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In order for eukaryotes to maintain genomic information, they must solve specific 

problems caused by their linear chromosomes: the end-replication problem due to the 

biochemical limitations of DNA replication machinery and the end-protection problem 

that must distinguish between DNA damage and the very end of the genome. If the two 

problems are not properly solved, the information of the terminal region is endangered to 

gradually disappear or to be damaged by incorrect processing. The special structure to 

solve these problems of the end is telomere. Telomere consists mainly of specific repeat 

sequences and their binding proteins. It is crucial in determining cell life and death to 

maintain telomere length and structure. Each time a cell divides, telomere is lost due to 

the end replication problem. When telomere length reaches a certain limit, it acts as a 

molecular timer to stop cell division or kill the cell. As a cell continues to divide beyond 

the limit, the genomic instability increases excessively and the cell is more likely to 

develop into a cancer cell. In other words, in order for cancer cells to cross the limit 

imposed by telomere, it is necessary to acquire a functional mechanism to preserve the 

length of telomere. Most cancer cells reactivate the reverse transcriptase, telomerase, to 

maintain telomere length and gain the ability to grow indefinitely. However, in some 
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cancer cells, the phenomenon of maintaining telomere length without telomerase was 

observed, which is called alternative lengthening of telomere (ALT). It has been known 

that ALT can be widely present in nature, as there are examples of telomerase-

independent telomere maintenance mechanism in some plants and animals. Although ALT 

has been known to be a DNA replication mechanism that relies on homologous 

recombination, the exact molecular mechanism remains elusive. In this study, I used 

mouse embryonic stem cell (mESC) model to investigate the features and the molecular 

mechanisms of ALT. Whole genome sequence analysis revealed the unique sequence and 

structure of the telomere of ALT mESC. The most important feature was that the unique 

template sequence present in the subtelomere constituted telomere. It is a reliable 

hypothesis that telomeres of the ALT mESC maintain a unique protective mechanism, as 

non-telomeric sequences are highly involved, rather than the normal telomere repeats. To 

confirm this hypothesis, transcriptome and quantitative proteomic analysis were 

performed. As a result, I identified the pattern of gene expression changes following 

activation of ALT. The fundamental pathways enriched in ALT were transcriptional 

regulatory network and chromatin remodeling. I focused on the function of HMGN1 
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(high mobility group nucleosome binding domain 1), a non-canonical histone, which was 

the most significantly increased in ALT mESC among the candidate genes presumed to be 

involved in the mechanism of ALT. HMGN1 can compete with the linker histone H1 and 

contribute to post-translational modifications of other histones, thereby loosening the 

chromatin structure. I confirmed that HMGN1 binds to the unique telomere of ALT 

mESC. In addition, the inhibition of the function of HMGN1 increased the degree of 

telomere damages, reduced the amount of transcripts produced in telomere, and shortened 

the telomere length. Therefore, it was confirmed that the change produced by HMGN1 is 

a necessary factor to keep ALT telomere stable. In this study, the molecular characteristics 

of ALT mESCs were examined in terms of genome, transcriptome, and proteome. The 

main feature is the distinct structure of the telomere produced by a unique template and 

HMGN1 protein acting as an epigenetic regulator. The phenomenon of using a unique 

template sequence for telomere preservation is evolutionarily conserved from yeast to 

mammal. The ALT model established in mESCs will contribute to understanding not only 

of the molecular mechanism of ALT but of the mechanism of evolution of the genome.  
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What is telomere for? 

The problem of preserving genome integrity starts from the end of chromosomes. 

During the evolutionary process of eukaryotes, the first appearance of a linear chromosome 

from circular one was innovation and crisis at the same time. The end itself should be 

distinguished from the double-strand breaks (DSBs) of internal genome regions and 

suppress the activation of DNA damage response (Blackburn, 1991; Greider, 1993). This 

is "end-protection problem". Another issue is "end replication problem" to find a way for 

maintaining the information of terminal chromosomes because the canonical DNA 

replication machinery cannot ensure the complete replication of the end parts of linear 

chromosomes (Figure 1) (de Lange, 2010). 

 The nucleoprotein complex to solve the two end problems is telomere. Telomere 

usually comprises simple tandem repeat sequences, (TTAGGG)n in the human case, and 

specific binding proteins for DNA repeats (Chong et al., 1995; de Lange, 2005). Telomere 

binding proteins residing in telomere are called shelterin complex which carries out 

variable functions for maintaining genome stability: 1) to support the canonical DNA 

replication machinery to progress in telomere regions, 2) to suppress the undesirable 
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activation of DNA repair mechanisms, mainly homologous recombination (HR) and non-

homologous end joining (NHEJ), 3) to facilitate the formation of end protective structure, 

T-loop, 4)to recruit accessory proteins for particular telomere functions (Figure 2) (de 

Lange, 2004, 2018; van Emden et al., 2018). 

 

Importance of telomere maintenance 

Homeostasis of telomere length is critical for the life and death of cells. Due to 

the end replication problem, replicating cells are subjected to telomere erosion if not 

supported by telomere restoring mechanisms. Gradual telomere shortening eventually leads 

to the uncapping or the deprotected state of telomere with a dysregulated stoichiometry of 

telomere binding proteins (Cesare et al., 2013; Sfeir and de Lange, 2012). Thus, telomere 

length and the protection from the DDR machinery are intrinsically connected.  

 Various checkpoint factors monitor and control cell cycle to ensure the complete 

preservation of the genomic information (de Lange, 1998; Shay and Wright, 2005). DNA 

damage is a major source of checkpoint activation, especially in G2/M. If telomere reaches 

a critical threshold length, the resultant telomere deprotection induces "replicative 



4 

 

senescence", which is a permanent state of cell cycle arrest (Kaul et al., 2011). 

p53 pathway plays a critical role in senescence. The DDR pathway via ATM and 

ATR activates p53, which can upregulate a critical cyclin-dependent kinase p21, which 

suppresses inhibition of Rb to arrest the cell cycle (Wang et al., 2016). Telomere functions 

as a counting timer for the remaining number of cell divisions. This is the basic mechanism 

of tumor suppression by the cell-intrinsic regulation. 

 Some cells can bypass the limit of replicative senescence mostly with the 

checkpoint inactivation including the disruption of the p53-p21 axis (Greenberg, 2005; 

Harley and Sherwood, 1997). In this case, telomere dysfunction can lead to chromosome 

fusion, which is too severely catastrophic to preserve genome integrity. Chromosome 

fusion forms dicentric chromosome, which can be broken at the next cell division. The 

broken sites are perceived as DNA damage and repaired mainly by non-homologous end 

joining. Then, fused chromosomes suffer successive breakages at next division, so these 

consecutive fusion-breakage cycles promote unrepairable genomic instability. The fusion-

induced telomere dysfunction gives rise to mitotic arrest, which ultimately leads to 

apoptosis. This state suffering extensive cell deaths and an uncontrolled genomic instability 
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is called crisis. So two-step surveillance system (senescence and crisis) adjudged by 

telomere state manages the replication potential and the mutagenicity arising from telomere 

(Cheung and Deng, 2008; Sen et al., 1999). 

  The barrier of cell death imposed by crisis also cannot guarantee a complete 

stop of cell division. The exact mechanism that can make cell bypass crisis has not been 

fully clarified. At this point cells freed from the replication limit accumulate more 

disastrous genomic rearrangement and become malignant in the human case. Importantly, 

most of the cells must acquire telomere maintenance mechanism (TMM) to break out of 

the crisis (Figure 3) (Shay and Wright, 2005). Stem cells or germ cells that should have 

unlimited replication capacity equip telomerase, which is a specialized reverse transcription 

based telomere healing enzyme. These cells seldom suffer from the senescence and 

definitely the crisis resulting from telomere. Most of the human cancer cells gain 

telomerase activity at some point, which is normally suppressed in normal somatic cells. 

 

Discovery of alternative mechanism of telomere maintenance 

Interestingly, about 15% of cancer cells do not reactivate telomerase but utilize 
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recombination based telomere maintenance mechanism (Heaphy et al., 2011; Londono-

Vallejo et al., 2004). This telomerase-independent mechanism is called "alternative 

lengthening of telomeres (ALTs)" by definition (Figure 3). Since the identification of 

telomerase mutant survivor of yeast, ALT-like mechanisms have been announced in diverse 

eukaryotic organisms including plants and humans (Bryan et al., 1995; Lundblad and 

Blackburn, 1993; Reddel et al., 1997). Telomere consists of simple repeats, thus there are 

widespread homologies between all telomeres consequently. The monumental experiment 

proving ALT to involve homologous recombination (HR) was that specific sequences 

integrated into telomere of ALT human cell can be copied to other chromosomes by copy-

and-paste manner (Cho et al., 2014; Dunham et al., 2000; Muntoni et al., 2009). 

 In the study using yeast, two types of telomerase-independent survivors have 

been identified (Lundblad and Blackburn, 1993; Nakamura et al., 1998). Type I survivor 

depends on Rad51-based homologous recombination and mostly duplicates subtelomeric 

X or Y' elements for preserving telomere length. In contrast, Type II survivor uses telomere 

sequences per se as templates and shows only subtle amplifications of subtelomeric 

sequences. Both survivors depend on Rad52 protein which has a central function in DSB 
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repair and homologous recombination and replication protein Pol32 which indicates the 

recombination process for telomere maintenance involves replication. (Chen et al., 2001; 

McEachern and Haber, 2006). 

Up to now the most part of human ALT case has been regarded as similar to the 

Type II mechanism because only telomere repeats and telomere-like variant repeats are 

duplicated (Conomos et al., 2012; Varley et al., 2002). The variant repeats are telomere-

like repeat sequences but have one or two nucleotide changes primarily. The variant repeats 

interspersed within human ALT telomere were originated from the most proximal region 

(~2kb) of human telomeres. The presence of variant repeats throughout the ALT telomeres 

may change the chromatin structure to be more favorable to recombination through removal 

of shelterin and recruitment of nuclear receptors. 

 

Possible molecular mechanisms of ALT 

Although the involvement of HR in ALT is obvious, there are several different 

pathways and outcomes to which HR can lead ultimately (Li and Heyer, 2008; Londono-

Vallejo et al., 2004; Sung and Klein, 2006). When it comes to DSB repair by HR, there are 
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at least three possible pathways (Jasin and Rothstein, 2013). The initial processes are 

identical: DSB ends are recognized and processed to generate 3’ single-strands. Rad51 

forms a nucleoprotein filament onto single strand DNA, which can invade a homologous 

target to make displacement-loop (D-loop) intermediates. In synthesis-dependent strand 

annealing (SDSA), the invading strand is displaced after DNA synthesis and re-annealed 

with the second end. 

In break-induced replication (BIR), the D-loop associates with full machinery of 

DNA replication to copy the long track of the target donor chromosome. The newly 

synthesized strands by BIR segregate with the broken chromosome and not with the donor 

chromosome, which indicates BIR is a conservative DNA synthesis process (Donnianni 

and Symington, 2013). In double-strand break repair (DSBR), both ends of the DSB are 

captured to assemble double Holliday junction. This structure can either be resolved by 

cleavage of specific ways or dissolved to be displaced from the target chromosome 

(Sobinoff et al., 2017). 

Recent studies showed that ALT employed BIR-like recombination mechanism 

(Costantino et al., 2014; Dilley et al., 2016). BIR plays a major role in repairing the broken 
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replication forks and other DSBs from various sources. The critical time-point BIR should 

work is that only one end of DSB exists and cannot be cured by NHEJ or other HR 

pathways. DSBs arising from telomere erosion or uncapping fell exactly into the category 

because telomere is the end of the chromosome by nature. In addition, telomere is a hard-

to-replicate region, which can lead to frequent replication fork collapse and the formation 

of one-end DSB. Surprisingly, Rad51 was dispensable for break-induced telomere 

synthesis in human ALT (Dilley et al., 2016). The involvement of BIR mechanism in other 

ALTs is still an open question.  

  It's possible that a spectrum of mechanisms are utilized for ALT, mainly 

because not any single factor has been revealed to work in every ALT (Apte and Cooper, 

2017; Lovejoy et al., 2012). Moreover, various ALTs show the different appearance in the 

telomere-amplification state, the distinct template choice, and the varied susceptibility to 

the chemical drug in human ALT cancers. To trace the reason for the ALT diversity to its 

origin is not simple. Telomere dysfunction induced genomic rearrangement may make too 

many changes in the mutation profile and the chromosome architecture. In addition, cell or 

organism-specific characteristics of telomere and the genetic network regulating telomere 
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biology obscure the integration of ALT under a united causality. 

 

Molecular markers of ALT 

The definition of ALT is simple and clear: telomere is synthesized via a 

mechanism other than telomerase. However, the exact molecular mechanism of ALT is still 

elusive. Many researchers observed molecular markers of ALT, which seem to be highly 

correlated with ALT activity (Draskovic et al., 2009; Henson et al., 2009; Sobinoff and 

Pickett, 2017). 1) ALT-associated PML bodies (APBs): APBs are PML bodies with 

telomere signals and HR-associated proteins. APBs have been regarded to manage 

telomere synthesis process; 2) C-circles: C-circles are extrachromosomal telomeric repeats 

including partially single-stranded CCCTAA repeats. It can be detected with modified 

rolling circle amplification assays; 3) Telomere-sister chromatid exchange (T-SCE): ALT 

cells show a higher telomeric exchange between sister chromatids, implying a higher rate 

of recombination; 4) Telomere dysfunction-induced foci (TIFs): TIFs mean DNA damage 

sites localized in telomere. TIFs can be detected with co-localization of telomere DNA and 

53BP1 or γ-H2AX DNA damage markers. ALT cells normally have an increased TIFs. 
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All those ALT markers provide partial evidence of ALT activity. However, every 

marker has exceptions. Telomerase-positive cells can also have ALT markers, and there are 

ALT cells that do not possess those markers. Although many studies still rely on the 

identification of these markers in ALT, it should be taken carefully to interpret the results. 

 

Characterizing ALT-specific factors 

The identification of ALT telomere-specific proteins was critical to revealing the 

molecular mechanism of ALT. At the first time the method called "proteomics of isolated 

chromatin loci" (PICh) that uses DNA sequence-specific probe and captures fixed DNA 

and protein complexes, discovered novel proteins associated with ALT telomeres (Dejardin 

and Kingston, 2009). Specific orphan nuclear receptors were validated to bind ALT 

telomeres and hypothesized to interact with variant telomere sequences which were 

originally dispersed within subtelomeres. Following studies showed that variant telomere 

repeats were duplicated to terminal telomeres upon ALT activation and had potential to 

recruit orphan receptors and other ALT-specific proteins to constitute protein hub for the 

ALT mechanism (Conomos et al., 2014; Conomos et al., 2012).  
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  The principal protein factors in ALT include not only telomere binding protein 

but other proteins interacting with telomere temporarily or indirectly through regulating 

telomere-associated protein networks. The exact and complete protein requirement for ALT 

has not been unraveled. Moreover, the role of canonical shelterin proteins has not been 

tested in every respect. The differential DNA constituent of telomere in ALT may bring 

new protein players and push out original telomere occupants. Structure-specific regulators 

including helicases, nucleases, and recombinases can also interact with telomere in context-

dependent manners (Clynes et al., 2015; Cox et al., 2016; Pan et al., 2017). 

 

Characteristics of subtelomere 

Subtelomere is generally defined as a genomic region between the central part of 

genome and telomere (Riethman et al., 2003; Riethman et al., 2005). In general, 

subtelomere includes repetitive sequences including telomere repeats and low levels of 

genes. However, there is no specific boundary between subtelomere and other regions, no 

clear sequence motif shared in subtelomeres, and no general feature conserved among 

various organisms. The limited amount of sequence homology among subtelomeres exists 
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in same species. Although different subtelomeres share homology in some cases, diverse 

polymorphisms dominate the overall identity of subtelomere. The main polymorphisms are 

represented in length and gene copy number. Other properties like chromatin state, 

recombination frequency, and gene density vary among individuals within the same species. 

  The intrinsic properties of subtelomere obstructed the complete construction 

of the genome (Tashiro et al., 2017). The repetitive nature of subtelomere left many gaps 

in the genome assemblies. As the sequencing and other molecular cloning techniques 

progressed, the subtelomere has been gaining the right representation. However, despite 

the achievement of a standard genome, there still remains a high degree of diversity among 

individuals. 

 

Cases of the recruitment of subtelomeric sequences in ALT 

Subtelomeric sequences can be used as templates to replace telomere repeats in 

some of the telomerase-negative condition. The symbolic example of subtelomere-

telomere exchange is Type I survivor of yeast. Yeast subtelomeres are mainly composed of 

two kinds of sequence motif, X and Y' elements, but not all subtelomere have Y' element. 
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X element is more proximal to a central genomic region, so Y' element is the generally 

neighboring part of telomere. Although about one-third of chromosomes do not contain Y' 

elements, all chromosomal ends in the end obtain Y' elements with the formation of Type I 

survivor (Chen et al., 2001; Nakamura et al., 1998). 

Another case is the ALT survivor of telomerase-deficient C. elegans. C. elegans 

ALT survivors utilized an internal genomic region for telomere maintenance. The so-called 

‘Template for ALT (TALT)’ region cis-duplicated from internal locus to subtelomere during 

evolutionary process, and amplified to all chromosomal ends after ALT activation (Seo et 

al., 2015). These cases suggest that particular subtelomeric sequences can be recruited as 

telomere constituents. However, the exact rule of determining the potential of certain 

sequences as template for ALT has not been revealed. 

