excretion in the overall disposition of CFZ, the PK profiles 
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of CFZ were not impacted by co-administration with CYP inhibitors or inducers [67] or by renal 

impairment [83, 84]. 

Along with its structural and mechanistic differences from BTZ, CFZ offers a treatment option 

with greatly reduced risk of peripheral neuropathy. CFZ treatment is associated with different types of 

adverse effects including cardiovascular complications, hypertension, and heart failure, but overall 

these adverse effects are reversible and manageable with careful monitoring [85]. CFZ shares several 

adverse events with BTZ such as anemia, fatigue, and diarrhea. One potential downside of CFZ is its 

poor aqueous solubility. Despite the incorporation of a N-terminal morpholine ring to improve solubility, 

CFZ remains practically insoluble and the current formulation requires the use of a 50-fold excess of a 

b-cyclodextrin derivative to prepare an injectable solution. As with BTZ, CFZ is not suitable for oral 

administration and is susceptible to drug resistance in clinical use. These problems have prompted the 

development of additional next-generation PIs.  

2.3. Ixazomib (IXZ, MLN9708, Ninlaro®): First oral proteasome inhibitor drug 

With both BTZ and CFZ being administered only via intravenous or subcutaneous injection, there has 

been an unmet need for orally available PI drugs. In 2015, IXZ (Ninlaro®, Takeda Pharmaceuticals 

Limited) received its US FDA approval as the first orally bioavailable PI drug. Based on the promising 

efficacy observed in preclinical studies, IXZ rapidly advanced to clinical trials [28, 32]. IXZ, orally 

administered once a week (4 mg on days 1, 8, and 15 of 28-day cycles) in combination with 

lenalidomide plus dexamethasome, has now been approved in 40 countries including USA and the EU 

for the treatment of MM patients who have received one prior therapy, based on the superior results in 

clinical trials [72, 86]. IXZ also displayed a good safety profile with no significant inhibitory effect on 

HtrA2/Omi, a non-proteasomal target of BTZ previously linked to peripheral neuropathy [32, 86, 87]. 

IXZ is currently being investigated in several clinical trials as a single agent and in combination with 

other agents against multiple types of cancer (https://clinicaltrials.gov). 

Structurally, IXZ is a capped dipeptide boronic acid and preferentially and reversibly inhibits 

the CT-L activity of the proteasome as well as the C-L and T-L activities at high concentrations with 

potencies similar to BTZ [32]. However, the dissociation half-life of IXZ was significantly shorter than 
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that of BTZ (18 vs. 110 min), which may account for the faster recovery of proteasome activity (IXZ 

vs. BTZ, 69 vs. 20%) in cell-based assays and its larger volume of distribution in mice (IXZ vs. BTZ, 

20.2 vs. 4.3 L/kg) [28]. Although not examined, some of these differences may have contributed to the 

improved safety profiles of IXZ over BTZ, despite sharing the boronic acid residue as their 

pharmacophore.  

For oral administration, IXZ is formulated as a citrate ester prodrug (MLN9708) which is 

rapidly hydrolyzed to the pharmacologically active form (MLN2238) under physiological conditions 

[28]. In phase I clinical trials, orally administered IXZ was rapidly absorbed (mean Tmax, 0.5 ~ 1 h) and 

had a long terminal half-life (mean T1/2, 3.3 ~ 7.4 days in twice-weekly dosing; 3.3 ~ 11.3 days in 

weekly dosing) [71, 72] (Table 2). When tested using recombinant CYP enzymes in vitro, IXZ was 

metabolized by multiple CYPs at concentrations exceeding those observed clinically and deemed 

unlikely to incur potential drug-drug interactions [88]. Yet, co-administration with rifampin, a strong 

CYP3A inducer, led to substantial changes in the PK profiles of IXZ (Cmax and AUC decreased by 54% 

and 74%, respectively) [88]. Overall, the PK profiles of IXZ showed dose-proportional behaviors. 

Using the compiled clinical data from 755 patients treated with IXZ, Gupta et al. conducted population 

PK analyses and reported the following average estimates for PK parameters: absolute bioavailability 

(58%), volume of distribution (543 L), terminal phase half-life (9.5 days), and systemic clearance (1.86 

L/h) [74]. Systemic exposure to IXZ was affected by moderate or severe hepatic impairment [89], but 

not by renal impairment [74]. While IXZ has the potential to greatly improve the quality of life for 

patients with MM, its therapeutic advantages over BTZ or CFZ have yet to be investigated in 

randomized clinical trials.  

 

3. Drug resistance (acquired or de novo): Major hurdles in improving PI therapy 

Common in many cancer therapies, the issues of drug resistance also pose major hurdles for PI 

therapies. MM patients who initially respond to PI therapy almost inevitably develop resistance over 

time (acquired resistance). Once patients relapse with MM refractory to PI-based therapy, there are 

currently few effective treatment options left. While a subset of MM patients responds well to PI 
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therapy, others do not (de novo resistance). Several potential mechanisms for resistance to PI therapy 

have been proposed using cell-based model systems. Yet, those mechanisms await further validation 

in patients with MM and also in patients with solid cancers. For the lack of clinical benefits of PI 

therapy for solid cancers, it has been postulated that active PI drugs may have insufficient access to 

the proteasome target located in solid cancer cells (related to the PK issues). This possibility was 

supported in part by the preclinical results showing effective tumor growth suppression following 

direct intratumoral injection of PI drugs [12, 90]. In addition, intravenous dosing of BTZ was effective 

in mice harboring highly perfused xenograft tumors, but not poorly perfused ones [44]. Alternatively, 

it was also proposed that solid cancer cells may be inherently less sensitive to PI therapy than MM 

cells known for their elevated levels of proteotoxic stress or ER stress [91, 92].  To tease out why 

patients with solid cancers do not benefit from PI therapy, it would be necessary to develop PI drugs 

that can afford sufficient access to the proteasomes in solid cancer cells and/or to develop targeted 

drug delivery systems.     

Current understanding of resistance mechanisms for PI drugs, although not complete, has 

provided important platforms to screen for PI drugs that can potentially overcome resistance to existing 

PI drugs. Several reports observed the presence of mutations in the PSMB5 gene encoding the β5 

catalytic subunit from cancer cell line models resistant to BTZ and low levels of Xbp1, a key regulator 

of one arm of the unfolded protein response (UPR), in primary cells isolated from MM patients 

following BTZ therapy [93-96]. For cancer cell line models resistant to CFZ and epoxomicin, the 

upregulation of P-glycoprotein was reported to be causally linked to drug resistance [97, 98]. This 

information provided important guidance during the development of another epoxyketone-based PI, 

OPZ [30, 93]. The screening and optimization processes for OPZ and related compounds included the 

testing in cell lines expressing P-glycoprotein.  

 

4. Development strategies for next-generation proteasome inhibitors  

As discussed above, the discovery of next-generation PIs with improved PK/PD profiles could improve 

clinical outcomes for MM patients (especially those with resistance to existing PI therapy) and extend 
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therapeutic benefits to patients with solid cancers where existing PI drugs have proved largely 

ineffective. To achieve this goal, the following development strategies have been actively explored. 

Given that comprehensive reviews are already available on the first two strategies, we focused on the 

recent efforts to develop non-peptide-based PIs and drug delivery system. 

4.1. Immunoproteasome-selective inhibitors 

The immunoproteasome (iP) is a variant of the constitutive proteasome in which the constitutive 

catalytic subunits β1, β2 and β5 are replaced by their respective inducible counterparts β1i, β2i and β5i, 

under inflammatory conditions and certain pathological states including cancer. By targeting the iP, it 

may achieve more selective inhibition of the proteasomal activity in cancer cells, thereby widening the 

therapeutic window. Although iP inhibitors have been studied in the preclinical setting, to date none 

have entered clinical trials [99]. As the iP is strongly implicated in inflammatory pathways, iP-selective 

inhibitors are currently being investigated as potential anti-inflammatory agents. Detailed reviews on 

iP inhibitors are already available [100-102]. 

4.2. Peptide-based proteasome inhibitors  

The vast majority of existing PIs utilize a peptide backbone and an active warhead that interacts with 

the catalytic Thr residues of β-subunits with different mechanisms of action (e.g., aldehydes, vinyl 

sulfones or esters, boronates, epoxyketones, b-lactones). With the successful clinical development of 

the peptide boronates (BTZ and IXZ) and epoxyketone (CFZ), intense efforts have been underway to 

further refine the structure-activity relationship (SAR) and to identify compounds with optimal 

pharmacological profiles among peptide-based proteasome inhibitors. For further information on 

peptide-based PIs, comprehensive reviews are already available [103, 104].  

4.3. Non-peptide-based proteasome inhibitors 

From one of the earliest efforts to identify structurally-novel PIs via high-throughput screening, PI-083 

was identified as a non-peptide PI [105]. Utilizing a 2-chloro-1,4-naphthoquinone scaffold, PI-083 

preferentially inhibited the CT-L activity of the 20S proteasome (IC50: 1.0 µM) and inhibited T-L and 

C-L activities at slightly higher concentrations (IC50: 4.5 µM for both). When tested against a panel of 

10 solid cancer cell lines, PI-083 exerted cytotoxic effects with IC50 values ranging from 1.7 to 11 µM. 
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PI-083 was also effective in suppressing in vivo tumor growth in mouse xenograft models at a dose of 

1 mg/kg twice weekly. Based on docking results and the compound’s SAR, it is postulated that PI-083 

may act as a covalent PI with the chlorinated 2-carbon undergoing nucleophilic attack by the 

proteasome’s catalytic threonine residue [106]. Recovery of proteasome activity following incubation 

with PI-083 was slow, with only partial recovery of activity after 18 h. Attempts to improve PI-083’s 

inhibitory potency were generally unsuccessful and the SAR was highly sensitive to modification.  

A subsequent report from the same group identified PI-1840, a structurally-unrelated non-

peptide compound which potently and selectively inhibited the CT-L activity of the 20S constitutive 

proteasome (IC50: 27 nM) [107]. PI-1840 showed no appreciable inhibition of 20S proteasome T-L or 

C-L activity and had an IC50 value of greater than 1 µM against the CT-L activity of the iP. Analysis 

via mass spectrometry and dialysis confirmed that PI-1840 acts as a fully-reversible inhibitor. A panel 

of solid cancer cell lines displayed varying degrees of sensitivity to PI-1840 (IC50: 2.2 ~ 45.2 µM), and 

the cytotoxic potency appeared to correlate with the degree of proteasome inhibition achieved by PI-

1840. When tested in mice bearing MDA-MB-231 human breast cancer xenografts, PI-1840 (150 

mg/kg daily via intraperitoneal injection) effectively suppressed tumor growth, in contrast to no 

appreciable suppression in the control groups that received either BTZ (1 mg/kg twice weekly via 

intraperitoneal injection) or the vehicle only. No observable toxicity was noted in animals receiving 

high doses of PI-1840. The safety profiles observed with PI-1840 may be related to its high degree of 

selectivity for the constitutive β5 subunit relative to the iP subunit β5i and its lack of inhibition of T-L 

or C-L activities. Given that the existing PI drugs tend to target both β5 and β5i subunits with relatively 

low selectivity, it awaits further investigations to determine whether the selective inhibition of β5 by 

PI-1840 may be advantageous or disadvantageous in terms of anticancer efficacy.  The PK profiles of 

PI-1840 have not yet been published.   

Another non-peptide PI dubbed G4-1, based on a tri-substituted pyrazole scaffold, was reported 

by our own research group [108]. Identified via the combination of structure-based virtual screening 

and in vitro kinetic assays, G4-1 inhibits both β5 and β5i catalytic activities with IC50 values of 1.6 and 

2.4 µM, respectively. β1 and β1i subunits (C-L activity) were also inhibited at low micromolar 

concentrations, with minimal inhibition of T-L activity. G4-1 exerted cytotoxic effects against a variety 
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of solid cancer and MM cell lines, regardless of acquired resistance to BTZ and CFZ. Further structural 

analyses indicated that G4-1 is a reversible, non-covalent inhibitor. As expected from its non-peptide-

based structure, G4-1 displayed much improved in vitro metabolic stability over BTZ or CFZ when 

tested using mouse and human liver microsomes. In a mouse xenograft model of human prostate cancer, 

G4-1 (5 mg/kg, twice-weekly) was effective in suppressing tumor growth with no overt signs of toxicity. 

Additional PK or PD profiles of G4-1 have not yet been published.   

In addition to those described above, there have been several other recent reports of efforts to 

develop non-peptide PIs but further investigations are still needed to validate their mode of interaction 

with the proteasome, their extent of interaction with non-proteasomal targets and their in vivo efficacy. 

While there is also a body of research covering peptide-based non-covalent PIs, such as those described 

by Blackburn et al. [109, 110], it is expected that these compounds will be susceptible to the same rapid, 

often extrahepatic, clearance as existing peptide-based PIs. Peptide-based PIs may also be less likely to 

penetrate poorly-perfused tumors due to either their physiochemical properties or their interactions with 

efflux transporters [111]. Moving forward, significant research efforts will be required to identify non-

peptide PIs which display optimal PK/PD profiles and suitability for clinical use.  

4.4. Application of drug delivery system on proteasome inhibitors 

In improving the PK profiles of the existing PIs, the nanoparticle-based drug delivery systems (NDDS) 

may prove useful by prolonging the circulation time and changing the biodistribution profile, thereby 

enhancing the delivery of PIs to solid cancer tissues and reducing the toxicity in normal tissues. In 

cancer therapy, there exist several examples of successfully applying NDDS: doxorubicin (DoxilTM, 

Janssen, liposomal formulation), irinotecan (Onivyde™, Merrimack Pharmaceuticals, liposomal 

formulation), paclitaxel (Genexol-PM™, Samyang Biopharmaceuticals, polymeric micelle 

formulation; Abraxane™, Celgene, albumin bound nanoparticle) [112].  

For the first-in-class PI drug BTZ, there have been a number of attempts to apply novel NDDS 

and extend the therapeutic utility of BTZ. Polymeric micelle-based formulation of BTZ showed an 

improved tolerability and efficacy against triple negative breast cancer [46]. In another report, BTZ-

containing polymeric micelles were prepared using poly(D,L-lactic-co-glycolic acid) (PLGA) and 

polyethylene glycol with a bone-targeting ligand alendronate. The results showed an extended 
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circulation time as well as enhanced survival and decreased tumor burden in the MM mouse model [47]. 

A similar approach was attempted using PLGA-based nanoparticles conjugated with transferrin as a 

tumor-targeting ligand and the results showed an enhanced delivery of BTZ to pancreatic cancer cells 

[113]. Taking advantage of slightly acidic tumor microenvironment compared to normal tissues, pH-

sensitive polymer carriers were used to design novel delivery options for BTZ (where the drug release 

is triggered under acidic condition) [114-116]. The liposomal nanoparticles were also explored and the 

encapsulation of a BTZ prodrug in the liposomal nanoparticles demonstrated tumor growth suppression 

with reduced toxicity compared to BTZ in the mice carrying MM xenografts [45]. Another report used 

a liposomal BTZ formulation conjugated with NGR peptides and showed improvements in terms of 

toxicity and survival in the orthotopic mouse model of neuroblastoma [117]. Other types of NDDS 

applied to BTZ include hollow mesoporous silica nanospheres [118] and solid-lipid nanoparticles [119]. 

However, the NDDS for BTZ reported so far await further validation and careful examination for their 

clinical translation.  

