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Abstract

Topological Band Engineering with Neutral
Ytterbium Fermions in Optical lattices

Jeong Ho Han
Department of Physics and Astronomy

The Graduate School
Seoul National University

Topology is a mathematical property that classifies a system’s geometry and

is preserved under continuous deformations. One famous example is a Möbius

strip which forms a closed belt with a single twist. No continous deformation

cannot remove such twist without cutting the belt. Here, the number of twists is

called “topological invariant” which characterizes the topological order of a sys-

tem. Recently, topology becomes an important concept in physics, ranging from

cosmology to condensed matters. Especially, for electrons in solids, a Bloch band

may have nonvanishing topological invariant which cannot be altered without

closing the band energy gaps, stabilizing the phase. Strikingly, the topological

nature enriches their exotic physical properties insensitive to microscopic details

and robust against adiabatic parameter change; therefore, topological matters

become candidates for novel materials. Since the discovery of integer quantum

Hall effect, the idea has been widely studied over the past decades.

Quantum gases provide a nice testbed for simulating these model Hamil-

tonians under a well-isolated and defect-free environment with high tunability.

To study the topological matter, we have developed an apparatus, which gener-

ates a degenerate fermi gas (DFG) of 173Yb atoms of T/TF = 0.1 in bichromatic
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crossed dipole trap within 25 s. The fermionic ytterbium, which is a heavy

alkaline-earth-like element, provides favorable conditions to produce artificial

gauge potentials using Raman two-photon scheme. As a first study, momentum-

resolved Raman spectrum of a spin-polarized sample is measured. At certain ex-

perimental conditions, double resonance of Raman transitions is observed and

the spectrum shows a doublet splitting similar to the Autler-Townes effect.

A good starting point to study the topological matter is Harper-Hofstadter

(HH) Hamiltonian which describes the motion of a charged particle in a square

lattice under the perpendicular magnetic field. To address HH Hamiltonian, a

synthetic three-leg Hall tube is realized with 173Yb in one-dimensional (1D) op-

tical lattice using cyclic Raman couplings for commensurate flux. In synthetic

dimension frame, this is equivalent to the spinless fermions in 2D HH Hamil-

tonian with periodic boundary condition. As boundary condition evolves from

periodic to open, the Hall tube system exhibits either topological or trivial

phase. Using quench dynamics, the band structure of the Hall tube system is

investigated, where a critical point of band gap closing coincides with a topo-

logical phase transition predicted for the Hall tube system.

A very frontier of topological physics is the effect of interactions on the

topological systems. To extend our research to include interactions, the inter-

atomic potential is investigated via photoassociation (PA) spectroscopy on a

DFG of 173Yb near the dissociation limit using the intercombination line. The

atom-loss spectrum of 80 PA resonances is measured for a spectral range down

to −1 GHz with respect to the F = 5/2→ F ′ = 7/2 atomic resonance. To ob-

tain additional information on the excited molecular states, Zeeman effect and

atom-loss rate of the PA resonances near −0.8 GHz are examined, where the

quantum number of each peak is discovered using various spin mixture samples.
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Chapter 1

Introduction

1.1 Quantum simulation with ultracold atoms

The realization of Bose-Einstein condensation (BEC) [1, 2] and of Fermi de-

generacy [3–5] has opened a new chapter in atomic and molecular physics as

well as condensed matter field [6]. This new type of matter offers a clean and

nice testbed for exploring various quantum phenomena [7–9]. In particular, the

high degree of controllability allows us to manipulate the physical properties in

extreme regime which are hardly achievable in conventional solids. For exam-

ple, the superfluid-to-Mott insulator transition has been observed in the three-

dimensional (3D) optical lattices [10]. The external potential trapping the atoms

can be modified to be shaped like a box [11] or even to create random disor-

ders [12]. Also, the ability to change the dimensionality provides a platform for

studying BKT physics [13,14] and dimensional crossover [15]. Furthermore, in-

teratomic interaction strength can be tuned via Feshbach resonance [16, 17] to

explore BEC-BCS crossover [18–20]. Finally, an artificial gauge potential [21,22]
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has been generated to impart effective electric or magnetic field on the neutral

atoms [23]. This artificial solid is fully described by a simple Hamiltonian which

can be detected by direct imaging the wavefunction of the atomic cloud.

In addressing important problems such as high-Tc superconductivity, the

required computational power increases exponentially with the number of its

constituents. Therefore, the numerical approach using classical computers are

limited even with the small number of constituents. As an alternative, in 1980s,

R. Feynmann proposed a concept of quantum simulator as a primitive quan-

tum computer. Instead of solving the given Hamiltonian, one can generate the

effective Hamiltonian in the experimental systems [24] and study the toy model

via directly “simulating” with the quantum toolbox. This concept is called an

analog quantum simulator.

The state-of-art cold atom experiment is one of the promising candidate

for realizing the Feynmann’s quantum simulator. Recent advances in cold atom

experiments reached at the level of technique of detecting [25–28] and manip-

ulating [29] in a single-atom level. In spirit of Feynmann’s proposal, the cold

atom experiments become a toolbox embracing the condensed matter system

of interest, allowing to probe otherwise inaccessible physical quantities. For in-

stance, the cold atom experiments provide an artificially generated system which

does not exist in our nature [30]. Furthermore, beyond atomic systems, the cold

molecules are created near the quantum degeneracy to explore richer physics

with large dipolar interactions [31–35]. It is also worth to mention the realiz-

tion of optical tweezers (Nobel prize 2018 !) for studying quantum information

science and engineering applications [36].

This dissertation is mainly focused on engineering an artificial gauge

potential in the cold atomic cloud. The artificial gauge potential is created
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using Raman coupling scheme and exert a strong magnetic field on the cold atom

sample. Together with 3D optical lattices, I studied synthetic material under this

strong magnetic field, which reveals exotic quantum phases and nontrivial band

topology. Since the electrons in real solids have fermionic statistics, I employ

fermionic 173 ytterbium atoms. Fortunately, the fermionic ytterbium atoms have

a suitable atomic energy levels to create such artificial gauge potentials.

In this chapter, I will describe basic principles of quantum degenerate

Fermi gas in a harmonic potential and of optical lattices. A brief introduction

on the topological band theory is also discussed.

1.2 Quantum statistics

Most of physical systems involve a number of particles of the same species.

All these particles have same mass, charge, and spin. In classical mechanics,

the concept of identical particles has been received less attention since the the

particles are practically distinguishable. Since the measurement does not affect

the classical system, one can label a specific particle by observing its physical

quantity, for example, a trajectory. This trajectory identifies each particle in

classical mechanics, making identical particles distinguishable.

In quantum mechanics, the identical particles are indistinguishable. It is

neither impossible to label a specific particle nor to follow the trajectory of

a particle. As a result, a remarkable consequence arises due to the quantum

statistics in the system of identical particles.

Consider a Hamiltonian of two indistinguishable particles, say Ĥ1,2 = Ĥ2,1

in 3D. A permutation operator P̂1,2, which swaps the two particles, does not

affect the system. Therefore, P̂1,2 commutes with the Hamiltonian of the system
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and is a constant of motion. Since interchanging the particles twice results in

the Hamiltonian invariant, the total wavefunction |ψ1,2〉 of the system has,

P̂ 2
1,2|ψ1,2〉 = p2|ψ1,2〉 = |ψ1,2〉, (1.1)

which shows the eigenvalue of the permutation operator p = ±1. This eigenvalue

is specified together with other eigenvalues λ of the Hamiltonian as ψp,λ. This

is also true for an arbitrary observable A1,2, and the system is invariant under

the exchange of the two particles. As a result,

〈ψp,λ|A|ψp′,λ〉 = 0 for p 6= p′. (1.2)

Here, the two states form |ψp,λ〉 = 1√
2
(|φ1,λ〉1|φ2,λ〉2 ± |φ2,λ〉1|φ1,λ〉2), where

{|φj,λ〉j} is a complete set of wavefunctions for particle j. Therefore, Hilbert

space is separated into two subspaces: one is the symmetric states, and the other

is antisymmetric states. Generalizing this concept, for a system of N identical

particles, a permutation operator interchanging i-th and j-th particle act as,

P̂ij|φ1, φ2, · · · , φi, · · · , φj, · · · , φN〉 = |φ1, · · · , φj, · · · , φi, · · · , φN〉, (1.3)

where the label λ for other eigenstate are neglected. There exists, in general, one

symmetric and one antisymmetric state, wherein all P̂ij have the eigenvalues of

±1, respectively.

Then why two? There is only one trivial perumutation operator in two-

particle case. A permutation operator for three, four, or even N particles should

work as similarly. The simplest nontrivial case of N = 3 have three permutation

operators P̂ij [37] and there are 3! permutations of the product states |φ1, φ2, φ3〉.

The symmetric and antisymmetric states are,

|ψ1,2,3〉p =
1√
6

(|φ1, φ2, φ3〉 ± |φ2, φ1, φ3〉 ± |φ1, φ3, φ2〉

± |φ3, φ2, φ1〉+ |φ3, φ1, φ2〉+ |φ2, φ3, φ1〉) for p = ±1,

(1.4)
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respectively. The four remaining linear combinations of product states do not

fall into neither totally symmetric nor antisymmetric states. (that is, all P̂ij are

not diagonal.) In general, the Hilbert space of a system of N -identical parti-

cles is divided into three subspaces: one symmetric, one antisymmetric states,

and the remainder of (N ! − 2) linear combinations. However, to the best of

our knowledge, our universe accepts only the two types of particles. No empir-

ical evidence observed the particles under such “remainder” subspace. Rather,

a strong theoretical statement which can be proved in the relativistic quan-

tum mechanics supports the symmetric and antisymmetric Hilbert spaces: “The

wavefunction of indistinguishable integer spin particles are symmetric under

pair interchange (and therefore commute), while the wavefunction of indistin-

guishable half-integer spin particles are antisymmetric under pair interchange

(anticommute) [37]”. This is called spin-statistics theorem. The symmetric par-

ticles are called bosons and follow Bose-Einstein statistics. On the other hand,

the antisymmetric particles are called fermions and obey Fermi-Dirac statistics.

The two different quantum statistics converge into Maxwell-Boltzmann statis-

tics as the temperature of the system increases and the system evolves from

quantum to classical regime. The reader should recall that the spin is itself a

physical “color”–like a mass or charge–unrelated to the real-space orbital motion

although it shares the same generator with the angular momentum.

For a composite system like an atom, its statistics is determined by the

sum of the spins of its constituents. For example, a ytterbium with mass 173

(173Yb) has 70 protons, 70 electrons, and 103 neutrons. Since the net spin of
173Yb is half-integer, it is a composite fermion. Likewise, 3He, 6Li, 40K, 87Sr,

and 171Yb are fermions, but 4He, 7Li, 39K, 87Rb, 86Sr, and 174Yb are bosons.

As a final remark, the linear combination of totally antisymmetric states
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can be rewritten as,

|ψ1,2,··· ,N〉−1 =
1√
N !

det

∣∣∣∣∣∣∣∣∣∣∣∣

|φ1〉1 |φ1〉2 · · · |φ1〉N
|φ2〉1 |φ2〉2 · · · |φ2〉N
...

... . . . ...

|φN〉1 |φN〉1 · · · |φN〉N

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.5)

which is called Slater determinant. As a direct consequence, when two antisym-

metric particles occupy the same individual state, the probability of finding the

particle at that state vanishes. This is famous Pauli exclusion principle.

Because of the nature of the statistics, the ground state configurations

of bosons and that of fermions are completely different. As the system lost

its energy, the bosonic particles prefer to reside in a single energy state and

the particles are described by an emergent long-range order: single macroscopic

wavefunction. For a sufficient number of particles where all the excited states

are saturated, the system undergoes a phase transition to a Bose-Einstein con-

densate (BEC). On the other hand, since the fermionic particles cannot occupy

the same quantum state, they are stacked up from the lowest energy state.

This is called Fermi sea. In the following section, the characteristics of fermions

trapped in the external harmonic potential is explained.

1.3 Degenerate Fermions in a harmonic trapping

potential

Ideal fermionic particles at a state with energy E and chemical potential µ are

characterized by Fermi-Dirac distribution,

n̄FD(E) =
1

eβ(E−µ) + 1
(1.6)

6



where bar notation indicates the mean occupation number of the state, β =

1/kBT , kB is the Boltzmann constant, and T is the temperature. For given

density of states g(E), the total number of particles at spin state σ become,

Nσ =

∫ ∞
0

dE g(E)n̄FD(E) =

∫ ∞
0

dE
g(E)

eβ(E−µ) + 1
(1.7)

and the total energy of the system is,

Eσ =

∫ ∞
0

dE g(E)En̄FD(E) =

∫ ∞
0

dE
g(E)E

eβ(E−µ) + 1
. (1.8)

For the fermionic atoms trapped in 3D harmonic potential with trapping

frequency ωj (j ∈ {x, y, z})

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (1.9)

the 3D density of states is equal to g(E) = E2/2(~ω̄)3, where ω̄ = (ωxωyωz)
1/3

is the geometric mean of the trapping frequencies. At T = 0, the integration of

Eq. 1.7 results in

EF = ~ω̄(6Nσ)1/3, (1.10)

where the Fermi energy is defined as EF ≡ µ(T = 0).

1.4 Principles of optical dipole trap

The harmonic trap in the former section can be realized by an optical dipole

force. When a two-level atom is irradiated by a single-frequency laser source,

the neutral atom experiences electric dipole interaction (E1) with the oscillating

electric field [38]. The electric field E induces the dipole moment d on the neutral

atom proportional to the dynamic polarizability, α(ω), where ω is the frequency
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E

EF

Bose-Einstein

Condensate

Fermi Sea

E

Cold bosons Cold fermions

Figure 1.1: Ground state configuration of cold bosons and fermions. The bosons
(left) collapse into single quantum state and show long-range order of macro-
scopic wavefunction called Bose-Einstein Condensation, which is expected in
1924 observed in the late 20th century [1, 2]. On the other hand, the fermions
(right, two-component spin case) cannot occupy the same quantum state and
fill up the confining trap, forming a Fermi sea in the degenerate regime.

of the oscillating electric field. The induced dipole re-interacts with the electric

field by,

Vdip(r, ω) = − 1

2ε0c
Re[α(ω)]I(r), (1.11)

where I(r) = 2ε0c|E(r)|2 is the light intensity, ε0 is the vacuum permittivity, and

c is the speed of light. This potential is known as the AC Stark (light) shift felt

by the atom in the laser field. Then, the dipole potential exerts a conservative

dipole force on the atom,

Fdip(r, ω) = −∇Vdip(r, ω) =
1

2ε0c
Re[α(ω)]∇I(r). (1.12)

This dipole potential is proportional to the intensity of the field, I(r), which is

usually Gaussian and approximated to the harmonic trap. The explicit formula

for the optical dipole potential can be calculated by expressing the dynamic

polarizability in the second-order perturbation theory [39],

Vmn(r, ω) = −
∑
m 6=n

3πc2

2ω3
mn

(
Γmn

ωmn − ω
+

Γmn
ωmn + ω

)
I(r), (1.13)
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where the summation runs over the all possible electronic states |m〉 6= |n〉.

Here, ωmn is the resonant frequency between the states |m〉 → |n〉 and the Γmn

is the natural linewidth of the transition. When the detuning is large |∆| =

|ω− ωmn| � ωmn, the above equation can be approximated in a frame rotating

at ω by neglecting the second term. The dipole potential becomes Vmn(r, ω) ≈

−
∑

m 6=n 3πc2/2ω3
mn(Γ/∆)I(r), and it is called far-off resonance trap, or just

optical dipole trap (ODT).

It is worth to note that the dissipative process associated with the photon

absorption and spontaneous emission into dipole radiation is related to the

imaginary part of the dynamic polarizability. Then, in the two-level system

under the rotating frame, photon scattering rate is given by,

Γsc(r, ω) =
1

~ε0c
Im[α(ω)]I(r) ≈

∑
m 6=n

3πc2

2~ω3
mn

(
ω

ωmn

)3(
Γmn
∆

)2

I(r). (1.14)

The photon scattering events transfer large kinetic momentum to the atom

which typically exceeds the thermal energy of the atom. Therefore, the scatter-

ing results in the heating and atom loss proportional to (Γmn/∆)2. To minimize

this effect, large detuning and transition lines with small linewidth are preferred.

State-dependent dipole potentials

The above equation (1.13) can be generalized when the detuning is small,

which is order of hyperfine splitting of an atom (∆ ≈ ∆HFS). In this case,

the contributions from each magnetic sublevels (hyperfine spins, mF ) are dif-

ferent and the light shift experienced by the atom depends on the transition

strengths of each transition. The dipole matrix element in Eq. 1.11 for a transi-

tion |m〉 = |γ, J, F,mF 〉 → |n〉 = |γ, J ′, F ′,mF ′ = mF + ε〉 (γ is some quantum
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number irrelevant to the transition) is calculated using the famous Wigner-

Eckart theorem, which leads to,

dmn = 〈γ, J ||d||γ, J ′〉Cmn. (1.15)

Here, the first factor is called reduced dipole matrix element and is independent

of magnetic substructures. It is related to the natural linewidth of the transition

by Γmn = ω3
mn

3πε0~c3
2J+1
2J ′+1

|〈γ, J ||d||γ, J ′〉|2. The second factor is Clebsch-Gordan

coefficient given by,

Cmn(ε) = (−1)2F ′+J+I+mF
√

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×

L′ J ′ S

J L 1


J ′ F ′ I

F J 1


 F 1 F ′

mF ε −(mF + ε)

 .
(1.16)

where the curly brackets and a round bracket denote 6j-symbols and 3j-symbol,

respectively, and ε = (1, 0,−1) is the polarization state in spherical basis. The

transition strength is defined as the absolute square of the Clebsch-Gordan

coefficients, |Cmn(ε)|2. Then the state-dependent AC Stark shift becomes,

Vmn(r, ω, ε) = −
∑
m 6=n

3πc2

2ω3
mn

|Cmn(ε)|2αJJ ′
(

Γmn
ωmn − ω

+
Γmn

ωmn + ω

)
I(r), (1.17)

where αJJ ′ = (2J ′+ 1)/(2J + 1) is the multiplicity factor [38], which is nothing

but a normalization factor. For a far-off resonance trap, the colors become dull as∑
m 6=n |Cmn|2αJJ ′ → 1 and the above formula recovers the Eq. 1.13. The spin-

dependent dipole potentials can be applied to create spin-dependent optical

lattice [40] or to perform an optical Stern-Gerlach experiment [41].
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1.5 Optical lattice and tight-binding model

One important application of the dipole traps is an optical lattice. When an

atom encounters two counter-propagating laser beams, interference between the

two beams results in the periodic dipole potentials. A typical way to create an

optical lattice is to send a single-frequency laser (narrow enough linewidth to cer-

tainly define wavelength of the light) to the neutral atoms in the retro-reflecting

configuration. The fixed-end reflection at the mirror determines the phase of the

wave and resulting dipole potentials form peaks and valleys which mimics real

crystalline solids. The atoms in the optical lattice experience periodic external

potential like,

VOL(r, z) = V0e
−2 r2

w2(z) cos2 (kLz) ≈ V0 cos2 (kLz) +
1

2
mω2

rr
2 +

1

2
mω2

zz
2. (1.18)

where w(z) is the beam waist, kL is the wavenumber of the lattice laser, and

ωr,z are the harmonic trap frequencies. The lattice depth V0 is usually expressed

in the unit of the recoil energy, EL = ~2kL/2m, by s = V0/EL. The exponential

factor due to the Gaussian laser beam profile is approximated to the harmonic

form. The overall harmonicity is obtained by expanding this potential around

the origin,

ωr =

√
4V0

mw2
0

=

√
4EL
mw2

0

√
s

ωz =

√
2V0

mz2
R

=

√
2EL
mz2

R

√
s,

(1.19)

where w0 = w(0) and zR = πw2
0/λ is the Rayleigh range of the lattice beam.

In general, the optical lattice for the three-dimension (3D) is,

V3D = Vx cos2 (kLx) + Vy cos2 (kLy) + Vz cos2 (kLz). (1.20)
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The mutual interferences can be eliminated by using orthogonal polarization or

different frequencies of the light. In the latter case, the effect is averaged out for

the fast enough (few MHz) oscillation frequency differences.

The problem of single-particle under the periodic potential has been ex-

tensively studied in the condensed matter physics. The translational symmetry

implies that the atoms in the optical lattice is well described by the Bloch func-

tions, ψ(n)
q (z) = eiqzu

(n)
q (z), where the energy eigenstates are expressed in the

form of Bloch bands E(n)(q) with band index n. Neglecting weak overall har-

monic trapping effects, the Hamiltonian for a particle in one-dimensional (1D)

optical lattice becomes,

Ĥ =
p2

2m
+ V0 cos2 (kLz). (1.21)

The Schrodinger equation Ĥψ
(n)
q (z) = E(n)(q)ψ

(n)
q (z) can be reforged in the

form of Mathieu’s differential equation, ψ′′ + [a− 2η cos(2z̃)]ψ = 0, as,[
∂2

∂z̃2
+

(
E

EL

− s

2
− s

2
cos (2z̃)

)]
ψ(z̃) = 0 with z̃ = kLz, (1.22)

where standard Mathieu parameters are given by a = E/EL − s/2 and η =

s/4. Given lattice depth η, the solutions of the Mathieu’s equation is found at

many certain values of a–these values are called Mathieu characteristic value

A(q/kL,−s/4), which is obvious from the Bloch theorem (Mathematically, the

Bloch theorem is equivalent to the Floquet’s theorem). Then the eigenenergies

are given by,

E(n)(k) = A
(
ν,−s

4

)
+
s

2
, q ∈ [−kL, kL], (1.23)

where ν(q, n) is the characteristic exponent expressed as,

ν(q, n) =
q

kL

+ (−1)n sgn

(
q

kL

)
(n+ n mod 2) . (1.24)

12



The eigenenergies for different values of s are plotted in Fig. !. Also, the Bloch

wavefunction ψ(n)
q (z) is the linear combination of the Mathieu cosine C (even)

and sine S (odd) functions:

ψq(z̃) = C (a, η, z̃) + i sgn (q)S (a, η, z̃) , (1.25)

which forms a complete orthogonal set.

Wannier functions

The motion of a particle in the optical lattice is described by these Bloch waves

traveling inside the lattice. As the lattice depth s increases, the probability

of finding an atom in a single lattice site increases. In this sense, the atomic

wavefunction is well-localized. To illustrate this, it is convenient to bring the

description into real space representation: Wannier functions. One simplest def-

inition of Wannier functions is the Fourier transform of the Bloch waves,

w(z − zi) =
1√
N

∑
q∈BZ

eiqziψ(n)
q (z)

=
1√
N

∫ kL

−kL
dq eiqziψ(n)

q (z),

(1.26)

where N is normalization constant and zi is the position of the i-th lattice

site. The Wannier functions also form a complete orthogonal set of basis. For a

separable potential (such as orthorombic potentials), the generalization to 3D

case is somewhat trivial: w(nx,ny ,nz)(x, y, z) = wnx(x)wny(y)wnz(z).

Tight-binding model

The tight-binding approximation describes particles in a periodic potential by

isolated wavefunctions at each lattice site. This becomes true if the lattice depth
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s becomes sufficient to provide orthonormal Wannier states localized in the

single lattice site. The Hamiltonian in the second-quantized form can be written

as,

Ĥ =
∑
σ

∫
dr ψ̂†σ(r)

[
− ~2

2m
∇2 + Vlatt(r)

]
ψ̂σ(r)

+
1

2

∑
σ,σ′

∫
drdr′ ψ̂†σ′(r

′)ψ̂†σ(r)Uint(r, r
′)ψ̂σ(r)ψ̂σ′(r

′)
(1.27)

where ψ̂σ(r) =
∑

j w(r − r′)ĉjσ is the field operator of the particle with spin

index σ, ĉ†jσ (ĉjσ) stands for the creation (annihilation) operator, Vlatt is the

optical lattice potential, and Uint is the interaction potential. Here, single-band

approximation is assumed, which means that the atoms play in only the lowest

band of the system and the Wannier functions wn = w1 ≡ w(r− rj).

When the hopping to the nearest neighbor site is dominant over the

higher-order hoppings, the only nearest hopping is considered. The hopping

from site ri to rj is described by the tunneling matrix,

tij =

∫
dr w∗(rj)

[
− ~2

2m
∇2 + Vlatt(r)

]
w(ri), (1.28)

where rj = ri + d and d is the lattice unit vector.

For ultracold atomic system, the interparticle interaction is described

only by the s-wave contact interaction, and Uint(r, r
′) = gδ(r′ − r) with g =

4π~2as/m. In the lattice systems, the on-site interaction energy becomes,

Uint =
4π~2as
m

∫
dr |w(r)|4 (1.29)

where as is the s-wave scattering length.

The above derivations are independent of particle statistics. For bosonic

(fermionic) particles, the operators follow bosonic (fermionic) commutation rules,
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respectively. In case of bosons, the spin index diminishes and the final Hamil-

tonian becomes,

ĤBH = −
∑
ij

tij ĉ
†
i ĉj +

Uint

2

∑
i

n̂i (n̂i − 1) , n̂i = ĉ†i ĉi (1.30)

which is called Bose-Hubbard model (neglecting the chemical potential term).

In case of fermions, the on-site interaction energy is only applicable for the

different spin fermions. The Hamiltonian describing fermionic system is the

Fermi-Hubbard model [42]:

ĤFH = −
∑
ij

tij ĉ
†
iσ ĉjσ +

Uint

2

∑
j,σ 6=σ′

ĉ†jσ ĉ
†
jσ′ ĉjσ′ ĉjσ. (1.31)

The tight-binding approximation is a powerful tool for studying crys-

talline physics. For instance, the ground band of noninteracting particles inside

the infinite one-dimensional optical lattice can be easily calculated,

E(q) = −2t cos (qdL). (1.32)

Conversely, the tunneling t can be determined by t = (E(q = kL)− E(0)) /4.

1.6 Topological band theory

When Berry phase associated with a Bloch band shows nontrivial value, the

band is called topological in the sense that its physical property cannot be

changed without closing the band gap [43]. Consider an insulator filled below the

certain energy gap. By the principle of adiabatic continuity, any two insulators

are equivalent as long as one can be smoothly deformed into one another by

adiabatically modifying the given Hamiltonian. However, this cannot happen if

Berry phase of two states are different, since their topology is uncommon. To
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do so, the system undergoes a topological phase transition which is known to be

necessarily involve closing the band gap. The ground state of such topological

bands has been earned a great attention, since their phase transition seems to

become exceptions of conventional Landau theory of phase transition.

The general theory to classify all the topological Hamiltonians is not yet

understood. It is more interesting and complicated if the interaction between

particles are turned on. The relation between the topology and the band theory

is explained in Ch. 4.

1.7 The outline of the thesis

Throughout the dissertation, the most of sentences use “we”, instead of I, to

dedicate for the contribution to the works done by my dear colleagues: M.-S.

Kim, M. Lee, and J. H. Kang.

This dissertation is organized as follows. In chapter 2, the details of our

ytterbium machine is illustrated. In chapter 3, basic principles of Raman two-

photon transition and generation of artificial gauge potential are explained. In

chapter 4, a quick overview of the quantum Hall physics is placed. The chapter 5

describes the main results of this thesis: the realization of synthetic Hall tube

(cylinder) using cyclic coupling scheme. Finally, the chapter 6 is devoted to

depict the photoassociation experiment performed with ultracold fermionic 173

ytterbium (173Yb) atoms.
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Chapter 2

The Ytterbium machine

Most of my graduate years had been devoted to building an experimental ap-

paratus for cooling ytterbium atoms. The machine is divided into three parts:

Laser system, Vacuum system, and Control system. In this section, I will dis-

cuss fundamental properties of ytterbium atoms and how to reach the quantum

degeneracy (ultracold temperatures). This chapter is mostly related to the fol-

lowing paper.