 

Heterochromatin in telomere and subtelomere 

Telomere has a basically silenced state of chromatin, which is important for the 

telomere function and length regulation in many organisms. In S. cerevisiae, telomere 

binding protein Rap1 recruits chromatin-silencing Sir proteins (Duan et al., 2016; Kupiec, 
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2014). D. melanogaster is a special case, because the retrotransposons cap the end of 

chromosomes (Berendes and Meyer, 1968; Casacuberta, 2017; Silva-Sousa et al., 2012). 

The 'terminin' complexes bind and protect D. melanogaster telomere. The stable 

maintenance of telomere depends on HP1 (heterochromatin protein 1), a critical component 

of heterochromatin. Mammalian telomeres are enriched with heterochromatin marker 

H3K9me3, which provides a docking site for HP1. 

  The silenced state of telomeres has been nearly regarded as the suppressing 

mechanism of telomere lengthening (Bisht et al., 2008; Voon et al., 2016). The compact 

state of chromatin inhibits telomerase recruitment and suppress the recombination in 

telomeres. The histone methyltransferases (HMTs)-deficient cells showed a remarkable 

lengthening of telomeres. However, there is also the case that shows telomere shortening 

in silencing disrupted condition in yeast. So, it will be fair to explain that chromatin 

silencing condition supports telomere length homeostasis. 

  Silencing histone markers are also enriched in mammalian subtelomere 

(Cubiles et al., 2018; Robin et al., 2014). High DNA methylations also exist in subtelomere. 

Many repeat regions including peri-centromere are highly DNA methylated, which is 
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considered to suppress the HR. The pioneer study showed the expression of a generally 

euchromatic gene inserted into subtelomere is silenced, which is called telomere position 

effect (TPE). The formation and maintenance of subtelomeric heterochromatin seem to be 

influenced by telomere, but the precise mechanism is still elusive. 

  Cells experiencing telomere shortening show dynamic changes of chromatin 

state (Cubiles et al., 2018; Schoeftner and Blasco, 2009a). Telomere shortening 

accompanies the loss of heterochromatin histone markers, decompaction of chromatin, 

lowered capacity to suppress DDR, and consequently, higher rate of telomerase recruitment 

and recombination. In telomerase-deficient cells, this condition can be ALT-favorable. The 

lowered telomere protection may permit various DNA repair pathways, which can lead to 

telomere maintenance via ALT mechanism (Benetti et al., 2007; Episkopou et al., 2014). 

 

TERRA is produced and has specific roles in telomere 

In spite of heterochromatic feature of telomeres, telomere sequences are 

transcribed to produce mostly long non-coding RNAs, TERRA (TElomere Repeat-

containing RNA) (Cusanelli and Chartrand, 2015; Oliva-Rico and Herrera, 2017). The 
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promoter region and the transcription regulatory factors are still puzzling. Subtelomere has 

been regarded as main sources for TERRA promoters, but there are also reports that show 

TERRA transcription starts within telomeres. Telomere length seems to be inversely 

correlated with TERRA expression (Schoeftner and Blasco, 2009a). However, many facets 

of TERRA biogenesis still remains as questions. 

   One of the main roles of TERRA may be to inhibit the function of telomerase. 

TERRA may compete with telomerase RNA component for binding telomere DNA 

sequences, or directly inhibit telomerase RNA component (TERC) gene by binding to it. 

However, in vivo evidence supporting the prediction is still not sufficient. Otherwise, 

TERRA can mediate telomere lengthening by recruiting telomerase to telomeres. So, the 

function of TERRA depends on a specific context.  

  TERRA can interact with telomeres through shelterin or other telomere-

functioning enzymes like histone methyltransferases. TERRA itself seems to support the 

localization of these enzymes to telomeres. TERRA depletion was associated with a 

decrease of H3K9me3 and other silencing histone markers. So, TERRA has been thought 

to regulate heterochromatin formation in telomere regions. The production of TERRA is 



18 

 

regulated by the chromatin state of telomere, which means telomere transcription and 

heterochromatinization are on the intimate relationship with a mutual feedback.  

  TERRA can also interact with telomere directly. Due to having complementary 

sequences for telomere, TERRA can pair with telomere repeats by displacing one of the 

double-stranded DNA and base-pairing with the other. This three stranded RNA-DNA 

hybrid structure is called R-loop (Toubiana and Selig, 2018). R-loop can have various 

functions and be closely connected to telomere stability. Basically, R-loop can hinder 

transcription or replication machinery by blocking the progress of the protein complexes. 

Telomere is a hard-to-replicate region with the repetitive nature, which R-loop can make 

worse (Toubiana and Selig, 2018).  

  R-loop formation can influence genome integrity by inducing replication stress, 

mutation, recombination, and other rearrangements (Graf et al., 2017; Schoeftner and 

Blasco, 2009b). The persistent replication fork stalling can induce single and double-strand 

breaks. DSBs occur in case of the replication fork collapse, which can lead to a drastic 

telomere shortening. Since R-loop is a critical source of endogenous DNA damage, the 

formation and removal of R-loop must be tightly controlled. 
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RNase H enzymes degrade RNA moiety of RNA-DNA hybrids, and helicases 

like Pif1 can unwind the pairing of RNA and DNA (Geronimo and Zakian, 2016). 

THO/TREX complex involved in mRNA transcription and export is reported to suppress 

R-loop formation (Wang et al., 2015). The role of BRCA2 was also implicated in R-loop 

suppression. BRCA2 binds to the branched structure of R-loop, which could lead to more 

access by RNase H enzyme or DNA-RNA helicases. These results revealed R-loop may be 

a critical source of replication stress implicated in cancer (Bhatia et al., 2014). 

 

Role of TERRA and R-loop in ALT 

ALT cells have generally upregulated TERRA. TERRA augmentation could be 

just a resultant phenomenon following chromatin change. However, TERRA can be a 

necessary player to make ALT telomere more susceptible to HR. The exact mechanism of 

this process are still elusive, but some hypotheses with supporting observation exist (Arora 

and Azzalin, 2015; Arora et al., 2014). First, DSBs occurred from persistent R-loop can be 

initial triggers and substrates for HR. Second, the displaced single strand telomere has key 

roles. 1) ss-telomere can be coated with RPA, which can recruit DDR factors to telomeres. 
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2) RPA on ss-telomere would be exchanged with RAD51 to promote HR. 3) ss-telomere 

can be good substrates for the strand invasion from other telomeres. Third, TERRA itself 

can recruit HR related factors to telomere directly or indirectly. 

 

Purpose of this study 

I got ALT mouse embryonic stem cells (mESCs) which were homozygous Terc 

knock-out (-/-) and survived from the crisis (Niida et al., 2000). Telomerase-deficient 

mESC suffered replicative senescence and crisis resulting from telomere shortening, and 

recovered to show an elevated growth rate and proliferation, which led to the identification 

of ALT cell. Interestingly, the previously reported phenotype of ALT mESCs was similar 

to that of C. elegans ALT survivors. C. elegans ALT survivors utilized a non-telomeric 

sequence for telomere maintenance and ALT mESCs seemed to show an analogous pattern. 

The duplication of a non-telomeric sequence in telomerase-deficient survivors may be 

conserved phenomena from yeast to mammal. 

In this study, I took advantage of the novel ALT mESCs to establish the 

unprecedented characteristics of ALT. I tried 1) to clearly delineate the telomere state of 
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ALT mESC, 2) to identify the cellular changes associated with ALT activation, and 3) to 

examine the functions of critical molecular factors in ALT maintenance. 

I analyzed ALT mESCs in various points including genome, transcriptome, 

proteome, and epigenome. With a whole genome sequencing (WGS), I identified a distinct 

telomeric structure of ALT mESCs. A unique template in subtelomere of a chromosome (I 

named this template as mTALT meaning mouse template for ALT) was duplicated to all 

other chromosomes. The distinct DNA composition of ALT mESCs implies a different 

mode of protection and regulation of telomere. 

Next, I profiled the gene expression pattern of ALT in perspectives of RNA and 

protein. ALT activation leads to changes in transcription and chromatin regulation. Among 

the candidate genes that seemed to be related to the ALT mechanism, I focused on the 

function of HMGN1. A non-canonical histone protein HMGN1 was highly enriched in ALT 

mESC, which served as an epigenetic modulator. Telomere-specific non-coding RNAs 

were also highly expressed in ALT mESCs, which have a protective role. ALT mESCs seem 

to maintain telomere with distinct sequences and structures based on the presence of two 

main pillars, mTALT and HMGN1. 
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Cells 

Terc knock-out mESCs were kind gifts from H. Niida. The generation and culture method 

was decribed previously (Niida et al., 1998). Briefly, the Terc targeting construct (TR-10) 

was transfected into E14 mESC by electroporation to exchange the first Terc allele. The 

targeting plasmid included PGK-neo gene flanked by loxP sites. The transfected cells were 

selected with G418 (200 mg/ml) and Ganciclovir (1 mM). The resistant Terc+/- cells were 

picked after eight days. The neo gene was removed by infection with the adenovirus of Cre 

recombinase. The Terc+/- cells were re-targeted with TR-10. Two lines of Terc-/- ESC, 

DKO301 and DKO741 were recovered. In the next paper, the authors found ALT-activated 

mESC after ~450 passagings. Both of DKO301 and DKO741 produced survivors with rare 

frequencies (Niida et al., 2000). I got those ALT survivor cells at each PDL timing (PD100, 

PD350, PD400, PD450) with control (Terc+/+) cells. For mESC maintenance and stock 

preparation, mouse embryonic fibroblast (MEF) cells were used as feeder cells. Feeder-

free mESCs were used for all experiments including nucleic acids extraction, protein 

extraction, immunostaining, and fluorescent in situ hybridization. 
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Whole genome sequencing (WGS) 

Whole genome DNA was extracted using DNeasy Blood & Tissue Kit (QIAGEN). 

Macrogen (South Korea) performed library preparation and sequencing process using 

Hiseq X (Illumina) and NovaSeq 6000 (Illumina) platform. All samples were sequenced 

with 150bps paired-end sequencing. 

 

WGS read mapping and copy number analysis 

Cleaned sequence reads were mapped to the mm10 reference genome using Burrows-

Wheeler Aligner (BWA) mem (version 0.7.17). Marking of duplicate reads, indexing and 

sorting was performed with Picard-Tools (version 1.96) and SamTools (version 1.6). Copy 

numbers were calculated as 1 kbps binned read counts that were normalized with the total 

mapped reads. 

 

Variant detection method 

Single nucleotide polymorphisms (SNPs) and insertion and deletions (indels) were detected 

and genotyped according to the mm10 reference genome and the assembled E14   
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genome using Haplotyper Caller (GATK version 3.8-0; filtering option=QD < 2.0 || FS > 

60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0). 

 

Total RNA extraction and RNA sequencing analysis 

mES cells were harvested in Trizol. RNA was extracted using chloroform and isopropanol 

precipitation. Macrogen (South Korea) performed library preparation and sequencing 

process using HiSeq 4000 (Illumina). Biological duplicate samples were sequenced by 101-

bp paired-end. The reads for this experiment were aligned to the mm10 reference genome 

using the STAR read aligner (version 2.5.3a). FPKM (Fragments Per Kilobase Million) and 

TPM (Transcripts Per Kilobase Million) were calculated with RSEM (version 1.3.0). 

Differentially expressed genes (DEG) were calculated by R/Bioconductor DESeq2 (version 

1.18.1). Differentially enriched gene sets are computed by comparing GSEA (version 2.0) 

enrichment scores. 

 

Monochrome multiplex quantitative PCR (mmqPCR) 

mmqPCR was modified from a previously published paper (Cawthon, 2009). mmqPCR 
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was used for telomere and mTALT length measurement. This technique can measure Ct 

(cycle threshold) value for two amplicons in a reaction well with a single DNA-

intercalating dye. The Ct for more abundant target can be measured at earlier cycles, and 

at later cycles the Ct for the second target can be collected at a temperature highly above 

the melting temperature of the first amplicon. Primers for second amplicon were placed 

with GC-clamps on both ends to increase the melting temperature. Reaction mixture was 

1x HOT FIREpol EvaGreen qPCR Supermix (Solis biodyne), target primers (final 

concentrations 500 nM each), single copy gene control primers (final concentrations 500  

nM each), template DNA (100 ng). The thermal cycling program for telomere was Stage 1: 

15 min at 95°C; Stage2: 2 Cycles of 15 s at 94°C, 1 5s at 49°C; and Stage3: 33 cycles of 

15 s at 94°C, 10 s at 62°C, 15 s at 74°C with signal capture, 10 s at 84°C, 15 s at 88°C with 

signal capture. The thermal cycling program for mTALT was Stage 1: 15 min at 95°C; 

Stage2: 35 Cycles of 15 s at 94°C, 20 s at 62°C, 15 s at 72°C with signal capture, 10 s at 

84°C, 15 s at 88°C with signal capture. 

 

Interphase TIF assay 
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The protocol for Immunofluorescence and telomere fluorescence in situ hybridization 

(FISH) was modified from a previous paper (Cesare et al., 2015). The cells were cultured 

in feeder-free state and trypsinized at confluency of 50~60%. The cells were diluted with 

PBS at concentration of 2 to 5ⅹ105 cells/ml. The diluted cells were cytocentrifuged with 

the appropriately assembled cytospin funnels at 800 rpm for 10 min. The cells on slide were 

fixed with 3.7% formaldehyde, and permeabilized with KCM buffer (120 mM KCL, 20 

mM NaCl, 10 mM Tris-Cl, pH 7.5, 0.1% Triton X-100). ABDIL buffer containing RNaseA 

(100 ug/ml) were added and incubated for blocking. The primary antibody diluted in 

ABDIL (20 mM Tris-Cl, pH 7.5, 2% bovine serum albumine, 0.2 % fish gelatin, 150 mM 

NaCl, 0.1% Triton X-100, 0.1% sodium azide) was added and incubated overnight at 4°C. 

The slides were washed with PBST and incubated with ABDIL-diluted secondary antibody 

for 1hr at room temperature. The slides were washed with PBST again. The cells were fixed 

with 3.7% formaldehyde. The slides were ethanol dehydrated with a graded ethanol series: 

70%, 90%, and 100% ethanol. After the slides were dried, telomere-PNA probe diluted in 

hybridization solution (70% formamide, 0.5% blocking reagent, 10 mM Tris-Cl, pH 7.5) at 

0.3 ug/ml was added and the cells were denatured for 5min at 80C. The hybridization was 
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done overnight at room temperature. The slides were washed with PNA wash A (70% 

formamide, pH 7.5, 10 mM Tris-Cl, pH 7.5) and B (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 

0.8% Tween 20) buffer. After ethanol dehydration and air-dry, the slides were mounted 

with Prolong Gold and store overnight before imaging. 

 

Metaphase-immunostaining 

Basically, metaphase-immunostaining was same as interphase assay except chromosome 

preparation step. The cultured cells were treated with 1 uM nocodazole for 1.5 hr before 

harvest at 50~60% confluency. The cells were trypsinized and washed with PBS. The cells 

were resuspended with 0.8% Sodium Citrate solution and incubated at 37°C for 5 min. The 

swelled cells were cytocentrifuged at 2000 rpm for 10 min. The remaining steps were same 

as interphase-immunostaining. 

 

Quantitative-FISH (Q-FISH) 

The cultured cells were treated with 1 uM nocodazole for 1.5 hr before harvest at 50~60% 

confluency. The trypsinized cells were resuspended with 0.8% sodium citrate solution and 
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incubated at 37°C for 10 min. After spin-down, the supernatant was aspirated and the cells 

were resuspended in ~300 ul of remaining solution. 1 ml of pre-cooled fixative (75% 

methanol and 25% acetic acid) was added dropwise and the tubes were tapped after each 

drop. 9 ml of fixative was added with consistent tapping. The cells were fixed at 4°C 

overnight and stored at -20°C. Slides were prepared by soaking in 100% ethanol for 1hr. 

The cleaned slides were air-dried and the fresh fixative was prepared and cooled. The fixed 

cells were spin-down and resuspended in fresh fixative at ~1ⅹ106 cells/ml. Five paper 

towels were soaked with water and the cleaned slides were placed onto the wet towels. The 

resuspended cells were dropped from a height of 2 cm onto the slides. The slides were 

incubated at 65°C for 1min, and allowed to air-dry. The slides were checked with bright-

filed light microscope to look for good metaphase chromosomes. The slides were cured 

overnight at room temperature. The slides were fixed with 3.7% formaldehyde and 

incubated with PBS containing RNase A (250 ug/ml). The slides were re-fixed with 3.7% 

formaldehyde and washed with PBS. The slides were ethanol dehydrated with a graded 

ethanol series: 70%, 90%, and 100% ethanol. After the slides were dried, telomere-PNA 

probe diluted in hybridization solution at 0.3 ug/ml was added and the cells were denatured 
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for 10 min at 70°C. The remaining washing and mounting steps were same as the 

immunostaining protocols. 

