

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

A Stacked Memory Architecture

for Improving Performance and

Capacity

성능과 용량 향상을 위한 적층형 메모리 구조

2019 년 2 월

서울대학교 융합과학기술대학원

융합과학부 지능형융합시스템전공

이 석 한

A Stacked Memory Architecture

for Improving Performance and

Capacity

지도 교수 안 정 호

이 논문을 공학박사 학위논문으로 제출함

2019 년 1 월

서울대학교 융합과학기술대학원

융합과학부 지능형융합시스템전공

이 석 한

이석한의 공학박사 학위논문을 인준함

2019 년 1 월

위 원 장 이 재 욱 (인)

부위원장 안 정 호 (인)

위 원 김 장 우 (인)

위 원 김 동 준 (인)

위 원 김 남 승 (인)

i

Abstract

A Stacked Memory Architecture

for Improving Performance and

Capacity

The advance of DRAM manufacturing technology slows down,

whereas the density and performance needs of DRAM continue to

increase. This desire has motivated the industry to explore

emerging Non-Volatile Memory (e.g., 3D XPoint) and the high-

density DRAM (e.g., Managed DRAM Solution). Since such memory

technologies increase the density at the cost of longer latency,

lower bandwidth, or both, it is essential to use them with fast

memory (e.g., conventional DRAM) to which hot pages are

transferred at runtime. Nonetheless, we observe that page transfers

to fast memory often block memory channels from servicing

memory requests from applications for a long period. This in turn

significantly increases the high-percentile response time of

latency-sensitive applications. In this thesis, we propose a high-

density managed DRAM architecture, dubbed 3D-XPath for

applications demanding both low latency and high capacity for

memory. 3D-XPath DRAM stacks conventional DRAM dies with

high-density DRAM dies explored in this thesis and connects these

DRAM dies with 3D-XPath. Especially, 3D-XPath allows unused

memory channels to service memory requests from applications

when primary channels supposed to handle the memory requests

ii

are blocked by page transfers at given moments, considerably

increasing the high-percentile response time. This can also

improve the throughput of applications frequently copying memory

blocks between kernel and user memory spaces. Our evaluation

shows that 3D-XPath DRAM decreases high-percentile response

time of latency-sensitive applications by ∼30% while improving

the throughput of an I/O-intensive applications by ∼39%,

compared with DRAM without 3D-XPath.

Recent computer systems are evolving toward the integration of

more CPU cores into a single socket, which require higher memory

bandwidth and capacity. Increasing the number of channels per

socket is a common solution to the bandwidth demand and to better

utilize these increased channels, data bus width is reduced and

burst length is increased. However, this longer burst length brings

increased DRAM access latency. On the memory capacity side,

process scaling has been the answer for decades, but cell

capacitance now limits how small a cell could be. 3D stacked

memory solves this problem by stacking dies on top of other dies.

We made a key observation in real multicore machine that multiple

memory controllers are always not fully utilized on SPEC CPU 2006

rate benchmark. To bring these idle channels into play, we

proposed memory channel sharing architecture to boost peak

bandwidth of one memory channel and reduce the burst latency on

3D stacked memory. By channel sharing, the total performance on

multi-programmed workloads and multi-threaded workloads

improved up to respectively 4.3% and 3.6% and the average read

iii

latency reduced up to 8.22% and 10.18%.

Keywords : Memory microarchitecture, Stacked memory,

heterogeneous memory, managed DRAM, hot-page swap,

Student Number : 2014-30815

iv

Contents

Abstract ...i

Contents ... iv

List of Figures ...vii

List of Tables ...ix

Introduction .. 1

1.1 3D-XPath: High-Density Managed DRAM Architecture

with Cost-effective Alternative Paths for Memory Transactions

..5

1.2 Boosting Bandwidth – Dynamic Channel Sharing on 3D

Stacked Memory ...9

1.3 Research contribution... 13

1.4 Outline .. 14

3D-stacked Heterogeneous Memory Architecture with Cost-

effective Extra Block Transfer Paths..................................17

2.1 Background .. 17

2.1.1 Heterogeneous Main Memory Systems 17

2.1.2 Specialized DRAM.. 20

2.1.3 3D-stacked Memory... 23

2.2 HIGH-DENSITY DRAM ARCHITECTURE.......................... 28

2.2.1 Key Design Challenges.. 30

2.2.2 Plausible High-density DRAM Designs 35

v

2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR

MEMORY TRANSACTIONS... 39

2.3.1 3D-XPath Architecture... 43

2.3.2 3D-XPath Management... 48

2.4 EXPERIMENTAL METHODOLOGY...................................... 55

2.5 EVALUATION ... 59

2.5.1 OLDI Workloads ... 59

2.5.2 Non-OLDI Workloads ... 64

2.5.3 Sensitivity Analysis ... 69

2.6 RELATED WORK.. 73

Boosting bandwidth –Dynamic Channel Sharing on 3D Stacked

Memory ...76

3.1 Background: Memory Operations.. 76

3.1.1. Memory Controller.. 76

3.1.2 DRAM column access sequence... 77

3.2 Related Work ... 78

3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM....... 80

3.3.1 Hardware Requirements.. 82

3.3.2 Operation Sequence... 85

3.4 Analysis.. 92

3.4.1 Experiment Environment .. 92

3.4.2 Performance ... 93

vi

3.4.3 Overhead... 95

CONCLUSION..97

REFERENCES..99

국문초록 ...112

vii

List of Figures

Figure 1 Distributions of Apache response time............................... 15

Figure 2 Channel utilization by time ... 16

Figure 3 Hot page migration sequence... 18

Figure 4 Swap latency description ... 18

Figure 5 A standard 3D-stacked DRAM 21

Figure 6 A diagram of the stacked DRAM dies................................. 22

Figure 7 A pin map of HBM... 26

Figure 8 Limitation of 3D stacked memory 27

Figure 9 Cell area per bit for memory types..................................... 29

Figure 10 Memory performance for memory types. 29

Figure 11 The impact of DRAM technology process scaling 33

Figure 12 DRAM timing parameters by process............................... 34

Figure 13 Proposed 3D-stacked DRAM architecture...................... 40

Figure 14 A swap architecture with extra path 41

Figure 15 The detailed swap procedure. ... 42

Figure 16 Extended data path for PerfD.. 47

Figure 17 Hot page migration process... 54

Figure 18 OLDI performance (RRPS) comparison 62

Figure 19 OLDI performance (response latency) comparison........ 63

Figure 20 Multiprogram workload performance result. 66

Figure 21 Multithreaded workload performance result.................... 67

Figure 22 Performance of in-memory copy. 68

Figure 23 Sensitivity analysis 1.. 71

viii

Figure 24 Sensitivity analysis 2.. 72

Figure 25 Timing diagram about proposed channel sharing............ 81

Figure 26 Proposed architecture for bonding channels. 87

Figure 27 The structure of CSSR... 89

Figure 28 The example of CSSR operation 90

Figure 29 Continued example of the CSSR.. 91

Figure 30 Performance result graph for channel bonding 94

Figure 31 Sensitivity analysis for channel bonding.......................... 94

ix

List of Tables

Table 1 Latency of PerfD and CapD... 55

Table 2 SPEC CPU2006 multi-programmed workload groups....... 55

1

Chapter 1

Introduction

In recent years, there has been an explosive increase in demand for

more computational power and data throughput, with this trend

projected to continue with time. CPU and GPU, in particular, has

evolved to satisfy these demands [63][64][65][66]. To increase

the performance of xPUs, decreasing latency while increasing

throughput has been main target of manufacturers. In the past, this

improvement was achieved by increasing the clock speed of a xPU.

However, with the slowdown of silicon process shrinking speed, it

has become difficult to increase the clock speed, thereby

diminishing the performance gain. To overcome this limit, the focus

of high performance computing has instead shifted to parallel

computing, or increasing the number of arithmetic logic unit(ALU)s.

This change is evident in the increase of CPUs per processor in

Intel Xeon and AMD EPYC, and the increase in total ALUs in

NVIDIA and AMD’s GPU architectures. In the case of Xeon, more

compute cores and more ALUs with higher compute bandwidth per

core, while increasing cache sizes and reducing latency has been

the focus of architectural improvement. In the same regard, GPUs

have reduced accuracy while increasing total throughput to improve

system performance. However, in accordance with the roofline

model [67], while some applications are bound by the compute

performance of the processing unit, some application speed is bound

2

by the speed of the memory as it loads/stores data to the

processing units on demand. However, in spite of the improvements

in processor architecture, memory performance has remained

relatively the same, as the limits in silicon processing hinders

performance improvements even at a smaller processes and suffers

from insufficient yield [68]. To improve system performance in

spite of the relatively slow memory manufacturing process

improvements, caches architecture has improved and cache size has

increased to improve data reuse, or architecture has changed to

increase the number of computation per memory access. For

example, Intel Xeon continuously expand the cache capacity per

socket. Also, nVidia ’ s the newest generation GPU has been

evolved to have higher buffer capacity and support lower precision

calculation mode (INT4, FP16) but it has higher calculation power

per access the memory (OP/B) than the previous generation.

However, even with the aforementioned efforts to reduce the

impact of memory performance on system performance, as CPUs

became more dense and with the advent of applications with little

data reuse, such as neural networks [69][70] and datacenter

programs[71], system performance has become bounded by

memory. To increase memory performance in spite of these limits,

memory channels have increased from 4 channels, which has been

the norm for quite some time, to 6 channels in the latest Xeon

processors, and increasing the number of ranks to increase memory

size [73]. GPU based systems have increased the number of data

bus channels or implemented GDDRx [28] which has higher data

3

transfer rate for a single rank of a fixed size.

Increasing the number of channels is also a limited solution. First,

the PCB (Print Circuit Board) used today requires more PCB layers

for routing, and to secure signal integrity, the layout must become

very complex, increasing the cost or making it impossible to

implement at all. Second, the number of channels for data

transmission between host and memory increases, which

significantly adds to the total cost of the system. Third, the number

of memory controllers on the host must increase as well, which

increases the complexity of the host chip interconnection network

and increases the cost as well [76]. Fourth, the IO power

consumption increases with respect to the number of increased

channels. For these reasons, simply adding a few more channels to

increase bandwidth and memory size is no longer plausible.

For decades, DRAM have been connected to host with controller by

memory channel and used as a main memory. DRAM was capable

providing low latency high bandwidth and large capacity, but with

the slowdown of process shrinkage and even with the smaller

process, the RC load from increased capacity increases access

latency, complicating the timing parameters, nullifying the DRAM

parameter gain from the smaller process, and limiting system

performance increase.

Introduced as a means to satisfy both the bandwidth and capacity

requirements, otherwise impossible by traditional DRAM, stacked

memory architecture has been deemed as a suitable solution to the

memory wall. Connecting the memory through a semi-conductor

4

wire connection and not by a PCB channel is the basic principle of

stacked memory. By doing so, stacked memory has a channel with a

lower RC load and alleviated the aforementioned PCB based channel

problems. However, the number of levels that can be stacked is

limited, needing another solution to remedy this problem.

To overcome the limitations of DRAM entirely, several different

types of memory devices has been researched. PCM (Phase Change

Memory), which has been developed under the collaboration of Intel

and Micron, is based on 3D-Xpoint to increase the capacity of

memory and is supported since the cascade lake system. However,

it suffers from long latency and high energy usage, which is why it

is used in tandem with DRAM, storing the frequently used data in

DRAM and the lesser used data in PCM to improve system

performance. The relatively poor performance and expensive price

does hinder its usability in actual deployment.

In this dissertation, we propose a new memory architecture to

overcome the diminishing DRAM performance improvement and

DRAM capacity limit. We aim to improve memory performance by

proposing a new memory architecture based on DRAM and not use

a different type of memory. We explain the necessary components

in implementing the system and analyze the performance

improvement when the proposed memory is integrated to a system.

5

1.1 3D-XPath: High-Density Managed DRAM Architecture with

Cost-effective Alternative Paths for Memory Transactions

The demand for larger main memory capacity keeps increasing.

However, as DRAM technology scaling slows down, so does the

capacity scaling of a Dual-Inline Memory Module (DIMM)

consisting of DRAM packages. This in turn constrains the capacity

of main memory systems, because the maximum number of DIMMs

per memory channel (or simply “channel”) is limited to a small

number, and it decreases with higher signaling rates. In such a case,

it becomes hard to further increase the capacity without sacrificing

either bandwidth or latency. Although buffered DIMMs such as

Registered DIMMs [27] and Load-Reduced DIMMs [26] allow

more DIMMs per channel without sacrificing the bandwidth, they

increase the latency.

To improve capacity per DRAM package, we may consider stacking

DRAM dies. However, as the number of stacked dies increases,

(1) the cost increases super-linearly especially due to drop in yield

[20] and (2) the data transfer rate per TSV, which connects these

dies, decreases due to worsened skews in setup/hold timings [45].

This challenge has motivated the industry to explore emerging

Non-Volatile Memory (NVM) technology such as 3D XPoint or

high-density DRAM such as Managed DRAM Solution (MDS) [1].

Nonetheless, both NVM and high-density DRAM increase their

capacity at the cost of longer latency, lower bandwidth, or both.

Therefore, it is essential to use such slow memory with fast

6

memory (such as conventional DRAM) and transfer hot pages to the

fast memory to minimize the negative impact of prolonged latency

and/or low bandwidth of the slow memory on performance [51, 56].

