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Abstract

Homogenization theory is a study of the averaging behavior of a family of
partial differential equations that exhibit rapid oscillation in small scales un-
der certain pattern. This thesis consists of three papers concerning higher
order convergence rates in periodic homogenization of fully nonlinear partial
differential equations. The first paper focuses on interior corrections of uni-
formly elliptic partial differential equations in non-divergence form, and the
second paper studies the effect coming from highly oscillatory initial data for
uniformly parabolic Cauchy problems. In the last paper we discover an in-
teresting issue regarding viscous Hamilton-Jacobi equations that initial data
has to possess special geometric property determined with respect to the ef-
fective Hamiltonian, in order to achieve higher order convergence rates. In
all three papers, the heart of analysis lies in developing a regularity theory in
non-oscillatory variables in small scales, which allows us to construct higher
order correctors through a careful induction scheme. Here the higher order
correctors are designed to fix the errors coming from the nonlinear structure
of the highly oscillatory partial differential equations, and the higher order
convergence rates follows after a suitable barrier argument.

Keywords: homogenization, fully nonlinear equation, periodic setting, con-
vergence rate, corrector, viscosity solution, higher order, regularity
Student Number: 2013-20229
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Chapter 1

Introduction

When a composite material has a complex structure in the microscopic scale,
it affects the effective property in the macroscopic scale in a nontrivial man-
ner. Such a phenomenon is called homogenization, which has been of great
interest to many scientists in physics, biology, material science and engineer-
ing, but also to mathematicians, due to the necessity of rigorous justification
of homogenization process, and its potential to open up new fields and ideas
in mathematical analysis.

Homogenization theory in mathematics is a study of a family of partial
differential equations, abbreviated by PDEs in sequel, which are rapidly oscil-
lating in small scales. The pattern of complex structure constitutes an essen-
tial part of the study. The fundamental pattern is the periodic structure, in
which case the heterogeneous structure repeats from one cell to another, and
one can always obtain an average in a compact set. One may also generalize
the oscillating pattern from periodic one, as long as one can obtain average
in macroscopic scales. This opens up a room for randomness to be involved
in homogenization theory. Nevertheless, there are still many important prob-
lems in homogenization theory left open under periodic settings. We refer to
the classicial monographs [7, 32] for the general overview of homogenization
theory.

A homogenization problem can be formulated as follows. Let € > 0 be the
parameter describing the size of small scales, and F* a differential operator
that encodes rapidly oscillating structure in e-scale. We are interested in the
behavior of solution v to



CHAPTER 1. INTRODUCTION

and homogenization theory aims to answer the following questions.

e Does u® converges? If so, in which sense?

e [f u® converges in a correct sense, what is the limiting PDE for the limit
profile?

e How fast does the convergence take place?

Let us elaborate more on what these questions mean in the mathematical
context. The first question asks a correct space X for which

uw—u inX

for a certain u € X. The second question asks if one can determine an
operator F such that
Flu] = 0.

The operator F is often called the effective operator corresponding to F, and
we require that F' is homogeneous in small scales. For instance, if F*[uf] =
F(D?ue, Z), then we ask F to be independent of the rapidly oscillating vari-
able £ and the effective problem becomes F[u] = F(D*u).

The last question is about the quantitative error estimate between wu®
and the limit profile . More specifically, one seeks a quantity d(¢) > 0 that
decays as ¢ — 0 such that

lu® —ull x < d(e).

The problem becomes very difficult when one attempts to establish a sharp
estimate so that the above inequality cannot be improved further.

This thesis is concerned with higher order convergence rates in homog-
enization of fully nonlinear PDEs, established by the series of collaboration
[34] - [36] with my Ph.D. advisor K.-A. Lee. The results in a nutshell provide
a rigorous justification of the formal expansion,

wi(z) = u(z) + ew, (m f) + 2w, (x E) .
€ €
under a various class of fully nonlinear PDEs having periodically oscillating

structure. Here w1y, wo, - - -, are called the correctors that captures the precise
oscillating pattern of u® at each order of error correction.
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Let us briefly summarize the main results. The first result [34] is the
higher order convergence rates in the framework of uniformly elliptic, fully
nonlinear PDEs in non-divergence form. Due to the nonlinear structure of the
PDE, the error subject to the correction at a fixed order becomes an accu-
mulation of the errors left from all the previous orders, making the problem
qualitatively different from the framework considered in the classical litera-
ture. Here we overcome the difficulty by establishing a reqularity theory in
slow variables, which are non-oscillatory variables in small scales, and obtain
higher regularity for the main corrector function and the effective functional.
This allows us to construct a sequence of higher order interior correctors in an
inductive manner, which eventually leads us to the higher order convergence
rates up to the order of the regularity of the given operator, the prescribed
domain and the boundary data.

The second result [35] is the higher order convergence rates in the frame-
work of uniformly parabolic, fully nonlinear PDEs with a periodically oscil-
lating initial data. This work was initiated for the purpose of studying the
effect of rapid oscillation coming from a lower dimensional data. In order
to neglect the curvature influence of a boundary and its interplay with the
underlying periodic structure, we considered Cauchy problems, where the ini-
tial layer can be considered a flat surface with respect to the interior domain.
Despite such a simple structure of the lower dimensional object, we found
a zone near the initial layer, where the nonlinear structure of the operator
becomes highly sensitive and produces coupling effect between initial layer
correctors and interior correctors. One of the key features in this work is the
regularity theory for initial layer correctors in slow variables, which gives ex-
ponential decay estimates of the effect coming from the rapid oscillation of
the initial data.

The last result [36] is the higher order convergence rates in the framework
of viscous Hamilton-Jacobi equations. In this work, we address an interesting
issue regarding Hamilton-Jacobi equations that one has to choose an initial
data with respect to the effective Hamiltonian in order to achieve the higher
order convergence rates. Here we obtain a sufficient class of such initial data,
which turns out to be very geometric, and closely related to the level surface
of effective Hamiltonian where the gradient vanishes.

This thesis is organized as follows. Next chapter is devoted to the prelim-
inaries for the entire thesis, beginning from the notion of viscosity solution
to the associated existence and regularity theory. In Chapter 3, 4 and 5, we
present the main results in [34], [35] and respectively [36].

3



Chapter 2

Preliminaries

Let us define the notion of viscosity solution and list up some important
properties and associated regularity theory, which will be required in this
thesis. Viscosity solution is a notion of weak solutions to a certain class of
PDEs, which naturally have the comparison principle, i.e., if a subsolution
is less than or equal to a supersolution on the boundary, then the inequality
continues to hold in the interior. Here we shall only present the theory for
the class of fully nonlinear, uniformly elliptic, second order PDEs, in order
to simplify the exposition. For a more comprehensive overview on the theory
of viscosity solution, especially for parabolic PDEs, and viscous Hamilton-
Jacobi equations subject to study of this thesis, we refer to [20].

2.1 Existence Theory of Viscosity Solution

Set n > 1 to the dimension of the underlying space, and €2 a domain, that is,
an open connected set, of R™. Denote by &™ the space of all real symmetric
n X n matrices. A functional F': 8™ x €2 — R is said to be uniformly elliptic,
if there are 0 < A < A such that

AMN| < F(M+ N,z) — F(M,z) < AN,
for any M, N € 8" and any z € (.

Definition 2.1.1 (Viscosity Solution). Let F': 8" x Q — R be a uniformly
elliptic functional, and let u : @ — R be a function.
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(a) u is called a viscosity subsolution of F(D*u,z) = 0 in Q, if u € C(Q),
and for any o € Q and any ¢ € C*(Q) such that uw — ¢ has a local
maximum at To, one has

F(D*(x9),20) > 0.

(b) w is called a viscosity supersolution of F(D*u,x) =0 in Q, if u € C(Q),
and for any o € Q and any ¢ € C*(Q) such that u — ¢ has a local
minimum at xo, one has

F(D*¢(x0), 0) < 0.

(c) wu is called a viscosity solution of F(D?*u,z) = 0 in Q, if u is simultane-
ously a viscosity subsolution and a viscosity supersolution of F(D?*u,x) =
0 in Q.

Remark 2.1.2. Let us remark that one only requires the continuity to de-
fine a wiscosity solution. Moreover, viscosity solution is designed in such a
way that any classical subsolution cannot touch it strictly from below, and
similarly any classical supersolution cannot touch it strictly from above.

Here we shall collect some basic existence and stability results of viscosity
solution to a uniformly elliptic, fully nonlinear PDE. For a more thorough
review with complete proofs, we ask the reader to consult [20].

Basic existence theory of viscosity solution begins with a comparison prin-
ciple, which roughly states that if a subsolution stays always below a super-
solution on the boundary, then the relation continues to hold in the interior.
A precise statement of a comparison principle is given as below.

Theorem 2.1.3 (Comparison Principle; Bounded Domain). Let Q be a
bounded domain, and F : 8" x & — R be a uniformly elliptic continuous

functional. Suppose that v,w € C(§2) is a viscosity subsolution and respec-
tively a viscosity supersolution of

F(D*u,x) =0 1in Q. (2.1)
If v < w on 09, then v < w in Q.