• M.-S. Kim, M. Lee, J. H. Han, and Y. Shin, “Experimental apparatus

for generating quantum degenerate gases of Ytterbium atoms,” Jour. Kor.

Phys. Soc. 67, 1719 (2015).

2.1 Fundamental properties of ytterbium atoms

Ytterbium is one of the alkaline-earth-like element with two valence electrons.

In the periodic table, it is located in the fourteenth and penultimate element in

lanthanide series. Its name is derived from the name “Ytterby”, the village in
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Sweden famous for having rich source of chemical elements. Ytterbium is a soft,

malleable, and ductile metal with bright and silvery color. Like other alkali and

alkaline-earth-like metals, the ytterbium quickly oxidizes when exposed to the

oxygen (or in the air). In the room temperature, it has melting point around

824◦C (1097 K) and boiling point 1196◦C (1469 K). The typical temperatures

required to produce a sufficient vapour pressure more than 10−3 torr for success-

ful creation of degenerate gases is in the range of 400−500◦C (≈ 720 K) [44,45].

Ytterbium is highly reactive at this temperature range; severe chemical reac-

tion to silica glass as well as sapphire, which are frequently used for vacuum

viewports, are reported. Therefore, a care must be taken with dealing with the

viewports, which should not be exposed to direct flux without any safety feature

such as heating the viewport. Moreover, copper gaskets are necessary, because

of the corrosive characteristics of the element.

Natural ytterbium has seven stable isotopes with five bosonic species

(168Yb, 170Yb, 172Yb, 174Yb, and 176Yb) and two fermionic ones (171Yb and
173Yb). The first quantum degeneracy of the ytterbium atoms is reported by

Kyoto group [46]. Since then, six of the isotopes are cooled down to the de-

generate temperature [47–50]. In 2011, Paris (ENS) and Washington (Gupta)

group [51,52] also succeeded to create quantum degenerate gases of ytterbium.

Especially, Washington group cooled the ytterbium atoms together with 6Li

atoms to study physics of interspecies interaction [53]. The quantum degen-

eracy of Bose-Bose, Bose-Fermi, and Fermi-Fermi mixtures have been demon-

strated [54, 55]. After 2013, Hamburg (Sengstock) [56], München (Bloch) [57],

Firenze (LENS) [58], Maryland (JQI NIST) [59], Seoul (Shin) [60, 61], Daejeon

(Mun) [62], and Hongkong (Jo) [63] group have been achieved to trap cold atoms

of ytterbium in degenerate temperatures.
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Table 2.1: Isotopes of ytterbium atoms
Isotopes Mass Nucler spin Natural abundance Magnetic moment

(m0) (I) (%) (µI)
168Yb 167.933894 0 0.13
170Yb 169.934759 0 3.05
171Yb 170.936323 1/2 14.3 +0.4919
172Yb 171.936378 0 21.9
173Yb 172.938208 5/2 16.12 -0.6776
174Yb 173.938859 0 31.8
176Yb 175.942564 0 12.7

One great motivation of generating quantum degenerate gas of ytter-

bium atoms is the SU(I) interaction in the ground state fermions. Unlikely

to the fermionic alkali atoms, which are stable mostly for the two component

case, alkaline-earth-like atoms including ytterbium are useful to study multi-

component physics such as SU(I) Hubbard and Heisenberg model. Also, the

presence of the metastable clock transition (3P0) with SU(I) interactions offers

an opportunity for implementing artificial gauge potentials [64] with Harper-

Hofstadter Hamiltonian [65, 66], including the non-Abelian gauge fields [67]. It

is also promising to study SU(I) Kondo physics [68] as well as Kugel-Khomskii

model [30] using state-dependent optical lattice with magic and anti-magic

wavelengths [69]. The ytterbium quantum gas takes these two distinct features

in the price of lack of modifying interaction strength via magnetic Feshbach

resonance; however, very recently, changing interaction strengths using the in-

terplay between the ground state and the clock states become available via

orbital Feshbach resonance [70–72], which is only applicable to the ytterbium

atoms (not alkaline-earth-like atoms). Since these topics are beyond the scope

of this thesis, they will not be discussed further.
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Table 2.2: Isotope shifts of frequently used transitions of ytterbium atoms. The
frequency shifts are represented with respect to 174Yb. The data are taken from
Refs. [73–77]

Transition Isotope shift (MHz)
Isotope F → F ′ 1S0 →1P1

1S0 →3P1
1S0 →3P0

168Yb 1887.40 3655.13
170Yb 1192.39 2286.35
171Yb centroid 939.52 1825.72 1811.28164

1/2→ 3/2 832.44 3804.61
1/2→ 1/2 1153.70 -2132.06

172Yb 533.31 1000.22
173Yb centroid 291.52 555.78 551.53839

5/2→ 3/2 515.98 3807.28
5/2→ 5/2 -253.42 2311.41
5/2→ 7/2 587.99 -2386.70

174Yb 0 0 0
176Yb -509.31 -954.83

2.1.1 Atomic level structure of ytterbium atoms

The ground state electronic configuration of the ytterbium is [Xe]4f 146s2. Be-

cause the f -shell is completely occupied, the atomic properties are mainly de-

termined by the two valence electrons and are very similar to the alkaline-earth

atoms such as calcium or strontium. This is why we call the ytterbium as a

member of alkaline-earth-like elements.

The Hamiltonian of an alkaline-earth-like atom with Z total electrons is,

Ĥ =
Z∑
i=1

[
− p̂2

i

2m
+ V (ri)

]
+ Ĥee + ĤLS, (2.1)
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where p̂i is the momentum of i-th atom, m is the atomic mass, and V (ri) is

the electrostatic potential between the closed shell and the valence electrons. To

proceed, the central field approximation is assumed, where the large part of the

closed shell within the core has spherical charge distribution. The interactions

between the shells depend only on the radial coordinate, which is given by

V (ri) = −Ze2/4πε0ri [78], where e is the electron charge and ε0 is the vacuum

permittivity. Also, Ĥee =
∑Z

i<j=1 e
2/4πε0rij is the electron repulsion between

i-th and j-th electrons. Finally, ĤLS =
∑Z

i=1 αili ·si is the spin-orbit interaction.

To diagonalize the above Hamiltonian, the good quantum number is cho-

sen by the relative strength between the electron repulsion term and spin-orbit

interaction term. In case of light atoms with low Z, like helium or magne-

sium, the electron repulsion term dominates and the small spin-orbit interac-

tion leads to poor fine structure splitting. The eigenstates of the Hamiltonian

is described by {L2, Lz,S
2, Sz} (the principal quantum number ni is neglected),

where L =
∑

i li and S =
∑

i si. Then, the ĤLS is treated as perturbative manner

with J = L+S basis. The final eigenbasis of the system become {L2,S2,J, Jz}.

This is called LS or Russel-Saunders coupling scheme and the term symbol is

described in the form of 2S+1LJ .

On the other hand, heavy atoms have large spin-orbit interaction term

and the spin-orbit interaction term is no more a mere perturbation. Instead,

the Hamiltonian is diagonalized by introducing ji = li + si for the two valence

electrons i = 1, 2. Therefore, total eigenbasis becomes {j1, j2,J, Jz} with J =

j1 + j2. This is called JJ coupling scheme.

For an ytterbium atom, strong spin-orbit interaction mixes the LS-coupling

basis. One important result is the presence of clock transition and intercombi-

nation line. The standard selection rules for electric dipole (E1) transitions are
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given by ∆J = 0,±1(0 → 0 forbidden) with ∆L = ±1 and ∆S = 0. This is

because a photon (or an electron dipole operator, µ) does not act on the elec-

tron spin itself. Therefore, spin singlet and triplet states describe different set

of energy levels. However, in the heavy atoms, the wavefunctions of 1P1 and 3P1

get mixed, which contributes small portion of transition probability between the

singlet and triplet states. This is called a multiplet mixing. As the atomic mass

grows, the spin-orbit interaction increases as well as the transition probability

(proportional to the natural linewidth). The transition linewidth of intercombi-

nation line (1S0 →3P1) is Γ(3P1)/(2π) = 182.4 kHz for an ytterbium, 7.5 kHz for

a strontium, and 0.47 kHz for a calcium. Similarly, the mixing between 1S0 and
3P0 leads to the presence of a clock transition (1S0 →3P0), which has sub-Hz

linewidth and useful to develop an atomic clock [75,79–82].

The atomic transition lines are depicted in Fig. 2.1. For laser cooling

of ytterbium atoms, two major transition lines are used: one is dipole-allowed
1S0→1P1 (398.9 nm, blue transition) and another is aforementioned intercom-

bion line 1S0→3P1 (555.8 nm, green transition). The blue transition has large

linewidth about Γ(1P1)/2π = 29.1 MHz and therefore the photon scattering

force is strong. Hence, the blue transition is suitable for the Zeeman slower

and imaging. It is worth to be noted that the blue transition is not completely

closed–some portion about few % of population leaks into 3P0 and 3P2 states.

The green transition has sub-MHz narrow linewidth (Γ(3P1)/2π = 182.4 kHz),

which provides less photon scattering force, but has lower Doppler cooling limit,

TD. Therefore, the basic strategy for laser cooling is to slow down the atomic

beam from the oven using the blue transition and then capture the magneto-

optical trap (MOT) with the green transition. It is also possible to cool down

the atoms using the blue and green beams at the same time, where the blue

22



Table 2.3: Basic parameters of frequently used transitions of ytterbium atoms,
where λ wavelength, Γ natural linewidth, τ lifetime, Isat saturation intensity, TD

Doppler temperature, and vR is the recoil velocity of corresponding transition.
Here, gJ is Landé g-factor of the relevant excited state. [45,83,84]

Parameters 1S0 →1P1
1S0 →3P1

1S0 →3P0

λ 398.9 nm 555.8 nm 578.4 nm
Γ/(2π) 29.1 MHz 182.4 kHz ≤ 10 mHz
τ = 1/Γ 5.464 ns 866.1 ns ≥ 20 s
Isat = πhc/(3λ3τ) 59.97 mW/cm2 0.139 mW/cm2 ≤ 10 pW/cm2

TD = ~Γ/(2kB) 699 µK 4.4 µK ≤ 1 nK
vR = ~kR/m 5.8 mm/s 4.2 mm/s 4.0 mm/s
gJ 1.035 1.493 - (J = 0)

transition dominates at the outer shell to improve the loading rate [62]. The in-

tercombination line is one of the most important transition in this thesis, since

it is employed for spin manipulation/detection techniques, Raman transitions,

and photoassociation transtions. Some relevant parameters of frequently used

transitions of ytterbium atoms are summarized in Table 2.3.

2.1.2 Scattering properties and emergent SU(I) symme-

try

The collisional properties of ultracold atoms are typically scaled in terms of s-

wave scattering length as. Since the atoms at degenerate regime have not enough

kinetic (thermal) energy to overcome higher-order centrifugal barriers, as is the

only parameter to be considered. When the atomic cloud is dilute enough to

be described by the effective interaction range, which is much shorter than the
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Figure 2.1: Energy level diagram of an ytterbium atom with various optical tran-
sitions. Two frequently used optical transitions are depicted: 1S0 →1P1 (blue)
is employed for Zeeman slower and absorption imaging, while 1S0 →3P1 (green)
is used to capture Magneto-Optical Trap (MOT) and to carry out various spin-
dependent manipulations of the fermionic atoms. Γ is the natural linewidth of
corresponding (closed) transition and Γd is the decay rate (red lines).
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Figure 2.2: Emergent SU(I) symmetry in the ground states of alkaline-earth-like
atoms such as 173Yb and 87Sr.

interparticle distance, the interatomic potentials are well approximated by the

pseudopotential [85],

V (r) =
2F−1∑

even j=0

2π~2a
(j)
s

ν
δ(r)

∂

∂r
[r·] Pj (2.2)

where r = |r| is relative distance between the colliding atoms, µ is their reduced

mass, and Pj is the projection operator onto the states with j = 0, 2, · · · , 2F−1.

Note that the quantum statistics allows only the symmetric wavefunctions of

the even F terms. In general, the s-wave scattering lengths are different for each

spin state, which stems from different electronic configurations of the colliding

atoms.

For an alkaline-earth-like atom such as ytterbium or strontium, the elec-

tronic configuration of the ground state (1S0) has zero electronic angular mo-

mentum (J = 0). This is because of the Hund’s rule, which implies that the spins

of two valence electrons should be antiparallel. Instead, the absence of hyperfine

interaction makes the nuclear spins (I), which are nonzero only for fermionic

isotopes, almost perfectly decoupled from the electron spins. Therefore, the nu-

clear spin states formulate a set of good quantum numbers {F = I,mF = mI}.

This electronic-nuclear spin decoupling establishes the s-wave scattering lengths
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be independent of the the nuclear spin, a(j)
s = as. The variation of the scatter-

ing lengths for different nuclear spin states is estimated as δas/as ∼ ∆φ =

∆V∆t/~, where ∆φ is shift of semiclassical phase of the atomic wavefunction

and ∆t ∼ 1 ps is the typical interaction time [30]. For 1S0 state, the potential

difference between different nuclear spin projections ∆V can be calculated by

∆V/h ∼ E2
hf/(Eopth) ∼ 200 Hz, where Ehf ∼ 300 MHz is hyperfine splittings

in 3P1 and Eopt/h ∼ 400 THz is the optical energy in the 1S0 →3P1 transi-

tion. Therefore, δas/as ∼ 10−9, which leads to the emergent SU(I = 2F + 1)

symmetry for the nuclear spin states of ground state alkaline-earth-like atomic

species [86].

In case of ytterbium fermions, 173Yb has six ground spin states and 171Yb

has two ground spin states. The scattering lengths for intra/inter-isotopes in the

ground state are summarized in the Table 2.1.2, which are measured via two-

color photoassociation (PA) spectroscopy. The PA resonances near the ground

state gives the knowledge of interatomic potential, which is crucial for deter-

mining the scattering lengths. The two most abundant species of ytterbium,

bosonic 174Yb and fermionic 173Yb, carries good scattering length to perform

evaporative cooling. For fermionic isotope, the evaporation works for only when

the sample composes multiple spin components. In case of the other isotopes,

sympathetic cooling with other atoms with good scattering property is neces-

sary. For instance, 171Yb is typically cooled with 173Yb, which has as ≈ 200a0

and a171−173 ≈ −578a0.

Surprisingly, the alkaline-earth-like atoms have another J = 0 state for

excited 3P0 manifold. For the 3P0 states, the decoupling still serves vanishing

hyperfine interaction to the leading order; however, in this case, the decoupling

is slightly broken by the admixture with higher-lying P states with nonzero

26



Table 2.4: s-wave scattering length between the isotopes of ytterbium atoms in
units of a0 (Bohr radius). The numbers are taken from Ref. [87]

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252.0(34) 117.0(15) 89.2(17) 65.0(19) 38.6(25) 2.5(34) 359.2(30)
170Yb 63.9(21) 36.5(25) -2.1(36) -81.3(68) -518.0(51) -209.5(23)
171Yb -2.8(36) -84.3(68) -578(60) -429(13) 141.6(15)
172Yb -599(64) 418(13) 200.6(23) 106.2(15)
173Yb 199.4(21) 138.8(15) 79.8(19)
174Yb 104.9(15) 54.4(23)
176Yb -24.2(43)

J 6= 0, which brings δas/as ∼ 10−3 [30]. Hence, the 1S0 and 3P0 manifold

exhibit two-orbital SU(I) symmetry, which can be interest in other research

fields of physics beyond ultracold quantum gases [88–91].

2.1.3 Interaction with weak magnetic field

The magnetic dipole interaction (M1) Hamiltonian leads to the Zeeman shift,

ĤZ = −µ ·B =
1

~
µBgF F̂ ·B

= µBgFmFB,

(2.3)

where µB is Bohr magneton, gF is combined (effective) Landé g-factor, and

mF is the magnetic quantum number, which is a projection of F̂ along the

quantization axis. The Zeeman shift splits the hyperfine states into magnetic

sublevels (spins) linearly for weak magnetic fields, unless LS -coupling is broken

in the Paschen-Back regime. The combined g-factor leads to,

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
,

(2.4)

where gI = µI/(IµB) and µI is the nuclear magneton. Especially, owing to the

decoupling of nuclear spin from that of electrons, F̂ = Î (J = 0 for 1S0) and
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the Zeeman shift of the ground state ytterbium atoms arises solely due to the

nuclear spins. Therefore, for the bosonic isotopes, the absence of nuclear spins

implies that their ground states are insensitive to the external magnetic field.

The magnetic moment of bosonic isotopes depends fully on the excited state.

The Landé g-factor is gJ = 1.035 for 1S0 →1P1 and gJ = 1.493 for 1S0 →3P1.

For the fermionic isotopes, the nuclear spin degree of freedom needs to be

considered. Since µI = µB(me/mp), where me,p are electron and nuclear mag-

neton, respectively, the nuclear magneton is smaller than the Bohr magneton

in three orders of magnitude (me/mp ≈ 1/1836). The splitting can be calcu-

lated based on the g-factor values gI = 0.6776 for 1S0 and gI = 1.493 for 3P1.

For example, the Zeeman effect for 1S0 state results in the linear splitting of

207 Hz/G. The magnetic substructure of 173Yb is depicted in the Fig. 2.3.

Miscellaneous

The lack of magnetic moment in the ground manifold hinders the use of mag-

netic Feshbach resonance, which is a classic method to modify interatomic in-

teractions. Alternatively, the scattering lengths are tuned by means of optical

Feshbach resonance (OFR) [92–97], where the open and closed channels are cou-

pled via resonant light instead of Zeeman energy. However, because of the harsh

photon scattering events (heating from spontaneous emission) as well as the

severe N -body losses, OFRs are not applicable for alkali atoms and still require

further development. Especially, OFRs are better suited for alkaline-earth-like

atoms because of their small scattering rates owing to the narrow transition

linewidths. To implement OFR, it is necessary to know interatomic potentials

in detail by PA spectroscopy, which is explained in Section 6. Recently, the

control of interaction strength via mixing different orbital states 1S0 and 3P0
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Figure 2.3: Magnetic sublevels of the most frequently used states, 1S0, 1P1 and
3P1 of 173Yb. The hyperfine splittings and corresponding Zeeman shifts are
illustrated.
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by using Zeeman energy become available [70–72]. Note that this is “magnetic”

resonance, not the optical one.

2.2 Laser system

The two major transition lines for laser cooling ytterbium atoms have blue

(398.9 nm) and green (555.8 nm) wavelengths. Unfortunately, the lasers at these

two wavelengths are not commercially available. Alternatively, we decided to

generate the proper laser lights using the fundamental laser and corresponding

second harmonic generator (doubling cavity). This section describes how to

create suitable laser lights for cooling the ytterbium atoms.

2.2.1 Laser for blue transition

We began with a blue laser diode (Nichia) to build ECDL(External Cavity Diode

Laser) system at Littrow configuration [98]. The first strategy was to use one

master ECDL and separately implement slave ECDLs via injection lock. This

master-slave ECDL system for blue laser system had been used in Kyoto group,

who guided the ytterbium quantum gas experiment since born. The scheme is

cost-effective as well as less complicated. However, the blue laser diodes were

unstable to support frequency lock and suffered severe mode-hoppings. The

situation went even worse when the diode was subjected to operate at high

input current: the single mode operation vanishes under the lab environment,

which was quite as possible. It was almost like a lottery to find the acceptable

product from the single die. Therefore, to overcome these problems, we decided

to modify our plan to frequency doubling scheme, where a second harmonic

generator (SHG) with fundamental laser is exploited.
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Second Harmonic Generator

The fundamental laser light at 798.6 nm is emitted by a commercial diode-

TA system (Toptica TA pro 798). To generate laser light at 398.9 nm, the

fundamental laser beam is carefully shaped with anamorphic prism pairs and

then incident to the SHG cavity. The principles of SHG system is discussed in

M. Lee’s thesis [99] (It is a nonlinear effect). The simple rule for constructing

SHG is that the maximum conversion efficiency is achieved if the total loss per

single round trip equals to the transmission of the input coupling mirror.

The SHG is composed of a bow-tie cavity with a AR coated LBO crystal

(Raicol company). Since the LBO crystal degrades under humid environment,

the complete cavity system is sealed with an acryl box filled with pure oxygen

and frequently re-filled the gas with the new one. The dehumidifying agents (sil-

ica gel) are also put in the box. After the oxygen injection, we observed a slight

increase in the total output power < 10 mW. For the future upgrade, it is recom-

mended to use other gas because oxygen is dangerous for burning and explosion

(although it never happened). The temperature of the LBO crystal is actively

stabilized for some selected value near the room temperature (21.5 ∼ 23.2 ◦C).

Since the LBO crystal for blue transition takes angle-phase matching, which

draws walk-off angle, the output beam has horizontally long slanted shape. A

careful beam shaping is thus required for the output beam.

The cavity length is also stabilized by using Hänsch-Couillaud scheme,

where the error signal is obtained by differentiating the absorption spectrum

from different polarizations. To implement this scheme, the fundamental laser

should be polarization maintaining and have well-defined single frequency mode

along the frequency of interest (ω798.6 = 2π × 375764 GHz). The parameters of
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cavity lock critically depend on the optics alignment and piezo length, which

affect the quality of the error signal. Especially, a neutral density filter (Thorlabs

NDC-50C-2-B), which reduces reflected beams in front of the input coupling

mirror, gives small but observable drift in the error signal. The cavity lock is

achieved by a PID of few tens of kHz bandwidth (SRS, SIM960) and is stable

against typical noise sources in the lab for a day. The cavity lock is fast enough to

follow the scanning speed of fundamental laser at few Hz rate for the frequency

lock at the atomic reference. For fixed optimum cavity length, the conversion

efficiency reach about 20%, where 270 mW of 398.9 nm light is obtained from

1.3 W input of 798.6 nm beam. Recent upgrade replaced the TA chip with

the new one from Toptica, which emits CW 798.6 nm laser up to 2.8 W. The

maximum achievable blue laser power using the new system is about 500 mW,

which is five times larger than our required power for laser cooling.

The cavity optics were made of ultrastable mounts with low temperature

drift hysteresis (Thorlabs 0.5 inch Polaris). Almost no significant alignment

correction has been required over several months. Rather, the most drifting

part was the optics inside the fundamental TA laser.

Because of UV nature of the blue laser lights, the system often suffered

the damage from highly-energetic photons on the optics. Two critical parts were

polarizing beam splitter cubes (PBSs) and optical fibers. The PBSs were burnt

and showed yellow bright spot inside the cube interface although they were

optical contact products (PBS25-405-HP). We occasionally replaced the PBSs

before the input fiber (which reduces the fiber coupling efficiency) and before

the input of Zeeman slowing (which diminishes the slowing efficiency) per 6

months of daily operation. The optical fibers also degraded at the end of the

fiber tip by the power-induced long-term damage. To protect the fiber end from
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the detrimental effect, it was managed with coreless end cap finish (OZ optics

QPMJ-A3HPCA3HPC-400-3/125-3-7-1).

Spectroscopy

The stabilization of the blue laser frequency at the atomic reference is accom-

plished by performing modulation transfer spectroscopy (MTS), where the side-

bands of the pump beam is transferred to the probe beam mediated by the

atoms. The modulation (sideband) frequency for blue laser system is chosen to

2π × 25 MHz (Photonic technologies, EOM-02-25-U), which is similar to the

atomic linewidth Γ = 2π × 29.1 MHz. The transferred signal is detected by

a home-made lock box. The error signal is delivered to the auxiliary port of

Thorlabs Digilock system where the frequency lock is achieved. As an atomic

source, hollow cathod lamp (HCL, Hamamatsu, L2738 Yb-Ne) operated by a

high voltage power supply (SRS, PS310/1250V-25W) is employed. The typical

runnning condition for the HCL is 177 V, 1 mA.

The blue laser lights are adopted for Zeeman slowing, which is detuned

by ≈ 1 GHz from the atomic resonance |1S0, F = 5/2〉 → |1P1, F
′ = 7/2〉. To

save the laser power resource from the loss due to AOMs, we take advantage

of isotope shifts. For example, the error signal for 174Yb is exploited to collect
173Yb, where isotope shift grants ≈ 588 MHz shift. The details of the optics

alignment and diagram of the blue laser system are illustrated in Figure 2.4.
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Figure 2.4: A schematic diagram for generating laser for the blue transition
line. The fundamental TA laser beam is frequency-doubled by a second har-
monic generator to create 398.9 nm laser, which is employed for Zeeman slower,
spectroscopy, and imaging. In the above diagram, the frequencies of the AOMs
are tuned to 173Yb experiment. Since the AOMs are polarization dependent
deflection efficiency, inconvenient double-pass configuration is employed.
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2.2.2 Laser for green transition

Second Harmonic Generator

Similarly, we built another home-made SHG cavity system for the green tran-

sition of the ytterbium. The AR coated LBO crystal (Castech company) con-

verts 1111.6 nm IR light generated by a commercial fiber laser (Menlo systems,

Orange-1) into 555.8 nm. The linewidth of the fundamental laser is guaranteed

to be < 2π× 50 kHz, which is less than the natural linewidth of the green tran-

sition. Instead of angle phase matching, the temperature phase matching near

105 ◦C is adopted with absence of walk-off angle. The cavity length stabilization

is achieved by Hänsch-Couillaud scheme as for the blue cavity and the typical

conversion efficiency attains ≈ 20%, where the cavity output is 220 mW for

1.1 W of IR light. Recently, we purchased a new fundamental laser from Quan-

tel (EYLSA-L-1111.6-3-P-SN-W-CO v2.0), which provides 2 W of IR light.

Spectroscopy

The MTS again fixes the frequency of the fundamental laser to the atomic

reference. An EOM driven by a modulation frequency of 3 MHz (Photonic tech-

nologies EOM-02-3-U) is employed to obtain an error signal from the narrow in-

tercombination transition. Because of small saturation intensity Isat of the green

transition, the portion of transferred signal is hard to detect. It is also signifi-

cant to keep quite electronic environment, since small fluctuation of order of few

mV may disrupt the lock (and therefore the sample) quality. We implemented a

photomultiplier tube (Hamamatsu, PMT H10492) with 8 MHz bandwidth and

carefully guarded the unwanted scattered lights. Since the atomic flux fogging

inside the HCL was insufficient to produce error signal, we built an atomic cell
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operated around 460 ◦C. The typical error signal appeared as peak-to-peak volt-

age scale of ≈ 400 mV for 173Yb resonance. To prevent deposition of ytterbium

atoms, the viewports were heated up to 150 ◦C and Ar gas (≈ 10−6 torr to avoid

pressure broadening) was filled as a buffer gas. The details of the green laser

system are depicted in Fig. 2.5.

2.2.3 Laser for optical dipole trap

To perform an evaporation cooling, the ytterbium atoms are loaded into bichro-

matic crossed optical dipole trap consists of two CW high power lasers. First,

the atoms collected in the MOT are transferred to the IR dipole trap, which has

wavelength of 1070 nm and maximum power of 100 W (IPG photonics, multi-

mode frequency, YLR-100-1070-LP). The beam power of the IR dipole trap laser

is monitored by two battery-powered photodiodes (Thorlabs, DET36A/M), each

of which regulates the laser for different power range via a PID feedback servo

(SRS, SIM960). Because the IR laser has minimum emission power (≈ 1 W),

the overall power range is modified by a motorized rotating waveplate (New-

port, PR50CC). To switch the dynamic range, a multiplexer (Analog devices,

ADG5209) is employed. The focus of the IR dipole trap is designed to have

elliptic beam waists of 26 × 72 µm to provide high trapping frequency against

the gravity and to enhance transfer efficiency from the MOT by spatial mode-

matching. Two cylindrical lenses are placed to shape this beam waist (See

Fig. 2.10).