Analyzing On-Line Data-Intensive (OLDI) applications which often

require high capacity and low latency memory, however, we

observe that page transfers (or swaps) between fast and slow

memories frequently block channels from servicing memory

requests of the applications for a long period. This blocking in turn

unacceptably increases the high-percentile response time of

latency-sensitive OLDI applications. For example, for a main

memory system which consists of PCM and DRAM, it takes ∼50μs

to swap two 4 KB pages between DRAM and PCM where long

latency (e.g., ∼1μs [14]) and low bandwidth (e.g., 50–100 MB/s

[14]) of PCM primarily contribute to such a long transfer time. To

quantify this effect, we evaluate two configurations stacking DRAM

with PCM: (C1) one may block memory requests from the Apache

web server and (C2) the other does not during page transfers

(“DRAM+NVM with blocking page swaps” and “DRAM+NVM

with non-blocking page swaps” in Figure 1). C1 gives 60% longer

95th-percentile response time than the memory system based on

only DRAM, whereas C2 experiences just 13% longer 95th-

percentile response time. Tackling this challenge, we propose a

high-density managed DRAM architecture, 3D-XPath, for

applications that require both high capacity and low latency for

memory. Specifically, advocating the use of high-density DRAM

with conventional DRAM, we first discuss challenges in DRAM

7

technology scaling and then explore design space of high-density

DRAM for the first time. Second, we propose 3D-XPath, which

provides alternative paths for the following two purposes: (P1)

efficient transfers of pages between dies; and (P2) prompt services

of memory requests from applications (“ memory requests ”

hereafter) when primary channels for the memory requests are

already transferring pages. To cost-effectively offer 3D-XPath,

we exploit the following two observations from our experiment and

in-depth analysis of industry 3D-stacked DRAM [32]. (O1) One or

more channels are often unused for a certain period. (O2) A set of

I/O TSVs constituting each channel is physically connected to the

I/O connection points of all stacked dies, and it can be electrically

connected to any stacked die at a time by controlling tristate

buffers with decoder logic. In a 3D-stacked memory package with

multiple channels, O1 and O2 allow a memory controller to

dynamically establish an alternative channel for a memory request

to one rank although its primary channel, which is shared with other

ranks, is used by a page transfer to other ranks. In this thesis, we

evaluate 3D-XPath for memory which stacks conventional and

high-density DRAM dies and uses the conventional DRAM as

hardware-managed cache. Nonetheless, 3D-XPath is also

applicable to memory which (1) stacks any heterogeneous memory

dies including DRAM and NVM and/or (2) uses conventional DRAM

as a hardware-managed cache with large cache lines. Lastly, 3D-

XPath can greatly improve performance of I/O-intensive

applications that frequently need to copy memory blocks between

8

kernel and user memory spaces, as 3D-XPath can efficiently

support in-memory copy operations.

To evaluate the effectiveness of 3D-XPath, we model a

heterogeneous 3D-stacked memory system with two conventional

and six high-density DRAM dies. As our baseline system, we use a

16-core chip-multiprocessor system with the heterogeneous 3D-

stacked memory system. Through system-level simulations we

compare heterogeneous memory systems adopting our proposed

techniques with the baseline system. Our evaluation shows that

heterogeneous 3D-stacked DRAM with 3D-XPath reduces 95th-

percentile response time of OLDI applications by ∼30% while

improving throughput of an I/O-intensive application by ∼39%.

Lastly, heterogeneous 3Dstacked DRAM can provide higher

capacity than homogeneous 3D-stacked DRAM with only

conventional DRAM for the same number of dies, but it still gives

worse 95th-percentile response time even for applications

demanding high memory capacity unless it adopts 3D-XPath,

according to our evaluation.

9

1.2 Boosting Bandwidth – Dynamic Channel Sharing on 3D Stacked

Memory

Modern multicore computing systems are evolving toward a larger

number of cores per socket, increasing the demand for higher

memory bandwidth [1], [2], [3]. In order to meet this bandwidth

demand, the number of memory controllers per socket is increasing.

Despite the increase in channels and memory controllers, the data

bus width of a single channel has remained the same for several

reasons. First, it is to reduce the bottleneck caused by narrow

command bus. Assuming that a multicore systems memory access

request is performed through a single channel and it has the same

transfer size and bandwidth as multi-channel, the data bus

utilization per memory access command is lower than the multiple

channel case, due to wider data bus width. As a result, the data bus

cannot be fully utilized, hindered by the limited command bus

bandwidth. Second, multiple memory channels can bring higher

DRAM parallelism than the single MC system. If the DRAM channel

has the same constraints (i.e., the number of components, banks,

and ranks) in the both multiple and single channel system, the total

number of accessible DRAM banks in the system is proportional to

the number of channels. In order words, when we use a single

channel, the performance of the system can be limited by the

smaller number of simultaneously accessible banks (Bank level

parallelism) [29]. For these reasons, the system is composed of

multiple channels that can independently transmit data and the

10

channel data bus width is maintained. In order to transfer data that

is wider than the channel data bus width in one request, it uses

burst transfers which divides transmitted or received data several

times and transmit it serially. This function will be further enhanced

with the upcoming DDR5 standard, which will reduce the data bus

width per channel (64 to 32 bits) and increase the length of the

burst transfer (8 to 16 bursts) than the existing DDR4. These

increased burst transfers help to achieve higher data bus utilization,

but as a trade-off, the memory controller cannot use the channel

for other purposes during the multi-cycle data transfer. As the

number of cores is further increased, not only higher bandwidth but

also larger memory capacity is required. Moore ’ s law has

improved the manufacturing process and increased capacity per

area. However, in recent years, process improvement slows down

and DRAM capacity increase has been limited. The main cause of

this limit is capacitance of DRAM cell because DRAM needs to

continuously refresh its data to retain its data. Data loss is caused

by charge leakage and as such, if the cells capacitance is reduced as

the cells area is reduced, memory refresh must be performed more

frequently. These additional refreshes block normal memory

transfer command and causes performance degradation [21]. As a

result, in order to maintain DRAM performance, the capacitance of

each cell cannot be greatly changed. Therefore, it is difficult to

radically increase memory density. To overcome this memory

density limit, a 3D stacked memory which piles up a memory die on

top of the host or another memory die is proposed to increase the

11

capacity while maintaining the cell area and each stack is connected

by through Silicon Via (TSV). Although the cost is increased by

stacking the silicon, the capacity problem is solved by increasing

the number of stacked DRAM dies. These TSV-based 3D stacked

memories are used in Wide IO [18], DDR4 and DDR5 3DS-DRAM

[17], HMC [14] and HBM [19]. In particular, Wide IO, HMC, and

HBM can use multiple channels per DRAM die. These 3D stacked

memories are widely studied and used in the server [5], mobile [9],

and graphics [20]. In a real Intel Xeon e5 server system with

multi-core and multi-memory channel configuration, we made a

key observation that the memory bandwidth is not fully utilized and

saturates even if the rate (how many cores are used at a time) is

increased on SPEC CPU2006 benchmark. We also found idle

channels during the burst transfer of a specific memory channel for

multi-programmed and multithreaded workloads through

simulations performed in the same condition as the Section 2.5.1.

When using a single channel, the probability that another channel

will not be used during burst latency (tBL) is as shown in Figure 2.

We observe that at least 73% of total memory accesses have at

least one unused memory channel even in the relatively high

memory data bus utilization case of mix-high and fft which are

described in Section 2.5.2. In this thesis, we propose a channel

sharing scheme on a 3D stacked memory to compensate for the

burst transfer latency by utilizing empty memory channels in server

multimemory channel system. We modify the memory and the

memory controller architecture and add communication channel to

12

the the memory channel. By doing so, we are able to transmit data

through memory channels that otherwise would have been left idle.

Channel sharing increases data bus utilization while mitigating the

trade-off between using a narrow data bus and increasing the burst

transfer latency. Thus, this design improves the performance of the

system by reducing the DRAM access latency and instantaneously

increasing the peak channel bandwidth.

13

1.3 Research contribution

We propose a large capacity DRAM structure using improved silicon

process and a stacked asymmetric memory structure which is

denser than a typical DRAM, a managed DRAM structure that

utilized the previous structure, and improve upon this by modifying

the host side memory controller design.

1. Large capacity memory structure

2. High performance DRAM structure in a stacked enviroment

3. Migration strategy in a heterogeneous memory structure of

1 and 2

4. An alternative path structure to increase migration speed

5. A data swap structure to increase migration speed using 2

and 4

6. In-memory copy structure using 4 and 5

7. Increasing peak bandwidth by bonding the channels in a

stacked memory

With the memory structure proposed above, this thesis proposes a

DRAM system architecture to mitigate the performance and

capacity cap from memory wall.

14

1.4 Outline

This thesis is organized as follows. Chapter 2 describes stacked

memory architecture for capacity and performance and measure

performance gain for data intensive applications and multi-

programmed / multi-threaded applications. Chapter 3 describes the

memory and memory controller architecture with bonding memory

channels to boost system performance, and observed performance

gain for applications. In Chapter 4, we present the conclusion for

our works.

15

Figure 1 Distributions of Apache response time when main memory systems are built with heterogeneous DRAM where (1) hot-page

transfers to faster DRAM block memory requests (C1), and (2) where hot-page transfers do not block memory requests (C2).

16

Figure 2 Percentage at which other channels are not used for burst latency when a memory access requested on a memory controller.

(This system has 4 memory controllers)

17

Chapter 2

3D-stacked Heterogeneous Memory

Architecture with Cost-effective Extra Block

Transfer Paths

2.1 Background

2.1.1 Heterogeneous Main Memory Systems

In a heterogeneous main memory system, DRAM can be deployed

as hardware- or software-managed cache, both posing their own

challenges. DRAM as hardware-managed cache (e.g., [37, 39])

needs memory space to store tags and decide where to place the

tags. Furthermore, DRAM used as hardware-managed cache could

be slower than DRAM used as main memory (e.g., cache mode in

Intel Knights Landing (KNL) [58]), due to the latency penalty of

comparing tags for every memory request. Lastly, since DRAM

used as hardware-managed cache is not a part of main memory

address space, it is less desirable for memory capacity sensitive

workloads than DRAM used as main memory. Alternatively, a

heterogeneous memory can constitute unified memory space (e.g.,

a flat mode in KNL [58]), and let the OS or applications explicitly

transfer hot pages to DRAM (Figure 3). However, it is still an

active research topic to identify hot pages and when to transfer

them to DRAM [48, 49, 62]. Lastly, software-managed cache

18

approaches for heterogeneous memory systems often need to

transfer large memory blocks to DRAM to handle transfer pages.

This additional challenge prevents channels from servicing memory

requests for a prolonged period and thus significantly increases the

high-percentile response time of latency-sensitive applications as

Figure 4.

Figure 3 Hot page migration, when page B selected hot page, it is swapped to

the fast memory region and A swap out to the original location of the hot

page B. At the next epoch, D is chosen as hot page and swaps to the fast

memory region again, and page B is swap out to the original location of the

hot page D.

Figure 4 A normal operation during swap blocks the swap operation and

generates the additional latency, so swap latency is increased.

19

20

2.1.2 Specialized DRAM

Due to many manufacturing challenges, it is becoming harder to

improve latency, bandwidth, and capacity of DRAM altogether [38].

However, by not trying to improve every primary aspect of DRAM

metrics altogether, it gets easier to make DRAM specialized in

certain aspects, such as latency or capacity. As an example, we

may consider low-power DRAM as LPDDRx for mobile domain and

GDDRx for bandwidth-demanding graphic domain. The latency of

DRAM is primarily determined by the time (T1) to deliver command

and data signals through global interconnects which traverse DRAM

banks; (T2) to sense voltage developed by charge sharing of a

DRAM cell and its corresponding bitline (local datapath); and (T3)

to precharge the bitlines (BLs) if needed. Son et al. [60] analyzed

that the perimeter of a DRAM die determines T1 whereas the BL

capacitance determines T2 and T3. As we populate more BL sense

amplifiers (BLSAs), we can reduce the latency (e.g., Reduced-

Latency DRAM [41]) at the cost of sacrificing the capacity.

21

Figure 5 A standard 3D-stacked DRAM 2.5D-integrated with CPU.

22

Figure 6 DRAM dies are connected to a logic die through TSVs and micro

bumps; a logic die communicates with memory controllers through an

interposer.

23

2.1.3 3D-stacked Memory

Recently, the industry starts to adopt various 3D-stacked DRAM,

such as DDR4 3DS [15], Hybrid Memory Cube (HMC) [47], High

Bandwidth Memory (HBM) [32], and Multi-Channel DRAM

(MCDRAM) [58] for servers and throughput computing. In this

work, we take MCDRAM or HBM as a standard 3D-stacked DRAM

(Figure 5). Processor units are connected to 3D-stacked DRAM

dies through a silicon interposer. A stack consists of several DRAM

dies (typically 4 or 8, by default 8 in this thesis) and a logic die.

Due to productivity challenges from micro bump mismatch and

crack (Figure 8(a)) and the physical limitation from the height of

the host silicon, the available number of the stacked die is limited

(Figure 8(b)). Also, each datapath TSV (and silicon interposer

interconnect) transfers data at 2 Gbps which is limited by internal

signal skew and integrity (Figure 8(c)), the transfer rate of HBM2

standard [25]. 512 datapath TSVs per stack lead to 128 GB/s of

bandwidth. A stack has multiple channels (4 by default) to utilize

this sheer bandwidth efficiently. A DRAM die is connected to one or

few channels (2 by default).

We assume that all DRAM dies are fabricated identically to optimize

the manufacturing cost like HBM. Then, I/O TSVs constituting four

channels are physically connected to the I/O connection points of all

stacked DRAM dies. A set of I/O TSVs constituting a channel can be

electrically connected to one of the stacked dies by controlling tri-

state buffers with decoder logic (Figure 6). The decoder logic can

24

enable or disable the tri-state buffers, and the manufacturer uses

e-fuses to program a Stack ID (SID) into the decoder logic of a

stacked DRAM die in the standard 3D-stacked memory. This

electrically connects the I/O connection points of a stacked DRAM

die to a specific set of I/O TSVs establishing a channel at a

manufacturing step. Furthermore, examining the I/O pin layout of

the 3D-stacked DRAM, we see that I/O TSVs of all channels

associated with the same bit index are closely placed (Figure 7). 3D

stacked memory has many channels which contains address word

and data word TSVs. Each channel in HBM basically not spread all

over the dies but gathered as shown Figure 7. For example, DQ0 of

channel 0 is located very near of the DQ0 of channel 1, to prevent

complex congestion of metal layer and large data skew variation

between data bus of each channel.

TSVs are placed at the center of dies to minimize the worst case

topological distance between DRAM cells and TSVs and thus

latency [32] [25]. A DRAM die consists of multiple bank groups (8

bank groups per die, 4 bank groups per channel, by default) and

each group consists of multiple banks (4 by default). A DRAM bank

is organized and operates conventionally; a row to access is first

activated at BLSAs (i.e., a row buffer) and then column addresses

accompany read/write commands to access data in the row. Within a

DRAM die, each bank operates independently except that 1) the

number of bank activates within a certain interval is limited due to

timing constraints such as tFAW to restrict a surge in current

draws which lead to fluctuation in voltage levels, and 2) all banks

25

mapped to a channel cannot transfer data concurrently due to

structural hazard. The bank is structured hierarchically; each bank

group has a separate inter-bank dataline to facilitate higher data

transfer rate for the transactions heading to different bank groups.

A channel and the corresponding bank groups are connected

through a multiplexer (mux). The logic die repeats address,

command, and data signals between off-stack controllers and

DRAM dies.

