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ABSTRACT
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using 99mTc-labeled mannosylated human 

serum albumin and dye conjugates

Ji Youn Lee
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Purpose:

Sentinel lymph node (SLN) is the first regional lymph node (LN) existing 
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nearest to the primary tumor. The detection of SLN in breast cancer and melanoma 

patients is important to evaluate tumor staging or to establish therapeutic decision-

making. Blue dyes, radiotracers, combination of a radiotracer and blue dye method 

and radiolabeled blue dyes have been clinically used for SLN detection. However, 

these methods still have some limitations. 

Here, the aim for this study was to develop a SLN mapping agent using 

99mTc-labeled mannosylated human serum albumin (MSA) and dyes. Various dyes 

were tested by in vitro experiments such as binding efficiency with MSA, size 

exclusion liquid chromatography with HPLC and fluorescent screening. The 

selected dye, naphthol blue black (NBB) which showed the highest binding 

efficiency with MSA, was tested regarding its ability for SLN mapping by visual 

investigation, fluorescence imaging, and single photon emission computed 

tomography (SPECT)/computed tomography (CT). 

Methods:

Visible screening was performed using 8 different dyes. Each 1 mM dye 

solution was prepared by dissolving 1 μmol of dye in 1 mL of distilled water (DW)

and the solution was serially diluted from 0.25 to 0.001 mM with DW. The color of 

the prepared solutions was compared by visual inspection. To determine e values of 

MSA-dye conjugates, UV-VIS-NIR spectrum assay was conducted and optical 

density (OD) was measured by Varioskan Flash screening mode at 350-850 nm.
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Binding efficiencies between MSA and various dyes were measured by thin-layer 

chromatography at 10, 30 min, 1, 2, 6, and 24 h after incubation. TLC plates were 

scanned by Fujifilm LAS 3000 and the spots were quantified by multi-gauge 3.0. 

HPLC was used to distinguish the size between before and after dye and MSA 

conjugation. Fluorescence imaging was performed at 420-780 nm excitation and 

520-845 nm emission to find out the wavelength band which exhibits strong 

fluorescence for MSA-dye conjugates. To evaluate the ability of MSA-NBB

conjugate for SLN mapping, MSA-NBB conjugate or only NBB was injected to a 

same male BALB/c mice and visible and fluorescence images were obtained at 10, 

30 min, 1, and 2 h post-injection. For SPECT/CT imaging, MSA-NBB conjugate 

was labeled with 99mTc and the conjugate complex was subcutaneously injected 

into the left footpad of the mouse. SPECT/CT images were obtained at 10, 30 min, 

1, and 2 h after injection. 

Results:

All dyes that were used in visible screening showed a clear color at 0.25 

mM. As dilution, some dyes were difficult to identify color of the solution and

NBB, PBVF, NY, BR and EB showed most visible at low concentration at 0.004 

mM. In order to compare each of MSA-dye conjugates by a quantified value, e

values were calculated by Beer-Lambert Law using OD values at peak wavelength. 

MSA-PBVF conjugate demonstrated the highest e value of 141,481 M−1·cm−1, 
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followed by MSA-EB conjugate (99259.3), MSA-ICG conjugate (87037.0) and 

MSA-NBB conjugate (62222.2). Size exclusion HPLC confirmed that MSA-dye 

conjugates was formed as a monomer. All the prepared MSA-dye conjugates was 

stable for 24 h and no other aggregates were found in the chromatogram. TLC 

results showed that binding efficiencies of all dyes were increased depending on 

the concentration of MSA and the reaction time. Especially, NBB had the highest 

binding affinity with MSA among all the tested dyes requiring the least amount of 

MSA (2.5 mg) and the short reaction time (10 min). Binding ratio was calculated 

that 0.7 of NBB was bound with 1.0 of MSA. Based on these results, NBB was 

selected for the in vivo application. Fluorescence of MSA-NBB conjugate was 

detected at excitation 600 nm, emission 670 nm and fluorescence of unbound dyes 

or MSA was not detected at the same range. In visible image, MSA-NBB conjugate 

accumulated more in the popliteal lymph node that NBB alone at all the 

investigational time. The fluorescence of MSA-NBB conjugate and NBB alone 

were accumulated in the popliteal LN at 10 min at 4.48±0.34 and 4.24±0.18 flux 

(108 p/s), respectively. While the fluorescence of MSA-NBB conjugate in the 

popliteal LN was maintained for 2 h (4.81±1.24 flux (108 p/s)), the fluorescence of 

NBB alone rapidly decreased (2.61±0.46 flux (108 p/s)). MSA-NBB conjugate 

showed about two-fold higher popliteal LN uptake as compared with NBB alone 

from 30 min to 2 h after footpad injection. In SPECT/CT images, 99mTc-MSA-NBB 

conjugate was highly accumulated in the popliteal and inguinal LN. The SUVmean

value of 99mTc-MSA-NBB conjugate in the popliteal and inguinal LN was 

13.08±2.33 and 3.00±1.64 at 10 min and 17.83±5.85 and 4.99±3.44 at 2 h, 
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respectively. SPECT/CT results showed that the popliteal LN uptake of 99mTc-

MSA-NBB conjugate was about 3.5-fold higher than inguinal LN uptake at all time 

points. 

Conclusion:

In this study, 99mTc-MSA-NBB conjugate was developed as a multimodal 

SLN mapping agent for direct visualization, fluorescence and SPECT/CT. The 

ability of 99mTc-MSA-NBB conjugate for accumulation in SLN was assessed by 

evaluating the popliteal LN uptake which is closest to the foot pad by visual 

monitoring, fluorescence imaging, and SPECT/CT. The results demonstrated that 

99mTc-MSA-NBB conjugate binds quickly to SLN and accumulates in SLN until 2 

h after footpad injection. Based on these results, 99mTc-MSA-NBB conjugate has a 

great potential as an SLN mapping agent for clinical use. 

Key Words: mannosylated human serum albumin; sentinel lymph node mapping; 

image-guided surgery; blue dye; lymphoscintigraphy; multimodal;

Student number: 2014-30667
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INTRODUCTION

Sentinel lymph node (SLN) is the first regional lymph node (LN) existing 

nearest to the primary tumor. The detection of SLN in breast cancer and melanoma 

patients is important to evaluate tumor staging or to establish therapeutic decision-

making. (1-8). 

Blue dyes (1, 2, 9-12) or radiotracers (3, 13-16) have been used for the 

detection of SLN; however, both methods have some limitations. Although blue 

dyes may visualize SLN directly during surgery and allow accurate identification 

of SLN without any special instrument or device (1, 2, 9-12), these dyes are 

invisible under the skin or other tissues. Moreover, blue dyes rapidly diffuse to LNs 

adjacent to SLN due to small size (< 2 nm), thereby posing difficulty in the 

detection of SLN. Radiotracers with small size (< 10 nm) such as 99mTc-

mannosylated human serum albumin (MSA) (17-24) or 99mTc-DTPA-mannosyl-

dextran (or 99mTc tilmanocept) (25-34) have been developed for targeting mannose 

receptor (CD206) on the surface of macrophage. Although 99mTc-DTPA-mannosyl-

dextran had advantages of low toxicity (27, 29) and rapid elimination from the 

injection site (27, 29), it could diffuse into not only lymphatic system but also 

blood circulation (27, 29). Moreover, 99mTc-DTPA-mannosyl-dextran did not show 

significantly improved SLN uptake compared to a non-receptor targeting probe,

filtered 99mTc-sulfur colloid (27). Radiotracers such as 99mTc-sulfur colloid (~100 

nm) may effectively localize SLN (3, 13-16) but experienced surgeons are required 

to increase SLN detection rate and accuracy (35, 36). In addition, the amounts
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entering the lymphatic system are very low and most of the 99mTc-sulfur colloid

remains in the interstitial tissue of the injection site due to the large size. 