Another auxiliary, single frequency laser, which has wavelength of 532 nm

(IPG photonics, GLR-20), is applied to create crossed dipole trap in the science

chamber. The auxiliary trap has beam waist of 60 µm and PID-controlled by an
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80 MHz AOM (AA optoelectronic, MT80-B30A1,5-VIS). The laser is delivered

through the fiber to the science chamber. Later, we adopt another laser with

the same frequency to create accordion optical lattice.

Because of high power nature of the dipole trap lasers, careful handle

of optics should be required. To reduce thermal lensing, we tried to minimize

the thickness of the optics component. For example, a thin plate polarizer was

employed (CVI Melles-Griot, TFPN-1064-PW-1025-UV for IR, TFPN-532-PW-

1025-UV for 532 nm) instead of a cube PBS. Also, it was helpful to use the optics

made of fused silica instead of NK-7 materials. One of the critical part that may

burnt was the fiber tip. The non-high power fibers (Thorlabs, P3-488PM-FC)

suffered this issue and the coupling efficiency decreased daily; however, the fibers

survived up to < 2 W of input power. For future perspective, it is beneficial to

replace the fibers with the high-power end finish. Again, be careful when dealing

with high power lasers; it may burn your AR coating of the viewport. Put on

the protective glasses, although I have burnt some of my lab clothes.

2.2.4 Laser for optical lattice

Unwanted interferences between the lattice beams at each axis are alleviated by

slightly shifting the frequencies of the lasers by tens of MHz. We employ four

AOMs (two for 80 MHz, ±110 MHz) where one of them has 80 MHz to generate

aforementioned crossed dipole trap and another one with the same frequency

for the lattice 1(ŷ). Remaining two other AOMs produce ±110 MHz lights for

lattice 2(x̂) and 3(ẑ), respectively. Each beam power is monitored by the battery-

powered photodiodes (Thorlabs, DET series) and is actively stabilized by the

servo (SRS, SIM960). The beam waists of the lattice beams are ≈ 85 µm and
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the maximum applicable trap depths are 50 ER. The lasers are derived from

the same source (IPG photonics, GLR-20) and delivered to the science chamber

through the fibers.

2.3 Vacuum system

In this section, the vacuum system of our ytterbium cold atom apparatus is

described. In order to produce atomic samples with sufficiently long lifetime up

to several seconds, UHV (< 10−11 torr) is required to prevent one-body loss due

to the background scattering from residual particles such as hydrogen, nitrogen,

and etc. Although most of the experiments are done within 100 ms, because of

harsh three-body loss mechanism for ytterbium cold atoms, our setup consists

of UHV vacuum system with main and science chamber.

2.3.1 History of the system

In Nov. 2014, Bose-Einstein condensation of 174Yb was produced. However, we

were unhappy with the machine for three reasons: 1) The old machine had no

science chamber and lacked optical access (viewports). Also, the old machine

had no bucket window, which was necessary to implement high-resolution imag-

ing system due to short working distance of an objective lens. 2) The vacuum

measurement using ytterbium MOT showed strong one-body loss with short

lifetime ≈ 25 s. We suspected that the outgassing from custom-made Zeeman

slower tube and pumping body (Jeongmin Vacuum) was the main reason for

bad vacuum status. 3) Due to the unstable support of ion pump magnet at the

oven part, a critical leak was found (by He leak detection) and the pressure at

the oven suddenly increased from 1×10−11 to 10−7 torr. Therefore, the replace-

39



ment of whole vacuum system was inevitable. At the turn of the year, M. Lee

and I started to build a new machine from the ashes. The new design included

science chamber with non-evaporative getter (NEG) pump (SAES CapaciTorr

D50). In Apr. 2015, we successfully observed MOT again in the main chamber.

In the fall of 2015, the degenerate Fermi gas of ytterbium atoms was created in

the science chamber.

At Christmas of 2015, our master laser (1112 nm, Menlosystem Orange-

1) was broken because its electronic board was burnt without any incident. M.

Lee and I manually replaced the board at Feb. 2016. Since then, we started to

study the effect of artificial gauge potentials on the ytterbium fermionic atoms.

But sadly, the joy did not last long. The lattice laser (532 nm, IPG

GLR-20) was broken without any reason, and we were unable to maintain the

experiment. We doubted that the alignment of harmonic generator at the end of

the master laser was broken, but the only thing we could do is to send the laser

back to the factory. We sent the lattice laser to the U.S. for repairs and it took

more than a year (!). During the period, J. H. Kang and I studied photoassoci-

ation spectrum of bulk ytterbium atoms and M. Lee tried to realize dark-state

optical lattice [100], which was later published first by NIST group [101]. It was

not surprising that the atom shutter was broken twice by incorrect assembly of

the rotational feed-through. The atom shutter was replaced with a new one and

is now working correctly.

At the fall of 2017, the lattice laser came back and J. H. Kang and I

started to reconstruct the whole system of the machine again. In that winter,

we were able to begin the experiment about topological matters in synthetic lat-

tices. Very recently, during preparing this dissertation, NI chassis, which controls

all the apparatus, was naturally broken by aging. It was replaced with a new
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Figure 2.6: Photographs of the development of the machine. (a) Pre-baking of
vacuum parts [Dec. 2014]. (b) Ytterbium team making Zeeman slower [Jan.
2015]. (c) M.-S. Kim welding copper water cooling pipes to Zeeman slower [Jan.
2015]. (d) Zeeman slower magnetic field test [Feb. 2015]. (e,f) Assembling the
vacuum parts [Jan. 2015]. (g) M. Lee aligning the frequency doubling cavity
[Apr. 2014]. (f) J. H. Han testing the blue laser system [Feb. 2015].

41



one, but the experiment had been stopped for several weeks.

2.3.2 Main machine

Most of the vacuum parts are made of the off-the-shelf products from the

MDC vacuum. The main machine is composed of oven, Zeeman slower, and

main/science chambers.

The bulk ytterbium chunk is located inside the cup made of stainless steel,

which is boiled up to ≈ 390◦C. To prevent adhesive congelation of ytterbium

atoms, the elbow is boiled up to ≈ 420◦C. At this temperature, the atomic

beam bursts out from the nozzle at the average speed nearly ≈ 300 m/s. The

nozzle is composed of a thin stainless steel plate with a hole diameter of 12.7 mm.

Together with the differential pumping tube, the nozzle guides the atomic beam

flux, which is carefully aligned to the center of the main chamber. The alignment

of the flux direction was very critical to generate a large MOT, especially to

the fermionic ytterbium isotopes, where the Zeeman slowing beam blows off the

atoms. The on-and-off of the atomic beam is controlled by an atom shutter.

Oven has one Titanium sublimation pump (Agilent, 9160050) and one

ion pump (Gamma Vacuum, 75L/s). Typical pressure reading at the ion pump

is 8× 10−11 torr at 190◦C, while it is nominally 1× 10−10 torr when the oven is

operating (390◦C).

The atomic beam reaches the Zeeman slower where the atoms began to

slow down. The Zeeman slower is about 1 m long and has increasing magnetic

field design toward the main chamber. An ion pump (45 L/s) is attached between

the differential pumping tube and the entrance of the Zeeman slower. Typical

pressure reading at this pump is about 7 × 10−11 torr (at 190◦C, 1 × 10−10
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torr when operating). The magnetic coils are wrapped around a 0.75 m long

hollow stainless tube, which fits to the 1.33 inch end of the Zeeman slower. The

coils are water-cooled and separated to the laser system by a sorbothane sheet,

which protects the machine against the vibrational noise. This vibrational noise

from the water-cooling was the second most critical obstacle to attain quantum

degenerate temperatures.

The main chamber is a spherical octagon chamber made from Kimball

physics (MCF800-ExtOct-G2C8A16). Since it is the place where atoms are col-

lected to the MOT and loaded into the dipole trap, three vacuum pumps–one

Titanium sublimation pump (Agilent) with large pumping body, one NEG pump

(SAES CapaciTorr D50), and one ion pump (Gamma Vacuum 75L/s) support

the vacuum status inside the chamber. Typical pressure reading at the ion pump

is 3×10−11 torr (at 190◦C, 7×10−11 torr when operating), while the reading at an

ion gauge (Agilent UHV-24, this cannot read below 10−10 torr) is 7×10−10 torr.

In the new machine, the lifetime measured with the ytterbium MOT showed

≈ 40 s. The top and bottom viewports are AR coated for blue (399 nm) and

green (532, 556 nm) lasers, and the side viewports are AR coated for green and

IR (1064, 1070 nm) lasers.

2.3.3 Science chamber

The hexagonal science chamber (Kimball Physics, MCF275-SphHex-Cc2A6) is

attached to the main chamber for better optical access and imaging. The quan-

tum degeneracy of ytterbium atoms are achieved in this science chamber. The

distance between the center of the main chamber and that of the science cham-

ber is about 345 mm. Again, the water-cooled high magnetic field coils, which
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Figure 2.7: CAD diagram of vacuum apparatus for generating ytterbium quan-
tum gas.

can produce the magnetic field up to 0.166 T, are located outside the chamber,

where sorbothane sheets absorb vibrational noise from it. Similar to the main

chamber, the top and bottom viewports are AR coated for blue (399 nm) and

green (532, 556 nm) lasers, and the side viewports are AR coated for green and

IR (1064, 1070 nm) lasers.

2.4 Control system

Thanks to A. Keshet, we have been implemented Cicero and Wordgenerator

to control over the apparatus for various experimental sequence. The sequential
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orders are programmed to National Instrument (PXI-1033) digital/analog cards

(PXI-6534/6713), where each order runs at the exact time within a resolution

below < 1 µs. The FPGA (Opal Kelly Xilinx 11480002CN) is used as a base

clock of the system.

2.5 Preparation of cold ytterbium quantum gas

This section illustrates the typical experimental procedure to reach quantum

degeneracy of ytterbium atoms. The experimental cycle begins with decelerating

down the atoms using Zeeman slower and magneto-optical trap (MOT). After

the transport of atomic cloud into the science chamber, evaporation cooling by

decreasing the trap depth is employed to generate ultracold ytterbium quantum

gases.

2.5.1 Zeeman slower

The atomic flux ejected from the oven gets slow down by unidirectional photon

scattering along the Zeeman slower. The resonance condition is always main-

tained by compensating Doppler shift with Zeeman effect. The velocity profile

of the atomic beam, which has Boltzmann distribution with average velocity

300 m/s, accumulates below the final target velocity about 10 m/s within a

distance of 1 m.

The optimum velocity profile v(z) can be obtained by considering the

magnetic field profile using the energy conservation law,

m

2

(
v2(z)− v2

0

)
=

∫
~kR(z)dz, (2.5)

where m is atomic mass, v(z) is the velocity of the atom at z, k is the photon
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momentum, and R(z) = Γ
2

I/Isat
1+I/Isat

is the scattering rate. The intensity of the

laser increases as I(z) = P/(πr2(1 +κz)2), where P and r are the incident laser

power and radius, respectively, and κ is the slope of the ray. Then the magnetic

field should satisfy µBgFmFB+kv+~∆ωZS = 0, where ∆ωZS is the detuning of

the Zeeman slowing light. In our experiment, we use σ− polarized P = 55 mW

of λ = 398.9 nm blue beam, which is detuned by ∆ωZS/(2π) = −1 GHz to

the |1P1, F
′ = 7/2〉 resonance. For 173Yb, this detuning is closely located to

F ′ = 5/2 state and this unusual hyperfine structure of the fermionic ytterbium

scatters the atoms captured in MOT. This detrimental effect is amended by

placing a dark spot (≈ 4 mm diameter) at the Zeeman slowing beam center to

suppress the scattering event on the atoms.

It is worth to mention that as the radius of the Zeeman slower coils grows,

the residual magnetic field smearing out to the main chamber increases as well.

We reduced this unwanted magnetic fields by operating slower compensation

coil together with several mu-metals located in between the Zeeman slower and

the main chamber.

2.5.2 Magneto optical trap

The decelerated atoms are then captured in the magneto-optical trap (MOT),

where its basic principle is just 6-way extension of the Zeeman slower. Key fea-

ture of the MOT is to make atoms scatter photons in a position-sensitive man-

ner where an atom deviating from the center of the zero magnetic field point

is pushed back to the center. To do this, the laser beams with proper polariza-

tions are irradiated from 6 directions and an anti-Helmholtz magnetic field is

adopted. The minimum “theoretically” achievable temperature is lower-bounded
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Figure 2.8: (a) The error signal obtained from modulation transfer spectroscopy
(MTS) using 398.9 nm blue transition of ytterbium atoms. To save the laser
beam power, isotope shifts are exploited instead of using AOMs. (b) Magneto
optical trap (MOT) of 174Yb atoms.

by a unit photon recoil momentum and is estimated to TD = ~Γ/(2kB) = 4.4 µK

for green MOT of the ytterbium. Because of small linewidth of the green tran-

sition Γ(3P1)/(2π) = 182 kHz, the Doppler temperature is small, but provides

slow loading rate. To enhance the loading rate, we modulate the frequency of

the green MOT beams (dithering) by 25 Γ with speed of 200 kHz to increase

the trapping volume and capture velocity [47]. As a result, more than 108 atoms

are collected in the MOT within 15 s. For your information, a powerful method

called core-shell scheme to boost up the loading rate by utilizing both blue and

green transition is developed recently [62]. To increase phase space density, we

cool the MOT by simultaneously decreasing the MOT beam intensity, reducing

the dithering amplitude, and approaching the detuning of MOT beams toward

the resonance. At the final stage, the atomic cloud is compressed by increasing

magnetic field gradient to 7.9 G/cm to have temperature about 20 µK. The

details of the experimental sequence is summarized in the Fig. 2.9.

47



F
ie

ld
 g

ra
d

ie
n

t 
(G

/c
m

)

2.5

D
it
h

e
ri
n

g
 (
G

)

7.9

4.3
0

29.0

M
O

T
 i
n

te
n

s
it
y
 (
I s
a
t)

2

273

42

O
D

T
 p

o
w

e
r 

(W
)

0

20 ms 100 ms 150 ms 250 ms 300 ms 300 ms 1350 ms15 s

M
O
T lo

ad
in
g

S
LW

 o
ff

D
ith

er
in
g 

of
f

H
ol
d

C
om

pr
es

s

O
D
T lo

ad
in
g

P
la
in
 e

va
po

ra
tio

n

Tr
an

sp
or

t

E
va

po
ra

tio
n

3.5 s

20 ms

time

Figure 2.9: Schematic diagram of early part of the typical experimental se-
quences, when the apparatus collects atoms in a MOT and load the atomic
cloud into an IR ODT. The figure is not to scale.
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2.5.3 Transport and crossed dipole trap

The compressed atoms are transferred to an IR optical dipole trap (ODT)

formed by a focused 1070 nm laser beam, where the transfer efficiency is ≈ 13%.

The 1×107 atoms of 173Yb are held in the 42 W of IR ODT. Then, the atoms are

transported to the science chamber, which is appendant to the main chamber,

for better optical access and capability of high magnetic field. The transport

system is composed of three parts: a pair of cylindrical lens to make elliptical

Gaussian beam, a lens to make tight focus, and another pair of lens comprising

4-f system with magnification M = 400/175 ≈ 2.3 to project the focus. In this

system, the focus is shifted by M2d as the focusing lens moves by d and the

beam waist is kept constant during the transport [99]. To transport the atoms,

the focusing lens is mounted on an air-bearing translational stage (Aerosystem,

ABL1000), which smoothly shifts the trap center by mechanically moving the

lens. The PID values and velocity profile of the moving translational stage is

empirically found. The transport system shifts the ODT focus within 1.65 s to

a science chamber with the transport efficiency about 85%.

After the transport, an additional 2 W of 532 nm auxiliary dipole trap

beam is focused to the atomic sample horizontally. The angle between the two

dipole trap beams is 60◦.

2.5.4 Bose-Einstein condensation and degenerate Fermi

gas

The quantum degeneracy is achieved by evaporative cooling the atoms inside the

crossed dipole trap. To decrease the temperature of the total system, the trap

depth is slowly reduced to selectively release highly energetic atoms in the trap.
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Figure 2.10: Images of the ytterbium machine. (a) 3D CAD image (topview)
of the apparatus. A scheme to transport atoms into the science chamber and
crossed dipole trap is illustrated. (b) A photograph (side view) of the vacuum
system. (c) A photograph of the laser system.
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The elastic collision between the atoms redistribute the thermal energy of the

atoms to have certain distribution (Maxwell-Boltzmann for classical tempera-

ture regime, Bose-Einstein/Fermi-Dirac for quantum degenerate temperatures)

after getting rid of hot atoms. We empirically found the optimum evaporation

curve by following the rule: looking for the time duration with maximum phase

space density when the trap depth is linearly decreased by half. After 6 to 7

steps, which take ≈ 3.5 s, Bose-Einstein condensation of 174Yb is created be-

low the critical temperature of Tc = 700 nK. Similarly, unpolarized degenerate

Fermi gas of ytterbium of atom number 105 and temperature T/TF = 0.1 is suc-

cessfully generated, where TF ≈ 200 nK is the Fermi temperature of the trapped

sample. The temperature of the Fermi gas is obtained by Thomas-Fermi fit of

momentum distribution (measured by time-of-flight) of the atomic cloud, which

deviates from the ordinary Gaussian wing fit. We also verified Eq. 1.10 safely

holds by measuring the temperature manually using the size of the cloud for

different time-of-flight durations. The typical trapping frequencies are estimated

to ωx′,y′,z = 2π × (30, 105, 146) (Here, x̂′ is chosen along the direction of green

dipole trap.), which is measured by kicking the atoms by suddenly moving one

of the trap using the PZT attached to the mirror.

2.5.5 Optical lattice

The optical lattice is constituted by two orthogonal retroreflected beams (x̂ and

ẑ) and one in an accordion style (ŷ). The auxiliary dipole trapping beam and

additional lattice 1 beam, both of which have λL = 532 nm, interfere to create

the lattice, where the intersection angle is 60◦ and the lattice spacing is increased

to dy = λL/
√

3 (dx,z = λL/2). To load the atoms into the optical lattices,
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1.7 mK 680 nK 460 nK 330 nK

Figure 2.11: Bose-Einstein condensation of 174Yb, where the transition takes
place near Tc = 700 nK. The momentum distribution is obtained by an ab-
sorption image taken after 15 ms of time-of-flight. The cloud exhibits bimodal
density distribution since all the excited states are saturated by quantum statis-
tics and the ytterbium atoms below Tc occupy the same momentum state.

the lattice beams are exponentially ramped to the target value within 70 ms

and τ = 0.05 s. The adiabaticity is guaranteed by measuring the population

occupying excited bands, which is less than 3%. To ensure thermal equilibrium,

the lattice depth is typically held for another 20 ms. During the lattice ramp

up, the ODT depth is linearly decreased to counterbalance the overall trapping

potential.

To detect momentum distribution (Brillouin zone) of atoms in the op-

tical lattice, especially for fermionic isotopes, usual band-mapping technique

is employed [6]. The lattice depths are linearly ramped down to zero for 1 or

2 ms, where the absorption image of the cloud is taken after the 15 ms of free
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Figure 2.12: Degenerate Fermi gas of 173Yb with six spin components. The
momentum distribution is obtained by an absorption image taken after 15 ms
of time-of-flight. In contrast to the bosonic gases, the radially averaged optical
density (OD) of fermions is fitted with a Thomas-Fermi distribution, which
assigns suppression of atomic density in the center of the cloud due to Pauli
exclusion. The temperatures of the gases are estimated by these fittings. Notice
that the momentum distribution deviates from either full or wing Gaussian fit.
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Figure 2.13: Measuring trapping frequencies of bichromatic crossed dipole trap
by kicking the 173Yb atomic cloud and observing its center-of-mass oscillation in
the x̂-ŷ plane. Each data for x̂′ (empty circles) and for ŷ′ (filled circles) is fitted
with an equation x̃(t) = ãe−t/τ cos(2πωjt+ φ̃) (red and blue lines, respectively),
where ωj are the trapping frequencies along the principal axis (x′, y′, z). The
trapping frequencies are estimated to ωx′,y′ = 2π × (30, 105).

expansion. The mapping rate is chosen to be faster than the harmonic trapping

potential to prohibit distortion from it and to be slower than the energy gap of

the lattice to preserve the momentum space information.

2.6 Detecting and manipulating nuclear spin states

The atomic cloud is detected by employing the standard absorption imaging

technique and its spin components are controlled by using optical pumping

method. This section describes how to detect and manipulate nuclear spin states

of fermionic ytterbium atoms in the degenerate temperatures.
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Figure 2.14: Momentum space (Brillouin zone) distribution obtained by a band-
mapping sequence, where the lattice potentials are adiabatically turned off.
(a) The Brillouin zone of atoms loaded in the 3D lattice of depths 5ER. Only
the lowest Bloch band is populated. When the lattice depth is low, the atoms
become metallic and the edge of the Brillouin zone is not completely occupied.
(b) The Brillouin zone of 3D lattice of depths 20ER. The aspect ratio is due to
the different lattice spacings because of the accordion style alignment. (c) The
lattice depths of each direction are calibrated by fitting multiband modulation
spectroscopy [102] signal, which is obtained by stacking up the BZ sum for
different modulation frequencies, to the known band dispersion.

2.6.1 Absorption imaging

One way to detect the atomic sample is to take an absorption image of the

cloud. It is a destructive method, which produces a quick and clear signal. The

principle of absorption imaging is to record a shadow of the atomic sample on

a CCD camera (Andor iXon ultra 888 for science chamber and PCO pixelfly

USB for main chamber) after the cloud is exposed to laser irradiation. The

resonant photons are scattered from (absorbed to) the atoms and the intensity

of the light is reduced at the sample position. To shorten the interrogation

time, closed dipole-allowed transition is preferred, such as blue transition (λ =
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398.9 nm, |1S0, F = 5/2〉 → |1P1, F
′ = 7/2〉 although it is approximately cyclic)

for ytterbium atoms. The intensity of the transmitted light can be calculated

using the Beer-Lambert law,

I(x, y) = I0(x, y)e−σ
∫
n(x,y,z)dz, (2.6)

which assumes the low intensity limit. Here, I0(x, y) is the initial intensity profile

of the probe beam, σ = 3λ2/(2π) is the resonant scattering cross section, and

n(x, y, z) is the density of the atomic sample. To minimize noise, an absorption

imaging takes three shots: 1) imaging with atoms Sij, 2) without atoms Nij,

and 3) without imaging beam itself for background noise calibration Bij. Then

the column density integrated along the axis of the probe beam appears on the

screen as,

ñ(x, y) =

∫
n(x, y, z)dz = −A

σ
ln

(
Sij −Bij

Nij −Bij

)
, (2.7)

where A is the total pixel area (13 µm×13 µm for Andor and 6.45 µm×6.45 µm

for PCO) taking the magnification of the imaging system into account. The

magnification of our imaging system in science chamber is about ×6.5 (×2 for

main chamber), which is calibrated using the Raman pulse. The resolution of our

imaging system is determined by an objective lens (Mitutoyo telecentric) below

2.18 µm, which is measured by USAF1951 test pattern. The typical exposure

time for 173Yb is 100 µs per a shot and the intensity of the imaging beam is

≈ 0.02 Isat, which safely admits the low intensity approximation. Depending on

the polarization and the external magnetic field, the transition line strengths

|CF ′,mF (ε)|2αJJ ′ should be considered as a multiplicity factor to correctly detect

the number of the atoms in the specific spin component.
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Figure 2.15: Schematic diagram of vertical alignment in science chamber. The
beams are distinguished by several dichroic mirrors. To avoid detrimental effect
due to high intensity of the optical lattice beam, the reflective side is exploited
for dichroic mirrors.
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2.6.2 Optical Stern-Gerlach effect

The absence of (electronic) magnetic moment in the 1S0 ground state makes

difficult to resolve each nuclear spin component using ordinary magnetic Stern-

Gerlach method. A simple calculation estimates that the required magnetic

field gradient is 103 times larger than the case of an alkali atom. Instead, for

ytterbium atoms, an optical Stern-Gerlach (OSG) method is used to separate

out the nuclear spin components of the atomic sample.

The principle of the OSG is to take advantage of differential AC Stark

shift between the spin components. For a near resonant lights, the AC Stark shift

is different for each spin state, which produces spin-dependent optical potential.

When an atomic cloud is located at the side of Gaussian intensity profile, the

atoms perceive spin-dependent dipole force, which resolves each spin component

in the cloud. The spin state-dependent AC Stark shift can be calculated by using

Eq. 1.17 and corresponding numerical code is provided in the Appendix D.

In our experiment, the atomic cloud is illuminated by 4 ms of OSG beam

which is detuned by +860 MHz from the green transition line, |1S0, F = 5/2〉 →

|3P1, F
′ = 7/2〉, after switching off all the trapping beams. Then, the atoms

are allowed to expand freely for 6 ms and detected by the absorption imaging.

Typical images for various spin mixture samples are displayed in Fig. 2.16.

2.6.3 Optical pumping method

It is also possible to initialize the composition of nuclear spins in the atomic

cloud by using optical pumping method. In this method, the atoms in spin state

|1S0, F = 5/2,mF 〉 are transferred to the excited state |3P1, F
′ = 7/2,mF ′ =

mF + ε〉 depending on a polarization of the optical pumping beam ε = ±1 or 0.
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Figure 2.16: The principle of optical Stern-Gerlach (OSG) effect. (a) Calcu-
lated differential dipole potentials for each spin component induced by an OSG
beam of waist 100 µm and power 5 mW. The atomic cloud (green) experiences
spin-dependent dipole force (red arrow) and is spatially resolved by each spin
component. (b) Typical experimental absorption image taken after radiation of
OSG beam by 4 ms and then 6 ms of free expansion of the atomic cloud.

Then, the atoms fall back into the target spin state in the ground manifold via

spontaneous emission under the general selection rule. The narrow transition

linewidth of 1S0 →3P1 allows us to manipulate spin components with arbitrary

ratio by using the optical pumping protocols.

In our experiment, we adopt a pair of optical pumping beams each of

which has σ± polarization to selectively excite specific spin state. The pump-

ing beams propagate along the vertical axis (±ẑ, respectively), which coincides

with the imaging and the quantization axes. The two pumping beams are in-

dependently controlled, where σ− beam is acquired from the MOT beam. An

external magnetic field of B ≈ 16.6 G is sufficient to resolve excited spin man-

ifold (3P1, F
′ = 7/2) which has Zeeman splitting of each level by ∆Z/(2π) =
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0.597 ·B kHz.

To avoid heating from the scattered photons, it is beneficial to apply

the optical pumping beams before the evaporation stage. However, for some

circumstances, we implement additional optical pumping beams after the evap-

oration sequences to clear out residual spin components. The optical pumping

beams illuminate the in situ atoms with a typical pulse length 25 ms per a

pulse in the early stage of evaporation while it shrinks down to 2 ms after the

evaporation. The atomic cloud produced in this way has slightly higher tem-

perature than the original sample. As the number of spin components in the

atomic cloud decreases, efficiency of the evaporation cooling drops because of

Pauli exclusion. Therefore, to create a spin-polarized sample, for example, we

prepare two component mixture and then perform evaporation cooling. After

the evaporation stage, we get rid of the unwanted spin component by applying

a blowing off pulse. In this method, we were able to generate spin-polarized

ytterbium fermions at |F = 5/2,mF = −5/2〉 with the atom number 104 and

the temperature T/TF = 0.2.

2.6.4 Spin-selective imaging

The inhomogeneous intensity profile of the OSG beam destroys the momentum

space information of the atomic cloud, which can be measured by a spin-selective

imaging. There are two ways to adopt the spin-selective detection of the atomic

sample: 1) To take an absorption image which is resonant only to the target

spin state and 2) to blow off the unwanted spin components by a blast pulse.