Note that the theorem above is formulated for bounded domains. How-
ever, we also encounter PDEs on unbounded domains, and the treatment
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is somewhat different from the case of bounded domains. First we need
to restrict the class of viscosity solutions to BUC(f2), which consists of all
bounded uniformly continuous functions on (). Here we shall only consider
the case of the entire space, {2 = R"™.

Theorem 2.1.4 (Comparison Principle; Entire Space). Let p > 0 be given
and F : 8™ x R" — R be a uniformly elliptic continuous functional. Suppose
that v,w € BUC(R™) are a viscosity subsolution and respectively a viscosity
supersolution of

F(D*u,x) — pu=0 inR" (2.2)

Then v < w in R™.

With the comparison principle, one obtains the existence of viscosity so-
lution by Perron’s method. In fact, Perron’s method is available whenever a
PDE has the comparison principle. We shall again divide the statement into
the case of bounded domains and unbounded domains.

Theorem 2.1.5 (Perron’s Method; Bounded Domain). Let Q be a bounded
domain, ' : 8" x Q — R a uniformly elliptic continuous functional and
¢ € C(092). Then the function u: Q — R, defined by the supremum over

all viscosity subsolutions v € C(§2) of (2.1) with v < ¢ on 09, is a viscosity
solution of (2.1) satisfying u < ¢ on OS).

The well-definedness of u above follows easily from the uniform ellipticity
and continuity of F' together with the boundedness of 2. Clearly, one can
also obtain a viscosity solution by taking the infimum among all viscosity
supersolutions which is no less than the specified boundary data on 0.

Next we state Perron’s method for the case of entire space.

Theorem 2.1.6 (Perron’s Method; Entire Space). Let F': 8" x R" — R be
a uniformly elliptic continuous functional such that F(0,-) is bounded on R,
and let g > 0 be arbitrary. Then the function u : R™ — R, defined by

u(z) = sup{v(z) : v e BUC(R") is a viscosity subsolution of (2.2)},
is the unique viscosity solution of (2.2).

Let us finish this subsection with the stability theorem of viscosity solu-
tion.
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Theorem 2.1.7 (Stability Under Uniform Convergence). Let Fy : 8" x Q —
R be uniformly elliptic continuous functionals with fized ellipticity constants
for k =1,2,---. Suppose that uy, is a viscosity solution of Fy(D?*uy,z) =0
in Q for each k =1,2,---. Assume further that there are a uniformly elliptic
continuous functional F' : 8™ x 0 — R and a continuous function u : Q0 — R
for which Fy, — F locally uniformly in 8™ x Q and ux, — w locally uniformly
in Q. Then u is also a viscosity solution of F(D*u,z) =0 in €.

2.2 Regularity Theory of Viscosity Solution

Here we shall collect some of the basic regularity results for viscosity solu-
tions. Especially we will focus on elliptic PDEs, mainly following the classical
monograph [9]. For corresponding results regarding parabolic PDEs, we ask
the reader to consult [50] - [52].

Let A and A be positive numbers with A < A and throughout this section,
we shall use them to denote ellipticity bounds, unless stated otherwise. Let
F 8" x Q) — R be a uniformly elliptic functional with ellipticity bounds A
and A. By definition, we have

%tr(MJr) —Atr(M™) < F(M,z) — F(0,z) < Atr(M*) — %tr(M),

for any M € 8" and x € Q, where by M* and M~ we denoted the unique
matrices with nonnegative eigenvalues such that M = M* — M. This moti-
vates us to study the extremal operators, called the Pucci operators. We shall
consider a wider class of viscosity solutions associated with these operators.

Definition 2.2.1 (Class S). Let f € C(Q2). We say u € ST(\, A, f) in Q, if
u s a viscosity subsolution of

Atr((D*u)™) — Mr((D*uw)”) = f(z) in Q.
Similarly, we say u € S™(\ A, f) in Q, if u is a viscosity supersolution of
Mr((D*u)t) — Atr((D*u)”) = f(z) in Q.

Finally, we call w € S\ A, f) in Q if u € STNA, NS (N A, f) in Q.

Let us begin with the Alexander-Bellman-Pucci estimate for the class S~
and ST, which roughly states that a viscosity supersolution cannot be too

7
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negative in the interior, if it is nonnegative on the boundary, and the interior
maximum negative value is controlled by the amount of large positive values
of the associated source term. This can be easily visualized if one notice that
the positive value of a source term contributes to convexity of a solution,
since the Hessian at the point has to have a large positive eigenvalue due to
the ellipticity of the operator. A precise statement is given as follows.

Theorem 2.2.2 (Alexander-Bellman-Pucci Estimate). Let f € C(Bgr), and

suppose that w € ST(\, A, f) in Bg. If u > 0 on 0Bg, then there is C' > 0

depending only on n, X and A such that
supu” < CR || f7]] L7(Brn{u=Ty}) ’
Br

where T'y, is the convexr envelope of —u~ in Bsg, with u extended by zero
outside of Bp.

With the Alexander-Bellman-Pucci estimate, one can extend the Krylov-
Safanov theory, which mainly states the Harnack inequality, for the class S.
The Harnack inequality gives the comparability of values between any pair
of interior points, so that if a viscosity solution is large at one point, then
it cannot be too small at any other interior point. This yields an algebraic
decay estimate on the oscillation of a solution as one goes from a ball to an
half ball. Hence, a universal interior Holder regularity follows easily as an
easy corollary.

Theorem 2.2.3 (Krylov-Safanov Theory). Let f € C(Q1) and suppose that
u€ SAAf) in Q.

(a) Harnack inequality: If u > 0 in @, there exists a constant C > 1 de-
pending only on n, A and A such that
L"(Ql)) )

supu < C (inf u+ || f]
Q12 Q12

(b) Interior C* estimate: u € C*(Q1/2) and
lllag, < € (Il ey + 1 lnn )
where 0 < a < 1 and C > 0 depend only on n, A\ and A.

8



CHAPTER 2. PRELIMINARIES

We also obtain a uniform regularity estimate up to the boundary.

Theorem 2.2.4 (Boundary Regularity). Let f € C(Q) and suppose that Q
satisfies a uniform exterior sphere condition with radius R, that is, for any
xo € 0), there exists a ball B C Q¢ of radius R such that BNOQ = {xg}. Also
let ¢ € C(0Q) with a modulus of continuity p. Then for any u € S(\, A, f)
i §, there exists a modulus of continuity p* determined only by n, A, A,
diam(Q), R, ([l peo(qy and || f|| o) such that

u(z) —uly)] < p*(lz —yl),
for any x,y € .
Another application of Krylov-Safanov theory is the Liouville theorem.

Theorem 2.2.5 (Liouville Theorem). If u € S(A,A,0) in R™ is globally
bounded, then u is a constant.

Next let us state the higher regularity theory for homogeneous PDEs of
the form
F(D*u) = 0.

First comes the universal interior C** estimates, or the Krylov theory, which
only requires uniform ellipticity of the operator. However, it is not always true
that a viscosity solution becomes C*?, even if F is a smooth functional. One
requires an additional structure condition to achieve C?% regularity, and a
typical sufficient condition is the convexity of the operator. This is the so-
called Evans-Krylov theory. Let us also remark that the minimal condition
for C** regularity still remains open.

Theorem 2.2.6 (Interior Regularity; Homogeneous Case). Let F' be a uni-
formly elliptic functional on 8™ with ellipticity constants \ and A. Suppose
that u is a viscosity solution of F(D*u) =0 in Bj.

(a) Interior Ct* estimate: u € CY*(By2) and

lllsez, o < € (Nl pmgay + 1FO))

where 0 < o < 1 and C' > 0 depend only on n, A\ and A.
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(b) Interior QQ’“ estimate: Assume further that F' is convex on S™. Then
u € C**(By2) and

Il czags, < € (Iull ey + 1FO))
where 0 < a < 1 and C > 0 depend only on n, \ and A.

With the interior higher regularity for homogeneous PDEs, one may ex-
pect a similar regularity for heterogeneous PDEs with smooth coefficients.
The proof follows the basic idea of the Schauder theory, that is, first approx-
imating the solution by that of a homogeneous PDE obtained by “freezing
coefficient”, and then iterating the approximation with the updated solution
under an appropriate rescaling. Now that we are dealing with fully nonlinear
PDEs, we encounter different operators at each iteration step, and the key is
to establish a uniform estimate for the class of the operators appear in the
entire iteration process.

For an appropriate Holder class of operators with a linear growth, let us
introduce a class C¢(S™ x §2) which consists of all functional F': S xQ — R
such that

1
Co(SnxQ) = Ailelgn (1 M| | £ (M, ')||ca(ﬂ)) < oo.

Theorem 2.2.7 (Interior Regularity; Heterogeneous Case). Let F' € C(S" x
By) be a uniformly elliptic functional with ellipticity constants A and A, sat-
isfying F(0,-) = 0 in By, and let f € C(By). Suppose that u is a viscosity
solution of F(D?u,x) = f(z) in B.