Combined radiotracer and blue dye method (8, 13, 37-45) was used for 

SLN mapping to take advantage of the benefits from two methods (37, 42). In 

breast cancer patients, the detection rate increased from 73% to 92%, and false 

negative rate decreased from 7.6% to 4.5% with the combination method compare 

to blue dye method (37, 42). Even inexperienced surgeons could achieve low false-

negative rate with the combination method (37, 42). However, as the migration rate 

of blue dye and radiotracer through the lymphatic system is inconsistent, the 

combination method requires separate injection of blue dye and radiotracer. 

Therefore, surgery procedure could be complicated because a radiotracer is injected 

before surgery and a blue dye is administered during surgery.

In order to simplify the procedure, radiolabeled blue dyes such as 99mTc-

evans blue (EB) (46, 47) and 68Ga-EB (48) have been developed. These 

radiolabeled blue dyes enabled SLN mapping with single administration prior to 

the surgery. In fact, SLN mapping using 99mTc-EB could be done within 10 min 

post-injection (46, 47). However, rapid diffusion into other LN or tissues was a 

serious problem in localizing SLN. Therefore, it was necessary to develop blue 

dye-radiotracer conjugate having the same migration properties and staying longer 

in SLN. Development of such a multimodal imaging agent is required to overcome 

the limitations of blue dye, radiotracer or the combined method. 

In the present study, the goal was to develop a new multimodal SLN
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mapping agent which more accurately detects SLN by complementing the 

disadvantage of existing methods. The most important factors in SLN mapping 

agent development were as follows; (1) SLN visualization without special 

instrument or device during surgery, (2) identification of SLN which is located 

deep in the skin and other tissues, (3) long accumulation of the agent in SLN

without diffusion to distal LN or other tissues. First, to visualize SLN, several dyes 

for SLN mapping during surgery was selected by referring to a literature, which

bind to albumin and MSA with high affinity and exhibit a strong dark blue color; 

naphthol blue black (NBB), patent blue VF (PBVF), reactive blue 4 (RB4), 

nitrazine yellow (NY), indocyanine green (ICG), brilliant blue R (BR), and brillian 

blue G (BG) (Figure 1) (49). Second, 99mTc, a radioisotope with high tissue 

penetration was used to identify SLN deep in the skin. Radioisotope was expected 

to be available for lymphoscintigraphy as well as direct visualization during 

surgery. Third, MSA which has been developed for targeting macrophage mannose 

receptor (CD206) (17-24) was used. MSA could be accumulated in SLN due to 

suitable size and receptor targeting ability. Especially, MSA is able to be labeled 

with 99mTc, and binds well to the dye; thus, it is suitable for use as a multimodal 

agent. It is known that most of the dyes have a property of binding to albumin (50)

and clinicians have used dyes to measure the concentration of albumin in plasma

(51-57). The hypothesis of this study is that 99mTc-MSA-dye conjugate can be

produced by simple mixing, and the prepared 99mTc-MSA-dye conjugate has an 

ability to detect SLN via direct visualization or lymphoscintigraphy. In addition, 

due to the properties of MSA, it can accumulate in SLN and show temporary 
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retention. To confirm these hypotheses, various dyes were tested for binding 

efficiency to MSA, and the selected MSA-dye conjugates were investigated for its 

ability for SLN localization using visual investigation, fluorescence imaging, and 

single photon emission computed tomography (SPECT)/computed tomography 

(CT).
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FIGURE 1. 

Molecular structure of dyes. Patent blue VF (PBVF), nitrazine yellow (NY), 

naphthol blue black (NBB), reactive blue 4 (RB4), indocyanine green (ICG), 

brilliant blue R (BR), brilliant blue G (BG) and evans blue (EB).
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MATERIALS AND METHODS

Human serum albumin (HSA) solution (20%) was obtained from Green 

Cross Corporation (Seoul, Korea). PBVF, NY, RB4, BR, BG, EB, and α-d-

mannopyranosylphenyl isothiocyanate were purchased from Sigma-Aldrich (St. 

Louis, MO, U.S.A.) and NBB and ICG, from Tokyo chemical industry Co. (TCI, 

Japan). All other reagents and solvents were supplied by Sigma-Aldrich (St. Louis, 

MO, U.S.A.).

Sephadex G-25 column (PD-10, Pharmacia, Uppsala, Sweden) was used

for the purification of MSA. Thin-layer chromatography (TLC) silica gel 60F264 

(Sigma-Aldrich, St. Louis, MO, U.S.A.) was used for the determination of binding 

efficiencies. Instant thin-layer chromatography silica gel (ITLC-SG) plate was

purchased from Agilent Technologies (Santa Clara, CA, U.S.A.).

Fujifilm LAS-3000 was purchased from Fujifilm Life Science (West 

Avenue, Stamford, U.S.A.). Varioskan Flash (Thermo Fisher scientific Inc., 

Waltham, Massachusetts, U.S.A.) was used for UV-VIS-NIR screening. 

Fluorescence images were obtained using IVIS Lumina II (Caliper Life Science, 

Hopkinton, Massachusetts, U.S.A.) and Igor Pro 4.09A (Wave Metrics Inc., 

Portland, Oregon, U.S.A.). 99mTc-pertechnetate was eluted from 99Mo/99mTc-

generator (Sam Young Unitech Co., Korea). Bio-Scan AR-2000 scanner (Bioscan, 

WI, U.S.A.) was used for the measurement of radiochemical purity. To determine 

the size of MSA-dye conjugates and 99mTc-MSA, HPLC (Gilson Inc., Wisconsin, 

U.S.A.), TSK gel G4000SWXL column (Tosho Bioscience GMbH, Griesheim, 
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Germany) and a dynamic light scattering (DLS) system Zetasizer Nano ZS90 

(Malvern Instruments Ltd, Worcestershire, UK) were used. SPECT/CT were 

obtained using NanoSPECT/CTPlus (Mediso, Budapest, Hungary) and analyzed 

with DICOM browser in InVivoScope (IVS) program. 

Animal studies were performed at the Seoul National University Hospital 

(Seoul, Korea), which was accredited by AAALAC International (2007, 

Association for Assessment and Accreditation of Laboratory Animal Care 

International). Male BALB/c mice (4-week-old) were purchased from OrientBio 

(Seoul, Korea) and housed in 5 animals per cage at 22±2℃, humidity of 40-60% 

and 12 h light/dark cycle. All of the animal studies were approved by Institutional 

Animal Care and Use Committee of the Clinical Research Institute and performed 

in accordance with the National Research council guidelines from the institute. 

Preparation of MSA and kits for 99mTc labeling

MSA was prepared as previously described with minor modification (19). 