26

Figure 7 Each data bus pin per channel on an actual 3D stacked memory (HBM) is allocated the similar position. For example, DQ0 for

Channel 0~3 are located very near. This characteristic enables communication located very closely, with a small wire latency.

27

(a) Drop yield by the number of stacks; micro bump mismatch by misaligned

bump and cracked TSV

(b) A physical height of stacked memory is limited by the height of the host

due to cooling solution

(c) Internal frequency of TSV is hard to increase due to signal integrity, made

worse by increasing the number of the stacks

Figure 8 The limitation of 3D stacked memory

28

2.2 HIGH-DENSITY DRAM ARCHITECTURE

In contrast to low-latency DRAM proposals [41, 55, 60], high-

density DRAM, another important class of specialized DRAM

designs, is relatively less explored. As latency and bandwidth gap

between DRAM and NAND flash increases, the industry introduces

solutions to fill this gap, dubbed Storage Class Memory (SCM) [57].

Examples include single-level-cell NAND which focuses on

reducing latency (e.g., SanDisk ULLtra DIMMS [10]) and Intel

Optane (Phase Change Memory) which exploits 3D XPoint

technology with higher density (Figure 9[108]) than normal DRAM

but higher latency (Figure 10[109]). A less elaborated but

intriguing solution is to specialize DRAM designs for higher density

[38]. We identify the key design challenges of high-density DRAM

and sketch its plausible design solutions.

29

Figure 9 PCM (Phase Change Memory) is widely selected solution. PCM (Intel

Optane) cell area per bit is 1/3x – 1/4x of DRAM.

Figure 10 However, PCM operates 2x – 20x slower for read and 8x – 1000x

for write than DRAM.

30

2.2.1 Key Design Challenges

DRAM technology scaling slows down primarily because the DRAM

industry is demanded to improve every major aspect of DRAM

metrics: latency, bandwidth, and capacity [38]. That is, the DRAM

industry can still scale the dimensions of transistors, capacitors,

and interconnects (i.e., improving density) for a few more

generations like logic and Flash technologies, but it cannot do so

while maintaining or improving latency and bandwidth.

DRAM stores data by charges in capacitors, which are detected by

sense amplifiers after sharing their charges with bitlines (BLs). A

large surface area is needed to increase the capacitance of a DRAM

cell, making non-planar designs less viable than NAND Flash where

3D designs are gaining popularity rapidly. Therefore, primary ways

to improve storage density of this planar DRAM design is either to

increase cell efficiency or to keep scaling down fabrication

technology. Increasing cell efficiency (a portion of aggregated cell

area over an entire DRAM chip area) has limited potential because a

DRAM chip has inevitable circuitry such as inter-bank datalines,

off-chip I/O buffers, electrostatic discharge protection, and charge

pumps. Moreover, robust sensing requires a certain degree of

voltage difference after charge sharing (delta V), limiting the

number of cells shared through a BL.

Beyond 20nm process nodes denoted by ‘1Xnm,’‘1Ynm,’ and

31

‘1Znm’①() [11, 38], however, DRAM technology scaling faces

three major process challenges. First, fine-pitch metal line and

contact resistance increase drastically. The metal resistivity

sharply increases below 20nm film thickness because of shrinking

in metal volume and the surface scattering effect [46]. This

increases the resistance of wordlines (WLs) and BLs. Second, the

capacitance of a DRAM cell decreases because cells become

smaller and it gets harder to further increase the aspect ratio (or

height) of a cell capacitor [38]. Third, the ratio of faulty cells

increases as DRAM cell area becomes smaller and process variation

is exacerbated.

Significant efforts have made on various aspects of DRAM designs

including material (e.g., high-k metal gate to increase transistor

speed), fabrication technology (e.g., filling air within spacers to

reduce BL capacitance [46]), and cell structuring (e.g., deploying

cells like honeycomb to increase cell spacing [46]) to increase

DRAM density without sacrificing timing constraints. However,

those incur substantial manufacturing costs, need time to be applied

stably, or become one-time magic desiring a new solution (another

magic) next time. Therefore, without relying on material or process

breakthrough, an alternative solution for higher density is to

continue DRAM technology scaling while relaxing key timing

constraints, which are affected by the aforementioned challenges.

① Notations such as 1X and 1Y are widely used terms in DRAM vendors and

X, Y, and Z (X > Y > Z) are single-digit numbers, where specific values

depend on vendors.

32

33

Figure 11 The impact of DRAM technology scaling on process parameters, timing, and density.

34

Figure 12 The impact of different resistance and capacitance on timing parameters. When the WL resistance is doubled and tripled,

the WL signal is delayed by 2 ns and 4 ns, respectively. When the BL resistance is doubled and its capacitance is decreased by 30%,

the BL signal is delayed by 1 ns.

35

2.2.2 Plausible High-density DRAM Designs

These process challenges can be overcome with the help of

relaxing tight timing constraints and architectural support. Increase

in resistance of fine-pitch metal lines and contacts slows signal

transfer speed and causes timing failure. For example, higher WL

resistance delays the delivery of an activation signal to cell

transistors located at the far end of a DRAM subarray. That cell

transistor turns on slowly; by relaxing tRCD (the minimal interval

from an activate to a read/write command on a DRAM bank), a

sufficient amount of charge sharing time can be secured. Similarly,

the effects of high BL and contact resistance can be suppressed by

relaxing key DRAM timing parameters, such as tRP (BL precharge

time), tWR (time to write data to DRAM cells), and tRAS (time to

destructively read data from a DRAM cell and then restore the data

back), because this datapath resistance within a subarray directly

affects data restore time and BL precharge delay②.

Figure 11 projects the impact of primarily scaling the dimensions

of transistors, capacitors, and interconnects on major DRAM design

parameters as well as timing parameters and storage density,

without expecting any significant innovation (magic) in DRAM

process technology based on an industry proprietary evaluation

setup, whose modeling details are as follows. The cell mat, WL

② A surge in resistance of fine-pitch metal lines and contacts does not

affect tCL (read command to first data delay much as global control and

datapath use thicker (non-minimal pitch) wires having much lower

resistance compared to local WLs and BLs.)

36

drivers, and sense amplifiers critically affect DRAM timing

parameters. The state-of-the-art 6F2 DRAM cell structure has

one transistor and one capacitor per crossing point of WL and BL.

Total resistance and capacitance values depend on the total number

of them. We modeled the critical path by choosing the farthest cell

from WL drivers and sense amplifiers of a DRAM mat and

conducted SPICE simulation. The voltage-timing diagrams on

Figure 12(a) and (b) show SPICE simulation results corresponding

to the change of WL resistance, when a WL is developed from Vss

(often ground) to Vpp (WL activation voltage) by the WL driver

(activation) and from Vpp to Vss (precharge). When the resistance

of the WL is doubled and tripled, the signal is delayed by 2 ns and 4

ns, respectively. Figure 12(c) shows simulation result of BL voltage

changing from Vss to Vcore (high voltage levels in DRAM cells)

according to the change of BL resistance. When the BL resistance is

doubled and the BL capacitance is decreased by 30%, the signal is

delayed by 1 ns. This shows that the DRAM industry may double

the density over two generations (1Xnm to 1Znm) at the cost of

increasing key timing parameters such as tRCD, tRAS, and tRP by

28.6% (4 ns due to WL turn-on signal propagation delay), 13.3%

(6 ns by BL develop delay and tRCD increment), and 42.8% (WL

turn-off signal propagation delay and BL precharge delay).

Reduction in cell capacitance (second challenge) decreases data

retention time. More leaky cells have retention time below DRAM

refresh window (tREFW). Increase in these leaky and faulty (third

challenge) DRAM cells necessitates stronger redundancy. This

37

problem can be greatly alleviated by recently proposed or applied

reliability schemes, such as In-DRAM ECC [11], ArchShield [43],

CiDRA [59], XED [44], and Bamboo ECC [33]. These provide

cost-effective solutions to common single-bit failures compared to

traditional solutions, such as provisioning spare DRAM rows and

columns. These schemes typically increase DRAM access latency.

For example, In-DRAM ECC, which we assume in this thesis,

requires error checking before transmitting data out of DRAM banks,

increasing tCL (Table 1).

The aforementioned techniques enable us to get the capacity merit

over DRAM taking the conventional evolution path at the cost of

lower performance. The pace in reduction of DRAM cell capacitance

is faster than that of BL capacitance; and hence more BLSAs should

be populated at a given DRAM capacity, increasing area overhead.

However, by relaxing timing constraints, BL capacitance can further

be reduced; if we make BLs narrower and increase the spacing

between BLs, a BL has higher resistance (e.g., deteriorating tWR)

but lower capacitance. This helps the voltage difference after

charge sharing (delta V) mostly unchanged even after technology

scaling (Figure 11) and restricts the rise of area overhead due to

populating more BLSAs.

Strong reliability solutions demand additional (parity) DRAM cells

(e.g., 6.25% in [11]). Still, storage density improvement (in

absolute area) outweighs the costs induced by these techniques.

Assuming that these techniques advance the DRAM technology

node by two generations compared to the conventional DRAM dies,

38

high-density DRAM can halve die area for a given capacity as the

half-pitch size is reduced by 20% on average per DRAM

technology shrink. Either the number of rows, columns, or banks

should be increased to deal with more capacity provided by

technology scaling. In this thesis, we assume that the number of

banks within a bank group is doubled. This will simplify support for

page swapping, which will be further elaborated in Section 3.4.2. In

summary, we can increase the density by 2.3× at the cost of

increasing tRCD, tRAS, and tRP by 29%, 13.3%, 43%, respectively.

That is, although we consider the cost of the reliability measures,

we can double the capacity per die.

39

2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR

MEMORY TRANSACTIONS

To build 3D-XPath DRAM, we propose to stack 8 DRAM dies like

the standard 3D-stacked DRAM depicted in Section 2.1.3, but we

replace top 6DRAMdies with high-density DRAM dies (or

Capacity- Optimized DRAM (CapD) dies hereafter) proposed in

Section 2.2. This gives roughly 28 GB capacity or 1.75× higher

density than the standard 3D-stacked DRAM. Regardless of DRAM

types, each DRAM die is connected to two channels and has the

same number of bank groups (i.e., four) per channel. A conventional

DRAM die (or Performance-Optimized DRAM (PerfD) die hereafter)

has 4 banks per bank group whereas a CapD die has 8 banks per

bank group. The data bus width of a PerfD die (256 bits) is twice as

wide as that of a CapD die. The size of a DRAM row/page is 4 KB

for both PerfD and CapD types. The remainder of this section

describes how we connect these DRAM dies with 3D-XPath and

how we efficiently manage page transfers between CapD and PerfD

while servicing memory requests with 3D-XPath.

40

Figure 13 3D-stacked heterogeneous DRAM architecture, which consists of 2 PerfD and 6 CapD dies. PerfD dies have more TSVs for

doubled datapath. Crossbar switches to connect TSV channels for 3D-XPath locate at both CapD and PerfD.

41

Figure 14 A logic die swaps hot pages between CapD and PerfD. The blue colored blocks are required to implement alternative paths.

42

Figure 15 While a swap operation is processing as the blue path, a normal operation is performed on the red path.

43

2.3.1 3D-XPath Architecture

3D-XPath aims to efficiently service ordinary memory requests

from processors while transferring pages between PerfD and CapD,

for which we propose 3D-Path and XPath (together 3D-XPath).

3D-Path: A page swap or copy between PerfD and CapD requires

many 64-byte (i.e., cache line) memory transactions, blocking

memory requests to another bank group of CapD or PerfD involved

with swapping/copying pages for a long period. This, in turn,

significantly increases the latency of servicing the memory

requests, hurting not only the overall system performance but also

the high percentile response time of latency-sensitive applications.

Tackling this challenge, we leverage two key observations we made

from our experiment and in-depth analysis of industry 3D-stacked

DRAM. First, one or more channels are often unused for a certain

period (Section 2.5.3). Second, all channels are physically

connected to all DRAM dies, and a set of I/O TSVs constituting a

channel can be electrically connected to any stacked die by

controlling tri-state buffers with decoder logic (Section 2.1.3).

From these observations, we propose 3D-Path that diverts memory

requests to a less frequently utilized channel at a certain time

period, which is feasible with a simple adaptation of the standard

3D-stacked DRAM. Specifically, we can replace the multiplexers,

which connect inter-bank datalines (one per bank group) to the

channel I/O, with two crossbars (4:1 and 1:4 muxes and demuxes

that connect bank groups to channel). Figure 13,14,15 show the

44

detailed implementation to enable 3D-Path. Each DRAM die has two

enable signals per channel for normal memory transaction and

migration. For example, a normal access is performed through the

predefined TSV channel with en_0 to access bank group 0. A

migration should be suspended until the current channel becomes

idle without 3DPath, as migration cannot use channel 0 which is

already used for the normal access. With 3D-Path, the 3D-Path

controller on the logic die controls the extra enable signal (en_1) on

each die to send migration data on an idle channel (channel 3 in

Figure 15). This allows non-blocking migration operation through

the idle channel 3 with en_1 without interrupting the normal

memory transaction on channel 1 with en_0. To find an idle channel,

we implement a detection logic on the logic die; the logic detects

how many cycles will be empty for each channel by a DRAM access

command, and the tri-state buffer decoder on the logic die controls

the enable signals to use 3D-Path. The crossbars incur little space

and timing costs because the I/O TSVs of all channels associated

with the same bit index are closely placed (Section 2.1.3, Figure 7).

Our estimation using CACTI-3DD and 20 nm DRAM technology

information [52] shows that the cost of 3D-Path is 1.5% of a PerfD

die. Also, the area cost of the enhanced tri-state buffer controller

is less than 0.1% of the logic die.

XPath: It is desirable to increase the transfer rate between a

memory controller and PerfD, because effective page swaps lead to

more frequent memory requests to PerfD and thus latency surges

due to the queuing delay. There are two implementation options to

45

increase the transfer rate. The first option is to increase the bit rate

(operating frequency) of each pin/TSV. This can keep the number

of TSVs unchanged, but it is difficult to implement due to worsened

skews in setup/hold timings [45] as the bit rate increases. When

the number of stacked dies increases, timing skews among datapath

interconnects increase further and setup/hold timing margins shrink,

limiting the operating frequency of TSVs (Section 2.1.3, Figure

8(c)). The second option is to increase the number of datapath

interconnects and TSVs. Specifically, we propose to double the

datapath width only for PerfD because CapD is optimized for

capacity and more TSVs hurts the density of CapD (Figure 16). As

PerfD dies are located closer to a logic die than CapD dies, it is

more tractable to handle timing skews among datapath

interconnects [45].