For CFZ, the NDDS may offer potential benefits of extending the therapeutic utility beyond 

MM, but also of developing an alternative, cyclodextrin-free formulation (the current CFZ formulation 

contains 16-fold molar excess of sulfobutyl ether β-cyclodextrin (Captisol®) to CFZ). During the past 

several years, our laboratory and others have made efforts to develop the NDDS to CFZ. Tethered 

polymer nanoassemblies were prepared for CFZ, but the results showed a modest improvement in the 

cytotoxic effects against human lung cancer cells [120]. Another study examined a dual drug-loaded 

liposomal formulation to deliver CFZ and doxorubicin [121]. The dual drug-loaded liposomes were 

more effective in suppressing tumor growth in a mouse model of MM xenograft than co-administration 

of single drug-loaded liposomes [121]. A more recent report developed CFZ nanoparticles coated with 

neutrophil membranes [122]. The results showed quite promising suppression of early metastasis, but 

the limitations included the multi-step preparatory processes that may not be cost-effective and 

amenable for scale-up [122]. Thus, there is a clear need for novel, cost-effective NDDS which can 

expand the therapeutic utility of CFZ.  
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1. Introduction 

The proteasome, a multisubunit protease complex, is an anticancer target validated by remarkable 

clinical successes of proteasome inhibitor drugs. Since its fast-track FDA approval in 2003, the first-

in-class proteasome inhibitor drug bortezomib (VelcadeTM) has become a mainstay of multiple 

myeloma (MM) therapy, despite drawbacks including severe neurotoxicity caused by off-target 

interactions with neuronal proteases [123]. In 2012, the second-in-class proteasome inhibitor drug 

carfilzomib (KyprolisTM, CFZ) received an accelerated FDA approval for patients who have 

relapsed/refractory MM after receiving at least two prior therapies including bortezomib. CFZ in 

combination with other immunomodulatory agents such as lenalidomide and dexamethasone 

demonstrated good response profiles and several clinical trials are ongoing for its use as frontline 

therapies [124-126]. Compared to BTZ, CFZ is well tolerated with acceptable toxicity profiles and 

few instances of dose-limiting neurotoxicity, likely due to the selective interactions of its epoxyketone 

pharmacophore with the proteasome target [127]. 

Despite the notable benefits with CFZ, there remains much room for improvement. CFZ is 

practically insoluble in aqueous media and the current formulation contains 60 mg of lyophilized CFZ 

powder with 3,000 mg of sulfobutylether-β-cyclodextrin (Captisol®). Additionally, CFZ is rapidly 

inactivated in vivo; the majority (> 95%) of CFZ is eliminated from systemic circulation within 30 

min following intravenous injection due to its peptide backbone cleavage and epoxide hydrolysis 

[128]. The poor in vivo stability and short half-lives of CFZ have been considered major culprits for 

its lack of efficacy in patients with solid cancers by limiting the access of the active drug to 

proteasome targets within solid tumor tissues [129, 130]. Thus, novel drug delivery strategies that can 

improve solubility, in vivo stability of CFZ and the accessibility of active drug to targeted tumor sites 

may potentially extend its therapeutic benefits in patients with solid cancers. 

Polymeric micelles (PMs) composed of amphiphilic block copolymers have gained much 

attention for their application in drug delivery, especially due to their biocompatibility and utility in 

improving drug solubility and stability in the biological system and achieving passive tumor targeting, 

commonly referred to as enhanced permeability and retention (EPR) effect [131, 132]. In the case of 
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CFZ, it was previously reported that several CFZ-loaded PM formulations composed of 

biodegradable block copolymers poly(ethylene glycol)-poly(caprolactone) (PEG-PCL) displayed 

improved metabolic stability and anticancer efficacy profiles in vitro [133]. Given these results, the 

logical next step was to examine whether these in vitro improvements achieved by CFZ-loaded PM 

formulations would be recapitulated in vivo. 

In this report, we examined the anticancer efficacy and plasma pharmacokinetic (PK) profiles 

of the CFZ-loaded PM formulation (CFZ-PM, composed of PEG-PCL 5-5.5 KDa with deoxycholic 

acid added) in vivo. Despite our previous results showing in vitro metabolic protection with CFZ-PM 

[133], its in vivo performances in terms of anticancer efficacy, plasma PK profiles and proteasome 

inhibition in residual tumor tissues did not show notable improvements over the cyclodextrin (CD)-

based CFZ formulation (CFZ-CD). Careful consideration of these results and confounding factors 

may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy 

for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers. 

 

2. Materials and Methods 

2.1. Cell lines and reagents 

A human lung adenocarcinoma cell line H460 was obtained from Korean Cell Line Bank (KCLB, Seoul, 

Korea) and maintained according to the KCLB-recommended culture conditions. CFZ was purchased 

from LC laboratories (Woburn, VA, USA). Block polymer PEG-PCL with molecular weight 5-5.5 kDa 

was purchased from Polymer Source (Montreal, QC, Canada). 2-hydroxypropyl-β-cyclodextrin, EDTA, 

chloropropamide, deoxycholic acid (DCA) and formic acid were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). The fluorogenic substrate, N-Succinyl-Leu-Leu-Val-Tyr-7-amino-4-

methylcoumarin (Suc-LLVY-AMC), was purchased from Bachem (Torrance, CA, USA). All solvents 

for HPLC were obtained from Burdick & Jackson Company (Morristown, NJ, USA). 

2.2. Preparation and characterization of CFZ-PM formulation 

The CFZ-PM formulation was prepared using PEG-PCL 5-5.5 KDa with DCA through the thin film 

method as previously described [133]. The particle size distribution and zeta potential values were 
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measured for CFZ-PM or empty PM (prepared without CFZ) using an electrophoretic light scattering 

method (DLS, Zetasizer Nano ZS, Malvern, UK). Critical micelle concentrations (CMCs) of CFZ-PM 

and empty PM were determined using the pyrene I3/ I1 method [134]. Briefly, pyrene solution in acetone 

(2 µM) was added to PM solution in water at varying PM concentrations and left to equilibrate at 37 °C 

overnight. The fluorescence signal intensities of pyrene in the solution were measured at the first (I1 at 

372 nm) and third (I3 at 383 nm) peaks following excitation at 334 nm using a SpectraMax M5 

microplate reader in order to determine the encapsulation of pyrene corresponding to micelle formation 

(SpectraMax M5, Molecular Devices, CA, USA). 

2.3. Anticancer efficacy of CFZ-PM in NOD/SCID mice harboring human lung cancer (H460) 

xenografts 

Animal procedure was performed using the protocol approved by the Seoul National University 

Institutional Animal Care and Use Committee (approval No. SNU-151127-3). NOD/SCID mice were 

obtained from Japan SLC, Inc. (Hamamatsu, Japan). Briefly, H460 cells (3×106 cells/spot) were 

subcutaneously injected into the flank of mice (NOD/SCID, 6-7 weeks old). After the tumor volume 

reached 50 – 150 mm3, the mice were randomized into 6 different treatment groups (n=4-5) as follows; 

CFZ-PM at the dose of 3 or 6 mg/kg, CFZ-CD (complexed with 20% (v/w) 2-hydroxypropyl-β-

cyclodextrin in 10 mM citrate buffer, pH 3) at the dose of 3 or 6 mg/kg, vehicle (10 mM citrate buffer, 

pH 3), and empty PM. Drug was dosed via tail vein injection (two consecutive days/week for 3 weeks). 

Tumor growth was assessed by measuring the short and long diameters of the tumor with a caliper and 

using the following formula: tumor volume (mm3) = 0.5 × (short diameter, mm)2 × (long diameter, mm). 

Mice were sacrificed on day 18 and tumor tissues and whole blood samples were collected for 

proteasome activity assay and immunoblotting analysis. 

2.4. Assessment of proteasome target inhibition/modification in excised xenograft tumor tissues from 

mice that received drug treatment 

In order to assess whether CFZ-PM improved the accessibility of the active drug to tumor tissues, the 

proteasome target inhibition was measured in excised tumor tissues and whole blood samples from 

mice that received drug treatment. Tumor tissues and whole blood samples were collected 48 h after 
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the injection of the respective treatments on the last day of the in vivo efficacy experiment. The excised 

tumor tissues were homogenized with passive lysis buffer (Promega, WI, USA) using a hand-held tissue 

grinder on ice. The homogenates were centrifuged at 3,000g for 20 min at 4°C and the resulting 

supernatant was used for proteasome activity assay and immunoblotting analysis. The proteasome 

activity was determined by monitoring the cleavage rate of fluorescent 7-amino-4-methylcoumarine 

(AMC) from Suc-LLVY-AMC. Briefly, lysates of excised tumor tissues (10 µg of total protein) or 

whole blood (1 µL) were incubated with Suc-LLVY-AMC (100 µM dissolved in 20 mM Tris-Cl buffer 

(pH 8.0) containing 500 µM EDTA). Fluorescence signals of liberated AMC were monitored for a 

period of 60 min using excitation and emission wavelengths of 360 and 460 nm on a SpectraMax M5 

microplate reader (Molecular Devices, CA, USA). 

Since CFZ irreversibly inhibits the proteasome via covalent modification, the presence of covalently 

modified catalytic subunit β5 can also be used to assess the extent of the proteasome inhibition. Briefly, 

tumor tissue lysates (10 µg of total protein) were resolved using 12.5% SDS-PAGE and transferred 

onto a PVDF membrane (Bio-Rad Laboratories). Membranes were blocked in 5% milk in Tris-buffered 

saline containing 0.05% Tween-20 (TBST) and probed with the following antibodies; for β5 (dilution 

1:1000, Abcam) and β-actin (dilution 1:1000, Cell Signaling). Membranes were washed with TBST 

and probed with the corresponding secondary antibodies conjugated with horseradish peroxidase. 

Bound antibodies were visualized using an enhanced chemiluminescence substrate (Thermo Fisher 

Scientific). 

2.5. Assessment of plasma PK profiles of CFZ-PM in mice 

PK studies in mice were carried out following the protocol approved by the Seoul National University 

Institutional Animal Care and Use Committee (approval No. SNU-160512-5). The CFZ-PM and CFZ-

CD were injected via tail vein into ICR mice obtained from Samtako (Gyeonggido, Korea) at doses of 

3 or 6 mg/kg (n=4-5 per group), respectively. At the pre-determined time points (2, 5, 20, 60, 120, 360, 

600 and 1,440 min), whole blood samples were collected from the retro-orbital plexus of the mice using 

microhematocrit tubes. To minimize blood loss due to sampling, approximately 50 µL of whole blood 

was drawn at each sampling time and individual mice did not have more than 6 times of blood sampling. 
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Plasma samples (20 µL) separated from whole blood were quenched with acetonitrile (60 µL) 

containing chlorpropamide (2 µg/mL, an internal standard) and mixed by vortexing for 15 min. After 

the mixture was centrifuged at 9,000 g for 15 min at 4°C, the concentration of CFZ in the supernatant 

was measured using an HPLC interfaced with mass spectrometry (Shimadzu LCMS-8050). Briefly, 10 

µL of the resulting supernatant was injected and separation of CFZ and chlorpropamide was achieved 

using a Phenomenex C18 column and the mobile phase composed of H2O:acetonitrile (40:60, v/v) 

containing 0.1% formic acid (flow rate = 0.35 mL/min). CFZ and chlorpropamide were detected in the 

ESI mode (positive ion mode, CFZ: 720.20→100.15 m/z; chlopropamide: 277.05→175.10 m/z). The 

detailed report on analytical conditions and assay validation parameters including accuracy and 

precision is currently in preparation. PK parameters were calculated using non-compartmental methods 

(WinNonLin version 5.0.1, Pharsight). 

2.6. Statistical analyses 

The results were expressed as the mean with standard deviation. Statistical significance between groups 

was determined using ANOVA followed by Dunnett’s or Tukey’s post hoc test (GraphPad Prism, 

GraphPad Software Inc., CA, USA). P values less than 0.05 were considered to indicate statistical 

significance. 

 

3. Results 

3.1. Physicochemical properties of CFZ-PM 

The particle size distribution and zeta potential of CFZ-PM and empty drug-free PM were determined 

using dynamic light scattering. The mean diameters of CFZ-PM and empty PM were comparable (56.0 

± 6.1 vs 41.2 ± 5.7 nm) and so were zeta potential values (-0.1 ± 0.4 vs -0.5 ± 0.3 mV) (Table 1). These 

results indicated that both size distribution and zeta potential were not substantially altered by CFZ drug 

loading. In addition, particle sizes did not show substantial changes in cell culture media containing 

fetal bovine serum compared to phosphate-buffered saline (data not shown). These results suggest that 

PEGylation of micelles may have decreased the tendency for nanoparticles to aggregate. The critical 
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micelle concentration (CMC) values measured by fluorescence spectrophotometry with pyrene were 

also comparable between empty PM and CFZ-PM with 0.18 and 0.14 mg/mL, respectively (Table 1). 

Table 1. Physicochemical characterization of drug-free and carfilzomib (CFZ)-loaded polymeric 
micelles (PM). 

Group Size (nm) Zeta potential (mV) CMC (mg/mL) 

Drug-free PM 41.2 ± 5.7 -0.5 ± 0.3 0.18 

CFZ-PM 56.0 ± 6.1 -1.0 ± 0.4 0.14 
Data are shown as means ± S.D. (n=3). CMC, critical micelle concentration 

3.2. In vivo anticancer efficacy of CFZ-PM in H460 xenograft mice  

The doses and dosing schedules of CFZ-PM and CFZ-CD (3 or 6 mg/kg, intravenous administration on 

two consecutive days per week) were based on clinically used regimens and available information in 

the literature [135]. The tumor size was substantially smaller in the groups that received CFZ-PM or 

CFZ-CD than in the control groups that received empty PM or vehicle only, but no difference was 

observed between the groups that received CFZ-PM and CFZ-CD at the dose of 3 mg/kg (Fig 1A). It 

was unable to compare tumor growth suppression of CFZ-PM to that of CFZ-CD at the dose of 6 mg/kg 

since 4 out of 6 mice that received 6 mg/kg of CFZ-CD died during the treatment period. The mice that 

received 6 mg/kg of CFZ-PM survived with no sign of substantial toxicity, at least based on body weight 

changes (Fig 1D). The tumor growth suppression by CFZ-PM was not however dose-dependent; tumor 

growth curves for 3 and 6 mg/kg doses overlapped and weights of excised tumors for both doses were 

similar (Figs 1B and 1C).  

3.3. Proteasome inhibition in post-treatment xenograft tumor tissues and whole blood samples 

collected from mice that received CFZ-PM or CFZ-CD 

In order to probe possible reasons for no enhancement of anticancer efficacy with CFZ-PM over CFZ-

CD, we compared the extent of proteasome inhibition in the excised xenograft tumor tissues and whole 

blood samples collected from the xenograft mice receiving different drug treatments (collected 48 h 

following the last injection). In the groups that received CFZ-PM (3 or 6 mg/kg) or CFZ-CD (3 mg/kg), 

the inhibition of the proteasome activity in tumor lysates was modest (and not reaching statistical  
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Figure 1. Effects of polymeric micelle formulation containing carfilzomib (CFZ-PM) vs cyclodextrin-
based carfilzomib formulation (CFZ-CD) on tumor growth in H460 xenograft mice. NOD/SCID mice 
harboring H460 xenograft tumors were randomized to 5 different groups and received respective 
intravenous injections on two consecutive days per week; CFZ-PM at the dose of 3 (□) or 6 (■) mg/kg, 
CFZ-CD at the dose of 3 (△) mg/kg, vehicle (citrate buffer ●) and empty PM (dissolved in saline ○). 
The upper arrow symbol (↑) indicates the day of drug injection. (A) Tumor growth curves. (B, C) 
Weights and images of excised tumor tissues on day 18. (D) Body weights. Data are shown as means 
± S.D. (n=4-5). *, p < 0.05 vs. vehicle control using ANOVA followed by Dunnett’s post hoc test. 
 
significance), with more than 50% of the activity remaining relative to the control group (Fig 2A). It 

should be noted that these results were obtained from the residual tumor tissues collected 48 h after last 

injection of the respective treatments. Thus, the measured proteasome activity in tumor lysates may 

represent that from tumor cells where active CFZ did not reach. Alternatively, the measured proteasome 

activity may come from the recovery following the initial inhibition. For instance, the previous report 

by Demo et al. [31] showed that the proteasome activity in major organs can substantially recover 24 h 

after intravenous injection of the single CFZ dose of 5 mg/kg. However, these results differ from those 

obtained by other investigators. With a repeated dosing schedule (clinically used and same as our 

current study), the proteasome activity in patients displayed only a minimal recovery [136]. The slow 

recovery of proteasome activity is also in line with rather slow proteasome de novo biogenesis rates 

taking at least several days [137-140]. Given the irreversible nature of proteasome inhibition by CFZ 

and a relatively long time for de novo proteasome biogenesis to replace the covalently modified 

proteasomes, the observed proteasome activity in residual xenograft tissues is unlikely from the 

recovery following initial inhibition [141]. In contrast, the proteasome activities in whole blood samples 
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collected 48 h after the last injection of the respective treatments showed an almost complete inhibition 

in all three tested groups, CFZ-PM (3 or 6 mg/kg) and CFZ-CD (3 mg/kg) (Fig 2B, p < 0.001, each 

treatment different from the control). 