In the former case, a large magnetic field of ≈ 350 G is necessary to resolve

adjacent spin components by at least 5Γ for imaging blue transition line, which

60



(a)

100 mm

5/2

-5/2

(b)

-5/2 -3/2 -1/2 1/2 3/2 5/2 -5/2 -3/2 -1/2 1/2 3/2 5/2

-5/2
100 mm

mF mF

mF mF

Optical Density (OD)
0 1

Optical Density (OD)
0 2

Blast

Figure 2.17: Exemplary OSG images of atoms optically pumped to initialize
various spin mixture samples. (a) Two spin mixture (mF = ±5/2) sample. (b)
Spin-polarized (mF = −5/2) 173Yb sample.

bears Γ(1P1)/(2π) = 29.1 MHz. We also tried to implement 3P1 spin-selective

imaging, but weak saturation intensity of the dipole-forbidden transition yielded

a poor signal-to-noise ratio of the absorption image.

In the latter case, a blast pulse of 2 ms duration is applied at the early

stage of time-of-flight expansion to selectively eliminate unwanted spin compo-

nents in the cloud. In this way, a clear momentum space information of specific

spin is obtained. One drawback of this method is that the signal from different

spin states cannot be measured at the same time. In our experiment, a series

of experiments has been carried out to capture every data. It is also worth to

be noted that the eddy current around the metallic chamber, due to the abrupt

change in external magnetic field, produces residual magnetic field, which im-

pedes the blast pulse not to be resonant to the target state. The eddy current

can be ameliorated by implementing the science chamber made of nonconductive

material such as a glass cell.
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Chapter 3

Raman two-photon transition

Fermionic ytterbium atoms provide a perfect platform for studying topological

matters. To realize, one needs to generate artificial gauge potentials (fields) on

the neutral atoms. A typical way is to implement Raman two-photon transition

between given quantum states (psuedospins) of the atoms. The hyperfine spins of

ground manifold of fermionic ytterbium, which have sub-MHz narrow linewidth

for the transitions to intercombination line, can afford new type of Raman-

dressed synthetic material with low heating rate. In this chapter, I discuss basic

principles of Raman two-photon transition and its applications. This work is

mostly related to the published results in the following papers.

• M. Lee, J. H. Han, M.-S. Kim, and Y. Shin, “Gauge Field for Neutral

Atoms near a Current Loop,” Jour. Kor. Phys. Soc. 65, 2053 (2014).

• M. Lee, J. H. Han, J. H. Kang, M.-S. Kim, and Y. Shin, “Double resonance

of Raman transitions in a degenerate Fermi gas,” Phys. Rev. A 95, 043627

(2017).
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Table 3.1: Fine structure splitting of various atoms [21]
Elements 87Rb 40K 6Li 173Yb

Fine structure (∆FS/h) 7.1 THz 1.8 THz 10 GHz � 100 THz

3.1 Basic principles of Raman transition

Raman two-photon transition is a spin-changing Bragg transition between the

two inner quantum states, or pseudospins, of an atom. Two Raman photons

induces transition probability between these pseudospins, mediated by a virtual

excited state. The hyperfine spins of a cold atom is a useful candidate for real-

izing a Raman two-photon transition. Since a photon can alter only the angular

momentum L of the atom, the strength of Raman coupling is proportional to

the LS -coupling ∆FS, which increases as atomic mass gets bigger. Thus, atomic

candidates with large fine structure splitting is preferred to generate proper

strength of Raman coupling. The Raman coupling strength is ∝ ∆FS/∆
2, where

∆ is the detuning from the excited states [21]. In table 3.1, the values of fine

structure splitting of major elements used in cold atom society is presented.

It is also worth to note that small linewidth of ytterbium atom provides

low heating loss due to the spontaneous emission after the Raman process. As

mentioned in Eq. 1.14, the off-resonant photon scattering rate is ∝ Γ/∆2, where

Γ is the natural linewidth of the transition [21,103].

In this section, a system which have two long-lived ground states (in

most cases, hyperfine Zeeman sublevels of an atom) are coupled via an radiative

excited state is introduced. In the following descriptions, many types of rotating

frames (nothing but the gauge transformations) are adopted–so stay focused and

do not get dizzy!
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Figure 3.1: Schematic diagram of Raman two-photon transition in the simple
Λ-type atom. The two ground states |g1〉 and |g2〉 are coupled to the excited
state |e〉 by a pair of Raman beams of frequency ω1 and ω2.

3.1.1 Two-level approximation

Suppose an atom with three Λ-type energy levels is irradiated by two laser fields

of frequencies ω1 and ω2 (see Fig. 3.1),

E(r, t) = ê1E1 cos (k1 · r− ω1t) + ê2E2 cos (k1 · r− ω2t+ ∆φ), (3.1)

where ê1,2 are the unit polarization vectors of the two fields. Without loss of

generality, the global phase is neglected. When the phase difference between the

two laser fields ∆φ is independent of the pseudospin defined (Here, the Zeeman

sublevels of an atom)

The free atomic Hamiltonian can be written as,

ĤA =
p2

2m
− ~ω01|g1〉〈g1| − ~ω02|g2〉〈g2|, (3.2)
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where the excited energy is taken as the energy reference. In the frame rotating

with |gj〉 → |gj〉e−iωjt (j = 1, 2) and |e〉 → |e〉,

ĤA =
p2

2m
+ ~∆1|g1〉〈g1|+ ~∆2|g2〉〈g2|, (3.3)

where ∆j = ωj − ω0j (j = 1, 2) are the detuning of each field from the excited

state |e〉. In the dipole approximation, the Hamiltonian describing atom-field

interaction becomes ĤAF = −d̂ · E , where d̂ is the dipole operator. In the

rotating wave approximation, this can be written as,

ĤAF =
∑
j=1,2

−1

2
〈gj|êj · d̂|e〉Ej

(
|gj〉〈e|e−ikj·r + h.c.

)
=
∑
j=1,2

~Ωj

2

(
|gj〉〈e|e−ikj·r + h.c.

)
.

(3.4)

Here, Ωj = −1
2
〈gj|êj · d̂|e〉Ej/~ are the singe-photon Rabi frequencies of respec-

tive transitions.

Now, the Schrödinger equation for the total Hamiltonian Ĥ = ĤA +

ĤAF is used to describe the system. To solve the equations of motions, the

ansatz |Ψ〉 = ψg1|g1〉 + ψg2 |g2〉 + ψe|e〉 is chosen. For sufficient large excited

state detunings ∆j �
√
|Ω1|2 + |Ω2|2,Γ, the population at the excited state |e〉

is almost unchanged (∂tψe = 0). This is called adiabatical elimination of the

excited state. Furthermore, for the most of cold atom case, the kinetic term is

much less than the excited detuning p2/2m� ~|∆|, which results in,

ψe =
Ω1

2∆
e−ik1·rψg1 +

Ω2

2∆
e−ik2·rψg2 , (3.5)

where ∆ = (∆1 + ∆2)/2 exploiting the two detunings are nearly equal. The Eq.

(3.5) results in the effective Raman Hamiltonian,

ĤR =
p2

2m
+~(∆1+ξ1)|g1〉〈g1|+~(∆2+ξ2)|g2〉〈g2|+

~ΩR

2

(
|g1〉〈g2|ei(k2−k1)·r + h.c.

)
(3.6)
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or, in the matrix form,

ĤR =

 p2

2m
+ ~ξ1

~ΩR
2
ei(k2−k1)·r

~Ω∗R
2
e−i(k2−k1)·r p2

2m
+ ~(ξ2 − δR)

 (3.7)

where δR = ∆1 −∆2 is the detuning with respect to the two-photon resonance

and ξj are the AC Stark (light) shift of each level. Here, ΩR = Ω1Ω∗2/2∆ is the

Raman two-photon Rabi frequency.

3.1.2 Dark state description

The above description is approximately correct in the sense that the excited

state is adiabatically eliminated. When the detuning from the excited state ∆j

is small, the exact description of the system is done by 3× 3 matrix. From now

on, the kinetic energy is assumed to be small (similar to above) compared to

other energy scales. The starting point is the free-atomic Hamiltonian in the

rotating frame is given by Eq. 3.3. One amazing feature of the system emerges

from a transformation (change of basis),

|g+〉 =
1√

Ω2
1 + Ω2

2

(Ω1|g1〉+ Ω2|g2〉) = cos θ|g1〉+ sin θ|g2〉

|g−〉 =
1√

Ω2
1 + Ω2

2

(−Ω2|g1〉+ Ω1|g2〉) = sin θ|g1〉+ cos θ|g2〉,
(3.8)

which mixes the ground states by a rotation angle θ = tan−1(Ω2/Ω1). Then the

free-atomic Hamiltonian becomes,

ĤA = ~∆+|g+〉〈g+|+ ~∆−|g−〉〈g−|+ ~Ωg (|g+〉〈g−|+ |g−〉〈g+|) , (3.9)

where the rotated detunings are defined by ∆+ = ∆1 cos2 θ + ∆2 sin2 θ and

∆− = ∆1 sin2 θ + ∆2 cos2 θ, and the new coupling Rabi frequency is given by

Ωg = (∆2−∆1) sin θ cos θ. At the Raman resonance ∆1 = ∆2 = ∆, the coupling

66



between |g±〉 is absent (Ωg = 0) and the above Hamiltonian becomes ĤA =

~∆ (|g+〉〈g+|+ |g−〉〈g−|). On the other hand, the atom-field Hamiltonian in this

basis becomes,

ĤAF =
~Ω+

2
|g+〉〈e|+

~Ω−
2
|g−〉〈e|+ h.c., (3.10)

where the new Rabi frequencies are

Ω+ = Ω1 cos θ + Ω2 sin θ =
√

Ω2
1 + Ω2

2

Ω− = −Ω1 sin θ + Ω2 cos θ = 0.
(3.11)

Surprisingly, the coupling between |g−〉 and |e〉 vanishes. Therefore, at Raman

resonance, |g−〉 is a dark state, which does not scatter any photon from the field.

(The other state |g+〉 is called bright state.) This is because of the destructive

interference between two dipoles in the original basis, acting on the dark state.

This effect is called coherent population trapping (CPT), where the population

is trapped in the dark state due to the quantum interference.

If one takes the kinetic energy into account, the dark state is described

together with the momentum basis. Similar to the discussion in section 3.1, the

resonance condition now includes momentum states. This results in velocity-

selective coherent population trapping (VSCPT) [104], which is useful for sub-

Doppler cooling such as gray molasses [105–107]. In this method, the cold atoms

are trapped in the dark state to scatter no light at all, while the hot atoms

experience collisional cooling from the photons. Since the linewidth of the dark

state is smaller than the original atomic natural linewidth, the VSCPT gives rise

to sub-Doppler cooling scheme, which becomes powerful tool for atomic species

with low evaporative cooling efficiency (not good collision property) such as

bosonic 7Li.

So far, many more applications of CPT effect have been studied. For in-
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stance, when one of the two transition fields are stronger than the other, the

absorption rate for the weak transition drops to zero. At Raman resonance,

the medium (atom) does not see the photons and become “transparent”. This

effect is called electromagnetic-induced transparency (EIT) [108–113]. In this

phenomena, (sub-Doppler) narrow linewidth of absorption spectrum yields the

abrupt change in the dispersion relation, which results in the slow group ve-

locity of the photons. The lowest speed of photons has been recorded down to

17 m/s [114], which is surprisingly slower than the speed of a human running.

Once, this effect “had been” received a wide attention, because of its applications

such as storage unit in the area of quantum information.

Moreover, it is possible to transfer the population from one ground state

to another by using stimulated Raman adiabatic passage (STIRAP) [115, 116].

Initially, the atoms begin with the dark state. If one adiabatically changes the

dark state composition from one ground state to the another (equivalently,

changing θ), the population is transferred. One strong benefit of this method is

that the population never interacts with the photon, which helps maintaining

the cold degenerate temperature of atomic cloud.

Recently, a dark state optical lattice has been proposed [100, 117] and

realized [101] using 171Yb atoms. When the dark state is a function of spatial

parameter, the atoms experience photons only at some selected positions. Taking

the advantage of ultranarrow linewidth of the dark state resonance, this allows

to manipulate the trapping potential with sub-µm resolution.
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3.2 Raman transition and artificial gauge fields

3.2.1 Spin-orbit coupling (SOC)

The Eq. 3.7 describes the atom with Raman beams. In this section, we will see

how this off-diagonal phase term act as an artificial gauge potential. Without

loss of generality, we choose a reference frame (k2 − k1)·r = 2kRx for simplicity.

Then the Hamiltonian becomes,

ĤR =
p2

2m
1̂ +

~ΩR

2
[σ̂x cos(2kRx)− σ̂y sin(2kRx)] +

δ

2
σ̂z, (3.12)

where the detunings from Raman resonance is redefined as δ = δR− (ξ2−ξ1). In

the rotating frame U = eikRxσ̂z , the complex off-diagonal terms are equivalent

to the momentum shift,

Ĥ ′R = U †ĤRU =

 (p−~kR)2

2m
+ ~δ

2
~ΩR

2

~Ω∗R
2

(p+~kR)2

2m
− ~δ

2


=

(p1̂− ~kRσ̂z)
2

2m
+
δ

2
σ̂z +

ΩR

2
σ̂x,

(3.13)

where the momentum along ŷ and ẑ are ignored. Therefore, the Raman two-

photon transition in two-level approximation gives rise to a constant artificial

vector potential (or gauge field) qÂ = ~kRσ̂z. The motion of an neutral atom

under the Raman field mimics that of a charged particle under the vector poten-

tial [21]. This is equivalent to the Peierls substitution in the solid state physics,

where complex tunneling amplitude is later turns out to be the same as ex-

ternal magnetic field (or gauge flux) in the lattice systems. To see why, since

the momentum operator is a derivative, the exponential term which yields itself

after the differentiation gives the phase factor as the synthetic momentum. It

is deeply studied in bosonic 87Rb system by I. Spielman’s NIST group that one
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can engineer an uniform vector potential [118], a synthetic electric field [119],

and a magnetic field [120] implementing the Raman scheme.

One important feature of Eq. 3.13 is the spin-momentum locking [23],

where the artificial gauge potentials tie up the spin states and the momentum

states. If the two ground states |gj〉 (j = 1, 2) are regarded as pseudospins,

each ground state experiences the artificial gauge potentials with opposite mo-

mentum kick. This is called spin-orbit coupling (SOC), which is one significant

constituent realizing the topological matter preserving a time-reversal symme-

try. In solid state physics, the SOC originates from the relativistic effect of

electrons moving inside the potential gradient due to the host crystal. The SOC

is expected to establish new class of topological matters even without extreme

external fields [121], which is hard to be achieved in the typical lab environ-

ments and makes difficult to future application. In real materials, however, the

SOC is highly limited in tunability and strength: ≈ 104 m/s, which is much less

than the Fermi velocity ≈ 106 m/s. Instead, a cold atom system under suitable

Raman transitions can provide a platform to study these effect with exquisite

controllability. The Hamiltonian in Eq. 3.13 result in a one-dimensional (1D)

equal Rashba-Dresselhaus coupling. The main topic of this dissertation is study

of topological phases of cold atoms in the optical lattices implementing varia-

tions of the above Raman scheme, as we will see below.

3.2.2 Raman transitions in multi-level atoms

A system of real atom is more complicated than the aforementioned description

of simple Λ-type scheme; a real atom possesses multiple excited states as well as

many ground hyperfine spins. The strength of Raman transition which coher-
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ently couples two spins mF and m′F can be calculated by just simply summing

over all the possible transitions in the excited states. For instance, in the case

of 1S0 →3P1 transitions (λ = 555.8 nm) of an 173Yb atom, it is always αJJ ′ = 3

and the three excited manifolds F ′ = 7/2, 5/2 and 3/2 contributes to the Raman

Rabi frequency as,

ΩR =
∑
F ′

Ω1Ω2

2∆F ′

=
3πc2

2ω3
0

3Γ
∑
F ′

(
CF ′,mF (ε)CF ′,m′F (ε′)

∆F ′

)√
I1I2,

(3.14)

where the atomic frequency ω0 = 2πc/λ and the natural linewidth Γ is almost

constant over the various F ′. CF ′,mF (ε) is the Clebsch-Gordan coefficient defined

in Eq. 1.16, ε is the polarization vector, and Ij (j = 1, 2) is the intensity of each

Raman field. Here, the contributions from the other states (1P1, 3P0, etc...) are

negligible. Depending on the polarization of the Raman beams, the selection

rule affords one to choose whether the Raman process flips one (π-σ transition

for ∆mF = 1) or two (σ-σ transition for ∆mF = 2) units of magnetic quantum

number. Amazingly, in typical alkali atoms such as 87Rb, the latter has almost

negligible transition probability, which makes hard to realize a periodic Raman

structure, while the σ-σ transition in alkaline-earth-like atoms can be easily

adopted. We will discuss this feature later.

In the Raman experiment given in this thesis, we implement Raman

detuning ∆F ′=7/2 = 1.97 GHz by using an AOM (Brimrose TEF-1700-200-556)

changing the frequency by 1.65 GHz and then using another 80 MHz AOM

in double-pass configuration. (See the chapter 2 and Fig. 2.5 for more details)

In this detuning, the ratio between Raman coupling strength and off-resonant

photon scattering rate gives affordable magnitude [122].
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3.2.3 Double resonance of Raman transitions

In this section, momentum-resolved Raman specta of a spin-polarized degen-

erate Fermi gas of 173Yb atoms are depicted, which are measured in the Ra-

man laser configuration of the conventional SOC scheme. The details of the

experiment is well-established in the thesis of my colleague M. Lee [99]. In this

experiment, the Raman spectra over a wide range of magnetic fields as well

as laser intensities are studied to investigate the interplay of multiple Raman

transitions in the SOC scheme. For the fermionic 173Yb, it is possible that two

Raman transitions become simultaneously resonant at a certain magnetic field

and a doublet structure develops in the spectrum for strong Raman laser inten-

sities. We find that the spectral splitting at the double resonance quantitatively

resembles the Autler–Townes doublet effect [123].

In the conventional SOC scheme, since one of the Raman laser beams has

both of σ+ and σ− polarization components with respect to the quantization

axis defined by the magnetic field, the Raman transition from one spin state

to another, if any, can be made to impart momentum in either direction along

momentum transfering axis k1−k2

|k1−k2| where k1,2 is the wavevector of the Raman

beams. In typical SOC experiments, the system parameters are set to make un-

wanted transitions energetically unfavorable, but the double resonance observed

in this work results from involving both of the possible Raman transitions. When

all the Raman transitions are taken into account, the effect of the Raman laser

fields is represented by a spatially oscillating effective magnetic field [124]. Our

measurement results is consistent with the spinful band structure of the Fermi

gas under the effective magnetic field.
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Sample preparation

The quantum degenerate sample of 173Yb is generated as described in the sec-

tion 2.5. For an equal mixture of the six spin components, the total atom number

is N ≈ 1.0 × 105 and the temperature is T/TF ≈ 0.1, where TF is the Fermi

temperature of the trapped sample. The spin composition of the sample can be

manipulated with optical pumping and blowing (applying blast pulse) in the

course of the evaporation cooling. For the case of a fully spin-polarized sample

in the mF = −5/2 state, N ≈ 1.2 × 105 and T/TF ≈ 0.35. The final trapping

frequencies of the crossed dipole trap are (ωr, ωz) = 2π × (52, 450) Hz.

Experiment

In Fig. 3.2(a), the experimental setup is illustrated. A pair of counter-propagating

laser beams are irradiated on the sample in the x̂ direction and an external

magnetic field B is applied in the ẑ direction. The two laser beams are linearly

polarized in the ŷ and ẑ directions, which results in the both of σ+ and σ−

polarization components and π polarization, respectively. Thus, a two-photon

Raman process, e.g., imparting momentum of +2~kRx̂ by absorbing a pho-

ton from the one Raman beam and emitting a photon into another occurs to

change the spin number by either ±1, where kR is the wavenumber of the Raman

beams [23,125–127].

The Raman lasers are blue-detuned by 1.97 GHz from the |1S0, F = 5/2〉

to |3P1, F
′ = 7/2〉 transition [Fig. 3.2(b)], which is beneficial to induce spin-

dependent transition strengths for the F = 5/2 hyperfine spin states [128]. The

frequency difference of the two Raman beams is denoted by δω. The two beams

are set to have a same power and focused to the sample with 1/e2 radii of

73



Figure 3.2: Raman spectroscopy of a DFG. (a) Raman coupling setup with a
pair of counter-propagating laser beams, whose frequency difference is denoted
by δω. (b) Energy diagram of the 3P1 state of 173Yb and the relative detuning
of the Raman laser. (c, d) Examplary time-of-flight images of Fermi gases after
applying a pulse of the Raman beams for δω/2π = 14.8 kHz (c) and 29.6 kHz
(d). The vertical dashed lines indicate the center of the unperturbed sample.
(e, f) 1D momentum distributions n(kx) of the samples (yellow) obtained by
integrating the images along the y direction. The normalized Raman spectra
SR(kx) (red) are measured as SR(kx) = [n(kx)−nref(kx)]/nref(0), where nref(kx)
is the reference distribution (blue) obtained without applying the Raman beam
pulse.
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≈ 150 µm, which is much larger than the trapped sample size of 30 µm.

Raman spectroscopy is performed by applying a pulse of the Raman

beams and taking a time-of-flight absorption image of the sample. Two exem-

plary images are shown in Fig. 3.2(c) and 3.2(d), showing that atoms are scat-

tered out from the original cloud with different momenta for different δω. Since

the expansion time τ is sufficiently long such that ωrτ ≈ 5, the time-of-flight

image is regarded as the momentum profile of the atoms. The 1D momentum

distribution n(kx) is obtained by integrating the image along the ŷ direction

[Fig. 3.2(e) and 3.2(f)], where kx = mx/(~τ) with m being the atomic mass and

x the displacement from the center of mass of an unperturbed sample.

The normalized Raman spectrum is measured as SR(kx) = [n(kx) −

nref(kx)]/nref(0), where nref is the reference distribution obtained without ap-

plying the Raman beams. Therefore, Raman transition appears as a pair of

dip and peak, which correspond to the initial and final momenta of the tran-

sition, respectively. The spectral peaks and dips exhibit slightly asymmetric

shapes, which is due to elastic collisions of atoms during the time-of-flight ex-

pansion [129]. The Fermi momentum of the sample is kF/kR ≈ 1.2 in units of

the recoil momentum.

Raman Rabi oscillations

The atomic state in an ideal Fermi gas is specified by wavenumber k and spin

number mF . For a Raman transition from |ki,mi〉 to |kf = ki + 2rkR,mf =

mi + ∆mF 〉, which changes the momentum by 2r~kR and the spin number by

∆mF , the energy conservation requires E(|kf ,mf〉)−E(|ki,mi〉) = r~δω, which
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gives the resonance condition for the initial wavenumber ki as

ki = kR

[~δω
4ER

− ∆mF

r

B

4BR

− 1

r

∆ES
4ER

− r
]
, (3.15)

where ER = (~kR)2/2m = h × 3.7 kHz is the atomic recoil energy, B is the

external magnetic field, BR = ER/(gFµB) = 17.9 G, ∆ES = ES(mf )− ES(mi)

and ES denotes the spin-dependent AC Stark shift induced by the Raman lasers.

The quadractic Zeeman effect and the atomic interactions are negligible in our

experimental conditions.

Firstly, the resonance condition of Eq. 3.15 is investigated by measur-

ing its dependence on various experimental parameters. Fig. 3.3(a) shows a

∆mF = 0 Raman (Bragg) spectrum as a function of Raman pulse duration

for δω = 4ER/~ at B = 16.6 G on the spin-polarized samples. Both of the

Raman beams were set pi polarization. Momentum-dependent Rabi oscillations

are clearly observed and the Rabi frequency is found to be well described with

a form of Ω(k) =
√

Ω2
0 + (~kRk/m)2 with Ω0 ≈ 2π × 7 kHz. The decoherence

time is measured to be ≈ 1 ms, which seems to be understandable with the

characteristic time scale for momentum dephasing in the trap, π/(2ωr) ≈ 5 ms.

Figure 3.3(b) displays a spectrum of the equal mixture sample in the

plane of wavenumber k and frequency difference δω for B = 0 G. The r = 1

and r = 2 transitions are identified in the spectrum with their spectral slope

of dk
dδω

= ~kR
4ER

and different offsets as predicted by Eq. 3.15. The (k, δω) ↔

(−k,−δω) symmetry of the spectrum indicates that the differential AC Stark

shift is negligible in the measurement.

Figure 3.3(c) shows the Raman spectrum of themF = −5/2 spin-polarized

sample over a range of magnetic fields from B = 100 G to 195 G for δω =

13.4ER/~. In the spectral plane of k andB, the Raman transition with (r,∆mF ) =

76



Figure 3.3: Raman spectra measured with scanning various experimental param-
eters including Raman beam pulse duration t, frequency difference δω, magnetic
fieldB, and Raman beam power P : (a) δω = 4ER/~,B = 16.6 G, P = 0.47 mW;
(b) t = 2 ms, B = 0 G, P = 1.1 mW; (c) t = 2 ms, δω = 13.4ER/~,
P = 0.21 mW; (d) t = 2 ms, δω = 13.4ER/~, B = 133 G (see the text for details
of the sample condition and the polarization configuration of the Raman beams).
The dashed lines in (b) indicate k = kR( ~

4ER
δω − n) for n = −2,−1, 1,and 2,

and those in (c) and (d) are guides for the eyes having slopes of dk
dB

= − kR
4BR

and
dk
dP

= −0.3kR/mW.
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(1, 1) appears as a line having the slope of dk
dB

= − kR
4BR

as expected from

Eq. 3.15. A linear spectral shift is observed with increasing the Raman beam

power [Fig. 3.3(d)], which demonstrates the effect of the differential AC Stark

shift ∆ES. In our experiment, ∆ES = ES(−3/2)−ES(−5/2) ≈ 1.2 ER for 1 mW,

which is in a good agreement with the Raman beam intensities estimated from

the Rabi oscillation frequency.

Double resonance

Next, a situation where one spin-momentum state is resonantly coupled to two

final states simultaneously is investigated, which we refer to as a double res-

onance. When the two corresponding Raman processes are characterized with

(r1,∆mF1) and (r2,∆mF2), we see from Eq. 3.15, neglecting the small ∆ES

term, that the double resonance occurs when

B

4BR

∆mF1

r1

+ r1 =
B

4BR

∆mF2

r2

+ r2. (3.16)

For the primary transition with (r1,∆mF1) = (1, 1), the double resonance con-

dition is satisfied at B = 4r2(r2−1)
r2−∆mF2

BR.

To observe the double resonance of the (r,∆mF ) = (1, 1) and (2, 0) tran-

sitions at B = 4BR ≈ 72 G, the Raman spectra of the spin-polarized sample

in the k-B plane over a range from B = 0 G to 140 G [Fig. 3.4] is obtained.

Here, the parameters are set δω = 8ER/~ to have kx = 0 atoms on resonance

for the (2, 0) transition, which is insensitive to B for ∆mF = 0. For low beam

intensity, the (1, 1) transition appears with the spectral slope of − kR
4BR

as ob-

served in Fig. 3.3(c) and the double resonance is indicated by a small signal at

(k,B) = (4kR, 4BR) [Fig. 3.4(a)], because of enhancement of the second-order

Raman transition from |k = 0,−5/2〉 to |k = 4kR,−5/2〉 due to its intermediate
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state |k = 2kR,−3/2〉 being resonant. As the Raman beam power increases, a

spectral splitting at the resonance develops [Figs. 3.4(b) and 3.4(c)]. For high

Raman beam intensities, the overall spectrum shows the avoided crossing of the

spectral lines corresponding to the two (1, 1) and (2, 0) transitions.