Due to wider datapath (i.e., additional DQ[255:128] per channel),

the transfers to/from PerfD dies require shorter Burst Length (BL)

than those to/from CapD dies. To match the transfer rate between

CapD and PerfD, the logic die requires a 512-bit prefetch buffer

per channel. This needs more TSVs and thus requires more die

space. From prior work [32], we estimate that it requires 2% more

die space. To keep up with the doubled bandwidth of PerfD, we also

propose to increase the bit rate per pin between the logic die and

the host memory controllers from 2 Gbps to 4 Gbps. To support the

feasibility of increasing the bit rate through an interposer, we turn

to existing I/O implementations: GDDR5X drives 10 to 14 Gbps per

pin [28], and LPDDR4X is faster than 4 Gbps per pin on a noisier

46

PCB channel environment than interposer [29]. We also conducted

HSPICE signal

integrity simulation with s-parameter and noise models that were

specified in prior work [6], where we observe an enough eye

diagram on interposer channels at 4 Gbps.

To further reduce the latency of page swaps, we exploit the

doubled datapath and propose XPath, an enhanced page-swap

mechanism using wider datapath with two swap buffers per channel

on the logic die (Figure 17). Two swap buffers receive pages from

a source row (cold page) and a target row (hot page), respectively.

CapD uses the first half of the doubled datapath (i.e., DQ[127:0])

while PerfD uses the second half of 128 to 255 bit (i.e.,

DQ[255:128]) to send two pages to the swap buffers. This

transaction requires 128 tCK slots for a 4 KB DRAM page without

interrupt. Subsequently, we simultaneously send the pages from the

swap buffers to destination PerfD and CapD. That is, a page from

CapD goes to PerfD through the first half of the doubled datapath

and vice versa through the second half for another 128 tCK slots,

reducing the number of 4 KB memory transactions to 2⁄3.

Lastly, 3D-Path can also use XPath of CH[2] for ordinary memory

or page-swap transactions. In this 3D-Path operation, there are

two possible exceptions. First, the channel is not physically usable

for the same bank group access because they share the inter-bank

datapath. Second, a page-swap transaction is paused when there is

no unused channel at a certain moment.

47

Figure 16 Structure and mechanism for data transfer between 3D-stacked DRAM components with doubled datapath. CapD and PerfD

transfer data with 2 Gbps per dataline to the logic die. The logic die can transfer data to a memory controller at 4 Gbps when a PerfD

is accessed because a PerfD has twice wider datapath than that between the logic die and the memory controller.

48

2.3.2 3D-XPath Management

Logic support for page swapping: To swap two pages between

PerfD and CapD, we need control logic and support from memory

controllers. The control logic can be implemented with simple

enhancement of MBIST (Memory Built-In Self Test), which is

implemented in recent industry 3D-stacked DRAM [32]. MBIST

can generate commands and addresses in a Direct Memory Access

(DMA) fashion. The memory controllers also need to know whether

a requested page is located at PerfD or CapD. CapD and PerfD have

different timing parameters, so we can use a slot-based interface

which reserves a slot for slow memory responses on the datapath,

similar to prior work [5]. This approach looks for a free slot and

reserves the free slot as a backup slot when the page is located at

CapD. We also set the transfer granularity of a page-swap

transaction to 4 KB, the page size, based on a sensitivity study

which is further described in Section 2.5.3.

Page remapping: It is desirable to swap a page in PerfD with any

page in CapD, which is similar to a fully associative cache. However,

this incurs a huge cost for a page remapping table. Instead, we

assume that one page in PerfD can be swapped to one of a few

pages in CapD, constituting a page group (similar to Congruence

Group in [16]) which can be regarded as a rank. For example, with

2 PerfD and 6 CapD dies, each page group consists of 1 page from a

PerfD die and 6 pages from 3 CapD dies (two from each). The

pages within a page group are aligned such that they are placed at

49

the same row address across banks, which significantly reduces the

cost of remapping tables.

For a 3D-stacked DRAM with 28 GB of capacity, we need 2.125

MB of memory for the remapping table assuming 3 bits per 4 KB

row. The logic die can provide sufficient space to hold this

remapping table with SRAM. A more space efficient option is to use

a cache and store the entire remapping table in PerfD. For example,

a 24 KB remapping table cache achieves a hit rate of 94.1% on

average for memory-intensive multi-programmed benchmarks

(Section 2.5.2). When a memory request misses the remapping

table cache, it brings the corresponding remapping table information

from the reserved address space of PerfD. Our estimation using

CACTI [13] with 32nm Low STandby Power (LSTP) technology

shows that a 16-way 24 KB remapping table cache with 96 B per

entry can translate a given page group (rank) address in 0.88 ns,

which is less than 1 tCK slot③ and consumes 0.4 mm2 (less than 1%

area of a logic die).

To swap pages, we may follow the sequence described in Row-

Clone [53]. That is, the standard 3D-stacked DRAM requires at

least three times of row-copy latency (128 tCK slots plus activate/

precharge overhead per 4 KB row copy) per page-swap

transaction. However, XPath needs only two times of row-copying

latency. Besides, we can pause a page-swap transaction by one

③

tCK is a DRAM clock cycle (1 ns in this study). A DRAM command spends

1 tCK slot.

50

ordinary memory transaction if a request needs to be sent to

another bank group which is not involved with the page-swap

transaction. The temporary row buffer can be located at a DRAM or

logic die. If it is located at DRAM, a page-sized bulk copy

mechanism such as LISA [12], can be applied to reduce page

swapping latency between the temporary row buffer and the

corresponding BLSAs. However, this requires one more row buffer

per bank group of each DRAM. By contrast, when the buffer is

located at the logic die, a page swap requires fewer buffers but

more transactions. In this thesis, we assume that a temporary row

buffer per channel is placed on the logic die.

Interaction with memory requests from applications: During a

page-swap transaction, a command for a memory request from

applications can interrupt the page-swap transaction. That is, the

page-swap transaction is paused since an ordinary memory

transaction has a higher priority than a page-swap transaction.

However, it is prohibited to precharge or update an opened

(activated) row of any bank which is involved with a page swap

transaction, because it requires activating the target row again or

corrupts values in a page being swapped. To protect against these

hazards, if a memory controller sends a command for ordinary

memory requests to banks involved with a page-swap transaction,

the stacked memory sends an exception signal back to the memory

controller through a dedicated pin (similar to AERR and DERR in

HBM). Then, the memory controller suspends all commands which

head to the bank. After the page-swap transaction is completed,

51

the memory controller resumes transactions for these memory

requests.

Hot-page selection algorithm: In any heterogeneous memory

system, it is important to precisely determine which pages are hot

because bringing wrong pages to fast memory degrades

performance. To determine which pages to swap between PerfD

and CapD, we devise a hot page selection algorithm. Specifically, we

leverage CHOP-AFC (Caching HOt Pages Adaptive Filter Cache)

[30], which was proposed for large DRAM cache, to place hot pages

in PerfD without too many page swaps between CapD and PerfD.

CHOP is proposed to choose hot pages based on history counters.

Similar to CHOP, our hot-page selection algorithm requires a

history counter for each page, and the counter value (set to zero in

the beginning) is increased by one when a request is sent to the

corresponding page. When the count value of a page exceeds a

configured threshold, that page is regarded as a hot page. This hot

page will be swapped to PerfD, and the count values of a page group

are right-shifted by 1 bit to attenuate the history information (the

count values being reduced into half). As mentioned above, our

algorithm requires counters for each page and locates them on the

logic die of a 3D-stacked memory. For example, a 28 GB memory

package which consists of two 2 GB PerfD dies and six 4 GB CapD

dies, needs 5.25 MB SRAM storage for a 6-bit counter per 4 KB

page. A logic die is large enough to hold that size [32]. The cost

can be further reduced by implementing a counter cache in a way

similar to populating the remapping table cache as described in

52

Section 2.3.1. We estimate that the cost of an exemplar 48 KB

counter cache located at the logic die is 0.8% based on CACTI [13].

Prior work [30] also proposed an enhanced version of CHOP

(CHOP-AFC) to utilize memory bandwidth more efficiently. If the

number of memory requests within a certain time period exceeds a

threshold, CHOP-AFC transfers hot pages only. Otherwise, it

swaps all accessed pages on demand. CHOP-AFC counts the

number of memory requests, but it requires a significant amount of

logic on the memory controller. By contrast, we monitor the number

of pending memory requests in the request queue; such a feature is

already implemented in the contemporary memory controller. When

the queue size exceeds a given threshold value, the memory

controller can send a command or a signal through a dedicated pin

to a stacked memory.

High speed in-memory copy: With 3D-XPath, we can also perform

any to any in-stack copy with no restriction of source and target

addresses. The copy method can utilize the implemented migration

hardware and bypass processors. It first activates the source row,

saves data in the migration buffer in the logic die, and then copies

data to the target row. When the source and destination channels to

be copied are different, using 3D-Path implementation, the copy

operation is performed without size and address restrictions. The

user can control in-memory copy by sending an instruction to the

corresponding memory controller. The time taken for copying is

two 128 tCK cycles per 4 KB row copy in addition to time for

activation of the source and target rows.

53

54

Figure 17 Hot page migration process exploiting 3D-Path and XPath. 3D-Path can redirect a memory transaction from the occupied

TSV channel to another free channel. XPath can (1) read data from CapD and PerfD to swap buffers on the logic die simultaneously

and (2) write data back to destination dies concurrently by exploiting more TSVs of XPath

55

2.4 EXPERIMENTAL METHODOLOGY

Table 1 Latency of PerfD and CapD

Table 2 SPEC CPU2006 multi-programmed workload groups

Group SPEC CPU 2006 applications

mix-high0~5 mcf, milc, leslie3d, soplex, GemsFDTD,

libquantum, lbm, omnetpp, sphinx3

mix-med bzip2, gcc, bwaves, zeusmp, gromacs, cactusADM,

h264ref, astar, wrf, xalancbmk

mix-low perlbench, gamess, namd, gobmk, dealII, povray,

calculix, hmmer, sjeng, tonto

mix-blend mcf, bwaves, bzip2, calculix, lbm, milc,

cactusADM, wrf, hmmer, soplex, xalancbmk,

dealII, leslie3d,

libquantum, h264ref, zeusmp

We modeled a chip-multiprocessor system to evaluate the system

level impact of the proposed stacked memory architecture. We

modified dist-gem5 [4] to simulate full-system configurations with

the network subsystem and McSimA+ [3] to support the

asymmetric timing parameters for stacked memory, which are

enumerated in Table 1. The system has 16 out-of-order cores.

Each core operates at 4 GHz, has peak IPC of 4, and is equipped

with separate L1 instruction and data caches and a combined L2

cache, all with 64B cache lines. The size and associativity of each

Description PerfD CapD

tRCD 12 18

tRP 13 20

tCL 12 16

DQ size 256 128

Burst Latency 2 4

Capacity Density 1 2

56

L1 cache and L2 cache are 16 KB and 4, and 512 KB and 16,

respectively. A linear hardware prefetcher [31] detects and

prefetches streams of consecutive memory accesses. Each memory

controller (MC) controls one proposed 3D-stacked memory with

four 32 GB/s channels, and has 64 request queue entries. The

capacity of our stacked memory is 28 GB. Each channel consists of

4 ranks and each rank consists of 4 bank groups. For PerfD dies

each bank group consists of 8 banks, whereas for CapD dies each

bank group consists of 16 banks. The memory controller adopts the

Parallelism-AwaRe Batch Scheduling (PAR-BS) [42] and adaptive

open page management policy [23]. For dist-gem5 simulations, we

set the network and storage subsystem parameters to model a

10Gb Network Interface Card and high-performance SATA SSD.

We used two different OLDI applications, Apache and memcached.

For Apache, a server system is set with MySQL and Apache2 web

server. We prepared Apache with different memory capacity values

to show that the increase in memory capacity with CapD affects the

performance. We sent enough queries to load the data from the

storage into the main memory for these two applications for warm-

up; then we made checkpoints and the client sent queries to

determine the response time and service rates of the server. When

the server receives a query through the Apache2 server, it finds

and returns values from the database to the client.

To evaluate the performance of non-OLDI applications, we used

four types of multi-programmed (mixed) workloads which consist

of SPEC CPU2006 [17] applications executed with reference data

57

sets. We used Simpoints [54] to extract the most representative

simulation points of each SPEC CPU2006 application. Each

simulation point consists of 100M instructions. For each multi-

programmed workload, a simulation point is assigned to each core,

and one or two highest weight points are used per application. We

classified each benchmark to one of three groups based on the L2-

cache Misses Per Kilo-Instructions (MPKI) [24], each called mix-

high, mixmed, and mix-low (Table 2). We populated six multi-

programmed workloads from mix-high, called mix-high [0–5]. The

other group, called mix-blend, consists of five applications from

mix-high, six from mix-med, and five from mix-low. We used

SPLASH-2 [61] and PARSEC [9] benchmark suites to evaluate the

performance of multi-threaded environment for regions of interest.

We used the datasets in [8] for SPLASH-2, and simlarge datasets

for PARSEC [9]. We used iperf [2] to measure the performance of

the any-to-any in-stack copy proposed in this thesis. iperf is a

TCP/UDP-based network bandwidth measurement application that

prints network bandwidth of the system. The major network

overhead is interrupt processing cost, device driver overhead,

checksumming, and buffer copying (the overhead of buffer copying

is about 23%) [7]. Exploiting DMA reduces CPU overhead for

memory copy, but it still suffers from throughput limitation

originating from CPU-side datapath [22]. To show how faster

memory copy affects network performance, we compared default C

library memory copy, zerocopy using DMA, and 3D-XPath copy.

We obtained the latency value of PerfD and CapD using an industry

58

proprietary evaluation setup (Table 1). The write recovery delay

(tWR) of CapD is not significantly worse than that of default DRAM

dies even if CapD employs In-DRAM ECC, as opposed to the prior

work [11]. This is because the granularity of data reads and writes

to an activated row(i.e., 512b) is larger than the data size of a

codeword of In-DRAM ECC (e.g., 128b) because only a single

DRAM die is involved in our 3D-stacked memory whereas several

DRAM dies participate in data transfers for memory modules in

DDRx. The page-swap scheme requires 1.8% more space for

remapping table and hot page counter cache on the logic die. In

addition, more TSVs and structure for XPath and 3D-Path cost 2%

and 1.5% more space, respectively.

