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Abstract

A Stacked Memory Architecture 

for Improving Performance and 

Capacity

The advance of DRAM manufacturing technology slows down,

whereas the density and performance needs of DRAM continue to

increase. This desire has motivated the industry to explore 

emerging Non-Volatile Memory (e.g., 3D XPoint) and the high-

density DRAM (e.g., Managed DRAM Solution). Since such memory 

technologies increase the density at the cost of longer latency, 

lower bandwidth, or both, it is essential to use them with fast 

memory (e.g., conventional DRAM) to which hot pages are 

transferred at runtime. Nonetheless, we observe that page transfers 

to fast memory often block memory channels from servicing 

memory requests from applications for a long period. This in turn 

significantly increases the high-percentile response time of 

latency-sensitive applications. In this thesis, we propose a high-

density managed DRAM architecture, dubbed 3D-XPath for 

applications demanding both low latency and high capacity for 

memory. 3D-XPath DRAM stacks conventional DRAM dies with 

high-density DRAM dies explored in this thesis and connects these 

DRAM dies with 3D-XPath. Especially, 3D-XPath allows unused 

memory channels to service memory requests from applications 

when primary channels supposed to handle the memory requests 
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are blocked by page transfers at given moments, considerably 

increasing the high-percentile response time. This can also 

improve the throughput of applications frequently copying memory 

blocks between kernel and user memory spaces. Our evaluation 

shows that 3D-XPath DRAM decreases high-percentile response 

time of latency-sensitive applications by ∼30% while improving 

the throughput of an I/O-intensive applications by ∼39%, 

compared with DRAM without 3D-XPath.

Recent computer systems are evolving toward the integration of 

more CPU cores into a single socket, which require higher memory 

bandwidth and capacity. Increasing the number of channels per 

socket is a common solution to the bandwidth demand and to better 

utilize these increased channels, data bus width is reduced and 

burst length is increased. However, this longer burst length brings 

increased DRAM access latency. On the memory capacity side, 

process scaling has been the answer for decades, but cell 

capacitance now limits how small a cell could be. 3D stacked 

memory solves this problem by stacking dies on top of other dies.

We made a key observation in real multicore machine that multiple 

memory controllers are always not fully utilized on SPEC CPU 2006 

rate benchmark. To bring these idle channels into play, we 

proposed memory channel sharing architecture to boost peak 

bandwidth of one memory channel and reduce the burst latency on 

3D stacked memory. By channel sharing, the total performance on 

multi-programmed workloads and multi-threaded workloads 

improved up to respectively 4.3% and 3.6% and the average read 
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latency reduced up to 8.22% and 10.18%.

Keywords : Memory microarchitecture, Stacked memory, 

heterogeneous memory, managed DRAM, hot-page swap,
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Chapter 1 

Introduction

In recent years, there has been an explosive increase in demand for 

more computational power and data throughput, with this trend 

projected to continue with time. CPU and GPU, in particular, has 

evolved to satisfy these demands [63][64][65][66]. To increase 

the performance of xPUs, decreasing latency while increasing 

throughput has been main target of manufacturers. In the past, this 

improvement was achieved by increasing the clock speed of a xPU. 

However, with the slowdown of silicon process shrinking speed, it 

has become difficult to increase the clock speed, thereby 

diminishing the performance gain. To overcome this limit, the focus 

of high performance computing has instead shifted to parallel 

computing, or increasing the number of arithmetic logic unit(ALU)s. 

This change is evident in the increase of CPUs per processor in 

Intel Xeon and AMD EPYC, and the increase in total ALUs in 

NVIDIA and AMD’s GPU architectures. In the case of Xeon, more 

compute cores and more ALUs with higher compute bandwidth per 

core, while increasing cache sizes and reducing latency has been 

the focus of architectural improvement. In the same regard, GPUs 

have reduced accuracy while increasing total throughput to improve 

system performance. However, in accordance with the roofline 

model [67], while some applications are bound by the compute 

performance of the processing unit, some application speed is bound 
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by the speed of the memory as it loads/stores data to the 

processing units on demand. However, in spite of the improvements 

in processor architecture, memory performance has remained 

relatively the same, as the limits in silicon processing hinders 

performance improvements even at a smaller processes and suffers 

from insufficient yield [68]. To improve system performance in 

spite of the relatively slow memory manufacturing process 

improvements, caches architecture has improved and cache size has 

increased to improve data reuse, or architecture has changed to 

increase the number of computation per memory access. For 

example, Intel Xeon continuously expand the cache capacity per 

socket. Also, nVidia ’ s the newest generation GPU has been 

evolved to have higher buffer capacity and support lower precision 

calculation mode (INT4, FP16) but it has higher calculation power 

per access the memory (OP/B) than the previous generation. 

However, even with the aforementioned efforts to reduce the 

impact of memory performance on system performance, as CPUs 

became more dense and with the advent of applications with little 

data reuse, such as neural networks [69][70] and datacenter 

programs[71], system performance has become bounded by 

memory. To increase memory performance in spite of these limits, 

memory channels have increased from 4 channels, which has been 

the norm for quite some time, to 6 channels in the latest Xeon 

processors, and increasing the number of ranks to increase memory 

size [73]. GPU based systems have increased the number of data 

bus channels or implemented GDDRx [28] which has higher data 
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transfer rate for a single rank of a fixed size.

Increasing the number of channels is also a limited solution. First, 

the PCB (Print Circuit Board) used today requires more PCB layers 

for routing, and to secure signal integrity, the layout must become 

very complex, increasing the cost or making it impossible to 

implement at all. Second, the number of channels for data 

transmission between host and memory increases, which 

significantly adds to the total cost of the system. Third, the number 

of memory controllers on the host must increase as well, which 

increases the complexity of the host chip interconnection network 

and increases the cost as well [76]. Fourth, the IO power 

consumption increases with respect to the number of increased 

channels. For these reasons, simply adding a few more channels to 

increase bandwidth and memory size is no longer plausible. 

For decades, DRAM have been connected to host with controller by 

memory channel and used as a main memory. DRAM was capable 

providing low latency high bandwidth and large capacity, but with 

the slowdown of process shrinkage and even with the smaller 

process, the RC load from increased capacity increases access 

latency, complicating the timing parameters, nullifying the DRAM 

parameter gain from the smaller process, and limiting system 

performance increase.

Introduced as a means to satisfy both the bandwidth and capacity 

requirements, otherwise impossible by traditional DRAM, stacked 

memory architecture has been deemed as a suitable solution to the 

memory wall. Connecting the memory through a semi-conductor 
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wire connection and not by a PCB channel is the basic principle of 

stacked memory. By doing so, stacked memory has a channel with a 

lower RC load and alleviated the aforementioned PCB based channel 

problems. However, the number of levels that can be stacked is 

limited, needing another solution to remedy this problem.

To overcome the limitations of DRAM entirely, several different 

types of memory devices has been researched. PCM (Phase Change 

Memory), which has been developed under the collaboration of Intel 

and Micron, is based on 3D-Xpoint to increase the capacity of 

memory and is supported since the cascade lake system. However, 

it suffers from long latency and high energy usage, which is why it 

is used in tandem with DRAM, storing the frequently used data in 

DRAM and the lesser used data in PCM to improve system 

performance. The relatively poor performance and expensive price 

does hinder its usability in actual deployment.

In this dissertation, we propose a new memory architecture to 

overcome the diminishing DRAM performance improvement and 

DRAM capacity limit. We aim to improve memory performance by 

proposing a new memory architecture based on DRAM and not use 

a different type of memory. We explain the necessary components 

in implementing the system and analyze the performance 

improvement when the proposed memory is integrated to a system.
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1.1 3D-XPath: High-Density Managed DRAM Architecture with

Cost-effective Alternative Paths for Memory Transactions

The demand for larger main memory capacity keeps increasing.

However, as DRAM technology scaling slows down, so does the

capacity scaling of a Dual-Inline Memory Module (DIMM) 

consisting of DRAM packages. This in turn constrains the capacity 

of main memory systems, because the maximum number of DIMMs

per memory channel (or simply “channel”) is limited to a small 

number, and it decreases with higher signaling rates. In such a case,

it becomes hard to further increase the capacity without sacrificing

either bandwidth or latency. Although buffered DIMMs such as 

Registered DIMMs [27] and Load-Reduced DIMMs [26] allow 

more DIMMs per channel without sacrificing the bandwidth, they

increase the latency. 

To improve capacity per DRAM package, we may consider stacking

DRAM dies. However, as the number of stacked dies increases,

(1) the cost increases super-linearly especially due to drop in yield 

[20] and (2) the data transfer rate per TSV, which connects these 

dies, decreases due to worsened skews in setup/hold timings [45]. 

This challenge has motivated the industry to explore emerging 

Non-Volatile Memory (NVM) technology such as 3D XPoint or 

high-density DRAM such as Managed DRAM Solution (MDS) [1]. 

Nonetheless, both NVM and high-density DRAM increase their 

capacity at the cost of longer latency, lower bandwidth, or both. 

Therefore, it is essential to use such slow memory with fast 
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memory (such as conventional DRAM) and transfer hot pages to the 

fast memory to minimize the negative impact of prolonged latency 

and/or low bandwidth of the slow memory on performance [51, 56].

Analyzing On-Line Data-Intensive (OLDI) applications which often 

require high capacity and low latency memory, however, we 

observe that page transfers (or swaps) between fast and slow 

memories frequently block channels from servicing memory 

requests of the applications for a long period. This blocking in turn 

unacceptably increases the high-percentile response time of 

latency-sensitive OLDI applications. For example, for a main 

memory system which consists of PCM and DRAM, it takes ∼50μs 

to swap two 4 KB pages between DRAM and PCM where long 

latency (e.g., ∼1μs [14]) and low bandwidth (e.g., 50–100 MB/s 

[14]) of PCM primarily contribute to such a long transfer time. To 

quantify this effect, we evaluate two configurations stacking DRAM 

with PCM: (C1) one may block memory requests from the Apache 

web server and (C2) the other does not during page transfers 

(“DRAM+NVM with blocking page swaps” and “DRAM+NVM 

with non-blocking page swaps” in Figure 1). C1 gives 60% longer 

95th-percentile response time than the memory system based on 

only DRAM, whereas C2 experiences just 13% longer 95th-

percentile response time. Tackling this challenge, we propose a 

high-density managed DRAM architecture, 3D-XPath, for 

applications that require both high capacity and low latency for 

memory. Specifically, advocating the use of high-density DRAM 

with conventional DRAM, we first discuss challenges in DRAM 
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technology scaling and then explore design space of high-density 

DRAM for the first time. Second, we propose 3D-XPath, which 

provides alternative paths for the following two purposes: (P1) 

efficient transfers of pages between dies; and (P2) prompt services 

of memory requests from applications ( “ memory requests ”

hereafter) when primary channels for the memory requests are 

already transferring pages. To cost-effectively offer 3D-XPath, 

we exploit the following two observations from our experiment and 

in-depth analysis of industry 3D-stacked DRAM [32]. (O1) One or 

more channels are often unused for a certain period. (O2) A set of 

I/O TSVs constituting each channel is physically connected to the 

I/O connection points of all stacked dies, and it can be electrically 

connected to any stacked die at a time by controlling tristate 

buffers with decoder logic. In a 3D-stacked memory package with 

multiple channels, O1 and O2 allow a memory controller to 

dynamically establish an alternative channel for a memory request 

to one rank although its primary channel, which is shared with other 

ranks, is used by a page transfer to other ranks. In this thesis, we 

evaluate 3D-XPath for memory which stacks conventional and 

high-density DRAM dies and uses the conventional DRAM as 

hardware-managed cache. Nonetheless, 3D-XPath is also 

applicable to memory which (1) stacks any heterogeneous memory 

dies including DRAM and NVM and/or (2) uses conventional DRAM 

as a hardware-managed cache with large cache lines. Lastly, 3D-

XPath can greatly improve performance of I/O-intensive 

applications that frequently need to copy memory blocks between 
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kernel and user memory spaces, as 3D-XPath can efficiently 

support in-memory copy operations.