£

(a) Interior CY* estimate: Suppose that there exist 0 < a < 1 and C>0
such that for each xo € B2, any viscosity solution v € C(Bya(x0)) of
F(D?v,z9) = F(0,0) in Bya(xg) belongs to CH%(By4(x)) and

1lleraa, awey < C M0l o0 -

Then for any 0 < a < @, a viscosity solution u of F(D?*u,x) = f(x) in
By belongs to CH*(By,4) and

lllona g, ) < € (Ill ey + 1 ey ) -

10
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where 0 < a < & and C > 0 depend only onn, X\, A, & and C.

(b) Interior C** estimate: Suppose that there exist 0 < & < 1 and C > 0
such that for each xo € By and each M € 8", any viscosity solution of
F(D*v + M, x¢) = F(M,x0) in Bis(zg) belongs to C**(By4(x¢)) and

||U||C2’5‘(B1/4($0)) <C ||U||L°°(Bl/2($0)) ’

Let 0 < o < a and suppose further that F' € C¥(S"™ x By) and f €
C*(By). Then a viscosity solution u of F(D*u,z) = f(x) in By belongs
to C**(By4) and

lellene, y < € (Nulloesy + 1 llcasy )

where 0 < a < & depends only onn, N\, A, & and C, and C > 0 depends
Jurther but at most on the seminorm [F|ce(snxB,)-

Remark 2.2.8. Note that assertion (a) and (b) hold under more general as-
sumptions. Especially, (a) holds even with a source term f having singulari-
ties at interior points, only if the blowup rate is of order r—* uniformly around
the singularities. More specifically, it is required that || f|| Ln(Br(zo) < ert=e for
some ¢ > 0.

Due to Theorem 2.2.6, Theorem 2.2.7 (a) holds with a universal expo-
nent a.. Moreover, Theorem 2.2.7 (b) also holds with a universal exponent «,
provided that F' is a convex functional on S8™.

Finally, we have higher regularity for classical solutions in C?¢ class, when
the operator and the data are smooth.

Theorem 2.2.9 (Higher Regularity). Suppose that F € C™Y(8" x ), 0Q €
C™21 and g € C™2L(OQ). If u € C**(Q) is a solution of F(D?*u,x) =0
in Q with boundary condition u = g on 9. Then u € C™22(Q).

11



Chapter 3

Higher Order Convergence
Rates in Theory of
Homogenization: Equations in
Non-Divergence Form

3.1 Introduction

We establish higher order convergence rates in the theory of periodic ho-
mogenization of both linear and fully nonlinear uniformly elliptic equations
of non-divergence form. It is known that the equations containing highly
oscillating variables %, where the oscillation takes place periodically in the
microscopic scale, exhibit a limiting behavior as € — 0. More precisely, for

the following e-problems with linear operators,

ut =g on 02,

the solutions u® converge to a function u as € — 0, which solves a boundary
value problem

{dijDiju = f in Q, (3 2)

u=gq on 052,

12
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whose operator is homogenous (i.e., the matrix (a;;) is constant) with respect
to the environment. For more details, one may refer to [7] and [32]. A similar
behavior also exists when the operator consists of nonlinearity, namely,

3.3
ut =g on 0f2. (3:3)

{F (DQUE,I, f) =0 in €,
As in the linear case, the solutions u° exhibit a limiting behavior, and the
limit profile u turns out to be a solution of the following PDE,

3.4
u=g on 0f2. (3:4)

{F(Dgu, z)=0 1in Q,
where F' is no longer oscillatory in the microscopic scale. For more details,
see [22].

In this paper, we give a quantitative analysis on the rate of convergence
between the solution u® and its limit profile u, and we further accelerate
the rate by involving appropriate corrector functions for both interior and
boundary layer of the physical domain. Finally we end up with a rigorous
justification of the following two scale expansion of the solution u°:

uf () = u(z) +e(wi(z) + 27 () +- - -+ ™ (w), (2) + 2, (2)) + O™ ), (3.5)

where wj, and z; are the k-th order correctors which fix the error occurring
in the interior and on the boundary layer respectively, and m is the positive
integer related to the regularity of the operator of the e-problem. The above
expression is explicit if the e-problem is linear, but rather implicit when a
nonlinearity comes in. We make a remark that our result is true also for
operators with lower order dependence; essentially most of the challenges
lie in proving the case for (3.1) and (3.3) while the desired extensions and
generalizations are fairly straightforward to obtain.

3.1.1 Main Result

Our main results are as follows. First we consider the higher order conver-
gence rates for linear equations.

Theorem 3.1.1. Let m > 2 be an integer. Sft Q to be a boundecj domain in
R™ with C™>* boundary and let f € C™*(Q) and g € C™2(Q) for some

13
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exponent 0 < o < 1 and an integer m > 2. Suppose that (3.1) satisfies the
structure conditions (L1)-(L3) given in Section 3.2. Assume that {u}.s¢ is
the family of the solutions of (3.1) and w is the homogenized limit of {u}.~o
which solves (3.2). Then there are interior correctors w and boundary layer
correctors zy, respectively defined by (3.24) and (3.25), fork =1,...,m such
that

lu® =5, = 05l ey < C™ (3.6)

for any € € (0,1), where

2 2
N, =u+ewi +ews + -+, 0, =cz]+e 25+ +e"z,

on Q and C depends only on n,m, a, o, \, A, €2, [fllema@y and [|gllcmiz.a@q)-
The result concerning fully nonlinear equations is stated below.

Theorem 3.1.2. Let m > 2 be an integer. Set ) to be a bounded domain
of R™ with 9Q € C™ 1 and let g € C™>1(Q). Suppose that F € C™(S™ x
Q x R™) satisfies the structure conditions (F1)-(F4) given in Section 3.2.
Then there are interior correctors wy, fork =1,...,[%%]4+1 and the boundary
layer corrector 05, , respectively defined by (3.52) and (3.53) such that for any
£« €(0,1),

lu* =i = Orall () < C'3) Ve € (0,24, (3.7)

where
M = utewi +ws + -+ e by

on Q and C > 0 depends only on n,m,e,,o,\,\, F, g and .

3.1.2 Historical Background

(Classical results in the theory of homogenization could be found in the books
[7] and [8], and the references therein. In particular, the notion of higher or-
der correctors are introduced in these books, and one can find a higher order
convergence rate for divergent operator on 1-dimensional space. This prob-
lem, however, is still open for higher dimensions where boundary oscillation
plays a crucial role.

Periodic homogenizations for first and second order nonlinear equations
have been studied by many authors, such as Lions, Papanicolaou and Varad-
han [39], Evans [21, 22|, Caffarelli [10] and Majda and Souganidis [41] and

14
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Evans and Gomes [24], etc. For homogenization with respect to an almost
periodic or stationary ergodic environment has been considered by Ishii [30],
Lions and Souganidis [40] and Caffarelli, Souganidis and Wang [13], etc.

Rates of convergence in the theory of periodic homogenization were con-
sidered by several authors in various circumstances; for example, Capuzzo
Dolcetta and Ishii [17] and Camilli and Marchi [15] and Marchi [45], etc.
In a stationary ergodic setting, also see Caffarelli and Souganidis [12]. How-
ever, as far as we know, there has been no literature concerning higher order
convergence rates for homogenization of both linear and nonlinear elliptic
equations in nondivergence form.

3.1.3 Heuristic Discussion and Main Difficulties

Let us summarize the main strategies of this paper and make a few remarks
on the key features observed in achieving the rates.

The main feature of this work is the construction of higher order correctors
based on a new regularity theory in slow variables. In order to find the next
order approximation, we consider the linearized operator near the previous
approximation. Since the linearized operator belongs to the same class of the
previous one, we are able to proceed our argument in an inductive manner.
The relationship between the current approximation and the next one is
quite complicated in the nonlinear setting, unlike the linear case; however,
such difficulty could be overcome by capturing the stability of correctors with
respect to the shape of the limit profile, but not to the physical variable z.

Our induction argument consists of two substeps at each main step. First
substep is to improve the previous approximation by constructing a globally
periodic corrector and then bending it based on the shape of the limit profile.
Then the improved interior approximation creates new errors, of a higher
order, away from the given boundary data. The second substep is to fix the
new errors by constructing a boundary layer corrector.

Additionally it is noteworthy that at each step of finding the k-th order
interior corrector, we encounter a compatibility condition which uniquely
determines the (k — 2)-th order interior corrector. It illustrates the reason
why the higher order asymptotic expansion (3.5) starts from e-order but not
from e%-order, as seen in many literatures (e.g., [21, 22]). Tt is closely related
to the invariance of the quadratic rescaling of the governing equation.

There are two main differences between the linear and fully nonlinear
settings. First the asymptotic expansion (3.5) is made inside of the operator

15
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for the fully nonlinear case, which creates an additional error unlike the linear
case. Readers may compare the equation (3.48) to (3.23). Fortunately, all the
additional errors are controllable and have no influence on determining the
order of convergence rates.