59

2.5 EVALUATION

To evaluate the effectiveness of 3D-XPath in this thesis, we take

the 3D-stacked Heterogeneous DRAM consisting of 2 PerfD and 6

CapD dies without 3D-XPath (denoted by He) as our baseline for

performance evaluation, unless mentioned otherwise. We test the

three other configurations as follows: (1) He with Swapping hot

pages (HeS), (2) HeS with XPath (HeSX) and (3) HeS with 3D-

XPath (HeS3D-X).

2.5.1 OLDI Workloads

In this evaluation, we set the dataset size of Apache and

memcached databases to 4 GB and 2 GB, respectively. We use such

memory capacity considering that the full-system simulation time

is proportional to the dataset size. However, to appropriately

capture the impact of memory capacity on mean and 95th-

percentile response times for a given dataset size, we first use a

physical machine with larger memory capacity and dataset size.

Then we configure our simulation environment such that the

simulation gives similar trends in terms of mean and 95th-

percentile response times for the chosen dataset size (e.g., 4 GB

for Apache). The evaluation of Apache was conducted in two

dimensions.

First, we make clients send more Requests Per Second (RPS) than

a server can handle, and measure the throughput of a given system

in terms of Responded RPS (RRPS), as we change the memory

60

capacity. In this scenario, RRPS is always smaller than RPS as some

requests are not responded. When the dataset size is larger than

the memory capacity, page faults (i.e., page swaps between storage

and memory) frequently occur, limiting RRPS. For example, Figure

18 shows that 4 GB He gives 78% more RRPS than 2 GB He, which

shows the benefit of larger memory capacity. Furthermore, for the

same memory capacity, HeS3D-X performs 24% (1 GB), 23% (2

GB), and 17% (4 GB) better than He. Considering the same number

of stacked dies per DRAM package, 3D-XPath DRAM can provide

1.75× larger capacity than 3D-stacked DRAM with only PerfD.

Although not shown in Figure 18, 14 GB HeS3D-X can provide 11%

more RRPS than 8 GB 3D-stacked DRAM with only PerfD,

demonstrating the benefit of a larger capacity heterogeneous

memory system.

Second, to fairly compare mean and 95th-percentile response

times across different configurations, we find the RPS that allows a

server with HeS3D-X to respond to all the requests (i.e., RRPS =

RPS) and then apply that RPS to all other configurations. Figure 19

shows the mean and 95th-percentile response times for various

configurations. Especially, we use uniform and skewed distributions

to model the locality of service requests from clients. For the

uniform distribution case, the mean and 95th-percentile response

times decrease as we increase memory capacity (“ apache-

uniform” in Figure 19). For example, 8 GB He gives 62% and 66%

lower mean and 95th-percentile response times than 4 GB He,

respectively. For the skewed distribution case which exhibits the

61

locality in requested items, 8 GB HeS3D-X offers 29%, 32%, and

23% lower 95th-percentile response time than 8 GB He, HeS, and

HeSX, respectively (“apache skewed” in Figure 19).

HeS actually gives 3% longer 95th-percentile response time than

He because page-swap transactions block channels from servicing

memory requests from Apache. Furthermore, although not shown in

Figure 19, compared with 16 GB 3D-stacked DRAM with only

PerfD, 28 GB HeS3D-X gives 3% lower 95th-percentile response

time, but 28 GB He provides 2% longer 95th-percentile response

time. These demonstrate the importance and efficacy of providing

larger capacity with 3D-XPath. Figure 19 also shows the mean and

95thpercentile response times of memcached for 4 GB and 8 GB

configurations. As memcached stores all data in memory, it does not

access the storage device after the warm-up period. For

memcached, 8 GB HeS3D-X offers 30%, 32%, and 25% lower

95th-percentile response time than 8 GB He, HeS, and HeSX,

respectively.

62

Figure 18 Memory capacity versus performance in terms of Responded Requests Per Second (RRPS) on Apache for “He”terogeneous

3D-stacked DRAM (He), He with “S”wapping pages (HeS), HeS with “X”Path (HeSX), and HeS with “3D-X”Path (HeS3D-X).

63

Figure 19 Relative mean and 95�ℎ-percentile response times of Apache and memcached for He, HeS, HeSX, and HeS3D-X, where

values are normalized to the mean response time of 4 GB He.

64

2.5.2 Non-OLDI Workloads

Multi-programmed: For the most memory-intensive multi-

programmed workload, mix-high0, HeS3D-X provides 4.9%, 3.2%,

2.0% higher performance and 5.2%, 4.5%, 3.4% lower read latency

than He, HeS, and HeSX, respectively. This shows the benefit of

3D-XPath which reduces the negative impact of additional queuing

delay imposed by more frequent accesses to PerfD. Evaluating all

six mix-high workloads (Figure 20), HeS3D-X provides 2.8%,

1.9%, 1.0% higher performance and 3.4%, 3.3%, 1.6% lower read

latency than He, HeS, and HeSX. As expected, mix-low workloads

do not benefit from HeS3D-X in terms of performance and read

latency because they are less memory-intensive.

Multi-threaded: For memory-intensive radix, HeS, HeSX, and HeS

3D-X give 1.1% 2.6%, and 5.9%, higher performance (Figure 21)

than the baseline He, respectively. radix has a high degree of

locality in memory accesses, and hence utilizes the lower access

latency offered by PerfD dies effectively. For other workloads,

HeS3D-X provides up to 2.6% higher performance than He.

Memory-copy bandwidth: To compare memory-copy performance,

we ran iperf over various TCP window sizes. We tested three

configurations of 1) using standard C library ’ s memory copy

(normal), 2) exploiting DMA feature implemented at iperf (DMA),

and 3) leveraging the copy instruction proposed at 3D-XPath (3D-

X) on Figure 22. With the proposed 3D-XPath copy, we achieve

higher network bandwidth regardless of TCP window size (Figure

65

11). DMA can improve performance by offloading memory copying,

but its degree of improvement is still limited. When TCP window

size is 416 KB (the default maximum TCP window size of Linux),

proposed 3D-X copy provides 39.8% higher network bandwidth

than the normal memory copy.

66

Figure 20 Relative IPC, EDP and average memory latency to handle LLC misses for multi-programmed .

67

Figure 21 Relative IPC, EDP and average memory latency to handle LLC misses for multi-threaded workloads.

68

Figure 22 Performance of memory-copy. Normal is using cpu-based memory copy, DMA is using internal PCIe DMA, and 3D-X is

using alternative path (3D-X Copy).

69

2.5.3 Sensitivity Analysis

PerfD hit rates over PerfD and CapD ratios: We change the capacity

ratio between CapD and PerfD and evaluate mix-high0 to observe

the effectiveness of the hot-page swapping algorithm. Figure 23(a)

plots the PerfD hit ratio of He (black bar) which is matched with the

capacity ratio between CapD and PerfD. By applying hot-page

swaps (HeS), the PerfD hit rate is increased by 8-9%. As 3D-

XPath makes page swaps faster, it further improves PerfD hit rates

by up to 5%.

Performance sensitivity to page size: We conduct more evaluations

to find the rationale behind choosing 4 KB as a row buffer size,

which is also used as the unit size of a page swap. Figure 23(b)

shows the relative IPC of HeSX and HeS3D-X over various page

(row buffer) sizes (the baseline is HeS with 1 KB page on mix-

high0). The 4 KB page size performs best because smaller page

sizes (e.g., 1 KB and 2 KB) lead to too frequent page swaps,

whereas larger page sizes (e.g., 8 KB) take too long per page swap

during which ordinary memory transactions to the corresponding

bank groups are blocked. Moreover, a smaller page size requires a

larger remapping table and more space for hot-page swap counters.

Migration block size: Figure 24 (a) shows how different migration

block sizes affect performance. On mix-high0, 512 B leads to the

highest IPC, but 4096 B and 1024 B sizes achieve the highest IPC

on mix-high1 and mix-high2, respectively. Performance is not

much sensitive to migration block size. Thus, similar to page size,

70

we use 4 KB page size as smaller granularity needs larger

remapping tables and hot-page swap counters.

Channel utilization: Evaluating the 3D-stacked DRAM only with

PerfD with mix-high0, we observed that multiple channels are not

utilized at a certain moment as shown in Figure 24 (a) (an interval

of 400μs is presented with the sampling rate of 2.5 MHz). To

further support this observation, we monitor all memory

transactions and measure the number of cycles for which a given

channel stays unoccupied (Figure 23(c)) for the same simulation.

At least one channel is empty during 8 cycles for more than 80% of

total simulation time. This means that we can efficiently utilize

these idle channels by 3D-Path.

Page swapping threshold: Figure 23(d) shows the relative IPC of

HeS, HeSX, and HeS3D-X for different page swapping threshold

values, which indicates that ‘ 63 ’ (6 bits) gives the highest

performance. If we apply more than 6 bits for a hot-page counter,

the performance improvement would diminish or page swaps occur

very infrequently. On the contrary, using smaller threshold values

incurs very frequent page swaps and increases time spent for page

swaps.

71

Figure 23 Sensitivity analysis for sweeping each conditions.

72

(a) Channel utilization by the time on the part of mix-high0

(b) Block size of swap operation with page size 4kB.

Figure 24 Sensitivity analysis for sweeping each conditions.

73

2.6 RELATED WORK

Enhancing I/O performance of 3D-stacked DRAM: Lee et al.

modified the TSV structure on 3D-stacked DRAM for simultaneous

multi-die accesses [35]. As opposed to 3D-XPath, they assumed

much higher bandwidth between dies and proposed that each die

has different I/O bit rates.

Asymmetric DRAM: CHARM changed the aspect ratio of a DRAM

mat, a small two-dimensional array of cells, to reduce access

latency of DRAM banks depending on physical distance between a

bank and I/O [60]. TL-DRAM [36] divides bitlines within a mat

into two and provides a way to access a portion of cells closer to

sense amplifiers with lower latency. Shin et al. observed that newly

refreshed row has more charges and proposed to access them with

lower latency [55]. These are orthogonal to 3D-XPath.

NVM+DRAM hybrid memory systems: JEDEC introduced a

NVDIMM standard [21], where a DIMM combines DRAM and NVM

where NVM preserves data of DRAM (NVDIMM-N) or composes a

larger memory space with DRAM (NVDIMM-P). 3D-XPath can

provide a high-performance memory-controller-agnostic solution

to NVDIMM-P types of memory. PCM has been proposed as a sole

replacement of DRAM for main memory [34] or combined with a

last-level DRAM cache [40, 48]. They either adjusted row buffer

size to alleviate the power impact of PCM writes or populated more

row buffers to mitigate the performance penalty of high PCM

latency. Dhiman et al. proposed another hybrid system where

74

DRAM and PCM constitute separate partitions in a single address

space [18], and they augmented memory controllers with access

map cache and page swapping manager to reduce power

consumption. Meza et al. proposed fine-granularity management for

DRAM cache [40]. They proposed TIMBER for caching metadata

for recently accessed rows in a buffer, with storing tags in memory.

They replaced a large SRAM tag memory to small SRAM tag

cache.We used a small sized translation SRAM cache to achieve

similar benefits.

Page placement in hybrid memory systems: Dong et al. migrate hot

pages from an off-chip memory to an on-chip memory [19].

Through modifying on-chip memory controllers, it can manage

migration between off-chip and on-chip memory. They focused on

how to utilize on-chip and off-chip DRAM with migration, whereas

3D-XPath is between hybrid off-chip memory types. [50]

architected a memory controller to observe access patterns and to

migrate page frames to PCM to DRAM. They proposed migration

policies and augmented memory controllers to monitor access

pattern whereas our thesis suggested an alternative path and room

for migration on stacked hybrid memory with built-in swap control

logic. CAMEO [16], ToR [56], and SILC-FM [51] suggested

mechanisms to swap data between fast and slow memory at the

granularities of cache block (CAMEO), page (ToR), and in-

betweens (SILC-FM). Compared to these proposals, 3D-XPath

focused on optimizing the microarchitecture of fast and slow

memory being stacked together to provide cost-effective

75

alternative path between heterogeneous memory dies.

76

Chapter 3

Boosting bandwidth –Dynamic Channel Sharing

on 3D Stacked Memory

3.1 Background: Memory Operations

3.1.1. Memory Controller

In a modern computer system, a read or write request from the host

is assigned to a different bus node chosen by a predetermined

address mapping via a bus interconnect [91]. Requests to the

DRAM memory address region are then transferred to the memory

controller. In order to communicate with the memory, the memory

controller stacks the requests in its internal queue, and rearrange

them according to its policies [104]. After that, the memory

controller converts them to the external interface format such as

DDRx [93]. These memory controllers are designed to be

physically adjacent to one another within a chip. In particular, for

Intel Xeon broadwellx and earlier, 2 memory controllers are next to

each other, and for Intel Xeon SkylakeX, 3 memory controllers are

adjacent. Those memory controllers are assigned to one bus

interconnect node (home agent). For AMD’s EPYC, up to eight

memory controllers can be connected per socket, and each socket

is made up of four multi-chip modules. In addition, each module can

locally use two memory controllers which are located very close to

each other and the other memory controllers work as remote

77

memory controllers.

3.1.2 DRAM column access sequence

The read or write commands requested by a host on a channel are

generally performed in units of cache line size. In a typical

computing system, the cache line size is 64 B. Since the area and

performance overhead from wider bus is larger when 64 B are

transmitted at once with off-chip interface, the data bus width is

remained narrow. For example, DDR3 and DDR4 are configured

with 8 B per channel [93] and DDR5 is configured with 4 B per

channel. The memory controller sends a read command to the

command address bus and awaits data transfer for column latency

(tCL), the time required to transfer data through DRAM internal

datapath. After tCL, data is transmitted from the memory through

the data bus, and in the case of a write, the memory controller

transmits data after column write latency (tCWL). In both cases,

data is transferred for burst latency (tBL), and stored in a temporal

storage called the prefetch buffer. The consecutive transfer

between prefetch buffer and memory controller is called burst

transfer. The length of this transfer is called burst length (BL). For

example, BL of DDR3 and DDR4 is 8 and DDR5 performs 16 burst

transfers. For read, after this burst transfer, the data buffer is filled

in the MC and transferred to the requested cache through the on-

chip network and for write, the write FIFO in prefetch buffer is

filled and reflect to DRAM cells for write recovery time. As a result,

the FILO (First In Last Out) latency required to process one column

78

access command, which is the time the request actually remains in

the queue on the memory controller side, becomes tCL + tBL.