To evaluate the effectiveness of 3D-XPath, we model a 

heterogeneous 3D-stacked memory system with two conventional 

and six high-density DRAM dies. As our baseline system, we use a 

16-core chip-multiprocessor system with the heterogeneous 3D-

stacked memory system. Through system-level simulations we 

compare heterogeneous memory systems adopting our proposed 

techniques with the baseline system. Our evaluation shows that 

heterogeneous 3D-stacked DRAM with 3D-XPath reduces 95th-

percentile response time of OLDI applications by ∼30% while 

improving throughput of an I/O-intensive application by ∼39%. 

Lastly, heterogeneous 3Dstacked DRAM can provide higher 

capacity than homogeneous 3D-stacked DRAM with only 

conventional DRAM for the same number of dies, but it still gives 

worse 95th-percentile response time even for applications

demanding high memory capacity unless it adopts 3D-XPath, 

according to our evaluation.
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1.2 Boosting Bandwidth – Dynamic Channel Sharing on 3D Stacked 

Memory

Modern multicore computing systems are evolving toward a larger 

number of cores per socket, increasing the demand for higher 

memory bandwidth [1], [2], [3]. In order to meet this bandwidth 

demand, the number of memory controllers per socket is increasing. 

Despite the increase in channels and memory controllers, the data 

bus width of a single channel has remained the same for several

reasons. First, it is to reduce the bottleneck caused by narrow

command bus. Assuming that a multicore systems memory access 

request is performed through a single channel and it has the same 

transfer size and bandwidth as multi-channel, the data bus 

utilization per memory access command is lower than the multiple 

channel case, due to wider data bus width. As a result, the data bus 

cannot be fully utilized, hindered by the limited command bus 

bandwidth. Second, multiple memory channels can bring higher 

DRAM parallelism than the single MC system. If the DRAM channel

has the same constraints (i.e., the number of components, banks, 

and ranks) in the both multiple and single channel system, the total 

number of accessible DRAM banks in the system is proportional to 

the number of channels. In order words, when we use a single 

channel, the performance of the system can be limited by the 

smaller number of simultaneously accessible banks (Bank level 

parallelism) [29]. For these reasons, the system is composed of 

multiple channels that can independently transmit data and the 
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channel data bus width is maintained. In order to transfer data that 

is wider than the channel data bus width in one request, it uses 

burst transfers which divides transmitted or received data several 

times and transmit it serially. This function will be further enhanced 

with the upcoming DDR5 standard, which will reduce the data bus 

width per channel (64 to 32 bits) and increase the length of the 

burst transfer (8 to 16 bursts) than the existing DDR4. These 

increased burst transfers help to achieve higher data bus utilization, 

but as a trade-off, the memory controller cannot use the channel

for other purposes during the multi-cycle data transfer. As the 

number of cores is further increased, not only higher bandwidth but 

also larger memory capacity is required. Moore ’ s law has 

improved the manufacturing process and increased capacity per 

area. However, in recent years, process improvement slows down 

and DRAM capacity increase has been limited. The main cause of 

this limit is capacitance of DRAM cell because DRAM needs to 

continuously refresh its data to retain its data. Data loss is caused

by charge leakage and as such, if the cells capacitance is reduced as 

the cells area is reduced, memory refresh must be performed more 

frequently. These additional refreshes block normal memory 

transfer command and causes performance degradation [21]. As a 

result, in order to maintain DRAM performance, the capacitance of 

each cell cannot be greatly changed. Therefore, it is difficult to 

radically increase memory density. To overcome this memory 

density limit, a 3D stacked memory which piles up a memory die on 

top of the host or another memory die is proposed to increase the
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capacity while maintaining the cell area and each stack is connected 

by through Silicon Via (TSV). Although the cost is increased by 

stacking the silicon, the capacity problem is solved by increasing 

the number of stacked DRAM dies. These TSV-based 3D stacked 

memories are used in Wide IO [18], DDR4 and DDR5 3DS-DRAM 

[17], HMC [14] and HBM [19]. In particular, Wide IO, HMC, and 

HBM can use multiple channels per DRAM die. These 3D stacked

memories are widely studied and used in the server [5], mobile [9], 

and graphics [20]. In a real Intel Xeon e5 server system with 

multi-core and multi-memory channel configuration, we made a 

key observation that the memory bandwidth is not fully utilized and 

saturates even if the rate (how many cores are used at a time) is 

increased on SPEC CPU2006 benchmark. We also found idle 

channels during the burst transfer of a specific memory channel for 

multi-programmed and multithreaded workloads through 

simulations performed in the same condition as the Section 2.5.1.

When using a single channel, the probability that another channel 

will not be used during burst latency (tBL) is as shown in Figure 2. 

We observe that at least 73% of total memory accesses have at 

least one unused memory channel even in the relatively high 

memory data bus utilization case of mix-high and fft which are 

described in Section 2.5.2. In this thesis, we propose a channel 

sharing scheme on a 3D stacked memory to compensate for the 

burst transfer latency by utilizing empty memory channels in server 

multimemory channel system. We modify the memory and the

memory controller architecture and add communication channel to 
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the the memory channel. By doing so, we are able to transmit data 

through memory channels that otherwise would have been left idle. 

Channel sharing increases data bus utilization while mitigating the 

trade-off between using a narrow data bus and increasing the burst 

transfer latency. Thus, this design improves the performance of the 

system by reducing the DRAM access latency and instantaneously

increasing the peak channel bandwidth.



13

1.3 Research contribution

We propose a large capacity DRAM structure using improved silicon 

process and a stacked asymmetric memory structure which is 

denser than a typical DRAM, a managed DRAM structure that 

utilized the previous structure, and improve upon this by modifying 

the host side memory controller design.

1. Large capacity memory structure

2. High performance DRAM structure in a stacked enviroment

3. Migration strategy in a heterogeneous memory structure of 

1 and 2

4. An alternative path structure to increase migration speed

5. A data swap structure to increase migration speed using 2 

and 4

6. In-memory copy structure using 4 and 5

7. Increasing peak bandwidth by bonding the channels in a 

stacked memory

With the memory structure proposed above, this thesis proposes a 

DRAM system architecture to mitigate the performance and 

capacity cap from memory wall.
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1.4 Outline

This thesis is organized as follows. Chapter 2 describes stacked 

memory architecture for capacity and performance and measure 

performance gain for data intensive applications and multi-

programmed / multi-threaded applications. Chapter 3 describes the 

memory and memory controller architecture with bonding memory 

channels to boost system performance, and observed performance 

gain for applications. In Chapter 4, we present the conclusion for 

our works. 
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Figure 1 Distributions of Apache response time when main memory systems are built with heterogeneous DRAM where (1) hot-page 

transfers to faster DRAM block memory requests (C1), and (2) where hot-page transfers do not block memory requests (C2).
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Figure 2 Percentage at which other channels are not used for burst latency when a memory access requested on a memory controller. 

(This system has 4 memory controllers)
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Chapter 2

3D-stacked Heterogeneous Memory 

Architecture with Cost-effective Extra Block 

Transfer Paths

2.1 Background

2.1.1 Heterogeneous Main Memory Systems

In a heterogeneous main memory system, DRAM can be deployed 

as hardware- or software-managed cache, both posing their own 

challenges. DRAM as hardware-managed cache (e.g., [37, 39]) 

needs memory space to store tags and decide where to place the 

tags. Furthermore, DRAM used as hardware-managed cache could 

be slower than DRAM used as main memory (e.g., cache mode in 

Intel Knights Landing (KNL) [58]), due to the latency penalty of 

comparing tags for every memory request. Lastly, since DRAM 

used as hardware-managed cache is not a part of main memory 

address space, it is less desirable for memory capacity sensitive 

workloads than DRAM used as main memory. Alternatively, a 

heterogeneous memory can constitute unified memory space (e.g., 

a flat mode in KNL [58]), and let the OS or applications explicitly 

transfer hot pages to DRAM (Figure 3). However, it is still an 

active research topic to identify hot pages and when to transfer 

them to DRAM [48, 49, 62]. Lastly, software-managed cache 
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approaches for heterogeneous memory systems often need to 

transfer large memory blocks to DRAM to handle transfer pages. 

This additional challenge prevents channels from servicing memory 

requests for a prolonged period and thus significantly increases the 

high-percentile response time of latency-sensitive applications as 

Figure 4.

Figure 3 Hot page migration, when page B selected hot page, it is swapped to 

the fast memory region and A swap out to the original location of the hot 

page B. At the next epoch, D is chosen as hot page and swaps to the fast 

memory region again, and page B is swap out to the original location of the 

hot page D.

Figure 4 A normal operation during swap blocks the swap operation and 

generates the additional latency, so swap latency is increased.
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2.1.2 Specialized DRAM

Due to many manufacturing challenges, it is becoming harder to 

improve latency, bandwidth, and capacity of DRAM altogether [38]. 

However, by not trying to improve every primary aspect of DRAM 

metrics altogether, it gets easier to make DRAM specialized in 

certain aspects, such as latency or capacity. As an example, we 

may consider low-power DRAM as LPDDRx for mobile domain and 

GDDRx for bandwidth-demanding graphic domain. The latency of 

DRAM is primarily determined by the time (T1) to deliver command 

and data signals through global interconnects which traverse DRAM 

banks; (T2) to sense voltage developed by charge sharing of a 

DRAM cell and its corresponding bitline (local datapath); and (T3) 

to precharge the bitlines (BLs) if needed. Son et al. [60] analyzed 

that the perimeter of a DRAM die determines T1 whereas the BL 

capacitance determines T2 and T3. As we populate more BL sense 

amplifiers (BLSAs), we can reduce the latency (e.g., Reduced-

Latency DRAM [41]) at the cost of sacrificing the capacity.
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Figure 5 A standard 3D-stacked DRAM 2.5D-integrated with CPU.
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Figure 6 DRAM dies are connected to a logic die through TSVs and micro 

bumps; a logic die communicates with memory controllers through an 

interposer.
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2.1.3 3D-stacked Memory

Recently, the industry starts to adopt various 3D-stacked DRAM, 

such as DDR4 3DS [15], Hybrid Memory Cube (HMC) [47], High 

Bandwidth Memory (HBM) [32], and Multi-Channel DRAM 

(MCDRAM) [58] for servers and throughput computing. In this 

work, we take MCDRAM or HBM as a standard 3D-stacked DRAM 

(Figure 5). Processor units are connected to 3D-stacked DRAM 

dies through a silicon interposer. A stack consists of several DRAM 

dies (typically 4 or 8, by default 8 in this thesis) and a logic die. 

Due to productivity challenges from micro bump mismatch and 

crack (Figure 8(a)) and the physical limitation from the height of 

the host silicon, the available number of the stacked die is limited 

(Figure 8(b)). Also, each datapath TSV (and silicon interposer 

interconnect) transfers data at 2 Gbps which is limited by internal 

signal skew and integrity (Figure 8(c)), the transfer rate of HBM2 

standard [25]. 512 datapath TSVs per stack lead to 128 GB/s of 

bandwidth. A stack has multiple channels (4 by default) to utilize 

this sheer bandwidth efficiently. A DRAM die is connected to one or 

few channels (2 by default). 