Secondly, there is a coupling effect of the fast variable y = ¢!z and the
slow variable x of the interior correctors in the fully nonlinear case, unlike
the linear case. Moreover, it causes the difference in the order of convergence
rates as seen in Main Theorem I and II. The order is closely related to
the regularity of interior correctors, and the coupling effect in the nonlinear
case forces the next corrector to have two “degrees” less regularity than the
current one (see Lemma 3.4.19).

3.1.4 Outline

This chapter is organized as follows. In the next section, we list up nota-
tion, terminology and the standing assumptions throughout this chapter.
Section 3.3 is devoted to linear equations. We review the basic homogeniza-
tion scheme via the viscosity method in Section 3.3.1. Interior and bound-
ary layer correctors of higher order are obtained in Subsection 3.3.2. We
present the proof of Theorem 3.1.1 in Section 3.3.3. Section 3.4 is devoted
to fully nonlinear equations. The basic homogenization scheme of fully non-
linear equations is shown in Subsection 3.4.1. In Section 3.4.2 we investigate
the regularity of the effective operator and the corrector function in the slow
variable. In Section 3.4.3 we seek the higher order interior and boundary
layer correctors, and finally prove Theorem 3.1.2 in Section 3.4.4.

3.2 Notation and Standing Assumptions

Throughout this chapter, we shall use the following notation. 8™ is the space
of all n X n symmetric matrices. |[M| denotes the (L?, L?)-norm of M (i.e.,
|M| = sup,—; |Mz|). By B,(x), we denote the ball of radius r > 0 centered
at a point x, which belongs either to R” or to §™. By B, we denote B,.(0).
Similarly, Q),(z) denotes the cube centered with side length r > 0 centered
at a point z € R". As above, by @, we denote @,(0).

S(M\ A, f) and S*(\, A, f) are the classes of viscosity solutions defined in
Definition 2.2.1. C*%(Q) is the space of all k-times continuously differentiable
function in Q whose k-th order derivatives are in C*(Q). Also by CI"*(Q) we

loc
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denote the space consisting of all functions belonging to C**(K) in any
compact K C Q. We shall also use the adimensional norms ||'||*Ck7a(ﬂ) as well
as ||| 0.

By ¢,, C,, we denote dimensional constants. By ¢y, ¢, Cy, C we denote the
positive constants which depends only on the structure constants appearing
in the structure conditions (L1)-(L3) or (F1)-(F4) given below. By Cy, . s,
and C(f1,- -+, fr) we denote positive constants depending on the constants in
the structure conditions and further on fi,..., fx where f; can be a constant,
a function, etc. We will use the summation convention of repeated indices.

Now let us list up the standing assumptions associated with the operators
of (3.1) and (3.3). The linear coeflicient A(y) = (a;;(y)) € C™*(R™ S") will
satisfy the following conditions.

whose definition can be found in [25, Chapter 4].

(L1) (Periodicity) A(y + k) = A(y);
(L2) (Uniform Ellipticity) M¢[* < a;;(y)&& < A€
(L3) (Regularity) Al gmeqze) < o

where y, £ € R" and k € Z" and A\, A and o are positive constants such that
A <A

On the other hand, we shall impose the following conditions to the fully
nonlinear functional F' € C™(S" x 2 x R").

F1) (Periodicity) F(M,z,y + k) = F(M,z,y);

F3

(F1) (
(F2) (Uniform Ellipticity) A|N| < F(M + N,z,y) — F(M,z,y) < A|NJ;
(F3) (Regularity) [[F[|cm1 (5, xaxrey < o(1+ L);

(F4) (

F4) (Concavity) F(tM + (1 —t)P) > tF(M) + (1 — t)F(P),

where M, N, P€ S" with N >0, 2 € Q,y € R*, k € Z", and t € [0, 1] and
L >0, and A\, A and o are positive constants such that A < A.
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3.3 Linear Equations

3.3.1 Basic Homogenization Scheme

Let us fix ¢ > 0. The coefficient matrix (a;;(-/¢)) of (3.1) is uniformly elliptic
in Q with constants A and A, and belongs to C™%(Q). According to Theorem
2.2.7 and Theorem 2.2.9, there exists a unique solution u* € C™2%(Q) of
(3.1). In [22] it is shown that {uf}.s¢ is uniformly bounded in C%(Q) and
hence has a limit. For the sake of completeness, we prove a weaker result
that {u®}.~o has a uniform modulus of continuity, which still guarantees the

existence of limit.

Lemma 3.3.1. Let {u}.oo C C™>%(Q) be the unique family which solve

(3.1) for each € > 0. Then there is a function u € C(Q2) and a subsequence
{uee}22, of {uf}es0 such that u* — u uniformly in §2 as k — oo.

Proof. We have u® € S(A\ A, f) in Q for all € > 0 by the assumption (L2).
By the setting, g has a modulus of continuity p(r) = [g]ca(q)r®. Since 9 €
O™+2a () satisfies a uniform sphere condition, say with radius R > 0. Thus,
Theorem 2.2.4 implies that u® has a modulus of continuity p*, which depends
Only onn, /\7 A? Hf”LOO(Q) ) HgHLOO(Q) 7diam(Q)’ R and p-

As the modulus of continuity p* is independent on ¢, the family {u®}.~ is
equicontinuous on 2. Moreover, by an a priori estimate we have ||u|| o) <
C([[fl o) + 19l oo (@) ): Where €' depends only on n, A, A and diam((2), for
each € > 0.

Now the conditions for the Arzela-Ascoli theorem are met, which ensures
the existence of a subsequence {u*}22 ; of {u®}.5¢ which converges uniformly
in Q. 0

The limit function u will later turn out to be unique and satisfy (3.2)
in the classical sense. The next lemma plays a key role in proving this fact.
The proof can be also found in [22]; nevertheless we contain the proof for
completeness.

Lemma 3.3.2. For each M € 8™ there exists a unique v € R for which the
following equation admits a 1-periodic solution

aiijiij + aijMij =7 i R". (38)

Moreover, the solutions of (3.8) lie in C**(R™) and are unique up to an
additive constant.
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To prove this lemma we consider the following penalized problem for
d¢€(0,1)

Lemma 3.3.3. Let M € S8™. There exists a unique bounded 1-periodic solu-
tion w’ of
CLiijiijé + aijMij - 511)6 =0 inR". (39)

for each § € (0,1). Moreover, w® lies in C**(R") with the estimate

sup || éw < C|M|. (3.10)

é
0<6<1 ” Ce(R™)

Proof. In view of Theorem 2.1.4 (a) (with F(N,y) = a;;(y)Ni; + aij(y)M;;),
we know that (3.9) has a comparison principle. By the hypothesis (L2), all
the eigenvalues of (a;;) lie in the interval [\, A], which implies that

llai; Mij || oo gy < 1 AW) | o gny M| < no|M]. (3.11)

It then follows that the constant functions w’® = —no|M|/§ and w) =

no|M|/§ are a subsolution and a supersolution respectively to (3.9) for

each 0 € (0,1). Thus, Perron’s method (Theorem 2.1.6 with F(N,y) =
5

aij(y)Nij + ai;(y) My, uw = w® and v = w?) ensures that there is a unique
bounded 1-periodic viscosity solution w? € C(R"). It is immediate that

sup || dw < no|M|. (3.12)

5
0<b<1 H Le=®?)

Let us apply an interior Schauder estimate in a ball B /(yo) for yo € R"
see Theorem 2.2.7). Then w® € C%(B_//5(y0)) and there is o such that
vn/

*

C%%(B /m/2(v0))

Hw‘S < ¢ <Hw5 l Lo(B s (0)) + TLO'|M|> < 2né tego| M.

Since yo was chosen in an arbitrary way and B, s/»(yo) contains a periodic
cube, the estimate (3.10) is verified with C' = 2nd~'¢yo. O

We observe that the oscillation of w® is bounded independent of §, al-
though its L> norm is not bounded in a uniform way.

Lemma 3.3.4. Let M € 8" and w® be the unique solution to (3.9). Then

sup oscw’ < C|M|. (3.13)

0<s<1 R™
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Moreover,

< C|M|, (3.14)

sup ”w5 H C2%(Bi(yo)) —

0<o<1

where w° = w® — w°(0).

Proof. Define 0°(y) := w’(y) — ming» w® > 0 in R™. Note that @’ and w’
achieve its global maximum and minimum, and @w° € C%*(R"). Additionally,

oscgn w’ = maxgn 1. Moreover, plugging @’ into (3.9) we obtain

;i Dy, 0 — 00° = 51%? w® — a; My in R™, (3.15)

Let us restrict our domain to B 5 (y0) where y, is an arbitrary point in

R™. Note that B //5(yo) contains a periodic cube Q1(yo). This implies that

SUDB ) (40) W = supg. W’ and infBﬁm(yo) W° = infpn W = 0. Now we apply

the Harnack inequality over B /(yo) to (3.15) (see Theorem 2.2.3 (a) with
f = d mingn w® — a;;M;;). Then

< 200)\_1n0|M\;

sup 1w’ < ¢ H A_l(ér%inw‘s — a;; M;;)

B, /z/2(yo) ’ Lo (B, /7 (v0))

here we utilized (3.11) and (3.12). Since the above bound is independent of
d € (0,1), and since yo is an arbitrary point, we have shown (3.13) with
C =2co\"'no.