Briefly, HSA (20 mg) and α-d-mannopyranosylphenyl isothiocyanate (5.5 mg) 

were added to 5 mL of 0.1 M sodium carbonate buffer (pH 9.5). The mixture was 

reacted at room temperature for 20 h with continuous stirring, followed by 

purification with PD-10 size-exclusion column using distilled water (DW). The 

purified MSA was freeze-dried and stored at −20°C until analysis.



21

MSA kit was prepared for 99mTc labeling according to the previously 

described procedure with minor modification (17). Briefly, HSA (10.7 mg) was 

dissolved in 1 mL of 0.1 M sodium carbonate buffer (pH 9.5) and treated with α-d-

mannopyranosylphenyl isothiocyanate (1 mg) at room temperature for 20 h with 

continuous stirring. For reduction of MSA, 40 μL of 0.3 M 

ethylenediaminetetraacetic acid (EDTA, pH 8.0), 40 μL of 1 M sodium bicarbonate, 

and 50 μL of 1.5 M β-mercaptoethanol were added. The reaction mixture was 

incubated at 37°C for 1 h and purified with PD-10 column using phosphate buffer 

(pH 6.0). The solution was aliquoted into vials containing 1 mg MSA, 0.25 mg 

sodium medronate, 80 μg sodium ρ-aminobenzoate, and 13.6 μg stannous fluoride 

per vial. The vials were freeze-dried and store at −20°C for further studies.

In vitro visibility test of dyes

Visible monitoring was conducted to investigate dyes that display the dark color. 

Each 1 mL of 1 mM dye solution in DW was serially diluted with DW from 0.25 to 

0.0001 mM. The prepared solutions were monitored by visual inspection.
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Absorption spectra and molar absorption coefficient (e) of 

MSA-dye conjugates

UV-VIS-NIR spectrum assay was conducted to determine e values. Each 

25 µL of 1 mM dye solution in DW was added to 5 mg MSA in 50 µL of DW. The 

mixture was incubated at 37°C for 24 h with continuous stirring. Optical density 

(OD) was measured by Varioskan Flash screening mode at 350-850 nm. Values of ε

were calculated according to Beer-Lambert Law. Light path was 0.54 cm and 

concentration of various dyes was 5 µM.

ε = A/L/C

A = optical density

L = light path-length of solution (cm) 

C = concentration of solution (M)

In vitro measurements for the binding efficiencies of dyes 

with MSA

Binding efficiencies of various dyes to MSA were tested by adding 25 μL

of 1 mM dye solution in DW into 0.625, 1.25, 2.5, 5, 10, and 20 mg MSA 

dissolved in 50 μL of DW. The mixture was incubated at 37°C with continuous 
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stirring and 0.3 μL of each mixture was spotted on TLC plate at 10 min, 30 min, 1 

h, 2 h, 6 h, and 24 h after incubation. Vacuum chamber was used for drying TLC 

plate over 40 min before TLC development. Mobile phase TLC conditions were 

described in Table 1. Methanol (MeOH) and dichloromethane (DCM) was used as

TLC eluents at 3:7 ratio for PBVF, NBB, ICG, and BR and 1:4, 1:3, and 8:5 ratio 

for BG, NY, and RB4, respectively. MSA-bound dyes remained at the origin and 

free dyes moved to the solvent front. TLC plates were scanned by Fujifilm LAS 

3000 and quantified by multi-gauge 3.0. Binding efficiencies were calculated based 

on the TLC results.
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TABLE 1. 

Various conditions of mobile phase for TLC.
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Size exclusion HPLC before and after MSA and dye 

conjugation

Size exlclusion HPLC was used to confirm the size before and after MSA 

and dye conjugation. TSKgel G400SWXL size exclusion column (7.8 x 300 nm)

was used and the HPLC condition was isocratic 0.1 M sodium phosphate buffer 

(pH 6.7) for 20 min with a flow rate of 1 mL/min. Protein standards were used as 

the size standards: aggregated protein, thyroglobulin (MW 670,000), γ-globulin 

(MW 158,000), ovalbumin (MW 44,000), myoglobin (MW 17,000), vitamin B12 

(MW 1,350). Each 25 µL of dyes (0.3 mM) was incubated with 5 mg MSA at 37℃

with continuous stirring. Each 5 µL of MSA-dye conjugates was injected into 

HPLC after 1 h and 24 h reaction. To detect MSA and dye, dual UV detection mode 

was used for MSA at 280nm, NBB at 620 nm, PBVF at 640 nm, RB4 at 600 nm, 

NY at 560 nm, and ICG at 700 nm.

Electrophoresis for the binding mechanism study of MSA and 

dyes

Electrophoresis was performed to understand the binding mechanism 

between MSA and dye. 10 mM dyes were prepared by dissolving in water and each 

50 µL of the prepared dye solution was added into 5 mg of HSA in 25 µL of DW. 

The mixture was incubated at 37°C for 24 h with continuous stirring. 10 µL of the 
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mixture (HSA/dye) was added into 190 µL of 1 M EDCI. After then, 15 µL of the 

mixture was added into5 µL of loading buffer and 2 µL of the final sample was 

loaded to NuPAGE Noves Bis-Tris Gel. 5 µL of protein standard was also loaded to 

the gel to distinguish the sample’s size. Running time was 25 min and voltage was 

200 V (start 110-125 mA/gel, end 70-80 mA/gel).

The coomassie blue R stain solution was prepared to confirm the position 

of protein in the gel. 250 mg of the coomassie blue R was dissolved in 500 mL of 

MeOH and 50 mL acetic acid. Final volume was adjusted by adding 450 mL of DW. 

And the destain solution was prepared by mixing 150 mL of acetic acid and 100 

mL of MeOH. Final volume was adjusted by adding 1750 mL of DW. After 

electrophoresis analysis, the gel was stained with the coomassie blue R solution for 

10 s. The coomassie blue R solution was removed from the gel. The destain 

solution was then added to the gel to wash the coomassie blue R solution from the 

gel. The procedure was repeated for three times. 

In vitro fluorescence monitoring of MSA-dye conjugates

To monitor fluorescence of MSA-dye conjugates, 25 μL of 1 mM dye 

solution was added into 0.625, 1.25, 2.5, 5, 10 and 20 mg MSA and incubated at 

37°C for 24 h with continuous stirring. And then, 10 μL of MSA-dye conjugates

which involved different concentrations of MSA were transferred to tube for 

fluorescence monitoring. 1 mM dye and MSA were prepared separately for the 
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fluorescence monitoring. The fluorescence monitoring range was excitation 420-

780 nm, emission 520-845 nm (Table 2). Fluorescence images were obtained by 

IVIS Lumina II with 1 sec exposure time in a 10 cm field of view. LIVINGIMAGE 

version 2.12 (Xenogen) and IGOR version 1.24 (WaveMetrics) software were used 

for the analysis of the fluorescence images. 
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TABLE 2. 

Wavelength ranges for in vitro fluorescent imaging.
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In vivo visible and fluorescence experiments of MSA-NBB 

conjugate for the detection of SLN

The feasibility of 99mTc-MSA-NBB conjugate for visible and fluorescence 

imaging of SLN was tested using male BALB/c mice (5-week old, N = 12). Briefly, 

30 μL of the prepared MSA-NBB conjugate was subcutaneously injected into the 

left footpad of the mice anesthetized with 2% (v/v) isoflurane at 1 L/min oxygen 

flow. For comparison, 30 μL of NBB solution (3.33 mM of NBB in DW) was 

injected into the right footpad of the same mice. After 10 min of injection, mice (N 

= 3) was sacrificed to obtain visible image, and then fluorescent image was 

obtained in the same mice. The same procedure were performed at 30 min (N = 3), 

1h (N = 3), and 2 h (N = 3) after injection of MSA-NBB conjugate. Fluorescence

images were obtained using IVIS Lumina II equipment (excitation/emission: 

600/670 nm) with an exposure time of 1 s. The obtained fluorescence images were 

analyzed by LIVINGIMAGE version 2.12 (Xenogen) and IGOR version 1.24

(WaveMetrics) image analysis software. 