 
Figure 2. Proteasome activities in the post-treatment tumor tissue lysates (A) and whole blood samples 
(B) collected from H460 xenograft mice that received the intravenous injections of polymeric micelle 
formulation containing carfilzomib (CFZ-PM) or cyclodextrin-based carfilzomib formulation (CFZ-
CD). The tumor tissues and whole blood samples were collected 48 h after the last injection of the 
respective treatments. Proteasome activities in tumor tissue lysates or whole blood lysates were assessed 
by measuring the cleavage rate of the fluorogenic substrate Suc-LLVY-AMC. *, p < 0.001 vs. all other 
groups using ANOVA followed by Dunnett’s post hoc test. 
 
In addition to measuring post-treatment proteasome activities, we also probed the extent of CFZ-

induced covalent modification of the major proteasome catalytic subunit β5. This assay takes advantage 

of the altered electrophoretic mobility of the covalently modified β5 protein by CFZ as previously 

described [142]. The band of the positive control (tumor lysates incubated with 50 nM CFZ for 2 h in 

vitro) showed a mobility shift compared to the negative control (tumor lysates incubated with the 

vehicle DMSO for 2 h) (Fig 3). No detectable β5 band shift was observed in the post-treatment tumor 

lysates collected 48 h after the last drug treatment in either CFZ-PM or CFZ-CD groups. Altogether, 

these results suggest that CFZ-PM did not enhance the access of active CFZ to cancer cells in xenograft 

tumors and the extent of proteasome inhibition in vivo.  

 

Figure 3. Immunoblotting analyses showing that the proteasome catalytic subunit β5, a primary target 
of carfilzomib remains unchanged in post-treatment tumor tissue lysates collected from the xenograft 
mice that received different treatments. (CFZ-CD: cyclodextrin-based carfilzomib formulation; CFZ-
PM: polymeric micelle formulation containing carfilzomib) The tumor tissues were collected 48 h after 
the last injection of the respective treatments. 
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3.4. Comparison of plasma PK profiles of CFZ-PM and CFZ-CD in ICR mice 

Given that CFZ-PM did not suppress tumor growth more effectively than CFZ-CD (Fig 2), it 

was examined whether the plasma PK profiles differ between CFZ-PM and CFZ-CD. Following the 

intravenous injection of CFZ-PM or CFZ-CD to ICR mice, the plasma concentration-time curves for 

both groups displayed a rapid decline. During early time points (up to 2 h), the mice that received CFZ-

PM (either 3 or 6 mg/kg) showed higher drug concentrations than those that received CFZ-CD (Fig 4). 

However, this trend was reversed in later time points (6, 12 and 24 h after injection); the mice that 

received CFZ-PM injection (3 or 6 mg/kg) showed lower CFZ concentrations in plasma than those that 

received CFZ-CD. 

 

Figure 4. Plasma concentration-time profiles of carfilzomib after the intravenous administration of 
polymeric micelle formulation containing carfilzomib (CFZ-PM) or cyclodextrin-based carfilzomib 
formulation (CFZ-CD) to mice (A, 3 mg/kg and B, 6 mg/kg). Data are shown as means ± S.D. (n=4-5). 
The inset figures show the plasma concentration-time profiles up to 2 h. 
 

Table 2. Pharmacokinetic parameters of carfilzomib after the intravenous administration of polymeric 
micelle formulation containing carfilzomib (CFZ-PM) and cyclodextrin-based carfilzomib formulation 
(CFZ-CD) to ICR mice. 

Pharmacokinetic Parameters 
CFZ-PM  CFZ-CD 

3 mg/kg 6 mg/kg  3 mg/kg 6 mg/kg 

AUC0-2h (nmol×min/mL) 38.6 ± 1.2 118.1 ± 25.3  33.3 ± 7.7 55.2 ± 21.1 

AUC0-24h (nmol×min/mL) 39.8 ± 0.8 121.4 ± 27.2  35.4 ± 8.0 58.8 ± 21.8 

AUCINF (nmol×min/mL) 39.9 ± 0.8 121.8 ± 27.4  36.4 ± 8.0 62.6 ± 22.9 

CL (mL/min/kg) 105 ± 2 71 ± 15  119 ± 29 152 ± 71* 

Data are shown as means ± S.D. (n=4-5). AUC0-2h, Area under the plasma concentration-time curve (AUC) from 
time 0 to 2 h; AUC0-24h, AUC from time 0 to 24 h; AUCINF, AUC extrapolated to infinity; CL, clearance. *, p < 
0.05 vs. all other groups using ANOVA followed by Tukey’s post hoc test. 
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For detailed comparison, the PK parameters were obtained using non-compartmental methods (Table 

2). As expected from the rapid initial decline in the plasma concentration-time curves, the AUC0-2h 

values accounted for approximately 96.7% and 97.0% of the AUCINF values in the CFZ-PM groups at 

the doses of 3 and 6 mg/kg, respectively. In the case of the CFZ-CD groups, the AUC0-2h values 

accounted for approximately 91.4% and 88.1% of the AUCINF values at the doses of 3 and 6 mg/kg, 

respectively. The CL values of CFZ in all four groups exceeded the average hepatic blood flow in mice, 

suggesting substantial extrahepatic metabolism of CFZ. These results are in line with the previous 

reports in rats and humans [128, 130]. The systemic exposure of CFZ-PM and CFZ-CD at the dose of 

3 mg/kg appeared to be comparable based on the similar AUCINF and CL values between the two groups. 

When the AUCINF values of 3 and 6 mg/kg doses were compared, the CFZ-PM group displayed 

approximately 3-fold increases (39.9 ± 0.8 vs 121.8 ± 27.4) while the CFZ-CD group displayed 

approximately 1.7-fold increases (36.4 ± 8.0 vs 62.6 ± 22.9). These differences in the AUCINF values 

led to a slower CFZ clearance in the CFZ-PM group at the dose of 6 mg/kg than the other groups (p < 

0.05). 

 
4. Discussion 

The proteasome is well accepted as a critical player in several traditional hallmarks of cancer, defined 

by Hanahan and Weinberg [143]. More recently, proteotoxic stress triggered by imbalances in protein 

homeostasis has been annotated as another hallmark of cancer [144]. In this regard, CFZ with improved 

efficacy and safety profiles merits further investigations to extend its therapeutic utility beyond MM. 

In particular, recent reports suggested that certain solid cancers render proteasome addiction as 

vulnerability, thereby a potential target for therapeutic interventions. Using genome-wide siRNA 

screening, the knockdown of proteasome genes was found to cause lethality in basal-like triple-negative 

breast cancer cells [145]. This particular study examined the effectiveness of bortezomib administered 

via different dosing routes in suppressing in vivo tumor growth and metastasis. Only intratumoral 

injection, but neither intraperitoneal nor intravenous route, displayed an efficient proteasome inhibition 

associated with enhanced anticancer efficacy [145]. An early report with bortezomib also indicated that 

intratumoral injection of the drug leads to an effective proteasome inhibition and growth suppression 
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in mice harboring prostate cancer xenografts [146]. Altogether, these findings provide an impetus to 

develop novel delivery strategies that can effectively target proteasomes in solid cancer tissues and 

validate the potential of CFZ-based therapy for solid cancer patients. 

Previously, we developed several CFZ-loaded PM formulations displaying improved metabolic 

stability and anticancer efficacy in vitro [133]. In this study, we investigated in vivo anticancer efficacy 

and PK profiles of CFZ-PM (CFZ-loaded PEG-PCL 5-5.5 KDa with DCA) in mice. In the tumor 

xenograft model, CFZ-PM did not show substantial improvements in the anticancer efficacy and 

proteasome inhibition at the tumor sites over CFZ-CD (Figs 2 and 3). In addition, the plasma PK profiles 

of CFZ-PM were for the most part comparable to those of CFZ-CD at the dose of 3 mg/kg except 

showing slightly higher drug concentrations at early time points (Fig 4). These results indicated an 

incomplete proteasome inhibition in the post-treatment tumor tissues collected from H460 xenograft 

mice 48 h after the last injection of CFZ-PM (Figs 2 and 3). In further probing possible reasons for the 

lack of improvements with CFZ-PM over CFZ-CD, it would be important to examine whether the 

xenograft model employed in the current study allowed for sufficient passive targeting effect. The 

particle size distribution of CFZ-PM (56.0 ± 6.1 nm, Table 1) is sufficiently small to pass through the 

pore size of vascular membranes (60 ~ 100 nm) [147, 148]. However, these results suggest that CFZ-

PM was not more effective in providing the access of active CFZ into tumor sites than CFZ-CD. It is 

increasingly recognized that tumor types, tumor vascular heterogeneity, abnormal tumor blood vessels 

or high interstitial fluid pressure may influence the access of chemotherapy to cancer cells [149, 150]. 

To overcome such variability, various pharmacological and physical strategies including focal radiation 

and sonoporation have been exploited in the field [151-153]. It would be important to obtain more 

detailed biodistribution data and to consider combining approaches to improve tumoral penetration of 

active CFZ in future investigations. 

The extent and rate of CFZ release from CFZ-PM in vivo may also be a factor influencing 

anticancer efficacy. The plasma PK profiles of CFZ-PM after a single intravenous administration 

displayed higher drug concentrations during the initial phase (up to 2 h) than those of CFZ-CD at the 

dose levels of both 3 and 6 mg/kg (Fig 4). When the plasma PK parameters were compared, mice that 
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received CFZ-PM (6 mg/kg) displayed a greater systemic exposure and a slower CFZ clearance than 

those that received CFZ-CD (6 mg/kg) (Table 2). However, the systemic toxicity appeared to be more 

severe in xenograft mice treated with CFZ-CD (6 mg/kg) than those treated with CFZ-PM (6 mg/kg); 

four out of six mice receiving 6 mg/kg repeated doses of CFZ-CD died. Although these results need to 

be interpreted with caution due to the small sample size, these results suggest that CFZ-PM may have 

the potential to increase maximum tolerated dose levels and possibly CFZ release kinetics and 

biodistribution profiles different from CFZ-CD. Given the relatively low drug loading efficiency (2.3%) 

of the current CFZ-PM [133], the initial micelle concentrations (upon immediate dilution of the CFZ-

PM 3 mg/kg dose in an average mouse blood volume of approximately 2 mL) are estimated to be well 

above the measured CMC value (0.14 mg/mL, Table 1). However, as polymers are cleared from blood, 

micelle concentration will decrease and micelles could degrade and release CFZ. Thus, it might be 

necessary to explore polymer-based nanoparticles stabilized with various structural/functional 

modifications [132, 147]. For the docetaxel-loaded PM formulation composed of the same block 

copolymer, PEG-b-PCL, the CMC value of 0.02 mg/mL was reported in in vitro conditions [154]. Thus, 

it may be feasible to lower CMC values for CFZ-loaded PM formulations by carefully optimizing 

various factors (e.g., drug-to-polymer ratios, addition of excipients stabilizing hydrophobic cores) using 

the current block copolymer or by using different types of block copolymers. 

In summary, the results in this study showed that the current CFZ-PM does not enhance anti-

cancer efficacy in vivo. Careful consideration of these results and confounding factors may provide 

valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer 

and to develop effective CFZ delivery strategies that can be used to treat solid cancers. 
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Expanding Therapeutic Utility of Carfilzomib for Breast Cancer 

Therapy by Novel Albumin-coated Nanocrystal Formulation 

 

 

 

 

 

 

* The work from Chapter II is currently under revision in Journal of Controlled 

Release (Manuscript number: JCR-D-18-01200).   
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1. Introduction 

Breast cancer is ranked first in the incidence of disease and second in cancer-related deaths in women 

worldwide [1, 2]. Among different subtypes of breast cancer, triple-negative breast cancer (TNBC), 

which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth 

factor receptor 2 (HER2), is notorious for its aggressive behavior and resistance to endocrine and anti-

HER2 therapies (e.g., tamoxifen, trastuzumab) [3, 4]. Thus, novel and effective therapies for TNBC are 

urgently needed. A growing body of preclinical evidence supports that the proteasome is an effective 

therapeutic target against breast cancers including TNBC [5, 6]. Bortezomib, the first-in-class 

proteasome inhibitor, reversibly inhibits the proteasome with its boronic acid pharmacophore. While 

bortezomib has shown remarkable successes in multiple myeloma therapy, it has brought only marginal 

therapeutic benefits to patients with solid cancers including breast cancer [7]. The lack of clinical 

efficacy of bortezomib is attributed in part to its poor penetration into the targeted solid tumor tissues 

and the narrow therapeutic window due to dose-limiting toxicities arising from proteasomal inhibition 

in normal tissues and off-target interactions with non-proteasomal targets [5, 8].  

Carfilzomib (CFZ, Kyprolis®) is the second-in-class proteasome inhibitor and has received the 

FDA approval a decade after the approval of bortezomib. Unlike bortezomib, CFZ covalently and 

irreversibly inhibits the proteasome with its epoxyketone pharmacophore and displays minimal 

interactions with non-proteasomal targets, thereby improving safety profiles over bortezomib [9]. Due 

to the poor solubility of CFZ (log P = 4.13, ~ 10 µM in PBS [10]), the current injectable formulation of 

CFZ contains 16-fold molar excess of sulfobutyl ether β-cyclodextrin (Captisol®) as a solubilizer. When 

administered as the current cyclodextrin (CD)-based formulation, CFZ has a very short circulation time 

(plasma half-lives of 0.5 – 1 h in humans and preclinical species) due to the extensive hepatic and extra-

hepatic metabolism and wide tissue distribution [11]. As an alternative formulation, previous studies 

have surveyed the feasibility of CFZ nanoformulations including liposomes, polymer micelles, tethered 

polymer nanoassemblies, and neutrophil membrane-coated nanoparticles [12-15]. The shortcomings of 

these approaches however include the low drug loading efficiency, burst release of the drug in blood 

circulation, and no-to-marginal improvement in in vivo anticancer efficacy. Thus, there is a clear need 
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for a new nanoformulation of CFZ with improved pharmacokinetic (PK) and biodistribution (BD) 

profiles as well as pharmacodynamics, such as anticancer efficacy and proteasome target modulation.  

To develop a cost-effective nanoformulation with an improved circulation time and anticancer 

efficacy in vivo, we designed a CD-free, nanocrystal (NC)-based formulation of CFZ. NC formulations 

exploit poor water solubility of anticancer drugs to produce injectable nanoparticles with a high drug 

content [16-18]. NCs with sufficiently high lattice energy can circulate for a prolonged period and may 

gain selective access to solid tumors via leaky vasculature. To facilitate favorable interactions of NCs 

with cancer cells (thereby enhancing the delivery of NCs to cancer cells), the surface of NCs can be 

modified with various molecules. In particular, albumin has gained considerable interest as a potential 

surface modifier, due to low toxicity, biocompatibility, and the ability to reduce interactions with 

phagocytes in the reticuloendothelial system (RES) [19-21]. Moreover, albumin can interact with 

cancer cells based on its increased use as an energy source in rapidly proliferating cancer cells [22]. It 

has been reported that nano-albumin-bound-drugs (nab-drugs) can aid drug permeation across tumor 

vessels [23, 24]. Albumin-bound paclitaxel (nab-paclitaxel) displayed promising efficacy and safety 

profiles in patients with breast cancers including TNBC [25]. Although the exact mechanisms by which 

nab-drugs reach cancer cells are not fully understood, it is suggested that albumin facilitates the 

movement across the endothelial cell membrane by binding to the gp60 receptor and sequentially 

interacting with other albumin-binding proteins such as SPARC (Secreted Protein Acidic and Rich in 

Cysteine) abundantly expressed in and near cancer cells [26]. Importantly, our previous studies support 

that albumin coating helps deliver paclitaxel and docetaxel NCs to solid tumors through the interaction 

with those albumin-binding proteins [27, 28]. 