 

Chromosome orientation-FISH (CO-FISH) 

Cells were seeded and incubated at 40~50% confluency. The cells were incubated for 12 

hr in growth media with 10 uM 3:1 BrdU/BrdC. For the last 1.5hr with BrdU/BrdC, 1 uM 

nocodazole was added to media. After spin-down, the supernatant was aspirated and the 

cells were resuspended in ~300ul of remaining solution. The process of cell harvest, 

fixation, and dropping onto slides was same as Q-FISH. The cured slides were rehydrated 

with PBS for 5min and fixed with 3.7% formaldehyde for 5min at room temperature. After 

PBS wash, the slides were incubated with PBS containing RNase A (250 ug/ml) for 15 min 

at 37°C. The slides were washed with PBS and rinsed with 2X SSC, which is followed by 

incubation in 2X SSC containing 0.5 ug/ml Hoechst 33258 for 15 min in the dark. The 

slides were irradiated with ~365 nm UV light for 30 min and washed with distilled, 

deionized water. 80 ul of 10 U/ul of ExonucleaseIII were treated to the slides and incubated 

for 30 min at 37°C. During this step, the newly synthesized DNA strands were degraded. 
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After wash with PBS, 70% deionized formamide/30% 2X SSC solution was added and the 

slides were incubated on a heating block with 70°C for 10 min. After rinse with water, the 

slides were ethanol-dehydrated. TelG-Cy3 PNA probe was placed onto the slides and 

denatured at 70°C for 10 min, and then hybridization was done for 2 hr at room temperature 

in the dark. The slides were washe twice in PNA wash A buffer, and TelC-FITC PNA probe 

was loaded. The slides were hybridized for 2 hr at room temperature in the dark, and 

washed twice in PNA wash A buffer, and three times in PNA wash B buffer. The slides 

were rinsed with water and air-dried completely. The samples were mounted with Prolong 

Gold.  

 

Lentivirus-based gene knock-down 

HEK293FT cells were plated at 100 mm plates. HEK293FT cells were co-transfected with 

target shRNA-expressing transfer vector (PLKO.1 backbone), pMD2.G (Addgene #12259) 

and psPAX2 (Addgene #12260) by PEI method. In 100mm plate, the actual ratio of each 

vector and PEI is that transfer vector: pMD2.G : psPAX2 : PEI =6:3:1.5:21 (ug). After 7-

12hrs, media was changed with fresh one. After 36~48hrs, culture media was harvested 
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and filtered with 0.45 um PVDF syringe filter. Filtered media was incubated with Lenti-X 

concentrator (Takara) at 5:1 ratio at 4°C on rotator for 1~2 days. The virus soup with 

concentrator was centrifuged at 1500 xg, 45 min. The resulted virus pellet was resuspended 

with ~200 ul fresh culture media. The overall virus harvest process was repeated after 24 

hrs from first harvest. ALT mESC was plated at 12 well plate. At ~50% confluency the 

resuspended virus pellet was added to target mESC with poly-b-rene at concentration of 4 

ug/ml. After 24 hrs second harvested virus was infected in the same way. After 24 hrs of 

incubation the infected cells were transferred to new plate. When the transferred cells 

reached 80~90% confluency, puromycin was added to each well at 1 ug/ml. The selecting 

media was changed every day. The decreased expression of target genes were confirmed 

by qPCR or western blot. 

 

Proteome analysis 

~107 Cells were harvested at 70~80% confluency from 100 mm plates. The pelleted cells 

were incubated with hypotonic buffer A (10 mM HEPES, pH 7.5, 20 mM NaCl, 0.01% 

Triton X-100, 1 mM DTT, 1 mM PMSF, proteinase inhibitor cocktail) and pipetted up and 
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down ~100 times. The nuclei were pelleted and washed once with PBS. The washed nuclei 

were resuspended in 8 M Urea, and sonicated at maximum intensity for 30 min (Cosmobio 

bioruptor). 

 

DNA-RNA hybrid immunoprecipitation and quantitative PCR (DRIP-qPCR) 

Nucleic acid was extracted with phenol/choloroform in phase lock gel tubes followed by 

ethanol precipitation. I sonicated nucleic acid at maximum intensity for 15 min (Cosmobio 

bioruptor). For RNase H-treated control, 10 ug of DRNA was treated with RNase H 

overnight at 37°C, and then purified with phenol/chloroform and ethanol precipitation. 10 

ug of DRNA was incubated with 5 ug of S9.6 R-loop specific antibody in 1x IP buffer (10 

mM NaPO4, pH7, 140 mM NaCl, 0.05% Triton X-100) overnight at 4°C. 50 ul of Dynabead 

(ThermoFisher) for each sample was equilibrated with IP buffer and added to IP tubes and 

incubated at 4°C for 2 hr. I washed the beads three times with IP buffer, and added elution 

buffer (50 mM Tric-Cl, pH 8, 10 mM EDTA, 0.5% SDS, proteinase K). The elution was 

performed for 3 hr at 65°C. DNA was purified lastly with phenol/chloroform and ethanol 

precipitation. qPCR was done with the sonicated input DNAs. 
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ATAC-seq and peak calling 

A basic process is from a previous paper (Corces et al., 2017). 50,000~75,000 cells were 

pelleted at 500 xg, 4°C for 5 min. I added 50 ul of cold RSB (10 mM Tris-Cl, pH 7.4, 10 

mM NaCl, 3 mM MgCl2) containing 0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin 

and pipetted 3 times. The cells were incubated on ice for 3min, and washed with 1ml of 

cold RSB containing 0.1% Tween-20 but no other detergents. The cells were pelleted and 

resuspended wiht 50 ul of transposition mixture (25 ul 2X TD buffer, 2.5 ul transposase, 

16.5 ul PBS, 0.5 ul 1% digitonin, 0.5 ul 10% Tween-20, 5 ul H20) (2X TD buffer=20 mM 

Tris-Cl, pH 7.6, 10 mM MgCl2, 20% dimethyl formamide). I incubated the reaction at 37°C 

for 30 min with consistent shaking, and stop the reaction by adding 50 ul of tagmentation 

stop buffer (10 mM Tris-Cl, pH 8.0, 20 mM EDTA, pH 8.0). The reaction was cleaned with 

Zymo DNA clean and concentrator-5 kits. DNAs were eluted in 21 ul of elution buffer, and 

amplified for 5 cycles using NEBnext high-fidelity 2x PCR master mix. Using 5 ul (10%) 

of the pre-amplified mixture, I run a 15 ul qPCR to determine the number of additional 

cycles. I plotted linear relative fluorescence versus cycle, and determine the cycle number 
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that fitted to 1/4 of maximum fluorescence intensity. The remaining 45 ul of PCR reaction 

was processed with qPCR with additional cycles determined. I purified the final PCR 

reaction using Zymo kits. Sequencing was performed with Novaseq 6000 platform by 100-

bp paired-end. Raw genomic sequence reads were mapped to the mm10 reference genome 

using BWA mem (version 0.7.17). Alignments were further processed using GATK 

(version 3.8-0) and PicardTools for duplicate marking (version 1.103). Peak-calling was 

performed with MACS2 (version 2.1.1.20160309). 

 

Primers used for the experiments described. 

Experiment Name Primer F Primer R 

mTALT 

qPCR 

1 AGGCATGGCTTAGATGTTGC GACTGTGCCCTACATGCTCA 

2 GTTCTCGGGTCATGTCTGGT CCTGCTACTTGCTTGGGAAG 

3 GCCTCCTTGGTGTGTTGTTT CACACTGTGGGTGGAATTTG 

4 ACCAGCTGAAACATCCATCC TGGGGAAAGTGCTAATGGAC 

5 TAGGGGATGTTAGGCCTCCT AGGTGTCCCCGAGATCTTTT 

6 GGGCAACTTCCTGTGTGATT GCATGGAACGTGGCTTAGTT 

mTALT 36B4F_mmQP

CR 

CGGCGGCGGGCGGCGCGGGCTGGGCGG

ACTGGTCTAGGACCCGAGAAG 

CGGCGGCGGGCGGCGCGGGCTGGGCG

GACTGGTCTAGGACCCGAGAAG 

mmqPCR TALT primer ACCAGCTGAAACATCCATCC TGGGGAAAGTGCTAATGGAC 

 

TALT primer2 AGCGTGTGAAGGAGGAAGAG CTCCACAACCGCAGTAAGGT 
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telomere 

mmqpcr 

telG/C ACACTAAGGTTTGGGTTTGGGTTTGGGT

TTGGGTTAGTGT 

TGTTAGGTATCCCTATCCCTATCCCTAT

CCCTATCCCTAACA 

mTALT cis-duplication 

1 

GGGCAACTTCCTGTGTGATT CCTGCTACTTGCTTGGGAAG 

cis-

duplication 

cis-duplication 

2 

CCTGTTCTGGGGTCATGTCT AGGTGTCCCCGAGATCTTTT 

mTALT 

quantificatio

n 

mTALT3  AGCGTGTGAAGGAGGAAGAG  CTCCACAACCGCAGTAAGGT 

mTALT4 GTTCTCGGGTCATGTCTGGT CCTGCTACTTGCTTGGGAAG 

mTALT 1R TTCCCACTACAAGGCTGACC AGGTGTCCCCGAGATCTTTT 

trans-

duplication 

5R GCTGCTACCCTCTTGTGCTT AGGTGTCCCCGAGATCTTTT 

mTALT 

probe 

mTALT probe 1 AGGCTTGCAACTTGGAGCTA TGGTGTGCTCCTAAATGCTG 

mTALT probe 2 GGACAGCTTCGCCATACATT  CACACTGTGGGTGGAATTTG 

shRNA 

cloning 

LKO TGGACTATCATATGCTTACCGTAAC GTATGTCTGTTGCTATTATGTCTA 

 

Targets and oligo lists for lentiviral cloning 

Targe

t 

 

Sequence Forward Oligo Reverse Oligo 

hmgn1(1) 3UTR GTACAATCCAGA

GGAATATTT 

CCGGGTACAATCCAGAGGAATATTTCTCG

AGAAATATTCCTCTGGATTGTACTTTTTG 

AATTCAAAAAGTACAATCCAGAGGAATAT

TTCTCGAGAAATATTCCTCTGGATTGTAC 

hmgn1(2) CDS GAAAGAAGCTAA

GTCCGACTA 

CCGGGAAAGAAGCTAAGTCCGACTACTC

GAGTAGTCGGACTTAGCTTCTTTCTTTTT

G 

AATTCAAAAAGAAAGAAGCTAAGTCCGA

CTACTCGAGTAGTCGGACTTAGCTTCTTT

C 

Tcstv3(1) CDS ACCAGGATCCTG

CATCTTATA 

CCGGACCAGGATCCTGCATCTTATACTCG

AGTATAAGATGCAGGATCCTGGTTTTTTG 

AATTCAAAAAACCAGGATCCTGCATCTTA

TACTCGAGTATAAGATGCAGGATCCTGGT 

Tcstv3(2) CDS CTGAAATCCTACC

GCAGATTG 

CCGGCTGAAATCCTACCGCAGATTGCTC

GAGCAATCTGCGGTAGGATTTCAGTTTTT

AATTCAAAAACTGAAATCCTACCGCAGAT

TGCTCGAGCAATCTGCGGTAGGATTTCA
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G G 

TERF2 CDS CGAACAGCTGTG

ATGATTAAA 

CCGGCGAACAGCTGTGATGATTAAACTC

GAGTTTAATCATCACAGCTGTTCGTTTTT

G 

AATTCAAAAACGAACAGCTGTGATGATTA

AACTCGAGTTTAATCATCACAGCTGTTCG 

Pot1a CDS GTCTACGATAACC

ACGTTCAA 

CCGGGTCTACGATAACCACGTTCAACTCG

AGTTGAACGTGGTTATCGTAGACTTTTTG 

AATTCAAAAAGTCTACGATAACCACGTTC

AACTCGAGTTGAACGTGGTTATCGTAGA

C 

Pot1b CDS 

3UTR 

ATACCCTTCCCAG

CGTTTATA 

CCGGATACCCTTCCCAGCGTTTATACTCG

AGTATAAACGCTGGGAAGGGTATTTTTTG 

AATTCAAAAAATACCCTTCCCAGCGTTTA

TACTCGAGTATAAACGCTGGGAAGGGTAT 

Klf4 CDS AGTTGGACCCAG

TATACATTC 

CCGGAGTTGGACCCAGTATACATTCCTCG

AGGAATGTATACTGGGTCCAACTTTTTTG 

AATTCAAAAAAGTTGGACCCAGTATACAT

TCCTCGAGGAATGTATACTGGGTCCAACT 

Atrx 3UTR, 

CDS 

CCCACGGATGAG

AATGTAAAT 

CCGGCCCACGGATGAGAATGTAAATCTC

GAGATTTACATTCTCATCCGTGGGTTTTT

G 

AATTCAAAAACCCACGGATGAGAATGTAA

ATCTCGAGATTTACATTCTCATCCGTGGG 

Nanog 3UTR GCCAACCTGTACT

ATGTTTAA 

CCGGGCCAACCTGTACTATGTTTAACTCG

AGTTAAACATAGTACAGGTTGGCTTTTTG 

AATTCAAAAAGCCAACCTGTACTATGTTT

AACTCGAGTTAAACATAGTACAGGTTGGC 

Tbx3 CDS GCTGACGACTGT

CGATATAAA 

CCGGGCTGACGACTGTCGATATAAACTC

GAGTTTATATCGACAGTCGTCAGCTTTTT

G 

AATTCAAAAAGCTGACGACTGTCGATATA

AACTCGAGTTTATATCGACAGTCGTCAGC 

Pold3 CDS ACCGACTATGACA

TCCTTAAA 

CCGGACCGACTATGACATCCTTAAACTCG

AGTTTAAGGATGTCATAGTCGGTTTTTTG 

AATTCAAAAAACCGACTATGACATCCTTA

AACTCGAGTTTAAGGATGTCATAGTCGGT 

BLM 3UTR, 

CDS 

CGAAGGAAACTC

ACGTCAATA 

CCGGCGAAGGAAACTCACGTCAATACTC

GAGTATTGACGTGAGTTTCCTTCGTTTTT

G 

AATTCAAAAACGAAGGAAACTCACGTCA

ATACTCGAGTATTGACGTGAGTTTCCTTC

G 

SLX4 3UTR, 

CDS 

GCCTCCCAAAGT

GCCTATAAC 

CCGGGCCTCCCAAAGTGCCTATAACCTC

GAGGTTATAGGCACTTTGGGAGGCTTTTT

G 

AATTCAAAAAGCCTCCCAAAGTGCCTATA

ACCTCGAGGTTATAGGCACTTTGGGAGG

C 

TERF1 CDS GAACGCCTTATCG

CAGTTAAA 

CCGGGAACGCCTTATCGCAGTTAAACTC

GAGTTTAACTGCGATAAGGCGTTCTTTTT

G 

AATTCAAAAAGAACGCCTTATCGCAGTTA

AACTCGAGTTTAACTGCGATAAGGCGTTC 

Suv39h1 CDS CTCTGCATCTTCC CCGGCTCTGCATCTTCCGCACTAATCTCG AATTCAAAAACTCTGCATCTTCCGCACTA
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GCACTAAT AGATTAGTGCGGAAGATGCAGAGTTTTT

G 

ATCTCGAGATTAGTGCGGAAGATGCAGA

G 

Setdb1 CDS TGCTATCTGGGAA

CCATATTG 

CCGGTGCTATCTGGGAACCATATTGCTCG

AGCAATATGGTTCCCAGATAGCATTTTTG 

AATTCAAAAATGCTATCTGGGAACCATAT

TGCTCGAGCAATATGGTTCCCAGATAGCA 

Kat2b CDS CCGGGATATTATG

AAGTTATA 

CCGGCCGGGATATTATGAAGTTATACTCG

AGTATAACTTCATAATATCCCGGTTTTTG 

AATTCAAAAACCGGGATATTATGAAGTTA

TACTCGAGTATAACTTCATAATATCCCGG 

P300 CDS CCCTGGATTAAGT

TTGATAAA 

CCGGCCCTGGATTAAGTTTGATAAACTCG

AGTTTATCAAACTTAATCCAGGGTTTTTG 

AATTCAAAAACCCTGGATTAAGTTTGATA

AACTCGAGTTTATCAAACTTAATCCAGGG 

CBP CDS CGCGAATGACAA

CACAGATTT 

CCGGCGCGAATGACAACACAGATTTCTC

GAGAAATCTGTGTTGTCATTCGCGTTTTT

G 

AATTCAAAAACGCGAATGACAACACAGA

TTTCTCGAGAAATCTGTGTTGTCATTCGC

G 
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Telomere of ALT mESC uses subtelomeric template 

In 2000, H. Niida et al., published a paper that showed Terc knock-out mouse ES 

cells can survive after about 400 population doublings (Figure 4) (Niida et al., 2000). 

During passaging cells, most of the ES cells entered replicative senescence and died from 

telomere crisis. However, after ~50 passages of the crisis-suffering cells a little fraction of 

cells overcame the crisis and became immortalized. These cells were morphologically 

different with the pre-senescence cells, but proliferated at a similar rate with wild type cells. 

The authors didn't use a term like ALT, but the survived cells were ALT cells by definition. 

The paper also showed non-telomeric sequences were recruited to telomeres in one of the 

ALT survivor cells (DKO 741). I got the ALT mESC from Dr. Niida at each critical time 

point; PD100, pre-ALT cells which is almost normal because of remaining long telomeres; 

PD350, pre-ALT cells just before an expected crisis point (~PD400); PD450, post-ALT 

cells just escaped from the crisis; PD800, post-ALT cells surviving stably. From now on, 

pre-ALT and post-ALT mean PD100 and PD800, respectively, if not stated in other ways 

specifically. 