We assume that all DRAM dies are fabricated identically to optimize 

the manufacturing cost like HBM. Then, I/O TSVs constituting four 

channels are physically connected to the I/O connection points of all 

stacked DRAM dies. A set of I/O TSVs constituting a channel can be 

electrically connected to one of the stacked dies by controlling tri-

state buffers with decoder logic (Figure 6). The decoder logic can 
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enable or disable the tri-state buffers, and the manufacturer uses 

e-fuses to program a Stack ID (SID) into the decoder logic of a 

stacked DRAM die in the standard 3D-stacked memory. This 

electrically connects the I/O connection points of a stacked DRAM 

die to a specific set of I/O TSVs establishing a channel at a 

manufacturing step. Furthermore, examining the I/O pin layout of 

the 3D-stacked DRAM, we see that I/O TSVs of all channels 

associated with the same bit index are closely placed (Figure 7). 3D 

stacked memory has many channels which contains address word 

and data word TSVs. Each channel in HBM basically not spread all 

over the dies but gathered as shown Figure 7. For example, DQ0 of 

channel 0 is located very near of the DQ0 of channel 1, to prevent 

complex congestion of metal layer and large data skew variation 

between data bus of each channel. 

TSVs are placed at the center of dies to minimize the worst case 

topological distance between DRAM cells and TSVs and thus 

latency [32] [25]. A DRAM die consists of multiple bank groups (8 

bank groups per die, 4 bank groups per channel, by default) and 

each group consists of multiple banks (4 by default). A DRAM bank 

is organized and operates conventionally; a row to access is first 

activated at BLSAs (i.e., a row buffer) and then column addresses 

accompany read/write commands to access data in the row. Within a 

DRAM die, each bank operates independently except that 1) the 

number of bank activates within a certain interval is limited due to 

timing constraints such as tFAW to restrict a surge in current 

draws which lead to fluctuation in voltage levels, and 2) all banks 
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mapped to a channel cannot transfer data concurrently due to 

structural hazard. The bank is structured hierarchically; each bank 

group has a separate inter-bank dataline to facilitate higher data 

transfer rate for the transactions heading to different bank groups. 

A channel and the corresponding bank groups are connected 

through a multiplexer (mux). The logic die repeats address, 

command, and data signals between off-stack controllers and 

DRAM dies.  
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Figure 7 Each data bus pin per channel on an actual 3D stacked memory (HBM) is allocated the similar position. For example, DQ0 for 

Channel 0~3 are located very near. This characteristic enables communication located very closely, with a small wire latency.
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(a) Drop yield by the number of stacks; micro bump mismatch by misaligned 

bump and cracked TSV

(b) A physical height of stacked memory is limited by the height of the host 

due to cooling solution

(c) Internal frequency of TSV is hard to increase due to signal integrity, made 

worse by increasing the number of the stacks

Figure 8 The limitation of 3D stacked memory
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2.2 HIGH-DENSITY DRAM ARCHITECTURE

In contrast to low-latency DRAM proposals [41, 55, 60], high-

density DRAM, another important class of specialized DRAM 

designs, is relatively less explored. As latency and bandwidth gap 

between DRAM and NAND flash increases, the industry introduces 

solutions to fill this gap, dubbed Storage Class Memory (SCM) [57]. 

Examples include single-level-cell NAND which focuses on 

reducing latency (e.g., SanDisk ULLtra DIMMS [10]) and Intel 

Optane (Phase Change Memory) which exploits 3D XPoint 

technology with higher density (Figure 9[108]) than normal DRAM 

but higher latency (Figure 10[109]). A less elaborated but 

intriguing solution is to specialize DRAM designs for higher density 

[38]. We identify the key design challenges of high-density DRAM 

and sketch its plausible design solutions.
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Figure 9 PCM (Phase Change Memory) is widely selected solution. PCM (Intel 

Optane) cell area per bit is 1/3x – 1/4x of DRAM.

Figure 10 However, PCM operates 2x – 20x slower for read and 8x – 1000x 

for write than DRAM.
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2.2.1 Key Design Challenges

DRAM technology scaling slows down primarily because the DRAM 

industry is demanded to improve every major aspect of DRAM 

metrics: latency, bandwidth, and capacity [38]. That is, the DRAM 

industry can still scale the dimensions of transistors, capacitors, 

and interconnects (i.e., improving density) for a few more 

generations like logic and Flash technologies, but it cannot do so 

while maintaining or improving latency and bandwidth.

DRAM stores data by charges in capacitors, which are detected by 

sense amplifiers after sharing their charges with bitlines (BLs). A 

large surface area is needed to increase the capacitance of a DRAM 

cell, making non-planar designs less viable than NAND Flash where 

3D designs are gaining popularity rapidly. Therefore, primary ways 

to improve storage density of this planar DRAM design is either to 

increase cell efficiency or to keep scaling down fabrication 

technology. Increasing cell efficiency (a portion of aggregated cell 

area over an entire DRAM chip area) has limited potential because a 

DRAM chip has inevitable circuitry such as inter-bank datalines, 

off-chip I/O buffers, electrostatic discharge protection, and charge 

pumps. Moreover, robust sensing requires a certain degree of 

voltage difference after charge sharing (delta V), limiting the 

number of cells shared through a BL. 

Beyond 20nm process nodes denoted by ‘1Xnm,’‘1Ynm,’ and 
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‘1Znm’①() [11, 38], however, DRAM technology scaling faces 

three major process challenges. First, fine-pitch metal line and 

contact resistance increase drastically. The metal resistivity 

sharply increases below 20nm film thickness because of shrinking 

in metal volume and the surface scattering effect [46]. This 

increases the resistance of wordlines (WLs) and BLs. Second, the 

capacitance of a DRAM cell decreases because cells become 

smaller and it gets harder to further increase the aspect ratio (or 

height) of a cell capacitor [38]. Third, the ratio of faulty cells 

increases as DRAM cell area becomes smaller and process variation 

is exacerbated. 

Significant efforts have made on various aspects of DRAM designs 

including material (e.g., high-k metal gate to increase transistor 

speed), fabrication technology (e.g., filling air within spacers to 

reduce BL capacitance [46]), and cell structuring (e.g., deploying 

cells like honeycomb to increase cell spacing [46]) to increase 

DRAM density without sacrificing timing constraints. However, 

those incur substantial manufacturing costs, need time to be applied 

stably, or become one-time magic desiring a new solution (another 

magic) next time. Therefore, without relying on material or process 

breakthrough, an alternative solution for higher density is to 

continue DRAM technology scaling while relaxing key timing 

constraints, which are affected by the aforementioned challenges.

                                           
① Notations such as 1X and 1Y are widely used terms in DRAM vendors and

X, Y, and Z (X > Y > Z) are single-digit numbers, where specific values 

depend on vendors.
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Figure 11 The impact of DRAM technology scaling on process parameters, timing, and density.
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Figure 12 The impact of different resistance and capacitance on timing parameters. When the WL resistance is doubled and tripled, 

the WL signal is delayed by 2 ns and 4 ns, respectively. When the BL resistance is doubled and its capacitance is decreased by 30%, 

the BL signal is delayed by 1 ns.
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2.2.2 Plausible High-density DRAM Designs

These process challenges can be overcome with the help of 

relaxing tight timing constraints and architectural support. Increase 

in resistance of fine-pitch metal lines and contacts slows signal 

transfer speed and causes timing failure. For example, higher WL 

resistance delays the delivery of an activation signal to cell 

transistors located at the far end of a DRAM subarray. That cell 

transistor turns on slowly; by relaxing tRCD (the minimal interval 

from an activate to a read/write command on a DRAM bank), a 

sufficient amount of charge sharing time can be secured. Similarly, 

the effects of high BL and contact resistance can be suppressed by 

relaxing key DRAM timing parameters, such as tRP (BL precharge 

time), tWR (time to write data to DRAM cells), and tRAS (time to 

destructively read data from a DRAM cell and then restore the data 

back), because this datapath resistance within a subarray directly 

affects data restore time and BL precharge delay②.  

Figure 11 projects the impact of primarily scaling the dimensions 

of transistors, capacitors, and interconnects on major DRAM design 

parameters as well as timing parameters and storage density, 

without expecting any significant innovation (magic) in DRAM 

process technology based on an industry proprietary evaluation 

setup, whose modeling details are as follows. The cell mat, WL 

                                           
② A surge in resistance of fine-pitch metal lines and contacts does not 

affect tCL (read command to first data delay much as global control and 

datapath use thicker (non-minimal pitch) wires having much lower 

resistance compared to local WLs and BLs.)
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drivers, and sense amplifiers critically affect DRAM timing 

parameters. The state-of-the-art 6F2 DRAM cell structure has 

one transistor and one capacitor per crossing point of WL and BL. 

Total resistance and capacitance values depend on the total number 

of them. We modeled the critical path by choosing the farthest cell 

from WL drivers and sense amplifiers of a DRAM mat and 

conducted SPICE simulation. The voltage-timing diagrams on 

Figure 12(a) and (b) show SPICE simulation results corresponding 

to the change of WL resistance, when a WL is developed from Vss 

(often ground) to Vpp (WL activation voltage) by the WL driver 

(activation) and from Vpp to Vss (precharge). When the resistance 

of the WL is doubled and tripled, the signal is delayed by 2 ns and 4 

ns, respectively. Figure 12(c) shows simulation result of BL voltage 

changing from Vss to Vcore (high voltage levels in DRAM cells) 

according to the change of BL resistance. When the BL resistance is 

doubled and the BL capacitance is decreased by 30%, the signal is 

delayed by 1 ns. This shows that the DRAM industry may double 

the density over two generations (1Xnm to 1Znm) at the cost of 

increasing key timing parameters such as tRCD, tRAS, and tRP by 

28.6% (4 ns due to WL turn-on signal propagation delay), 13.3% 

(6 ns by BL develop delay and tRCD increment), and 42.8% (WL 

turn-off signal propagation delay and BL precharge delay).

Reduction in cell capacitance (second challenge) decreases data 

retention time. More leaky cells have retention time below DRAM 

refresh window (tREFW). Increase in these leaky and faulty (third 

challenge) DRAM cells necessitates stronger redundancy. This 
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problem can be greatly alleviated by recently proposed or applied 

reliability schemes, such as In-DRAM ECC [11], ArchShield [43], 

CiDRA [59], XED [44], and Bamboo ECC [33]. These provide 

cost-effective solutions to common single-bit failures compared to 

traditional solutions, such as provisioning spare DRAM rows and 

columns. These schemes typically increase DRAM access latency. 

For example, In-DRAM ECC, which we assume in this thesis, 

requires error checking before transmitting data out of DRAM banks, 

increasing tCL (Table 1).

The aforementioned techniques enable us to get the capacity merit 

over DRAM taking the conventional evolution path at the cost of 

lower performance. The pace in reduction of DRAM cell capacitance 

is faster than that of BL capacitance; and hence more BLSAs should 

be populated at a given DRAM capacity, increasing area overhead. 

However, by relaxing timing constraints, BL capacitance can further 

be reduced; if we make BLs narrower and increase the spacing 

between BLs, a BL has higher resistance (e.g., deteriorating tWR) 

but lower capacitance. This helps the voltage difference after 

charge sharing (delta V) mostly unchanged even after technology 

scaling (Figure 11) and restricts the rise of area overhead due to 

populating more BLSAs. 