Preparation for 99mTc-MSA-NBB conjugate 

99mTc-pertechnetate (2 mL) was added to the MSA kit vial and incubated at 

room temperature for 30 min. Radiochemical purities were checked by ITLC-

SG/Umezawa (ethanol:10% ammonium acetate = 1:1). 99mTc-MSA remained at the 
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origin and unlabeled 99mTc moved to the solvent front. Radioactivity on ITLC-SG 

plate was scanned and quantified using Bio-Scan AR-2000 scanner. MSA (25 mg)

in 50 μL of DW was added to 25 μL of 10 mM NBB solution. The mixture was 

incubated at 37°C for 2 h with continuous stirring, followed by the addition of 30 

mL MSA-NBB conjugate to 5 mL of 99mTc-MSA (25.6 MBq).

HPLC and DLS were used to confirm the size of MSA after reduction and 

99mTc labeling. Bio-Sil SEC 250 size exclusion column (7.8 x 300 nm) was used for 

HPLC and the conditions were same as previously described. RI detector was used 

for 99mTc. HSA, MSA, MSA kit and 99mTc-MSA were diluted with DW, and filtered 

using a 0.2 µL pore size syringe filter before injection. The prepared sample (1 mL) 

was transferred into a cuvette and analyzed for tree times using Nano-ZS90 

(Malvern, 633 nm lasers). 

Analysis of SPECT/CT

The ability of 99mTc-MSA-NBB conjugate for SLN mapping was tested 

using male BALB/c mice (5-week old, N = 3). Briefly, 30 μL of the prepared

MSA-NBB conjugate was mixed with 10 μL of 99mTc-MSA. 99mTc-MSA-NBB

conjugate was subcutaneously injected into the left footpad of the mice

anesthetized with 2% (v/v) isoflurane at 1 L/min oxygen flow. SPECT/CT was

obtained at 10 min, 30 min, 1 h, and 2 h after injection using NanoSPECT/CTPlus
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and the acquisition time was 20 min. The obtained SPECT/CT was analyzed with 

DICOM browser in InVivoScope (IVS) program. In order to calculate Standard 

Uptake Values (SUVmean), 3-dimensional regions of interest (3D ROI) were drawn 

on popliteal and inguinal LNs. SUVs were calculated by SUV calculator of the 

software using 3D ROI volume, 3D ROI radioactivity, mouse body weight, and 

injected dose.  

SUV = AW/V/D

A = 3D ROI radioactivity (MBq)

W = mouse body weight (g)

V = 3D ROI volume (mL)

D = injected dose (MBq)

Stability test of 99mTc-MSA-NBB conjugate in in vivo

To confirm the stability of 99mTc-MSA-NBB conjugate in popliteal LN, the 

skin of the left leg of the mouse was removed after SPECT/CT. Visible images 

were obtained from the exposed popliteal LN, and popliteal LN was surgically 

removed according to the blue color as a guide. After then, the removed LN was 

moved on the opposite site of injection site and take SPECT/CT. SPECT/CT were 

obtained using NanoSPECT/CTPlus and the acquisition time was 20 min. 
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Fluorescence images of removed LN were also obtained after SPECT/CT using

IVIS Lumina II equipment (excitation/emission: 600/670 nm) with an exposure 

time of 1 s.
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RESULTS

In vitro visibility test of dyes

In vitro visibility test was performed using Dyes (Figure 2). Dyes were 

serially diluted to compare the color of dye solutions at different concentration.

NBB, EB and NY showed the strongest color at high concentration (0.25 mM). 

However, PBVF was the most visible at low concentration (0.001-0.004 mM) and 

BR, NBB, EB, and NY were also quite visible at low concentration (0.004 mM). 
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FIGURE 2. 

In vitro visibility tests of dyes. Dyes were serially diluted from 0.25 to 0.001 mM.
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Absorption spectra and molar absorption coefficient (e) of 

MSA-dye conjugates

UV-VIS-NIR spectra of MSA-dye conjugates were obtained from 350 to 850 nm 

wavelengths. MSA itself showed no peak in the scanned range, while MSA-PBVF 

conjugate displayed a peak at 640 nm (Figure 3). MSA-NBB conjugate showed a 

peak at 620 nm with an OD value of 0.168. Values of e were calculated with Beer-

Lambert law using OD values at peak wavelength, dye concentration (5 µM), and 

cell length (0.54 cm) (Table 3). MSA-PBVF conjugate demonstrated the highest e

value of 141,481 M−1·cm−1, while ε value of MSA-NBB conjugate was 62,222 

M−1·cm−1. It was also found that there was a wavelength difference between dye 

and MSA-dye conjugates (Figure 4). The peak wavelengths of RB4 (600 nm) and

NY (460 nm) showed a UV-VIS-NIR spectral shift with RB4 of 640 nm and NY of 

560 nm after MSA conjugation. Other dyes also showed a UV-VIS-NIR spectral 

shift: MSA-ICG conjugate at 790 mm, MSA-BR conjugate at 590 mm, MSA-BG

conjugate at 620 mm and MSA-EB conjugate at 620mm. However, the peak 

wavelengths of NBB (620 nm) and PBVF (640 nm) were not changed before and 

after MSA conjugation in UV-VIS-NIR spectra.
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FIGURE 3. 

Absorption spectra of MSA-dye conjugates. Spectra of MSA-dye conjugates 

scanned from 350 to 850 nm wavelengths.
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TABLE 3. 

Calculation of molar absorption coefficient (e) using OD value of MSA-dye

conjugates. OD values were measured at each peak wavelength of MSA-dye 

conjugates.
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FIGURE 4. 

Wavelength differences of dye and MSA-dye conjugate in UV-VIS-NIR spectra.
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In vitro measurements for the binding efficiencies of dyes 

with MSA 

Binding efficiencies of dyes with MSA were determined by TLC using 

different concentrations of MSA (Table 4 or Figure 5). ICG was excluded from 

the binding efficiency measurement study due to the invisibility of the color on 

TLC. Binding efficiencies of all of the tested dyes increased with time and 

concentrations of MSA. When 0.8 g/mL of MSA was used, the binding efficiency 

of all of the tested dyes was almost 100% within 10 min. When using 0.2 g/mL of 

MSA, the binding efficiency was rapidly decreased in BR and NY. NY required for 

the longer reaction time to achieve 100% binding, and the maximal binding 

efficiency of BR was 84% even in 24 h reaction. When MSA concentration was 

decreased to 0.1 g/mL, the binding efficiency of most dyes was decreased except 

PBVF, RB4 and NBB. Especially, NBB was 100% bound with MSA within 10 

mins after the reaction, exhibiting the highest binding affinity among the tested 

dyes. RB4 also showed high binding efficiency, however, it required for 24 h for 

100% binding. Based on these data, the binding ratio (mol/mol) of dyes to MSA 

was calculated (Table 5). When 25 nmol of NBB showed 100% binding efficiency

with 2.5 mg MSA (35.21 nmol) at 10 min of reaction, the binding ratio was 

calculated to be 0.71. The binding ratio of other dyes was also calculated using the 

amount of dye for 100% binding with MSA: PBVF and RB4 were 0.36, BG and 

EB were 0.17, and NY and BR were 0.09. 
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TABLE 4. 