3.2 Related Work

Chen et al. [84] proposed that a switch is mounted on the power pin

and the rank branch point of the DIMM is implemented on-chip

before the pad on a generic DDR DIMM (Dual Inline Memory

Module), and use it with two modes. The multi-bus mode allows

multiple DIMMs to be controlled by additional channels through the

power pins which is changed to DIMM channel, and the single-bus

mode uses multiple DIMMs as a rank in the general way. Our

proposed architecture is similar in that the data can be transferred

using a path other than the assigned channel. However, we aim to

reduce latency by using another memory channel. In practice, the

number of pins that can be used depends on the power requirement

of the system and the power ring configuration inside the chip. Thus,

it is hard to change the functionality of the power pins. Also need to

consider about the location of IO pads and the routing of printed

circuit board (PCB). All of these constraints are important in high-

speed interfaces as DDR interface and must be taken carefully.

DLB [107] proposes to dynamically adjust the ratio of Tx lane and

Rx lane in HMC by analyzing the memory characteristics of the

workload which varies with time. This thesis is similar in that we

use another lane to process memory requests. However, DLB needs

to distribute the lane with each epoch in real time, by analyzing the

memory access characteristics of the workload. In addition, only

79

HMC uses bi-directional serial link, which makes it impossible to

apply this architecture to other DRAM interfaces as these links

does not support non-deterministic timing parameter.

In Heterogeneous Multi Channel [106], DRAM sends different

commands to each sub-rank of each DRAM through the demux

register previously proposed in MCDIMM [80]. They proposed a 16

and 32bit partial DRAM access using DIMM divided into four groups.

In other words, it is possible to allocate requests in sub-rank units

and maximize bank level parallelism by implementing multiple

virtual memory channels, thereby reducing power consumption and

performance of DRAM. This idea brings increased burst latency

while increasing BLP, but our thesis focuses on reducing burst

latency through channel sharing while maintaining BLP.

80

3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM

In this section, we describe the memory microarchitecture for

supporting proposed channel sharing. In this thesis, we set a

baseline as a HBM2-like 3D stacked memory which has 2.0 Gbps

interface, 64bit data bus, and 4tCK tBL. We use this 3D stacked

memory on the typical CPU system as [87], [98]. In the baseline

memory interface, each channel is transferred in the same manner

as in Figure 25(a), and data between memory controller and

memory is transferred only through each corresponding memory

channel. In this thesis, we used a structure in which all memory

channels are connected to the bottom DRAM die of a 3D stacked

memory as described in 2.3. The data in the prefetch buffer (read)

or the memory controller queue (write) is processed with the other

idle channels as shown in Figure 25(b) to reduce the burst length.

Proposed channel sharing idea will help to improve the performance

of a latency-critical server. That is, the memory request of the

corresponding channel can be processed quickly, shortening latency.

Thus, the read latency of DRAM can be reduced and memory

controller queueing latency will be decreased.

81

Figure 25 Timing diagram about proposed channel sharing. (a) shows

conventional data bus transfer and (b) shows proposed data bus transfer.

Channel sharing reduces FILO (First In Last Out) latency from reduced burst

length.

82

3.3.1 Hardware Requirements

In order to use channel sharing, it is necessary to change the

memory microarchitecture in the system as shown in Fig 26. The

description of each component is as follows.

Channel Sharing Controller: The present 3D stacked memory

permanently disables assigning channel TSVs to other dies as

described in Section 3.1.1. However, in the proposed system, TSVs

should be configurable so that other channels can be used upon

request from memory controller. Thus, a channel sharing control

logic is required for each DRAM die to receive channel sharing

information transmitted from the memory controller, and to use

another channel according to this information.

Enhanced Prefetch Buffer: The structure of the DRAM die needs to

be changed so that data can be transferred through the TSVs of the

other channels in the prefetch buffer in the DRAM die. That is, the

prefetch buffer (FIFO), which originally supports one FIFO entry in

one cycle, must be designed to transmit multiple FIFO entries

through multiple channels in one cycle. In order words, the prefetch

buffer must support variable data length and the input (write FIFO)

and output (read FIFO) port (channel TSVs) of prefetch buffer

must be configurable with MUX and DEMUX pair. Thus, the data of

the prefetch buffer can be transmitted using another channel.

Channel Status Shifting Register: To support channel sharing, the

system needs to control command and datapath amongst all sharing

enabled memory controllers. The memory controller should observe

83

the timing of commands sent by all memory controllers to know if

the channel is available. As described in the Section 3.1.2, the data

bus of the memory controller will be occupied after the read or

write command is issued and tCL or tCWL has passed, during tBL.

In order to implement channel sharing, a memory controller that

wants to rent a channel must check whether the desired channel is

shared with another memory controller. Thus, we implement

channel status shifting register (CSSR) to check the status of the

channels with occupancy information from read and write command

from the memory controllers. It is composed of shift register blocks

as many as the number of shared channels, as shown in Fig. 27.

When a read or write command is issued from the memory

controller queue, it scans for available reservation slots after the

latency (tCL or tCWL) at which the data bus transmission begins.

The shift register corresponding to each memory controller marks

availability in timing slots with one-hot encoding, which means each

bit represents for the use of channel. This timing slot is shifted by

one every memory cycle (1 tCK), and the memory controllers

checks the availability of its channel and other channels through the

information on this slot.

Channel Sharing Indicator: An additional channel sharing indicator

signal is needed between the memory controller and the memory to

indicate which channels perform data transfers. When memory

controller sends a read or write command, it identifies empty

channels in each cluster and sends a signal to memory to indicate

which channels is to be used before the burst transfer starts. When

84

burst output starts in the DRAM die, this indicator will control the

enhanced prefetch buffer of the die and send data through shared

channel each cycle.

Clustered Memory Controller: We need a channel sharing enabled

memory controller which supports data decomposition (write) and

composition (read) as clustered memory controller to support

channel sharing. Also, the clustered memory controllers must be

physically adjacent because memory controllers require

synchronized clocks. If the clock is not synchronized, the data bus

would be skewed between memory controllers, thus making it

difficult to apply the proposed channel sharing. For this reason, this

thesis assumes that synchronous clocks are used within memory

controller clusters. Keeping the clustered memory controllers close

to each other also reaps the benefit of minimizing the overhead of

implementing CSSR. The separated memory controllers need

another path to access the CSSR, which is negligibly short when

they are physically near. For real-time data decomposition to

transmit through multiple shared channels, we applied the structure

from [86] to implement fine data granularity. For read, the

clustered memory controller receives the data separately and the

interconnect node merge (composition) the data. For write, data

decomposition is performed among memory controllers. The master

memory controller can send write data to the queue of the other

slave memory controller through additional channel, and this latency

is hidden by tCWL.

As described in Section 3.1.1, a processor such as Xeon and EPYC

85

has two or three memory controllers located closely to each other.

As physical area is limited, not all memory controllers can be

located together. In this thesis, we assume that four memory

controllers are adjacent to each other and configured as a cluster.

3.3.2 Operation Sequence

The channel sharing operation is ordered as checking, assigning,

and demoting.

Check: A memory controller issues a memory command and checks

whether the status register is occupied after column latency (tCL)

by scanning the status register. It counts the total number of

available channels and operates as follows depending on whether

the other channels are available or not.

Assign: If the other channels are available, the number of currently

available memory channels is counted and the master memory

controller tries to transfer data using the other channels, and each

memory controller will mark the status register with one-hot

encoding to avoid confliction. In this thesis, we assume that channel

sharing controller only enables power of 2 concurrent shared

channels, or 1, 2, and 4 shared channels in our test environment.

Demotion: However, when all other channels are occupied or

unavailable, the memory controller uses only its own channel to

read or write data. Then enter the amount of occupancy time (tBL)

into the CSSR. In this case, if another channel has already reserved

its channel, memory channel sharing controller will cancel sharing

request from the other channel. After this, that request is demoted

86

to a lower number of channel shares.

87

Figure 26 (a) shows previous 3D stacked memory and (b) shows proposed channel sharing enabled memory. Bottom of block diagram

shows memory read transfer sequence. Proposed memory controller has modification from memory and host. Previous 8 B data bus

width extended up to 32 B and tBL reduced to quarter.

88

This process occurs in parallel for each memory controller and

takes a maximum of 3 cycles (check and assign – demote to 2

channels – demote to 1 channel) after issuing a command. When a

one-hot encoding exception (greater or equal than two of 1 is

found in entry) is detected, this is an exception where commands

are generated from two or more memory controllers at the same

time and the system will correct this exception before the data

burst. For every cycle, it is possible to prevent or modify the

allocation of the overlapped memory channel in advance. For

example, in Fig 28 at Now, MC 0 and MC 1 are set to the first and

second bits of the timing slot when they realize that the current four

channels are all empty and available. In this situation, it is

recognized that one-hot encoding exception occurs and two channel

sharing commands are assigned to every channel. Thus at the next

cycle (Now + 1 tCK), the sharing level is demoted to try to share 2

channels for each memory access command. In this situation, if no

more request is issued from memory controller, 2 channel sharing

is performed at Now + 2 tCK top (no request case). However, if

the MC 2 issues the command as Now + 2 tCK bottom as Figure 29,

the system recognizes that one-hot encoding exception happens

again and a channel sharing conflict occurred. In the next cycle,

channel sharing is demoted as Now + 2 tCK and MC 0 cancels

channel sharing and it uses only its own channel.

89

Figure 27 The structure of the channel shifting status register (CSSR)

90

Figure 28 The example of channel shifting status register (CSSR) operation. CSSR performs availability check, assign, and demotion

sequence.

91

Figure 29 Continued example of the CSSR. Detailed operation described on Section 4.2.

92

3.4 Analysis

3.4.1 Experiment Environment

We use McSimA+ as the system simulator and we modified

simulator to support channel sharing. When a memory request

occurs, find target channel with sequence which is described in

Section 3.3.2 and modify the tBL parameter to reflect this. The

experimental target system consists of 16 out-of-order cores at 4

Ghz, HBM-like 3D stacked memory with 1,2 and 4 clustered

memory controllers, and each cluster consists of 4 memory

channels. Target memory timing constraints are based on HBM2

[95] and DDR4 SDRAM [93]. The major parameters; tRCD, tCL

(tCWL), and tRP of DRAM are 14 ns, 14 ns, 14 ns. We locate

channel interleaving bit as conventional Intel Xeon server on 7 bit

[92]. We set tBL is 4 (DDR4) or 8 (DDR5), where data bus width is

respectively 64 and 32 bits, and prefetch size is 512 bits. SPEC

CPU2006 benchmark suite [88] is used for single and multi-

programmed workloads. We choose eight most memory intensive

applications (mcf, milc, leslie3d, soplex, GemsFDTD, libquantum,

lbm, and omnetpp) as spec-high. We use two multi-programmed

workloads called mix-high and mix-blend, where mix-high is

composed of 16 workload instances from the spec-high and mix-

blend is from all SPEC CPU2006, which are selected evenly

considering memory intensive characteristic. SPLASH2 [102],

PARSEC [83], MICA [99], and pagerank [82] are used for multi-

threaded workloads.

93

3.4.2 Performance

Figure 30 shows the experimental results while increasing the

number of channels (number of memory clusters) from 4 to 16.

Mix-high showed the greatest performance improvement among

multi-programmed workloads, and 3.3%, 4.3%, and 3.2%

performance improvements were observed at one, two, and four

clusters, respectively. In case of fft, performance improvement was

2.5%, 3.6% and 2.3%. For average read memory latency, mix-high

decreased 6.73%, 8.22%, and 5.52%, and fft showed 7.05%, 10.18%,

and 7.09%, respectively. In this case, the performance shows the

greatest performance improvement when the number of clusters is

2. In addition, the performance improvement is lower when the

number of clusters is 4 because memory level parallelism of the

system increased, and the effect of channel sharing is relatively

reduced. In the case of Figure 31, BL is doubled to show that the

proposed channel sharing is effective when the number of clusters

is fixed to 1. As mentioned in Section 3.1, the latest BL of DRAM

such as DDR5 is increased to 16 or 32. In the experimental results,

baseline system shows 2.2% average performance improvement

and 5.4% reduced average read latency, and when the BL was

doubled, it shows 2.5% and 6.7%, respectively.

94

Figure 30 Relative IPC and Average read latency of multi-programmed and

multi-threaded workloads depends on different number of clustered memory

controllers

Figure 31 Relative IPC and Average read latency of multi-programmed and

multi-threaded workloads depends on burst length

95

3.4.3 Overhead

Proposed channel sharing scheme requires architectural support,

and in this section, we will describe the overhead. First, we

calculated overhead for the memory side. For multipoint channel

support on the DRAM die, each DRAM die requires a channel

sharing controller and enhanced prefetch buffer. The timing and

area overhead of the controller logic is negligible for the total area

of HBM2 DRAM die size and MUX - DEMUX pair requires less than

0.1% of total DRAM die size through design. Those blocks do not

increase critical path latency. On the host side, clustered memory

controller poses design challenges. In this thesis, it is assumed that

the memory controllers of a sharing cluster are physically located

next to each other. Timing closure for fabricating a silicon with

synchronous clock should be hard and intricate. However, we can

relax the external interface part of timing constraint for each

memory controller and compensate them on run time with existing

techniques (data strobe for DDR1, write leveling for DDR3, DFE

(Decision Feedback Equalizer) [101]). For example, the system

can perform additional training for each channel sharing case on

initializing phase of the memory or booting the system. Also, the

memory controller must be designed to support composition and

decomposition of data from the other controller as mentioned in

Section 3.3.1. We modified the existing memory controller from

Xilinx memory interface generator for Virtex Ultrascale [103] to

support this, and it works at the same target frequency and needs

96

less than 1% of total area. In addition, the channel sharing timing

slot which consists of registers causes additional area cost. One-

hot encoded signal requires flip flops as much as the number of

memory controllers per cycle. It also needs an additional flag to

consider read to write or vice versa turn-around latency of the

memory channel. In this thesis, we implement it conservatively and

do not perform any channel sharing when the data bus direction of

the shared channel is flipped. This can solve the signal integrity

problem from signal direction. Thus, the memory controller cluster

needs to have shift registers (1 bit: read or write, 4 bits: one-hot

encoded channel number) 5 bits × (max (tCL) + max (tBL)) ×

the number of memory controllers. Approximately 60 B per

memory controller cluster are required, which is negligible

compared to the total area of the memory controller. Also, in order

to send channel sharing indicator signal to the 3D stacked memory,

each channel should know which channels will be used. Thus,

log2(num of MCs) × num of MCs bits should be transmitted each

clock. For example, 4 memory channels per cluster requires 2 × 4

= 8 bits. To send this data, we can use the data access pin of 3D

stacked memory which is originally assigned for multi-drop DRAM

die test.