Strong reliability solutions demand additional (parity) DRAM cells 

(e.g., 6.25% in [11]). Still, storage density improvement (in 

absolute area) outweighs the costs induced by these techniques. 

Assuming that these techniques advance the DRAM technology 

node by two generations compared to the conventional DRAM dies, 
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high-density DRAM can halve die area for a given capacity as the 

half-pitch size is reduced by 20% on average per DRAM 

technology shrink. Either the number of rows, columns, or banks 

should be increased to deal with more capacity provided by 

technology scaling. In this thesis, we assume that the number of 

banks within a bank group is doubled. This will simplify support for 

page swapping, which will be further elaborated in Section 3.4.2. In 

summary, we can increase the density by 2.3× at the cost of 

increasing tRCD, tRAS, and tRP by 29%, 13.3%, 43%, respectively. 

That is, although we consider the cost of the reliability measures, 

we can double the capacity per die.
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2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR 

MEMORY TRANSACTIONS

To build 3D-XPath DRAM, we propose to stack 8 DRAM dies like 

the standard 3D-stacked DRAM depicted in Section 2.1.3, but we 

replace top 6DRAMdies with high-density DRAM dies (or 

Capacity- Optimized DRAM (CapD) dies hereafter) proposed in 

Section 2.2. This gives roughly 28 GB capacity or 1.75× higher 

density than the standard 3D-stacked DRAM. Regardless of DRAM 

types, each DRAM die is connected to two channels and has the 

same number of bank groups (i.e., four) per channel. A conventional 

DRAM die (or Performance-Optimized DRAM (PerfD) die hereafter) 

has 4 banks per bank group whereas a CapD die has 8 banks per 

bank group. The data bus width of a PerfD die (256 bits) is twice as 

wide as that of a CapD die. The size of a DRAM row/page is 4 KB 

for both PerfD and CapD types. The remainder of this section 

describes how we connect these DRAM dies with 3D-XPath and 

how we efficiently manage page transfers between CapD and PerfD

while servicing memory requests with 3D-XPath.
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Figure 13 3D-stacked heterogeneous DRAM architecture, which consists of 2 PerfD and 6 CapD dies. PerfD dies have more TSVs for 

doubled datapath. Crossbar switches to connect TSV channels for 3D-XPath locate at both CapD and PerfD.
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Figure 14 A logic die swaps hot pages between CapD and PerfD. The blue colored blocks are required to implement alternative paths.
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Figure 15 While a swap operation is processing as the blue path, a normal operation is performed on the red path.
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2.3.1 3D-XPath Architecture

3D-XPath aims to efficiently service ordinary memory requests 

from processors while transferring pages between PerfD and CapD, 

for which we propose 3D-Path and XPath (together 3D-XPath).

3D-Path: A page swap or copy between PerfD and CapD requires 

many 64-byte (i.e., cache line) memory transactions, blocking 

memory requests to another bank group of CapD or PerfD involved 

with swapping/copying pages for a long period. This, in turn, 

significantly increases the latency of servicing the memory 

requests, hurting not only the overall system performance but also 

the high percentile response time of latency-sensitive applications. 

Tackling this challenge, we leverage two key observations we made 

from our experiment and in-depth analysis of industry 3D-stacked 

DRAM. First, one or more channels are often unused for a certain 

period (Section 2.5.3). Second, all channels are physically 

connected to all DRAM dies, and a set of I/O TSVs constituting a 

channel can be electrically connected to any stacked die by 

controlling tri-state buffers with decoder logic (Section 2.1.3).

From these observations, we propose 3D-Path that diverts memory 

requests to a less frequently utilized channel at a certain time 

period, which is feasible with a simple adaptation of the standard 

3D-stacked DRAM. Specifically, we can replace the multiplexers, 

which connect inter-bank datalines (one per bank group) to the 

channel I/O, with two crossbars (4:1 and 1:4 muxes and demuxes 

that connect bank groups to channel). Figure 13,14,15 show the 
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detailed implementation to enable 3D-Path. Each DRAM die has two 

enable signals per channel for normal memory transaction and 

migration. For example, a normal access is performed through the 

predefined TSV channel with en_0 to access bank group 0. A 

migration should be suspended until the current channel becomes 

idle without 3DPath, as migration cannot use channel 0 which is 

already used for the normal access. With 3D-Path, the 3D-Path 

controller on the logic die controls the extra enable signal (en_1) on 

each die to send migration data on an idle channel (channel 3 in 

Figure 15). This allows non-blocking migration operation through 

the idle channel 3 with en_1 without interrupting the normal 

memory transaction on channel 1 with en_0. To find an idle channel, 

we implement a detection logic on the logic die; the logic detects 

how many cycles will be empty for each channel by a DRAM access 

command, and the tri-state buffer decoder on the logic die controls 

the enable signals to use 3D-Path. The crossbars incur little space 

and timing costs because the I/O TSVs of all channels associated 

with the same bit index are closely placed (Section 2.1.3, Figure 7). 

Our estimation using CACTI-3DD and 20 nm DRAM technology 

information [52] shows that the cost of 3D-Path is 1.5% of a PerfD

die. Also, the area cost of the enhanced tri-state buffer controller 

is less than 0.1% of the logic die.

XPath: It is desirable to increase the transfer rate between a 

memory controller and PerfD, because effective page swaps lead to 

more frequent memory requests to PerfD and thus latency surges 

due to the queuing delay. There are two implementation options to 
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increase the transfer rate. The first option is to increase the bit rate 

(operating frequency) of each pin/TSV. This can keep the number 

of TSVs unchanged, but it is difficult to implement due to worsened 

skews in setup/hold timings [45] as the bit rate increases. When 

the number of stacked dies increases, timing skews among datapath 

interconnects increase further and setup/hold timing margins shrink, 

limiting the operating frequency of TSVs (Section 2.1.3, Figure 

8(c)). The second option is to increase the number of datapath 

interconnects and TSVs. Specifically, we propose to double the 

datapath width only for PerfD because CapD is optimized for 

capacity and more TSVs hurts the density of CapD (Figure 16). As 

PerfD dies are located closer to a logic die than CapD dies, it is 

more tractable to handle timing skews among datapath 

interconnects [45].

Due to wider datapath (i.e., additional DQ[255:128] per channel), 

the transfers to/from PerfD dies require shorter Burst Length (BL) 

than those to/from CapD dies. To match the transfer rate between 

CapD and PerfD, the logic die requires a 512-bit prefetch buffer 

per channel. This needs more TSVs and thus requires more die 

space. From prior work [32], we estimate that it requires 2% more 

die space. To keep up with the doubled bandwidth of PerfD, we also 

propose to increase the bit rate per pin between the logic die and 

the host memory controllers from 2 Gbps to 4 Gbps. To support the 

feasibility of increasing the bit rate through an interposer, we turn 

to existing I/O implementations: GDDR5X drives 10 to 14 Gbps per 

pin [28], and LPDDR4X is faster than 4 Gbps per pin on a noisier 
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PCB channel environment than interposer [29]. We also conducted 

HSPICE signal 

integrity simulation with s-parameter and noise models that were 

specified in prior work [6], where we observe an enough eye 

diagram on interposer channels at 4 Gbps.

To further reduce the latency of page swaps, we exploit the 

doubled datapath and propose XPath, an enhanced page-swap 

mechanism using wider datapath with two swap buffers per channel 

on the logic die (Figure 17). Two swap buffers receive pages from 

a source row (cold page) and a target row (hot page), respectively. 

CapD uses the first half of the doubled datapath (i.e., DQ[127:0]) 

while PerfD uses the second half of 128 to 255 bit (i.e., 

DQ[255:128]) to send two pages to the swap buffers. This 

transaction requires 128 tCK slots for a 4 KB DRAM page without 

interrupt. Subsequently, we simultaneously send the pages from the 

swap buffers to destination PerfD and CapD. That is, a page from 

CapD goes to PerfD through the first half of the doubled datapath 

and vice versa through the second half for another 128 tCK slots, 

reducing the number of 4 KB memory transactions to 2⁄3.

Lastly, 3D-Path can also use XPath of CH[2] for ordinary memory 

or page-swap transactions. In this 3D-Path operation, there are 

two possible exceptions. First, the channel is not physically usable 

for the same bank group access because they share the inter-bank 

datapath. Second, a page-swap transaction is paused when there is 

no unused channel at a certain moment.
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Figure 16 Structure and mechanism for data transfer between 3D-stacked DRAM components with doubled datapath. CapD and PerfD 

transfer data with 2 Gbps per dataline to the logic die. The logic die can transfer data to a memory controller at 4 Gbps when a PerfD 

is accessed because a PerfD has twice wider datapath than that between the logic die and the memory controller.
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2.3.2 3D-XPath Management

Logic support for page swapping: To swap two pages between 

PerfD and CapD, we need control logic and support from memory 

controllers. The control logic can be implemented with simple 

enhancement of MBIST (Memory Built-In Self Test), which is 

implemented in recent industry 3D-stacked DRAM [32]. MBIST 

can generate commands and addresses in a Direct Memory Access 

(DMA) fashion. The memory controllers also need to know whether 

a requested page is located at PerfD or CapD. CapD and PerfD have 

different timing parameters, so we can use a slot-based interface 

which reserves a slot for slow memory responses on the datapath, 

similar to prior work [5]. This approach looks for a free slot and 

reserves the free slot as a backup slot when the page is located at 

CapD. We also set the transfer granularity of a page-swap 

transaction to 4 KB, the page size, based on a sensitivity study 

which is further described in Section 2.5.3.

Page remapping: It is desirable to swap a page in PerfD with any 

page in CapD, which is similar to a fully associative cache. However, 

this incurs a huge cost for a page remapping table. Instead, we 

assume that one page in PerfD can be swapped to one of a few 

pages in CapD, constituting a page group (similar to Congruence 

Group in [16]) which can be regarded as a rank. For example, with 

2 PerfD and 6 CapD dies, each page group consists of 1 page from a 

PerfD die and 6 pages from 3 CapD dies (two from each). The 

pages within a page group are aligned such that they are placed at 
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the same row address across banks, which significantly reduces the 

cost of remapping tables.

For a 3D-stacked DRAM with 28 GB of capacity, we need 2.125 

MB of memory for the remapping table assuming 3 bits per 4 KB 

row. The logic die can provide sufficient space to hold this 

remapping table with SRAM. A more space efficient option is to use 

a cache and store the entire remapping table in PerfD. For example, 

a 24 KB remapping table cache achieves a hit rate of 94.1% on 

average for memory-intensive multi-programmed benchmarks 

(Section 2.5.2). When a memory request misses the remapping 

table cache, it brings the corresponding remapping table information 

from the reserved address space of PerfD. Our estimation using 

CACTI [13] with 32nm Low STandby Power (LSTP) technology 

shows that a 16-way 24 KB remapping table cache with 96 B per 

entry can translate a given page group (rank) address in 0.88 ns, 

which is less than 1 tCK slot③ and consumes 0.4 mm2 (less than 1% 

area of a logic die).

To swap pages, we may follow the sequence described in Row-

Clone [53]. That is, the standard 3D-stacked DRAM requires at

least three times of row-copy latency (128 tCK slots plus activate/ 

precharge overhead per 4 KB row copy) per page-swap 

transaction. However, XPath needs only two times of row-copying 

latency. Besides, we can pause a page-swap transaction by one 

                                           
③

tCK is a DRAM clock cycle (1 ns in this study). A DRAM command spends 

1 tCK slot.
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ordinary memory transaction if a request needs to be sent to 

another bank group which is not involved with the page-swap 

transaction. The temporary row buffer can be located at a DRAM or 

logic die. If it is located at DRAM, a page-sized bulk copy 

mechanism such as LISA [12], can be applied to reduce page 

swapping latency between the temporary row buffer and the 

corresponding BLSAs. However, this requires one more row buffer 

per bank group of each DRAM. By contrast, when the buffer is 

located at the logic die, a page swap requires fewer buffers but 

more transactions. In this thesis, we assume that a temporary row 

buffer per channel is placed on the logic die.