Near the double resonance, the system can be considered as a three-

level system consisting of |0〉 = |k,−5/2〉, |1〉 = |k + 2kR,−3/2〉 and |2〉 =

|k + 4kR,−5/2〉 [Fig. 3.5(a)]. In our case with 173Yb atoms in the mF = −5/2

state, the coupling strength becomes asymmetric, Ω− = 5.3 Ω+. Since the

coupling between |1〉 and |2〉 are much stronger than that between |0〉 and

|1〉, the observed spectral splitting with increasing Raman beam intensity can

be described as an Autler–Townes doublet [123]: two dressed states |α〉 and

|β〉 are formed with |1〉 and |2〉 under the strong coupling and their energy

level splitting is probed via Raman transitions from the initial |0〉 state. In

the rotating wave approximation, the energy levels of the two dressed states

are given by Eα,β = 1
2
[E1 + E2 − 3~δω ±

√
(E1 − E2 + ~δω)2 + (~Ω−)2], where

E1,2 = E(|1, 2〉). The resonant wavenumbers kα,β of the initial state |0〉 are de-

termined from E(|0〉) = Eα,β and for δω = 8ER/~ and B = 4BR, we obtain

kα,β = ± kR
8
√

2

~Ω−
ER

. We find our measurement results on the double resonance at

B = 4BR in good quantitative agreement with the estimation. The Ω− was sepa-

rately calibrated from the Rabi oscillation data of the |0,−5/2〉 → |−2kR,−3/2〉

transition for δω = −13.4ER/~ at B = 166 G.

The Raman spectra in Fig. 3.4 reveal another double resonance at B =

4
3
BR ≈ 24 G, where the (r,∆mF ) = (2, 0) line crosses the (r,∆mF ) = (1, 3)

line. Although the (1, 3) transition is a third-order Raman transition, its spec-

tral strength is observed to be higher than that of the (2,0) transition. In the

intermediate region of B ≈ 35 G, many Raman transitions are involved over the
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Figure 3.4: Double resonance of Raman transitions. (a–c) Raman spectra of a
mF = −5/2 spin-polarized sample as a function of the magnetic field B for δω =
8ER/~ and various Raman beam powers (a) P = 0.13 mW, (b) 0.21 mW, and (c)
0.36 mW. As the Raman coupling strength increases with higher P , a spectral
doublet splitting develops at B = 4BR ≈ 72 G where the (n,∆mF ) = (1, 1) and
(2, 0) transitions are doubly resonant. The spectrum in (d) is the same of (c) with
the guide lines (solid) indicating the resonant momentum positions for various
Raman transitions, which are calculated from Eq. 3.15 without including the AC
Stark shift. The dashed lines are the corresponding final momentum positions.
(e–h) Diagrams of the Raman transitions in the spin number and energy plane.

whole momentum space of the sample and the spectral structure for high Ra-

man laser intensity shows interesting features which cannot be simply explained

as crossing and avoided crossing of the spectral lines. It might be necessary to

take into account the AC Stark shift effect and a further quantitative analysis

of the Raman spectra will be discussed in future work.

Summary and outlook

In this section, the Raman spectra of a spin-polarized degenerate Fermi gas

of 173Yb atoms in the conventional SOC scheme and investigated the double
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Figure 3.5: Spectral splitting at double resonance. (a) Three atomic states in-
volved in the double resonance at B = 4BR. For a 173Yb atom in themF = −5/2
state, Ω− = 5.3 Ω+ and the upper two states are more strongly coupled. (b)
Raman spectrum for δω = 8ER/~ and B = 4BR as a function of the Ra-
man coupling strength Ω−. The dashed lines are the theoretical prediction of
kα,β = ± kR

8
√

2

~Ω−
ER

, which is calculated in the limit of Ω+/Ω− → 0 (see the text).

resonance of Raman transitions. We observed development of a spectral splitting

at the double resonance of the (r,∆mF ) = (1, 1) and (2, 0) transitions and

provided its quantiative explanation as the Autler–Townes doublet effect.

In general, when the system has multiple SOC paths in its spin-momentum

space, a spinful energy band structure is formed, because of the periodicity im-

posed by them. In previous experiments [124, 126], the spinful band structures

were designed and demonstrated by applying a RF field to the SO-coupled sys-

tems under the Raman laser dressing, where the role of the RF field was to open

an additional coupling path between two different spin states. The results from

this work highlight that the conventional Raman laser dressing scheme provides

two ways of SOC and intrinsically produces a spinful band structure without any

aid of an additional RF field. After publishing this work, two Raman pathway

scheme (called “double–Λ” method) is realized to generate 2D SOC [130–132]

in a periodic spinful band structure together with spatially rotating Raman

effective field.
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Chapter 4

Quantum Hall physics with

ultracold atoms

Landau theory explains that a phase transition is characterized by the spon-

taneous symmetry breaking, which brings the system to exhibit a particular

order. This phenomenological approach assumes analytic free energy of the sys-

tem where the ground state changes. For example, ferromagnetic materials below

the Curie temperature show magnetization, which implies that a certain spatial

rotation symmetry is broken in the spin space. As a classical example, atoms

in the liquid have a random distribution, thus having continuous translational

symmetry, which is broken when the atoms become a crystal.

One exceptional case of this classification is a topological matter, where

no long-range order parameter exists. Rather, the system is characterized by

a topological order which displays nontrivial shape in the parameter space. In

terms of the physical properties, a matter is topological in the sense that it

is insensitive to smooth changes in parameters and microscopic details, unless
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it undergoes a topological phase transition. Historically, the era of topological

physics has been established since the experimental discovery of integer quan-

tum Hall effect in 1980 by Klitzing [133]. The quantum Hall system depicts the

electrons in two-dimensional system (2D electron gas; 2DEG) at low tempera-

ture subjected to the strong magnetic field perpendicular to the plane, showing

the quantized Hall conductance. The link between this exact quantization and

the topology (gauge invariance) had been subsequently found by Laughlin, who

had explained the phenomena by his famous gedanken experiment of Thouless

pump on the charge transport [134,135].

This chapter describes basics of quantum Hall physics, including very

recent researches in the field of quantum gases. To elaborate topological features

such as topological invariants and edge currents, the theoretical description of

the quantum Hall system in the absence of interaction are also discussed.

4.1 Overview of quantum Hall physics

The electrons traveling inside a periodic potential show discrete energy spectrum

called Bloch bands. On the other hand, the electrons under the magnetic field

exhibit highly degenerate states known as Landau levels. When both effects

come into play, the system produces complex fractal energy spectrum called

Hofstadter’s butterfly [136]. In this section, the single-particle description on

the quantum Hall system is revisited.
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4.1.1 Motion under a magnetic field

The Hamiltonian for a charged particle with mass m and charge q under a static

magnetic field B(r) = ∇×A(r) is (in cgs unit),

Ĥ =
1

2m

(
p− q

c
A(r)

)2

, (4.1)

where p is the canonical momentum of the particle and A(r) is the gauge

potential. Then, the kinetic velocity is not p/m, but rather v = (p− q
c
A(r))/m.

Because the A(r) is the function of spatial location, [pi, Aj] = (~/i)∂Aj/∂ri and

the above two velocities does not commute:

[vi, vj] = i
q~
m2c

εijkBk. (4.2)

Here, εijk is a Levi-Civita symbol. This leads to the equation of motion for the

charged particle,

dv

dt
=

q

2mc
(v ×B−B× v)

=
q

mc
(v ×B) + i

q~
2m2c

∇×B,

(4.3)

where the second equation holds since [Bj, vk] = 1
m

[Bj, pk] = i~
m

∂Bj
∂rk

. In Eq. 4.3,

the last term vanishes if magnetic field is uniform, ∇ × B(r) = 0, which is

identical to the classical equation of motion for the charged particle under the

magnetic field (Lorentz force law F = qv ×B). This can be understood by the

commutation relation between two velocities (Eq. 4.2) become trivial as in the

classical case.

Now, the Hamiltonian becomes quadratic function of velocity, Ĥ = 1
2
m|v|2,

which resembles the formula for a harmonic oscillator. Without loss of general-

ity, we fix the magnetic field direction to ẑ, B = (0, 0, B) as a quantization axis.

Then, the vz = pz/m is now the constant of motion (symmetric along ẑ) and
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Figure 4.1: Schematic diagram for Landau levels. (a) A charged, quantum par-
ticle confined in 2D subjected to the strong magnetic field perpendicular to the
plane of motion has a Hamiltonian similar to that of a harmonic oscillator, which
yields ladder energy spectrum. These highly degenerate energy eigenstates are
called Landau levels. Usually, the degeneracy is slightly broken (brown area) by
the impurities.

the system becomes effectively 2D. For the uniform magnetic field, the velocity

commutator becomes a c-number, which allows us to define the ladder operators

as in the harmonic oscillators,

a =

√
m

2~ωc
(vx + ivy)

a† =

√
m

2~ωc
(vx − ivy),

(4.4)

where ωc = eB/mc is the cyclotron frequency. Then the Hamiltonian can be

rewritten by,

Ĥ = ~ωc
(
a†a+

1

2

)
, (4.5)

and the energy spectrums appear as En = ~ωc(n + 1/2) for n = 0, 1, 2, · · · ,

which are highly degenerate. These are called Landau levels. The equations of

motion are simplified to v̇x = ωcvy and v̇y = −ωcvx, where the solutions are the

clockwise circular motion with angular frequency ωc, like a classical cyclotron:

x(t) = x0 −
1

ωc
vy(t), y(t) = y0 +

1

ωc
vx(t). (4.6)
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Here, the “center of the cyclotron motion”, (x0, y0), is a constant of motion,

which commute with px, py, and hence with a, a†, and therefore the Hamilto-

nian. However, [x0, y0] = −il2B, where lB =
√

~/mωc =
√
~c/eB is the charac-

teristic magnetic length scale, implies that the only one of the coordinates can

be diagonalized simultaneously with the energy eigenvalues. (This is equivalent

to the Heisenberg’s uncertainty principle–if one specifies x0, uncertainty for y0

grows.) The radius of the orbit is proportional to the Hamiltonian, as in the

classical case,

R̂2 = [x(t)− x0]2 + [y(t)− y0]2 =
2

mω2
c

Ĥ, (4.7)

which leads to (R2)n = (2n+ 1)l2B.

As in the harmonic oscillator case, the Landau levels are highly degen-

erate. To specify these states, another quantum number should be given. It is

straightforward to see that the angular momentum along ẑ, Lz, is a constant

of motion, by choosing a symmetric Landau gauge, A = 1
2
(B × r). Despite

our discussion does not take lattice potential into account, these degenerate

states explain the fundamental reason for a quantized conductance in the inte-

ger quantum Hall effect, since the band structure in the deep bulk region can be

regarded as Landau levels. When the chemical potential is placed between the

energy gap, the system becomes the insulating state and shows plateau of Hall

conductance; however, the system turns into the metallic phase if the chemical

potential is in the degenerate states. Hence, the Hall conductance displays a

step-like function as the external magnetic field increases, which arises due to

the growing energy intervals of the Landau levels.
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4.1.2 Motion in the square lattice under a magnetic field

Consider a situation where periodic square lattice potential is added. The Hamil-

tonian of a lattice system is well described by the Hubbard model based on the

tight-binding approximation, as long as the system maintains the low temper-

ature regime, where all particles occupy the lowest energy band. In a second-

quantized form, the Hubbard Hamiltonian reads,

Ĥ = −t
∑
m,n

(
ĉ†m+1,nĉm,n + ĉ†m,n+1ĉm,n + h.c.

)
, (4.8)

where ĉ†m,n and ĉm,n are the creation and annihilation operators for the site

(m,n) respectively, and t is the tunneling matrix element between nearest neigh-

boring sites. In presence of the external magnetic field B = ∇ × A (strictly

speaking, the vector potential), the above Hamiltonian is modified according to

the Peierls substitution,

Ĥ = −t
∑
m,n

(
eiφ

x
m,n ĉ†m+1,nĉm,n + eiφ

y
m,n ĉ†m,n+1ĉm,n + h.c.

)
, (4.9)

where φjm,n = qAjm,n/~ denotes the phase accumulated during the hopping along

j = x̂, ŷ, respectively. The Peierls phase defines magnetic flux penetrating the

unit plaquette of the square lattice by,

α =
Φm,n

2π
=

1

2π

(
φxm,n + φym+1,n − φxm,n+1 − φym,n

)
. (4.10)

This Peierls phase is equivalent to the Aharanov-Bohm (AB) phase acquired by

a charged particle moving along the closed loop in a magnetic field,

ΦAB =
q

~

∫
C
A · dr = 2π

ΦB

Φ0

, (4.11)

where ΦB is the magnetic flux penetrating the area formed by the trajectory C

and Φ0 = h/q is the magnetic flux quantum.
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Figure 4.2: Equivalence of Aharonov-Bohm (AB) phase (left) with Peierls phase
(right) in lattice systems.

Since the Hamiltonian breeds U(1) gauge symmetry, a suitable gauge

selection (nothing but a unitary transformation to different gauge) can simplifies

the complex phases in the tunneling elements. For example, by choosing the

Landau gauge A = (−yB, 0, 0), the tunnelings along x̂ turns into complex

while the tunnelings along ŷ become real, and the Hamiltonian becomes [137],

Ĥ = −t
∑
m,n

(
e−iΦm,nnĉ†m+1,nĉm,n + ĉ†m,n+1ĉm,n + h.c.

)
, (4.12)

which is called famous Harper-Hofstadter (HH) Hamiltonian. (Original version

is defined for homogeneous flux Φm,n = Φ.) It is no matter where the phase

term is attached and the gauge invariance guarantees that choosing any gauge

describes the same physical results as long as the transformation is correctly

computed. Under the periodic boundary condition, the single-particle energy

spectrum of this Hamiltonian shows a fractal structure known as Hofstadter’s

butterfly, which is a manifestation of two competing length scales (spatial and

magnetic length unit) and is described in the section 4.2.
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4.2 The Harper-Hofstadter model

A system with HH Hamiltonian can be diagonalized by looking at the symmetry

of the Hamiltonian. In absence of the magnetic field, the discrete translational

symmetry of the lattice system engenders the Bloch theorem, which implies the

momentum space is also periodic in terms of Brillouin zone. When magnetic field

is present, the system is no longer invariant under the shift of one lattice unit

vector since the vector potential A is not. Therefore, the spatial lattice trans-

lation operators T̂ Sj do not commute with the HH Hamiltonian, [T̂ Sj , Ĥ] 6= 0.

On the other hand, the least common multiple of the proper lattice translations

in x̂ and ŷ forms a new unit supercell which represents the new symmetry of

the HH Hamiltonian by protecting the invariance under magnetic translations.

It is even more complicated when the magnetic flux piercing the lattice unit

cell become some irrational number so that any multiples of the new supercell

cannot constitute the whole system (integer multiples of 2π). This gives the

fractal energy spectrum for incommensurate flux lattices.

To solve the Schrödinger equation for the Hamiltonian in Eq. 4.12, we

define magnetic translational operators (MTOs),

T̂Mx =
∑
m,n

â†m+1,nâm,ne
i(φxm,n+Φm,nn)

T̂My =
∑
m,n

â†m,n+1âm,ne
i(φym,n−Φm,nm),

(4.13)

which incubates the new symmetry of HH Hamiltonian by a commutation re-

lation, [T̂Mj , Ĥ] = 0 (j = x, y). For homogeneous magnetic field Φm,n = Φ, it is

satisfied that e−iΦT̂Mx T̂My = T̂My T̂Mx . Consequently, the commutator [T̂Mx , T̂My ]

vanishes only if Φ is an integer multiple of 2π. This is equivalent to choose a

supercell on the lattice pierced by a magnetic flux equal to an integer multiple of
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2π. In fact, the supercell can be chosen in the way that Φ is rational number of

2π by redefining new MTOs by multiples of the old ones. To be more specific, for

k× l unit cell, the commutator becomes e−iΦkl
(
T̂Mx

)k (
T̂My

)l
=
(
T̂My

)l (
T̂Mx

)k
.

Therefore, one can choose the rational flux Φ/(2π) = p/q (p, q ∈ Z coprime

integers) such that,

Φkl = 2π
p

q
kl = 2πν, ν ∈ Z. (4.14)

The smallest possible value making
[(
T̂Mx

)k
,
(
T̂My

)l]
= 0 is kl = q and is called

magnetic unit cell. The way of choosing magnetic unit cell may vary, since it is

the matter of choosing “gauge” of the system.

In the Landau gauge, one can always construct MTOs with magnetic unit

cells of dimension 1a × qa. Then, MTOs become mathematically equivalent to

the usual discrete translational operators in lattice systems, where one along x̂

corresponds to the shift by one lattice constant and the one along ŷ corresponds

to the translation by q lattice constants. Thus, the wavefunction satisfies the

generalized Bloch theorem with the BZ in ŷ folded by q times. The wavefunction

can be derived by an ansatz,

Ψm,n = eikxmaeikynaψn, ψn+q = ψn (4.15)

where −π/a < kx < π/a and −π/(qa) < ky < π/(qa). Plugging the ansatz into

the Schrödinger equation leads to

Eψn = −t
[
2 cos (kxa− Φn)ψn + eikyaψn+1 + e−ikyaψn−1

]
. (4.16)

This is known as Harper equation which can be solved numerically. In presence

of the rational flux Φ/(2π) = p/q, the band splits into q subbands, which results

in the famous self-similar fractal structure called Hofstadter’s butterfly in the

single-particle energy spectrum (Fig. 4.3).
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Figure 4.3: Hofstadter’s butterfly in a square lattice with a periodic boundary
condition. The energy spectrum shows a fractal structure depending on the
magnetic flux exerted on the unit plaquette. Here, the spectrum is estimated
up to q = 40.

Recently, the fractal energy spectrum is observed by implementing two

graphene sheets slightly misaligned to produce Moiré superlattices [138]. In

cold atom systems, the first realization of the HH Hamiltonian has been carried

out by M. Aidelsburger and her colleagues [139]. The original idea is based on

Ref. [64, 65]. In this scheme, the complex hopping between neighboring sites is

achieved by magnetic field gradient which introduces an energy offset along one

direction. The resonant hopping between the neighboring sites results in a chiral

cyclotron orbits inside the two-dimensional lattices, which is a manifestation of

the HH Hamiltonian.

4.3 Topology and Chern class

The connection between the quantum Hall system and the topology arises from

the Berry phase associated with the Bloch wavefunctions |ψn(k)〉. When the
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Bloch wavefunction travels around a closed loop inside the parameter space

(here, k-space; magnetic BZ), it acquires a Berry phase which is gauge-invariant.

Mathematically, the Berry phase is a result of failure of parallel transport in

the non-Euclidean parameter space, which is due to the intrinsic curvature of

the space. After a parallel transport along a closed path, the vector acquires

small angle pointing different direction from the original vector. In quantum

mechanics (especially for the Bloch wavefunctions), this amount of angle for the

state (ket) vector is measured by Berry phase, which can be calculated by,

γn =

∮
mBZ

dk An(k), (4.17)

where An(k) = i〈ψn(k)|∇k|ψn(k)〉 is the Berry connection associated with the

system. Obviously, the Berry connection is gauge dependent since its mathemat-

ical structure resembles that of a vector potential. Similarly, Berry curvature

(flux) can be defined as

Fn(k) = ∇k ×An(k)

= i

(
〈∂ψn(k)

∂kx
|∂ψn(k)

∂ky
〉 − 〈∂ψn(k)

∂ky
|∂ψn(k)

∂kx
〉
)
,

(4.18)

which again gives γn =
∫

mBZ
dS · Fn(k) via Stokes’ theorem. (For instance, the

1D version of the Berry phase in the crystalline solids are called Zak phase.)

These geometric properties of given parameter space is closely related with

the topological nature via Chern theorem, which is a generalization of Gauss-

Bonnet theorem in Riemann geometry. In Gauss-Bonnet theorem, summation

of the local curvatures generates a topological invariant, which counts the genus

of the system. Likewise, the total integral of Berry curvature in the mBZ is

known as the Chern number (it is just simply νn = γn/2π) which characterizes

the topological class of the n-th band. The Chern number should be an integer,
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(a) (b)

Figure 4.4: Schematic diagram for Berry phase and parallel transport of a vector
(ket) state. (a) Berry phase (Chern number) is a measure of total amount of
Berry flux penetrating the given surface of parameter space enclosed by a closed
path C. (b) After the parallel transport, the ket state acquires small holonomy
angle corresponding to the Berry phase, depending on the (Berry) curvature of
the parameter space.

since it is the phase mismatch between “two” areas encircled with a single closed

loop. The closed loop can be regarded as the border of small area enclosed inside,

but also as the boundary of the enclosing area outside the loop. The difference

between the two integrals must be agreed up to an integer multiple of 2π,

which gives the Chern number [135]. The analogy between Riemann geometry,

electromagnetism, and Berry phase in quantum mechanics is summarized in

Table 4.1.

The mathematical equivalence of Hall conductance and the curvature

was first discovered by Thouless-Kohmoto-Nightingale-Nijs (TKNN) [140], who

noticed that the topological properties of the bulk energy bands can be expressed

in terms of quantized Hall conductance:

σH =
e2

h

∑
n

νn. (4.19)

The Chern number is topological in the sense that it is invariant under adiabatic

deformations in the parameter space. As a consequence, the Hall conductance is
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Table 4.1: Mathematical analogy between Riemann (differential) geometry, elec-
tromagnetism, and quantum mechanics

Riemann geometry Electromagnetism Quantum Mechanics

Gaussian curvature Magnetic field Berry curvature
Levi-Civita connection Vector potential Berry connection

Holonomy angle Aharanov-Bohm phase Geometric (Berry) phase
Genus Dirac monopole Chern number

expected to show a plateau until the abrupt change of the system such as closing

the band gaps (or equivalently, Fermi level crossing). This is the topological

justification of the integer quantum Hall effect.

The above argument has been derived by assuming periodic boundary

condition. In presence of the edges, the each energy gap possesses one edge

state; If there are q energy bands, q−1 edge modes exist. The chiral edge modes

become an evidence of topological state emergent in the HH Hamiltonian. The

topological character of the bulk states emerges in the edge states. This is known

as bulk-edge correspondence.

4.4 Synthetic dimension and chiral edge states

What is a dimension? Connectivity. Mathematically, the dimension is the num-

ber of coordinates required to specify a point in the space. For a lattice structure

under such space is defined by the connectivity between these points, reflecting

its dimensional character. For example, a system where the sites are connected

by two other sites composes an 1D chain; if the sites are connected by four

other sites in a cross-shape, the system composes a 2D square lattice. By ex-

tending this concept, any hyperdimensional structure can be also generated by

elaborately connecting the sites [141], although our typical world is just 3D. On
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the contrary, a structure with complicated connectivity can be regarded as a

multi-dimensional lattice. In this part, cold atom systems offer a highly-tunable

platform to realize these complicated synthetic lattice structure by connecting

different lattice sites with arbitrary complexity.

Recent advances in cold atoms allow one to investigate HH Hamiltonian

without use of 2D lattice systems [142]. Instead, any internal or external degrees

of freedom of an atom serves as a synthetic dimension, which can be connected

arbitrarily each other by photons or oscillating RF fields. In particular, a typical

way to achieve synthetic lattice is to implement hyperfine spin states of a neutral

atom as a synthetic dimensional sites, which is linked by two-photon Raman

transitions. Depending on the phase imprinted on the atoms by Raman photons,

the artificial vector potential can be generated in the synthetic lattice, since

the tunneling amplitude along the synthetic lattice sites becomes complex as

it contains the phase difference between the two photons. In light of this, the

spinful atoms in the 1D lattice is equivalent to the spinless atoms in synthetic 2D

lattice. The system composes one spatial lattice with “real (original)” and “real

(∈ R)” tunneling amplitude, and another synthetic dimensional sites along spin

direction with complex tunneling strength. In 2015, Florence and NIST group

successfully observed chiral edge current in the open boundary Hall ribbon with

three synthetic lattice sites [128,143]. Despite the bulk region contains only the

single line of lattice sites, bulk-edge correspondence well reflects the topological

nature of the synthetic Hall system. In the next chapter, we will see how the

dynamics and the topological property of a synthetic Hall system change when

the boundary is modified.
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Chapter 5

Synthetic Hall tube of Neutral

Fermions

This chapter describes realization of a synthetic Hall tube with a periodic bound-

ary condition along synthetic lattice sites. As one of the inter-leg coupling

strength varies, a topologically nontrivial Hall tube undergoes a topological

phase transition to a trivial open-boundary Hall strip. The result is published

in the following paper.

• J. H. Han, J. H. Kang, and Y. Shin, “Band Gap Closing in a Synthetic

Hall Tube of Neutral Fermions,” arXiv:1809.00444 [cond-mat.quant-gas]

(2018).

5.1 Introduction

Over the past decade, a great effort has been devoted to design and to generate

artificial gauge potentials for neutral atoms, providing an interesting opportu-
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nity for exploring topologically nontrivial states of matter [22]. One of the major

triumphs is the realization of the Harper-Hofstadter (HH) Hamiltonian, which

is the essential model for quantum Hall physics, described in the chapter 4. The

HH Hamiltonian has been demonstrated in two-dimensional (2D) optical lattice

systems, using laser-assisted tunneling [21, 23, 139, 144]. In these systems, the

lattice sites are distinguished in the energy-selective manner by applying linear

potential gradients (for example, magnetic field gradients) and a Raman two-

photon transition between the two sites establishes nontrivial site-dependent

phase on the wavefunction of atoms. This straightforward method successfully

observed chirality and topological (Chern) number [145–147], despite of compli-

cated ingredients required.

On the other hand, another approach called “synthetic dimension frame”

is adopted for simple experimental setup [141,142]. In this framework, the any in-

ternal or external degrees of freedom of atoms can be viewed as synthetic lattice

sites orthogonal to the real lattice dimension. Recently, the ladder systems with

the HH Hamiltonian, dubbed Hall ribbons, has been realized in the synthetic di-

mension framework. In this framework, the hopping along the virtual dimension

is provided by Raman two-photon transitions between the states such as hyper-

fine spins [128, 143]. The framework is further extended with the other degrees

of freedom of atoms such as clock states [148], momentum states [149–151], and

lattice orbitals [152].

The key advantage of using synthetic lattice dimensions is versatile bound-

ary manipulation. The edges along the synthetic dimension are sharply defined

and individually detected with state-sensitive imaging, which allows experimen-

tal investigation of various phenomena such as chiral edge currents [128, 143],

topological solitons at interfaces [149], and magnetic reflection [150, 151]. Fur-
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thermore, nontrivial lattice geometries can be created in synthetic dimensions,

which are hardly achievable with conventional optical lattices but may give rise

to novel topological states [153,154]. A remarkable example is a ladder geometry

with a periodic boundary condition (PBC), which can be realized by cyclically

connecting the synthetic lattice sites. It is under a PBC that a Hall lattice

system exhibits a true fractal structure of the single-particle energy spectrum,

called Hofstadter’s butterfly [136]. Additionally, Laughlin’s pump, which is an

ideal manifestation of quantized Hall conductivity and corresponding Chern

number, has been proposed for a torus geometry [134, 155, 156]. Moreover, it

is expected to observe emergent symmetry-protected topological states in the

system under PBCs, which does not fit in either two-(2D) or one-dimensional

(1D) theory [154].

In the following, the experimental realization of a synthetic Hall lattice

system of a tube geometry with ultracold fermionic atoms is presented. In our

scheme, the neutral fermions are confined in a one-dimensional (1D) optical

lattice and three hyperfine spin states are employed as a synthetic dimension to

form a three-leg tube structure. The cyclic links between the legs are created

by spin-momentum couplings via two-photon Raman transitions between the

spin states, and a uniform gauge flux φ = 2π/3 per side plaquette is generated,

thus realizing an HH Hamiltonian with a PBC [136]. Using quench dynamics,

we investigate the band structure of the synthetic Hall tube system. When the

system deforms from a symmetric tube to an open ladder as one of the inter-leg

coupling strengths is decreased, we observe a critical point of band gap closing,

which is consistent with a topological phase transition predicted for the Hall

tube system. This work opens a new avenue for studies of topological phases

with ultracold atoms in unconventional lattice geometries.
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5.2 Periodic boundary condition

Sample preparation

Our experiment starts with preparing a degenerate Fermi gas of 173Yb atoms

in the |F = 5/2,mF = −5/2〉 hyperfine spin state of the 1S0 ground energy

level [61]. The typical atom number is N ≈ 1.0 × 104 and the temperature

is T/TF ≈ 0.3, where TF is the Fermi temperature of the trapped sample.