97

Chapter 4

CONCLUSION

In this thesis, we have proposed 3D-XPath, and bonding memory

channel to increase the system performance and enhance the

capacity. For 3D-XPath, our proposed managed DRAM architecture

which provides cost-effective alternative paths for memory

transactions on heterogeneous 3D-stacked memory composed of

high-density and fast DRAM dies. 3D-XPath consists of 3D-Path,

which diverts memory requests to a more lightly utilized channel to

mitigate a surge in access time due to a burst of data transfers, and

XPath, which populates wider (doubled) datapath only for fast

DRAM dies and dedicates swap buffers to cost-effectively swap

pages between high-density and fast DRAM dies. Evaluating

memory- and I/O-intensive applications where memory capacity,

latency, and bandwidth all matter, we showed that 3D-XPath DRAM

reduces the high-percentile response time of latency-sensitive

applications by ∼30% and improve throughput by ∼39%,

respectively, compared with DRAM without 3D-XPath.

Also we have proposed a channel bonding architecture on 3D

stacked memory to improve the system performance for server

system. Channel bonding reduces latency from burst transfers with

utilizing memory channels and enhances the advantage of multi

memory channel system - maintaining high data bus utilization. To

mitigate the trade-off between using a narrow data bus on multi-

98

channel and increasing the latency from burst transfers, we share

the memory channel with the proposed structure. This design

improved the performance of the server workloads by reducing the

DRAM access latency and instantaneously increasing the peak

channel bandwidth.

99

REFERENCES

[1] 2016. SK Hynix to Push its DRAM Technology as Next Global

Standards. (2016). http://www.ipnomics.net/?p=15826

[2] 2017. iPerf - The ultimate speed test tool for TCP, UDP and

SCTP. (2017). https://iperf.fr/

[3] Jung Ho Ahn, Sheng Li, Seongil O, and Norman P. Jouppi. 2013.

McSimA+: A Manycore Simulator with Application-level+

Simulation and Detailed Microarchitecture Modeling. In ISPASS.

[4] Mohammad Alian, Gabor Dozsa, Umur Darbaz, Stephan

Diestelhorst, Daehoon Kim, and Nam Sung Kim. 2017. dist-gem5:

Distributed Simulation of Computer Clusters. In ISPASS.

[5] Rajeev Balsubramonian Aniruddha N. Udipi, Naveen

Muralimanohar. 2011. Combining Memory and a Controller with

Photonics through 3D-Stacking to Enable Scalable and Energy-

Efficient Systems. In ISCA.

[6] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and

Nam Sung Kim. 2016. Chameleon: Versatile and Practical Near-

DRAM Acceleration Architecture for Large Memory Systems. In

MICRO.

[7] S.P. Bhattacharya and V. Apte. 2006. A measurement study of

the Linux TCP/IP stack performance and scalability on SMP

systems. In Communication System Software and Middleware.

[8] Christian Bienia, Sanjeev Kumar and Kai Li. 2008. PARSEC vs.

SPLASH-2: A Quantitave Comparison of Two Multithreaded

Benchmark Suites on Chip- Multiprocessors. In IEEE International

100

Symposium on Workload Characterization (IISWC).

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai

Li. 2008. The PARSEC Benchmark Suite: Characterization and

Architectural Implications. In PACT.

[10] Rob Callaghan. 2014. ULLtraDIMM SSD Overview. (2014).

[11] Sanguhn Cha, Seongil O, Hyunsung Shin, Sangjoon Hwang,

Kwangil Park, Seong Jin Jang, Joo Sun Choi, Gyo Young Jin, Young

Hoon Son, Hyunyoon Cho, Jung Ho Ahn, and Nam Sung Kim. 2017.

Defect Analysis and Cost-effective Resilience Architecture for

Future DRAM Devices. In HPCA.

[12] Kevin K. Chang, Prashant J. Nair, Donghyuk Lee, Saugata

Ghose, Moinuddin K. Qureshi, and Onur Mutlu. 2016. Low-Cost

Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data

Movement in DRAM. In HPCA.

[13] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay

B. Brockman, and Norman P. Jouppi. 2012. CACTI-3DD:

Architecture-level Modeling for 3D Die-stacked DRAM Main

Memory. In DATE.

[14] Ping Chi, Wang-Chien Lee, and Yuan Xie. 2014. Making B+-

Tree Efficient in PCM-Based Main Memory. In International

Symposium on Low Power Electronics and Design.

[15] J Choi. 2014. Next Big Thing: DDR4 3DS. In Server Forum.

[16] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014.

CAMEO: A Two-Level Memory Organization with Capacity of Main

Memory and Flexibility of Hardware-Managed Cache. In MICRO.

[17] Standard Performance Evaluation Corporation. 2006. SPEC

101

CPU2006. (2006). https://www.spec.org/cpu2006/

[18] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM:

a Hybrid PRAM and DRAM Main Memory System. In DAC.

[19] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman

P. Jouppi. 2010. Simple but Effective Heterogeneous Main Memory

with On-Chip Memory Controller Support. In SC.

[20] X. Dong, J. Zhao, and Y. Xie. 2010. Fabrication Cost Analysis

and Cost-Aware Design Space Exploration for 3-D ICs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems 29, 12 (Dec 2010), 1959–1972.

[21] Bill Gervasi. 2016. NVDIMM-P: A New Hybrid Architecture.

In Open Server Summit (OSS).

[22] IBM. Data transfer: The zero-copy approach.

https://www.ibm. com/developerworks/library/j-zerocopy/

[23] Intel. 2010. Intel Xeon Processor 7500 Series Datasheet.

[24] Aamer Jaleel. 2010. Memory Characterization of Workloads

Using Instrumentation-Driven Simulation. Web Copy:

http://www.glue.umd.edu/ajaleel/workload (2010).

[25] JEDEC Standard. 2015. High Bandwidth Memory (HBM)

DRAM. JESD235A (2015).

[26] JEDEC Standard. 2016. DDR4 SDRAM Load Reduced DIMM

Design Specification. JESD21-C (2016).

[27] JEDEC Standard. 2016. DDR4 SDRAM Registered DIMM

Design Specification. JESD21-C (2016).

[28] JEDEC Standard. 2016. Graphics Double Data Rate (GDDR5X)

SGRAM Standard. JESD232A (2016).

102

[29] JEDEC Standard. 2017. LOW POWER DOUBLE DATA RATE

4X (LPDDR4X). JESD209-4-1 (2017).

[30] Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravi Iyer,

Srihari Makineni, Don Newell, Yan Solihin, and Rajeev

Balasubramonian. 2011. CHOP: Integrating DRAM Caches for CMP

Server Platforms. IEEE micro (2011).

[31] Norman P. Jouppi. 1990. Improving Direct-Mapped Cache

Performance by the Addition of a Small Fully-Associative Cache

and Prefetch Buffers. In ISCA.

[32] Joonyoung Kim and Younsu Kim. 2014. HBM: Memory

Soluation for Bandwidth- Hungry Processors. In Hot Chips.

[33] Jungrae Kim, Michael Sullivan, and Mattan Erez. 2015. Bamboo

ECC: Strong, Safe, and Flexible Codes for Reliable Computer

Memory. In HPCA.

[34] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.

2009. Architecting Phase Change Memory as a Scalable DRAM

Alternative. In ISCA.

[35] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira

Khan, and Onur Mutlu. 2016. Simultaneous Multi-Layer Access:

Improving 3D-Stacked Memory Bandwidth at Low Cost. ACM

TACO (January 2016).

[36] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu,

Lavanya Subramanian, and Onur Mutlu. 2013. Tiered-Latency

DRAM: A Low Latency and Low Cost DRAM Architecture. In HPCA.

[37] Hyung Gyu Lee, Seungcheol Baek, Chrysostomos Nicopoulos,

and Jongman Kim. 2011. An Energy-and Performance-Aware

103

DRAM Cache Architecture for Hybrid DRAM/PCM Main Memory

Systems. In Intl. Conf. on Computer Design (ICCD).

[38] Seok-Hee Lee. 2016. Technology scaling challenges and

opportunities of memory devices. In IEEE International Electron

Devices Meeting (IEDM).

[39] Gabriel H. Loh and Mark D. Hill. 2011. Efficiently Enabling

Conventional Block Sizes for Very Large Die-stacked DRAM

Caches. In MICRO.

[40] Justin Meza, Jichuan Chang, Yoon HanBin, Onur Mutlu, and

Parthasarathy Ranganathan. 2012. Enabling Efficient and Scalable

Hybrid Memories Using Fine- Granularty DRAM Cache

Management. In IEEE Computer Architecture Letters.

[41] Micron. 2011. RLDRAM3 Datasheet. (2011).

[42] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-Aware

Batch Scheduling: Enhancing Both Performance and Fairness of

Shared DRAM Systems. In ISCA.

[43] Prashant J. Nair, Dae-Hyun Kim, and Moinuddin K. Qureshi.

2013. ArchShield: Architectural Framework for Assisting DRAM

Scaling by Tolerating High Error Rates. In ISCA.

[44] Prashant J. Nair, Vilas Sridharan, and Moinuddin K. Qureshi.

2016. XED: Exposing On-Die Error Detection Information for

Strong Memory Reliability. In ISCA.

[45] Reum Oh, Byunghyun Lee, Sang-Woong Shin, Wonil Bae,

Hundai Choi, Indal Song, Yun-Sang Lee, Jung-Hwan Choi, Chi-

Wook Kim, Seong-Jin Jang, and Joo Sun Choi. 2014. Design

Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM

104

with TSVs. In VLSI Circuits Digest of Technical Papers.

[46] J.M. Park, Y.S. Hwang, S.-W. Kim, S.Y. Han, J.S. Park, J. Kim,

J.W. Seo, and B.S. Kim. 2015. 20nm DRAM: A new beginning of

another revolution. In IEDM.

[47] J. Thomas Pawlowski. 2011. Hybrid Memory Cube (HMC). In

Hot Chips.

[48] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A.

Rivers. 2009. Scalable High Performance Main Memory System

Using Phase-Change Memory Technology. In ISCA.

[49] Raj K. Ramanujan, Rajat Agarwal, and Glenn J. Hinton. 2011.

Apparatus and Method for Implementing a Multi-level Memory

Hierarchy Having Different Operating Modes. (September 2011).

US Patent App. 13/994,731.

[50] Luiz Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011.

Page Placement in Hybrid Memory Systems. In ICS.

[51] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John.

2017. SILC-FM: Subblocked InterLeaved Cache-Like Flat Memory

Organization. In HPCA.

[52] Samsung Semiconductor. 2016. Research collaboration

communications. (2016).

[53] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee,

Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur

Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry.

2013. RowClone: Fast and Energy- Efficient In-DRAM Bulk Data

Copy and Initialization. In MICRO.

[54] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad

105

Calder. 2002. Automatically Characterizing Large Scale Program

Behavior. In ASPLOS.

[55] Wongyu Shin, Jeongmin Yang, Jungwhan Choi, and Lee-Sup

Kim. 2014. NUAT: A Non-Uniform Access Time Memory

Controller. In HPCA.

[56] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim.

2014. Transparent Hardware Management of Stacked DRAM as

Part of Memory. In MICRO.

[57] Siva Sivaram. 2016. Storage Class Memory: Learning from 3D

NAND. (2016).

[58] Avinash Sodani. 2015. Knights Landing (KNL): 2nd Generation

Intel® Xeon Phi Processor. In Hot Chips.

[59] Young Hoon Son, Sukhan Lee, Seongil O, Sanghyuk Kwo, Nam

Sung Kim, and Jung Ho Ahn. 2015. CiDRA: A Cache-inspired

DRAM Resilience Architecture. In HPCA.

[60] Young Hoon Son, Seongil O, Yuhwan Ro, Jae W Lee, and Jung

Ho Ahn. 2013. Reducing Memory Access Latency with Asymmetric

DRAM Bank Organizations. In ISCA.

[61] Steven Cameron Woo and Moriyoshi Ohara and Evan Torrie

and Jaswinder Pal Singh and Anoop Gupta. 1995. The SPLASH-2

Programs: Characterization and Methodological Considerations. In

ISCA.

[62] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev

Balasubramonian, Tao Zhang, Shimeng Yu, and Yuan Xie. 2015.

Overcoming the Challenges of Crossbar Resistive Memory

Architectures. In HPCA.

106

[63] Intel, “Intel Xeon Scalable Processors,”

https://www.intel.com/content/www/us/en/processors/xeon/scalable

/xeon-scalable-platform.html

[64] AMD, “ AMD EPYC Server Processor for Datacenter, ”

https://www.amd.com/en/products/epyc

[65] nVIDIA, “ nVIDIA Turing architecture, ”

https://www.nvidia.com/en-us/geforce/turing/

[66] AMD, “New Generation Radeon Pro Vega Graphics Card,”

https://www.amd.com/en/graphics/workstations-radeon-pro-vega

[67] S. Williams, A. Waterman, and D. Patterson. “Roofline: an

insightful visual performance model for multicore architectures.”

Commun. ACM, 52:65–76, 2009.

[68] Abadi, Martin, Mike Burrows, Mark Manasse, and Ted Wobber.

“Moderately hard, memory-bound functions.” ACM Transactions

on Internet Technology (TOIT) 5, no. 2 (2005): 299-327.

[69] LeCun, Yann. “LeNet-5, convolutional neural networks.”

http://yann. lecun. com/exdb/lenet , 2015

[70] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton.

“ Speech recognition with deep recurrent neural networks. ”

Acoustics, speech and signal processing (icassp), 2013 ieee

international conference on. IEEE, 2013.

[71] RocksDB, “A persistent key-value store for fast storage

environments,”https://rocksdb.org/

[72] Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson,

Gaurav Agrawal, Raminder Bajwa, Sarah Bates et al. “ In-

107

datacenter performance analysis of a tensor processing unit.” In

Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual

International Symposium on, pp. 1-12. IEEE, 2017.

[73] Dell, “ Dell PowerEdge R940 Technical Guide, ”

https://i.dell.com/sites/doccontent/shared-content/data-

sheets/en/Documents/PowerEdge-R940-Technical-Guide.pdf

[74] Oh, Kwang-Il, Lee-Sup Kim, Kwang-Il Park, Young-Hyun

Jun, Joo Sun Choi, and Kinam Kim. “A 5-Gb/s/pin transceiver for

DDR memory interface with a crosstalk suppression scheme. ”

IEEE Journal of Solid-State Circuits 44, no. 8 (2009): 2222-2232.