Interaction with memory requests from applications: During a 

page-swap transaction, a command for a memory request from 

applications can interrupt the page-swap transaction. That is, the 

page-swap transaction is paused since an ordinary memory 

transaction has a higher priority than a page-swap transaction. 

However, it is prohibited to precharge or update an opened 

(activated) row of any bank which is involved with a page swap 

transaction, because it requires activating the target row again or 

corrupts values in a page being swapped. To protect against these 

hazards, if a memory controller sends a command for ordinary 

memory requests to banks involved with a page-swap transaction, 

the stacked memory sends an exception signal back to the memory 

controller through a dedicated pin (similar to AERR and DERR in 

HBM). Then, the memory controller suspends all commands which 

head to the bank. After the page-swap transaction is completed, 
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the memory controller resumes transactions for these memory 

requests.

Hot-page selection algorithm: In any heterogeneous memory 

system, it is important to precisely determine which pages are hot 

because bringing wrong pages to fast memory degrades 

performance. To determine which pages to swap between PerfD

and CapD, we devise a hot page selection algorithm. Specifically, we 

leverage CHOP-AFC (Caching HOt Pages Adaptive Filter Cache) 

[30], which was proposed for large DRAM cache, to place hot pages 

in PerfD without too many page swaps between CapD and PerfD.

CHOP is proposed to choose hot pages based on history counters. 

Similar to CHOP, our hot-page selection algorithm requires a 

history counter for each page, and the counter value (set to zero in 

the beginning) is increased by one when a request is sent to the 

corresponding page. When the count value of a page exceeds a 

configured threshold, that page is regarded as a hot page. This hot 

page will be swapped to PerfD, and the count values of a page group 

are right-shifted by 1 bit to attenuate the history information (the 

count values being reduced into half). As mentioned above, our 

algorithm requires counters for each page and locates them on the 

logic die of a 3D-stacked memory. For example, a 28 GB memory 

package which consists of two 2 GB PerfD dies and six 4 GB CapD

dies, needs 5.25 MB SRAM storage for a 6-bit counter per 4 KB 

page. A logic die is large enough to hold that size [32]. The cost 

can be further reduced by implementing a counter cache in a way 

similar to populating the remapping table cache as described in 
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Section 2.3.1. We estimate that the cost of an exemplar 48 KB 

counter cache located at the logic die is 0.8% based on CACTI [13].

Prior work [30] also proposed an enhanced version of CHOP 

(CHOP-AFC) to utilize memory bandwidth more efficiently. If the 

number of memory requests within a certain time period exceeds a 

threshold, CHOP-AFC transfers hot pages only. Otherwise, it 

swaps all accessed pages on demand. CHOP-AFC counts the 

number of memory requests, but it requires a significant amount of 

logic on the memory controller. By contrast, we monitor the number 

of pending memory requests in the request queue; such a feature is 

already implemented in the contemporary memory controller. When 

the queue size exceeds a given threshold value, the memory 

controller can send a command or a signal through a dedicated pin 

to a stacked memory.

High speed in-memory copy: With 3D-XPath, we can also perform 

any to any in-stack copy with no restriction of source and target 

addresses. The copy method can utilize the implemented migration 

hardware and bypass processors. It first activates the source row, 

saves data in the migration buffer in the logic die, and then copies 

data to the target row. When the source and destination channels to 

be copied are different, using 3D-Path implementation, the copy 

operation is performed without size and address restrictions. The 

user can control in-memory copy by sending an instruction to the 

corresponding memory controller. The time taken for copying is 

two 128 tCK cycles per 4 KB row copy in addition to time for 

activation of the source and target rows.
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Figure 17 Hot page migration process exploiting 3D-Path and XPath. 3D-Path can redirect a memory transaction from the occupied 

TSV channel to another free channel. XPath can (1) read data from CapD and PerfD to swap buffers on the logic die simultaneously 

and (2) write data back to destination dies concurrently by exploiting more TSVs of XPath
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2.4 EXPERIMENTAL METHODOLOGY

Table 1 Latency of PerfD and CapD

Table 2 SPEC CPU2006 multi-programmed workload groups

Group SPEC CPU 2006 applications

mix-high0~5 mcf, milc, leslie3d, soplex, GemsFDTD, 

libquantum, lbm, omnetpp, sphinx3

mix-med bzip2, gcc, bwaves, zeusmp, gromacs, cactusADM, 

h264ref, astar, wrf, xalancbmk

mix-low perlbench, gamess, namd, gobmk, dealII, povray, 

calculix, hmmer, sjeng, tonto

mix-blend mcf, bwaves, bzip2, calculix, lbm, milc, 

cactusADM, wrf, hmmer, soplex, xalancbmk, 

dealII, leslie3d,

libquantum, h264ref, zeusmp

We modeled a chip-multiprocessor system to evaluate the system

level impact of the proposed stacked memory architecture. We 

modified dist-gem5 [4] to simulate full-system configurations with 

the network subsystem and McSimA+ [3] to support the 

asymmetric timing parameters for stacked memory, which are 

enumerated in Table 1. The system has 16 out-of-order cores. 

Each core operates at 4 GHz, has peak IPC of 4, and is equipped 

with separate L1 instruction and data caches and a combined L2 

cache, all with 64B cache lines. The size and associativity of each 

Description PerfD CapD

tRCD 12 18

tRP 13 20

tCL 12 16

DQ size 256 128

Burst Latency 2 4

Capacity Density 1 2
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L1 cache and L2 cache are 16 KB and 4, and 512 KB and 16, 

respectively. A linear hardware prefetcher [31] detects and 

prefetches streams of consecutive memory accesses. Each memory 

controller (MC) controls one proposed 3D-stacked memory with 

four 32 GB/s channels, and has 64 request queue entries. The 

capacity of our stacked memory is 28 GB. Each channel consists of 

4 ranks and each rank consists of 4 bank groups. For PerfD dies 

each bank group consists of 8 banks, whereas for CapD dies each 

bank group consists of 16 banks. The memory controller adopts the 

Parallelism-AwaRe Batch Scheduling (PAR-BS) [42] and adaptive 

open page management policy [23]. For dist-gem5 simulations, we 

set the network and storage subsystem parameters to model a 

10Gb Network Interface Card and high-performance SATA SSD.

We used two different OLDI applications, Apache and memcached. 

For Apache, a server system is set with MySQL and Apache2 web 

server. We prepared Apache with different memory capacity values 

to show that the increase in memory capacity with CapD affects the 

performance. We sent enough queries to load the data from the 

storage into the main memory for these two applications for warm-

up; then we made checkpoints and the client sent queries to 

determine the response time and service rates of the server. When 

the server receives a query through the Apache2 server, it finds 

and returns values from the database to the client.

To evaluate the performance of non-OLDI applications, we used 

four types of multi-programmed (mixed) workloads which consist 

of SPEC CPU2006 [17] applications executed with reference data 
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sets. We used Simpoints [54] to extract the most representative 

simulation points of each SPEC CPU2006 application. Each 

simulation point consists of 100M instructions. For each multi-

programmed workload, a simulation point is assigned to each core, 

and one or two highest weight points are used per application. We 

classified each benchmark to one of three groups based on the L2-

cache Misses Per Kilo-Instructions (MPKI) [24], each called mix-

high, mixmed, and mix-low (Table 2). We populated six multi-

programmed workloads from mix-high, called mix-high [0–5]. The 

other group, called mix-blend, consists of five applications from 

mix-high, six from mix-med, and five from mix-low. We used 

SPLASH-2 [61] and PARSEC [9] benchmark suites to evaluate the 

performance of multi-threaded environment for regions of interest. 

We used the datasets in [8] for SPLASH-2, and simlarge datasets 

for PARSEC [9]. We used iperf [2] to measure the performance of 

the any-to-any in-stack copy proposed in this thesis. iperf is a 

TCP/UDP-based network bandwidth measurement application that 

prints network bandwidth of the system. The major network 

overhead is interrupt processing cost, device driver overhead, 

checksumming, and buffer copying (the overhead of buffer copying 

is about 23%) [7]. Exploiting DMA reduces CPU overhead for 

memory copy, but it still suffers from throughput limitation 

originating from CPU-side datapath [22]. To show how faster 

memory copy affects network performance, we compared default C 

library memory copy, zerocopy using DMA, and 3D-XPath copy.

We obtained the latency value of PerfD and CapD using an industry 
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proprietary evaluation setup (Table 1). The write recovery delay 

(tWR) of CapD is not significantly worse than that of default DRAM 

dies even if CapD employs In-DRAM ECC, as opposed to the prior 

work [11]. This is because the granularity of data reads and writes 

to an activated row(i.e., 512b) is larger than the data size of a 

codeword of In-DRAM ECC (e.g., 128b) because only a single 

DRAM die is involved in our 3D-stacked memory whereas several 

DRAM dies participate in data transfers for memory modules in 

DDRx. The page-swap scheme requires 1.8% more space for 

remapping table and hot page counter cache on the logic die. In 

addition, more TSVs and structure for XPath and 3D-Path cost 2% 

and 1.5% more space, respectively.
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2.5 EVALUATION

To evaluate the effectiveness of 3D-XPath in this thesis, we take 

the 3D-stacked Heterogeneous DRAM consisting of 2 PerfD and 6 

CapD dies without 3D-XPath (denoted by He) as our baseline for 

performance evaluation, unless mentioned otherwise. We test the 

three other configurations as follows: (1) He with Swapping hot 

pages (HeS), (2) HeS with XPath (HeSX) and (3) HeS with 3D-

XPath (HeS3D-X).

2.5.1 OLDI Workloads

In this evaluation, we set the dataset size of Apache and 

memcached databases to 4 GB and 2 GB, respectively. We use such 

memory capacity considering that the full-system simulation time 

is proportional to the dataset size. However, to appropriately 

capture the impact of memory capacity on mean and 95th-

percentile response times for a given dataset size, we first use a 

physical machine with larger memory capacity and dataset size. 

Then we configure our simulation environment such that the 

simulation gives similar trends in terms of mean and 95th-

percentile response times for the chosen dataset size (e.g., 4 GB 

for Apache). The evaluation of Apache was conducted in two 

dimensions.

First, we make clients send more Requests Per Second (RPS) than 

a server can handle, and measure the throughput of a given system 

in terms of Responded RPS (RRPS), as we change the memory 
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capacity. In this scenario, RRPS is always smaller than RPS as some 

requests are not responded. When the dataset size is larger than 

the memory capacity, page faults (i.e., page swaps between storage 

and memory) frequently occur, limiting RRPS. For example, Figure 

18 shows that 4 GB He gives 78% more RRPS than 2 GB He, which 

shows the benefit of larger memory capacity. Furthermore, for the 

same memory capacity, HeS3D-X performs 24% (1 GB), 23% (2 

GB), and 17% (4 GB) better than He. Considering the same number 

of stacked dies per DRAM package, 3D-XPath DRAM can provide 

1.75× larger capacity than 3D-stacked DRAM with only PerfD. 