Binding efficiencies of MSA and dyes (N = 3, Mean ± SD).
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FIGURE 5. 

Binding efficiencies of MSA and dyes (N = 3, Mean ± SD).
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TABLE 5. 

Dye/MSA ratio (mol/mol) calculated by TLC experiments (MSA: 71021).
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Size exclusion HPLC before and after MSA and dye 

conjugation

Size exclusion HPLC was performed for monitoring of the size change

before and after dye and MSA conjugation (Figure 6). Retention times (RT) of 

protein standards were 5.0-7.0 min for aggregated protein, 8.91 min for 

thyroglobulin (MW 670,000), 10.72 min for γ-globulin (MW 158,000), 11.3 min 

for ovalbumin (MW 44,000), 12.02 min for myoglobin (MW 17,000), and 12.86 

min for vitamin B12 (MW 1,350). UV peak of MSA was shown at 10.92 min at 

280 nm indicating that MW of MSA was between 44,000 and 158,000. On the 

other hand, UV peak of dye was not shown in the HPLC chromatogram from 0 to 

20 min at 280 nm. Not shown in the data, UV peak of dye was detected at 40 min 

indicating that MW of dye was less than 1,350. RT of MSA-NBB conjugate was 

10.95 min and 11.30 min after 1 h for the reaction and was not changed at all after 

24 h. Other MSA-dye conjugates showed a similar pattern. Furthermore, no 

aggregated form was found for the investigational time.
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(A) Protein standard

(B) MSA-NBB conjugate
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(C) MSA-PBVF conjugate

(D) MSA-RB4 conjugate
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(E) MSA-NY conjugate

(F) MSA-ICG conjugate

FIGURE 6. 

Size exclusion HPLC chromatograms of protein standards (A) and MSA-dye 

conjugates (B-F). The chromatograms were obtained with UV (280 mm) at 1 or 24 

h after MSA-dye conjugation using TSK gel G4000SW
XL

column (7.8 x 300 mm); 

0.1 M sodium phosphate buffer (pH 6.7) for 20 min with a flow rate of 1 mL/min

(Green: 1 h after MSA-dye conjugation, Red: 24 h after MSA-dye conjugation).
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Electrophoresis for the binding mechanism study of MSA and 

dyes

The results of electrophoresis using MSA-dye conjugates were shown in Figure 7. 

Dyes were easily detected by the color, and MSA was identified after coomassie 

blue R staining. As soon as electricity was applied, dyes rapidly migrated to the 

bottom of the gel indicating low molecular weights and the positions of dyes were 

clearly distinguished from the position of 71,000 Daltons protein standard. But, NY 

showed a different result. Unlike other dyes, a little amount of NY was found at the 

upper of the gel which was similar level of 71,000 Daltons protein standard. As 

expected, MSA was found at the same level of 71,000 Daltons protein standard 

after staining.
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FIGURE 7.

Electrophoresis results of MSA-dye conjugates for the binding mechanism study.
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In vitro fluorescence monitoring of MSA-dye conjugates

Fluorescence monitoring study was performed to find out fluorescence 

wavelength in which MSA-dye conjugates showed fluorescence and unbound dyes 

showed no fluorescence (Figure 8). Fluorescence wavelengths of MSA-dye 

conjugates were like this: MSA-BR conjugate at Ex 620 nm, Em 710 nm, MSA-

BG conjugate at Ex 640 nm, Em 710 nm, MSA-NBB conjugate at Ex 600 nm, Em

670 nm, MSA-ICG conjugate at Ex 560 nm, Em 620 nm, MSA-RB4 conjugate at 

Ex 640 nm, Em 710 nm, MSA-PBVF conjugate at Ex 660 nm, Em 710 nm, MSA-

EB conjugate at Ex 680 nm, Em 790 nm. Fluorescence of unbound dyes did not 

show fluorescence signal at the same wavelength. The intensity of fluorescence 

signal was increased with the amount of MSA and saturated at 5-10 mg of MSA.
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FIGURE 8. 

Fluorescence monitoring of MSA (0.625-20 mg) and dye conjugates. Fluorescence

of MSA-BR, -BG, -EB, -NBB, -ICG, -RB4 and -PBVF conjugates were detected in 

range of excitation 420-780 nm, emission 520-845 nm and MSA-NY conjugate

showed no fluorescence.
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In vivo visible and fluorescence experiments of MSA-NBB 

conjugate for the detection of SLN

In vivo Visible and fluorescence study was performed by the protocol of 

Figure 9A and visible and fluorescence images were shown in Figure 9B. First, 

the accumulation of MSA-NBB conjugate or NBB in popliteal LN were observed 

by the blue color of NBB. MSA-NBB conjugate was subcutaneously injected into 

the left footpad of mice and the accumulation was observed in popliteal LN at 10 

min. In addition, the accumulation of MSA-NBB conjugate maintained at least for 

2 h after injection. For control, NBB was injected in the right footpad of the same 

mice and the accumulation was also shown in popliteal LN at 10 min. However, 

the accumulation of NBB in popliteal LN was lower than MSA-NBB conjugate 

and decreased at 2 h by diffusion of distal LNs.

Fluorescence images were observed in the same mice and consistent with 

visible images. Fluorescence was detected at 10 min even in the right popliteal LN 

where only NBB was injected. To compare the accumulation of MSA-NBB

conjugate and NBB in popliteal LN, the intensities of fluorescence were quantified.

(Figure 9C). The fluorescence intensities in popliteal LN at 10 min were 4.48±0.34 

for MSA-NBB conjugate and 4.24±0.18 x108 flux (p/s) for NBB, respectively. 

After 2 h post-injection, the fluorescence intensity of MSA-NBB conjugate in 

popliteal LN was maintained at 4.48±0.34 x108 flux (p/s), while the fluorescence 

intensity of NBB was significantly decreased to 2.61±0.46 x108 flux (p/s). 

Fluorescence images demonstrated that the accumulation of MSA-NBB conjugate 
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was about 1.5-fold higher in popliteal LN as compared with NBB from 30 min to 2 

h after footpad injection. 
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(A)

(B) 
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(C)

FIGURE 9. 

In vivo visible and fluorescence experiments of MSA-NBB conjugate for SLN 

localization. Protocol of the experiments was shown in the scheme (A). In vivo

visible and fluorescence images of MSA-NBB conjugate or NBB was obtained by 

the subcutaneous injection into footpad of mice (B). LNs were observed at 10 min, 

30 min, 1 h, and 2 h after injection (N = 12, Mean ± SD) and the uptakes of 

fluorescence intensity were quantified respectively (C).
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Preparation for 99mTc-MSA-NBB conjugate 

99mTc-MSA was prepared with over 99% of radiochemical purity (Figure 

10). Particle size distribution of HAS, MSA, MSA kit (reduced MSA) and 99mTc-

MSA measured by DLS (Figure 11). Particle size of HSA was 5.58 nm which 

increased to 6.34 nm after conjugation with mannoses. The particle size of MSA 

increased to 9.32 nm after labeling with 99mTc due to the reduction of disulfide 

bonds. DLS analysis of NBB conjugated 99mTc-MSA was not possible because of 

the interference of blue color and fluorescence.