  To examine which regions in the genome were amplified, I performed whole 
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genome sequencing (WGS) and checked changes of copy number of genomic regions. 

Scatter plot of copy number variation shows terminal regions of the right part (q arm) of 

chromosome 13 are amplified significantly in post-ALT (Figure 5). The length of the 

amplified regions is about 7.4 kbps and the region includes a gene named Tcstv3 (Figure 6 

b). The region is located at the very subtelomere of the right part of chromosome 13 (Figure 

6 a). I named the region as mTALT, which means the template of ALT in a mouse.  

mTALT copy numbers were calculated based on WGS data. The coverage of 

mTALT was compared with that of single copy control region. The result showed that the 

copy number of mTALT was increased as cell progressed from pre-ALT state toward ALT 

activation and stabilization (Figure 7). In particular, post-ALT cells showed a highly 

increased copy number of mTALT. Another type of ALT mESC (301 line) did not show an 

increased mTALT pattern. 

Next, I checked the pattern of mTALT amplification. I performed a terminal 

restriction fragment (TRF) assay with restriction enzymes which can cut mTALT. After 

cutting genomic DNA with the enzyme, southern blot was conducted with telomere repeat 

specific probes. Only post-ALT (A1 in Figure 8) showed a discrete band resulting from the 
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enzyme action. It means post-ALT telomere includes mTALT and the interval between 

neighboring mTALTs may be fixed (Figure 8). To check the co-localization of mTALT and 

telomere, I performed FISH with mTALT specific probe and telomere specific probe. 

mTALT and telomere sequences were well co-localized only in post-ALT (Figure 9). 

Looking into mTALT region (Figure 8), some part around 120,317,000 seemed 

not duplicated. When I used BaeI enzyme which can cut the underrepresented region in 

southern blot process, telomere band of post-ALT cells showed a short band. This result 

indicates that the BaeI-cut region also exists in post-ALT telomere. To confirm the constant 

duplication of mTALT region, I used several primer sets to amplify various parts of mTALT. 

As shown in Figure 10, all regions inside mTALT showed a similar degree of amplification. 

Taken together, the ununiformed duplication of mTALT in WGS data may result from the 

difference between the reference genome (mm10) and the strain of ALT cells (129/Ola). 

To check directly the translocation of mTALT to other chromosomes, I performed 

a PCR assay with subtelomeric primer and mTALT specific primer (Figure 11). When I 

used primers specific to chromosome 1 or chromosome 5, both of the PCR showed post-

ALT specific production of PCR bands. This result indicates mTALTs were moved to other 
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chromosomes from the original site of chromosome 13. 

I quantified the level of telomere repeats with specialized program Computel and 

Telseq, which can calculate the telomere length based on telomere repeat counts from WGS 

raw data (Figure 12) (Ding et al., 2014; Nersisyan and Arakelyan, 2015). The results 

showed that the telomere length decreased from PD100 to PD350, and gradually increased 

after ALT activation. The telomere lengths are similar between PD100 and PD800. 

Considering the extensive amplification of mTALT in post-ALT, most of telomere in post-

ALT mESC is composed of mTALTs. Canonical telomere repeat is rescued to the level of 

pre-ALT, but not amplified much above that. 

Many human ALT cells use variant telomere repeats located in subtelomeric 

region to maintain a terminal stability. To check whether ALT mESC utilizes the similar 

recruiting mechanism of variant telomere repeats, I used a program, Telomere hunter 

(Feuerbach et al., 2016). The result indicated that a composition and a relative proportion 

of variant telomere repeats were not different between pre-ALT and post-ALT (Figure 13). 

 

mTALTs are duplicated with a regular rule and a structure 
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I validated mTALT was selected and employed for the maintenance of ALT 

mESC telomeres. I wondered whether there was any specific rule of mTALT duplication. 

To check the duplication pattern, I performed a PCR assay which can discriminate the 

directions of connected mTALTs (Figure 14). Specific primer pair orienting from inside of 

mTALT to outside was designed. This primer pair cannot produce an amplicon with just 

one copy of mTALT. With forward or reverse primer only PCR, no amplicon was detected. 

However, with both of primers, a PCR band of particular size was produced. It means that 

mTALTs are duplicated in a head-to-tail pattern very regularly and the intervals between 

adjacent mTALTs are highly constant. If combined with the southern blot result with 

telomere repeat probe showing a band of unique size, it's evident that the contents between 

mTALTs are telomere repeats.   

  WGS data can also corroborate the regularity of duplicated mTALTs. The 

paired reads of the reads containing telomere repeats were extracted and aligned to the 

reference genome (Figure 15 a). The aligned peaks were majorly located at both 5' and 3' 

end parts of mTALTs (Figure 15 b). It means in ALT mESC telomere, telomere repeats are 

bordering on the terminal regions of mTALTs and seldom integrate into the internal part of 



45 

 

7.4kbps of mTALTs. Thus, ALT mESC telomere entails a replicating template of fixed size 

which consists of the whole stretch of mTALT and the flanking telomere repeats. mTALT 

and telomere repeats are not interweaved randomly. 

The reference genome shows there is just one copy of mTALT in chromosome 

13. However, even in pre-ALT cell, mTALT seems to be two copies, not a single copy. It 

was first revealed in WGS data showing mTALT showed two-fold coverage than single 

copy control region in PD100 cells (Figure 7). To confirm the duplication state of mTALT, 

I used PCR assay shown in figure 12a. In the reference genome, there was a certain region 

("A" in figure 16 a) between mTALT and canonical telomere repeats. The forward primer 

was picked inside A region, and the reverse primer was picked inside mTALT. If mTALT 

exists as in the reference genome, there should be no amplicon. However, the PCR assay 

showed the presence of amplicon of a specific size in all tested cells (Figure 16 b). Taken 

together, mTALT was cis-duplicated before ALT activation and the duplication persisted 

after turning on ALT. 

There can be two potential pathways for mTALT duplication in post-ALT: one is 

that two-copies of mTALTs were both amplified with a specific frequency, and the other is 



46 

 

that one copy of mTALTs was selected and duplicated (Figure 17 a). To identify the actual 

phenomenon, I examined SNPs in the mTALT region in pre-ALT and post-ALT. With the 

SNPs, I calculated allele frequencies as ratios of variant SNPs to reference SNPs at each 

point of mTALT (Figure 17 b). The trend line in the PD100 denotes mTALT region retains 

1:1 ratio of two SNPs, which means the presence of two types of mTALT. In contrast, the 

allele frequency of PD800 showed a strong bias toward value 1, which implies only one 

type of mTALTs exists in PD800 cells. During ALT activation, a specific copy of mTALTs 

was selected and amplified for telomere maintenance. 

Next question was how accurately the mTALT was duplicated. I plotted SNP 

types according to cell specificity (Figure 17 c). At each position of mTALT, SNPs were 

categorized as common, PD100-specific, or PD800-specific. As shown in figure 13c, 

common and PD100-specific SNPs were prevalent, but PD800-specific SNPs were 

extremely rare; there were two SNPs of PD800-specific. This result also indicates a portion 

of mTALTs in PD100 was selectively duplicated. In addition, the replication mechanism of 

mTALT is distinctly accurate and operated in an error-free manner. 

The rule of mTALT duplication in terms of orientation can be a clue for the ALT 
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mechanism. The possible cases are majorly two. Case 1 is that mTALT are duplicated with 

a constant orientation. Case 2 is that mTALTs are randomly oriented with amplification 

(Figure 18 a). I used a specific read mapping assay to identify the real case. First, from 

WGS data, telomere repeat containing reads (R1s) were extracted and sorted depending on 

repeat direction. Second, paired mates (R2s) of telomere reads (R1s), containing mTALT 

sequences were mapped to the genomic mTALT location. When R2s of R1s with 

(TTAGGG)n repeats were mapped to mTALT region, the left part of mTALT showed an 

enrichment of peaks (upper track of figure 18 b). In contrast, when the complementary R1s 

(CCCTAA)n were used, R2 peaks were highly enriched at the right part of mTALT (lower 

track of figure 18 b). These results indicate that telomere repeats are connected to mTALT 

sequences in a uniform directionality. Thus, mTALTs were duplicated in a regular 

orientation, not in a random way. 

One of the possible mechanisms of mTALT duplication is transposon-like 

behavior. There are two types of transposon depending on transposition intermediates: 

DNA-based (DNA transposon, cut-and-paste) and RNA-based (retrotransposon, copy-and-

paste). When I performed a PCR assay to check whether the original TALT was intact, the 
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result showed the unbroken state of mTALT before and after ALT activation (Figure 19 a). 

To check the possibility of depending on a retrotransposon-like mechanism, I treated 

reverse transcription inhibitor (3TC) and checked the change of mTALT. As a result, there 

was no significant alteration of mTALT copy numbers (Figure 19 b). Taken together, 

mTALT duplication is not a transposon-like mechanism. 

I assayed well-known molecular markers of ALT, C-circle and APBs. However, 

both of them were not increased in post-ALT cells (Figure 20 and Figure 21). In another 

type of ALT mESC (301 PD800), APBs were increased slightly. These results may come 

from the imperfect correlation between ALT and molecular markers. Otherwise, 741 ALT 

mESC may involve a distinct mechanism. 

Here’s the brief summary of ALT activation in terms of mTALT amplification. In 

WT or pre-ALT cells at early passages, telomere was long enough to be functional to protect 

the genome integrity. After telomere was shortened below a critical threshold, most of the 

cells stop to proliferate and eventually died. Some of the cells can withstand the crisis and 

activate ALT mechanism. One of the two copies of mTALT has been selected and used as 

a template for telomere maintenance. mTALT is tandemly duplicated with a regular gap 
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(Figure 22). 

 

ALT activation involves changes of RNA and protein expression 

The cellular changes involved in the process of telomere crisis and ALT 

activation remain enigmatic. The widespread but not fully verified hypothesis is that a 

genome instability is aggravated in the course of increasing telomere crisis and various 

genomic changes can happen, which may be connected to the critical events that induce 

ALT. Mutations may accumulate at the level of a single nucleotide. At the same time, 

mutagenic chromosomal changes including gene deletion, duplication, translocation can 

happen and also epigenetic changes do.  

To check whether there were genetic mutations generated during ALT activation, 

I compared SNPs between pre-ALT and post-ALT (Figure 23). SNPs of post-ALT were 

comparable to that of pre-ALT (2,707,593 vs. 2,823,502), which means mutations resulting 

from genome instability had not been accumulated much. Thus, the possibility that gene 

expression or functional changes caused by certain mutations initiated ALT was quite low. 

mRNA sequencing and transcriptome analysis were conducted to confirm the degree of 
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gene expression change. In principal component analysis (PCA), PD100, PD800, and 

PD800 WT showed distinct cluster formations (Figure 24 a). PC1 and PC2 retained 96% 

of the variance (PC1:49% and PC2:47%) of original data sets. Based on PC1, PD800 was 

most distinct from the others, which may imply ALT-specific pattern of PD800. In case of 

PC2, PD100 and PD800WT were on the most distinct position. The clustering analysis with 

top 30% of genes showing an expression change exhibited PD800WT was more distantly 

clustered than the others (Figure 24 b). When the genes were plotted on the basis of relative 

gene expression in post-ALT compared to pre-ALT, and cut-off with two-fold changes, 

there were lots of significantly changed genes. Taken together, despite the rare 

accumulation of mutations, post-ALT cell showed its own discrete RNA expression pattern. 

To more deeply investigate the difference of gene expression between pre-ALT 

and post-ALT, I organized a quantitative proteomics analysis based on TMT-labelling 

technique. This method can identify the proteome with multiplexing up to 10 samples and 

compare the abundance of each peptide precisely. With pre-ALT and post-ALT cells, I can 

quantify about 8000 proteins (Figure 25). After cut-off with q-value and fold change, the 

list of the increased proteins in post-ALT was analyzed by DAVID and Gene set enrichment 
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assay (GSEA) (Figure 26). As a result, Gene ontology (GO) terms including "transcription", 

"transcription factor activity," and "sequence-specific DNA binding" were enriched in 

DAVID analysis. GSEA result also showed transcription factor activity and chromatin 

remodeling associated terms were enriched. Thus, the change of nuclear proteome may 

reflect an elaborate alteration of transcription networks with the change of transcription 

factors and chromatin states to maintain telomere and genome. However, the causality 

between the proteome and ALT mechanism should be carefully investigated. When I 

examined the RNA expressions of the most highly increased proteins, most of them showed 

a significant correlation between RNA and protein expression (Figure 27). 

 

Local and global chromatin remodeling in post-ALT 

Post-ALT cells showed the characteristic gene expression pattern in the point of 

RNA and protein. If SNPs were not the cause of the expression changes, the next candidate 

can be the change of chromatin state. In particular, GO analysis with proteome showed 

chromatin remodeling can be a meaningful pathway in mESC ALT. I carried out ATAC-

seq (Assay for Transposase-Accessible Chromatin using sequencing) to verify the presence 
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and effect of epigenetic changes. ATAC-seq can examine how much transposons are 

accessible to chromatin and determine the openness of chromatin. Pre-ALT and post-ALT 

cells were reacted with transposase mixture, and sequenced with Novaseq platform. The 

sequencing result showed post-ALT specifically accumulated peaks in various genomic 

regions. When the peaks were aligned based on the location of transcription start sites 

(TSSs), the near-TSS region didn't show the ATAC-seq peak accumulation (Figure 28). The 

regions apart from TSS 50kbs either in upstream or downstream showed significantly high 

ATAC-seq peaks. The chromatin state of those regions can affect gene expression if 

associated with enhancer function. 

To examine the regional characteristics of the open chromatin, ATAC-seq peaks 

increased in post-ALT were arranged according to q-value and were checked for the aligned 

loci from the top of the list. Interestingly, the top 9 regions were all mapped to the 

subtelomere of chromosome 13. In particular, the top region (120,311,697-120,319,273) 

was same as mTALT locus and showed the highest pileup index. Pileup index is calculated 

from the ATAC-seq law data as the raw reads are converted to the original fragment sizes 

and piled up aligning to the reference genome. The outcome that mTALT region gathered 
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the highest ATAC-seq pileup may indicate the chromatin of mTALT turned open and 

accessible to Tn5 transposase. However, another possibility is that the increased copy 

number of mTALT in post-ALT could result in the accumulation of ATAC-seq peaks even 

with a consistent chromatin state. 

To check the change of chromatin state in mTALT region clearly, I extracted 

ATAC-seq peaks of pre-ALT and post-ALT in mTALT region. Next, I binned each peak in 

10bp scale and normalized the binned peaks with WGS reads counts corresponding to each 

bin. In this way, I can consider the copy number change of mTALT in pre-ALT and post-

ALT. It was shown that normalized ATAC-seq peaks were generally higher in pre-ALT 

(Figure 29 a). If the peaks were represented as the ratio of post-ALT to pre-ALT, most of 

mTALT region showed value below one (Figure 29 b). However, one region (120,317,100-

120,317,270) inside mTALT and terminal regions of mTALT showed the enriched peaks in 

post-ALT. Due to the repetitive nature of mTALT sequences, the interpretation of ATAC-

seq peaks needs a careful investigation with additional specific assays for transcriptional 

activity or other read-outs of the chromatin state. 

The chromatin state of telomere is a critical variable in telomere biology, 
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especially in ALT activation. I quantified ATAC-seq peaks of telomere repeat from raw 

data and normalized them with telomere repeat counts from WGS using computel (Figure 

30). As telomere became shortened, ATAC-seq counts of telomere were increased (PD100 

vs. PD350). After ALT activation (PD450), telomere counts were decreased to a similar 

level with PD100. At the point of ALT stabilization (PD800), telomere counts were slightly 

more decreased. Thus, the chromatin state of telomere experienced a dramatic change. As 

telomeres became shorter, an epigenetic opening occurred until the crisis. When the ALT 

was activated and telomeres were protected properly again, heterochromatin seemed to be 

rescued to the level of the normal telomere. 

The location of regions having changed chromatin may have a specific trend. I 

extracted the top 500 peaks according to q-value and plotted the relative positions in the 

respective chromosome of each peak (Figure 31 a). In y-axis, value 0 represents the left 

end of chromosome and value 1 does the right end. As shown in figure 31a, the density of 

dots was increased as the observed region moved closer toward value 1. When the top 500 

peaks were aligned based on the relative positions in the chromosome and plotted again, 

the tendency was also evident (Figure 31 b). This pattern indicates that the right arm region 
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of chromosomes was prone to be epigenetically open after ALT activation. The left ends 

were vulnerable to chromosomal fusions as centromeres were located close to the left ends, 

and the fusion between left ends can be easily stabilized. 

Chromatin remodeling may lead to transcriptional changes. In addition to the 

transcriptome analysis, I checked the transcriptional change of telomere after ALT 

activation. Telomere of ALT mESC includes not only canonical telomere repeats but 

mTALTs, which indicates the content of TERRA should also contain mTALT transcripts. 

In the result of RNA-seq, the transcripts including mTALT and telomere repeat containing 

TERRA were both increased in post-ALT cells (Figure 32). Furthermore, there was a 

specific direction of transcription in both kinds of transcripts. mTALT and canonical 

telomere repeat transcripts were in reverse orientation, specifically from terminal to internal 

region. It was a surprising result that TERRA has been known to be transcribed from 

subtelomeric start sites and be forwardly oriented. 