Define now @°(y) := w’(y) — w?(0) in R™. By (3.13), |@°| < &|M| in R"
where ¢y = 4coA"tno. Moreover, 0° € C**(R") and satisfies

CLiijiyj’lIJ(s + aijMij — (S’UNJ(S = (5w‘$(0) in R"™.

Using a similar argument when proving (3.10), we get

~5 ~ -1
oS<1§E1 | @ ||02’a(31(y0)) < ¢eono (AT + 1)| M|,
which verifies (3.14) with C' = ¢;cono(A™! + 1). O

Now we are ready to prove Lemma 3.3.2

Proof of Lemma 3.3.2. In view of (3.12), we can take a subsequence {d,w (0)}22,
of {0u’}o<s<1 and a number v € R such that 6w’ (0) — 7 as k — co. Then
(3.13) implies that dpw’ — ~ uniformly in R™ as k — oo.
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On the other hand, by the compact embedding, the uniform estimate
(3.14) yields that

H(kaa’“ - 7||L00(Rn) + Hﬁ)ék - w”CQ(Rn) —0 as k — oo, (3.16)

for some 1-periodic w € C%*(R"). Note that one may need to take a further
subsequence of {0 }72, to ensure the convergence above.

By the stability of viscosity solutions, w solves (3.8) in the viscosity sense.
Then the C*(R™)-regularity of w forces itself to be a classical solution.

To this end we prove that the constant v is unique. Suppose to the con-
trary that there is another v/ € R to which a subsequence of {dw’}ocs<1
converges uniformly in R™. Denote w’, which belongs to C?%(R"), by the
corresponding limit of a subsequence of {w°}o<s<1.

Assume without lose of generality that v < +'. As w and w’ being
bounded, we are able to add a constant ¢y to w in such a way that w’(yo)+to <
w(yo) at a point yo € R™. Take ¢; by the infimum value of ¢ such that
w' +t > win R™. Then w' + ¢; touches w by above at a point ;. Since w is
a solution of (3.8),

¥ < aij(y1) Dy, (w' + 1) (y1) + ag(y1) My = 7/,

which is a contradiction. It shows that the constant v must be unique.
Furthermore, the Liouville theorem (e.g., Theorem 2.2.5) implies that the
uniform convergence (3.16) could be made along the full sequence; i.e., the
limit function is also unique.
The last assertion of Lemma 3.3.2 is also an easy consequence of the
Liouville theorem. O

From now on we denote w’(-; M) by the unique solution of (3.9) for a
given M € 8. Also w°(-; M) := w’(+; M) — mings w®(-; M) and @°(-; M) :=
w?(+; M) —w?(0; M). In addition, let us write w(-; M) by the solution of (3.8)
for a given M € 8™ which is normalized by 0; i.e., w(0; M) = 0.

By Lemma 3.3.2 we can understand ~ as a functional M — ~(M) on
S". The linear structure of the equation (3.8) allows us to obtain further
information about the functional v which is stated in the next lemma.

Lemma 3.3.5. Let v be the functional on 8™ obtained from Lemma 3.5.2.

(i) There is a constant symmetric matriz (a;;) such that v(M) = a;;M;;.
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(it) The matriz (a;;) is elliptic with the same ellipticity constants of (a;;);

i.@., /\|§'|2 S dijgifj S A|£|2 fOT Cbllf € R".

Proof. The assertion (i) is a direct consequence of Lemma 3.3.3, and is left
to the reader.

We prove the assertion (ii). Since the proofs are similar, we only show
the first inequality. Choose any ¢ > 0 and assume for a contradiction that
there exists £ € R™ for which a;;&&; < (A — €)|¢[*. In view of (3.16), there
corresponds § € (0,1) for which [[dw’(;¢& - &") — @& || Loo@ny < e|€|?. For

the moment we abbreviate w’(-; ¢ - €) by w®. Then
aiijiijé = 6w’ — a;&&; < | ow’ — @;;&&; I Loo@n) T (@& — AE®) <0

in R™, which is contradictory to the fact that w® achieves a global minimum.
O

The constant matrix (a;;) from Lemma 3.3.5 is called the effective coef-
ficients of (a;;) in the following lemma. It is proved in [22], but we present
the proof for completeness.

Lemma 3.3.6. Suppose that (3.1) satisfies the structure conditions (L1)-
(L2) and let {uf}sg C C™2%(Q) be the family of solutions to (3.1). Then
there exists a unique function u, which has a modulus of continuity on €2,
such that u® — u uniformly in Q as € — 0. Moreover, u € C™2%(Q) and it
solves (3.2).

Proof. We already proved part of the first assertion in Lemma 3.3.1. Since
u® — w uniformly in Q up to a subsequence and u® = g on 05 for all € > 0,
we have u = ¢ on 0€2. On the other hand, the maximum principle implies
that (3.2) has at most one solution. Therefore, the convergence of u® — u is
valid without extracting a subsequence.

We claim that u is a viscosity solution to (3.2). If it is true, then Theorem
2.2.7 and Theorem 2.2.9 imply that u € C™+2%(Q).

Thus, we are only left with proving the above claim. Let P be a paraboloid
which touches v by above at x( in a neighborhood. By replacing P by P +
n|z—x0|? (n > 0) we may assume that P touches u strictly by above. Assume
to the contrary that a;;D;;P — f(z9) < 0. By the continuity of f, we can
choose r > 0 in such a way that B, (z¢) C ? and a;;D;; P — f(z) < 0 for any
S Br(flfo).
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Define P*(z) := P(x)+&*w(e 1x; D?P). Note that P* € C?%(Q). In view
of (3.8) we obtain

Aij (g) D;;P*(z) — f(x) = a;;D;i; P — f(x) <0 in B,(zo).

Hence, P¢ is a supersolution of (3.1) so that the strong maximum princi-
ple implies (u® — P)(x¢) < maxgp, (o) (u® — P°). Letting e — 0 then gives
maxyp, (z) (¥ — P) > 0, which violates the assumption that P touches u
strictly by above at xy. Therefore, a;;D;;P — f(xz) > 0 for any x € Q. It
shows that w is a viscosity subsolution of (3.2).

In a similar manner, we are able to prove that u is a viscosity supersolution
of (3.2). This completes the proof. O

3.3.2 Interior and Boundary Layer Correctors

In this subsection, we seek the interior and boundary layer correctors. We
make a remark from the previous section before we begin. Recall from the
linear algebra, {E%|i,j = 1,...,n} is the standard basis of 8". Any matrix
M € 8" can be written as M = M;;E% where M = (M;). Set M = E¥
in Lemma 3.3.2 for k,1 € {1,...,n} and write x* = w(:; E¥) € C**(R").
Notice that x*(0) = 0. In view of (3.8) and Lemma 3.3.5 (i), x*' solves

aijDinkl + Qg = k- (3.17)

Multiplying (3.17) with My, and summing over the indices k,l = 1,...,n, we
see that ™ Mj; solves (3.8) with M = (Mj;). Define

wa(y, ) = X" (y) Do) + 2(z)  (y € R",z € Q),

where u is given by Lemma 3.3.6 and v is chosen arbitrarily from C’_ma(Q)
for the moment. By Lemma 3.3.6, wy(-, ) € C**(R") for each z € ) while

wa(y, ) € C™(R) for each y € R™. Moreover, ws(+, z) solves
ij Dy wa (-, ) 4 ij Dy o u(r) =0 in R™

for each 2 € Q. We call wy the second order (interior) corrector of (3.1). The
first order corrector will be defined afterward as a compatibility condition of
the third order corrector.

Interior correctors of higher orders are discovered in the similar direction.
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Lemma 3.3.7. There are a family {a;, ;|1 <i1,...,0 <n,k>2} of con-
stants and a family {x"*|1 <iy,... i < n,k > 2} of 1-periodic functions
in C**(R™) which satisfy the following recursive equation

i Dij X" 4 204, Dy X+ g, XU = Ay, it R (318)

for each 1 < iy, ..., i < n. Here we understand x = 1 and x* = 0 for each
i=1,...,n. Furthermore, for each k > 2, x"*(0) = 0 and

iy + X || oy < Oy V1<, < (3.19)

----------

above this lemma; one may notice that (3.18) is exactly the same with (3.17)
if k£ = 2. The constant C can be taken by the sum of those from (3.10) and
(3.14).

The construction of the families {a;, ;, } and {x"~*} (for k > 3) can be
done by an induction argument, mainly following the lines of the proofs of
Lemma 3.3.2, 3.3.3 and 3.3.4. To avoid the redundancy, we leave it to the
reader. O

Now let m > 3. By Lemma 3.3.6 we have u € Cm+2e(Q). For 1 < k <
m — 2, define ¢, € C™k+22(Q) recursively by the unique solution of

(3.20)

- _ k+2 :
aiijimjwk =~ 2.-3 ail.A.ilDzil...ril Yp_iyo In Q,
Y =0 on 052,

where we understand 1)y = u. This can be done by an induction argument. Fix
k and suppose that ¢, € C™~+22(Q) for all 0 < [ < k. Then the right hand
side of (3.20) belongs to C™~%2(Q)). Now the existence and regularity theories
ensure that the boundary value problem (3.20) attains a unique solution
Yy, € C™~F+22(Q)). This induction holds because the induction hypothesis is
met for k = 1.