In this study, we examined whether NCs with albumin coating could enhance the delivery of 

CFZ to breast cancers. Using albumin-coated CFZ NCs (CFZ-alb NC), we observed that CFZ-alb NC 

enhanced cytotoxic effects in breast cancer cell lines and tumor growth suppression in a murine 4T1 

orthotopic breast cancer model, compared to the CD-based formulation of CFZ (CFZ-CD). We also 

observed the improved BD profiles of CFZ-alb NC in 4T1 orthotopic breast cancer model and 

investigated potential involvement of SPARC in the enhanced tumoral accumulation of CFZ-alb NC.  
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2. Material and methods 

2.1. Materials 

CFZ was purchased from Shenzhen Chemical Co. Ltd. (Shanghai, China). Pluronic F127 (F127) was a 

gift from BASF (New York, NY, USA). Human serum albumin (HSA; ≥ 96% purity assessed by 

agarose gel electrophoresis, Cat. No. A1653) and (2-hydroxypropyl)-β-cyclodextrin were from Sigma-

Aldrich (St. Louis, MO, USA). All other reagents were from Thermo Fisher Scientific (Waltham, MA, 

USA). 

2.2. Preparation of CFZ-alb NC 

CFZ-alb NC was prepared by crystallizing CFZ in the presence of F127 and coating the resulting CFZ-

NC with HSA, as reported previously [28]. Briefly, 6 mg of CFZ and 48 mg of F127 were dissolved in 

a mixture of 3 mL of chloroform and 1 mL of methanol and dried in a round-bottom flask by rotary 

evaporation at 40 ˚C for 10 min. The dry drug-polymer film was hydrated with 6 mL of water and 

sonicated in a water bath for 10 s. The NC suspension was further probe-sonicated for 5 min with an 

amplitude of 40% and a 4:1 duty cycle every 5 s in an ice bath. Subsequently, the suspension was 

incubated with 48 mg of HSA for 24 h at room temperature on a rotating shaker. Excess surfactant and 

albumin were removed by centrifugation at 135,700 g for 15 min at 4 ˚C. 

Optionally, CFZ-alb NC was fluorescently labeled by adding rhodamine B as 0.1 mg/mL 

aqueous solution during the film hydration step. The rhodamine B-labeled CFZ-alb NC was called 

*CFZ-alb NC. To quantify the incorporated rhodamine B, the fluorescence intensity (λex/λem= 540 

nm/625 nm) of a known amount of CFZ-alb NC dissolved in acetonitrile (ACN) was measured with a 

SpectraMax M3 microplate reader (Molecular Devices, CA, USA). Most in vitro studies were 

performed with freshly prepared CFZ-alb NC. For in vivo studies, CFZ-alb NC was lyophilized with 

trehalose as a cryoprotectant (CFZ-alb NC:trehalose = 1:5 (w/w)) (Fig. S1). The lyophilized product of 

CFZ-alb NC was dissolved in PBS before administration. The concentration of trehalose in the dosing 

solution (containing 0.8 mg/ml of CFZ) was estimated to be around 4.3 mOsm/L, which is unlikely to 

compromise the isotonicity (approximately 300 mOsm/L). 
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2.3. Characterization of CFZ-alb NC  

2.3.1. Size, surface charge, and morphology 

The size and surface charge of CFZ-alb NC diluted in phosphate buffer (1 mM, pH 7.4) were measured 

with a Zetasizer Nano-ZS90 (Malvern Instruments, Westborough, MA, USA). The morphology of 

CFZ-alb NC was examined with a FEI Tecnai G2 20 Transmission Electron Microscope  (FEI Company, 

Hillsboro, OR, USA) at 200 keV. Samples were mounted on a 400-mesh Cu grid with Formvar/carbon 

supporting film, followed by negative staining with 1% uranyl acetate. Images were captured with a 

SIA L3-C2 megapixel CCD camera (Scientific Instruments and Application, Duluth, GA, USA). The 

length of CFZ-alb NC was analyzed from TEM images with ImageJ (National Institutes of Health, 

Bethesda, MD, USA). 

2.3.2. Powder X-ray diffraction (PXRD) 

CFZ and CFZ-alb NC were analyzed with a Rigaku SmartLab diffractometer (Rigaku Americas, The 

Woodlands, TX, USA) equipped with a Cu-Kα radiation source. The powder samples were placed on 

glass holder, and diffraction patterns were obtained from 5 to 40° 2θ at a scan speed of 4° per min and 

a step size of 0.02°. The voltage and current used were 40 kV and 44 mA, respectively. 

2.3.3. Contents of CFZ and albumin in CFZ-alb NC 

The CFZ content in CFZ-alb NC was determined by HPLC. CFZ-alb NC with a pre-measured mass 

was dissolved in a 50:50 mixture of ACN and water and filtered with 0.45 µm syringe filter. HPLC was 

performed with an Agilent 1100 HPLC system (Agilent, Palo Alto, CA, USA), equipped with Ascentis 

C18 column (25 cm × 4.6 mm, particle size: 5 µm). The column was initially equilibrated with 40% of 

ACN, followed by a linear gradient of ACN from 40% to 80% over 10 min and from 80% to 40% over 

the next 10 min at a flow rate of 0.7 mL/min. CFZ was detected with a UV detector at a wavelength of 

210 nm. 

The albumin content in CFZ-alb NC was quantified with SDS-PAGE. CFZ-alb NC with a 

known mass or albumin standard solutions were mixed with 4× Laemmli sample buffer and heated at 

95 °C for 5 min to separate albumin from CFZ-alb NC. The samples were resolved in a 12% 
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polyacrylamide gel and stained with QC Colloidal Coomassie Stain (Bio-Rad, Hercules, CA, USA). 

The stained gel was imaged with Azure C300 (Azure Biosystems, Dublin, CA, USA), and albumin 

bands were subjected to densitometric analysis using the AzureSpot Analysis Software (Azure 

Biosystems, Dublin, CA, USA). The albumin content was determined by comparing the band intensity 

of CFZ-alb NC and albumin standards. 

2.4. Stability of CFZ-alb NC 

2.4.1. Physical stability 

To predict the physical stability of CFZ-alb NC, we resorted to a linear relationship between the number 

of particles and light scattering intensity [29]. The derived count rate (i.e., absolute light scattering) of 

CFZ-alb NC suspension with a concentration equivalent to CFZ 7.2 – 72 µg/mL was measured in 

phosphate-buffered saline (PBS) or undiluted fetal bovine serum (FBS) at 37 ˚C over 24 h with a 

Zetasizer Nano-ZS90 (Malvern Instruments, Westborough, MA, USA). The derived count rate of FBS 

was subtracted from each measurement made in FBS. In a separate experiment, the dissolution of CFZ-

alb NC in FBS was monitored by measuring the count rate continuously over 20 min at the final 

concentration equivalent to 7.2 or 30 µg/mL of CFZ. Measurements were made twice every two seconds 

at the measurement position of 4.65 nm and with an attenuator setting of 10. 

2.4.2. In vitro metabolic stability 

To compare the in vitro metabolic stability in CFZ formulations (CFZ solution, CFZ dissolved in 

dimethyl sulfoxide (DMSO); CFZ-CD, CFZ dissolved in 10 mM citrate buffer (pH 3.1) containing 20% 

(w/v) 2-hydroxypropyl-β-cyclodextrin); and CFZ-alb NC dissolved in PBS), the whole blood and the 

liver were collected from a male Sprague Dawley rat. The whole blood was treated with heparin (25 

IU/mL) and kept on ice until the assay was performed. The isolated liver was washed and homogenized 

in ice-cold PBS (pH 7.4, a 1:5 ratio of liver weight (g) to PBS volume (mL)). Each of CFZ formulations 

(4 µL) was added to the whole blood (396 µL) or liver homogenates (396 µL) to result in the final CFZ 

concentration equivalent to 1 µM. A reaction mixture (40 µL) was taken at 0, 5, 10, 30, and 60 min at 

37 °C, and snap-frozen in liquid nitrogen until the measurements of the remaining CFZ concentration. 
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2.5. Cell cultures and treatments  

Human breast cancer cell lines (MDA-MB-231, MCF-7, HCC1943, and HCC1937) were obtained from 

Korean Cell Line Bank (KCLB, Seoul, Korea). Mouse breast cancer cell line 4T1 was purchased from 

ATCC (Manassas, VA, USA). All cell lines were maintained in RPMI-1640 medium supplemented 

with 10% FBS and penicillin-streptomycin (100 IU/mL-100 µg/mL) at 37 °C in a humidified incubator 

operating at 5% CO2. 

2.5.1. Cellular uptake study for rhodamine B-labeled CFZ-alb NC (*CFZ-alb NC)   

Cells were seeded in a 35 mm glass bottom dish (MatTak, Ashland, MA, USA) at a density of 50,000 

cells per dish. After 24 h, the medium was replaced with fresh medium, and the cells were incubated 

with *CFZ-alb NC equivalent to 30 µg/mL CFZ or free rhodamine B solution at a comparable level for 

2 h in complete medium. After washing twice with PBS, the cells were fixed with 4% paraformaldehyde 

in PBS for 10 min. Following nuclear staining with Hoechst 33342 (2 µg/mL; Cat. No. H1399), cells 

were imaged with a Nikon A1R confocal microscope (Nikon America Inc., Melville, NY, USA). 

Hoechst 33342 and *CFZ-alb NC or free rhodamine B were detected with λex/λem of 407 nm/425 – 475 

nm and 561 nm/570 – 620 nm, respectively. For quantitative analysis, cells were prepared in the same 

manner and analyzed with an Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA). At 

least 10,000 gated events were acquired, and FL-2 channel (λex/λem 488 nm/585 nm) was monitored to 

determine the cellular level of rhodamine B. 

2.5.2. Cell viability assay 

Cancer cells were seeded on 96-well plates (4T1, 2000 cells/well; MDA-MB-231 and MCF-7, 5000 

cells/well; HCC1640, HCC1937, and U87MG, 8000 cells/well) 24 h prior to drug treatment. For the 

continuous drug treatment condition, cells were continuously exposed to CFZ solution or CFZ-alb NC 

for 72 h. For the pulse treatment condition, cells were treated with CFZ solution or CFZ-alb NC for 2 

h, then washed twice with PBS, and grown in drug-free media for 72 h. Viable cells were measured 

with the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA) 

using Synergy HT plate reader (BioTek, Winooski, VT, USA). 
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2.6. Animal experiments 

BALB/c mice (female, 5 – 6 weeks of age, 19 – 21 g), ICR mice (male, 8 weeks of age, 35 – 38 g), and 

Sprague Dawley rats (male, 8 weeks of age, 250 – 260 g) were obtained from Nara Biotech Co., Ltd. 

(Seoul, Korea) or Envigo (Indianapolis, IN, USA), and were acclimatized at the animal research facility 

in Seoul National University (SNU) or Purdue University (PU) for at least one week. All animal 

experiments were performed in accordance with the protocols approved by the Institutional Animal 

Care and Use Committee of SNU and PU (SNU-161205-2-1, SNU-170424-2-1, and PU-1503001212). 

2.6.1. In vivo anticancer activity  

To establish an orthotopic breast cancer mouse model, 4T1 cells (1.5 × 105 cells suspended in 50 µL of 

complete media) were inoculated into the inguinal mammary fat pad on both left and right sides of 

BALB/c mice (on day 0). When the palpable knob with a similar size appeared on day 4, the mice 

bearing 4T1 xenograft were randomly assigned to different groups (n= 5 – 6 per group) as follows: 

vehicle only group (10 mM citrate buffer (pH 3.1)), CFZ-CD at a dose of 3 mg CFZ/kg, and CFZ-alb 

NC at a dose of 3 mg CFZ/kg. The drug was administered two consecutive days a week for three weeks 

via tail vein injection. Tumor size was measured using a digital caliper; tumor volume = 

length×(width)2/2. The body weight of mice was monitored every 2 – 3 days until day 22. Whole blood 

samples and harvested major organs were snap-frozen and stored at -80 °C until analysis or fixed in 4% 

paraformaldehyde and embedded in paraffin for histological examination. 

2.6.2. Plasma pharmacokinetic study 

CFZ-alb NC and CFZ-CD were injected via tail vein into ICR mice at the dose of 3 mg/kg (n = 3 – 4 

per group). At the pre-determined time points (2, 5, 20, 60, 120, 360, 600, and 1,440 min), blood 

samples (10 – 20 µL) were collected from the retro-orbital plexus of the mice using microhematocrit 

tubes. The detailed analytical conditions and assay validation parameters were previously reported [30]. 

PK parameters were calculated by non-compartmental method using WinNonlin software (Pharsight 

Corp., Version 5.0.1). 
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2.6.3. Biodistribution study 

CFZ-alb NC and CFZ-CD were injected via tail vein into BALB/c mice harboring orthotopic xenografts 

(described in 2.6.1.) at an equivalent dose of 3 mg/kg when the tumor size became approximately 200 

– 300 mm3. After 0.5, 2, and 6 h, the mice were anesthetized with isoflurane/oxygen mixture (3 – 5%:95 

– 97%; v/v). At least 800 µL of blood was collected with a heparinized syringe via cardiac puncture. 

Tumor and major organs were harvested, weighed, and snap-frozen until analysis. To measure the CFZ 

amount accumulated in tissues, the tissue homogenates were prepared on ice by adding the following 

proportion of PBS; 0.2 g tissue per mL PBS for all tissues except the lung (0.17 g tissue per mL PBS) 

and adrenal glands (0.1 g tissue per mL PBS). Tissue homogenates (100 µL) were extracted with cold 

tert-butyl methyl ether (600 µL) containing an internal standard (carfilzomib-d8 250 ng/mL; Cayman 

Chemical, Ann Arbor, MI, USA) by vortex mixing. After centrifugation at 3,724 g for 10 min, 400 µL 

of organic phase was transferred to a new tube, and evaporated. The samples were reconstituted in 100 

µL of ACN and transferred to a new vial for LC-MS/MS analysis. To measure the CFZ concentration 

remaining in plasma, 5 µL of plasma was mixed with H2O (15 µL) and ACN (40 µL) containing an 

internal standard (carfilzomib-d8 250 ng/mL; Cat. No. 22558). After vortex mixing, samples were 

centrifuged at 13,000 g for 10 min. The supernatant (50 µL) was transferred to a new vial for LC-

MS/MS analysis.  

2.6.4. Quantification of CFZ in tissue homogenates  

Samples were analyzed by the HPLC system coupled to Agilent 6460 QQQ LC-MS/MS (Agilent, Palo 

Alto, CA, USA) equipped with an electrospray ionization interface operated in a positive ion mode. 

The chromatographic separation was performed on a C18 column (50 × 2.0 mm id, 3 mm) with a mobile 

phase that consisted of 0.1% formic acid in water (A)-0.1% formic acid in ACN (B) at a flow rate of 

0.3 mL/min. The gradient was set up as follows: 0.5 min 85% A, 15% B; 3 min 100% B; 4 min 100% 

B; 5.5 min 85% A, 15% B; 6 min 85% A, 15% B. The autosampler temperature was set at 4 °C, and 

the injection volume was 10 µL. The optimized source-dependent mass parameters were set as follows: 

nebulizing gas 45 psi; gas flow, 9 L/min; sheath gas flow, 7 L/min; capillary voltage, 4 kV; gas 

temperature, 330 °C. The compound-dependent parameters, fragment voltage and collision energy, 
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were set at 180 V and 60 V for CFZ and carfilzomib-d8 with the dwell time of 50 ms. Quantification 

was performed in the selected reaction monitoring (SRM) mode. The SRM transitions were as follows: 

for CFZ, m/z 720.3 > 100.1 (quantifier) and m/z 720.3 > 289.1 (qualifier); for the internal standard, m/z 

728.3 > 108.1 (quantifier) and m/z 728.3 > 297.1 (qualifier). 