 It may be due to the novel promoters and transcription start sites originated from 

duplicated mTALTs, which were cryptic before mTALT amplification (Figure 33). 

However, the copy number change of mTALT should be considered carefully when 
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interpreting the increased mTALT transcripts. Anyway, the quantity of telomere repeat is 

similar between pre-ALT and post-ALT, which can lead to the inference that the increased 

transcription of telomere repeat is derived from the change of transcriptional efficiency. 

 

Distinct protection mode of ALT telomere 

mESC ALT entails the unique mTALT sequences as well as canonical telomere 

repeats. ALT telomere has been known to be partially deprotected and show DNA damage 

markers. When telomere dysfunction-induced foci (TIFs) were observed in pre-ALT and 

post-ALT cells, post-ALT cells showed increased TIFs (Figure 34). The increased TIFs may 

mirror the spontaneous telomere damages which can be resulted from replication stress or 

other sources. 

Next, I examined the recombination state of post-ALT cells with chromosome 

orientation fluorescence in situ hybridization (CO-FISH). CO-FISH can reveal the degree 

of recombination in terms of sister chromatid exchanges in telomere region. Post-ALT cells 

showed increased T-SCE, which means higher recombination events (Figure 35). 

In telomerase positive normal cells or human ALT cancer cells, shelterin 
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manages a critical role for telomere protection and cellular survival. To check mESC ALT 

also depends on shelterin for telomere stability, the function of TRF2, the major component 

of shelterin, was depleted with the shRNA expressing construct. After the selection with 

antibiotics, ALT cells died after 3~4 passages. It means that telomere repeat binding TRF2 

carried out a critical role for telomere maintenance in post-ALT cells. Before all of the 

TRF2-depleted cells had died, the remaining cells were collected and checked for TIFs. 

Compared to control group cells, TRF2-depleted post-ALT cells had significantly increased 

TIFs, which indicated the exaggerated telomere damage induced by TRF2 reduction lead 

to a cellular death (Figure 36).  

TRF2 localization in telomere was checked with the immunostaining combined 

with telomere FISH. In metaphase, post-ALT cells showed TRF2 and telomere co-

localization (Figure 37). Thus, TRF2 seems to have a critical role for terminal protection. 

Telomere repeats co-existing with mTALTs seem to be selected for a protective role, not by 

just a random incident. One of the main role of TRF2 is T-loop formation. The terminal 

structure of ALT mESC telomere has not been investigated completely. To fully understand 

the protection mode of ALT, next assays should verify the exact sequence composition of 
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the very end of telomere, the presence of single-strand overhang, and the T-loop formation. 

  Among the most significantly changed proteins, there were stemness-related 

transcription factors like Klf4 and Nanog. When these transcription factors were depleted 

respectively, each cell showed slow cell growth and the increased telomere DNA damages 

(Figure 38). Klf4 and Nanog are crucial transcription factors to maintain stemness. The 

upregulation of stemness factors in post-ALT cells may reflect a physiologically important 

change, but the extensive regulatory networks of them make it difficult to define a 

fundamental phenomenon. 

 

HMGN1 is the novel ALT telomere binding protein 

The most highly enriched protein in quantitative proteomics was HMGN1, a non-

canonical histone protein. HMGN1 is a notable member of high mobility group family 

and competes with linker histone H1 for binding the nucleosome core particle (Birger et 

al., 2003; Gerlitz, 2010; Herrera et al., 2000). In contrast to H1 stabilizing the compact 

chromatin structures, HMGN1 can loosen the chromatin with antagonizing the function 

of H1. HMGN1 also can affect the levels of histone post-translational modifications and 
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regulate the chromatin remodeling machinery. In this manner, HMGN1 can play an 

important role in controlling chromatin structure and function, which results in the 

dynamics of DNA metabolism including transcription, replication, and repair (Kugler et 

al., 2012; Postnikov et al., 2012). 

  When the expression levels of HMGN1 were checked in pre-ALT and post-

ALT with western blot, HMGN1 was highly expressed after ALT activation (Figure 39). 

Next, I wanted to analyze whether the increased HMGN1 showed the characteristic 

binding pattern with the genome. After chromatin immunoprecipitation with HMGN1 

antibody both in pre-ALT and post-ALT, telomere and mTALT were tested for HMGN1 

interaction with qPCR. HMGN1 was enriched in telomere repeat of post-ALT (Figure 40). 

The result of mTALT region was similar, but mTALT may be too much duplicated to be 

interpreted with %input value (Figure 41). Canonical telomere repeat contents were 

comparable between pre-ALT and post-ALT, which means the interpretation based on 

telomere qPCR is rather appropriate. In the experiment which combined Immunostaining 

with HMGN1 antibody and FISH with telomere-specific probe, the co-localization of 

HMGN1 and telomere were increased in post-ALT (Figure 40 b). Taken together, HMGN1 
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is up-regulated and seems to interact highly with telomere in ALT mESC. 

  The increased HMGN1 may have a role in a cellular physiology. I depleted 

HMGN1 in post-ALT with shRNA expressing lentivirus. The cellular growth rate was 

slightly decreased after HMGN1 depletion. When the telomere damage was analyzed, 

HMGN1 knock-down induced the increased TIFs in interphase (Figure 42). Next, I 

checked telomere length of the HMGN1-depleted cell. The cells were passaged for about 

two months (~40 passages) to check an effect on telomere length clearly. The mmqPCR 

with telomere or mTALT primers showed about 30% decrease of telomere length (Figure 

43). These results denote the increased HMGN1 in post-ALT is necessary for the 

maintenance of ALT telomere, and the HMGN1 dysfunction can lead to telomere damage 

and shortening. 

Next, I checked the role of HMGN1 in recombination with CO-FISH. HMGN1 

knock-downed cells didn’t show any difference in T-SCE with control cells (Figure 44 a). 

Surprisingly, HMGN1 knock-down decreased fragile telomere phenotype (Figure 44 b). 

These result indicate that the upregulated HMGN1 is mostly linked to replication stress 

which is a major source of telomere fragility. T-SCE can only capture the post-replicative 
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telomere exchanges. Interchromosomal recombination and/or BIR events especially in G1 

should be investigated. 

Lastly, I checked whether the increased HMGN1 can regulate telomere 

transcription. RNA was extracted from HMGN1-depleted cells and reverse-transcribed to 

make cDNA. Using mTALT specific primers, the levels of transcripts containing mTALT 

sequences were measured. The result showed that HMGN1 depletion indeed induced the 

decrease of mTALT transcripts (Figure 45). Thus, the increased HMGN1 in ALT mESC 

affected telomere transcription positively. 

  HMGN1 could influence the chromatin state and DNA metabolism in various 

ways. Whether the process that HMGN1 affects telomere depends on the presence and 

function of TERRA should be tested. TERRA was specifically targeted for down-

regulation without affecting HMGN1 level. If cells were transfected with the LNA 

gapmers specific to telomere repeat, RNase H can degrade the target RNA base-pairing 

with the LNA gapmers. When the LNA gampers complementary to TERRA were 

transfected (Figure 46), TIFs were increased. Thus, the presence of TERRA seems to 

promote a favorable environment for telomere stability. TERRA is not a byproduct of the 
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increased HMGN1, but an effective player in ALT mESC. 

Considering the upregulated HMGN1 increased TERRA production and the 

interaction between HMGN1 and nucleosomes unfolded the chromatin, I reasoned 

TERRA should interact with telomere directly to form R-loop. I conducted DNA-RNA 

hybrid immunoprecipitation (DRIP) with R-loop specific antibody and quantified 

telomere content with a slot-blot assay. As a result, post-ALT cells showed higher DRIP 

signal than pre-ALT cells in telomere region (Figure 47 a, b). Next, I performed DRIP-

qPCR to confirm the presence of R-loop, which identified post-ALT telomere contained 

more R-loop than pre-ALT telomere (Figure 47 c). When the qPCRs were done with 

mTALT specific primers, the result was reverse (mTALT3) or not significant between pre- 

and post-ALT cells (mTALT4). The dramatic copy number change of mTALT in post-ALT 

cells may have caused an inconsistent result with telomere repeat. Although the quantity 

of R-loop averaged with total mTALT contents was lower in post-ALT than pre-ALT, the 

local accumulation of R-loop may have a specific impact on that telomere. 

Interestingly, HMGN1 depleted post-ALT cells showed the lower level of R-loop 

(Figure 48). This result is free of the copy number issue of mTALT, as the change of 
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mTALT DNA is relatively small. Taken together, HMGN1 upregulated in post-ALT 

induced TERRA increase and potentially the change of local telomere chromatin. The 

overall changes lead to increased R-loop formation in telomere, which may be a good 

target for DNA repair machinery to initiate telomere synthesis (Figure 49). 
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741 ALT mESC as a model for ALT maintenance 

Two types of ALT mESC were characterized previously, and 741 type ALT line 

was a main target of this study. Post-ALT PD800 cell was compared with pre-ALT PD100 

cells in quantitative proteomics and transcriptome analysis to differentiate the distinct gene 

expression patterns. PD800 cell was passaged extensively from the point of ALT activation 

and stabilized ALT cells. PD100 cell showed a relatively normal growth rate than PD350 

cell which would suffer telomere crisis soon. The comparison between PD100 and PD800 

has a limitation to reveal the exact molecular difference regarding to ALT initiation, 

because those two cells were too severely separated on the basis of time point. The list of 

differentially expressed genes in PD800 will be useful for understanding the maintenance 

mechanism of ALT. 

The longitudinal tracking of the process of ALT activation will be appropriate to 

study the direct changes related to ALT initiation. If combined with single cell sequencing, 

to trace the intra-population heterogeneity and the selection process of ALT cells will reveal 

potentially causal events for ALT activation. The frequency of ALT survivor appearance 

can also be calculated. In the previous study, only ~104 cells were passaged with one plate 
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for each cell type. If the frequency of ALT appearance can be quantified with upscaling, it 

will be an important starting point to assess the impact of ALT initiation-related factors. 

There are various kinds of ALT other than human ALT cancers in that non-

telomeric sequences can be used for telomere maintenance. Type I yeast survivor, C. 

elegans TALT survivor, and S. pombe HAATI (heterochromatin amplification-mediated 

and telomerase-independent) survivor (Jain et al., 2010) are all good examples. The genetic 

factors required for each case may differ, so the general categorization has no meaning 

other than differentiating them from the canonical telomere repeat-based ALT. ALT mESC 

case is a similar one.  

 

mTALT has unique features to be recruited to telomeres 

The essence of ALT mESC in this study is that mTALT has been substituted for 

canonical telomere repeat. Telomere repeat also co-exists with a highly constant size in the 

middle of mTALTs. Among numerous subtelomeric sequences, mTALT may entail specific 

features suitable for telomere maintenance. These features may lie in mTALT itself (DNA 

sequence) or the comprehensive environment surrounding mTALT including the 
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interacting proteins and epigenetic states. Telomere repeat binding proteins including 

shelterin and other transient interactors may make specific touch with mTALT region. Until 

now, mTALT-binding proteins have not been identified. CRISPR (clustered regularly 

interspaced short palindromic repeats)/Cas9-based protein enrichment of target DNA 

sequences can be possible. The list of mTALT binding proteins and their interacting 

partners will shed light on the identity of mTALT in telomere. 

Even before the mTALT translocation to other chromosomes, two copies of 

mTALTs (PD100) has been doubled during telomere shortening (PD350). Whether this 

doubling of mTALT is connected to ALT mechanism is an open question. It might be a 

necessary condition of ALT activation. The locally increased copy number of mTALT may 

render it a suitable region as a replacement of telomere repeat. Mouse subtelomeres are 

highly dynamic than the core region of the genome. The major sources of dynamicity are 

repetitive nature of subtelomere and shared homologies between different chromosomes. 

Because of the incomplete reference genome, I couldn't examine completely the 

homologous regions of mTALT in different chromosomes. In a further study, I will focus 

on which properties of mTALT made it an ideal template. 
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To identify the direct role of mTALT sequences in ALT activation, the assay that 

shows the impact of the deletion or substitution of mTALT on ALT activation will be 

needed. There is another type of ALT mESC (301 line) similar with human ALT cancer cell 

which utilizes telomeric repeats for maintenance of chromosomal ends. mTALT deletion 

may lead to various results including the biased formation of 301-type ALT cells and the 

appearance of a new template sequence other than the original mTALT. The detailed 

substitution assay within mTALT may reveal a necessary motif of template sequences. 

The dispersal of mTALT may follow a step-wise process. When telomerase 

mutant cells were experiencing crisis and some obtained ALT activity, mTALTs in 

chromosome 13 were employed by all other chromosomal ends. After mTALTs were 

integrated and stabilized in all telomeres, each ALT-rescued cell should carry on their own 

normal life. The major portion of telomere synthesis would be managed by DNA 

polymerase, and the ALT mechanism would be needed at critical time points. Thus, the 

duplication event of mTALT may involve at least two kinds of mechanism. One is for the 

dispersal of mTALT from chromosome 13 to all other chromosomes, and the other is the 

recurrent replication of mTALTs after ALT activation. The two processes may share a core 
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machinery or be independent to each other. 

 

Potential mechanisms of mTALT duplication 

The observation that mTALT is duplicated as a unit and the intervening telomere 

repeat has constant length implies some facets of the telomere synthesis mechanism. When 

a telomere synthesis process initiated, the synthesis may keep replicating the template for 

at least 7.4kbps. If there was a stopping point inside mTALT region during telomere 

synthesis, the following next synthesis event must create a delicate junction. 

The accuracy of duplication mechanism of mTALT was surprising, as a bit of 

mutability could bring about substantial mutation accumulation. There was no 

accumulation of mutations in duplicated mTALTs. An elaborate and accurate mechanism 

would be necessary for the controlled synthesis to prevail all over telomeres. The error-free 

amplification has no other way than something based on HR. HR-based replication 

mechanism spans a number of subordinate mechanisms, including double-strand break 

repair (DSBR), synthesis-dependent strand annealing (SDSA), single strand annealing and 

break-induced replication. The elevated T-SCE frequency in post-ALT cells seems to result 
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from telomeric crossover events. However, this result is not sufficient for pinpointing the 

exact HR pathway involved in mESC ALT. The detailed mechanism of mTALT replication 

might be a mixture of those pathways. Different HR processes might take on their own part 

among various steps of ALT. 

The ALT mechanism seems to be stabilized in a short time scale, as there was no 

inversion in repeated mTALTs in PD800 cells. If telomeres which acquired mTALTs after 

ALT activation would suffer telomere crisis again, there may be chromosome fusions and 

inverted arrangements of mTALTs. Although there is a need for more longitudinal 

investigation of telomere length, it seems that telomere length has been restored steadily 

after ALT activation . The dynamics of telomere length after ALT stabilization will be an 

interesting issue. 

 

The distinct telomere maintenance pathway of 741 ALT mESC 

Previously, a paper showed that Zscan4 is involved in recombination-based 

telomere maintenance and genome stability in mouse ES cells (Zalzman et al., 2010). The 

authors said that at a given time point only a minor portion (~5%) of ES cells expressed 
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Zscan4, but Zscan4 is expressed in almost all cells at least once during nine passages. 

Meiosis-specific HR genes are involved in Zscan4-mediated telomere recombination. 

Zscan4 pathway seems to be related to ALT in that recombination factors work for telomere 

lengthening. However, the role of Zscan4 has not been studied in telomerase knock-out ES 

cells. 

741 ALT mESC showed a significantly decreased expression of Zscan4. It 

indicates that 741 ALT mESC may depend on different sets of genes for telomere 

lengthening. However, a little fraction of 741 ALT mESC might upregulate Zscan4 in a 

short period. Single cell RNA-seq will reveal the expression change of Zscan4 in a 

population of ALT cells. 

Another distinction between 741 mESC ALT and canonical human ALT lies in 

the role of ‘alpha thalassemia/mental retardation syndrome X-linked’ (ATRX). ALT 

cancers are highly correlated with mutations in ATRX, which is a chromatin remodeling 

protein belonging to the helicase of the SWI/SNF family (Clynes et al., 2015; Lovejoy et 

al., 2012). With histone chaperone ‘death-domain associated protein’ (DAXX), ATRX 

facilitates replication-independent nucleosome assembly with histone variant H3.3. The 
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lowered ATRX/DAXX activity in ALT cancers seems to increase replication stress and 

promote telomere lengthening. However, 741 ALT mESC showed an increased expression 

of ATRX. The defective nucleosome assembly at telomeric region seems not to be a critical 

source of replication stress in 741 ALT mESC. Genetic depletion of ATRX will clear up 

the point. 

 

Unresolved terminal structure of mTALT-driven telomere 

Normal telomere has distinctive structural marks: 3' overhang and T-loop. Both 

of them are required for telomere protection and maintenance. Shelterin and telomere-

interacting proteins cooperate to dissociate and re-assemble T-loop in every cell cycle. 3'-

overhangs are also actively reconstructed after telomere DNA synthesis by DNA 

polymerase and telomerase. T-loop has been regarded as a key structure of the end-

protection problem with hiding the terminals from the DDR machinery. TRF2 takes on a 

major role in T-loop formation. In ALT mESC, the exact terminal sequence and structure 

have not been elucidated. The presence of TRF2 at ALT mESC telomere and the role of 

TRF2 for cellular survival were confirmed. However, the involvement of TRF2 in T-loop 
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formation remains as a question. Telomere imaging with super-resolution microscopy will 

reveal the exact structure of ALT mESC telomere. 