Furthermore, we have the following.

Lemma 3.3.8. Let m > 3 and set Yy as above for 1 <k <m — 2. Then

ellom-ss2aa) < Cema (I floma) + I9lemza@) (3:21)

for each k =0,1,...,m — 2, where we understand 1y = u.
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Proof. Since u € C™22(Q) solves (3.2), f € C™%(Q), g € C™22(Q) and
00 € C™*22 Theorem 2.2.9 and an a priori estimate yield that

lullmsse@y < Cma (I fllema@) + Illomssaey ) -

The proof is finished by adopting an induction argument. One can also prove

that
k42

Crima < Chkt2.0 E CiCr—132.m.0-

=3

Set for each 1 < k <m

k
wi(y, @) = > X NY) Dayy o ri () + Ui(7)  (y Rz €Q), (322)

=1

where ¢, 1 € C**(Q) and v, € C**(Q) are arbitrary functions which
satisfy the inequality (3.21) respectively when & = m — 1 and m. Recall that
we have set x* = 0 for all : = 1,...,n, which implies that w,(y, z) = v (z);
that is, w; is independent of the y-variable.

Lemma 3.3.9. Let m > 3 be an integer and wy be given by (3.22) for each
k= 1,...,m. Then wi(-,x) € C**(R") for each x € Q and wi(y,-) €
Cm=HF22(Q) for each y € R™ with the estimate

||wk('»ﬂf)HCZQ(Rn)*‘Hwk(?J, ')”cm—kw,a(s‘z) < Crme (Hf”cwa(s‘z) + H9H0m+27a(s‘z)> y

_ . - -
where Cma =D 1 W' CiCxtma + Chmea for each k=1,... . m.
Moreover, for 3 < k < m, wy solves recursively

ij Dy, Wi + 2055 Doy Wi—1 + QijDyo;wp—2 = 0 in R™ x €. (3.23)

Proof. The estimate follows from (3.19) and (3.21). The equation (3.23) is
immediate from (3.18) and (3.20). O

Define now the k-th order interior corrector wf of (3.1) foreach 1 < k <m

and € > 0 by
x

wi(z) = wy (;x) (x € Q). (3.24)
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By Lemma 3.3.9, wi € C*%(Q) for each & > 0. Thus, the following boundary
value problem has a unique solution lying in C%%(Q);

aij (%) Dijz,i = 0 n Q, (325>
2p = —wy on OS2

We denote the solution by z; and call it the A-th order boundary layer cor-
rector of (3.1). Lemma 3.3.9 yields a uniform bound of 2§, namely,

sup ||ZliHL°°(Q) < Cosup Hwian(Q) < coCrm (Hf”cm,a((z) + ”gHCerQ’D‘(Q)) :
e>0 e>0

Note that for any £ > 0, z{ = 0 on (2, since w$ = 1 on {2 where v, vanishes

on 0f).

3.3.3 Proof of Theorem 3.1.1

We are now in position to achieve the higher order convergence rates in the
framework of linear equations.

Proof of Theorem 3.1.1. Fix € > 0. Let wi and zj be defined as in the pre-
vious section for each k =1, ..., m. Define

ne, = u+ews + ewh 4+ -+ eMws,, 05, =i+ e 4+ el

on €. Then both 7%, and ¢, belong to C**(£2). We utilize (3.8), (3.23) and
(3.25). A lengthy but elementary computation gives

T 1> € T g m— 13
Qj (g) Dyj(n5, +0;,) = aij (g) Dymny, = f+e¢ Lot

in 2, where
(Pin(x) = Z |:2ailj <g> Dijz1...Zz_1 (g> + a;,_,i, (E) Xu...zz_z (g)]

=
X D:ril Ty Qﬂmflfl (i[))

o T\ i T
1> (g) it (g) Diy oy Vms(z) (€ Q).
=2
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Now we set € € (0,1). According to (3.19) and (3.21), we have

165l ey < Em (I o + N9llomizae

where

Lm,ﬂ
m—1 N - ~
Z n'~t {2(01_1 + C1—2)Crci—10 + CZ—QCm—l,Q} + 0" CraCo

=0
=3

Here Cj, and C}, are the constants chosen as in (3.19) and (3.21).
On the other hand, we have 75, + 65, = g+ >_;", e*(wi + 2) = g on 9Q.
Thus, u® — 75, — 65, € C*%(Q) solves the following equation,

Qij (%) Dijv = —€m71g0fn in Q,
v=20 on 0f).

An a priori estimate then gives

£

||U - 775;1 - gfn”Loo(Q) < coLm,o <||f||cmva(§z) + ||9||Cm+27a(0)) :

3.4 Fully Nonlinear Equations

3.4.1 Basic Homogenization Scheme

This subsection is devoted to the homogenization process of (3.3) to (3.4). It
generalizes the homogenization result of linear equations (see Section 3.3.1).
One may find a general argument in [22] for some lemmas. However, we
present all the proofs which are adequate for our situation.

Lemma 3.4.1. Assume for each e > 0 that u® € C(Q) is a viscosity solution
of (3.3). Then there is a function u € C(S2) and a subsequence {u*}72, of
{uf}eso such that u™ — w uniformly in Q as k — oo.

Proof. The proof is identical to that of Lemma 3.3.1. One may notice that
the proof of Lemma 3.3.1 does not involve the linear structure of (3.1). [
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As we did in Section 3.3.1, we will ascertain the effective equation which
u solves in the viscosity sense at the end of this section. Before we start,

we point out that the argument throughout this subsection is valid by only
assuming that F' € C% (B x Q x R™) for each L > 0 (i.e., (F3) with m = 0).

Lemma 3.4.2. To each (M,x) € 8™ x § there corresponds a unique v € R
for which the following equation

F(D:w+ M,z,y) =~ inR" (3.26)

attains a 1-periodic solution w € C**(R™). Moreover, w is unique up to an
additive constant. Moreover, if the solution w satisfies w(0) = 0, then

HWHC%Q(R“) < Cluy-

As we did in the linear case, we start with an approximating problem.

Lemma 3.4.3. Let (M,x) € 8" x Q and § € (0,1). Then there is a unique
bounded 1-periodic function w® € C**(R™) which solves

F(Dzw‘S + M, z,y) — 6w’ =0 inR", (3.27)
with the uniform estimate

5
Os<1;£>1 H(Sw HCQ’a(Rn) < Cimy- (3.28)

Proof. Fix (M,z) € 8" x Q. The unique existence of the solution w® to (3.27)
follows the same argument as in Lemma 3.3.3, so is omitted. Moreover, we
have

sup || dw <o(l+|M]). (3.29)

5

0<d<1 ey
To improve the regularity of w’ to C*%(R") we make use of interior C?

estimate (Theorem 2.2.7) instead of the interior Schauder estimate. We know

from the hypothesis (F4) that F' is concave with respect to M and from the

hypothesis (F3) that for any y, yo € R”

|F(M+N,J}7y) _F(M+N7xay0)|
, = su
B(y yO) NEE" 1—|—|N|

< o(1+[M]]y = yol-
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On the other hand, since w? is a solution to (3.27) in R", we have w’ €
S(\/n, A, 6w’ — F(M,x,-)) in R". As we restrict ourselves to the cube Qs,
we obtain from Theorem 2.2.3 (b) that w® € C%(Q;) and Hwchd(Ql) <

co(071 +2)o(1 + |M]), for each § > 0. Since @, is a periodic cube of w’, we
obtain a uniform Hoélder estimate on dw® over R™, namely,

sup || dw < 3cgo (14 |M]).

5
0<d<1 ” o (®)

Now Theorem 2.2.7 applies to w® so that we get a constant Cia > 1 for
which w’ € CZ’Q(BC@}l\/ﬁ(yO)) and

Hw ) < Cimi (HwéHLOO(B\/E(yO))—i_l) Sé\M\(Silv

"Ilc
C%(B__ y
where [|[|¢2.a(g) is the adimensional C** norm on E. Since yo € R™ was an

arbitrary point and B, (yo) contains a periodic cube of w®, we obtain the
estimate (3.28). O

Our next step is to find a uniform bound of the oscillation of w? for
J € (0,1).

Lemma 3.4.4. Let M € 8", v € Q and w® be the unique solution to (3.27).
Then
sup oscw’ < C(1+|M|).

0<é<1 R
Moreover, there holds
~§ <
S0 (|8 ] oo ey < Cnai (3.30)

where w° = w® — w’(0) in R".
Proof. The proof follows the line of the proof of Lemma 3.3.4. O

It is noteworthy to observe that the derivatives of w® are bounded inde-
pendent of § € (0,1). To be specific, since Dw® = D@’ and D*w’ = D%,
we obtain from (3.30) that

OSUP (H Duw’ ” Lee(R7) + H D*uw’ H Loo(Rn) + [D2w6]ca(Rn)) < C\M\. (3.31)
<6<1
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We are now in position to prove Lemma 3.4.2.