The fractional population of the residual atoms in the irrelevant spin states

with mF 6= −5/2 is less than 3%. The atoms are adiabatically loaded in

a three-dimensional orthorhombic optical lattice potential generated by su-

perposing three orthogonal standing waves with periodicity dx,z = λL/2 and

dy = λL/
√

3, where λL = 532 nm is the laser wavelength. The lattice po-

tential is exponentially ramped up in 70 ms to the target final lattice depths

(Vx, Vy, Vz) = (5, 20, 20)EL,α, where EL,α = h2/(8md2
α) for α ∈ {x, y, z}, h is

the Planck constant, and m is the atomic mass. The adiabaticity of the lattice

loading is confirmed by the fact that the sample temperature is not significantly

altered even after reversing the loading sequence. The lattice depths Vα is cali-

brated by a modulation spectroscopy method [102]. During the lattice ramp-up,

we reduce the dipole trap depth to counteract the increase in the overall trap-

ping potential due to the optical lattice and apply an external magnetic field of

153 G along ẑ to lift the spin degeneracy of the 1S0 ground level, resulting in

a Zeeman energy splitting of h × 31.6 kHz between adjacent spin states. Then

the atoms are held in the final lattice potential for another 20 ms to ensure

equilibrium. Because dynamics along the y and z directions is frozen by large

lattice depths, our lattice system is effectively 1D with the tunneling amplitude

tx = 2π × 264 Hz. At this stage, the sample is in a metallic state with a char-
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acteristic filling factor of N
∏

α
dα
ζα
≈ 0.75, where ζα =

√
2~tα/(mω2

α), with the

trapping frequencies of (ωx, ωy, ωz) = 2π × (58, 42, 132) Hz [6,157].

Realization of synthetic Hall tube

The three lowest spin states of 1S0 state, which we denote |1〉 ≡ |mF = −5/2〉,

|2〉 ≡ |mF = −3/2〉, and |3〉 ≡ |mF = −1/2〉, are employed for the three legs

of the synthetic tube system. To generate inter-leg couplings, three linearly

polarized Raman laser beams R1,2,3 are irradiated on the sample [Fig. 5.1(a)],

where the wave vectors of the laser beams are given by kr1 = kR(cos θx̂+sin θŷ)

and kr2 = kr3 = kRx̂, respectively, and the polarization directions are horizontal

for R1,3 and vertical for R2 to the xy plane. The laser frequencies of R1,2,3 are

set to ω1 = ω, ω2 = ω+ δω, and ω3 = ω−2δω, respectively, where ω is the laser

frequency blue-detuned by 1.97 GHz from the |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉

transition line. When δω is tuned to half of the energy difference between |1〉

and |3〉, the three spin states {|1〉 , |2〉 , |3〉} can be resonantly coupled to each

other in a cyclic manner by two-photon Raman transitions, as described in

Fig. 5.1(b). Thus, a three-leg synthetic tube is constructed with the fermions in

the 1D optical lattice [Fig. 5.1(c)].

In the synthetic tube system, the Raman coupling between the spin states

|s〉 and |s′〉 is described by inter-leg tunneling with complex amplitude Ωss′e
iφj,

where Ωss′ is the Rabi frequency of the corresponding two-photon Raman tran-

sition and j is the site index for the real lattice. The spatial phase modulations

of the tunneling amplitude originate from the momentum transfer ~∆k of the

two-photon transition, yielding φ = (∆k · x̂)dx [21]. In our experimental setup,

∆k = kr2,r3−kr1 = kR[(1− cos θ)x̂− sin θŷ] for all the cyclic inter-leg couplings

and φ = 2πkRdx(1 − cos θ) regardless of spin state. When a fermionic particle
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Figure 5.1: Realization of a synthetic three-leg Hall tube with neutral atoms. (a)
Schematic of the experimental setup. Fermionic 173Yb atoms are confined in an
optical lattice and illuminated by three Raman laser beams R1,2,3. A magnetic
field B and an additional laser light (LB) are applied along ẑ to control the
energy levels of the spin states. (b) The three lowest spin states of 173Yb are
coupled to each other via two-photon Raman transitions by R1,2,3. (c) Synthetic
three-leg Hall tube with a uniform gauge flux φ on each side plaquette. The
three legs are formed by the three spin states of the atoms in the 1D optical
lattice (black lines) and the inter-leg tunneling with complex amplitude (gray
lines) is provided by the cyclic Raman couplings between the spin states. The
flux φ is controlled by θ. (see the text for details)
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free-particle energy subtracted). The Raman beam pulse duration is t0 = 50 µs.
The solid line indicates a Gaussian curve fit to the data, which results in 2δω =
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travels around any side plaquette of the tube, it acquires a uniform net phase

of φ, thus realizing the HH Hamiltonian in the tube geometry. In this work,

the Raman beam angle is fixed to θ ≈ 72.3◦ to have φ = 2π/3, which satisfies

the PBC for the synthetic dimension. Because the σ-σ transition (∆mF=2) for

the |1〉-|3〉 coupling is relatively weak, the intensity ratio of R1,2,3 is adjusted to

create a symmetric coupling structure. We measure Ω12 = Ω31 ≈ 12.3tx. Here,

Ω23/Ω12 is fixed because the π-σ (∆mF=1) transitions for the |1〉–|2〉 and |2〉–|3〉

couplings are created by the same pair of Raman beams, and the ratio is nearly

unity within 2%.

Note that a system under PBC is hard to be achieved using hyperfine
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spins of alkali atoms, because the Raman two-photon σ-σ transition, chang-

ing the magnetic quanta by two, is nearly forbidden. Instead, nuclear spins of

alkaline-earth-like atoms such as ytterbium (Yb) or strontium (Sr) carry proper

σ-σ transition probability of order compared to those of π-σ transitions.

In realizing the three-leg Hall tube, careful control of the energy levels

of the spin states is necessary to suppress the optical transitions to the other

spin states, |4〉 ≡ |mF = 1/2〉 and |5〉 ≡ |mF = 3/2〉. The energy level νs of spin

state |s〉 is determined by the sum of the magnetic Zeeman shift and the total

AC Stark shift due to laser radiation. To generate sufficiently large differential

AC Stark shifts, we illuminate the sample an additional laser light referred

to as a Lift beam (LB) along ẑ [158], which is σ−–polarized and detuned by

−70 MHz with respect to the |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉 transition line.

The intensity of LB is about 8.5 mW/cm2. The beam waists of the Lift and

Raman beams are 150 µm, much larger than the in situ sample radius of 15 µm;

thus, the confining effect due to the inhomogeneous intensity distributions of the

laser beams is negligible. The lifetime of the atoms with the LB in the optical

lattice is measured to be ≈ 250 ms, which is approximately four times shorter

than that of the atoms without the LB. As the atoms are illuminated by the

Raman laser beams, their lifetime is further reduced to ≈ 20 ms in the open

three-leg ladder case and even down to ≈ 6 ms in the three-leg Hall tube case,

which makes us impossible to load the atoms in the spinful ground band.

Under the final experimental condition, the energy level differences be-

tween the spin states are spectroscopically measured (see Fig. 5.2). The spin-

polarized bulk sample is illuminated by a short Raman pulse with a pulse du-

ration t0 = 50 µs, which is resonant for a single leg among the three. Then

the fractional population of the atoms transferred to the target spin state is
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measured using an optical Stern-Gerlach spin separation method as a function

of the frequency difference δωr of the two Raman laser beams associated with

the transition. Here, the frequency of the other Raman laser beam which is

not involved in the target transition is set to be far detuned to prevent Raman

transitions to other spin states, while its AC Stark shift effect is maintained.

Figure 5.2 shows a typical Raman spectrum for the |1〉 → |3〉 transition, where

|3〉 ≡ |mF = −1/2〉. The center frequency δωr,c is determined by fitting a Gaus-

sian function to the spectrum, and taking into account the kinetic energy contri-

bution, the energy level difference ν3−ν1 between the two spin states is obtained

as ν3− ν1 = δωr,c− ~
2m

[2kR sin(θ/2)]2. In determining the energy level ν4 (ν5) of

the spin state |4〉 (|5〉), we use a spin-polarized atomic sample in |3〉. The final

experimental condition yields (ξ1, ξ2, ξ3, ξ4, ξ5) ≈ (0,−0.2, 0,−2, 1.7) Ω12, where

ξs = (νs − ν1)−(s−1)δω is the detuning of |s〉 from the energy staircase formed

by two-photon Raman processes with a step unit of δω and δω = 2π×30.4 kHz.

The atom loss rate into |4〉 and |5〉 is measured to be ≈ 0.01Ω12. In the following

quench experiment of three-leg Hall tube, the fractional spin populations of |4〉

and |5〉 ≡ |mF = 3/2〉 are measured to be less than 13% and 7%, respectively,

after 1 ms evolution.
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Tight-binding model and Bloch Hamiltonian

In a rotating wave approximation, the tight-binding model Hamiltonian for our

synthetic three-leg Hall tube system is given by

Ĥ/~ =
∑
j

3∑
s=1

(
−txĉ†j+1,sĉj,s + h.c.

)
+
∑
j

2∑
s=1

(
Ωs,(s+1)

2
eiφj ĉ†j,s+1ĉj,s + h.c.

)
+
∑
j

(
Ω31

2
eiφj ĉ†j,1ĉj,3 + h.c.

)

+
∑
j

3∑
s=1

(ξs + εj/~) ĉ†j,sĉj,s +
U

2~
∑
j

∑
s 6=s′

n̂j,sn̂j,s′ ,

(5.1)

where ĉj,s (ĉ†j,s) is the annihilation (creation) operator for a fermion in the Wan-

nier state |j, s〉 localized at the real lattice site j = 1, ..., Lx with spin s = 1, 2, 3.

The first term represents tunneling in the real lattice; the second and third

terms describe the inter-leg couplings generated by the Raman laser beams,

where Ωss′ is the Rabi frequency of the two-photon Raman transition between

the spin states |s〉 and |s′〉 and the position-dependent complex phase factor

eiφj results from the momentum imparted by the Raman transition; the fourth

term is the on-site energy in the rotating frame, including the external trapping

potential contribution, εj; and the last term is the on-site interaction energy

with number operator n̂j,s ≡ ĉ†j,sĉj,s.

Under a unitary transformation Û ĉj,sÛ †=eiφ(s−2)j ĉ′j,s, the Hamiltonian is
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recasted as

Ĥ ′/~ =
∑
j

3∑
s=1

(
−txe−iφ(s−2)ĉ′†j+1,sĉ

′
j,s + h.c.

)
+
∑
j

(
Ω12

2
ĉ′†j,2ĉ

′
j,1 +

Ω23

2
ĉ′†j,3ĉ

′
j,2 + h.c.

)
+
∑
j

(
Ω31

2
ei3φj ĉ′†j,1ĉ

′
j,3 + h.c.

)

+
∑
j

3∑
s=1

ξsĉ
′†
j,sĉ
′
j,s,

(5.2)

where the external potential and interaction terms are neglected. When φ =

2π/3, the complex phase factor ei3φj in the third term becomes unity and j-

independent, and via a transformation ĉ′q,s=
1√
Lx

∑
j e

iqj ĉ′j,s, Ĥ ′ can be repre-

sented in momentum space by the 3-by-3 Bloch Hamiltonian,

Ĥq/~ =
−2tx cos (q − φ) Ω12/2 Ω31/2

Ω12/2 ξ2 − 2tx cos (q) Ω23/2

Ω31/2 Ω23/2 −2tx cos (q + φ)

, (5.3)

where q is the quasimomentum of the lattice tube system normalized by d−1
x and

ξ1,3 = 0 are employed. For a symmetric case with Ω12 = Ω23 = Ω31 and ξ2 = 0,

it is well known that the Hamiltonian Ĥq for φ = 2π/3 embeds a topologically

nontrivial state, which is protected by a generalized inversion symmetry [154,

159]. When Ω31 is modified for fixed Ω12 = Ω23, the system undergoes topological

phase transition to the trivial phase. In our experiment, the protecting symmetry

is preserved with spatially uniform Ωss′ and the topological state survives even

ξ2 6= 0, featuring a nonzero Zak phase Z = 1 of its lowest band [160]. The Ĥq has

broken time-reversal, particle-hole, and chiral symmetry, which corresponds to
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the symmetry class A (unitary) of the Altland-Zirnbauer classification [161,162].

When the lowest band is completely filled, the system represents a topologically

insulating state analogous to the integer quantum Hall state [163].

Quench dynamics of synthetic Hall tube

To demonstrate the effect of a gauge flux on plaquettes, the quench dynamics of

the synthetic Hall system is investigated. In the quench experiment, the atoms

are initially prepared in the leg |1〉, and then the inter-leg complex hoppings

are suddenly allowed by turning on the Raman laser beams. After a variable

hold time, the spin composition of the sample is measured by imaging with op-

tical Stern-Gerlach spin separation [41], and separately, the lattice momentum

distribution n(k) of the sample is measured using a conventional adiabatic band-

mapping technique [157]. Note that in the band-mapping process, the quasimo-

mentum state with q is transformed into a superposition of free-space momen-

tum states of the three spin states in the first Brillouin zone (BZ), where the mo-

mentum ks of spin state |s〉 is related to q as ksdx = [q+(s−2)φ] modulo 2π and

−kL < ks ≤ kL with kL = π/dx. The momentum distribution ns(k) of the atoms

in |s〉 is also measured by spin-selective imaging [Fig. 5.3(b)] [61], for which

short pulses of laser light resonant with the |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉

transition are applied within the initial 5 ms of the free expansion. The removal

process causes inter-spin collisions, which results in atom position blurring in

the absorption image [Fig. 5.3(a)].

The measurement results of the time evolution of the quenched syn-

thetic Hall tube system are displayed in Figs. 5.3(c) and 5.3(d). At the early

time t < 100 µs, when the atoms start transferring to the legs |2〉 and |3〉,

the average lattice momentum of the sample, 〈k〉 =
∫ kL
−kL

kn(k)dk/
∫ kL
−kL

n(k)dk,
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Figure 5.3: Quench dynamics of the three-leg Hall tube for φ = 2π/3. (a) Il-
lustration of the atomic motion in the Hall tube. Atoms are initially prepared
in the spin-|1〉 leg and the inter-leg couplings are suddenly activated. (b) Time
evolution of the lattice momentum distribution n(k, t) of the sample, n2(k, t) of
the atoms in |2〉, and n3(k, t) of the atoms in |3〉. Time evolution of (c) the frac-
tional spin populations, (d) the average lattice momentum 〈k〉 of the sample,
and the difference C(t) = 〈k2〉 − 〈k3〉 between the momenta of the two legs |2〉
and |3〉. Each data point comprises five measurements of the same experiment,
and the error bar is their standard deviation. The solid and dashed lines in (d)
show the numerical simulation results for C and 〈k〉, respectively.
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shows no significant variations; however, the difference between the momenta

of the atoms transferred into |2〉 and |3〉, C(t) = 〈k2〉 − 〈k3〉, where 〈ks〉 =∫ kL
−kL

kns(k)dk/
∫ kL
−kL

ns(k)dk, increases noticeably. This means that the atoms in

the legs |2〉 and |3〉 move in positive and negative directions of the real lattice,

respectively, which is understandable based on the classical motion of a charged

particle moving in the tube in the presence of a magnetic field [Fig. 5.3(a)].

At later times, the spin composition and C(t) show damped oscillations, which

are reasonably accounted for by a numerical simulation for Ĥq including phe-

nomenological damping (refer to the following section). The asymmetry between

|2〉 and |3〉 and the small oscillations of 〈k〉 result from nonzero ξ2.

Numerical simulations

To understand quench dynamics, numerical simulations are performed by solv-

ing the Bloch equation,

i~
∂

∂t


c1(q, t)

c2(q, t)

c3(q, t)

 = Ĥq


c1(q, t)

c2(q, t)

c3(q, t)

 . (5.4)

Here, the atomic density ns(ks, t) for spin s and momentum ks is calculated as

ns(ks) = |cs(q)|2, where ksdx = [q + (s − 2)φ] modulo 2π and −kL < ks ≤ kL

with kL = π/dx. The initial conditions for cs at t = 0 are set as c1(q, 0) =√
n1(k1, 0) and c2(q, 0) = c3(q, 0) = 0, where n1(k1, 0) is obtained by averaging

the experimentally measured lattice momentum distributions of the initial spin-

polarized samples.

Figure 5.5 displays the numerical results of the quench dynamics for the

various boundary conditions of the experiment. We observe that spin oscilla-

tions show damping in the three-leg Hall tube and three-leg open ladder cases
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Figure 5.4: Calculated quench evolution of the fractional spin composition for
various boundary conditions: (a) three-leg Hall tube, (c) open two-leg ladder,
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maximum.
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[Figs. 5.4(a) and 5.4(e)], whereas those in the two-leg open ladder case are not

damped [Fig. 5.4(c)]. Here, one of the effective damping originates from ξ2 being

nonzero, which is confirmed in the numerical simulations. In the experiment, we

also observe that damping is enhanced in the synthetic Hall tube and open-three

leg ladder cases. In the calculations of 〈k〉(t) and C(t) for the three-leg cases in

Figs. 5.3(d) and Fig. 5.6(f), we include the damping effect phenomenologically

as

ge(t) =
(
g(t)− ḡ

)
e−t/τd + ḡ, (5.5)

where g is 〈k〉 or C directly obtained from the numerical simulation and ḡ is

the mean value determined from the experiment. We find that τd = 0.15 ms for

the synthetic three-leg Hall tube and τd = 0.3 ms for the open three-leg ladder

show reasonable agreement with the experimental data.

Figure 5.5 displays the numerical results of the quench dynamics at qc =

±π, i.e., {k1c, k2c, k3c} = {1/3,±1,−1/3}kL for various values of Ω31. The time

scales of spin oscillations are characterized with τs at which spin population in

|s〉 reaches its first maximum. At the critical point Ω31 = Ω− of the topological

phase transition, τ2 = τ3 is observed, which is a consequence of the associated

band gap closing.

5.3 Open boundary condition

The quench evolution of the Hall system is further examined for open ladder

geometries [Figs. 5.6(a) and 5.6(b)]. The structure modification is achieved by

deactivating two or one of the inter-leg links; by shifting ω2 (ω3) by 2π × 400

(−400) kHz, a two-(three-)leg ladder is formed, respectively. For large detun-

ing, the associated inter-leg couplings are effectively turned off but the AC Stark
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shifts due to the Raman beams are nearly unaffected [125, 126]. The time evo-

lutions of the spin composition and the average momentum 〈k〉 are displayed in

Figs. 5.6(c)–5.6(f). In contrast to the Hall tube case, 〈k〉 shows relatively large

oscillations because the atoms are initially prepared at an edge of the ladder.

Interestingly, 〈k〉 changes its sign during the oscillations, and the behavior is

well captured by the numerical simulations [Fig. 5.6(e) and 5.6(f)]. In the open

three-leg ladder case, we attribute the behavior mainly to the large gauge flux

φ > π/2 causing atoms to reflect at the BZ boundary. We note that the sign

change of 〈k〉 was not observed in a previous experiment for a smaller gauge

flux [128]. In Figs. 5.6(g) and 5.6(h), the semiclassical trajectories of the ladder

systems are displayed in the plane of spin and real lattice positions. The open

two-leg ladder case shows damped cyclotron motion truncated by the ladder

edge, and the three-leg case exhibits bouncing motions due to the Bloch oscil-

lations in the course of cyclotron motion. These observations corroborate the

presence of a gauge flux on the side plaquettes of the synthetic tube.

5.4 Topological phase transition

Band gap closing and opening

In Fig. 5.8(a), the phase diagram of the Hall tube system for φ = 2π/3 in the

plane of Ω12 and Ω31 is illustrated. The topological phase with Z = 1 exists in

a region of Ω− < Ω31 < Ω+, where the boundaries are given by,

Ω± = ±3tx − ξ2 +
√

(3tx ∓ ξ2)2 + Ω2
12. (Ω12 = Ω23 and ξ1,3 = 0) (5.6)

Our current system with Ω31 = Ω12 ≈ 12.3tx is located in the topological regime

and its transition to a topologically trivial phase with Z = 0 can be driven by,
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boundaries for φ = 2π/3. Time evolution of (c,d) the fraction spin populations
and (e,f) the average lattice momentum 〈k〉. The solid lines display the numerical
simulation results for 〈k〉. Each data point comprises five measurements of the
same experiment. (g,h) Trajectories of the ladder systems in the plane of the
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fractional population of spin component |s〉 and 〈x〉 is calculated from 〈k〉 using
the knowledge of band dispersion [128].
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The quench data from numerical simulation for 10 ms (sampling rate of 5 µm)
is transformed to show three bands. As the system changes its topology from
trivial to nontrivial, the two rightmost peaks should merge and then seperate,
which indicates the band gap closing. Conversely, the Fourier spectrum can be
implemented to reconstruct the band structure of the system [164].

for example, decreasing Ω31 below the critical value of Ω− = 11.6tx [154]. In

Fig. 5.8(b), the band dispersions of the Hall tube system are displayed for various

Ω31, showing that the topological phase transition at Ω31 = Ω− occurs with

closing the energy gap between the first and second bands at quasimomentum

qc = ±π. On the other hand, the topological transition at Ω31 = Ω+ shows the

gap closing at q = 0 [154]. This is because the Ĥq is mirror symmetric along

the spin dimension with respect to |2〉 for Ω12 = Ω23; the quasimomentum for

gap closing should be q = 0 or ±π. According to the bulk-edge correspondence,

band gap closing is a generic and necessary feature of the topological phase

transition of a symmetry-preserving system [165].

The critical point of band gap closing is probed via momentum-resolving

analysis of the quench dynamics. It is possible to reconstruct the band struc-

ture using the quench dynamics [164], by measuring all the Fourier component
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dicate the parameter positions explored in the experiment. (b) Band structures
calculated for various Ω31 with Ω12 = Ω23 ≈ 12.3tx. A topological phase tran-
sition occurs together with band gap closing at qc = ±π. (c) Quench evolution
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of each band quasimomentum, which is equivalent to the band energy E(q).

Especially, when the band gap closes, the dynamic evolution at critical quasi-

momentum q = qc is governed by a single energy scale that is determined by the

energy gap [Fig. 5.7]. Therefore, the gap closing would be characteristically re-

flected in the quench evolution of the spin composition at qc. Unfortunately, our

quench dynamics show short coherence time (few hundreds of µs) which cannot

perform direct Fourier transform. Instead, to obtain largest energy scale (band

gap) present in the system, we measure the shortest time scale of the quench

dynamics. The momenta of the spin states |2〉 and |3〉 corresponding to qc = ±π

are k2c = −kL and k3c = −kL/3, respectively, and we measure the quench evo-

lution of n2(k2c) and n3(k3c) for various Ω31 ≤ Ω12 [Fig. 5.8(c)]. When Ω31 is

decreased by decreasing the intensity of R3, the resulting reduction of the AC

Stark shift is compensated for by applying another off-resonant laser light with

the same polarization as R3. To obtain the characteristic time scales of the spin

composition oscillations, we determine the times τ2 and τ3 at which n2(k2c) and

n3(k3c) reach their first maxima, respectively, by fitting the experimental data

to an asymmetric parabolic function,

f(t) =

α1(t− τs)2 + β for t ≤ ts

α2(t− τs)2 + β for t > ts
, (5.7)

with four fitting parameters, α1,2, β, and τs.

Figure 5.8(d) shows the measurement results of the time scales as func-

tions of Ω31. At Ω31 = Ω12, τ3 is smaller than τ2 and increases faster than τ2 as

Ω31 decreases. The crossing of τ2 and τ3 occurs at Ω31 ≈ 10.4tx in the vicinity

of the expected critical point Ω−. The numerical simulation reproduces the ob-

served crossing behavior of the two time scales and yields τ2 = τ3 at Ω31 = Ω−,

which validates our experimental approach using the time scales of quench dy-
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namics to probe band gap closing. The deviation of the measured critical value

from the predicted Ω− is not clearly understood. This might be due to imper-

fection in the spin-selective imaging, the damping, or the interaction effects in

the quench dynamics, which are neglected in our numerical simulations. For

our experimental parameters, the on-site interaction energy is estimated to be

U/~ ≈ 1.7tx.

5.5 Detuned systems

Thus far, synthetic Hall tube system has been studied for assuming all the

Raman photons are on resonance. When the three Raman pairs are slightly

detuned by δi (i = 1, 2, 3), the dynamics slows down significantly. This can

be understood by the concept of generalized Rabi frequency for the two-level

systems, as Ω̃i =
√

Ω2
i + δ2

i . In general, the Hamiltonian can be written as,

Ĥq/~ =
ξ1 − 2tx cos (q − φ) Ω12e

−iδ1t/2 Ω31e
−iδ2t/2

Ω12e
iδ1t/2 ξ2 − 2tx cos (q) Ω23e

−iδ3t/2

Ω31e
iδ2t/2 Ω23e

iδ3t/2 ξ3 − 2tx cos (q + φ)

, (5.8)

where the detunings are present in the off-diagonal terms. Note that the above

Hamiltonian has no eigenstate–it is perturbed endlessly by the phase modulation

due to the Raman beams. In synthetic dimension description, the Hamiltonian

depicts the phase modulated cyclic chain, where the phase is accumulated by∑
i δi after an atom hops around the single spin loop. It is interesting to study

when
∑

i δi 6= 2πn, which is similar to the Hofstadter’s butterfly with incom-

mensurate flux. Further investigation is required to find the physics inside this

process.
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5.6 Zero-momentum Raman spectroscopy

The RF transition is almost impossible in alkaline-earth-like atoms due to the

lack of ground state magnetic moment. Instead, when the momentum transfer

between the two Raman photons are zero (that is, the angle between the Raman

beams is θ = 0), the transition between different spin states become also possible

independent of momentum of the original cloud. This can be implemented to

realize the “zero-momentum” Raman spectroscopy for alkaline-earth-like atoms

as the RF spectroscopy does for the alkali atoms.

The scheme can be easily implemented by using one AOM with two RF

sources. we have tested two AOMs in typically used our lab, whether they accept

multiple frequencies at the same time. Some AOMs (Intraaction, ATM-801A1)

accepted multiple RF frequencies, while the others (AA optics, MT80-B30A1,5-

VIS) did not. Moreover, the frequency difference between the two RF sources

should be the half of the target frequency. For example, if one plugs 80 MHz and

80.03MHz, the strongest frequency component in the beating signal is 60 kHz,

not 30 kHz. It is also worth to mention that higher-order harmonic frequency

components were also appeared though they were insufficient in magnitude (be-

low -30 dB) to provoke corresponding transitions. This results from the different

characteristic bandwidth of the modulator attached at the device.

Next, the two Raman beams are coupled to the single fiber and share the

same beam path. We observed inter-spin Rabi oscillation by suddenly irradiating

zero-momentum Raman beams on the spin-polarized sample of |mF = −5/2〉

and then measure the spin composition of the cloud using optical Stern-Gerlach

method. By setting the frequency difference between the two RF sources be the

half of the energy difference between the states |mF = −5/2〉 and |mF = −1/2〉,
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pendicular to the magnetic field (≈ 153 G) to induce σ+-σ− transition. The
bold and dashed lines are experimental fit which results the Rabi frequency of
ΩR ≈ 2π × 1.4 kHz.

several cycles of Rabi periods are measured. Surprisngly, the oscillation does

not lose its coherence even upto several hundreds of ms [Fig. 5.10], which is

enormously large compared to the case of nonzero-momentum Raman transition

with independent fiber using ≈ 2 ms [see Fig. 3.3]. We guess that the phase noise

between different fibers are the cause. Therefore, the system can be improved

by implementing active phase-locked-loop (PLL) for the longer coherence.