Size exclusion HPLC was performed to measure the size of 99mTc-MSA 

after radiolabeling (Figure 12). The retention time of 99mTc-MSA was 7.34 min at 

UV (280 nm) and RI, and aggregated form was also detected at 6.6 min in the 

chromatogram. 
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FIGURE 10. 

Radiochemical purity of 99mTc-MSA determined by radio-TLC (ITLC). 99mTc-MSA 

remained at the origin and unlabeled 99mTc moved to the solvent front on ITLC-SG 

eluted by Umezawa (ethanol: 10% ammonium acetate = 1:1).
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FIGURE 11. 

Particle size of HSA, MSA, MSA kit (reduced MSA), and 99mTc-MSA analyzed by 

DLS (N = 3, Mean ± SD).
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(A) Protein standard

(B) 
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FIGURE 12. 

Size exclusion HPLC chromatograms of protein standards (A) 99mTc-MSA (B). The 

chromatogram was obtained with UV (blue, 280 mm) and RI (red) after 

radiolabeling of 99mTc using TSK gel G4000SW
XL

column (7.8 x 300 mm); 0.1 M 

sodium phosphate buffer (pH 6.7) for 20 min with a flow rate of 1 mL/min.
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Analysis of SPECT/CT

SPECT/CT was obtained at 10 min, 30 min, 1 h, and 2 h after 99mTc-MSA-

NBB conjugate injection into the left footpads of mice. SPECT/CT showed the 

uptake of 99mTc-MSA-NBB conjugate in popliteal and inguinal LN (SUVmean

13.08±2.33 and 3.0±1.64, respectively) at 10 min and the signal was maintained 

(SUVmean 17.83±5.85 and 4.99±3.44, respectively) until 2 h after injection. 

SPECT/CT results revealed that popliteal LN uptake of 99mTc-MSA-NBB 

conjugate was about 3.5-fold higher than inguinal LN uptake at all time points. 
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FIGURE 13.

SPECT/CT after 99mTc-MSA-NBB conjugate injection into the left footpad of a 

mouse (N = 3, Mean ± SD). SUVs of popliteal LN by time were quantified and 

plotted. Vertical bars represent SD in the graph. SUVs are almost constant until 2 h 

of footpad injection. Popliteal LN uptake of 99mTc-MSA-NBB conjugate was about 

3.5-fold higher than inguinal LN uptake value at all time point.
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Stability test of 99mTc-MSA-NBB conjugate in in vivo

Visible image, SPECT/CT and fluorescence images were obtained in the 

same mice 4 h after footpad injection to confirm the stability of 99mTc-MSA-NBB 

conjugate in vivo. Popliteal LN was found easily because of the accumulated blue 

color of MSA-NBB conjugate. After removing of popliteal LN according to the 

blue color as a guide, the radioactivity of the resected popliteal LN was observed 

by SPECT/CT which was placed in the opposite leg of the injection site. It was 

confirmed that popliteal LN was removed clearly by the blue color and SPECT/CT 

and popliteal LN contained 99mTc-MSA-NBB conjugate by fluorescence images.
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FIGURE 14. 

In vivo stability tests of 99mTc-MSA-NBB conjugate.
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DISCUSSION

Many studies have used blue dye to detect SLN in the surgery or 

radioisotopes to image SLN deep in the skin, but have experienced difficulties due 

to the rapid diffusion to distal LN or migration properties. Therefore, it has been 

expected to develop a multimodal SLN mapping agent which can visualize SLN in 

the surgical field without special equipment, identify SLN deep in the skin to 

provide information about SLN before surgery, and be stably accumulated in SLN. 

Such agents allow surgeons to identify the location of SLN prior to surgery and to 

minimize invasive surgery for cancer and metastasis by a single administration.   

In the present study, MSA was used for mannose (CD206) receptors

targeting which are found abundant in LNs (58). Previous studies showed 99mTc-

MSA is rapidly accumulated in the lymphatic system, enabling SLN imaging due 

to the suitable molecular size of HSA (short axis, 6 nm; long axis, 8 nm) (17, 59). 

Mannose could be easily introduced by conjugation with lysine residue in HSA and

it could be labeled with 99mTc after reduction of disulfide bond. Recently, efforts 

have been made to reduce the risk of infection by using recombinant albumin 

instead of albumin extracted from human blood. 99mTc-DTPA-mannosyl-dextran

was developed for this purpose. However, despite approval from United States 

Food and Drug Administration, 99mTc-DTPA-mannosyl-dextran has not been 

widely used. Although this agent provides important information to localize SLN, 

the agent has limitations for use in the surgical field. The dissection technique 

depends on the operator’s experience because SLN is detected only with gamma 
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probes during surgery. Therefore, an extra visual guide is necessary for accurate 

SLN localization during surgery. Blue dyes can be helpful to localize SLN in

surgery. However, when blue dyes are used alone, they are not only invisible for 

SLN located deep inside the tissues but also difficult to be used due to the rapid

diffusion into distal node. Therefore, a multimodal 99mTc-MSA-dye conjugate

taking the advantages of 99mTc-MSA and blue dye was expected to be a good

solution for mapping SLN accurately and efficiently.

The initial investigation was to find out suitable dye candidates for SLN 

visualization. According to the literature (49), various dyes were selected and 

tested for the detection of SLN. To find out dyes that produce clear color even after 

dilution, visual investigation was conducted using the 8 dye candidates: NBB, 

PBVF, NY, RB4, ICG, BG, BR and EB. All the dyes showed dark color at 0.25 

mM. On the other hand, when they were diluted in 0.004 mM, BR, NBB, EB, 

PBVF and NY were identified. In order to quantify the value of darkness of dyes

after conjugation of each dye with MSA, the molar absorption coefficient (e) of 

MSA-dye conjugates was measured using the UV-VIS-NIR spectra and the Beer-

Lambert Law. MSA-PBVF conjugate showed the highest e value, and EB, ICG, 

NBB also showed high e values. However, except for MSA-PBVF conjugate, there 

was no significant difference in color of MSA-dye conjugates. PBVF was 

considered the most appropriate dye, but there would be no difference in the 

visualization of other dyes.

Among all tested dyes, NBB showed the highest binding efficiency with 
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MSA within short reaction time. The binding efficiency was measured to visualize 

more apparent accumulation of MSA-dye conjugates in SLN. First the TLC 

conditions were set for each dye to distinguish dye and MSA-dye conjugates, and

TLC plate was completely dried before development to reduce measurement error 

in quatification. Although most of dyes require at least 0.2 g/mL of MSA for 100% 

binding with MSA by 24 h reaction time, NBB showed 100% binding with MSA at 

0.1 g/mL of MSA concentration only within 10 min. when e value of MSA-NBB 

conjugate is considered, MSA-NBB conjugate may show the highest visibility in 

SLN. Since NBB showed not only high association with MSA, but also high 

visibility that is an important factor in practical applications, NBB was selected for 

the subsequent animal experiments.