 

ALT initiation may not depend on the accumulation of genetic mutations 

One of the interesting point in WGS result is that the numbers of SNPs were 

similar between pre-ALT and post-ALT. It seems that post-ALT didn't suffer from the 

mutational load in terms of DNA point mutation in spite of the dramatic change of 

karyotype. A good example for comparing with the activation of mESC ALT is tumor 

evolution. Tumor evolution is a complex biological process and still a big mystery. There 

are many hypothetical models to explain the process of tumor evolution. Some of the 

models include a concept that mutations were acquired gradually and contributed to 

divergent fitness of each cell. Environment-dependent selective pressure may decide which 

clones will be selected for the next steps. mESC ALT does not seem to follow a similar 

process with a gradual mutation accumulation. 

In another point of view, post-ALT cells seem to be genetically homogeneous. It 

can be inferred from allele frequencies of variant SNPs. The plausible explanation of 
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homogeneity of post-ALT genome may be a few or some cells have been selected to revive 

from the cellular death of genomic catastrophe. In addition, there seems to be no additional 

mutability induced after ALT activation. Thus, there may be a selective sweep which was 

originated from events during telomere crisis and selected potential ALT-on cells. If 

mutation accumulation was not a critical event, structural or epigenetic changes may have 

played major roles at the point of ALT initiation. 

One important value of ALT mESC is the availability of cells before and after 

ALT activation, which is unobtainable in many human ALT cases. A longitudinal study 

tracing ALT activation process will be an important basis for future research of ALT 

evolution. Mutation profiling with longitudinal samples will clarify the implication of 

mutations. If combined with single-cell sequencing, it will be easy to delineate the 

heterogeneity of pre-ALT cells in terms of transcriptional diversity and to get some insight 

of the conditions that promote ALT activation. 

 

Potential roles of HMGN1 in ALT maintenance 

HMGN1 was the main player of ALT mESC as revealed by quantitative 
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proteomics and genetic experiments. HMGN1 can induce chromatin decompaction for 

DNA metabolism regulatory factors to be recruited to nucleosomal DNA. DNA-dependent 

activities can be upregulated depending on recruited factors. 

Post-ALT cells showed HMGN1-dependent fragile telomere phenotype, which 

seemed to reflect the replication stress of telomere. The molecular identity of fragility has 

not been uncovered. Interestingly, fragile telomere phenotype was correlated with moderate 

telomere elongation in telomerase-positive cells (Sfeir et al., 2009). Post-ALT cells also 

showed a correlation among HMGN1 upregulation, fragile telomere, and telomere 

lengthening. T-SCE was not affected by the level of HMGN1. The exact telomere 

lengthening mechanism mediated by HMGN1 should be investigated in detail. 

Although HMGN1 can bind chromatin globally, the preferred targets of HMGN1 

binding have not been fully elucidated. In a study using human T cells, HMGN1 co-

localized with DNase I hypersensitive site, promoter, enhancer and transcription factor 

binding sites which are all transcriptionally active sites (Birger et al., 2003; Kugler et al., 

2012). The causality of the co-localization remained as a big question. Knock-down or 

overexpression of HMGN1 changed transcriptome in specific ways, but the true meaning 
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of the changes was not interpreted. In ALT mESC, ChIP-seq approach of HMGN1 will be 

the first step for the interpretation of transcriptional changes.  

  Although there were a number of studies to reveal the biochemical properties 

of HMGN1, the physiological roles of HMGN1 have been highly difficult to catch. The 

study of HMGN1 knockout mice revealed that those mice showed an increased 

tumorigenicity, a hypersensitivity to DNA damaging condition, and mild developmental 

defects. Another study with HMGN1 -/- cells showed HMGN1 regulates ATM activation 

to control G2/M checkpoint (Birger et al., 2005). These results imply that HMGN1 has 

some traits of a tumor-suppressor gene. 

  Considering the presence and function of histone H1, the main opponent of 

HMGN1, the balance between HMGN1 and histone H1 may be a critical factor to 

determine DNA repair activity. HMGN1 have worked to efficiently repair DNA damages, 

and many studies showed histone H1 had an opposite effect. In a study with mESCs, the 

depletion of histone H1 induced increased DDR activation and higher HR (Herrera et al., 

2000). Histone H1 can also inhibit histone acetylation regulated by HMGN1 and ATM 

activation in DNA damage condition. In my study, HMGN1 has a positive role in telomere 



77 

 

length stability. The question about the role of histone H1 in ALT mESC will also be 

interesting. 

  Normal telomere has been known to bind a lower amount of histone H1, 

whereupon the nucleosome in telomere has higher mobility than other genomic regions. 

Telomere seems to be a good substrate for HMGN1 binding with its own nature. However, 

the exact interaction between telomere and HMGN1 must be analyzed in ALT context. 

With ChIP-qPCR, I showed HMGN1 interact strongly with telomere in post-ALT. Next 

step is that the function of HMGN1 should be inspected in each step of events in ALT 

activation and maintenance. 

 

How stemness is related to telomere maintenance 

I found stemness-related transcription factors (Klf4 and Nanog) are upregulated 

in post-ALT. Pre-ALT cells are also mESCs with potentially more pluripotency than post-

ALT cells considering karyotype and relatively earlier time point from telomerase knock-

out. The increased stemness-related factors may reflect a distinct form of reprogramming 

which can help the ALT mechanism. When I reduced gene expressions of the factors, 
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telomere DNA damages were increased. Thus, these factors should have roles in telomere 

maintenance in ALT mESC. 

  Nanog promoter has been known to interact with many genomic regions which 

include open chromatin-related regions and pluripotency networks in ES cell or iPSC. 

Among binding sites of Nanog region, the target sites of Klf4 were highly enriched, which 

means those regions may be coregulated. The interactome changed dynamically with 

differentiation states. This study provided evidence that a key pluripotency gene 

interactome can undergo changes, which can control transcriptional patterns and dictate 

cellular identity. 

The specific function of stemness factors at telomere still remains elusive, in 

particular at the point of ALT initiation. As telomere dysfunction became intensified 

following generations after telomerase knock-out, there may be a growing need for ALT 

activation to overcome the crisis. Stemness factors may be one of the initial factors 

upregulated to induce other essential processes to initiate ALT mechanism. To confirm the 

hypothesis, the ability to initiate ALT of stemness gene-depleted cells should be tested. 
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TERRA has a positive role in the protection of ALT telomere 

The interaction between TERRA and telomere has been studied in various 

contexts. In ALT mESCs TERRA seems to have a protective role to maintain telomere 

stability. HMGN1 knockdown induced a decrease of TERRA, which ultimately led to 

telomere damages and telomere shortening. The direct down-regulation of TERRA with 

LNA gapmer also resulted in the same observation. The depletion of HMGN1 also lowered 

R-loop formation in telomere. Taken together, R-loop also acted as a positive regulator of 

telomere protection. R-loop may hinder chromatin-associated DNA metabolism including 

DNA replication and transcription. R-loop may greatly contribute to replication stress of 

telomere. To restore the stalling or collapsed replication forks, various proteins not related 

to DNA replication can be recruited including checkpoint and HR factors. These proteins 

ensure the stable maintenance of replisome at stalled forks. If replication fork failed to 

maintain the continual progression by the collision with R-loop, HR factors can help to 

rebuild the replisome. Break-induced replication underlies this repair process. (Llorente et 

al. 2008). BIR is a fundamental mechanism of telomere synthesis in human ALT cells. BIR 

may be involved in ALT mESC telomere synthesis in which TERRA is a major source of 
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replication stress. There may also be more layers of DNA replication/repair processes 

which can preserve the integrity of ALT telomere. 

  The distinction between mTALT transcript and canonical TERRA is an 

interesting issue. The direction of TERRA transcription in ALT mESC is opposite to that 

of most TERRA in other cells or organisms. It may indicate that rearranged telomere 

structure induced a cryptic transcription of TERRA, because most of the promoters of 

canonical TERRA have been regarded to be originated from proximal subtelomere. 

 

Conclusion and perspectives 

In this study, I established a novel ALT model which is conserved in eukaryotes 

at least in worm and mouse. Trans-duplication of mTALT from one chromosome to other 

terminals is analogous to the state of amplified TALT of C. elegans. This form of ALT 

seems to be similar with yeast type I survivors in that subtelomeric sequences are used as 

alternative terminal sequences. However, in ALT mESC the subtelomeric sequence is the 

very unique DNA block originated from the only one end of chromosome. There must be 

more steps to restore all the shortened telomeres in ALT mESC than yeast type I survivors 
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which harbor many copies of Y' subtelomeric sequences in different chromosomes. 

HMGN1 functions to protect ALT telomeres, in part with upregulating TERRA 

and R-loop formation in telomere, which leads to the telomere lengthening pathway. 

HMGN1 may also work in a global way to affect chromatin state, transcriptional activity, 

and DNA repair efficiency. The role of HMGN1 was studied mainly focused on ALT 

maintenance. It will be an interesting question to analyze the relation between HMGN1 

regulation and ALT activation. 

The detailed molecular mechanism of mTALT duplication should further be 

investigated. GeCKO based genome-wide knock-out study or knock-down screening with 

mouse DECIPHER shRNA libraries will show the genetic basis of ALT with mTALT. The 

longitudinal study combined with single-cell sequencing will give critical clues to 

understand the evolution of ALT. 
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Figure 1. Two kinds of problems in chromosomal ends (a) Figure of end-

replication problem. (b) Figure of end-protection problem. 
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Figure 2. Schematic figure of T-loop structure and sheleterin complex 
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Figure 3. Model of activation process of telomere maintenance mechanisms 
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Figure 4. ALT mESCs are telomerase (Terc) knock-out. (a) Genomic snapshot 

and RNA expression of Terc gene. (b) Genomic snapshot and RNA expression of 

Tert gene. 
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Figure 5. Copy number analysis of ALT mESC genome. (a) Graphical view of 

copy number changes in chromosome-wide plot. Each chromosome was scaled to 
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its physical map. (b) Enlarged plot of chromosome13. The subtelomere of right arm 

of chromosome13 was highly enriched in copy numbers. 
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Figure 6. mTALT is located at subtelomere of chromosome13. (a) mTALT locus 

is at the terminal region of the right arm of chromosome13. (b) Snapshot of mTALT 

region from WGS data. PD450 and PD800 cells showed much higher read counts 

of mTALT than PD100 and PD350. mTALT region includes a gene, Tcstv3, with 

its own promoter region. 
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Figure 44. HMGN1 knock-down decreases fragile telomeres. (a) Bar graph 

showing the ratio of chromosome ends with telomere sister chromatid exchange 

(T-SCE). (b) Bar graph showing the ratio of fragile telomeres. The bars represent 

means and SDs from three independent replicates. P value from two-tailed unpaired 

t-test : *** P<0.001. All infected cells were post-ALT (PD800). 
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Figure 45. HMGN1 knock-down decreases TERRA expression. Bar graph 

shows TERRA expression quantified by qPCR with primers specified by colors. 

qPCR was done with β-actin gene as a control. In each group (control or HMGN1 

knock-down) A, B, and C are independently infected clones. All infected cells were 

post-ALT (PD800). 
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Figure 46. TERRA downregulation induces telomere DNA damages. (a) Dot 

plot showing the TIFs of cells treated with control gapmer and TERRA-specific 

gapmer. Each dot represents TIFs in a cell. The bars represent means and SEMs. P 

values from two-tailed unpaired t-test :  ** P<0.005. (b) Quantification of the ratio 

of cells with more than 5TIFs. The bars represent means and SDs from three 

independent replicates. P values from two-tailed unpaired t-test : ** P<0.005. 
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Figure 47. R-loop formation is increased after ALT activation.  

(a) Representative figure of the slot-blot with telomere specific probe for DRIP 

assay. The input DNAs were loaded with 1/10 dilution. (b) Quantification of slot-

blot results including (a). The bars represent means and SDs from three 

independent replicates. P value from two-tailed unpaired t-test : ** P<0.01. 
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 (c) Bar graph shows the DRIP-qPCR result quantified with specific primers 

indicated as different colors. qPCRs with β-actin primer were taken as controls. 

The bars represent means and SDs from five independent replicates. pre-ALT cell 

(PD100) and post-ALT (PD800) cells were used. P values from two-tailed unpaired 

t-test : *** P<0.001, ** P<0.01. 
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Figure 48. HMGN1 knockdown decreases the formation of R-loop in ALT 

telomere. Bar graphs shows the DRIP-qPCR result quantified with specific primers 

indicated at top of each graphs. qPCRs with β-actin primer were taken as controls. 

The bars represent means and SDs from five independent replicates. All infected 

cells were post-ALT (PD800). P values from two-tailed unpaired t-test : * P<0.05. 
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Figrue 49. Working model. 
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Appendix. Sequences of mTALT in mm10 reference genome. 

>mm10_dna range=chr13:120311782-120319231 5'pad=0 3'pad=0 strand=+ 

repeatMasking=none 

TTTATCTTCAAATGCAGCTCCATCCATCAGTGTGGCTATGCTGGGGTTCC 

CAGGTCCACAGCACCAGGGGTGCTGGAATGAGTGATGTCTCAAGGCCTCA 

AAATTATCCATGGCCCACGCCCATGCCTGTTCTCGGGTCATGTCTGGTGG 

CATGACTGGGTCTGGTTGGTACATCCTTCCAAGCAGCTCTTCCAAGGGTG 

ATGCTCCTGAAGTCATGACTTCTGTTTCCCAAGCAAGTAGCAGAGATTAG 

CAGCTGAGGGGCAACTGAGATTGGAAAATCCAAAAGTCTAGTAGTTTCAG 

CTGGTCTTCTGTATAAGCTCTAACCCTGAAGAGGTAGATTCAAACAGATG 

TGCTGGCAAGAAATGGCAAGCAGGCAGAGTGAGTCCTCCTTCTTCCACTG 

TCTTTATATAGGCCTCCAGAAGAAGGTGTGGCTCGGATTAAAGGTGTGTA 

CCAGCAGTCCTGGATCTGGAACTTGCTTTATCCCAGGCTGACCTTGGATT 

TAGGTCTGATTGACTCAGTTTCTGAGGAATAAAAGCATGAACTACTTTGC 

CTAGGGCTAAGGCTTTCATGGCTACTCTGCTTCCGGATATCCATGCCAAG 

ATATGTTTCAGAAGCCTGTGTCTTCTGCCCTCAAGATCTGCATCACAGTT 

GTGCCCTCAATTTCTGTATTGTACTTCATTCCAGATGTAGTCAAGTTGAC 

AACCAGAAATAGCCATCCCAAAAGTACACCTGAAAGCTCTAGAAAAAAAT 

GTAGAGGGAAGCACGCTACAGAGGAGTAGAAGGCAGGAAATAATCAAAAT 

CAGGGCTGTAAGTGTGTGTAGAGAAATGTAAGCCATATTGGCATGGTTTT 

AGCTTCAGGAACCATGCATTGAAGGTCATAACTGAGGCACAAACATCTGA 

ATCATGGGTTCTGACAGAATTGAACTGCAGCCTGGCTGGCAGAGTCTCAT 

CCTGTCAGCAAAACGAAAGTACTGAGAAAGAAAATCATATACCCGGTTTC 

AGCCCGGGCTTGTTAACATCAGAGCAGAATTTTGCTTGGCAGCAAGTAGA 

AAGCATTCTCTAACAGGGATGGTCAGCAAGGACTCTGGACATCTGAAAAT 

GGCCCAAGGCACACTGCTGGCTCCTGAGCGTCCTCTACTGTGAAAAAGTC 

ACAGGCTTGCAACTTGGAGCTAAGAACCCTTTATCTTTCTGTCTAGACTC 

ATTTATTGGCCAGGCTCACTTTCTGGGATCCACCAGTGTGGACAAGCAAG 

CAGGCTTCTAACTATGGACTTGTCCAGGATCACAAAGCTGGCTCCAACCC 
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CTGGGTGTGCGAGTGAGAAGCCGTCAGTTAGTGTCTTCTGGCATGTTACA 