2.6.5. Proteasome activity measurement in tissue homogenates from mice that received drug treatment  

The homogenized tissue samples in PBS (prepared as described in the section 2.6.3.) were mixed with 

the same volume of ice-cold passive lysis buffer (Promega, Madison, WI, USA; Cat. No. E1941). After 

centrifugation of tissue mixtures at 3,000 g for 10 min at 4 °C, the supernatant was collected and used 

for proteasome activity assay (50 – 150 µg total protein/µL verified to be within the linear range of the 

assay using serial diluted samples). For blood samples, the whole blood (0.2 µL) was mixed with ice-

cold passive lysis buffer (1.8 µL), and used for proteasome activity assay. To assess the proteasome 

activity, the tissue supernatant or blood mixture (2 µL) was incubated with 100 µM Suc-LLVY-AMC 

(Bachem, Bubendorf, Switzerland) in the assay buffer (48 µL; 20 mM Tris-Cl buffer (pH 8.0) and 500 

µM EDTA). The proteasome activity was determined by monitoring the initial cleavage rate of 

fluorescent 7-amino-4-methylcoumarine from Suc-LLVY-AMC. Fluorescence signals were detected 

every min for 60 min using a SpectraMax M3 microplate reader (Molecular Devices, CA, USA) at the 

wavelengths of λex/λem = 360/460 nm with the cut-off filter set at 420 nm. 

2.7. Involvement of SPARC in the cellular uptake of CFZ-alb NC 

2.7.1. Quantification of mRNA expression of hSPARC 

Total RNA of breast cancer cells was isolated using PureLink RNA Mini Kit and transcribed to cDNA 

using SuperScript III First-Strand Synthesis kit. The mRNA level of hSPARC was assessed by 

quantitative real-time PCR using TOPrealTM qPCR 2X PreMIX (Enzynomics, Seoul, Korea), the primer 

pair (forward, 5´-tcgacagtcagccgcatct-3´; reverse, 5´-ccgttgactccgaccttca-3´), and StepOnePlusTM Real-

Time PCR system (Applied Biosystems, Foster city, CA, USA). The hGAPDH level was similarly 

measured as a house-keeping control (forward primer, 5´-gggacttcgagaagaac-3´; reverse primer, 5´-

agaggtacccgtcaatg-3´), and the relative hSPARC levels were then calculated using the ∆∆Ct method. 
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2.7.2. Immunoblotting analysis for hSPARC 

Cell lysates were prepared in RIPA buffer, mixed with 4× Laemmli sample buffer, and heated at 95 °C 

for 5 min. Cell lysates containing the equivalent protein amount of 30 µg were resolved using 10% 

SDS-PAGE and transferred onto PVDF membranes (Bio-Rad, Hercules, CA, USA). After blocking 

using 5% milk in Tris-buffered saline containing 0.05% Tween-20 (TBST), the membranes were 

probed with the antibodies for hSPARC (1:200; R&D Systems, Minneapolis, MN, USA; Cat. No. 

AF941) and β-actin (Cell Signaling Technology, Danvers, MA, USA; Cat. No. 4970). After washing 

with TBST, the membranes were incubated with the corresponding secondary antibodies conjugated 

with horseradish peroxidase. Bound antibodies were visualized with an enhanced chemiluminescence 

substrate using ImageQuantTM LAS4000 (GE Healthcare, Little Chalfont, United Kingdom). 

2.7.3. Immunohistochemical analysis for mSparc 

Tissue antigen was retrieved by boiling deparaffinized slides in 10 mM Tris, 1 mM EDTA, and 0.03% 

Tween 20 (pH 9.0) using a pressure cooker. After washing with water and blocking with 4% bovine 

serum albumin in PBS Tween-20 (PBST), slides were incubated with the mSparc antibody (1:20; R&D 

Systems, Minneapolis, MN, USA; Cat. No. AF942) for 60 min at room temperature. After washing 

slides with PBST, a streptavidin-biotin system was used according to the manufacturer's instructions 

(BioGenex, San Ramon, CA, USA). The slides were counterstained with Mayer’s Hematoxylin (Sigma-

Aldrich, St. Louis, MO, USA). All sections were examined under a Vectra imaging system 

(PerkinElmer, Waltham, MA, USA).  

2.7.4. Association between hSPARC expression and overall survival in the TCGA dataset 

To explore a potential association between the hSPARC expression and the outcomes in breast cancer 

patients, the datasets available from the ONCOMINE (www.oncomine.org) were analyzed; the datasets 

were sorted based on the gene name (hSPARC), the analysis type (cancer vs normal analysis), and the 

cancer type (breast cancer). The case dataset containing the hSPARC expression levels and overall 

survival of breast cancer patients was downloaded from a breast cancer meta-data set (reported in 

TCGA, The Cancer Genome Atlas) [31, 32]. 
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2.7.5. Impact of hSPARC knockdown on cellular uptake of CFZ-alb NC in U87MG cells 

To achieve the stable knockdown of hSPARC, U87MG cells were transduced using a lentiviral vector-

based shRNA system targeting hSPARC (obtained from Santa Cruz Biotechnology, Dallas, TX, USA) 

(Detailed experimental methods were reported in the thesis of JH Jo and will soon be published; the 

thesis available at [http://hdl.handle.net/10371/138009]. To assess the cellular uptake of CFZ-alb NC, 

U87MG cells with hSPARC knockdown or wildtype control were seeded on a poly-L-lysine-coated 12-

well plate (at a density of 1×105 cells/well) in complete media containing FBS. After 24 h, cells were 

rinsed with Opti-MEM media, exposed to unformulated CFZ or CFZ-alb NC in Opti-MEM media for 

2 h, and then washed 3 times with PBS. After harvesting cells with 50% methanol (200 µL), aliquots 

of cell lysates were transferred to separate tubes for the measurement of CFZ via LC-MS/MS analysis 

(100 µL) or the protein quantitation assay (30 µL). For LC-MS/MS analysis, cell lysates (100 µL) were 

subject to probe sonication and extracted with ice-cold ACN (100 µL) containing an internal standard 

by vortex mixing. After centrifugation at 3,000 g for 10 min, 150 µL of supernatant was transferred to 

a new vial for LC-MS/MS analysis. 

2.8. Statistical analysis 

All data are presented as mean ± standard deviation (SD) of the replicates from independent 

experiments unless stated otherwise. Student’s t-test or ANOVA with a post-hoc test was performed to 

determine statistical significance using GraphPad Prism (GraphPad Software, version 7.0.3.). A p-value 

< 0.05 was considered significant. 

 

3. Results and discussion 

3.1. Preparation and characterization of CFZ-alb NC  

CFZ-alb NC was prepared following the two-step method as reported previously [28]. In the first step, 

CFZ and F127 (an amphiphilic triblock co-polymer of poly(ethylene oxide)-poly(propylene oxide)-

poly(ethylene oxide)) were dissolved in a mixture of chloroform and methanol and subsequently 

evaporated to form a dry film. Incipient CFZ nanocrystal (CFZ-NC) was formed by hydration of the 
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film. F127 played dual roles: it helped hydrate and retrieve the film from the container (without F127, 

a dry film of CFZ resisted hydration and only 0.02 wt% of CFZ was retrieved from the film) and 

prevented excessive crystal growth of CFZ-NC by binding to the NC surface [17, 33]. In the second 

step, the incipient CFZ-NC was further functionalized with HSA, and the excess HSA and F127 were 

removed by multiple washing.  

The TEM images of CFZ-alb NC showed a rod-like structure with an average length and width 

of 352 ± 195 nm and 58 ± 15 nm, respectively (n=135, analyzed using the Image J software) (Fig. 1A). 

When measured with a dynamic light scattering (DLS), the size and polydispersity index of CFZ-alb 

NC were 270.8 ± 21.5 nm and 0.27 ± 0.06, respectively (n = 10 independently prepared batches) (Fig. 

1B and Table 1). Although the average size of CFZ-alb NC is relatively large compared to other 

nanoformulations, the current size may still be sufficient for extravasation through peritumoral 

vasculature with the reported cut-off size in the range of 200 – 1,200 nm [34-36]. Even if CFZ-alb NC  

 

 
Figure 1. Physicochemical properties of CFZ-alb NC. (A) Representative TEM image of CFZ-alb 
NC and size distribution (analyzed from TEM images, n=135). (B) The average size and zeta 
potential of CFZ-alb NC, measured by DLS. Mean values ± SD (n=10 identically prepared batches). 
(C) The particle size of CFZ NC with or without human serum albumin added during the three 
repeated procedures of centrifugation and washing, measured by DLS. (D) Powder X-ray diffraction 
of CFZ powder (black) and CFZ-alb NC (red). Arbitrary unit (a.u.). (E) Content (%) of CFZ and 
albumin in CFZ-alb NC. Mean values ± SD (n = 6 – 10 independently prepared batches). 
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Table 1. Physicochemical properties of CFZ-alb NC and *CFZ-alb NC. 

Formulation Size (nm) 
Polydispersity 

Index 

Zeta potential 

(mV) 

Formulation content (wt%) 

CFZ albumin rhodamine B 

CFZ-alb-NC 270.8 ± 21.5 0.27 ± 0.06 -13.7 ± 3.2 74 ± 6 20 ± 4 - 

*CFZ-alb NC 328.0 ± 48.6 0.21 ± 0.09 -8.5 ± 1.1 82 ± 4 16 ± 3 0.34 ± 0.11 

Mean values ± SD from different batches for CFZ-alb NC (n = 10) and *CFZ-alb NC (n = 3). 

 

does not freely traverse the tumor interstitium, CFZ-alb NC may undergo gradual disintegration and 

release CFZ near cancer cells. The shape of NC appears to depend on the drug itself rather than process  

parameters. In the previous reports, docetaxel and paclitaxel form crystals with sheet- and rod-like 

structures, respectively, even with similar procedural methods [27, 28].   The elongated shape of CFZ-

alb NC is also considered advantageous for transvascular flux as compared to the spherical shape at an 

equivalent volume [37, 38] and for resisting uptake by macrophages [39]. CFZ-alb NC was lyophilized 

with trehalose as a cryoprotectant for a long-term storage of the formulation and verified to redisperse 

to the original size (Fig. S1). 

The zeta potential of CFZ-alb NC was -13.7 ± 3.2 mV, likely due to the HSA present on the 

surface of NCs (Fig. 1B and Table 1). The surface-bound HSA protected F127-coated CFZ-NC from 

aggregation (Fig. 1C). In the absence of HSA, CFZ-NC aggregated upon repeated centrifugation and 

washing procedures, as F127 was gradually removed from the NC surface [40]. Under the same 

conditions of multiple centrifugation and washing, the size of CFZ-alb NC did not increase. When 

PXRD patterns were assessed, CFZ powder displayed multiple sharp peaks, indicative of crystalline 

solids, while CFZ-alb NC showed much attenuated peak intensities, indicative of surface-bound HSA 

(Fig. 1D) [28]. The contents of CFZ and albumin in CFZ-alb NC were 74 ± 6 % (w/w) and 20 ± 4 % 

(w/w), respectively (n = 6 independently prepared batches) (Fig. 1E and Table 1). When the weight 

ratio of CFZ to albumin is considered, it is estimated that the albumin content corresponds to 

approximately 1.5 continuous layers of albumin covering the NC surface (Table S1). 
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3.2. Enhanced physical and metabolic stability of CFZ-alb NC  

We next examined whether CFZ-alb NC can display the physical and metabolic stability. In assessing 

the physical stability of NCs in aqueous media, light scattering intensity can serve as a convenient and 

reliable indicator [28, 29]. Stable NCs maintain the light scattering capability, thereby a constant 

derived count rate, whereas disintegrating or dissolving NCs show a decreasing derived count rate. 

When tested in PBS, CFZ-alb NC maintained a linear relationship between the derived count rates the 

concentration within the tested range (7.2 to 72 µg/mL CFZ) up to 24 h (Fig. S2A). In undiluted FBS, 

similar trends were observed with comparable slopes up to 4 h and slightly decreasing slopes at 7 or 24 

h (Fig. 2A). When the derived count rates were continuously monitored over 20 min, CFZ-alb NC (7.2 

µg/mL CFZ, Fig. 2B; 30 µg/mL CFZ, Fig. S2B) yielded the signals consistently greater than those of 

FBS alone. These results support the physical stability of CFZ-alb NC at its concentrations as low as 

 
 
Figure 2. Physical and metabolic stability profiles of CFZ-alb NC. (A) In the presence of undiluted 
FBS, the derived count rates of CFZ-alb NC maintained linear relationships over the concentrations 
ranges tested (7.2 to 72 µg/mL CFZ) for 24 h. (B) The derived count rates of CFZ-alb NC (equivalent 
to 7.2 µg/mL CFZ, in the presence of undiluted FBS) were obtained by continuous monitoring for 
the first 20 min. (C and D) Remaining amount of CFZ following the incubation with CFZ-alb NC, 
cyclodextrin-based CFZ formulation (CFZ-CD), and unformulated CFZ solution in rat liver 
homogenates (C) and whole blood (D). Mean values ± SD (n=3 independently prepared batches of 
CFZ-alb NC). 
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7.2 µg/mL CFZ, even in the presence of serum proteins. When CFZ-alb NC (3 mg/kg, based on the 

CFZ content) is administered to a mouse with a typical blood volume of 1.5 – 2.5 mL [41], the initial 

blood concentration of CFZ-alb NC can be roughly estimated to be 24 – 40 µg/mL CFZ. If the current 

in vitro results measured in undiluted serum were to reflect the physical stability of CFZ-alb NC in vivo, 

one may expect CFZ-alb NC to circulate as intact particulate forms in blood, especially during the early 

hours after drug administration.  

CFZ displays a very short circulation time due to its rapid metabolic inactivation by epoxide 

ring opening and peptide hydrolysis [42]. To assess whether CFZ-alb NC can improve metabolic 

stability, CFZ-alb NC was incubated with rat liver homogenates. As a control, separate reactions were 

performed with CFZ solution (dissolved in DMSO) or clinically used CD-based CFZ formulation 

(CFZ-CD, CFZ dissolved in 10 mM citrate buffer (pH 3.1) containing 20% (w/v) 2-hydroxypropyl-β-

cyclodextrin). At a concentration equivalent to CFZ 1 µM, both CFZ solution and CFZ-CD displayed 

very rapid disappearance of CFZ (<10% remaining after 10 min) in the presence of rat liver 

homogenates (Fig. 2C). These results are consistent with the previous reports showing the half-lives of 

CFZ in various rat tissue homogenates in the ranges of 4 – 39 min [41]. On the other hand, CFZ-alb 

NC displayed much improved stability with approximately 40% of the active drug remaining even at 

60 min in the liver homogenates (Fig. 2C). The disappearance of CFZ after addition of CFZ-alb NC 

and CFZ-CD was quite rapid at early time points and became slower at later time points. The rapid 

disappearance of CFZ at early time points may arise from the readily available portion of CFZ near the 

outer layer of NC formulation. At later time points, the drug release from the disintegration of NC 

formulation may take longer time. Given the results were obtained using liver homogenates (containing 

a variety of metabolizing enzymes and proteins including the proteasome), it is unknown what 

contributes to this biphasic pattern of CFZ disappearance and further investigations are warranted. The 

metabolic stability profiles in whole blood displayed similar trends, finding CFZ-alb NC most stable 

(Fig. 2D). These results indicate that CFZ-alb NC can confer both physical and metabolic stability, 

rendering a promising potential to extend the circulation time of CFZ in vivo.   
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3.3. Enhanced cellular uptake and cytotoxic effects of CFZ-alb NC in breast cancer cell lines 

In order to assess its cellular uptake, CFZ-alb NC was fluorescently labeled using a small quantity of 

rhodamine B. The rhodamine B-labeled CFZ-alb NC (*CFZ-alb NC) was comparable to the unlabeled 

CFZ-alb NC in terms of the average size, zeta potential, and morphology (Table 1 and Figs. S3A and 

S3B), similar to the previous reports with other drugs and nanoformulations [43, 44]. The content of 

incorporated rhodamine B in *CFZ-alb NC was 0.34 ± 0.11 wt% (n = 3). Established breast cancer cell 

lines (murine, 4T1; human, MCF7, HCC1937) were incubated with *CFZ-alb NC (30 µg/mL) for 2 h 

and observed by confocal microscope imaging (Fig. 3A and Fig. S3C). Little signal was obtained from 

the incubation of *CFZ-alb NC in the dish without cells (data not shown), ruling out the possibility that 

the signal obtained with 4T1 cells may come from protein adsorption and subsequent fixation of protein. 