Proof of Lemma 3.4.2. One may notice that the proof of Lemma 3.3.2 has
nothing to do with the linear structure of (3.8). Indeed, (3.29) and (3.30) re-
spectively correspond to (3.12) and (3.14). Hence, by the compact embedding,
we are able to extract a subsequence {dpw, @w%}%° | from {dw® 0°}ocsa
such that

| Spw’s — ’y”Lw(Rn) + Hu?‘sk —w ||CQ(Rn) —0 as k— oo, (3.32)

for some v € R and w € C%%(R"). In addition, we have that |y| < o(1+|M])
and [[wl|ce.aggny < Cjar- The rest of the proof is exactly the same with that
of Lemma 3.3.2 and hence is omitted. O]

Definition 3.4.5. Let (M,z) € 8™ x Q.

(i) For each § € (0,1), we denote w’(-; M,z) by the unique bounded 1-
periodic solution of (3.27) and @°(-; M, x) = w’(-; M, z) — w’(0; M, x)
in R™. By the uniqueness of the solution, we can understand w®(y; -, -) as
the mapping (M, z) — w’(y; M, x) defined on 8™ x Q for each y € R™.

(ii) In a similar way, we write F(M, x) by the unique number ~y of (3.26) and
w(-; M, z) by the bounded 1-periodic solution of (3.26) which is normal-
ized by w(0; M, z) = 0. Again the uniqueness allows us to understand
F [resp., w(y;-,-) for each y € R"] as the mapping (M, x) — F(M,x)
[resp., w(y; M, z)] defined on S™ x Q.

Note that (3.26) now reads

{F(D§w+M,a:,y) = F(M,z) inR", (3.33)

w is 1-periodic.

The next lemma states that dw® and @° are locally Lipschitz continuous
n (M,z). One may also find a proof for (3.34) in [2] and [22] regarding a
more general situation. The proof for (3.35) can also be found in [42] with a
different argument.

Lemma 3.4.6. For any L >0 and (M, z), (M’ 2') € By, x Q, we have

|50’ (5 M /) = 0 (5 M, | < Co(IM — M| + |2~ 2](3.34)

x) HLOO(R”
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and

1693 M) = @5 M, 2) | oy < ColIM’ = M| + 12 — 1) (3.35)

Proof. For brevity, let us denote by v [resp., v9] the function w’(-; M, z")

[resp., w’(-; M, x)]. Also by #¢ [resp., 93] let us denote w°(-; M’,2’) [resp.,
We prove (3.34) first. By the Lipschitz continuity of F', we get

(D + M, z,y) > 60] — o1+ L)(|M' — M| + | — )

which implies that v3 — §~ 1o (1 + L)(||M' — M|| + |2’ — =|) is a subsolution
of (3.27). By the comparison principle (Theorem 2.1.4), we arrive at

ovy — 0v? < o(14 LY(||M' — M| + |2’ —z|) in R™

By a similar argument, we obtain (3.34) with C, > o(1 + L).

Now we move on to the proof of (3.35). The main idea is to use the lin-
earisation of F. Define af; = fol F, (N?, 2, -)dt and b)) = fol Fy (N g, -)dt
where N? := t{D?v + M'} + (1 — t){D*v) + M} and z; := tz + (1 — t)a’.
It is immediate from the structure conditions (F1)-(F3) that a; and b
(i,7,k = 1,...,n) are 1-periodic and uniformly bounded in R™ by the Lip-
schitz constant of F'. Furthermore, (afj) is uniformly elliptic with the same
ellipticity constants A and A of F.

Now define v° := v — v and ©° := @ — ©9. Then v°, 7% € C*%(R") solve

al; Dijw + af;(M}; — My;) + b (x, — xx) = 6v°  in R™. (3.36)

As this equation belongs to the same class of (3.9), we arrive the conclusion by
the same argument used in Lemma 3.3.4. We left the details to the reader. [

Lemma 3.4.7. The convergence in (3.32) is uniform in (M,x) € B x Q
for each L > 0; i.e.,

. 5/ . = _
(151—r>% (M@S)IGJIB)LXQ H ow’(-; M, x) — F(M, ) ” Leo(R) 0,
and
lim sup [J@(; M,2) — w(;; M, @) || o gny = 0-

020 (Af,2)e B xQ
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Proof. Fix L > 0. Put C, = sup{Cjy : M € Br} and then take C; =
max{o(l + L),CL}. Then it follows from (3.29) and (3.30) that for any § €

(07 1)7

sup Sw’ (s M,
{16w'(

(M,:E)GBL xQ

~0 . ~
x)HLoc(Rn)? w (.’M7I)HCQ,Q(RW,)} S C(L-
The above uniform estimates allow us to extract a subsequence {,w }°,
resp. {w*}p2,] from {0w’}ocser [resp. {w®}ocsa1] such that (3.32) holds
regardless of a particular choice of (M, z) € By, x €. The rest of the proof is
the same with that in Lemma 3.4.2. [l

It is an immediate consequence of Lemma 3.4.6 and 3.4.7 that the effective
operator I and the corresponding corrector w(y;-,-) are locally Lipschitz
continuous (uniform in y). Due to its particular role in the rest of this paper,
we present the statement without proof.

Lemma 3.4.8. F and w(y;-,-) are Lipschitz continuous locally in S™ and
globally in Q. Moreover, the Lipschitz continuity of the latter is uniform in
y € R™.

There are additional properties of F. A more general proof is contained
in [22]. Here we make a slight adjustment of the proof according to our
situation; the main difference is that we have C%®-corrector, which makes
the proof simpler.

Lemma 3.4.9. (i) F is uniformly elliptic with the same constants A and
A of F.

(ii) F is concave on S™.

Proof. The proof for the assertion (i) is similar to that of the assertion (ii)
of Lemma 3.3.5, so is omitted.
Now we establish the proof of (ii). Let M, N € 8" and x € Q be given.
For simplicity let us write w™ by the solutions of (3.33) with respect to M.
Suppose toward a contradiction that there is some t € (0,1) and M, N €
S" such that

F(tM + (1 —t)N,z) < tF(M,z) + (1 — t)F(N, z).

Put X :=tM + (1 —t)N € 8". Adding a constant to w¥ if necessary, we
may assume that w® < tw + (1 — t)w” in R™. Then we obtain from the
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concavity of F' that
F(X,z) <tF(M,z)+ (1 —t)F(N,z) < F(X + D.(tw™ + (1 = t)w"), z,y)

in R™. However, since F(X + D2w®,x,y) = F(X, ) in R", the comparison
principle implies that wX > tw™ + (1 —t)w™ in R™, which is a contradiction.
O

As we mentioned in the beginning of this section, we determine the equa-
tion which u solves in the viscosity sense.

Lemma 3.4.10. Assume that F € C(S™ x Q x R") satisfy the hypotheses
(F1)-(F4). Then the function u from Lemma 3.4.1 solves (3.4). Moreover, u
is unique and belongs to the class of C**(Q).

Proof. The proof of that u is a viscosity solution of (3.4) is similar to that
of Lemma 3.3.6. Instead of using strong maximum principle, one may take
advantage of Theorem 2.1.3. The details are left to the reader.

As long as we know that u solves (3.4), the fact that u € C%*(2) follows
readily from Theorem 2.2.7. The proof is similar to that in Lemma 3.4.3,
so the details are omitted; instead of taking advantage of (F1)-(F4), we use
Lemma 3.4.9 (i)-(iii). We make a remark here that the exponent « is the
same with which we chose in Lemma 3.4.3 because the ellipticity constants
of F' coincide with those of F' (Lemma 3.4.9 (i)). O

3.4.2 Regularity Theory in Slow Variables

In the previous subsection, we observed that the Lipschitz regularity of F,
in particular in the (M, z)-variable, yields the Lipschitz regularity of F' and
w(y; -, ), where the regularity for the latter is uniform in y € R™. Then,
it is natural to ask whether higher regularity of F' in (M, x)-variable gives
higher regularity for F' and w(y;-,-), and we prove in this subsection that
the answer is affirmative. Specifically, we observe that they have the same
regularity as F' does. This regularity result plays the key role in the rest
of this paper, especially in seeking higher order interior correctors. To be
precise, we observe the following.

Proposition 3.4.11. F and w(y;-,-) are C™* locally in 8™ and globally in
Q and for any L > 0,

H FH Ccm1 (B xQ) + [Jw(y, - ')Hcm,l(E;LXQ) <Cim (3.37)
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Moreover, for any (M',2'),(M,x) € By, x Q there holds

S | DyDiw( M a') — DiyDiw( M, 2)]| g
0<itj<m—1 (3.38)
< Crm([[M" = M| + [2" — xI).

Remark 3.4.12. Note that the estimate (3.38) implies that Djw(y;-,-) €
Cm=VY B x Q) fori =1,2. This will turn out as the coupling eﬁect as we
mentioned in Sect. 3.1.