CGCTGAACAAGTGCACACCAGGGCCATAGCCATGGAGGGACTGCAGAAAG 

GAAGGCATGCAGGAGAAAGACAGCTCAGAGAAATACAGCTTAAGCGTCCT 

GAGCAATGCTGTCCTGGAAAAACCTCTTCACAACAAAAGGAACGCAGCTT 

CAACAGAGATTCCAGCAGACAGCAATTTTGTAGACCTCCATAGGTGGGCA 

GCAGTGGGATGGAAAGCGAACCAAGGACAGCTTCGCCATACATTCAGTAA 

TGAAAAGAAATTGGACGAATTTTCAGCGTTTAGAAACGAGGAAGAGCGGA 

GAGGACACAAGACGATCAGAAACCGCAGGGTCTGCATCCCGTCTCCTGCA 

GACTCACACCTGGGCGCCAGGCTTTCTGTCAGCATTTAGGAGCACACCAT 

AAGTTCAAAAAAATGGAATCCCACCACATACAAAATCGGATCTGGTTGAC 

AAAACGAAAGAACAGAGAAACAAAATCACGTACGCGGTTTGAAATGACCA 

TCGGATTTCAGTCAGAGAGAGCATGCTGACAGCCAAGAACTTGGCTCTAT 

GAGAAAGTTGCAGTATTTGCTACCTGAGGATCCAAAGGCGGGAAGTTTAC 

CATTAATTGGCATTCCTCTCTGGGGGAAGAGCAGACCCACAGCGACCCCT 

GCTGTGAAGTCGTGGCCAGACTGGAGCTCAGAGGTAGAGCTTTGAGGCTT 

CTGGCTCCTTCATGGGTCCCCACTCCAGCTGTGGCCCCTACACGTTTGGA 

AAAGGGGGGGAACAAACTATGGATTTTCCCAGGATCGCACGACTCGCCTA 

AAACTCAGGGTGTGCGAGAGAGTCAACCGGGTGGTCCAGTGCTTTCCCTG 

TTGGACAAGTGTACTCTTGGGCCATGGCCACGAAGCAACCAGGGAAACTA 

CAGTGAGATGGACAGAAAACCTGAGATTGAAAGGCCTTAGGTAAACAGAA 

AGGAAAGCAGCTGCGATGGAGAGTTGTGCTTGCACTCCGTTTGTCTTCTT 

CAGGGGAAGGGGGCGGTGCTGCAAGTCTTGGCACACTTGGTGGGCTAAGA 

AGATGGTATGTAATCTAAGTTTTGAAACGCGGGGAGGTCGAGAGGAGCAG 

AAAACAAAACAAATCCGCGGAACCTGAATAGCATCTTCTACATCCCCGCA 

CACACGCGCCAGGCATTTTGGTCAGGATTTAAGTGCACACCTTCCCGACC 

TGGAGTCAGCACAGAATCCCACCTCCCCCTGCTTGACAGAGTCAAATCCT 

GTCAGCACAGTGAATGTACAGAGAAACAAAATCATGAACGACCTTTGAAA 

TCACCTTCGGATTTCAGCTCCAGACTTCTGACAGCCCTGTGGAACAAGGG 

ATACAAGTTATAGCTACTAGAGAAGGGTGTCCAGAGTGTGAGCACCAAGG 

TTGCCACCAGCTGGAGCGCCAGCACCTCAGCGACCCCTGTTGTGAAGAAG 

TCTCTGGGCTGCACCTCTGAAGGAGAACTGTGGATCTGCCAATGGAGACT 

ATTTGGCTTGTTGCCAGGACTCCTTCCTTGGCTCTGGCTCCTGCATTGCC 
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CTGGAACCACCAAAACTGTCCTGCATGACAGCGGTTCGTTGGAGGGGACC 

AAGCTAACTAAAATGAAATAAAGAACCTACTATTAGTTATACTATATTGG 

CGCATGTCTGTTATTTTTGGAGATAACTAACATTTCCCTGGCACTACAAT 

TCTCTTCTTACCCCTCGCCTCCTTGGTGTGTTGTTTCTGTTTTATATACT 

CTATAAGCAATTCTGCCTTTTTCACTTCTTTGTCTATGTTGTGGATTTGT 

AAACACCAGATTTCAGGGTCCTTTGCTTGCTTCCCCCACCTCTTTCTGGA 

TTACAAATTCCACCCACAGTGTGACTACAGAAAGTTTATGTGAGCCATCC 

CAGAATACACACTGCTATTGTCCTGTGTGCCTGGGCCTAGAGCAGTAGAG 

CTGGCTTTTTGGTCTTGTGTGTGAAGAAGCTGTCCTGGGATTCTGCACCA 

GTGTCTCCTGGCCTCATCCAGTACTAACATGAGCAGATTTTGAGCCATGG 

CTTTCTGCCCTTGACATCTGTACTGGCTAGTTTTGTGTCAACTTGAGTTA 

TCTCAAAGAAAGGAGCTTCAGTTGAGGAAATGCCTCCATGAGATCCAACT 

GTAAGGCATTTTCTCAATTAGTGATCAAGTGGGAAAGGCCCCTTGTGGGT 

GGGACCATCTCTGGGCTGGTAGTCTTGGGATCTATAAGAGAGCAGGCTGA 

GCAAGCCAGAGCAAGCAAGCCAGTAAAGAACATCCCTCCATGGCTTCTGC 

ATCAGCTCCTGCTTTCTGACCTGCTTGAGTTCCAGTCCTGACTTCCTTTG 

GTGATGAACAGCAGTATGGAAGTGTAAGCTGAATAAACCCTTTCCTCCCC 

AACTTGCTTCTTGGTCATGATGTTTGTGCAGGAATAGAAACCCTGACTAA 

GACAACATTCCTGACTTAGAAGGTCTCTCATTTAATTCTCTTTTCTCATG 

TTATGAATCTGCGGGGCTATCTCAGGAAGTCCAAGATCACAAATATATAG 

GGAGAGTAGTGAAAACAGGGTAAAATCCTCCATATTTGCTTATTATCTAG 

TCCAGGTCCAGGGGAACTGAACTGAAGAGGCTTCTACTTGTTTAAATATA 

CACTTTTCAAAATATTACAATGCCCAGAATCCAATCAAGGCTTATATGAG 

AAAGTGCTGAGCTATGAGTTTCAAAATAATCCCCATTCAACTTTGATACC 

AAATTATTTTGACAGTCCCTTAAAAACAGCTTTCCAGTCTTGCTGCCTGC 

TTCCCTGCAAATATGAATCCAGTTCAGGGCAGCCTGGAGCCCAGCTACTC 

CAGCAGATCCCTGTCTGCCTTCTGTCCAGACACAAAGACTAGAGGATGGA 

AATGTTATGTGCATTCATCTCAAACACATGCATTGAAAACAGGGCTGGGG 

GAGTGGGCGGGTGGAGAGGAGATTCCCTGTCCTGAAGCTTCATCTCTACA 

CTTAGCTGTTTCCCCTAACCACTTCTCTGGTGGGAATAGAGGATTAGCAT 

CTGCTCAGGACTCCAGCTGACCTAAGGACTATTAACAGGATTTCCAAGCA 

GGACCTGGTGACTCATGCCTTTAATCTCAACACAAAGGAGACAAGGCAGG 
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GAGACTTGACTTGGTATCCAGCTTGGTCTACAAAGTGATTTTCATAAGAC 

CCAGTGTTACATAGAGAAACACTCTCTGTGTTGGCTATTGTTTGTTATCA 

ACTTGGTTATCTCTGCAATTAAGCAAAATCCAAAATGGGAAGATACATCT 

GTAAGTAACTTTTGCTTAATTTATAGAAAGTAATCCATACCTGTGAGGTA 

GGAAGACTTGCTTTTAATGCAGATCTTTTTGAGCTTGAAAGACAAGGCCT 

CCAATTAGGATCTGAAGCCCGAAAGACACACTTTTTTGTTAATGTGATTG 

TTGTGATAAGCTAGGGTTTGTCATTAATACCCCTGGCAGTCCTGTAACTC 

ACTTTGTAGAGCAGACTACTCACAGAGATCTACTTCCTTGATTCAATTCC 

ATAGTCCTTGGATTAAAGGCGTGAGCCACCACACTTAGCATAAGACACTG 

AACTTTAATCCAGACGTTGAGGCTGGAACCACACACCTCTAATTCTGGCC 

ACACCTTCAGGTGGAGGCCTATATAAGAACAGGGAGGAAGAGAGTTTTCA 

CTTGGCCTGCTTGCTCTCTCATAGCTAACAAGTCTATTACTTCGCTGGCA 

CTAGAGCCCCCTTGCATGTGATTCCATCTTCTATTGAAGACCAGCTGAAA 

CATCCATCCTCAGGAACTGAGAACTTCTGGAATCTTGGACTTTACTTCCT 

CTCCAGCTGTTGTGGAATAAGTTCAACTCCAGACTGTAAGTCATTCTAAT 

AAATCCCTTTCCAGGAGAGAGAGAGTGAGGTATCATTATATTTAATATTT 

TACTCTCTACACCAGGCAGCCCAAGTAGATTTGATGGTCCATTAGCACTT 

TCCCCATTGCCTGTTTAGTCAGCTGCCTATAATGTTTAACTGTAGACAAT 

TGCATCCAGAGTGATAACATCTTACTTGGAGAAGCTTCACTCCTTTTTGT 

TTACTGGTTTTGATTTTTGAGCCTAGGTTTTCCTGTGTAGCACTACCTGA 

TCTGAAACTAGGTCTGACAACCAGGCTGGCCTTGAGATCAGAGACCCATC 

TGCCTCTGCTTCTGTGTAGGATCTGCTCTTTCCCTTAGGTTCTGGGATGA 

AAGGATTTTGCCACCAGATTGGGCAGAATCTTGTCTCCTTAGGCAATGCA 

AATAAGATTCTAGGTTTGTAGGTTTCAAACCCAGCTTCCCACAGTGTAAT 

GGTTGGGAAGGGTCAAGAAATATAGAGCACAATTAACTTGATTCTTCTCT 

GAATCAGGAGGTGGAGGATTTACCTTCAGGGATCCATGGATAAAGCCAAG 

AAGATGATGCAGTCCATTCCCAGTTTTGTCAAGGATACATCAGATATTGA 

AGAACATGCACTGCCCAGTGCACAGGTCTTGCCAGCCCAGAGTACAAGGT 

GTTCCAATTCTGAGACACTTTGTTTCAGCAAAGAGCAAAGCCACTGCTCT 

GAGGATGGCTGGATTGCCAATTGGGATCTATACTCCTTTTGTGTATTTGA 

GAGTGTGGACTACCTGAAATCCTACCGCAGATTGAATTCTGCCATGAAGA 

AGGGCACAGAGGTCTTCCAGAGTGAGAGTCAGAGGGAGCCACAAGTGTCC 
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CCAGGAGATGTGGAAAACTACAAAGACAAAGATACAGAGGAGCCAGACCA 

ACCCTCACTAAGCTTGCTCAGGGAGAAAGGGCTGGAACTTGTGACCTGTG 

ATGGTGGAGACTGCCCTGACCAGGATCCTGCATCTTATAGTGCCAGGCAC 

CTAGGCTGCTGGGCATGGCTTCAAAGAGCTTTTCGCCAGAAGTGAGAAAG 

TCACCCAGAACTGTTTGGATCCCAGATTCCTGCTAAGACTTGCAATTAGG 

GGATCTTCTGTCAGCTCCTGCTGGTACAGCAAAGGCACACAAAGGCAGTT 

GTGTCTTTTCAGCCATCTGGTTTGTGTTTGTTTGTTTGTTTATTTGTTTG 

CAGCTTTCTTAATAAAATTGTTAAAAAGCTGAAAATTTGTGTTCTTCTTA 

AAGTGGCCCAAGGGAAAAGATAAAGGGTGGAGTGGACACAGGTGAGGATA 

TTCTATTTTTCCTATTGTTGGTTACAGGATAACTGGTGGCTTGTTTTAAA 

GGAAGTCCTTAGGGGATGTTAGGCCTCCTTGTTCTCCTTTGTGCTGGGCC 

ATAAGATAAACACACAGGGAGCAACTTTGAGCACTTTGGGAAACCTTCCT 

GCTGAATCACCATGGATGATGACTGATCTACACAGATGCCTCCTTTCCAA 

AAAGATCTCGGGGACACCTGCAACTTCCATTTTTACTCTTTTACCTTATG 

CATAGACTAGGCTAGCTCTGAACTCTGATTCACTTTGCCTTGCTTCTCTA 

TTATAGGGATTAGAGGCCTGTGCCAGCACATCTGCACAGGAGAATTTTTC 

TATTCTCAGCAATTTCCAGAATAAATTTCTACATCATATGTGAACTCACC 

CCTAGAAACAGGACTGGCTAAGTTAGAAGGTCAGGGCAGTGCTGGTCCTG 

ACAAAGAAAACTCAGCCAACTTGAGAGGGTGTCTTTTGCTTCCAGTCTTG 

GAAGAGCTTAACATTTTATCAGACATTAGTTCAGCTGTTGGTCTTCCAGA 

AGTCTAGCCTTTCAGTAGTAAATGGATCTGAGGTAGGCATGTTCACTCAG 

GCAGGTGGATCCCTGACAGTTTAGGGCAGCCTGATTAACACAGGGAATTC 

TAGGACAGACAGCGTTATGTAGTGAGAGGCACAAATAAAAGAAAGAAGGG 

AAGGAGGGTGGAAGGCAGAAAGGAAGGAAGTAATAAAGGGAGCGTGTGAA 

GGAGGAAGAGAGAAGGAGGGAGAGAGGGAGGAAAGAGGGAGGACTGAGTG 

ATGGACAGGTCTGAATGACAGGCCTCACTGCAGTTGTGGAGAATAAATGG 

AAGCAGCTAGTAAATCAGGACTCAGGAACTTAGAGAGTCTGTTATGATCT 
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Table 1. Differentially expressed proteins in quantitative proteomics. Top 100 

genes which are enriched in post-ALT cells compared to pre-ALT cells. 

 

 Gene name 
log2(fold 

change) 
q value Description 

1 Tmem35a -3.09 6.95E-05 Transmembrane protein 35A  

2 Hmgn1 -3.01 0.0157 
Non-histone chromosomal protein HMG-

14 

3 Klf4 -2.83 0.000373 Krueppel-like factor 4 

4 Prdm16 -2.8 0.00142 PR domain zinc finger protein 16  

5 Jdp2 -2.77 0.000264 Jun dimerization protein 2  

6 Gli2 -2.66 0.00847 Zinc finger protein GLI2  

7 Sall3 -2.51 2.37E-05 Sal-like protein 3  

8 Bhmt -2.42 0.000494 
Betaine--homocysteine S-

methyltransferase 1  

9 Sema5b -2.3 0.0017 Semaphorin-5B  

10 Tfcp2l1 -2.29 0.0013 Transcription factor CP2-like protein 1  

11 Esrrb -2.25 0.000115 
Estrogen related receptor, beta, isoform 

CRA_b  

12 Tjp3 -2.23 0.0181 Tight junction protein ZO-3  

13 Nanog -2.19 0.00104 MCG132219  

14 Mitf -2.15 0.00806 
Microphthalmia-associated transcription 

factor  

15 Gm14444 -2.15 0.0402 Uncharacterized protein  

16 Zfp839 -2.12 0.0105 Zfp839 protein  

17 Hmgn2 -2.12 0.0352 
High mobility group nucleosomal 

binding domain 2  

18 Tet2 -2.11 0.000312 Tet oncogene 2  
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19 Rgs18 -2.11 0.00299 Putative uncharacterized protein  

20 Atrx -2.08 0.00718 
Transcriptional regulator ATRX 

(Fragment)  

21 Stag3 -2.07 0.00018 Cohesin subunit SA-3  

22 Scml2 -2.04 0.00784 Sex comb on midleg-like 2 (Drosophila) 

23 Gm14443 -2.03 0.0461 Uncharacterized protein  

24 Zfp229 -1.97 0.000333 Zinc finger protein 229  

25 Hes1 -1.95 0.0057 Putative uncharacterized protein  

26 Oas2 -1.95 0.0228 2'-5'-oligoadenylate synthase 2  

27 Zmym3 -1.94 0.000159 Zinc finger MYM-type protein 3  

28 Mta1 -1.9 0.0383 
Metastasis-associated protein MTA1 

isoform 11  

29 Rbmxl2 -1.89 0.00592 Putative uncharacterized protein  

30 Satb1 -1.81 5.59E-05 DNA-binding protein SATB  

31 Enox2 -1.81 0.0013 Putative uncharacterized protein  

32 Zeb1 -1.8 0.00307 Zinc finger E-box binding homeobox 1  

33 Znf728 -1.8 0.0204 Zinc finger protein 728  

34 Brwd1 -1.77 0.00101 
Bromodomain and WD repeat-containing 

protein 1 (Fragment)  

35 Pds5b -1.77 0.0027 
Sister chromatid cohesion protein PDS5 

homolog B  

36 Cmas -1.77 0.0138 
Cytidine monophospho-N-

acetylneuraminic acid synthetase  

37 Sp4 -1.77 0.0262 Transcription factor Sp4  

38 Zfp936 -1.76 0.0037 LOC100045488 protein  

39 mCG_120563 -1.76 0.0349 MCG120563, isoform CRA_a  

40 H1f0 -1.75 0.0374 Histone H1.0  

41 Syce1 -1.74 0.00127 
Synaptonemal complex central element 

protein 1  

42 Tbx3 -1.73 6.38E-05 T-box transcription factor TBX3  

43 Znf704 -1.73 0.0177 Zinc finger protein 704  
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44 Zfp990 -1.73 0.0296 Zinc finger protein 990  

45 Ap2a1 -1.72 2.99E-05 
AP-2 complex subunit alpha-1 

(Fragment)  

46 Zfp518b -1.72 0.00853 MCG141317  

47 Acsm1 -1.72 0.0449 
Acyl-coenzyme A synthetase ACSM1, 

mitochondrial  

48 Gm14325 -1.7 0.0134 Uncharacterized protein  

49 A630089N07Rik -1.69 7.00E-04 MCG4790, isoform CRA_e  

50 Nfic -1.69 0.0068 Nuclear factor 1 C-type  

51 Brwd1 -1.67 7.11E-05 
Putative uncharacterized protein 

(Fragment)  