The incubation with *CFZ-alb NC yielded red fluorescence signals localized in the cytoplasm (Fig. 3A, 

d-f), indicating cellular uptake of *CFZ-alb NC (merged images shown in Fig. 3A, f). As a control, free 

rhodamine B solution was tested at an equivalent dye concentration (0.1 µg/mL). As shown in Fig. 3A 

(g-i), the treatment of free rhodamine B showed little signal in all three cell lines (Fig. 3A and S3C). 

No signal from the incubation of *CFZ-alb NC in the dish without cells (data not shown) ruled out the 

plausible signal from protein adsorpition and subsequent fixation of protein. In quantitative analysis by 

flow cytometry, the fluorescent signal intensities were higher in cells treated with *CFZ-alb NC than 

those in the control groups (no treatment or free rhodamine B) for all three cell lines (Fig. 3B). Of the 

*CFZ-alb NC-treated cell lines, HCC1937 cells showed the highest fluorescence signal intensity, 

followed by 4T1 and MCF-7 cells.  

Next, we tested whether the enhanced cellular uptake of CFZ-alb NC leads to greater cytotoxic 

effects in breast cancer cells. When treated with unformulated CFZ, five breast cancer cell line models 

(human: MCF7, MDA-MB-231, HCC1143, and HCC1937; murine: 4T1) displayed IC50 values of low 

nano-molar ranges for CFZ (Fig. S4A). With regard to the expression levels of the proteasome catalytic 

subunits (β1, β2, and β5), the four human breast cancer cell lines tested were comparable to human 

multiple myeloma RPMI8226 cells (well-known for its abundant expression of the proteasome and 

sensitivity to proteasome inhibitor drugs) (Fig. S4B). In addition, the four human breast cancer cells 
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displayed comparable proteasome activities (chymotrypsin-like, trypsin-like, and caspase-like activity, 

typically attributed to β5, β2, and β1 subunits, respectively) to the RPMI8226 cells (Fig. S4C). Although 

the expression and activity of proteasomes were similar across the tested cell lines, MCF7 cells were 

least sensitive to CFZ based on 2D colony formation assay (Fig. S4E). MCF7 cells were also shown to 

be resistant to bortezomib  [5]. The mechanism of MCF7 resistance to proteasome inhibitors remains 

unclear. Since CFZ is a known substrate of P-glycoprotein (P-gp) [44], the P-gp mediated drug efflux 

was initially suspected as a possible resistance mechanism in MCF7 cells, but this was excluded given 

the lack of P-gp expression (Fig. S4D). Cells under 3D spheroid culture conditions are known to enrich 

stem-like cancer cells [45, 46], and the 3D spheroid formation was highest with CFZ-treated MCF7 

cells (Fig. S4F). These results can be cautiously interpreted that a sub-population of stem-like cancer 

cells existing in MCF7 cells may play a role in the resistance to proteasome inhibitors.  

The cytotoxic effects of CFZ-alb NC was tested with either continuous or pulse treatment. 

Upon continuous exposure at low CFZ concentrations (equivalent to 20 and 50 nM for 72 h), CFZ-alb 

NC and unformulated CFZ solution (dissolved in DMSO) displayed similar cytotoxic effects (Fig. 4A). 

 
Figure 3. Cellular uptake of rhodamine B-labeled CFZ-alb NC (*CFZ-alb NC) in breast cancer cell 
lines. (A) Representative confocal microscopy images of HCC1937 cells following 2 h incubation 
with *CFZ-alb NC (30 µg/mL CFZ) (d, e, and f). Free rhodamine B (Rho B) was used as a negative 
control (g, h, and i). Scale bar = 10 µm. (B) Intensities of fluorescent signals associated with breast 
cancer cells (4T1, MCF7, HCC1937) after 2 h incubation with *CFZ-alb NC, measured by flow 
cytometry. Arbitrary unit (a.u.). Two-way ANOVA followed by Tukey’s post hoc test. **p < 0.0021, 
***p < 0.0002. Mean values ± SD (n= 3 independently and identically performed experiments). 
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These results were expected in that CFZ-alb NC would dissolve over time at sufficiently low CFZ 

concentrations. Upon intravenous injection, however, CFZ-alb NC will be present initially at high 

concentrations and rapidly decline, featuring more dynamic changes over time [47, 48]. To mimic such 

conditions, cells were subject to a pulse treatment at high CFZ concentrations (equivalent to 200 or 400 

nM) and grown without CFZ: cells were initially exposed to CFZ-alb NC or CFZ solution for 2 h, rinsed, 

 
Figure 4. Cytotoxic effects of CFZ-alb NC in breast cancer cell lines. Cell viability was measured 
following the treatment of human breast cancer cell lines with CFZ-alb NC or unformulated CFZ 
solution under continuous treatment (Tx) conditions for 72 h (A) or pulse Tx conditions for 2 h 
followed by washout (B). Two-way ANOVA followed by Sidak’s post hoc test. *p < 0.0332, **p < 
0.0021, ****p < 0.0001. Mean values ± SD (n= 4~5 independently and identically performed 
experiments). 
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and grown in drug-free medium for 72 h prior to the measurement of cell viability. Upon a pulse- 

treatment, CFZ-alb NC displayed a greater cytotoxic effect than unformulated CFZ solution (Fig. 4B). 

When the intracellular CFZ content was determined by LC-MS/MS after a pulse treatment in HCC1937 

cells, CFZ-alb NC led to a greater amount of CFZ than unformulated CFZ solution (Fig. S7E; CFZ-alb 

NC vs unformulated CFZ solution; 12.7 vs 7.0 pmol/mg protein). These results collectively suggest that 

CFZ-alb NC gains cellular entry during the initial short exposure to a greater extent than unformulated 

CFZ solution and possibly serves as an intracellular drug reservoir during the incubation in drug-free 

medium. 

3.4. Enhanced in vivo anticancer efficacy of CFZ-alb NC in BALB/c bearing 4T1 breast cancer cells 

The in vivo anticancer efficacy of CFZ-alb NC was assessed using the murine 4T1 orthotopic breast 

cancer model established by the transplantation of 4T1 cells in the mammary fat pad of BALB/c mice , 

which mimic human cancer pathology with tumors growing at the location of human disease in the 

presence of the proper stromal environment compared to the subcutaneous model [49]. Similar to the 

clinical dosing schedule of CFZ [50], intravenous injections of CFZ-alb NC and CFZ-CD (at the 

equivalent CFZ dose of 3 mg/kg) were carried out on two consecutive days per week for three weeks 

(Fig. 5A). CFZ-alb NC or CFZ-CD suppressed tumor growth compared to the vehicle only (Fig. 5B). 

On day 19, the tumor volumes of the mice receiving CFZ-alb NC were smaller than those receiving 

CFZ-CD (p = 0.0024) or the vehicle only (p < 0.0001), while the vehicle- and CFZ-CD-treated groups 

did not show statistical difference. On day 22, all three groups showed difference from each other: CFZ-

CD (p < 0.0001 vs the vehicle only; p < 0.0001 vs CFZ-alb NC) and CFZ-alb NC (p < 0.0001 vs the 

vehicle only; p < 0.0001 vs CFZ-CD). Similar results were obtained for the weight of dissected tumor 

tissues (Figs. 5C and S5A) and specific tumor growth rates (Fig. S5B). During the span of experiment, 

the body weight of mice showed no major difference among the three groups (the overall changes from 

the initial weight was ± 10%, Fig. 5D), suggesting no signs of gross toxicity. The weight loss observed 

near the end of experiment (in all three groups) are likely due to distant metastasis commonly occurring 

in 4T1 tumor models (Fig. S5C). Histological examination of major organs (liver and lung) also showed 

no signs of major toxicities in three groups (Fig. S5D).  
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At the end of the in vivo anticancer efficacy experiments described above, we collected the 

tumor tissues and blood samples on day 22 (3 days following the last drug dosing on day 19) and 

attempted to quantify the CFZ levels by LC-MS/MS. The levels of CFZ in tumor tissues were below 

the lower limit of quantitation (< 1 ng/mL), but those of CFZ in plasma samples were higher in mice 

receiving CFZ-alb NC than CFZ-CD (Fig. 5E). Because CFZ is a covalent modifier, which forms an 

 
Figure 5.  In vivo anticancer efficacy of CFZ-alb NC in BALB/c mice bearing 4T1 orthotopic 
xenograft tumors. (A) Experiment schedule including drug treatments. Mice received intravenous 
injections of CFZ-alb NC (n = 5; 3 mg/kg), CFZ-CD (n = 5; 3 mg/kg), or vehicle control (n = 6) on 
two consecutive days per week for three weeks. (B) Tumor growth curves. Two-way ANOVA 
followed by Tukey’s post hoc test. On day 19: CFZ-alb NC vs vehicle, *p < 0.0001; CFZ-alb NC vs 
CFZ-CD, †p = 0.0024. On day 22: CFZ-alb NC vs vehicle, *p < 0.0001; CFZ-CD vs vehicle, §p < 
0.0001; CFZ-alb NC vs CFZ-CD, ††p < 0.0001 (C) The weight of tumor tissues harvested on day 
22. One-way ANOVA followed by Tukey’s post hoc test. **p < 0.0021, ****p < 0.0001. (D) The 
body weight of mice during the span of experiment. (E) The concentration of CFZ from plasma 
collected on day 22 (n.d.; not detected). Mean values ± SD. 
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irreversible CFZ-proteasome complex undetectable by LC-MS/MS [51, 52], the drug amount measured 

by LC-MS/MS may not accurately represent the total amount of CFZ reaching a particular tissue (as 

depicted in Fig. 6B). The recovery of the proteasome activity following inhibition is known to take at 

least several days due to the slow de novo biogenesis rates of proteasomes [53]. Thus, we examined the 

inhibitory extent of the proteasomal activity in tissues as another indicator of the CFZ distribution. In 

whole blood samples, the inhibitory extent of the proteasome activity was greater in the CFZ-alb NC 

group than in the CFZ-CD group (p < 0.0001) (Fig. S5B), consistent with the blood levels of CFZ (Fig. 

5E). These results suggest that CFZ-alb NC increased the formation of the irreversible, long-lasting 

complex between CFZ and the proteasome in whole blood (mainly located in red blood cells), likely 

from the enhanced stability and cellular uptake of CFZ-alb NC over CFZ-CD. 

3.5. Comparison of PK and BD profiles of CFZ-alb NC with CFZ-CD 

In the previous study, albumin-coated paclitaxel NC was superior in anticancer efficacy and showed 

more favorable plasma PK and BD profiles compared to Abraxane® at the equivalent paclitaxel dose 

level [21]. To examine whether CFZ-alb NC confers similar advantages, we first examined the plasma 

PK profiles of CFZ-alb NC relative to those of CFZ-CD (an equivalent CFZ dose of 3 mg/kg) in ICR 

mice. Following a single intravenous administration, the plasma CFZ concentrations declined very 

rapidly in both groups (Fig. 6A). The PK parameters obtained via non-compartmental analysis did not 

show major differences between the two groups (Table 2). The volume of distribution at steady-state 

(Vss, 19.85 ± 0.04 L/kg and 17.01 ± 9.40 L/kg for CFZ-alb NC and CFZ-CD, respectively) and the 

plasma half-lives (t1/2, terminal, 387 ± 49 min and 796 ± 393 min; t1/2, initial, 21 ± 4 min and 19 ± 5 min for 

CFZ-alb NC and CFZ-CD, respectively). The Vss and t1/2, initial values of CFZ-CD were comparable to 

the previously reported values [11, 41, 48]. The t1/2, terminal values tended to be longer with CFZ-alb NC 

than with CFZ-CD, but the differences did not reach statistical significance due to large variability. The 

systemic exposure of CFZ (assessed by AUCinf) was slightly greater with CFZ-alb NC (57.5 ± 14.0 

min×nmol/mL) than with CFZ-CD (45.4 ± 6.9 min×nmol/mL), although the difference did not reach 

statistical significance. Likewise, the systemic clearance was slightly slower with CFZ-alb NC than 

with CFZ-CD but did not show statistical significance (76 ± 21 mL/min/kg and 94 ± 15 mL/min/kg for 
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CFZ-alb NC and CFZ-CD, respectively). Similar to the previous reports [11, 41], the clearance of both 

CFZ-alb NC and CFZ-CD was considerable fast, almost approximating to the hepatic blood flow in 

mice [54]. These results suggest that the extrahepatic metabolism likely plays an important role in the 

elimination of CFZ in both groups. Overall, CFZ-alb NC appeared to have a modest improvement over 

CFZ-CD with regard to the plasma PK profiles. 

Table 2. Pharmacokinetic (PK) parameters following the intravenous administration of CFZ-alb NC or 
CFZ-CD at an equivalent CFZ dose of 3 mg/kg to ICR mice. 

PK parameter (unit) CFZ-alb NC (n = 3) CFZ-CD (n = 4) 

AUCinf (min×nmol/mL) 57.5 ± 14.0 45.4 ± 6.9 

CL (mL/min/kg) 76 ± 21 94 ± 15 

Vss (L/kg) 19.85 ± 0.04 17.01 ± 9.40 

t1/2, terminal (min) 387 ± 49 796 ± 393 

t1/2, initial (min) 21 ± 4 19 ± 5 

MRT (min) 192 ± 125 274 ± 67 

AUCinf, area under the concentration-time curve from time 0 to infinity; Vss, volume of distribution at steady state; 
t1/2, terminal, half-life from the terminal phase; t1/2, initial, half-life from the initial decline phase (0 – 120 min); MRT, 
mean residence time; CL, clearance. Student’s t-test indicated no significant difference. Mean values ± SD.  

 To examine whether CFZ-alb NC can enhance tumor distribution of CFZ, BALB/c mice 

bearing 4T1 tumors were injected with a single intravenous dose of CFZ-alb NC or CFZ-CD (an 

equivalent CFZ dose of 3 mg/kg). Tumor tissues and major organs were harvested at 0.5, 2, or 6 h post-

injection, processed to make tissue homogenates, and subsequently analyzed with respect to the CFZ 

levels by LC-MS/MS (the remaining CFZ quantity as either NC or released CFZ) and the proteasome 

activity by the enzyme kinetics assay (likely representing the cumulative CFZ access to a given tissue 

and the formation of the CFZ-proteasome complex in a given tissue). In tumor tissues, the CFZ-alb NC 

group displayed significantly higher CFZ levels than the CFZ-CD group at 0.5 h post-dosing (9.2 ± 1.7 

vs 6.8 ± 1.1 nM CFZ/g tissue, p = 0.028) (Fig. 6C). However, this trend was reversed at 2 and 6 h post-

dosing, where CFZ-alb NC group displayed lower CFZ levels than the CFZ-CD group (at 2 h, 4.3 ± 0.4 

vs 8.2 ± 2.2 nM CFZ/g tissue, p = 0.0003; at 6 h, 1.4 ± 0.5 vs 7.0 ± 1.2 nM CFZ/g tissue, p < 0.0001). 