Size of the MSA-NBB conjugate was analyzed by size exclusion HPLC 

and it was determined that most of MSA was conjugated with NBB as a monomer 

or dimer. It was needed to evaluate the size of the prepared MSA-NBB conjugate. 

Because aggregated MSA-dye conjugate or colloid could remain in the injection 

site due to the particle size (~ 100 nm), the size of MSA-NBB conjugate should be 

confirmed before injection to the mice. When MSA-NBB conjugate was injected 

into HPLC, two peaks were detected in the chromatogram. Compared to MSA 

chromatogram, one peak was confirmed MSA-NBB conjugate. But there was 

another peak right in front of it, and the peak was presumed to be that of the 

conjugation of dimer of MSA with NBB conjugate. Protein such as albumin has a 

tendency to exist not only in a single form but also in two or three forms. 
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NBB was non-covalently bound to MSA and the binding mechanism 

between MSA and dye was verified by electrophoresis analysis. It was assumed 

that if MSA is covalently bound to dye with σ bond, MSA and dye travel the same 

distance after applying electricity. On the other hand, if MSA is bound to dye with

non-covalent bond such as ionic bond or hydrogen bond, MSA and dye would be 

easily separated. All of tested dyes were non-covalently bound to MSA but, 

interestingly, only NY showed a different result. The most of NY was bound to 

MSA with non-covalent bond, but some portion of NY seemed to be conjugated 

with MSA by a covalent bond.

Visible images showed the accumulation of MSA-NBB conjugate in 

popliteal LN. Popliteal LN is the first LN that is observed after dye injection into 

the mouse footpad and would be considered as SLN (25, 26, 29, 46, 47). Thus, to 

evaluate the performance for visualization of popliteal LN, MSA-NBB conjugate 

or NBB alone was administered into the footpad. In this experiment, experimenters 

were blinded for agents to minimize experimental errors and NBB was used for

comparison with MSA-NBB conjugate. Dye has been used to quantify 

concentration of albumin because of high binding property with albumin (50-56), 

and it has been reported that LNs contain approximately 47% of albumin when 

compared to serum (60). Considering these facts, it was presumed that NBB 

formed albumin-NBB conjugate when NBB was transferred into lymphatic system. 

Thus, albumin-NBB conjugate was thought to be a good control for evaluating the 

performance of MSA-NBB conjugate. As a result, MSA-NBB conjugate identified
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popliteal LN within 10 min and MSA-NBB conjugate was retained for at least for 2 

h (the investigational time). On the other hand, although NBB showed rapid 

accumulation in popliteal LN at 10 min, the accumulation of NBB in popliteal LN 

was decreased at 2 h by diffusion of other LNs. When the amounts of the 

accumulation of MSA-NBB conjugate or NBB were quantified, MSA-NBB 

conjugate showed about 1.5-fold higher accumulation in popliteal LN than NBB

from 30 min to 2 h after injection. Furthermore, fluorescence studies revealed 

strong fluorescence from MSA-NBB conjugate, which accumulated in the popliteal 

LN from 10 min to 2 h after footpad injection. From visualization and fluorescence 

studies, MSA-NBB conjugate showed better performance for visualization of

popliteal LN than NBB which can transform into albumin-NBB conjugate by 

targeting to macrophage mannose receptor (CD206) in the popliteal LN. It was 

evident that MSA could reduce diffusion of dye into distal node and retain its 

accumulation in SLN. However, since LNs are deep in the skin and are invisible, 

use of 99mTc with good tissue penetration is necessary.

Near-infrared (NIR) fluorescence dye can visualize LNs that are located 

deep in the tissues. In previous studies, ICG (61, 62) or MSA-ICG conjugate (23, 

63) has been used for the detection of SLN by NIR imaging. Especially, MSA-ICG

conjugate was known to prevent the diffusion of ICG and show improved uptake 

into SLN (23, 63). However, NIR imaging requires a special instrument to observe 

fluorescence and SLN localization can be achieved through a monitor. In contrast,

blue dyes can be visualized directly with naked eyes, thereby facilitating the 
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dissection of SLN in a convenient and practical way.

99mTc-MSA-NBB conjugate accumulated in SLN and showed very low 

uptake in the distal LN. The uptake in popliteal LN was estimated to be 

approximately 3.5-fold higher than that in inguinal LN at all time points. It means

that 99mTc-MSA-NBB conjugate did not follow the conventional migration property

of blue dyes which are diffused quickly into distal node, and that it has 

characteristic to accumulate in popliteal LN until 2 h. SPECT/CT results also 

showed that 99mTc-MSA-NBB conjugate could provide information to identify the 

position of SLN before surgery. 

99mTc-MSA-NBB conjugate was stably accumulated in popliteal LN until 2 

h post-injection. By the previous fluorescence monitoring, it was known that only 

MSA-dye conjugate exhibited fluorescence at specific wavelength and MSA or dye 

itself did not. The accumulation of 99mTc-MSA-NBB conjugate was examined by 

the observation of popliteal LN after SPECT/CT. Blue color in popliteal LN after 2 

h proposed the accumulation of MSA-NBB conjugate and the radioactivity and 

fluorescence from the resected popliteal LN indicated the existence of 99mTc and 

MSA-NBB conjugate. Otherwise, 99mTc and MSA-NBB conjugate may show the 

same migration properties with NBB by diffusing to distal LNs. Therefore, 99mTc-

MSA-NBB conjugate can be used as the multimodal imaging agent.  

Currently, as the need for image-guided surgery is increasing, the 

development of multimodal SLN mapping agents is necessary to provide advanced 

options for future progress in surgery. 99mTc-MSA-NBB conjugate developed in 
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this study has to be supplemented by further studies. The limitations of this study 

are as follows; (1) limitation in serial animal experiment, (2) comparison with other 

SLN mapping agents, (3) new approach method using other dyes. First, it would 

have reduced experimental errors to obtain serial images using same mice when 

visual assessment and fluorescence imaging were performed after injection. Second, 

99mTc-MSA-NBB conjugate should have been compared with other SLN mapping 

agents, which are widely used in practice, to increase the competitiveness. Third, in 

order to increase the sensitivity of visible monitoring, it is necessary to attempt new 

approaches using other dyes such as methylene blue. Using currently used dyes

that can provide strong visibility could be helpful to be close to practical use.
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CONCLUSION

In this study, a 99mTc-MSA-NBB conjugate was developed as a multimodal 

imaging agent for SLN mapping that can be assessed by visual monitoring, 

fluorescence imaging, and SPECT/CT. It was demonstrated that the 99mTc-MSA-

NBB conjugate is quickly bound to, and accumulated in popliteal LN after footpad 

injection. Visual assessment was available with convenience and fluorescence 

imaging demonstrated high sensitivity. SPECT/CT allowed accurate quantification 

and localization of SLN before surgery. Thus, 99mTc-MSA-NBB conjugate has a 

great potential to be used as a multimodal imaging agent for preoperative and 

intraoperative SLN mapping.
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국 문 초 록

99mTc-MSA와 염료 접합체를 사용한

감시림프절 맵핑용 다중모드영상제의

개발

이 지 연

서울대학교 대학원

의과학과 의과학전공

목적:

감시림프절은 원발성 종양으로부터 가장 가까이에 위치한

림프절이다. 유방암환자, 흑색종 암환자에서 감시림프절을 검출하는
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것은 종양 병기를 평가하고, 수술 중 치료 결정을 하는데 중요한 역할을

한다. 현재 임상에서 청색 염료, 방사성 추적자, 방사성 추적자와 청색

염료 방법의 조합 그리고 방사성 동위원소가 표지된 청색 염료가

감시림프절 검출에 이용되고 있다. 그러나 이러한 방법에는 각각 한계가

있었다. 