In synthetic dimension frame, the zero-momentum Raman transitions can

be viewed as trivial hopping along the synthetic dimension. One direct extension

to this technique is to realize boundaries with magnetic defects in the synthetic

lattices [150]. It is also interesting to investigate various quantum transport

properties using the synthetic dimension frame [151,166–168].
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5.7 Conclusions and outlooks

In this chapter, we reviewed the realization of a synthetic three-leg Hall tube

with φ = 2π/3 and the band gap closing at a critical point of the topological

phase transition was demonstrated. In our experimental setup, the gauge flux φ

can be controlled by θ, and we expect an immediate expansion of this work to

study fractal band structures with varying magnetic fluxes from commensurate

to incommensurate values. In such commensurate flux φ = π/3, for instance, the

Bloch Hamiltonian is now 6-by-6 and the three energy bands splits into the six

bands. In case of incommensurate flux, the band picture is not applicable and

the Hamiltonian can be only described in a sequential form, which is known as

famous Harper equation studied in chapter 4. When sufficient coherence time is

secured to resolve small energy scales appearing in the band splitting, observing

Hofstadter’s butterfly is no more a dream. This can be done by stabilizing the

Raman beam phase noise due to the fiber.

It is also promising to realize synthetic lattices of unconventional lat-

tice geometries with nontrival boundary conditions. For instance, when every

∆mF = 1, 2 transitions are coupled, the six spins of 173Yb constitutes a short

zig-zag lattice with four unit cells. In fact, a proposal to create a chain of zig-zag

lattices using only two spin states and spin-dependent lattices is suggested [169].

A crucial limitation of using hyperfine spins as synthetic dimension is lack of

freedom in creating various connections between the legs. Since the only way to

disconnect unwanted inter-leg links is the energy mismatch, the system requires

an additional gadget (such as LB in our scheme) to achieve proper energy shifts.

Placing a gadget is cumbersome, and systematic noise or heating on the atomic

sample should be ensued. One solution is to implement other synthetic degrees
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such as free momentum states [149–151] and lattice orbitals [152]. In the former

case, much more degree of freedom in connectivity is provided at the expense of

lattice length. Despite finite size of the lattice (typically 20 sites), many exotic

transport behavior has been investigated using the momentum states; however,

this scheme cannot be employed to the fermionic systems due to large momen-

tum spread. In the lattice orbitals, three-leg cross-linked Cruetz model has been

demonstrated. In Ref. [153], lattice systems with Möbius strip and twisted torus

are proposed to observe exotic topological phasese immersed in the geometry.

These can be realized by directly implementing both lattices with synthetic

dimensions (synthetic+synthetic lattices).

Future directions may include interatomic interactions [170], which are

expected to show fractional charge behavior [155], using the recently imple-

mented orbital Feschbach resonance [71,72].
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Chapter 6

Photoassociation Spectroscopy of

173 Ytterbium Fermi gas

This chapter describes our measurement on photoassociation spectrum of 173

ytterbium atoms. The experimental and theoretical results are published in the

following paper.

• J. H. Han, J. H. Kang, M. Lee, and Y. Shin, “Photoassociation spectroscopy

of ultracold 173Yb atoms near the intercombination line,” Phys. Rev. A 97,

013401 (2018).

6.1 Introduction

Photoassociation (PA) is a process in which two colliding atoms form an ex-

cited molecule by absorbing a photon. PA spectroscopy provides a versatile

tool for probing the physics of rovibrational molecular states [171] and pre-

cisely determining the collisional properties of atoms, such as scattering length
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and interatomic potential coefficients [87]. Furthermore, the PA process can

be actively used to control the strength of atomic interaction via coupling to

an excited molecular state, a phenomenon called optical Feshbach resonance

(OFR) [92–97], and to measure pair correlations in strongly correlated atomic

gas systems [54,172].

Recently, there has been broad interest in studies on the PA physics of

two-valence-electron atoms such as Yb [83,87,95,95,173–177], Sr [97,178–183],

and Ca [184,185]. These atoms have narrow 1S–3P intercombination transition,

which is beneficial for the precise determination of PA resonances and enables

the implementation of OFR without significant atom loss [94–97]. In particular,

Yb atoms have rich, stable isotopes, including five spinless bosons (168Yb, 170Yb,
172Yb, 174Yb, and 176Yb) and two fermions (171Yb, with a nuclear spin of i = 1/2

and 173Yb, with i = 5/2), providing an interesting opportunity to study the

mass scaling of PA physics [87, 175]. To date, many PA spectra of Yb atoms

have been reported for bosonic isotopes [87,173–175], fermionic 171Yb [95], and

isotopic mixtures [176, 177]. However, the complete PA spectrum of fermionic
173Yb, with its high nuclear spin, is still unknown, although a couple of PA

resonances have been reported [54, 87, 186]. In addition, the 173Yb Fermi gas

system has been discussed as a candidate platform for studies of exotic SU(N >

2) quantum magnetism [30]. Information on the PA spectrum of 173Yb near

the intercombination line is highly desirable for such a quantum simulation

application [187].

In this experiment, we report the PA spectrum of a degenerate Fermi gas

of 173Yb atoms near the dissociation limit of the |1S0, f = 5/2〉 → |3P1, f
′ = 7/2〉

intercombination transition. We measured an atom-loss spectrum as a function

of the frequency of the PA light and we observed eighty PA resonances in the
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spectrum on the red-detuned side of the atomic resonance down to −1 GHz. The

high density of the spectral lines can be attributed to the high nuclear spin num-

ber of 173Yb, which we confirmed by performing a multi-channel calculation of

the molecular energy levels based on known spectroscopic results. To collect fur-

ther spectroscopic information on the excited molecular states, we investigated

the Zeeman effect in the spectrum near the frequency detuning of −0.8 GHz.

By employing various two-component spin mixture samples, we determined the

quantum numbers of the Zeeman sublevels and estimated the g factor of the

molecular state corresponding to the PA line at −796 MHz detuning. Finally,

we measured the two-body loss rates under PA light for several pronounced PA

resonances. Our measurement results provide a starting point for studies of the

PA physics of fermionic 173Yb atoms, although further theoretical efforts will

be required to interpret the measured spectra.

6.2 Experiment

Sample preparation

The atomic sample was evaporatively cooled by lowering the trap depth, and

after cooling, it was held for an additional 0.3 s to ensure equilibrium. The final

sample was an equal mixture of all six spin components of the 1S0 ground state,

containing approximately 3.1 × 105 atoms. The sample temperature was mea-

sured to be T ≈ 130 nK. The in situ density distribution of the trapped sample

was found to be well fit by a Gaussian profile with a 1/e2 radius of {σx, σy, σz} ≈

{12.0, 7.5, 3.8} µm, and the central density was estimated to be n0 ≈ 1.6 ×

1014 cm−3, corresponding to a Fermi energy of EF = ~2(π2n0)2/3/(2m) ≈
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kB × 190 nK, where ~ is the Planck constant h divided by 2π, m is the atomic

mass, and kB is the Boltzmann constant. To measure the sample condition, we

take absorption image using the 1S0–1P1 transition.

Photoassociation spectroscopy

PA resonances were detected via atom loss by illuminating the trapped sample

with a pulsed PA laser beam. The linewidth of our PA laser was < 70 kHz,

which is sufficiently narrow to probe excited molecular states with a natural

linewidth of Γnat/2π ≈ (2Γa)/2π = 364 kHz, where Γa is the atomic linewidth

of the 1S0–3P1 transition [94]. The PA laser beam was σ−–polarized and focused

onto the sample with a Gaussian beam waist of ≈ 114 µm, which was large to

uniformly irradiate the entire sample. We obtained a PA spectrum by measuring

the remaining atom number fraction ηa as a function of the frequency ν of the

PA laser beam. For each ν, we determined ηa by measuring the numbers of

atoms with and without application of the PA laser beam, respectively.

6.3 Photoassociation spectrum

Figure 6.1 shows the PA spectrum measured for δν = ν − ν0 = −1 ∼ 0 GHz,

where ν0 = 539 384 174(10) MHz is the resonance frequency for the |1S0, f = 5/2〉 →

|3P1, f
′ = 7/2〉 atomic transition [74]. In the measurement, we reduced the PA

beam intensity IPA and the pulse duration τ in a piecewise manner as we ap-

proach the atomic resonance to avoid power broadening and photon scattering

loss effects, where IPA = 0.037 − 0.74 W/cm2 and τ = 30 − 100 ms. The satu-

ration intensity for the atomic transition is Isat = 0.14 mW/cm2. The spectrum

shows a high density of spectral lines, and we identified eighty PA resonances in
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Figure 6.1: Photoassociation (PA) spectrum of unpolarized 173Yb atoms at ul-
tralow temperature. The various colored lines represent different PA laser beam
conditions with intentisy IPA and pulse duration τ : blue (-1000 to -727 MHz,
IPA =0.74 W/cm2, τ = 100 ms), black (-752 to -477 MHz, 0.37 W/cm2,
100 ms), red (-484 to -176 MHz, 74 mW/cm2, 100 ms), green (-259 to -48 MHz,
74 mW/cm2, 50 ms), orange (-110 to -48 MHz, 74 mW/cm2, 30 ms), and purple
(-88 to 0 MHz, 37 mW/cm2, 30 ms). The barcode lines at the bottom of the
plot show the numerical calculation results obtained for the adiabatic molecular
potentials with T = 1(bottom) to 5(top) (Fig. 2).

the range of −1 GHz < δν < −38 MHz. For δν > −38 MHz, it was difficult to

unambiguously identify PA resonances because of high photon scattering loss

near the atomic resonance. The positions νb and linewidths Γb of the spectral

lines were determined from Lorentzian line fits to the measured data and are

listed in Table 6.1. In our experiment, the ac Stark shift due to the dipole trap-

ping beams was < 100 kHz and insignificant, and the thermal broadening was

negligible for kBT/h ≈ 4 kHz.

To understand the observed high density of the spectral lines, we calculate

the bound state energy levels for two 173Yb atoms in the 3P1+1S0 channel,

following the methods presented in Refs. [179, 187]. The Hamiltonian for the
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two atoms is

Ĥ =
p2
r

2µ
+

~2

2µr2
R(R + 1) + VBO(r) + Ĥhf , (6.1)

where the first and second terms represent the radial and angular kinetic ener-

gies, respectively of the nuclei of the two atoms, VBO(r) is the electronic Born-

Oppenheimer (BO) potential, and Ĥhf is the hyperfine interaction term. Here,

µ and r denote the reduced mass and radial separation of the two nuclei, re-

spectively, and R is the quantum number for the overall rotation of the atom

dimer. The BO potential is given by

VBO(r) = −C6

r6

(
1− σ6

r6

)
− sC

Ω
3

r3
. (6.2)

The first term is the Lennard-Jones potential and the second term represents the

dipole-dipole interaction, where s = +1(−1) for the gerade (ungerade) potential

and Ω is the projection of the angular momentum J = j1+j2 on the internuclear

axis. Here, jk=1,2 is the total electronic angular momentum of atom k. From

Ref. [175], we have C6 = 2.41(0.22) × 103Eha
6
0, σ = 8.5(1.0)a0, and C0

3 =

−2C1
3 = −0.1949(11)×Eha3

0, where Eh is the Hartree energy and a0 is the Bohr

radius. The hyperfine interaction is described by [187],

Ĥhf = A(i1 · j1) +B
3(i1 · j1)2 + 3

2
(i1 · j1)− i1(i1 + 1)j1(j1 + 1)

2i1j1(2i1 − 1)(2j1 − 1)
, (6.3)

where we assume that the k = 2 atom belongs to the 1S0 state, i.e., i2 · j2 = 0.

We adopt the values of A/h = −1094.328 MHz and B/h = −826.635 MHz from

Ref. [74].

At the low temperature of our experiment, we expect only s-wave (R = 0)

collisions for two fermionic 173Yb atoms in the 1S0 ground state, and the initial
1S0+1S0 dimer state should have total angular momentum of T = F = I = 0, 2,

or 4 and even spatial parity (p = 1). Here, F = f1+f2 and I = i1+i2. According
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to the selection rules for optical excitation, excited molecular states should have

T = 1, 2, 3, 4, or 5 and odd parity (p = −1). In the modified Hund’s case (e)

that is relevant to our condition, with large spin-orbit coupling and hyperfine

interaction, we count 205 different configurations of (T, F,R) for the final states

of the PA transition. Note that the transition from the initial 1Σg molecular state

to a gerade-symmetry state is possible because the u-g symmetry is broken in

Hund’s case (e) [188].

The adiabatic potentials for molecular states can be obtained by diag-

onalizing the Hamiltonian in Eq. 6.1 via basis transformation between differ-

ent Hund’s cases [187, 189]. For a short distance r, the BO potential, which

is diagonal under Hund’s case (c), is dominant. In this case, the basis set is

given by |γ〉 = |J,Ω, I, ι,Φ, (T,MT , p)〉, where ι and Φ are the projections of

I and F onto the internuclear axis, respectively, and MT is the projection of

the total angular momentum onto a space-fixed quantization axis. At large r,

i.e., when the two atoms are far apart, Hund’s case (d) becomes relevant and

results in the product basis of internal atomic states and nuclear rotations,

|π〉 = |f1,m1, f2,m2, R, (T,MT , p)〉. In the intermediate range of r, we consider

Hund’s case (e), in which rotational and hyperfine interactions are diagonal and

use a basis of |ε〉 = |f1, f2, F, R, (T,MT , p)〉.

The calculated adiabatic potentials for the 205 channels for excited molec-

ular states are displayed in Fig. 6.2. At small r, the potentials are grouped into

four branches, representing the four different dipole-dipole interaction configu-

rations, and at large r, they converge to three asymptotes near the dissociation

limit, which correspond to f ′1 = 3/2, 5/2, and 7/2, respectively. We note that

some of the potentials related to the f ′1 = 5/2 asymptote have local minima

near ∼ 70 a0 (Fig. 2 inset), predicting purely-long-range molecular states. This
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is due to the large hyperfine structure of heavy Yb atoms, and purely-long-range

states have been observed with 171Yb [95].

From the calculated molecular potentials, we compute the bound state en-

ergy levels using a multi-channel discrete variable representation (DVR) method [187,

189,190]. This calculation predicts more than 200 bound states in the range of

−1 GHz < δν < −38 MHz, whose positions are indicated in Fig. 6.1 alongside

the measured PA spectrum. We checked the validity of our DVR method with

LeRoy-Bernstein formula. The lowest potentials of 0u branch with T = 1, 2 can

be approximated to from of r−n, which follows vibrational progression. (See

also Ref. [191]) Considering the limited experimental sensitivity, the observed

high density of the spectral lines is reasonably explained by the calculated re-

sults. With regard to the resonance positions, a better comparison might be

enabled by using an iterative fitting method to tune the potential coefficients

values [175], but because of the heavy calculation load involved, we will leave

such an effort as a topic for future studies.

6.3.1 Zeeman effect

Information on the excited molecular states can be further obtained by investi-

gating the Zeeman effect on the spectrum by applying an external magnetic field

B [193]. In the presence of B, the total angular momentum T and its projection

MT onto the field direction are still good quantum numbers of the system and

for low B the Zeeman shift is described as ∆EZ = µBgBMT , where µB is the

Bohr magneton and g is the Lande g-factor of the molecular state. Thus, the

quantum number T and the g-factor value of the molecular state can be directly

revealed by the number of Zeeman sublevels and the magnitude of their spec-
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Figure 6.2: Adiabatic molecular potentials for a 173Yb2 dimer in the 1S0+3P1

channel as functions of the interatomic separation r. The molecular potentials
for 205 different (T, F,R) configurations are displayed, which are accessible via
PA from the initial s-wave colliding atoms in the 1S0+1S0 channel. At large
r, the potentials converge to three asymptotic branches, which correspond to
excited atomic states with hyperfine numbers of f ′1 = 3/2, 5/2, and 7/2. Some of
the potentials have a local minimum (inset), possibly hosting purely-long-range
bound states [95]. The energy offset is adjusted to the f ′1 = 7/2 asymptote. The
shaded region indicates the spectral range of our measurements.

tral splitting for B, respectively. The value of g is sensitively determined by the

interatomic potential [184,185].

In this section, we describe an experimental investigation of the Zeeman

splitting of a few PA lines. In the situation where a large number of PA lines

from many molecular potentials are observed in a complicated pattern with high

spectral density, identifying the T numbers for some PA lines would be very

beneficial for future theoretical efforts to make a full account of the observed
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PA spectrum.

We applied the magnetic field along the axis of the PA laser beam and

measured the PA spectra for various B (Fig. 6.3). The scan range of δν was cho-

sen to be from −820 MHz to −780 MHz, where for B = 0 G, three pronounced

PA lines are located at δν = −812.5 MHz, −796.2 MHz, and −791.3 MHz,

with relatively large linewidths of > 1 MHz. The latter two PA lines have been

reported in previous experiments [54,87,186]. With increasing B, each spectral

peak broadens and splits into multiple weak peaks. The Zeeman splitting re-

sponse appears relatively rapidly for the line at −791.3 MHz and slowly for the

line at −812.5 MHz, reflecting the different magnitudes of gT for these PA lines.

Asymmetric shifting toward negative detuning is observed, which we attribute

mainly to the σ− polarization of the PA light, which allows only ∆MT = −1

transitions.

For B > 30 G, the spectrum shows a group of fully resolved Zeeman

peaks with linewidths of ∼ 1 MHz. To determine the MT numbers of the Zee-

man peaks, we measured the PA spectra of two-component spin mixture sam-

ples. When such a sample is prepared with two spin components with magnetic

Zeeman numbers of mf1 and mf2 , the initial dimer state for s-wave collision

in 1S0+1S0 has a specific quantum number of MT = mf1 + mf2 , and with a

σ−–polarized PA laser beam, this state can be coupled only to excited molecu-

lar states with MT = mf1 + mf2 − 1. Thus, the corresponding MT number can

be assigned to Zeeman peaks that appear in the PA spectrum of such a two-

component sample. In our experiment, we employed five binary spin mixtures

of mf1 = −5/2 and mf2 = {−3/2,−1/2, 1/2, 3/2, 5/2} [61] and the PA spectra

of the samples were measured at B = 33.2 G [Fig. 6.4(b)]. As expected, each

spectrum shows a subset of the Zeeman peaks observed in the PA spectrum of a
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fully balanced spin mixture [Fig. 6.4(a)]. To suppress unwanted optical pump-

ing by the PA light into different spin states, we set IPA = 0.16 W/cm2 and

τ = 100 ms to obtain Γscτ ≈ 0.8, where Γsc is the Rayleigh scattering rate of

the PA light at δν = −800 MHz.

The main finding from the MT analysis is that the three Zeeman peaks

that are almost equally spaced in the detuning range of −805 MHz < δν <

−798 MHz have MT = −3,−2, and −1, respectively. We find that Zeeman

peaks are also located at the positions linearly extrapolated for MT = 0, 1, 2,

and 3 from these three Zeeman peaks and, in particular, that the peak position

corresponding to MT = 0 coincides with the zero-field PA line at −796.2 MHz.

From these observations and the fact that there is no MT = −4 Zeeman peak

at the corresponding expected spacing from the MT = −3 peak, we infer that

the total angular momentum number of the PA line at δν = −796.2 MHz is

T = 3. From a linear fit to the seven Zeeman peak positions, a g-factor of

g = 0.056(3) can be determined, which is approximately ten times smaller than

the atomic value of gF = 0.426 for the 3P1 state. In Fig. 6.4(d), we display

the PA resonance positions measured from the data in Fig. 6.3 as a function

of B, and the Zeeman splitting lines predicted from the measured g-factor are

found to reasonably fit the experimental data. For a high B of approximately

≈ 50 G, the PA resonance positions slightly deviate from the predictions toward

a negative detuning except for MT = 0, indicating higher-order Zeeman effects.

Although theMT information is helpful for deciphering the linear Zeeman

splitting of the PA line at −796.2 MHz, an analysis of the Zeeman effects of

the other two PA lines is not straightforward. First, we observe no MT = −1

Zeeman peaks for these two PA lines, although such peaks should exist because

T ≥ 1. Second, each PA spectrum for MT = −3 and −4 shows four resonances
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[Fig. 4(b)], which means that our PA spectrum for a high B of > 30 G must

involve Zeeman contributions from other PA lines outside the measurement

range. Theoretical support will be critical for a complete understanding of the

observed Zeeman effects.

6.3.2 Two-body loss rate

Finally, we characterized some of the pronounced PA resonances by measuring

the two-body loss rate K2 under PA light. K2 contains important information

such as the Franck-Condon factor for the optical transition [171, 194] and the

so-called optical length lopt that describes the magnitude of the change of the

scattering length due to the OFR [94,175,183].

In the presence of PA light, the atom density n evolves as,

ṅ(t) = −2K2n
2 − γn, (6.4)

where the first term represents the two-body PA process and the second term

accounts for one-body decay processes such as Rayleigh photon scattering loss

and background trap loss. For a case of a trapped sample, considering its inho-

mogeneous density distribution, the rate equation for the total number of atoms

N is given by Ṅ(t) = −2K2
N2

Ve
− γN , where Ve = (2π)3/2σxσyσz is the effective

volume of the sample for a Gaussian density distribution. To avoid nonlinear

effects caused by sample heating on K2 and Ve, we measured the decay rate γ′

of N from an exponential fit to the initial 10 ms of N(t) data and calculated

K2 as K2 = Ve
2N̄

(γ′ − γ). Here N̄ denotes the average number of atoms over

the initial 10 ms and γ was independently measured at off-resonance detuning

which is more than 4Γb away from the PA resonance (Fig. 6.5).
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Figure 6.3: PA spectra near δν = −800 MHz for various magnetic fields of
B = 0 G, 8.3 G, 16.6 G, 33.2 G, and 49.8 G. The PA laser beam was σ−-
polarized and the magnetic field was applied along the beam axis. All data
points except those at B = 8.3 G were obtained by averaging five independent
measurements and the error bars denote their standard deviations. The data
are offset for clarity.
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Figure 6.4: PA spectra of various spin mixtures for B = 33.2 G: (a) an unpolar-
ized spin mixture, as shown in Fig. 6.3; (b) two-component spin mixtures; and
(c) a spin-polarized Fermi gas. The red lines show the sums of the Lorentzian
fit curves to guide the eye, and the dotted vertical lines indicate the resonance
positions as fitted from the spectrum of the balanced mixture. (d) Zeeman split-
ting of the −796.2 MHz resonance (dotted lines), with markers representing the
measured PA resonance positions.
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Figure 6.5: Atom loss curves as functions of the pulse duration τ of the PA light
for δν = −791.3 MHz (on resonance, solid green circles) and δν = −784 MHz
(off resonance, open blue circles) with IPA =0.74 W/cm2. The solid lines are
exponential fits to the initial 10 ms of decay data. All data points were obtained
by averaging the results of five independent runs of the same experiment.

The K2 is measured for the three PA resonances at δν = −38.1 MHz,

−791.3 MHz, and −796.2 MHz, and obtained K2 = 1.0(3)× 10−12 cm3/s with

IPA = 74 mW/cm2, K2 = 0.5(1) × 10−12 cm3/s with IPA = 0.74 W/cm2, and

K2 = 0.8(5) × 10−12 cm3/s with IPA = 0.74 W/cm2, respectively. In the cold

collision limit, the optical length is given as lopt = ηµK2/(8π~) [94,97], where η

is the enhancement factor of the molecular linewidth with respect to the natural

linewidth. Assuming that η is order of unity, our measurement results suggest

that lopt ∼ 10a0 at IPA = 1 W/cm2. It is surprising that the estimated value

of lopt is more than two orders of magnitude smaller than the values reported

for other Yb isotopes [175, 187, 195]. It would be worthwhile to investigate the

tempearture and δν dependence of K2 in a further systematic manner [175].
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6.4 Conclusions and outlooks

In this chapter, the measurement of PA spectrum of a degenerate Fermi gas of
173Yb atoms near the dissociation limit of the 1S0–3P1 intercombination tran-

sition is reported. Some of the prominent PA lines are studied by investigating

their Zeeman splitting and measuring their two-body loss rates under PA light.

The high density of the spectral lines was accounted for by the calculation of

the molecular energy levels based on an extended version of Hund’s case (e),

but further theoretical investigation will be necessary for spectral identification

of the observed molecular states. This will improve our understanding of the

collisional properties of Yb atoms in 1S+3P , which are important for many ap-

plications using Yb atoms, such as optical clocks [80,196] and the simulation of

novel quantum magnetism [30,54].

Finally, we note that when the Zeeman splitting of a PA line is fully

understood in terms of its molecular quantum number, the spin-dependent PA

transitions may find immediate use in probing interspin correlations, particu-

larly, in optical lattice experiments [54, 197]. For example, the correlations be-

tween the mf = m and −m spin states may be distinctively detected by using

the PA resonance at −798.4 MHz for B = 33.2 G. Thus, it might be worthwhile

to search for an isolated T = 5 PA line whose Zeeman lines are spectroscopically

well resolved and have reasonable transition strengths for a moderate magnetic

field.
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Table 6.1: Measured PA resonances νb and the corresponding linewidths Γb from
Lorentzian fits to the individual resonances depicted in Fig. 6.1 [192]. The errors
represent the 95% confidence intervals from the fits. For some resonances, no
linewidth is given due to insufficient data points. Note that the PA laser beam
intensity varies over the frequency detuning (see the caption of Fig. 1).

νb Γb/2π
(MHz) (MHz)

−997.8±0.1 1.3±0.2
−993.1±0.3 0.6±0.4
−987.4±0.2 1.6±0.6
−955.0±0.2 1.5±0.5
−945.9±0.1 2.1±0.4
−940.0±0.1 1.2±0.3
−925.4±0.1 0.5±0.4
−910.4±0.2 2.8±0.5
−895.3±0.1 1.3±0.3
−887.6±0.1 0.5±0.2
−870.2±0.2 1.6±0.5
−865.3±0.2 0.9±0.4
−859.3±0.2 0.4±0.3
−832.9±0.1 0.8±0.3
−824.5±0.1 2.1±0.3
−812.5±0.1 1.5±0.4
−796.2±0.1 1.4±0.2
−791.3±0.1 1.3±0.2
−776.1±0.3 0.6±0.4
−771.0±1.2 –
−763.3±0.2 0.6±0.3
−750.1±0.1 –
−748.3±0.1 –
−744.9±0.1 0.5±0.3
−738.9±0.1 1.1±0.2
−734.4±0.1 0.7±0.3
−732.8±0.1 0.9±0.2
−730.7±0.1 0.5±0.2

νb Γb/2π
(MHz) (MHz)

−724.1±0.7 –
−724.1±0.7 –
−705.4±0.1 0.8±0.2
−686.5±0.1 1.0±0.3
−668.1±0.1 1.0±0.2
−659.9±0.1 1.1±0.3
−647.6±0.1 0.5±0.3
−640.5±0.1 0.5±0.3
−633.1±0.1 1.0±0.3
−622.9±0.1 0.6±0.2
−599.1±0.1 1.4±0.3
−588.5±0.1 0.7±0.3
−557.7±0.3 –
−529.8±0.1 0.6±0.5
−523.9±0.1 –
−520.3±0.1 1.5±0.4
−513.3±0.1 1.1±0.3
−496.3±0.2 –
−492.8±0.1 1.3±0.4
−483.3±0.1 1.1±0.3
−478.5±0.1 0.9±0.3
−452.0±0.2 0.6±0.3
−438.6±0.1 1.2±0.5
−432.1±0.1 0.8±0.5
−423.6±0.1 –
−405.7±0.1 1.1±0.6
−374.9±0.4 –
−363.1±0.1 –

νb Γb/2π
(MHz) (MHz)

−338.5±0.2 1.3±0.5
−316.6±0.4 1.1±0.3
−299.4±0.2 –
−295.1±0.1 1.3±0.4
−278.2±0.2 –
−270.2±0.4 2.3±1.3
−259.5±0.5 –
−251.7±0.5 –
−238.9±0.1 0.9±0.7
−226.4±0.5 –
−220.6±0.2 –
−216.1±0.1 0.7±0.3
−207.8±0.3 1.9±0.9
−197.4±0.7 2.6±2.2
−193.7±1.1 –
−190.2±0.3 1.1±0.9
−184.5±0.3 1.9±0.9
−180.0±0.1 1.5±0.4
−168.0±0.2 1.4±0.9
−137.3±0.2 1.5±0.8
−119.1±0.5 –
−80.7± 0.2 1.0±0.7
−57.1± 0.5 –
−49.5± 0.2 1.2±0.9
−38.1± 0.2 0.9±0.7

− −
− −
− −
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Chapter 7

Conclusions and Outlooks

In this dissertation, I explained the our apparatus for generating ultracold yt-

terbium quantum gases and described how to reach quantum degeneracy. In

this apparatus, a Bose-Einstein condensate of 174Yb and a degenerate Fermi gas

of 173Yb were repeatedly generated. Using typical Raman two-photon scheme,

properly designed laser fields induced artificial gauge potentials for the neutral

fermions, which realized equal Rashba-Dresselhaus (1D) spin-orbit coupling.