When we compared the extent of proteasomal activity inhibition (by forming the irreversible CFZ-

proteasome complex) in tumor tissues, the CFZ-alb NC group displayed a greater or comparable extent 
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Figure 6.  Comparison of pharmacokinetic and biodistribution profiles between CFZ-alb NC and 
CFZ-CD following the intravenous administration (a single equivalent CFZ dose of 3 mg/kg). (A) 
The plasma concentration-time profiles of CFZ after the administration of CFZ-alb NC (n = 3) or 
CFZ-CD (n = 4) in ICR mice. Inset, plasma concentration-time profiles of CFZ for the first 2 h. 
(B) Diagram depicting the irreversible biding of CFZ with the proteasome in tissues. The resulting 
CFZ-proteasome complex is not measurable by LC-MS/MS, but can be indirectly assessed by 
measuring the inhibitory extent of the proteasomal activity. (C, D, and E) The results showing the 
measured amount of CFZ and the inhibitory extent of the proteasome activity in tumor tissues and 
major organs in BALB/c mice harboring 4T1 xenograft at 0.5, 2, and 6 h following the 
administration of CFZ-alb NC or CFZ-CD (n = 4 – 5 per group). The measured amount of CFZ 
(C) and the inhibitory extent of the proteasomal activity (D) in tumor tissues. (E) The measured 
amount of CFZ in major organs. Two-way ANOVA followed by Sidak’s post hoc test. *p < 0.0332, 
***p < 0.0002, ****p < 0.0001. Mean values ± SD. 
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of the proteasomal inhibition than the CFZ-CD group (2 h post-dosing, 27% ± 5% for CFZ-CD vs 45% 

± 9% for CFZ-alb NC, p = 0.0112) (Fig. 6D). The CFZ levels and proteasome activity in tumors, taken 

together, suggest that CFZ-alb NC was rapidly entrapped into tumor tissues after administration, 

subsequently releasing CFZ, and forming the CFZ-proteasome complex.  

In both CFZ-alb NC and CFZ-CD groups, CFZ was predominantly distributed to the liver, the 

lung, and the spleen at 0.5 h post-dosing with a minor distribution into the kidney, the heart, adrenal 

glands, and the brain (Figs. 6E and S6A). CFZ-alb NC recognized and sequestered by mononuclear 

phagocytic system (MPS) as exogenous materials likely to be accumulated in MPS-rich organs, such 

as the liver, the lung, and the spleen [18]. Similar to the plasma PK profiles, CFZ levels in various 

tissues rapidly declined within 6 h post-injection. At 2 and 6 h post-injection, the CFZ-CD group 

resulted in CFZ levels in the liver, lung, and spleen comparable to or even higher than CFZ-alb NC 

group (Figs. 6E and S6A). In the liver (at 2 and 6 h post-dosing), the CFZ-alb NC group showed more 

pronounced inhibition of the proteasome activity than the CFZ-CD group (Fig. S6B). CFZ-alb NC 

group had lower CFZ levels than CFZ-CD group in the liver, reminiscent of the results obtained in 

tumor tissues (Figs. 6C and 6D). No apparent organ toxicity of CFZ-alb NC was observed based on 

histological examinations (Fig. S5D). For CFZ-alb NC, the initial accumulation in the RES organs and 

very limited distribution to the brain were observed as expected from typical nanoparticle interactions 

and uptake by liver sinusoidal endothelial cells and Kupffer cells, mechanical filtration [55, 56], and 

poor penetration through the blood brain barrier [57].  

The results in CFZ-CD group were rather surprising. Currently, the quantitative data of CFZ 

BD profiles by LC-MS/MS is limited. An early study used whole-body autoradiogram in rats after an 

intravenous injection of [3H]-CFZ (a total CFZ dose of 2 mg/kg, prepared as an injectable CFZ-CD 

solution) and found predominant distribution of the radioactivity in the liver and lung [58]. It is 

unknown whether these observed profiles are attributable to the intrinsic properties of CFZ or CD itself. 

CD derivatives are generally assumed to have a minimal impact on the PK profiles of drugs [59]. 

However, there are cases where the complexation with CD alters the systemic exposure of certain 

compounds, especially those with high affinity for CD derivatives [60]. It remains to be determined 

whether the complexation with CD enhanced the distribution of CFZ to the liver and lung.  
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3.6. SPARC-dependent uptake of CFZ-alb NC to cancer cells  

In line with the proposed role of SPARC present in the tumor microenvironment facilitating tumor 

accumulation of nab-drugs [23, 61], a positive association was reported between SPARC expression 

and response to nab-paclitaxel in multiple types of cancers (e.g., human head-and-neck cancer, non-

small cell lung cancer, HER2-positive breast cancer) [62-64]. However, SPARC-independent pathways 

may also play a role in delivering nab-drugs to cancer cells [65, 66]. The relative importance of SPARC 

and non-SPARC pathways may well vary depending on cellular context and cancer types. In the case 

of breast cancer, the results from publicly available databases indicated that the hSPARC expression 

was higher in breast cancer tissues than in non-malignant control tissues (Fig. 7A). From the dataset 

collected from 498 breast cancer patients, the sub-groups with high and low hSPARC levels (top 10% 

and bottom 10% in the SPARC expression levels, respectively; n = 50 each) were identified and 

compared for their median survival. The higher hSPARC expression level was associated with poorer 

outcomes (median survival times of 23 and 31 months in the high and low hSPARC expression groups, 

respectively) (Fig. 7B; Fig. S7A showed similar trend in another dataset (n = 418)).  

To investigate the potential involvement of SPARC in the delivery of CFZ-alb NC to cancer 

cells, we first compared the SPARC level among four human breast cancer cell lines used in our study. 

HCC1937 cells were highest in the mRNA and protein level of hSPARC, followed by HCC1143, MDA-

MB-231, and MCF7 cells (Figs. 7C and 7D). hSPARC showed an apparent positive correlation with 

cellular uptake of CFZ-alb NC (HCC1937 taking up a greater amount of CFZ-alb NC than MCF7) (Fig. 

3B) and also with cytotoxicity of CFZ-alb NC (HCC1937 displaying the greatest enhancement of 

cytotoxicity by CFZ-alb NC over the unformulated CFZ solution, followed by HCC1143, MDA-MB-

231, and MCF7) (Figs. 4B and S7B). hSPARC expression was detected mainly on the plasma 

membrane of HCC1937 cells (Fig. S7C), and mSparc was abundantly expressed in the 4T1 tumor tissue 

sections (Fig. 7E). Based on these results, it was postulated that the SPARC expressed in or near cancer 

cells may facilitate cellular interactions and internalization of CFZ-alb NC, potentially accounting for 

the enhanced inhibition of the proteasome activity shown in vivo (Figs. 5B and 5C). 
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Figure 7. Role of SPARC in the uptake of CFZ-alb NC into cancer cells. (A) The relative expression 
of hSPARC gene in normal vs cancerous breast tissues (from a dataset in the TCGA database, n = 
64; the detailed description provided in the methods). (B) The Kaplan-Meier curves depicting 
overall survival for breast cancer patients with a high and low levels of hSPARC (n = 498, the 
dataset from the previous report [31]). (C and D) The mRNA (C) and protein (D) expression level 
of hSPARC in breast cancer cell lines. (E) Immunohistochemical staining of mSPARC (positive 
staining visualized as brown colors using 3,3'-diaminobenzidine) in 4T1 tumor tissue sections. 
Normal lung tissue section showed a weak staining signal for mSparc under the same experimental 
condition (representative images, scale bar = 100 µm).  (F) The protein levels of hSPARC in 
HCC1937 and U87MG cells following the lentiviral transduction of SPARC-targeting shRNA. (G 
and H) Comparison of the cellular uptake of CFZ (G) and cell viability (H) in U87MG cells where 
SPARC was completely knocked down following exposure to CFZ-alb NC or unformulated CFZ 
solution. Two-way ANOVA followed by Tukey’s post hoc test. ***p < 0.0002, ****p < 0.0001. 
Mean values ± SD. 
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To obtain experimental evidence on the involvement of SPARC in the cellular uptake of CFZ-

alb NC, we examined changes in cellular uptake and cytotoxicity of CFZ-alb NC in breast cancer cells 

by modulating their SPARC levels. When SPARC was partially knocked down by transient siRNA 

transfection in HCC1937 cells (Fig. S7D), no appreciable change was observed in cellular uptake (Fig. 

S7E) or cytotoxicity (Fig. S7F) of CFZ-alb NC. Boosting SPARC levels using decitabine (Fig. S7G) 

[63] also did not change the cellular uptake (Fig. S7H) and cytotoxic effects (Fig. S7I) of CFZ-alb NC. 

In order to obtain more conclusive evidence on the involvement of SPARC in the cellular uptake of 

CFZ-alb NC, we employed a model system that allows for a complete knockdown of SPARC from its 

high basal expression level. High levels of endogenous SPARC have been reported in glioma [67, 68], 

especially in U87MG cell lines derived from human glioblastoma. Upon lentiviral transduction of 

SPARC-targeting shRNA, U87MG cells showed an almost complete knockdown of SPARC at the 

protein level (Fig. 7F), making it suitable for the proof-of-concept study. When the cellular uptake and 

cytotoxicity of CFZ-alb NC were assessed in U87MG cells with complete SPARC knockdown, CFZ-

alb NC displayed dramatic increases in both the cellular uptake (Fig. 7G) and cytotoxicity (Fig. 7H) 

compared to the control U87MG cells. These results provide clear evidence supporting the important 

role of SPARC in delivering albumin-containing nanoparticles to cancer cells and may warrant further 

exploration of albumin coating for the therapy of SPARC-overexpressing tumors including gliomas.  

Taken together, our results support that CFZ-alb NC enhances pharmacodynamics of CFZ 

compared to CFZ-CD formulations by improving its physical and metabolic stability and enhancing 

cellular uptake by cancer cells. The extent by which CFZ-alb NC improved the anticancer efficacy 

compared to CFZ-CD was not as pronounced as albumin-coated paclitaxel NC (reported as Cim-F-alb 

[21, 28]). Possible reasons include the followings: (a) The size of CFZ-alb NC was larger than Cim-F-

alb (270 vs 198 nm). It was previously shown that the cellular uptake of paclitaxel NCs significantly 

decreased as the particle size increased [28]. (b) The conformational status of surface-bound albumin 

was shown to be an important factor to determine the efficacy of NCs [21]. When the extent of 

proteolysis by thermolysin was compared using the pulse proteolysis method [28], the surface-bound 

albumin in CFZ-alb NC was comparable to native albumin (23.9 ± 3.9% vs 15.8 ± 5.1%, n=3), whereas 

denatured albumin (boiled at 95 °C for 10 min as a positive control) showed significantly higher extent 
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of proteolysis than native albumin (42.0 ± 9.5% vs 15.8 ± 5.1%, n=3). Given the slightly elevated 

proteolysis, the possible impact of albumin conformation changes on the performance of CFZ-alb NC 

may not be completely ruled out, but the majority of albumin in CFZ-alb NC appears to maintain its 

native conformation.  (c) Different levels of albumin-interacting proteins including SPARC may impact 

the extent by which the surface-bound albumin facilitates cellular uptake. Cim-F-alb was tested in 

C57BL/6 mice harboring xenografts of B16F10 melanoma cells [21], which showed much greater 

SPARC expression level than 4T1 cells used in our current study [69]. (d) The improvement in the 

circulation time might have been less with CFZ-alb NC than albumin-coated paclitaxel nanocrystal. 

Given that paclitaxel has aqueous solubility even lower than CFZ, albumin-coated paclitaxel 

nanocrystal may have had a longer circulation time as NCs than CFZ-alb NC. Moreover, albumin-

coated paclitaxel nanocrystal was administered at 30 mg/kg, much higher than 3 mg/kg for CFZ-alb-

NC. Consideration of these possibilities may assist in optimizing CFZ formulations containing albumin 

for the treatment of breast cancer and other types of solid cancer. Nonetheless, our results indicate a 

promising potential for CFZ-alb NC as an alternative, CD-free formulation which can improve in vivo 

anticancer efficacy.   

 

4. Supporting information 

4.1. Supporting experimental methods 

4.1.1. Cytotoxic effects of CFZ solution  

Breast cancer cells were seeded onto 96-well plates 24 h prior to drug treatment. Cells were treated with 

CFZ solution (dissolved in DMSO; CFZ concentrations ranging from 1 to 500 nM; the DMSO content 

did not exceed 0.5% v/v) for 72 h and the cell viability was measured with the CellTiter 96® AQueous One 

Solution Cell Proliferation Assay (Promega, Madison, WI, USA) using Synergy HT plate reader 

(BioTek, Winooski, VT, USA). The IC50 (half maximal inhibitory concentration) value was obtained 

using GraphPad Prism software 7.0.3. 
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4.1.2. Immunoblotting analysis  

Cell lysates were prepared in the RIPA buffer, mixed with 4× Laemmli sample buffer, and heated at 95 

°C (for the proteasome subunits) or 50 °C (for P-glycoprotein, P-gp) for 5 min. Cell lysates containing 

the equivalent protein amount (10 µg for proteasome subunits, 60 µg for P-gp) were resolved using 7.5 

– 12% SDS-PAGE and transferred onto PVDF membranes (Bio-Rad, Hercules, CA, USA). After 

blocking using 5% milk in Tris-buffered saline containing 0.05% Tween-20 (TBST), the membranes 

were probed with the following antibodies: β1 (1:1,000 dilution; #PW8140; Enzo Biochem, 

Farmingdale, NY, USA), β2 (1:1,000 dilution; #PW8145; Enzo Biochem, Farmingdale, NY, USA), β5 

(1:1,000 dilution; #PA1-1962; Thermo Fisher Scientific) and P-gp (1:200 dilution; #903701; 

BioLegend, San Diego, CA, USA).  

4.1.3. Proteasome activity measurement in breast cancer cell lines  

Cell lysates were prepared in the ice-cold passive lysis buffer (Promega, Madison, WI, USA). After 

centrifugation of cell lysates at 3,000 g for 10 min at 4 °C, the resulting supernatant was collected and 

used for the proteasome activity assay (10 µg total protein). To assess the proteasome activities, the 

supernatant (2 µL) was incubated in the assay buffer (48 µL) with the following fluorogenic substrates: 

100 µM Suc-LLVY-AMC (Bachem, Bubendorf, Switzerland) for the chymotrypsin-like activity, 100 

µM Ac-nLPnLD-AMC (Bachem, Bubendorf, Switzerland) for the caspase-like activity, and 20 µM Ac-

RLR-AMC (BostonBiochem, Cambridge, MA, USA) for the trypsin-like activity. The proteasome 

activities were monitored as described in section 2.6.5.  

4.1.4. 2-dimensional (2D) colony formation assay  

Breast cancer cells were seeded onto a 6-well plate at a density 1,000 – 2,000 cells per well. After 

treated with CFZ solution for 2 h and subsequently washed twice with DPBS, cells were maintained in 

drug-free complete media for 11 – 14 days. After the removal of media, cell plates were placed on ice, 

washed twice with ice-cold DPBS and fixed with cold methanol for 10 min. The fixed cells were 

strained with crystal violet solution.  
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4.1.5. 3-dimenstional (3D) spheroid formation assay 

Cells were seeded onto a 6-well plate at a density 5×104 cells per well in complete media. Cell were 

treated with CFZ (50 nM) and doxorubicin (100 nM) for 16 h, and then washed twice with DPBS.  Cells 

were collected using trypsin and 500 – 2,000 cells were re-plated per well in ultra-low attachment 96 

well plates (Corning, New York, USA). Cells were maintained in HuMEC Ready Medium 

supplemented with B-27 Supplement, epidermal growth factor (20 ng/mL; Sigma-Aldrich, St. Louis, 

MO, USA), basal fibroblast growth factor (20 ng/mL), heparin (4 µg/mL; Sigma-Aldrich, St. Louis, 

MO, USA), and penicillin-streptomycin at 37 °C in a humidified incubator operating at 5% CO2. After 

10 – 14 days, spheroids were visualized using Operetta imaging system (PerkinElmer, Waltham, MA, 

USA) and the number of spheroids with their size > 500 nm was counted.    