Although not shown in Figure 18, 14 GB HeS3D-X can provide 11% 

more RRPS than 8 GB 3D-stacked DRAM with only PerfD, 

demonstrating the benefit of a larger capacity heterogeneous 

memory system.

Second, to fairly compare mean and 95th-percentile response 

times across different configurations, we find the RPS that allows a 

server with HeS3D-X to respond to all the requests (i.e., RRPS = 

RPS) and then apply that RPS to all other configurations. Figure 19 

shows the mean and 95th-percentile response times for various 

configurations. Especially, we use uniform and skewed distributions 

to model the locality of service requests from clients. For the 

uniform distribution case, the mean and 95th-percentile response 

times decrease as we increase memory capacity ( “ apache-

uniform” in Figure 19). For example, 8 GB He gives 62% and 66% 

lower mean and 95th-percentile response times than 4 GB He, 

respectively. For the skewed distribution case which exhibits the 
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locality in requested items, 8 GB HeS3D-X offers 29%, 32%, and 

23% lower 95th-percentile response time than 8 GB He, HeS, and 

HeSX, respectively (“apache skewed” in Figure 19).

HeS actually gives 3% longer 95th-percentile response time than 

He because page-swap transactions block channels from servicing 

memory requests from Apache. Furthermore, although not shown in 

Figure 19, compared with 16 GB 3D-stacked DRAM with only 

PerfD, 28 GB HeS3D-X gives 3% lower 95th-percentile response

time, but 28 GB He provides 2% longer 95th-percentile response 

time. These demonstrate the importance and efficacy of providing 

larger capacity with 3D-XPath. Figure 19 also shows the mean and 

95thpercentile response times of memcached for 4 GB and 8 GB 

configurations. As memcached stores all data in memory, it does not 

access the storage device after the warm-up period. For 

memcached, 8 GB HeS3D-X offers 30%, 32%, and 25% lower 

95th-percentile response time than 8 GB He, HeS, and HeSX, 

respectively.
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Figure 18 Memory capacity versus performance in terms of Responded Requests Per Second (RRPS) on Apache for “He”terogeneous 

3D-stacked DRAM (He), He with “S”wapping pages (HeS), HeS with “X”Path (HeSX), and HeS with “3D-X”Path (HeS3D-X).
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Figure 19 Relative mean and 95�ℎ-percentile response times of Apache and memcached for He, HeS, HeSX, and HeS3D-X, where 

values are normalized to the mean response time of 4 GB He.
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2.5.2 Non-OLDI Workloads

Multi-programmed: For the most memory-intensive multi-

programmed workload, mix-high0, HeS3D-X provides 4.9%, 3.2%, 

2.0% higher performance and 5.2%, 4.5%, 3.4% lower read latency 

than He, HeS, and HeSX, respectively. This shows the benefit of 

3D-XPath which reduces the negative impact of additional queuing 

delay imposed by more frequent accesses to PerfD. Evaluating all 

six mix-high workloads (Figure 20), HeS3D-X provides 2.8%, 

1.9%, 1.0% higher performance and 3.4%, 3.3%, 1.6% lower read 

latency than He, HeS, and HeSX. As expected, mix-low workloads 

do not benefit from HeS3D-X in terms of performance and read 

latency because they are less memory-intensive.

Multi-threaded: For memory-intensive radix, HeS, HeSX, and HeS 

3D-X give 1.1% 2.6%, and 5.9%, higher performance (Figure 21) 

than the baseline He, respectively. radix has a high degree of 

locality in memory accesses, and hence utilizes the lower access 

latency offered by PerfD dies effectively. For other workloads, 

HeS3D-X provides up to 2.6% higher performance than He.

Memory-copy bandwidth: To compare memory-copy performance, 

we ran iperf over various TCP window sizes. We tested three 

configurations of 1) using standard C library ’ s memory copy 

(normal), 2) exploiting DMA feature implemented at iperf (DMA), 

and 3) leveraging the copy instruction proposed at 3D-XPath (3D-

X) on Figure 22. With the proposed 3D-XPath copy, we achieve 

higher network bandwidth regardless of TCP window size (Figure 
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11). DMA can improve performance by offloading memory copying, 

but its degree of improvement is still limited. When TCP window 

size is 416 KB (the default maximum TCP window size of Linux), 

proposed 3D-X copy provides 39.8% higher network bandwidth 

than the normal memory copy.
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Figure 20 Relative IPC, EDP and average memory latency to handle LLC misses for multi-programmed .
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Figure 21 Relative IPC, EDP and average memory latency to handle LLC misses for multi-threaded workloads.
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Figure 22 Performance of memory-copy.  Normal is using cpu-based memory copy, DMA is using internal PCIe DMA, and 3D-X is 

using alternative path (3D-X Copy).
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2.5.3 Sensitivity Analysis

PerfD hit rates over PerfD and CapD ratios: We change the capacity 

ratio between CapD and PerfD and evaluate mix-high0 to observe 

the effectiveness of the hot-page swapping algorithm. Figure 23(a) 

plots the PerfD hit ratio of He (black bar) which is matched with the 

capacity ratio between CapD and PerfD. By applying hot-page 

swaps (HeS), the PerfD hit rate is increased by 8-9%. As 3D-

XPath makes page swaps faster, it further improves PerfD hit rates 

by up to 5%. 

Performance sensitivity to page size: We conduct more evaluations 

to find the rationale behind choosing 4 KB as a row buffer size, 

which is also used as the unit size of a page swap. Figure 23(b) 

shows the relative IPC of HeSX and HeS3D-X over various page 

(row buffer) sizes (the baseline is HeS with 1 KB page on mix-

high0). The 4 KB page size performs best because smaller page 

sizes (e.g., 1 KB and 2 KB) lead to too frequent page swaps, 

whereas larger page sizes (e.g., 8 KB) take too long per page swap 

during which ordinary memory transactions to the corresponding 

bank groups are blocked. Moreover, a smaller page size requires a 

larger remapping table and more space for hot-page swap counters. 

Migration block size: Figure 24 (a) shows how different migration 

block sizes affect performance. On mix-high0, 512 B leads to the 

highest IPC, but 4096 B and 1024 B sizes achieve the highest IPC 

on mix-high1 and mix-high2, respectively. Performance is not 

much sensitive to migration block size. Thus, similar to page size, 
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we use 4 KB page size as smaller granularity needs larger 

remapping tables and hot-page swap counters. 

Channel utilization: Evaluating the 3D-stacked DRAM only with 

PerfD with mix-high0, we observed that multiple channels are not 

utilized at a certain moment as shown in Figure 24 (a) (an interval 

of 400μs is presented with the sampling rate of 2.5 MHz). To 

further support this observation, we monitor all memory 

transactions and measure the number of cycles for which a given 

channel stays unoccupied (Figure 23(c)) for the same simulation. 

At least one channel is empty during 8 cycles for more than 80% of 

total simulation time. This means that we can efficiently utilize 

these idle channels by 3D-Path. 

Page swapping threshold: Figure 23(d) shows the relative IPC of 

HeS, HeSX, and HeS3D-X for different page swapping threshold 

values, which indicates that ‘ 63 ’ (6 bits) gives the highest 

performance. If we apply more than 6 bits for a hot-page counter, 

the performance improvement would diminish or page swaps occur 

very infrequently. On the contrary, using smaller threshold values 

incurs very frequent page swaps and increases time spent for page 

swaps.
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Figure 23 Sensitivity analysis for sweeping each conditions. 
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(a) Channel utilization by the time on the part of mix-high0

(b) Block size of swap operation with page size 4kB.

Figure 24 Sensitivity analysis for sweeping each conditions.
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2.6 RELATED WORK

Enhancing I/O performance of 3D-stacked DRAM: Lee et al. 

modified the TSV structure on 3D-stacked DRAM for simultaneous 

multi-die accesses [35]. As opposed to 3D-XPath, they assumed 

much higher bandwidth between dies and proposed that each die 

has different I/O bit rates. 

Asymmetric DRAM: CHARM changed the aspect ratio of a DRAM 

mat, a small two-dimensional array of cells, to reduce access 

latency of DRAM banks depending on physical distance between a 

bank and I/O [60]. TL-DRAM [36] divides bitlines within a mat 

into two and provides a way to access a portion of cells closer to 

sense amplifiers with lower latency. Shin et al. observed that newly 

refreshed row has more charges and proposed to access them with 

lower latency [55]. These are orthogonal to 3D-XPath. 

NVM+DRAM hybrid memory systems: JEDEC introduced a 

NVDIMM standard [21], where a DIMM combines DRAM and NVM 

where NVM preserves data of DRAM (NVDIMM-N) or composes a 

larger memory space with DRAM (NVDIMM-P). 3D-XPath can 

provide a high-performance memory-controller-agnostic solution 

to NVDIMM-P types of memory. PCM has been proposed as a sole 

replacement of DRAM for main memory [34] or combined with a 

last-level DRAM cache [40, 48]. They either adjusted row buffer 

size to alleviate the power impact of PCM writes or populated more 

row buffers to mitigate the performance penalty of high PCM 

latency. Dhiman et al. proposed another hybrid system where 



74

DRAM and PCM constitute separate partitions in a single address 

space [18], and they augmented memory controllers with access 

map cache and page swapping manager to reduce power 

consumption. Meza et al. proposed fine-granularity management for 

DRAM cache [40]. They proposed TIMBER for caching metadata 

for recently accessed rows in a buffer, with storing tags in memory. 

They replaced a large SRAM tag memory to small SRAM tag 

cache.We used a small sized translation SRAM cache to achieve 

similar benefits. 

Page placement in hybrid memory systems: Dong et al. migrate hot 

pages from an off-chip memory to an on-chip memory [19]. 

Through modifying on-chip memory controllers, it can manage 

migration between off-chip and on-chip memory. They focused on 

how to utilize on-chip and off-chip DRAM with migration, whereas 

3D-XPath is between hybrid off-chip memory types. [50] 

architected a memory controller to observe access patterns and to 

migrate page frames to PCM to DRAM. They proposed migration 

policies and augmented memory controllers to monitor access 

pattern whereas our thesis suggested an alternative path and room 

for migration on stacked hybrid memory with built-in swap control 

logic. CAMEO [16], ToR [56], and SILC-FM [51] suggested 

mechanisms to swap data between fast and slow memory at the 

granularities of cache block (CAMEO), page (ToR), and in-

betweens (SILC-FM). Compared to these proposals, 3D-XPath 

focused on optimizing the microarchitecture of fast and slow 

memory being stacked together to provide cost-effective 
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alternative path between heterogeneous memory dies.
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Chapter 3

Boosting bandwidth –Dynamic Channel Sharing 

on 3D Stacked Memory

3.1 Background: Memory Operations 

3.1.1. Memory Controller

In a modern computer system, a read or write request from the host 

is assigned to a different bus node chosen by a predetermined 

address mapping via a bus interconnect [91]. Requests to the 

DRAM memory address region are then transferred to the memory 

controller. In order to communicate with the memory, the memory 

controller stacks the requests in its internal queue, and rearrange 

them according to its policies [104]. After that, the memory 

controller converts them to the external interface format such as 

DDRx [93]. These memory controllers are designed to be 

physically adjacent to one another within a chip. In particular, for 

Intel Xeon broadwellx and earlier, 2 memory controllers are next to 

each other, and for Intel Xeon SkylakeX, 3 memory controllers are

adjacent. Those memory controllers are assigned to one bus 

interconnect node (home agent). For AMD’s EPYC, up to eight 

memory controllers can be connected per socket, and each socket 

is made up of four multi-chip modules. In addition, each module can 

locally use two memory controllers which are located very close to 

each other and the other memory controllers work as remote 
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memory controllers.