For 173Yb, the multi-order Raman process and the double resonance phenom-

ena were observed due to high spin nature of the system and the Raman spectra

for various magnetic fields were investigated.

Moreover, the basic concepts of quantum Hall physics and the its connec-

tion to the topological world were examined, where Berry phase of the lattice

band protects the topological phase. As a simplest example, Harper-Hofstadter

(HH) Hamiltonian, which describes the movement of a charged particle under

the square lattice and the perpendicular magnetic field, was introduced. To real-

ize HH Hamiltonian, topological band engineering using 173Yb in optical lattices

was discussed under synthetic dimensional framework. Taking the advantage of
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173Yb, synthetic Hall tube, which is a Hall ladder with periodic boundary condi-

tion, was realized. In this experiment, the band gap closing due to the topological

phase transition was revealed by comparing two different timescales of quench

dynamics, where each of them represents the band energy.

The topological matters are expected to show exotic physical properties

which is robust against the continuous change of parameters. For instance, the

topological matters may demonstrate chiral or step-like conductance, or even

magnetoelectric effect. To my knowledge, the most common feature of a typical

topological matter (not all, but especially for an insulator) is the presence of

edge current, which is a hallmark of the topological nature of the system. Inside

the vacuum, the topological invariant is zero, while in the bulk is not. This is

why the study of interface in topological materials, where two different topolo-

gies get faced, is important. The synthetic Hall tube experiment provides first

experimental investigation on the crossover between the two distinct boundary

conditions. Along with the various symmetries inherent in the system, these

topological properties may become reinforced.

Finally, photoassociation spectrum of 173Yb was measured to obtain basic

information on the interaction effects in these atomic systems. Despite compli-

cated adiabatic potential structure, the quantum number of some of the pro-

nounced resonances were discovered. In the future experiment, control of inter-

action strength in 173Yb quantum gas is necessary, which enriches the study of

topological physics using the cold atoms in optical lattices and can be realized

by orbital Feshbach resonances with the clock states.
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Appendix A

Clebsch-Gordan coefficients of
173Yb nuclear spins

This Appendix shows the calculated amplitude of normalized Clebsch-Gordan

coefficients (line strengths) |CF ′,mF (ε)|2αJJ ′ of 173Yb nuclear spins.
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Figure A.1: Line strengths |CF ′,mF (ε)|2αJJ ′ of ytterbium fermions between dif-
ferent hyperfine spin states for 1S0 →1P1 and 1S0 →3P1 transitions.
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Appendix B

Electronic Circuits

This Appendix contains information of basic electronic circuits frequently used

in ultracold atom experiments.
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Figure B.1: Schematic diagram for an IGBT coil switching system. A varistor
and a high-power resistor absorb eddy currents ringing after the abrupt switch-
ing off (� 100 µs) the magnetic field. The IGBT systems for the MOT coils
and science chamber coils are similarly constructed.
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Figure B.2: Schematic diagram for a pulse generator operating an atom shutter.
The pulse generator is based on the typical counter circuit of flip-flops. When
the trigger pulse (TTL) rises, the circuit emits a set of pulses driving the atom
shutter clockwise direction. The circuit also discharges another set of pulses
driving the atom shutter counter-clockwise manner if the TTL signal drops to
zero. Since the atom shutter rotates by 1.8◦ per a pulse, one requires at least
50 pulses to rotate the atom shutter by 90◦.
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Figure B.3: Schematic diagram for a relay system which swaps MOT coil from
anti-Helmholtz to Helmholtz configuration. The system is made of mechanical
relays, switching the coil configuration within ≈ 200 ms.
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Appendix C

How to align a SHG cavity

This Appendix explains how to align a bow-tie type cavity for the second har-

monic generation. The basic idea is to find an alignment which makes best con-

version efficiency performance, and then finish the cavity unit by small tweaks.

The tips and procedures for aligning the cavity are given below:

1) Find an optimal set of lens pair which creates sufficient beam param-

eters (especially the beam waist, ω0) at the position of the crystal, as designed.

For blue cavity, ω0 ≈ 35.2 µm and for green cavity, ω0 ≈ 25.9 µm are adopted.

The folding angle of the cavity is chosen to 8◦. Our optimal parameters are

calculated using SNLO program and are summarized in the thesis of M.-S.

Kim [198].

2) Place the M1,M2,M3 and the crystal (of course, temperature stabi-

lized) at the designed location. It is useful if one glue the blueprint of the cavity

system on the breadboard. Check whether all laser beams are reflected at the

center of the mirrors. Place the piezoelectric transducer (PZT) voltage in the

middle of the dynamic control range.
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Figure C.1: Schematic drawing of cavity system (second harmonic generator
unit) and Hänsch-Couillaud method to lock the cavity length.

3) Empirically find the position of the crystal which gives the best single-

path conversion efficiency. Do not get confused with the power incident from the

master laser. Placing a color filter or a dichroic mirror is helpful to isolate un-

wanted lights from the unconverted beam. It is also useful to place a photodiode

(PD) to monitor the cavity output power.

4) Carefully locate a pair of iris outside of the cavity system to mark this

alignment. Farther the iris, preciser the alignment. If the beam gets spread out,

place a suitable collimating lens.

5) Place the last mirror (M4) to make the beam travels a round trip

inside the cavity. When a perfect round trip beam path forms, one can observe

a bright spot flickering at the cavity (mirror and output).

6) Tweak the mirrors before the input coupler (M1) and make the align-

ment agrees with the iris placed. Then, tweak again the M4 to form a round

trip.
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7) Scan the PZT voltage at the rate 80 ∼ 100 Hz and observe the signal

from the cavity mode monitor PD.

8) Tweak M1 and M4 to make the spatial mode of the output beam as

Gaussian 00 mode.

9) The conversion efficiency can be monitored through the cavity mode

monitor PD. Tweak M2 and M3 to reach the maximum conversion efficiency.

When alignment of the cavity changes, the PD may show you the fake signal

because of the misalignment to the PD. Do not get confused–Always check the

beam goes to the PD correctly.

10) Tweak the position of the crystal if necessary. In my experience, the

sequences 9 and 10 are almost unnecessary.

11) Make the cavity air-tight and wait for the temperature stabilization.

Place the optics for Hänsch-Couillaud cavity lock.

12) Try cavity lock and monitor the output power stabilization. In my

experience, the laser beam may change temperature of the environment, which

yields conversion efficiency drop. In this case, tweak the mirrors before the

input coupler to find the maximum conversion efficiency when the cavity length

is fixed.

The whole sequence is just one-day job, and the typical conversion effi-

ciency reached in this way for a LBO crystal is about ≈ 20%.
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Appendix D

Numerical Codes for Experimental

Parameters

This Appendix contains information on the numerical code for calculating AC

Stark shift, Rabi frequencies for the Raman beams, and the real tunneling ma-

trix element in 1D optical lattice.
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Default constants
(*basic*)

hbar = 1.054 × 10^-34;

h = 6.626 * 10^-34;

kb = 1.38 × 10^-23;

c = 299792458;

m0 = 1.66 * 10-27;

a0 = 5.292 * 10-11;

elec = 1.60217646 * 10-19; (*in Coulomb*)

epsilon0 = 8.854187 * 10-12; (*in F/m*)

(*Ytterbium*)

λYb1 = 555.8 * 10-9;(*MOT beam*)

λYb2 = 398.9 * 10-9;(*Slowing beam*)

λYb3 = 507.0 * 10-9;

λYb4 = 578.0 * 10-9;

IsatYb1 = 0.1388 (*in mWcm2*);

IsatYb2 = 59.97(*in mWcm2*);

mYb = 173 m0;

ΓYb1 = 2 π * 0.1824 * 106;

ΓYb2 = 2 π * 29.13 * 106;

ΓYb3 = 2 π * 15 * 10-3;

ΓYb4 = 2 π * 10 * 10-3;

PSD[N_, ω_, T_] := N  6 * (hbar * ω)
3
 (kb * T)3

(*optical potential*)

Clear[λ];

Pol =
3 π c2

2 ω03
Γ

Δ
/. ω0 ->

2 π c

λ0
, Δ ->

2 π c

λ0
-
2 π c

λ
;

Er =
h2

2 m λ2
;

grav = 9.8;

u = 10-6;

μB = 9.27300968 * 10-24;(* Bohr magneton in SI unit J*T-1 *)

μI = μB *
9.10938291 * 10-31

1.67262178 * 10-27
;(* Nucleus magneton in SI unit J*T-1 *)

μB0 = μB  2 π * hbar * 104;(* Bohr magneton in Hz/G *)

μI0 = μB0 *
9.10938291 * 10-31

1.67262178 * 10-27
;(* Nucleus magneton in Hz/G *)

(*gFYb3P1=0.42626;

gFYb3P1*μB0103(*kHz/G Zeeman splitting 3P1*)

*)

gIYb1S0 = 0.6776;

gIYb1S0 * μI0 * 2  5;(*Hz/G Zeeman splitting 1S0*)

gJYb3P1 = 1.493;
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gFYb3P1[F_] := gJYb3P1 *
F F + 1 - 5  2 5  2 + 1 + 1 1 + 1

2 * F F + 1
+

μI0

μB0 * 5  2
*
F F + 1 + 5  2 5  2 + 1 - 1 1 + 1

2 * F F + 1

gFYb3P15  2 * μB0  103;(*kHz/G Zeeman splitting 3P1*)

gJYb1P1 = 1.035;

gFYb1P1[F_] := gJYb1P1 *
F F + 1 - 5  2 5  2 + 1 + 1 1 + 1

2 * F F + 1
+

μI0

μB0 * 5  2
*
F F + 1 + 5  2 5  2 + 1 - 1 1 + 1

2 * F F + 1

gFYb1P15  2 * μB0  103;(*kHz/G Zeeman splitting 1P1*)

Optical beams
Icirc[λ_, P_, bx_, by_, bz_, w0_, x_, y_, z_] :=

Module{bpd, nbpd, r, axial, radial, w, U},

bpd = {bx, by, bz}; (*beam propagation direction*)

nbpd = bpd / Norm[bpd]; (*normalized beam propagation direction*)

r = {x, y, z}; (*point of interest*)

axial = nbpd.r; (*axial distance from center*)

radial = Norm[Cross[nbpd, r]]; (*transverse distance from center*)

w = w0 1 +
λ axial

π w02

2
;

U =
2 P

π w2
* Exp-

2 (radial)2

w2


;
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Iellip[λ_, P_, zx_, zy_, zz_, xx_, xy_, xz_, w0_, e_, x_, y_, z_] :=

Module{nz, temp, nx, ny, r, axial, xradial, yradial, wx, wy, U},

nz = {zx, zy, zz}  Sqrtzx2 + zy2 + zz2; (*beam propagation axis*)

temp = Cross[nz, {xx, xy, xz}];

ny = temp / Norm[temp]; (*beam minor axis*)

nx = Cross[ny, nz]; (*beam major axis*)

r = {x, y, z}; (*point of interest*)

axial = nz.r;

xradial = nx.r;

yradial = ny.r;

wx = w0 1 +
λ axial

π w02

2
;

wy = e * w0 1 +
λ axial

π e * w02

2

;

U =
2 P

π wx * wy
* Exp-2

xradial2

wx2
+
yradial2

wy2


;

(*The dipole potential is given at

"OPTICAL DIPOLE TRAPS FOR NEUTRAL ATOMS (36)" or "ATOMIC PHYSICS, (9.46)"*)
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Rabi frequency of Raman beams
CG[Fe_, mf_, q_] := -12*Fe+5/2+mf Sqrt3 * 2 * 5  2 + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}] * SixJSymbol1, Fe, 5  2, 5  2, 0, 1 *

ThreeJSymbol5  2, mf, {1, q}, {Fe, -(mf + q)};

(* Rabi frequency with δ: fine structure detuning w.r.t F=72,

mf: initial spin state, q1&q2: Raman beam polarization *)

ΩR[Bfield_, δ_, mf_, q1_, q2_, I1_, I2_] := 3 π * c2 * ΓYb1  2 2 π * c  λYb13 *

-11+q1+1+q2 * ClebschGordan5  2, mf, {1, q1}, 7  2, mf + q1 *

ClebschGordan5  2, mf + q1 - q2, {1, q2}, 7  2, mf + q1 

2 π * δ * 109 - μB0 * gFYb3P17  2 * Bfield * mf + q1 +

μI0 * gIYb1S0 * 2  5 * (mf) * Bfield

(* Bfield in gauss, detuning in GHz *)

(* Factor 3 absorbed into ClebschGordan coefficient normalization *)

+ -11+q1+1+q2 * ClebschGordan5  2, mf, {1, q1}, 5  2, mf + q1 *

ClebschGordan5  2, mf + q1 - q2, {1, q2}, 5  2, mf + q1 

2 π * δ - 4.698 * 109 - μB0 * gFYb3P15  2 * Bfield * mf + q1 +

μI0 * gIYb1S0 * 2  5 * (mf) * Bfield

+ -11+q1+1+q2 * ClebschGordan5  2, mf, {1, q1}, 3  2, mf + q1 *

ClebschGordan5  2, mf + q1 - q2, {1, q2}, 3  2, mf + q1 

2 π * δ - 6.193 * 109 - μB0 * gFYb3P13  2 * Bfield * mf + q1 +

μI0 * gIYb1S0 * 2  5 * (mf) * Bfield

 * Sqrt[I1 * I2]  hbar;

(* Raman laser intensities *)

I1 = IellipλYb1, 100 * 10-6, 0, 0, 1, 0, 1, 0, 150 u, 1, 0, 0, 0;

I2 = IellipλYb1, 100 * 10-6, 0, 0, 1, 0, 1, 0, 150 u, 1, 0, 0, 0;

PlotΩR0, δ, -5  2, 1, -1, I1  2, I2  2  2 π,

ΩR0, δ, -3  2, 1, -1, I1  2, I2  2  2 π, ΩR0, δ, -1  2, 1, -1  2 π,

{δ, -6, 8}, PlotRange -> -8 * 103, 8 * 103, Frame → True,

FrameLabel → "ΩR(σ+σ-)/2π (Hz)", ImageSize → Large
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AC Stark shift of Raman beams
αpolYb[Bfield_, δ_, mf_, q_] := Module{Δ1, Δ2, Δ3, Fe, Fg, trs7, trs5, trs3, pot},

Δ1 = 2 π * δ * 109 - 2 π * μB0 * gFYb3P17  2 * Bfield * (mf + q) +

2 π * μI0 * gIYb1S0 * 2  5 * (mf) * Bfield;

(* detuning of beam, with respect to Fe=72 *)

Δ2 = 2 π * δ * 109 - 2 π * μB0 * gFYb3P15  2 * Bfield * (mf + q) +

2 π * μI0 * gIYb1S0 * 2  5 * (mf) * Bfield - 2 π * 4698  u;

(* detuning of beam, with respect to Fe=52 *)

Δ3 = 2 π * δ * 109 - 2 π * μB0 * gFYb3P13  2 * Bfield * (mf + q) +

2 π * μI0 * gIYb1S0 * 2  5 * (mf) * Bfield - 2 π * 6193  u;

(* detuning of beam, with respect to Fe=32 *)

Fg = 5  2;

(* transition strength *)

Fe = 7  2;

trs7 = 3 * 2 * Fg + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}]2 * SixJSymbol1, Fe, 5  2, {Fg, 0, 1}2

ThreeJSymbol[{Fg, mf}, {1, q}, {Fe, -(mf + q)}]2;

Fe = 5  2;

trs5 = 3 * 2 * Fg + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}]2 * SixJSymbol1, Fe, 5  2, {Fg, 0, 1}2

ThreeJSymbol[{Fg, mf}, {1, q}, {Fe, -(mf + q)}]2;

Fe = 3  2;

trs3 = 3 * 2 * Fg + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}]2 * SixJSymbol1, Fe, 5  2, {Fg, 0, 1}2
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ThreeJSymbol[{Fg, mf}, {1, q}, {Fe, -(mf + q)}]2;

(*optical dipole potential for each spin component*)

pot = 3 π * c2 * 3 * ΓYb1  2 * 2 π * c  λYb13 *

trs7  Δ1 + trs5  Δ2 + trs3  Δ3;

pot



(* Exact dipole potential using non-pertervative picture *)

αpolYbExact[Bfield_, δ_, mf_, q_] :=

Module{Δ1, Δ2, Δ3, Fe, Fg, trs7, trs5, trs3, pot},

Δ1 = 2 π * δ * 109 - 2 π * μB0 * gFYb3P17  2 * Bfield * (mf + q) +

2 π * μI0 * gIYb1S0 * 2  5 * (mf) * Bfield;

(* detuning of beam, with respect to Fe=72 *)

Δ2 = 2 π * δ * 109 - 2 π * μB0 * gFYb3P15  2 * Bfield * (mf + q) +

2 π * μI0 * gIYb1S0 * 2  5 * (mf) * Bfield - 2 π * 4698  u;

(* detuning of beam, with respect to Fe=52 *)

Δ3 = 2 π * δ * 109 - 2 π * μB0 * gFYb3P13  2 * Bfield * (mf + q) +

2 π * μI0 * gIYb1S0 * 2  5 * (mf) * Bfield - 2 π * 6193  u;

(* detuning of beam, with respect to Fe=32 *)

Fg = 5  2;

(* transition strength *)

Fe = 7  2;

trs7 = 3 * 2 * Fg + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}]2 * SixJSymbol1, Fe, 5  2, {Fg, 0, 1}2

ThreeJSymbol[{Fg, mf}, {1, q}, {Fe, -(mf + q)}]2;

Fe = 5  2;

trs5 = 3 * 2 * Fg + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}]2 * SixJSymbol1, Fe, 5  2, {Fg, 0, 1}2

ThreeJSymbol[{Fg, mf}, {1, q}, {Fe, -(mf + q)}]2;

Fe = 3  2;

trs3 = 3 * 2 * Fg + 1 * 2 * Fe + 1 *

SixJSymbol[{1, 1, 0}, {0, 0, 1}]2 * SixJSymbol1, Fe, 5  2, {Fg, 0, 1}2

ThreeJSymbol[{Fg, mf}, {1, q}, {Fe, -(mf + q)}]2;

(*optical dipole potential for each spin component*)

pot =
hbar

2
* 3 * trs7 * Δ1 * Log1 +

1  IsatYb1 * 10

1 + 4 * Δ12  ΓYb12
 + trs5 * Δ2 *

Log1 +
1  IsatYb1 * 10

1 + 4 * Δ22  ΓYb12
 + trs3 * Δ3 * Log1 +

1  IsatYb1 * 10

1 + 4 * Δ32  ΓYb12
 ;

pot



I1 = IellipλYb1, 1 * 10-6, 0, 0, 1, 0, 1, 0, 150 u, 1, 0, 0, 0;

BarChartTableαpolYb[150, 1.876, mf, 1] + αpolYb[150, 1.876, mf, -1]  2 * I1  h,
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mf, -5  2, 5  2, 1, Frame → True, PlotRange → {{0.5, 6.5}, {-1, 20}},

FrameTicksStyle → {{Automatic, Automatic},

{Directive[FontOpacity → 0, FontSize → 0], Automatic}}, ChartStyle → "Rainbow",

ChartLegends → {"-5/2", "-3/2", "-1/2", "1/2", "3/2", "5/2"},

FrameLabel → "(U(σ+)+U(σ-))/2 (Hz)"

Off[ClebschGordan::phy]
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Tunneling matix coefficient t
hbar = 1.054 × 10^-34;

h = 6.626 * 10^-34;

Er =
h2

2 m λ2
;

λYb1 = 555.8 * 10-9;(*MOT beam*)

λYb2 = 398.9 * 10-9;(*Slowing beam*)

a0 = 5.292 * 10-11;

m0 = 1.66 * 10-27;

as = 199.4 a0;(*scattering length 173Yb-173Yb*)

mYb = 173 m0;
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V = 6.25;(*lattice depth in Er*)

s = -V / 4;(*-V/4Er*)

ν[q_, n_] := q + Sign[q] -1n * n + Mod[n, 2];(*characteristic exponent*)

BandE[q_, n_, s_] := MathieuCharacteristicA[ν[q, n], s] - 2 * s;

(*Enq as a function of qd/π where d=λ2 is the lattice constant, in ER*)

Plot[{BandE[q, 0, s], BandE[q, 1, s], BandE[q, 2, s],

BandE[q, 3, s], BandE[q, 4, s], BandE[q, 5, s]}, {q, -0.999, 0.999},

AxesOrigin → {-1, -0.1}, PlotRange → {-0.1, 30}, PlotStyle → Thick,

Frame → True, FrameLabel → {"q (π/d)", "E (ER)"}, AspectRatio → 1.6]

-1.0 -0.5 0.0 0.5 1.0
0

5

10

15

20

25
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E
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)
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(*Wannier wave*)

L = 1  Sqrt[4];(*Normalizaing factor with

Total[Table[Ws[1,x,0]^2,{x,-Infinity,Infinity,dx}]]*dx=1*)

d = 1;(*Lattice constant*)

ν[q_, n_] := q + Sign[q] -1n * n + Mod[n, 2];(*characteristic exponent*)

Ws[Vlat_, x_, xi_] :=

2 * L * NIntegrate[Cos[q * xi] MathieuC[MathieuCharacteristicA[ν[q, 0], -Vlat / 4],

-Vlat / 4, π * x / d] + Sin[q * xi]

MathieuS[MathieuCharacteristicA[ν[q, 0], -Vlat / 4], -Vlat / 4, π * x / d],

{q, 0, 0.999999999}, AccuracyGoal → 9]

dx = 0.1;(*differential factor*)

Infty = 5 d;

V = 5.0;

WsDev[Vlat_, x_, xi_] :=

(Ws[Vlat, x + dx, xi] - Ws[Vlat, x - dx, xi])  2  dx  (π * d);

t1s = SumWs[V, x, π * d] * WsDev[V, x + dx, 0] - WsDev[V, x - dx, 0]  2  dx  (π * d) +

V * Cos[π * x / d]2 * Ws[V, x, 0], {x, -Infty, Infty, dx} * dx;

t1s * Er / h /. m → mYb /. λ → 532 * 10-9
(* in Hz *)

263.695
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초 록

위상이란 연속적인 변형에도 변하지 않는 시스템의 기하학적 속성이다.

예를 들어, 띠를 한 번 꼬아서 양 끝을 붙인 유명한 뫼비우스의 띠가 있다. 자르는

행위 없이, 어떠한 연속적인 변형도 뫼비우스의 띠의 꼬임을 제거할 수 없다. 여

기서 꼬인 횟수는 “위상적 불변 수”로서, 시스템의 위상적인 질서를 특징짓는다.

최근에 이러한 위상적인 성질은 우주론부터 응집물리학 등에 이르기까지 현대

물리학에서 중요한 개념이 되었다. 특히, 고체 내 전자들의 경우, 특정 상황에서

블로흐밴드가위상적인질서를안정화시키는유한한위상수를가질수있다.이

때 밴드 갭을 닫지 않는 이상 위상 수는 변하지 않는다. 놀랍게도, 이러한 물질의

위상적인 특성은 물질의 특별한 물리적인 성질이 미세한 세부 변화에 둔감하고

준정적인 변수 변화에 강력한 저항성을 가지게 한다. 따라서 위상적 물질은 새로

운 종류의 물질이 될 후보로 꼽히고 있다. 양자 홀 효과의 발견 이래로, 이러한

아이디어는 지난 수십 년 동안 널리 연구되어 왔다.

양자 기체 시스템은 이러한 모델 해밀토니안을 고립되고 쉽게 조절가능하

며불순물없이실험해볼수있는좋은테스트환경을제공한다.위상적인물질에

대해 연구하기 위해, 우리는 2색 교차 쌍극자 트랩 내 173 이터븀 원자로 이루

어진 T/TF = 0.1 정도 온도의 페르미 축퇴 기체(DFG)를 25초 안에 생성할 수

있는 장치를 제작하였다. 이터븀 페르미온은 무거운 알칼리-토금속-류 원소로 라

만 전이를 이용하여 인공 게이지 포텐셜을 생성하는데 유리한 조건을 제공한다.

첫 번째 연구로서, 스핀 편향된 샘플의 운동량 분해 라만 스펙트럼을 측정하였

다. 특정 실험 조건에서, 라만 전이의 이중 공명 현상이 관찰되었고, 스펙트럼은

Autler-Townes 효과와 유사한 이중선 분열을 보여주었다.

위상적 물질을 연구하기 좋은 출발점은 Harper-Hofstadter (HH) 해밀토

니안이다. 이 모델은 직교하는 자기장 아래의 사각 격자 내 전하를 띈 입자의
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움직임을 기술한다. HH 해밀토니안을 다루기 위해, 3개의 다리로 이루어진 인공

홀 튜브가 1차원 광격자에 페르미온 173 이터븀 원자를 담아 순환적인 이맞는

라만전이연결을통해구현되었다.인공차원프레임에서,이것은주기적인경계

조건을 가지는 2차원 HH 해밀토니안 내 스핀없는 페르미온과 동일하다. 경계

조건이 주기적에서 열린 상태로 변화함에 따라 홀 튜브 시스템은 위상적인 상태

또는 일반적인 상태를 가진다. 시스템을 갑작스럽게 변화시켰을 때 나타나는 동

역학으로부터, 홀 튜브 시스템의 밴드 구조를 조사하였으며, 밴드 갭이 닫히는

임계점은 홀 튜브 시스템에 대해 이론적으로 예측된 위상 상전이 지점과 일치하

였다.

위상물리학의최전방분야중하나는,위상물질시스템내입자간상호작

용의효과이다.위연구를입자간상호작용을포함하는방향으로확장하기위해,

173이터븀DFG의상호결합전이선을이용한해리한계근처의광연합 (PA)스펙

트럼을이용하여원자간포텐셜조사하였다.본연구에서는 F = 5/2→ F ′ = 7/2

기준으로 −1 GHz 까지의 원자 손실 스펙트럼으로부터, 80개의 PA 공명 상태를

관측하였다. 들뜬 분자 상태를 조사하기 위해, −0.8 GHz 근처의 PA 공명의 지만

효과와 원자 손실률을 조사하였고, 다양한 스핀 혼합 샘플을 이용하여 각 공명의

양자 수를 결정하였다.

주요어 : 이터븀 양자 기체, 광격자, 인공 게이지 장, 인공 차원, 위상 상전이,

Harper-Hofsadter 해밀토니안, 인공 홀 튜브

학 번 : 2012-20395
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