본 연구의 목표는 99mTc이 표지된 MSA와 염료를 사용한

감시림프절 맵핑 영상제를 개발하는 것이었다. MSA와의 결합효율, 

사이즈 배제 크로마토그래피를 이용한 고성능액체크로마토그래피 실험, 

형광 모니터링과 같은 시험관 실험을 통해 다양한 염료를 테스트하였다. 

그 중 MSA와 가장 높은 결합 효율을 보인 NBB가 선택되었고, 육안

검사, 형광 이미징 그리고 단일 광자 방출 컴퓨터 단층 촬영/컴퓨터

단층 촬영 (SPECT/CT)을 통해 감시림프절 맵핑 성능을 평가하였다. 

방법: 

육안검사는 8개의 염료를 사용하여 수행되었다. 1 mM의 염료

용액은 1 µmol의 염료를 1 mL의 증류수에 녹여 준비하였고, 증류수를

이용하여 0.25 mM에서 0.001 mM까지 연속 희석하였다. 준비된 염료

용액의 색상은 육안검사를 통해 비교되었다. MSA-염료 접합체의

분자흡광계수 (ε)를 구하기 위해, UV-VIS-NIR 스펙트럼 분석을



84

수행하였고 흡광도 (OD)는 350-850 nm의 Varioskan flash screening 

mode에서 측정되었다. MSA와 다양한 염료간의 결합 효율은 반응 10분, 

30분, 1시간, 2시간, 6시간 그리고 24시간 후 박층크로마토그래피를

통해 측정되었다. 박층크로마토그래피 플레이트는 Fujifilm LAS 3000를

이용하여 스캔하였고, multi-gauge 3.0를 이용하여 정량평가 하였다. 

염료와 MSA 접합 전후의 크기를 확인하기 위하여

고성능액체크로마토그래피를 실행하였다. MSA-염료 접합체가 강한

형광 신호를 나타내는 파장대를 찾기 위해, 여기 420-780 nm, 방출

520-845 nm에서 형광 이미징 실험을 수행하였다. 감시림프절 맵핑을

위한 MSA-NBB 접합체의 성능을 평가하기 위해, MSA-NBB 접합체 혹은

NBB를 수컷 BALB/c 마우스 (총 12마리)에 투여 후 10분, 30분, 1시간

그리고 2시간에 육안 사진과 형광 이미지를 얻었다. SPECT/CT를 얻기

위해, MSA-NBB 접합체를 99mTc으로 표지 하였고, 마우스(총 3마리)

좌측 발바닥에 피하 주사하였다. 약품 투여 10분, 30분, 1시간, 2시간 후

SPECT/CT를 얻었다. 

결과:

육안 검사에서 모든 염료가 0.25 mM에서 명확한 색을 나타냈다. 

희석된 일부 염료는 용액의 색을 확인하기 어려웠고, NBB, PBVF, NY, BR 
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그리고 EB는 0.004 mM의 낮은 농도에서도 잘 보였다. MSA-염료

접합체 각각을 정량화된 값으로 비교하기 위해, 흡광도 (OD)와 Beer-

Lambert Law를 이용하여 분자흡광계수 (e)를 계산하였다. MSA-PBVF

접합체는 141,481 M−1·cm−1로 가장 높은 분자흡광계수를

나타내었으며, MSA-EB 접합체 (99259.3), MSA-ICG 접합체 (87037.0) 

그리고 MSA-NBB 접합체 (62222.2)가 뒤를 이었다. 사이즈 배제

고성능액체크로마토그래피를 통해 MSA-염료 접합체가 단량체로

존재한다는 것을 확인하였다. 크로마토그램에서 준비된 모든 MSA-염료

접합체는 24시간 동안 안정하였고, 다른 응집체는 발견되지 않았다.

박층크로마토그래피결과는 MSA 농도와 결합 반응 시간이 증가됨에

따라 모든 염료와 MSA간의 결합 효율이 증가함을 보여주었다. 특히, 

테스트된 모든 염료 중 NBB가 가장 적은 양의 MSA (2.5 mg)와 짧은

시간 (10분)내에 가장 높은 결합 친화력을 보였다. 결합 비율(mol/mol)은

NBB 0.7이 MSA 1과 결합된 것으로 계산되었다. 이러한 결과를 바탕으로, 

생체 내 적용 실험을 위해 NBB가 선택되었다. MSA-NBB 접합체의 형광

신호는 여기 600 nm, 방출 670 nm에서 검출되었으며, 결합되지 않은

염료와 MSA의 형광 신호는 동일한 파장에서 검출되지 않았다. 

육안검사에서, MSA-NBB 접합체가 NBB 단독으로 투여하였을 때 보다

모든 시간대에서 더 많은 슬와림프절 축적을 나타냈다. 약품 투여 10분

후 슬와림프절에 축적된 MSA-NBB 접합체와 NBB의 형광 세기는 각각
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4.48±0.34 그리고 4.24±0.18 flux (108 p/s)이었다. 약품 투여 2시간

후 MSA-NBB 접합체의 슬와림프절 축적(4.81±1.24 flux (108 p/s))은

유지되었으나, NBB의 형광 세기는 빠르게 감소 (2.61±0.46 flux (108

p/s))하였다. 약품 투여 30분에서 2시간까지 MSA-NBB 접합체는 NBB 

단독으로 투여하였을 때 보다 약 2배 높은 슬와림프절 축적을 보였다. 

SPECT/CT에서, 99mTc-MSA-NBB 접합체는 슬와림프절과 서혜부림프절에

높은 섭취를 보였다. 약품 투여 10분 후 슬와림프절과 서혜부림프절

각각에 섭취된 99mTc-MSA-NBB 접합체의 SUVmean은 13.08±2.33, 

3.00±1.64이었고, 약품 투여 2시간 후에는 17.83±5.85, 

4.99±3.44이었다. SPECT/CT 결과를 통해, 모든 시간대에서 99mTc-MSA-

NBB 접합체의 슬와림프절 축적이 서혜부림프절 축적보다 약 3.5배

높음을 확인하였다. 

결론: 

본 연구에서, 99mTc-MSA-NBB 접합체는 육안 검사, 형광 이미지

및 SPECT/CT를 위한 다중모드 감시림프절 맵핑 영상제로 개발되었다. 

우리는 육안검사, 형광 이미지 그리고 SPECT/CT를 통해, 

발바닥으로부터 가장 가까이에 위치한 슬와림프절 축적을 평가함으로써

99mTc-MSA-NBB 접합체의 감시림프절 축적 능력을 평가하였다. 결과는
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99mTc-MSA-NBB 접합체가 감시림프절에 빠르게 결합하고, 약품투여

2시간 후까지 감시림프절에 축적됨을 보여 주었다. 이러한 결과를

바탕으로, 99mTc-MSA-NBB 접합체가 임상에서 감시림프절 맵핑을 위해

사용될 가능성이 있음을 확인하였다.

주요어: MSA; 감시림프절 맵핑; 이미지 가이드 수술; 청색염료; 

림프신티그라피; 다중모드

학번: 2014-30667
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