3.1.2 DRAM column access sequence 

The read or write commands requested by a host on a channel are 

generally performed in units of cache line size. In a typical 

computing system, the cache line size is 64 B. Since the area and 

performance overhead from wider bus is larger when 64 B are 

transmitted at once with off-chip interface, the data bus width is 

remained narrow. For example, DDR3 and DDR4 are configured 

with 8 B per channel [93] and DDR5 is configured with 4 B per 

channel. The memory controller sends a read command to the 

command address bus and awaits data transfer for column latency 

(tCL), the time required to transfer data through DRAM internal 

datapath. After tCL, data is transmitted from the memory through 

the data bus, and in the case of a write, the memory controller 

transmits data after column write latency (tCWL). In both cases, 

data is transferred for burst latency (tBL), and stored in a temporal 

storage called the prefetch buffer. The consecutive transfer 

between prefetch buffer and memory controller is called burst 

transfer. The length of this transfer is called burst length (BL). For 

example, BL of DDR3 and DDR4 is 8 and DDR5 performs 16 burst 

transfers. For read, after this burst transfer, the data buffer is filled 

in the MC and transferred to the requested cache through the on-

chip network and for write, the write FIFO in prefetch buffer is 

filled and reflect to DRAM cells for write recovery time. As a result, 

the FILO (First In Last Out) latency required to process one column 
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access command, which is the time the request actually remains in 

the queue on the memory controller side, becomes tCL + tBL.

3.2 Related Work

Chen et al. [84] proposed that a switch is mounted on the power pin 

and the rank branch point of the DIMM is implemented on-chip 

before the pad on a generic DDR DIMM (Dual Inline Memory 

Module), and use it with two modes. The multi-bus mode allows 

multiple DIMMs to be controlled by additional channels through the 

power pins which is changed to DIMM channel, and the single-bus 

mode uses multiple DIMMs as a rank in the general way. Our 

proposed architecture is similar in that the data can be transferred 

using a path other than the assigned channel. However, we aim to 

reduce latency by using another memory channel. In practice, the 

number of pins that can be used depends on the power requirement 

of the system and the power ring configuration inside the chip. Thus, 

it is hard to change the functionality of the power pins. Also need to 

consider about the location of IO pads and the routing of printed 

circuit board (PCB). All of these constraints are important in high-

speed interfaces as DDR interface and must be taken carefully.

DLB [107] proposes to dynamically adjust the ratio of Tx lane and 

Rx lane in HMC by analyzing the memory characteristics of the 

workload which varies with time. This thesis is similar in that we 

use another lane to process memory requests. However, DLB needs 

to distribute the lane with each epoch in real time, by analyzing the 

memory access characteristics of the workload. In addition, only 
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HMC uses bi-directional serial link, which makes it impossible to 

apply this architecture to other DRAM interfaces as these links 

does not support non-deterministic timing parameter.

In Heterogeneous Multi Channel [106], DRAM sends different 

commands to each sub-rank of each DRAM through the demux 

register previously proposed in MCDIMM [80]. They proposed a 16 

and 32bit partial DRAM access using DIMM divided into four groups. 

In other words, it is possible to allocate requests in sub-rank units 

and maximize bank level parallelism by implementing multiple 

virtual memory channels, thereby reducing power consumption and 

performance of DRAM. This idea brings increased burst latency 

while increasing BLP, but our thesis focuses on reducing burst 

latency through channel sharing while maintaining BLP.
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3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM

In this section, we describe the memory microarchitecture for 

supporting proposed channel sharing. In this thesis, we set a 

baseline as a HBM2-like 3D stacked memory which has 2.0 Gbps 

interface, 64bit data bus, and 4tCK tBL. We use this 3D stacked 

memory on the typical CPU system as [87], [98]. In the baseline 

memory interface, each channel is transferred in the same manner 

as in Figure 25(a), and data between memory controller and 

memory is transferred only through each corresponding memory 

channel. In this thesis, we used a structure in which all memory 

channels are connected to the bottom DRAM die of a 3D stacked 

memory as described in 2.3. The data in the prefetch buffer (read) 

or the memory controller queue (write) is processed with the other 

idle channels as shown in Figure 25(b) to reduce the burst length. 

Proposed channel sharing idea will help to improve the performance 

of a latency-critical server. That is, the memory request of the 

corresponding channel can be processed quickly, shortening latency. 

Thus, the read latency of DRAM can be reduced and memory 

controller queueing latency will be decreased.
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Figure 25 Timing diagram about proposed channel sharing. (a) shows 

conventional data bus transfer and (b) shows proposed data bus transfer. 

Channel sharing reduces FILO (First In Last Out) latency from reduced burst 

length.
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3.3.1 Hardware Requirements

In order to use channel sharing, it is necessary to change the 

memory microarchitecture in the system as shown in Fig 26. The 

description of each component is as follows.

Channel Sharing Controller: The present 3D stacked memory 

permanently disables assigning channel TSVs to other dies as 

described in Section 3.1.1. However, in the proposed system, TSVs 

should be configurable so that other channels can be used upon 

request from memory controller. Thus, a channel sharing control 

logic is required for each DRAM die to receive channel sharing 

information transmitted from the memory controller, and to use 

another channel according to this information.

Enhanced Prefetch Buffer: The structure of the DRAM die needs to 

be changed so that data can be transferred through the TSVs of the 

other channels in the prefetch buffer in the DRAM die. That is, the 

prefetch buffer (FIFO), which originally supports one FIFO entry in 

one cycle, must be designed to transmit multiple FIFO entries 

through multiple channels in one cycle. In order words, the prefetch 

buffer must support variable data length and the input (write FIFO) 

and output (read FIFO) port (channel TSVs) of prefetch buffer 

must be configurable with MUX and DEMUX pair. Thus, the data of 

the prefetch buffer can be transmitted using another channel.

Channel Status Shifting Register: To support channel sharing, the 

system needs to control command and datapath amongst all sharing 

enabled memory controllers. The memory controller should observe 
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the timing of commands sent by all memory controllers to know if 

the channel is available. As described in the Section 3.1.2, the data 

bus of the memory controller will be occupied after the read or 

write command is issued and tCL or tCWL has passed, during tBL. 

In order to implement channel sharing, a memory controller that 

wants to rent a channel must check whether the desired channel is 

shared with another memory controller. Thus, we implement 

channel status shifting register (CSSR) to check the status of the 

channels with occupancy information from read and write command 

from the memory controllers. It is composed of shift register blocks 

as many as the number of shared channels, as shown in Fig. 27. 

When a read or write command is issued from the memory 

controller queue, it scans for available reservation slots after the 

latency (tCL or tCWL) at which the data bus transmission begins. 

The shift register corresponding to each memory controller marks 

availability in timing slots with one-hot encoding, which means each 

bit represents for the use of channel. This timing slot is shifted by 

one every memory cycle (1 tCK), and the memory controllers 

checks the availability of its channel and other channels through the 

information on this slot.

Channel Sharing Indicator: An additional channel sharing indicator 

signal is needed between the memory controller and the memory to 

indicate which channels perform data transfers. When memory 

controller sends a read or write command, it identifies empty 

channels in each cluster and sends a signal to memory to indicate 

which channels is to be used before the burst transfer starts. When 



84

burst output starts in the DRAM die, this indicator will control the 

enhanced prefetch buffer of the die and send data through shared 

channel each cycle.

Clustered Memory Controller: We need a channel sharing enabled 

memory controller which supports data decomposition (write) and 

composition (read) as clustered memory controller to support 

channel sharing. Also, the clustered memory controllers must be 

physically adjacent because memory controllers require 

synchronized clocks. If the clock is not synchronized, the data bus 

would be skewed between memory controllers, thus making it 

difficult to apply the proposed channel sharing. For this reason, this 

thesis assumes that synchronous clocks are used within memory 

controller clusters. Keeping the clustered memory controllers close 

to each other also reaps the benefit of minimizing the overhead of 

implementing CSSR. The separated memory controllers need 

another path to access the CSSR, which is negligibly short when 

they are physically near. For real-time data decomposition to 

transmit through multiple shared channels, we applied the structure 

from [86] to implement fine data granularity. For read, the 

clustered memory controller receives the data separately and the 

interconnect node merge (composition) the data. For write, data 

decomposition is performed among memory controllers. The master 

memory controller can send write data to the queue of the other 

slave memory controller through additional channel, and this latency 

is hidden by tCWL.

As described in Section 3.1.1, a processor such as Xeon and EPYC 
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has two or three memory controllers located closely to each other. 

As physical area is limited, not all memory controllers can be 

located together. In this thesis, we assume that four memory 

controllers are adjacent to each other and configured as a cluster.

3.3.2 Operation Sequence

The channel sharing operation is ordered as checking, assigning, 

and demoting. 

Check: A memory controller issues a memory command and checks 

whether the status register is occupied after column latency (tCL) 

by scanning the status register. It counts the total number of 

available channels and operates as follows depending on whether 

the other channels are available or not. 

Assign: If the other channels are available, the number of currently 

available memory channels is counted and the master memory 

controller tries to transfer data using the other channels, and each 

memory controller will mark the status register with one-hot 

encoding to avoid confliction. In this thesis, we assume that channel 

sharing controller only enables power of 2 concurrent shared 

channels, or 1, 2, and 4 shared channels in our test environment. 

Demotion: However, when all other channels are occupied or 

unavailable, the memory controller uses only its own channel to 

read or write data. Then enter the amount of occupancy time (tBL) 

into the CSSR. In this case, if another channel has already reserved 

its channel, memory channel sharing controller will cancel sharing 

request from the other channel. After this, that request is demoted 
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to a lower number of channel shares.
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Figure 26 (a) shows previous 3D stacked memory and (b) shows proposed channel sharing enabled memory. Bottom of block diagram 

shows memory read transfer sequence. Proposed memory controller has modification from memory and host. Previous 8 B data bus 

width extended up to 32 B and tBL reduced to quarter.
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This process occurs in parallel for each memory controller and 

takes a maximum of 3 cycles (check and assign – demote to 2 

channels – demote to 1 channel) after issuing a command. When a 

one-hot encoding exception (greater or equal than two of 1 is 

found in entry) is detected, this is an exception where commands 

are generated from two or more memory controllers at the same 

time and the system will correct this exception before the data 

burst. For every cycle, it is possible to prevent or modify the 

allocation of the overlapped memory channel in advance. For 

example, in Fig 28 at Now, MC 0 and MC 1 are set to the first and 

second bits of the timing slot when they realize that the current four 

channels are all empty and available. In this situation, it is 

recognized that one-hot encoding exception occurs and two channel 

sharing commands are assigned to every channel. Thus at the next 

cycle (Now + 1 tCK), the sharing level is demoted to try to share 2 

channels for each memory access command. In this situation, if no 

more request is issued from memory controller, 2 channel sharing 

is performed at Now + 2 tCK top (no request case). However, if 

the MC 2 issues the command as Now + 2 tCK bottom as Figure 29, 

the system recognizes that one-hot encoding exception happens 

again and a channel sharing conflict occurred. In the next cycle, 

channel sharing is demoted as Now + 2 tCK and MC 0 cancels 

channel sharing and it uses only its own channel.
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Figure 27 The structure of the channel shifting status register (CSSR)
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Figure 28 The example of channel shifting status register (CSSR) operation. CSSR performs availability check, assign, and demotion 

sequence. 
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Figure 29 Continued example of the CSSR. Detailed operation described on Section 4.2.
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3.4 Analysis

3.4.1 Experiment Environment 

We use McSimA+ as the system simulator and we modified 

simulator to support channel sharing. When a memory request 

occurs, find target channel with sequence which is described in 

Section 3.3.2 and modify the tBL parameter to reflect this. The 

experimental target system consists of 16 out-of-order cores at 4 

Ghz, HBM-like 3D stacked memory with 1,2 and 4 clustered 

memory controllers, and each cluster consists of 4 memory 

channels. Target memory timing constraints are based on HBM2 

[95] and DDR4 SDRAM [93]. The major parameters; tRCD, tCL 

(tCWL), and tRP of DRAM are 14 ns, 14 ns, 14 ns. We locate 

channel interleaving bit as conventional Intel Xeon server on 7 bit 

[92]. We set tBL is 4 (DDR4) or 8 (DDR5), where data bus width is 

respectively 64 and 32 bits, and prefetch size is 512 bits. SPEC 

CPU2006 benchmark suite [88] is used for single and multi-

programmed workloads. We choose eight most memory intensive 

applications (mcf, milc, leslie3d, soplex, GemsFDTD, libquantum, 

lbm, and omnetpp) as spec-high. We use two multi-programmed 

workloads called mix-high and mix-blend, where mix-high is 

composed of 16 workload instances from the spec-high and mix-

blend is from all SPEC CPU2006, which are selected evenly 

considering memory intensive characteristic. SPLASH2 [102], 

PARSEC [83], MICA [99], and pagerank [82] are used for multi-

threaded workloads.
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3.4.2 Performance 

Figure 30 shows the experimental results while increasing the 

number of channels (number of memory clusters) from 4 to 16. 