4.1.6. hSPARC imaging in HCC1937 cells  

HCC1937 cells were seeded in 35 mm petri dish at 1×105 cells per dish and incubated overnight. The 

cells were fixed in 4% paraformaldehyde at 4 ˚C for 15 min, rinsed twice with PBS, and incubated with 

10 µg/mL of polyclonal goat anti-human SPARC antibody (R&D Systems, Minneapolis, MN, USA) 

overnight at 4 ˚C in 5% milk in TBST. After washing, the primary antibody was visualized with Alexa 

Fluor 488 conjugated-polyclonal rabbit anti-goat IgG (10 µg/mL; Invitrogen, Carlsbad, CA, USA) by 

incubating for 1 h at 4 ̊ C. The stained cells were imaged with a Nikon A1R confocal microscope (Nikon 

America Inc., Melville, NY, USA), and Hoechst 33342 and Alexa Fluor 488 were detected with λex/λem 

of 407 nm/425 – 475 nm and λex/λem of 488 nm/500 – 550 nm, respectively. 

4.1.7. siRNA-based hSPARC knockdown in HCC1937 cells 

HCC1937 cells at the confluency of approximately 60% were transfected with hSPARC-targeting 

siRNAs (25 picomole; OriGene, Rockville, MD, USA) or scrambled siRNAs using Lipofectamine® 

RNAiMAX Reagent following the recommended protocol. At 48 h post-transfection, cells were 

harvested for the immunoblotting analysis of SPARC protein. To assess the cytotoxicity and cellular 

uptake of CFZ-alb NC, the transfected HCC1937 cells were treated with CFZ-alb NC or CFZ solution 
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for 2 h. After washing 2 – 3 times with PBS, cells were either grown for 72 h in drug-free media 

(cytotoxicity) or harvested with 50% methanol (uptake assay).  

4.1.8. SPARC upregulation in HCC1143 cells 

HCC1143 cells (confluency of approximately 50%) were pre-treated with decitabine solution in DMSO 

(5 µM; Shenzhen Chemical Co. Ltd., Shanghai, China) or DMSO (as a control) for three consecutive 

days. After 24 h, cells were either harvested for verifying the upregulation of hSPARC (by 

immunoblotting analysis) or re-plated on 96-well-plates. After 24 h, the HCC1143 cells were treated 

with CFZ-alb NC or CFZ solution for 2 h. After washing 2 – 3 times with PBS, cells grown for 72 h in 

drug-free media were accessed cytotoxicity. 

4.2. Supporting table 

Table S1. Theoretical calculation of the amount of human serum albumin (HSA) needed for coating 

CFZ NCs. 

Surface area of occupying HSA molecule [1] 39 nm2 

Total surface area of each NC particle (352 nm × 58 nm) × 4 + (58 nm × 58 nm) × 2  

= 8.84 × 104 nm2 

Theoretical maximum number of HSA on each NC 

particle 

approximately 2,267 

Volume of each NC particle 352 nm × 58 nm × 58 nm = 1.18 ×106 nm3 

Density of CFZ 1.2 g/cm3 

  

For CFZ-alb NC  

74% CFZ (74 g/1.2 g cm-3) × (1021 nm3 cm-3) / (1.18 x 106 nm3) 

= 5.23x1016 NC 

20% HSA (20 g/66,437 g mol-3) × (6.022 x 1023 molecules/mol) 

= 1.81x1020 HSA molecules 

 

Numbers of HSA per NC particle 3,468 (153% coverage) 
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4.3. Supporting figures 
 

 
 

 

 
Figure S1. (related to Figure 1) The particle size of CFZ-alb NC reconstituted after 
lyophilization, measured by DLS. Trehalose was added at varying weight ratios prior to 
lyophilization. 

 
Figure S2. (related to Figure 2). (A) The derived count rates of CFZ-alb NC in PBS maintained 
linear relationships over the concentrations ranges tested (7.2 to 72 µg/mL CFZ) for 24 h. (B) 
The derived count rates of CFZ-alb NC (equivalent to 30 µg/mL CFZ, in the presence of 
undiluted FBS) were obtained by continuous monitoring for the first 20 min. Mean values ± SD. 
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Figure S3. (related to Figure 3). (A) Representative TEM image of rhodamine B-labeled CFZ-
alb NC (*CFZ-alb NC) (B) The average size and zeta potential of *CFZ-alb NC, measured by 
DLS. (C)   Cellular uptake of *CFZ-alb NC in breast cancer cell lines (4T1 and MCF7). 
Representative confocal microscopy images following 2 h incubation with *CFZ-alb NC (30 
µg/mL CFZ). Free rhodamine B (Rho B) was used as a negative control. Scale bar = 10 µm.  
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Figure S4. (related to Figure 4) The sensitivity of breast cancer cell lines to CFZ. (A) The cytotoxic 
effects of CFZ in breast cancer cell lines following continues treatment for 72 h. (IC50, half maximal 
inhibitory concentration; n.d., not determined) (B and C) The expression of proteasome catalytic 
subunits (β1, β2, and β5) and proteasomal activities in breast cancer cell lines. Human multiple 
myeloma RPMI8226 cells were used as a positive control. (D) The expression level of P-
glycoprotein (P-gp) in breast cancer cell lines. NCI-ADR/RES cells were used as a positive control. 
(E and F) The inhibitory effect of CFZ on 2D-colony (E) and 3D spheroid (F) formation in breast 
cancer cell lines after 2 h and 16 h incubation, respectively, followed by the maintenance in drug-
free media for 11 – 14 days. Representative images of the spheroids formed in HCC1143 cells. Mean 
values ± SD. 
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Figure S5. (related to Figure 5) (A) Representative images of tumor harvested on day 22. (3 days 
following the last injection) (B) The proteasome activity from whole blood collected on day 22. 
One-way ANOVA followed by Tukey’s post hoc test. ****p < 0.0001 (a.u.; arbitrary units). (C) 
Representative images of lung harvested on days 24 and 28 after inoculation of 4T1 cells in 

BALB/c mice. ▲ indicated metastasis lung nodules. (D) Histological examination of liver and 
lung tissues (H & E staining; representative images, scale bar = 100 µm). Mean values ± SD. 
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Figure S6. (related to Figure 6) (A) The amount of CFZ per gram tissue in the major organs. (B) 
The amount of CFZ (left y-axis, shown as a bar graph) and the inhibitory extent of the proteasomal 
activity (right y-axis, shown as a dot plots) in the respective tissues. Mean values ± SD. 
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Figure S7. (related to Figure 7). (A) Kaplan-Meier curves depicting the overall survival of breast 
cancer patients with the low and high expression levels of hSPARC (n = 418, extracted from [3]). 
(B) Correlation between the mRNA expression level of hSPARC and the extent of enhanced 
cytotoxicity of CFZ-alb NC relative to unformulated CFZ solution at the concentration of 400 nM. 
(C) SPARC expression on the plasma membrane in HCC1937 cells. Green: anti-human SPARC 
antibody. Blue: nuclei stained with Hoechst 33342. (D) hSPARC expression in HCC1937 cells 
transfected with scrambled (sc) siRNA (negative control) or two different siRNAs targeting 
hSPARC. (E & F) The amount of CFZ (E) and cell viability (F) in HCC1937 cells transfected with 
hSPARC-targeting siRNA following the exposure to CFZ-alb NC or CFZ solution. Two-way 
ANOVA followed by Tukey’s post hoc test (H) or Sidak’s post hoc test (I). (G) hSPARC 
expression in HCC1143 cells pre-treated with decitabine. (H & I) The amount of CFZ (H) and cell 
viability (I) in HCC1143 cells which showed a modest upregulation of SPARC following the 
exposure to CFZ-alb NC or CFZ solution. *p < 0.0332, **p < 0.0021. Mean values ± SD. 
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CONCLUSION 

 

With the clinical successes of three FDA-approved proteasome inhibitor (PI) drugs (bortezomib, BTZ; 

carfilzomib, CFZ; ixazomib, IXZ), the PI therapy is firmly established as a mainstay for the treatment 

of multiple myeloma (MM) and other hematological malignancies. Yet, there remains much room for 

further improvement, especially with regards to drug resistance (intrinsic and acquired), poor efficacy 

against solid cancers and adverse effects (via on-target and off-target interactions). For CFZ, its 

pharmacokinetic aspects (namely, rapid metabolic inactivation and short circulation time) have also 

been suspected as a factor limiting its efficacy against solid cancer. To improve upon existing PI drugs, 

a number of next-generation PIs are currently under clinical and preclinical development. With data 

accumulating from new PI drug candidates, it has become increasingly evident that the clinical efficacy 

of PI drugs is impacted not only by their inhibitory potency, but also by the mode, extent and duration 

of proteasome inhibition. Moving forward, a careful examination of the pharmacokinetic (PK) and 

pharmacodynamic (PD) profiles of PI drug candidates may provide important insights in bridging the 

current gap between initial preclinical results and eventual clinical outcomes.  

 Many of the oncology-based nanoformulations are designed to enhance the drug delivery to 

tumor tissues, thus broadening the therapeutic window. In this thesis work, both of novel CFZ 

nanoformulations (polymer micelle-based formulation, CFZ-PM (Chapter I); nanocrystal with albumin 

coating, CFZ-alb NC (Chapter II)) improved metabolic stability in vitro. In the case of CFZ-PM, the 

improvement observed in vitro however did not yield a similar improvement in vivo (in terms of plasma 

PK profiles and anticancer efficacy in a mouse model carrying lung cancer xenografts). The lack of 

translatability from in vitro to in vivo may be attributed to multiple factors, but it would be important 

to keep in mind that in vitro results may not predict the in vivo performances of nanomedicine-based 

chemotherapeutics (especially, the stability in circulation and drug distribution at the tissue/cellular 

levels).  

So far, the accumulating body of information suggests that novel approaches including 

previously unexplored structural scaffolds may address limitations of PIs and further expand the utility 
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of existing PI drugs harboring peptide scaffold. As an approach to improve bio- and/or physico-

chemical properties of peptide-based drugs, macrocyclization (yielding so-called constrained peptides) 

can be applied to CFZ or next-generation PI drug candidates. Macrocyclization of peptide-based 

compounds may improve the plasma stability of peptide- or peptidomimetic-based small molecules 

compared to linear peptides [155][DR Cary et al., J-STAGE, 2017]. In an attempt to develop orally 

available and metabolically stable PIs, a recent report synthesized the structurally diverse PI-

derived macrocyclic peptides containing epoxyketone pharmacophore and the compounds displayed 

superior in vivo metabolic stability with potent proteasome inhibition [156].  Additionally, alternative 

targets in the ubiquitin-proteasome system (other than the catalytic subunits of the proteasome) present 

promising therapeutic potential and preclinical evaluation of compounds targeting such targets is 

underway. In particular, deubiquitinases (DUBs), an essential component in the UPS, have emerged as 

a novel target in cancer therapy, especially for cancers refractory to existing PI drugs. These efforts 

may yield therapeutic agents targeting non-proteasomal components of the UPS, used on their own or 

in combination with PI drugs.  

In this thesis work, our efforts of developing CFZ nanoformulations (i.e., polymer micelles and 

nanocrystals coated with albumin) did not achieve the marked efficacy against lung and breast cancer 

falling short of our initial expectations. However, other drug delivery systems may still offer further 

improvements of the pharmacokinetics, biodistribution and pharmacodynamics of CFZ. In exploring 

other drug delivery systems, it would be important to consider the exposure and release profiles (the 

extent and kinetics) of the drug in circulation and in tumor tissues. With continuing efforts, it is hoped 

that next-generation PIs with improved pharmacokinetic and pharmacodynamic profiles will eventually 

bring therapeutic benefits to patients with MM as well as other types of cancer. 
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요약 (국문 초록) 

 

현재 임상에서 사용되고 있는 2 세대 프로테아좀 저해제인 carfilzomib (CFZ)은 1 세대 

프로테아좀 저해제인 bortezomib 과 더불어 다발성 골수종 치료에 매우 획기적인 치료효과를 

나타내고 있다. CFZ 은 bortezomib 보다 향상된 항암 효과 뿐만 아니라, 

구조적으로 epoxyketone pharmacophore 를 가지고 있어 타겟인 프로테아좀에 보다 

선택적으로 반응하여 개선된  안전성 프로파일을 나타낸다. 하지만 수용성이 매우 낮고 1 시간 

이내에 체내에서 대부분 소실되는 경향을 보인다는 제한점이 있다. 이는 CFZ 의 펩타이드 

backbone 과 epoxyketone  구조가 대사 반응에 취약하여, 체내 대사가 빠른 시간 내에 

일어나기 때문에 짧은 반감기의 약물동태학적 특성을 보이는 것으로 사료된다. 이러한 제한 

점을 극복하기 위해 나노제형을 도입한다면 CFZ 의 약물동태학적 문제점을 해결하고 더 

나아가 약물동력학적 특성도 개선할 수 있어 고형암 환자에게 적용 가능성의 향상을 또한 

예상하는 바, 본 연구에서는 CFZ 의 새로운 나노제형을 개발하고 고형암 세포주와 실험 동물 

모델을 사용하여 항암 효능을 평가 하였다. 

이전의 연구에서는 생분해성 폴리머인 폴리에틸렌글리콜과 폴리카프로락톤으로 

구성된 폴리머마이셀에 CFZ 을 loading 하였을 경우 in vitro 실험계에서 대사 안정성이 

향상되었음 이미 보고 한 바가 있다. 이에 본 논문연구에서는 선행 연구되었던 CFZ 을 

포함하는 폴리머마이셀 나노제형(CFZ-PM)의 항암 효능의 향상 여부를 인간 폐암 세포주 

H460 가 이식된 마우스 실험 동물 모델에서 평가하여 보았다. CFZ-PM 를 투약한 마우스에서 

종양 증식 억제효과가 나타나기는 하였지만, 임상적으로 사용되는 사이클로 덱스트린 기반의 

CFZ 제제 (CFZ-CD)보다 우수한 효과를 나타내지는 않았다. 이는 CFZ-PM 의 혈장 

약물동태학 프로파일이 CFZ-CD 과 유사하였고, CFZ-PM 이 이종 이식 마우스에서 자란 

폐암 조직에 대한 CFZ 의 접근성이 증가하지 못하여 폐암 조직에 존재하는 프로테아좀을 

일부만 억제하는 효과를 보였기 때문으로 사료된다. 이러한 결과를 바탕으로, 보다 제제 
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안정성이 높고 효과적으로 CFZ 을 암조직으로 전달 하기 위해 새로운 나노제형의 CFZ 을 

준비하였다.  

친수성이 약한 CFZ 은 쉽게 결정화되는 특징을 갖고 있어 체내 안정성이 높은 

나노크리스탈 제제로 제형화가 가능하리라는 판단 하에  CFZ 을 나노크리스탈 제제로 

개발하였다. 그리고 CFZ 나노크리스탈 제형의 표면은 알부민으로 코팅하여 암세포 및 암세포 

주변에 위치한 알부민 결합 단백질과의 상호 작용을 통해 종양에 대한 약물 전달을 향상시킬 

전략을 세웠다. 알부민이 코팅 된 CFZ 의 나노크리스탈 제제 (CFZ-alb NC)는 280nm 

크기로서 약 80%의 높은 약물 loading content 를 나타내었다. CFZ-alb NC 은 in vitro 와 

in vivo 실험계에서 향상된 대사 안정성을 보였을 뿐만 아니라, CFZ solution 과 비교하였을 

경우 사람의 여러 유방암 세포주에서 향상된 세포 침투 능력 및 세포 독성 효과를 나타냈다. 

또한 CFZ-alb NC 을 마우스의 유방암 세포주인 4T1 가 이식된 BALB/C 마우스 orthotopic 

유방암 실험 동물 모델에 투약 하였을 경우 부작용이 없이 CFZ-CD 보다 더 향상된 항암 

효과를 나타냈다. 이는 CFZ-alb NC 에 코팅된 알부민이 유방암 조직에 과발현 되어있는 

알부민 결합 단백질인 SPARC 가 관여하는 전달 메커니즘에 기반함을 검증하였다. 이 연구를 

통해 유방암 치료에 적용 가능한 CFZ-alb NC 나노입자 제제화의 잠재력을 입증하였다. 

 

주요어: 프로테아좀 저해제, carfilzomib, 나노제형, 폴리머마이셀, 나노크리스탈, 알부민, 

고형암 
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