[75] Jouppi, Norman P., Andrew B. Kahng, Naveen Muralimanohar,

and Vaishnav Srinivas. “CACTI-IO: CACTI with off-chip power-

area-timing models.” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 23, no. 7 (2015): 1254-1267.

[76] AMD, “ AMD Radeon R9 Series Graphics, ”

https://www.amd.com/en-us/products/graphics/desktop/oem/r9

101->77

[77] “Product Brief: The Engine for Digital Transformation in the

Data Center,” https://www.intel.com/content/dam/www/public/

us/en/documents/product-briefs/xeon-e5-brief.pdf, 2016.

[78] “AMD EPYC 7000 Series Processors: Leading Performance

for

the Cloud Era ,” https://www.amd.com/system/files/2017-06/

AMD-EPYC-Data-Sheet.pdf, 2017.

[79] “Product Brief: Intel Xeon Scalable Platform,” https:

//www.intel.com/content/dam/www/public/us/en/documents/product

108

-briefs/xeon-scalable-platform-brief.pdf, 2017.

[80] J. Ahn et al., “Multicore DIMM: an Energy Efficient Memory

Module with Independently Controlled DRAMs,” vol. 8, 2008.

[81] Anthony Gutierrez and Michael Cieslak and Bharan Giridhar

and Ronald G. Dreslinski and Luis Ceze and Trevor Mudge,

“Integrated 3D-Stacked Server Designs for Increasing Physical

Density of Key-Value Stores,” in ASPLOS, 2014.

[82] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP

benchmark suite,” CoRR, vol. abs/1508.03619, 2015.

[83] C. Bienia et al., “ The PARSEC Benchmark Suite:

Characterization and Architectural Implications,” in PACT, 2008.

[84] S. Chen et al., “Increasing Off-chip Bandwidth in Multi-core

Processors with Switchable Pins,” in ISCA, 2014.

[85] S. Foundry, “ 3D TSV Technology and Wide IO Memory

Solutions,” https://www.samsung.com/us/business/oem-solutions/

pdfs/Web DAC2012 TSV demo-ah.pdf, 2012.

[86] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture

and optimal configuration of a real-time multi-channel memory

controller,” in DATE, 2013.

[87] A. Gutierrez et al., “Integrated 3D-Stacked Server Designs

for Increasing Physical Density of Key-Value Stores,” in ASPLOS,

2014.

[88] J. L. Henning, “ SPEC CPU2006 Memory Footprint, ”

Computer Architecture News, vol. 35, no. 1, 2007.

[89] Hongbin Sun and Jibang Liu and Rakesh S. Anigundi and

Nanning Zheng and Jian-Qiang Lu and Kenneth Rose and Tong

109

Zhang, “ 3D DRAM Design and Application to 3D Multicore

Systems,” IEEE Design and Test of Computers, vol. 26, no. 5,

2009.

[90] Hybrid Memory Cube consortium, “HMC Specification v1.0,”

2010.

[91] Intel, “ How Memory Is Accessed, ”

https://software.intel.com/en-us/articles/how-memory-is-

accessed, 2016.

[92] Jaeyoon Choi and Daejin Jung and Jung Ho Ahn, “A Study in

Identifying Memory Address Interleaving of x86 Servers, ” in

ITCCSCC, 2015.

[93] JEDEC, “JESD79-4, DDR4,” 2012.

[94] JEDEC, “JESD229-2, WIDEIO2,” 2014.

[95] JEDEC, “JESD235A, High Bandwidth Memory (HBM) DRAM,”

2015.

[96] Joe Macri, “AMD’s next generation GPU and high bandwidth

memory architecture: FURY,” in Hot Chips, 2015.

[97] Kevin Kai-Wei Chang and Donghyuk Lee and Zeshan Chishti

and Alaa R. Alameldeen and Chris Wilkerson and Yoongu Kim and

Onur Mutlu, “ Improving DRAM Performance by Parallelizing

Refreshes with Accesses,” in HPCA, 2014.

[98] D. Lee et al., “Simultaneous Multi-Layer Access: Improving

3DStacked Memory Bandwidth at Low Cost,” ACM TACO, vol. 12,

no. 63, 2016.

[99] H. Lim et al., “ MICA: A Holistic Approach to Fast In-

Memory

110

Key-Value Storage,” in NSDI, 2014.

[100] Makoto Motoyoshi, “ Through-Silicon Via (TSV), ”

Proceedings of the IEEE, vol. 97, no. 1, 2009.

[101] Nitin Bhagwath and Arpad Muranyi and Randy Wolff and

Shinichiro Ikeda and Eiji Fujine and Ryo Shibata and Yumiko Sugaya

and Megumi Ono and Chuck Ferry and Vladimir Dmitriev-Zdorov,

“Equalization Requirements for DDR5,” in DesignCon, 2018.

[102] S. C. Woo et al., “ The SPLASH-2 Programs:

Characterization and Methodological Considerations, ” in ISCA,

1995.

[103] Xilinx, “UltraScale Architecture and Product Data Sheet:

Overview, ” https://www.xilinx.com/support/documentation/data

sheets/ds890-ultrascale-overview.pdf, 2018.

[104] Yoongu Kim and Dongsu Han and Onur Mutlu and Mor

Harchol-Balter, “ ATLAS: A scalable and high-performance

scheduling algorithm for multiple memory controllers,” in HPCA,

2010.

[105] Young Hoon Son and O. Seongil and Hyunggyun Yang and

Daejin Jung and Jung Ho Ahn and John Kim and Jangwoo Kim and

Jae W. Lee, “ Microbank: Architecting Through-Silicon

Interposer-Based Main Memory Systems,” in SC, 2014.

[106] G. Zhang et al., “ Heterogeneous Multi-Channel: Fine-

Grained DRAM Control for Both System Performance and Power

Efficiency,” in DAC, 2012.

[107] X. Zhang, Y. Zhang, and J. Yang, “ DLB: Dynamic Lane

Borrowing for Improving Bandwidth and Performance in Hybrid

111

Memory Cube,” in ICCD, 2015.

[108] Techinsight, “ Die Size & Density Trend: ” ,

https://techinsights.com/about-

techinsights/overview/blog/samsung-18-nm-dram-cell-

integration-qpt-and-higher-uniformed-capacitor-high-k-

dielectrics/, 2018

[109] Kai Wu, Frank Ober, Shari Hamlin, and Dong Li, Early

Evaluation of Intel Optane Non-Volatile Memory with HPC I/O

Workloads, ” In International Conference on Networking,

Architecture, and Storage (NAS), 2017.

112

국문초록

DRAM 제조 기술의 발전은 속도가 느려지는 반면 DRAM의 밀도 및 성

능 요구는 계속 증가하고 있다. 이러한 요구로 인해 새로운 비 휘발성

메모리(예: 3D-XPoint) 및 고밀도 DRAM(예: Managed asymmetric

latency DRAM Solution)이 등장하였다. 이러한 고밀도 메모리 기술은

긴 레이턴시, 낮은 대역폭 또는 두 가지 모두를 사용하는 방식으로 밀도

를 증가시키기 때문에 성능이 좋지 않아, 핫 페이지를 고속 메모리(예:

일반 DRAM)로 스왑되는 저용량의 고속 메모리가 동시에 사용되는 것

이 일반적이다. 이러한 스왑 과정에서 빠른 메모리로의 페이지 전송이

일반적인 응용프로그램의 메모리 요청을 오랫동안 처리하지 못하도록 하

기 때문에, 대기 시간에 민감한 응용 프로그램의 백분위 응답 시간을 크

게 증가시켜, 응답 시간의 표준 편차를 증가시킨다. 이러한 문제를 해결

하기 위해 본 학위 논문에서는 저 지연시간 및 고용량 메모리를 요구하

는 애플리케이션을 위해 3D-XPath, 즉 고밀도 관리 DRAM 아키텍처

를 제안한다. 이러한 3D-톔소를 집적한 DRAM은 저속의 고밀도

DRAM 다이를 기존의 일반적인 DRAM 다이와 동시에 한 칩에 적층하

고, DRAM 다이끼리는 제안하는 3D-XPath 하드웨어를 통해 연결된다.

이러한 3D-XPath는 핫 페이지 스왑이 일어나는 동안 응용프로그램의

메모리 요청을 차단하지 않고 사용량이 적은 메모리 채널로 핫 페이지

스왑을 처리 할 수 있도록 하여, 데이터 집중 응용 프로그램의 백분위

응답 시간을 개선시킨다. 또한 제안하는 하드웨어 구조를 사용하여, 추

가적으로 O/S 커널과 유저 스페이스 간의 메모리 블록을 자주 복사하는

응용 프로그램의 처리량을 향상시킬 수 있다. 이러한 3D-XPath DRAM

은 3D-XPath가 없는 DRAM에 비해 I/O 집약적인 응용프로그램의 처

113

리량을 최대 39 % 향상시키면서 레이턴시에 민감한 응용 프로그램의 높

은 백분위 응답 시간을 최대 30 %까지 감소시킬 수 있다.

또한 최근의 컴퓨터 시스템은 보다 많은 메모리 대역폭과 용량을 필요로

하는 더 많은 CPU 코어를 단일 소켓으로 통합하는 방향으로 진화하고

있다. 이러한 소켓 당 채널 수를 늘리는 것은 대역폭 요구에 대한 일반

적인 해결책이며, 최신의 DRAM 인터페이스의 발전 양상은 증가한 채널

을 보다 잘 활용하기 위해 데이터 버스 폭이 감소되고 버스트 길이가 증

가한다. 그러나 길어진 버스트 길이는 DRAM 액세스 대기 시간을 증가

시킨다. 추가적으로 최신의 응용프로그램은 더 많은 메모리 용량을 요구

하며, 미세 공정으로 메모리 용량을 증가시키는 방법론은 수십 년 동안

사용되었지만, 20 nm 이하의 미세공정에서는 더 이상 공정 미세화를 통

해 메모리 밀도를 증가시키기가 어려운 상황이며, 적층형 메모리를 사용

하여 용량을 증가시키는 방법을 사용한다.

이러한 상황에서, 실제 최신의 멀티코어 머신에서 SPEC CPU 2006 응

용프로그램을 멀티코어에서 실행하였을 때, 항상 시스템의 모든 메모리

컨트롤러가 완전히 활용되지 않는다는 사실을 관찰했다. 이러한 유휴 채

널을 사용하기 위해 하나의 메모리 채널의 피크 대역폭을 높이고 3D 스

택 메모리의 버스트 대기 시간을 줄이기 위해 본 학위 논문에서는 메모

리 채널 공유 아키텍처를 제안하였으며, 하드웨어 블록을 제안하였다.

이러한 채널 공유를 통해 멀티 프로그램 된 응용프로그램 및 다중 스레

드 응용프로그램 성능이 각각 4.3 % 및 3.6 %로 향상되었으며 평균 읽

기 대기 시간은 8.22 % 및 10.18 %로 감소하였다.

주요어 : 메모리 세부 구조, 적층형 메모리, 비대칭 메모리 시스템, 자가

관리 메모리, 핫 페이지 스왑

학 번 : 2014-30815

	Introduction
	1.1 3D-XPath: High-Density Managed DRAM Architecture with Cost-effective Alternative Paths for Memory Transactions
	1.2 Boosting Bandwidth Dynamic Channel Sharing on 3D Stacked Memory
	1.3 Research contribution
	1.4 Outline

	3D-stacked Heterogeneous Memory Architecture with Cost-effective Extra Block Transfer Paths
	2.1 Background
	2.1.1 Heterogeneous Main Memory Systems
	2.1.2 Specialized DRAM
	2.1.3 3D-stacked Memory

	2.2 HIGH-DENSITY DRAM ARCHITECTURE
	2.2.1 Key Design Challenges
	2.2.2 Plausible High-density DRAM Designs

	2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR MEMORY TRANSACTIONS
	2.3.1 3D-XPath Architecture
	2.3.2 3D-XPath Management

	2.4 EXPERIMENTAL METHODOLOGY
	2.5 EVALUATION
	2.5.1 OLDI Workloads
	2.5.2 Non-OLDI Workloads
	2.5.3 Sensitivity Analysis

	2.6 RELATED WORK

	Boosting bandwidth Dynamic Channel Sharing on 3D Stacked Memory
	3.1 Background: Memory Operations
	3.1.1. Memory Controller
	3.1.2 DRAM column access sequence

	3.2 Related Work
	3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM
	3.3.1 Hardware Requirements
	3.3.2 Operation Sequence

	3.4 Analysis
	3.4.1 Experiment Environment
	3.4.2 Performance
	3.4.3 Overhead

	CONCLUSION
	REFERENCES
	국문초록

<startpage>15
Introduction 1
 1.1 3D-XPath: High-Density Managed DRAM Architecture with Cost-effective Alternative Paths for Memory Transactions 5
 1.2 Boosting Bandwidth Dynamic Channel Sharing on 3D Stacked Memory 9
 1.3 Research contribution 13
 1.4 Outline 14
3D-stacked Heterogeneous Memory Architecture with Cost-effective Extra Block Transfer Paths 17
 2.1 Background 17
 2.1.1 Heterogeneous Main Memory Systems 17
 2.1.2 Specialized DRAM 20
 2.1.3 3D-stacked Memory 23
 2.2 HIGH-DENSITY DRAM ARCHITECTURE 28
 2.2.1 Key Design Challenges 30
 2.2.2 Plausible High-density DRAM Designs 35
 2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR MEMORY TRANSACTIONS 39
 2.3.1 3D-XPath Architecture 43
 2.3.2 3D-XPath Management 48
 2.4 EXPERIMENTAL METHODOLOGY 55
 2.5 EVALUATION 59
 2.5.1 OLDI Workloads 59
 2.5.2 Non-OLDI Workloads 64
 2.5.3 Sensitivity Analysis 69
 2.6 RELATED WORK 73
Boosting bandwidth Dynamic Channel Sharing on 3D Stacked Memory 76
 3.1 Background: Memory Operations 76
 3.1.1. Memory Controller 76
 3.1.2 DRAM column access sequence 77
 3.2 Related Work 78
 3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM 80
 3.3.1 Hardware Requirements 82
 3.3.2 Operation Sequence 85
 3.4 Analysis 92
 3.4.1 Experiment Environment 92
 3.4.2 Performance 93
 3.4.3 Overhead 95
CONCLUSION 97
REFERENCES 99
국문초록 112
</body>