Mix-high showed the greatest performance improvement among 

multi-programmed workloads, and 3.3%, 4.3%, and 3.2% 

performance improvements were observed at one, two, and four 

clusters, respectively. In case of fft, performance improvement was 

2.5%, 3.6% and 2.3%. For average read memory latency, mix-high 

decreased 6.73%, 8.22%, and 5.52%, and fft showed 7.05%, 10.18%, 

and 7.09%, respectively. In this case, the performance shows the 

greatest performance improvement when the number of clusters is 

2. In addition, the performance improvement is lower when the 

number of clusters is 4 because memory level parallelism of the 

system increased, and the effect of channel sharing is relatively 

reduced. In the case of Figure 31, BL is doubled to show that the 

proposed channel sharing is effective when the number of clusters 

is fixed to 1. As mentioned in Section 3.1, the latest BL of DRAM 

such as DDR5 is increased to 16 or 32. In the experimental results, 

baseline system shows 2.2% average performance improvement 

and 5.4% reduced average read latency, and when the BL was 

doubled, it shows 2.5% and 6.7%, respectively.
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Figure 30 Relative IPC and Average read latency of multi-programmed and 

multi-threaded workloads depends on different number of clustered memory 

controllers

Figure 31 Relative IPC and Average read latency of multi-programmed and 

multi-threaded workloads depends on burst length
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3.4.3 Overhead 

Proposed channel sharing scheme requires architectural support, 

and in this section, we will describe the overhead. First, we 

calculated overhead for the memory side. For multipoint channel 

support on the DRAM die, each DRAM die requires a channel 

sharing controller and enhanced prefetch buffer. The timing and 

area overhead of the controller logic is negligible for the total area 

of HBM2 DRAM die size and MUX - DEMUX pair requires less than 

0.1% of total DRAM die size through design. Those blocks do not 

increase critical path latency. On the host side, clustered memory 

controller poses design challenges. In this thesis, it is assumed that 

the memory controllers of a sharing cluster are physically located 

next to each other. Timing closure for fabricating a silicon with 

synchronous clock should be hard and intricate. However, we can 

relax the external interface part of timing constraint for each 

memory controller and compensate them on run time with existing 

techniques (data strobe for DDR1, write leveling for DDR3, DFE 

(Decision Feedback Equalizer) [101]). For example, the system 

can perform additional training for each channel sharing case on 

initializing phase of the memory or booting the system. Also, the 

memory controller must be designed to support composition and 

decomposition of data from the other controller as mentioned in 

Section 3.3.1. We modified the existing memory controller from 

Xilinx memory interface generator for Virtex Ultrascale [103] to 

support this, and it works at the same target frequency and needs 
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less than 1% of total area. In addition, the channel sharing timing 

slot which consists of registers causes additional area cost. One-

hot encoded signal requires flip flops as much as the number of 

memory controllers per cycle. It also needs an additional flag to 

consider read to write or vice versa turn-around latency of the 

memory channel. In this thesis, we implement it conservatively and 

do not perform any channel sharing when the data bus direction of 

the shared channel is flipped. This can solve the signal integrity 

problem from signal direction. Thus, the memory controller cluster 

needs to have shift registers (1 bit: read or write, 4 bits: one-hot 

encoded channel number) 5 bits × (max (tCL) + max (tBL)) ×

the number of memory controllers. Approximately 60 B per 

memory controller cluster are required, which is negligible 

compared to the total area of the memory controller. Also, in order 

to send channel sharing indicator signal to the 3D stacked memory, 

each channel should know which channels will be used. Thus, 

log2(num of MCs) × num of MCs bits should be transmitted each 

clock. For example, 4 memory channels per cluster requires 2 × 4 

= 8 bits. To send this data, we can use the data access pin of 3D 

stacked memory which is originally assigned for multi-drop DRAM 

die test.
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Chapter 4

CONCLUSION

In this thesis, we have proposed 3D-XPath, and bonding memory 

channel to increase the system performance and enhance the 

capacity. For 3D-XPath, our proposed managed DRAM architecture 

which provides cost-effective alternative paths for memory 

transactions on heterogeneous 3D-stacked memory composed of 

high-density and fast DRAM dies. 3D-XPath consists of 3D-Path, 

which diverts memory requests to a more lightly utilized channel to 

mitigate a surge in access time due to a burst of data transfers, and 

XPath, which populates wider (doubled) datapath only for fast 

DRAM dies and dedicates swap buffers to cost-effectively swap 

pages between high-density and fast DRAM dies. Evaluating 

memory- and I/O-intensive applications where memory capacity, 

latency, and bandwidth all matter, we showed that 3D-XPath DRAM 

reduces the high-percentile response time of latency-sensitive 

applications by ∼30% and improve throughput by ∼39%, 

respectively, compared with DRAM without 3D-XPath.

Also we have proposed a channel bonding architecture on 3D 

stacked memory to improve the system performance for server 

system. Channel bonding reduces latency from burst transfers with 

utilizing memory channels and enhances the advantage of multi 

memory channel system - maintaining high data bus utilization. To 

mitigate the trade-off between using a narrow data bus on multi-
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channel and increasing the latency from burst transfers, we share 

the memory channel with the proposed structure. This design 

improved the performance of the server workloads by reducing the 

DRAM access latency and instantaneously increasing the peak 

channel bandwidth.
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국문초록

DRAM 제조 기술의 발전은 속도가 느려지는 반면 DRAM의 밀도 및 성

능 요구는 계속 증가하고 있다. 이러한 요구로 인해 새로운 비 휘발성

메모리(예: 3D-XPoint) 및 고밀도 DRAM(예: Managed asymmetric 

latency DRAM Solution)이 등장하였다. 이러한 고밀도 메모리 기술은

긴 레이턴시, 낮은 대역폭 또는 두 가지 모두를 사용하는 방식으로 밀도

를 증가시키기 때문에 성능이 좋지 않아, 핫 페이지를 고속 메모리(예: 

일반 DRAM)로 스왑되는 저용량의 고속 메모리가 동시에 사용되는 것

이 일반적이다. 이러한 스왑 과정에서 빠른 메모리로의 페이지 전송이

일반적인 응용프로그램의 메모리 요청을 오랫동안 처리하지 못하도록 하

기 때문에, 대기 시간에 민감한 응용 프로그램의 백분위 응답 시간을 크

게 증가시켜, 응답 시간의 표준 편차를 증가시킨다. 이러한 문제를 해결

하기 위해 본 학위 논문에서는 저 지연시간 및 고용량 메모리를 요구하

는 애플리케이션을 위해 3D-XPath, 즉 고밀도 관리 DRAM 아키텍처

를 제안한다. 이러한 3D-톔소를 집적한 DRAM은 저속의 고밀도

DRAM 다이를 기존의 일반적인 DRAM 다이와 동시에 한 칩에 적층하

고, DRAM 다이끼리는 제안하는 3D-XPath 하드웨어를 통해 연결된다. 

이러한 3D-XPath는 핫 페이지 스왑이 일어나는 동안 응용프로그램의

메모리 요청을 차단하지 않고 사용량이 적은 메모리 채널로 핫 페이지

스왑을 처리 할 수 있도록 하여, 데이터 집중 응용 프로그램의 백분위

응답 시간을 개선시킨다. 또한 제안하는 하드웨어 구조를 사용하여, 추

가적으로 O/S 커널과 유저 스페이스 간의 메모리 블록을 자주 복사하는

응용 프로그램의 처리량을 향상시킬 수 있다. 이러한 3D-XPath DRAM

은 3D-XPath가 없는 DRAM에 비해 I/O 집약적인 응용프로그램의 처
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리량을 최대 39 % 향상시키면서 레이턴시에 민감한 응용 프로그램의 높

은 백분위 응답 시간을 최대 30 %까지 감소시킬 수 있다.

또한 최근의 컴퓨터 시스템은 보다 많은 메모리 대역폭과 용량을 필요로

하는 더 많은 CPU 코어를 단일 소켓으로 통합하는 방향으로 진화하고

있다. 이러한 소켓 당 채널 수를 늘리는 것은 대역폭 요구에 대한 일반

적인 해결책이며, 최신의 DRAM 인터페이스의 발전 양상은 증가한 채널

을 보다 잘 활용하기 위해 데이터 버스 폭이 감소되고 버스트 길이가 증

가한다. 그러나 길어진 버스트 길이는 DRAM 액세스 대기 시간을 증가

시킨다. 추가적으로 최신의 응용프로그램은 더 많은 메모리 용량을 요구

하며, 미세 공정으로 메모리 용량을 증가시키는 방법론은 수십 년 동안

사용되었지만, 20 nm 이하의 미세공정에서는 더 이상 공정 미세화를 통

해 메모리 밀도를 증가시키기가 어려운 상황이며, 적층형 메모리를 사용

하여 용량을 증가시키는 방법을 사용한다.

이러한 상황에서, 실제 최신의 멀티코어 머신에서 SPEC CPU 2006 응

용프로그램을 멀티코어에서 실행하였을 때, 항상 시스템의 모든 메모리

컨트롤러가 완전히 활용되지 않는다는 사실을 관찰했다. 이러한 유휴 채

널을 사용하기 위해 하나의 메모리 채널의 피크 대역폭을 높이고 3D 스

택 메모리의 버스트 대기 시간을 줄이기 위해 본 학위 논문에서는 메모

리 채널 공유 아키텍처를 제안하였으며, 하드웨어 블록을 제안하였다.

이러한 채널 공유를 통해 멀티 프로그램 된 응용프로그램 및 다중 스레

드 응용프로그램 성능이 각각 4.3 % 및 3.6 %로 향상되었으며 평균 읽

기 대기 시간은 8.22 % 및 10.18 %로 감소하였다.

주요어 : 메모리 세부 구조, 적층형 메모리, 비대칭 메모리 시스템, 자가

관리 메모리, 핫 페이지 스왑

학  번 : 2014-30815
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