52 Arxes1 -1.67 0.00176 
Adipocyte-related X-chromosome 

expressed sequence 1  

53 Caap1 -1.67 0.00249 
Caspase activity and apoptosis inhibitor 

1  

54 Nr0b1 -1.67 0.01 
Adrenal hypoplasia congenita-like 

protein  

55 Cdca7l -1.66 2.21E-05 
Cell division cycle-associated 7-like 

protein  

56 D1Pas1 -1.65 0.000895 
Putative ATP-dependent RNA helicase 

Pl10  

57 Aff1 -1.64 0.00222 AF4/FMR2 family member 1  

58 Zfp748 -1.64 0.015 MKIAA4236 protein (Fragment)  

59 Olfr639 -1.64 0.03 Olfactory receptor  

60 Zfhx2 -1.63 0.000276 ZFH-5  

61 Tcl1 -1.63 0.00918 Putative uncharacterized protein  

62 Rfx2 -1.63 0.0163 DNA-binding protein RFX2  

63 Tmpo -1.62 0.0389 Putative uncharacterized protein  

64 Erf -1.6 0.000124 
ETS domain-containing transcription 

factor ERF  

65 Trerf1 -1.6 0.00212 Transcriptional-regulating factor 1  
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66 Hnrnph2 -1.59 4.71E-05 
Heterogeneous nuclear ribonucleoprotein 

H2  

67 Nol4l -1.57 5.81E-06 Nucleolar protein 4-like  

68 Sap25 -1.57 0.000873 
Histone deacetylase complex subunit 

SAP25  

69 Ogfod3 -1.56 0.000661 
2-oxoglutarate and iron-dependent 

oxygenase domain-containing protein 3  

70 Nwd1 -1.56 0.00193 
NACHT domain- and WD repeat-

containing protein 1  

71 Zbtb22 -1.55 0.00536 Putative uncharacterized protein  

72 Vrk1 -1.55 0.00668 Serine/threonine-protein kinase VRK1  

73 Zfp971 -1.55 0.0279 Zinc finger protein 971  

74 Pot1b -1.54 0.00303 Protection of telomeres 1B  

75 Tigd2 -1.52 0.00869 
Tigger transposable element-derived 

protein 2  

76 Rhox10 -1.52 0.0159 Putative uncharacterized protein  

77 Rpl10l -1.52 0.018 60S ribosomal protein L10-like  

78 Trip12 -1.51 0.00484 E3 ubiquitin-protein ligase TRIP12  

79 Mki67 -1.51 0.00694 Proliferation marker protein Ki-67  

80 Mpnd -1.51 0.00953 MPN domain-containing protein  

81 Hmga1 -1.51 0.0196 
High mobility group protein HMG-

I/HMG-Y  

82 Zdhhc4 -1.5 0.000109 Probable palmitoyltransferase ZDHHC4  

83 Rbpj -1.5 0.0192 
Recombining binding protein suppressor 

of hairless  

84 Zscan21 -1.49 0.00268 
Zinc finger and SCAN domain-

containing protein 21  

85 Nova2 -1.49 0.0166 Neuro-oncological ventral antigen 2  

86 Chd2 -1.48 0.00141 
Chromodomain-helicase-DNA-binding 

protein 2  
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87 Acp6 -1.48 0.00769 
Lysophosphatidic acid phosphatase type 

6  

88 N4bp2l2 -1.47 0.00273 NEDD4-binding protein 2-like 2  

89 Zic5 -1.46 0.00359 Zinc finger protein ZIC 5  

90 Mafg -1.46 0.00685 Transcription factor MafG  

91 Cep290 -1.46 0.0479 Centrosomal protein of 290 kDa  

92 Terf2ip -1.45 0.000249 
Telomeric repeat-binding factor 2-

interacting protein 1  

93 Hsf2bp -1.45 0.00169 Heat shock factor 2-binding protein  

94 Zbtb34 -1.45 0.0194 MKIAA1993 protein (Fragment)  

95 AU022751 -1.45 0.0214 Expressed sequence AU022751  

96 BC022960 -1.44 0.000661 BC022960 protein (Fragment)  

97 Lrif1 -1.43 6.62E-05 
Ligand-dependent nuclear receptor-

interacting factor 1  

98 Chpt1 -1.43 0.000603 Cholinephosphotransferase 1  

99 Zfp428 -1.43 0.00523 Zinc finger protein 428  

100 Dpf1 -1.42 0.000739 Zinc finger protein neuro-d4  
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Table 2. Differentially expressed genes in RNA-seq. Top 100 genes which are 

enriched in post-ALT cells compared to pre-ALT cells. 

 

 Gene name log2(fold change) q value Locus 

1 1700108F19Rik 5.75959 0.000427 chr14:76672962-76687169 

2 Prmt8 4.94469 0.000427 chr6:127689010-127769472 

3 Tcstv1 4.8976 0.000427 chr13:119893387-119894785 

4 Tcstv3 4.75281 0.000427 chr13:120317566-120318076 

5 Stra8 4.47472 0.000427 chr6:34920162-34939344 

6 Gm14133 4.10168 0.017616 chr2:149743174-149798743 

7 Crtac1 4.03185 0.000427 chr19:42283036-42431783 

8 Msc 3.99428 0.000427 chr1:14752936-14776931 

9 Npb 3.96925 0.006641 chr11:120608476-120609093 

10 A2m 3.83397 0.000427 chr6:121635375-121679227 

11 Tmem35a 3.81341 0.000427 chrX:134295224-134305969 

12 Sohlh2 3.81108 0.000427 chr3:55182027-55209957 

13 Sall3 3.71642 0.000427 chr18:80966375-80988575 

14 Scn3a 3.70232 0.000427 chr2:65457117-65567627 

15 2810410L24Rik 3.69186 0.000427 chr11:120185399-120189852 

16 Dock10 3.68328 0.000427 chr1:80501072-80758527 

17 AI593442 3.68041 0.017844 chr9:52673043-52679429 

18 Bhmt 3.67054 0.000427 chr13:93616890-93637961 

19 Pak7 3.62722 0.041662 chr2:136081103-136387967 

20 Ntrk3 3.60077 0.000427 chr7:78175958-78738012 

21 2210417A02Rik 3.53888 0.018679 chr5:148741839-148743139 

22 Gsc 3.53829 0.006641 chr12:104471208-104473330 

23 Igsf21 3.52229 0.000427 chr4:140026845-140246784 

24 Nlrp9c 3.5054 0.013018 chr7:26322472-26403700 
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25 Fgf1 3.47978 0.000427 chr18:38601533-39389425 

26 St8sia1 3.47039 0.000427 chr6:142814230-142964452 

27 Ccdc38 3.4344 0.001831 chr10:93540631-93605245 

28 Acot3 3.38582 0.000427 chr12:84038378-84059565 

29 Gm20767 3.31182 0.000427 chr13:120154626-120155136 

30 Alox8 3.23747 0.000427 chr11:69183931-69197843 

31 Scn9a 3.19513 0.000427 chr2:66440879-66634962 

32 Ssu2 3.18849 0.037654 chr6:112359323-112388023 

33 Sema5b 3.18238 0.000427 chr16:35541144-35664732 

34 Syndig1 3.13887 0.000427 chr2:149829210-150004392 

35 A530083M17Rik 3.13838 0.000427 chr3:153198265-153725174 

36 6330410L21Rik 3.12285 0.001161 chr3:129677564-129763884 

37 Grin1 3.11761 0.000427 chr2:25291180-25319187 

38 Cfh 3.05083 0.000427 chr1:140084707-140183764 

39 Gm37593 3.0494 0.011159 chr17:51842860-51846114 

40 Gm12031 3.04939 0.000427 chr11:20145566-20146344 

41 Halr1 3.0403 0.000427 chr6:52102948-52113684 

42 Fam81a 3.02747 0.000427 chr9:70089309-70142560 

43 Hal 3.00324 0.000427 chr10:93488767-93519304 

44 Tmtc2 2.99963 0.000427 chr10:105187662-105583874 

45 Gm805 2.98576 0.000427 chr12:86169340-86195102 

46 Plxna4 2.98245 0.002464 chr6:32144267-32588192 

47 Nlrp4a 2.97921 0.000427 chr7:26435112-26476142 

48 Lrtm2 2.93745 0.01528 chr6:119236525-119352407 

49 Nxf2 2.91892 0.016371 chrX:134944525-134964754 

50 Gm44015 2.90543 0.000427 chr7:6651747-6662368 

51 Syce1 2.90482 0.000427 chr7:140777228-140787852 

52 Chst8 2.89419 0.000427 chr7:34674467-34812711 

53 Atp13a4 2.88826 0.014162 chr16:29395852-29544864 

54 Klf4 2.87258 0.000427 chr4:55527142-55532466 

55 Mybpc1 2.86612 0.002464 chr10:88518278-88605152 
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56 Sntg1 2.8592 0.000427 chr1:8361474-9299878 

57 Notumos 2.84541 0.000427 chr11:120646030-120661815 

58 Gm13580 2.82974 0.0015 chr2:60411524-60412579 

59 Olfr924 2.7901 0.037654 chr9:38848115-38849042 

60 Pabpc6 2.76571 0.000427 chr17:9666496-9669704 

61 Spic 2.74223 0.000427 chr10:88674771-88685015 

62 2310003L06Rik 2.7342 0.019758 chr5:87908578-88008534 

63 Ak7 2.71902 0.000427 chr12:105705981-105782447 

64 St6galnac3 2.70686 0.000427 chr3:153198265-153725174 

65 Vmn1r53 2.70651 0.006391 chr6:90131440-90232817 

66 Sytl4 2.67809 0.000427 chrX:133936384-133981812 

67 Gm14410 2.64093 0.000427 chr2:177183452-177206421 

68 4933425D22Rik 2.62352 0.045747 chr5:149439659-149470979 

69 Syt1 2.61551 0.005895 chr10:108497649-109010982 

70 Tmem156 2.60239 0.011583 chr5:65054345-65092132 

71 Arxes2 2.60189 0.000427 chrX:135993823-135995355 

72 Gm7325 2.60156 0.000427 chr17:45600970-45602102 

73 Ldhb 2.58662 0.000427 chr6:142490248-142507957 

74 Gpr83 2.5766 0.005624 chr9:14860209-14870789 

75 Camk2n1 2.55794 0.000427 chr4:138454313-138460123 

76 Ampd1 2.55375 0.039485 chr3:103074013-103099720 

77 Lrrn2 2.54153 0.000427 chr1:132880272-132940005 

78 Lonrf2 2.53185 0.002152 chr1:38793644-38836711 

79 Prdm14 2.52952 0.000427 chr1:13113456-13127163 

80 Sfrp1 2.52593 0.000427 chr8:23411501-23449632 

81 Atp1a4 2.52371 0.000427 chr1:172223512-172258414 

82 Itpka 2.51405 0.000427 chr2:119742336-119751263 

83 Gm14406 2.51137 0.000427 chr2:177569203-177578210 

84 Platr11 2.51122 0.000808 chr9:118404096-118406099 

85 Slc47a1 2.49784 0.000427 chr11:61343400-61378345 

86 Fam217a 2.49395 0.005068 chr13:34909963-34919992 
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87 4930405N21Rik 2.48716 0.000427 chr5:113320453-113321653 

88 Gm11766 2.47802 0.000427 chr11:119935802-119942698 

89 Slc6a5 2.46124 0.022059 chr7:49910145-49963856 

90 Gm53 2.44801 0.000427 chr11:96251104-96264868 

91 Pramel6 2.43438 0.000427 chr2:87506564-87510872 

92 Olfr153 2.42069 0.02713 chr2:87532034-87532958 

93 Gm14393 2.4184 0.000427 chr2:175061548-175067781 

94 Notum 2.40653 0.000427 chr11:120646030-120661815 

95 Gm281 2.40327 0.002152 chr14:13814617-13914478 

96 Myot 2.40108 0.015727 chr18:44334073-44355724 

97 Frem1 2.39107 0.005624 chr4:82897919-83052339 

98 Filip1 2.38839 0.011362 chr9:79815050-79977804 

99 Lrrc34 2.38828 0.000427 chr3:30624266-30672431 

100 B230307C23Rik 2.38297 0.000427 chr16:97994600-98010000 
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국문 초록 

 

고유의 템플릿을 이용하는 대안적인 텔로미어 

유지 기전에 대한 연구 

 

성상현 

서울대학교 생명과학부 

 

진핵 생물이 유전체의 정보를 안정적으로 유지하기 위해서는 선형 염색체에만 존재

하는 특이적인 문제를 해결해야만 한다. DNA 복제 기구의 생화학적 한계에 기인하는 

말단-복제의 문제와 유전체 내부의 DNA 손상과 말단을 구분해야 하는 말단-보호의 

문제이다. 두 가지 문제를 제대로 해결하지 못하면, 유전체의 정보는 점차 소실되거나 

잘못된 처리에 의해 손상될 수 있다. 두 가지 말단의 문제를 해결하기 위한 특별한 

구조체가 텔로미어이다. 텔로미어는 주로 특정한 반복서열과 그에 대한 결합 단백질

로 구성되어 있다. 텔로미어의 길이와 구조를 잘 유지하는 것은 세포의 삶과 죽음을 

결정하는데 매우 중요하다. 세포가 분열할 때마다 텔로미어는 내부의 유전 정보를 대

신하여 소실되고 특정한 한계 길이에 가까워지면 세포의 분열을 정지시키거나 세포를 

죽게 하는 타이머의 역할을 한다. 이 한계를 넘어서 세포가 계속 분열하게 되면, 유전

체의 불안정성이 과도하게 증가하여 정상적인 조절이 이루어지지 않는 암세포로 발전

할 가능성이 높아진다. 다르게 말하면, 암세포가 텔로미어에 의해 부과된 한계를 넘기 
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위해서는 반드시 텔로미어의 길이를 유지하는 기능을 획득하는 것이 필요한 것이다. 

대부분의 암세포는 텔로머레이즈라고 하는 역전사 효소를 활성화시킴으로써 텔로미어

의 길이를 유지하고 무한정 증식할 수 있는 능력을 얻는다. 그러나 일부의 암세포에

서 텔로머레이즈 없이도 텔로미어 길이를 유지하는 현상이 관찰되었는데, 이를 대안

적인 텔로미어 길이 유지 기전 (Alternative lengthening of telomere, ALT) 이라고 

한다. 암세포뿐만 아니라 효모나 선충 등의 모델에서 텔로머레이즈 없이도 텔로미어

를 유지하는 현상이 관찰되면서, ALT는 자연 상에 널리 존재할 수 있다는 것이 알려

졌다. ALT는 상동 재조합에 의존하는 DNA 복제 기전이라는 것이 알려졌지만, 구체

적인 기전의 작동 방식에 관해서는 연구되지 않은 바가 많다. 본 연구에서는 쥐 배아

줄기세포 (mouse embryonic stem cell, mESC) 모델을 이용해서 ALT의 특징과 분

자적 기전을 규명하고자 했다. 전유전체 서열분석을 통해 ALT mESC의 텔로미어가 

가지는 독특한 서열과 구조를 밝혔다. 가장 중요한 특징은 서브텔로미어에 존재하는 

특이한 주형 서열이 텔로미어를 구성하고 있다는 점이다. 일반적인 텔로미어 반복 서

열이 아니라 다른 서열이 많이 끼어든 만큼, ALT mESC의 텔로미어는 독특한 보호 

기전을 유지하고 있을 것이라고 추측 가능하다. 이를 확인하기 위해 전사체 분석과 

정량적 단백질체 분석을 수행했으며, 그 결과 ALT의 활성화에 뒤따르는 유전자 발현 

변화 양상을 관찰할 수 있었다. 대표적으로 전사 조절 네트워크와 염색질 재구성 과

정에 변화가 집중되어 있었다. ALT의 기전과 관련되어 있을 것으로 추정되는 후보 

유전자 중에서 ALT 특이적으로 가장 많이 증가한, 비일반적인 히스톤인 HMGN1의 

기능에 초점을 맞추었다. HMGN1은 뉴클레오좀을 구성하는 연결 히스톤인 H1 히스

톤과 경쟁하고 다른 히스톤들의 번역 후 변형에 관여하여 염색질의 구조를 느슨하게 
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만들 수 있다고 알려져 있다. HMGN1이 ALT mESC의 독특한 텔로미어에 결합한다

는 것을 확인했고, HMGN1의 기능을 저해할 경우 텔로미어의 손상 정도가 증가하고 

텔로미어에서 생산되는 전사체의 양이 감소했으며 텔로미어 길이가 짧아졌다. 따라서 

HMGN1이 만들어내는 변화가 ALT 텔로미어를 안정적으로 유지하는데 필요한 요소

임을 확인했다. 본 연구에서는 ALT가 활성화되기 전후의 쥐 배아줄기세포를 이용하

여 ALT 특이적인 분자적 특징을 유전체, 전사체, 단백질체의 관점에서 고찰했다. 그 

핵심에는 독특한 주형 서열이 만들어내는 특이한 구조의 텔로미어와 후성유전학적 조

절자로 작용하는 HMGN1 단백질이 있다. 특이한 주형 서열을 텔로미어 유지에 사용

하는 현상은 효모부터 포유류까지 진화적으로 보존된 현상이다. 쥐 배아줄기세포에서 

확립된 ALT 모델이 ALT의 분자적 기전뿐만 아니라 유전체의 잠재적인 진화 기전을 

이해하는데 기여할 것으로 기대한다. 
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