Before we begin the proof, let us illustrate the heuristics of our argument.
In the first place, we only assume that F satisfies the structure condition (F3)
with m = 1, which means that F is C™! locally in S™ and globally in  x R",
and arrive at the conclusion that F' and w(y;-,-) are also C*! locally in S™
and globally in Q. We also observe that the equation, which involves the
partial derivatives of F' and w(y;-,-) in M and z-variable, satisfies the same
structure conditions of F'. This implies that under our original assumption
(F3) we are able to iterate the argument to get C™! regularity of F and
w(y; -, -) which is local in 8" and global in Q.

As the first step, we prove that if F € CY! then the L®-norm in (3.34)
and (3.35) can be improved by C**-norm.

Lemma 3.4.13. For each L > 0 and (M, z),(M’,2") € By, x €, there hold
for all 6 € (0,1),

[0’ (s M, 2') = 6w’ (5 M, ) || ooy < CLUIM = M| + |o" = x]) (3.39)
and

[ (5 M, 2) = (s M, @) || o oy < Cr(|M = M| + [ — ).

Proof. The main idea has been already introduced in the proof of Lemma
3.4.6. We only need to obtain a uniform C%(R")-estimate on the linearized
coefficients a - and bY; recall all the notations used in Lemma 3.4.6. Here we

only present the proof for am, since that of b} follows the same argument.

By the estimate (3.31), we have that for any ¢ € [0, 1], ‘N‘S HLoo(Rn) <
Cp + L. Hence, we deduce from the condition (F3) that HCLU H Lw(Rn) <
o(Cr + L+ 1). Again by (3.31), for any 1,32 € Q1, || N2 (y1) — N (2) || <
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Crlyr — y2|*. Thus, the periodicity of af; yields that [a;]coemn) < Cy, where

Cp = 0(CL+ L+1)(C, +1). Summing up we get that | a?; || Comny < 2C],.
&) S 6coo(1 4+ L). Therefore, we
may apply the interior Schauder estimate to (3.36) in a ball B, containing
a periodic cube to get the conclusion, as in Lemma 3.3.3 and 3.3.4. O

It is also easy to see that ||5v‘s H coa

As a corollary, we obtain the same Lipschitz continuity of w(y;-,-) in
(M, z)-variable which is uniform in the C**(R"™)-norm.

Lemma 3.4.14. For each L > 0 and (M,x),(M’,z') € By, x Q, there holds

lw(-; MY, 2") = w(; M, 2) || gz gny < CLIM" = M| + |2" — z]).

Proof. Apply the uniform convergence (Lemma 3.4.7) to get
[w(; M, 2") = w(; M, )| cogny < CL(IM" = M| + |2 — x]).

Then use the uniform boundedness of C%*(R")-norm of w(-; M’, z')—w(-; M, )
(Lemma 3.4.2) and the compactness embedding to improve this inequality
to C%*(R™)-norm. O

In the subsequent two lemmas, we show that F' and w(y; -, -) are differen-
tiable and further that the partial derivatives are locally Lipschitz continuous
on 8™ x €. The former is done by linearizing the equation (3.33). In order to
get the latter, however, we need to begin our argument from the linearized
equation (3.36).

Lemma 3.4.15. There exist F,,,, Fy,, Dy, w(y;-,-) and Dy, w(y;-,-) for each

Pk

y € R" on 8" x Q. In addition, there hold for any L > 0 and (M, x) € By x %,

| Fp (M, )| + | Fy (M, )|
+ HDpklw(7 M? ZL‘) ||CQ7<¥(RH) + ||Dzkw(’ M7 x)HCZ,a(Rn) (340)
< (Cp.

Proof. Here we only provide the proof for the M-partial derivatives of ' and

w(y; -, ). The argument for the x-partial derivatives is similar so we omit it
to avoid the redundancy.
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Pick any L > 0 and (M,z) € By x Q. By v, we denote h~tw(-; M +
hEM x) —w(-; M, z)]. As we linearize the equation (3.33) with M +hE* and
M, and divide the both sides by h, we observe that v, satisfies

ijh Dijvn + agp = Tn (3.41)

where a;jp, = [ Fy (Nip, @, )dt, yp := b [F(M + hE", 2) — F(M, )] and
Ny = tD2w(; M + hEM, x) + (1 — t)D2w(-; M, x) + M + thEM.

By following the argument in the proof of Lemma 3.4.13, we observe that
for any h with |h| small, a;;), is also uniformly elliptic with the ellipticity
constants A and A, and belongs to C%*(R") with l@ijnllcoaggny < cr. Also
we know from Lemma 3.4.8 that |v,| < ¢f.

Therefore, the linearized equation (3.41) belongs to the same class of
(3.9). Even though the coefficients of (3.41) vary with respect to the pa-
rameter h, the proof of Lemma 3.3.2 is still applicable because we have a
uniform convergence of a;;, as h — 0; indeed, Lemma 3.4.14 implies that
aijn — i = Fp (Djw(-; M, z) + M, z,-) uniformly in R™ as h — 0. Conse-
quently, there exist a unique constant v and a bounded 1-periodic function
v € C?%(R"™) such that

v =+ llvn = vl c2gny = 0
as h — 0 and that v satisfies
a;;Dijv+ap =~ in R". (3.42)

By the convergence above, v = F,,(M,z) and v = D, w(-; M, x). One
should notice that we do not force v(0) to be 0 here; otherwise, we could not
say that v = D, w(-; M, x). The uniform estimate (3.40) now follows from
Lemma 3.4.8 and 3.4.14. [l
Lemma 3.4.16. F,, , F,, D, ,w(y;-,-) and D, w(y;-,-) are Lipschitz con-
tinuous locally in S™ and globally in Q. Moreover, the Lipschitz continuity of
the latter two is uniform y € R™.

Proof. Here we only present the proof for the M-partial derivatives. The
proof for the x-partial derivatives is the same, and we leave it to the reader.
Substituting M’ [resp., 2] with M + hE* [resp., z] in the equation (3.36)
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and dividing by h the both sides, one obtains
ag; p Dijvp + agy, — 0vp =0 in R",

where af; , := | Fp (N2, - )dt, v -= W w (s M 4 hEM, 2) —w® (s M, x)]
and NP, :=tD2w’(; M + hEM, x) + (1 — t)D2w’ (-; M, x) + M + thE*.

By Lemma 3.4.13, we have vach,a(Rn) < Cp for any 0 < |h] < 1
and 6 > 0. Then the Arzela—Asooli theorem yields that for each o > 0,
there is a bounded 1-periodic v° € C*%(R") such that v{ — v in C*(R"
along a subsequence of h. Moreover, this lemma implies that aw h afj =
F, (D2uw’(; M,z) + M, z,-) uniformly in R™ as h — 0. Since af; is also
uniformly elliptic with the same ellipticity constants A and A, the stability
of the viscosity solutions (c.f. the proof of Lemma 3.3.2) then ensures that
the limit function v° solves

aijijv‘; +ad, — 60’ =0 in R™ (3.43)

Due to the uniqueness of the solution of (3.43) (c.f. Lemma 3.3.3), we now
know that v — v in C2(R"™) as h — 0; i.e., the convergence is valid for the
full sequence of h.

From now on we write af; = af;(; M, ) [resp., v* = v°(-; M, z)] to spec-
ify the dependency on (M,x). We claim that the equation (3.43) is a 0-
penalization of the equation (3.42); i.e., the limit of the normalized function
(s M, x) == v°(-; M, ) —v°(0; M, z) solves the equation (3.42). It is enough
to prove that al;(-; M,z) — a;;( M,z) = F,,,(D2w(-; M, x) + M, z,-) uni-
formly in R" as § — 0, since then the rest of the proof follows the lines of
Lemma 3.4.2. However, by Lemma 3.4.7 and 3.4.13, we have
s M, x) — (M, z) ||

lim sup || a;
(0,)=(04,0) (A1,2)e B xQ

7, h L (Rn) = O,
which gives the desired convergence.

Next we claim that for each L > 0, aw (y;-,-) is Lipschitz continuous in
B, x Q uniformly for y € R® and § € (0,1). If so, then we arrive at our
conclusion by applying Lemma 3.4.6, since the equations (3.43) and (3.27)
are in the same class.

To see this, choose any L > 0 and (N, z), (N’

2') x Q. According
0 (3.31), the C%*(R™)-norm of both w’(-; N, 2) and w

€ By
3(-; N', ) is uniformly
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bounded by Cp. Thus, the structure condition (F3) together with (3.39)
yields that

H agj('; Na Z) - a?j('; N/’ Z,) H Lo (R™) S éL(||N - N,H + |Z - Z/|)7

where Cf = Cro(1+ Cp), which proves the claim. O

Remark 3.4.17. Note that the limit of the normalized function ©°(-; M, x)

may not be equal to D, w(-; M, x), since we cannot assure that Dy, ,w(0; M, z) =

0. In fact, those two functions differ by an additive constant. It is the main
reason why we do not use the §-penalization argument to derive Lemma
3.4.15, although the proofs are essentially the same.

We are now in position to present the proof of our main proposition of
this subsection.

Proof of Proposition 3.4.11. Observe from Lemma 3.4.16 the first order par-
tial derivatives of F' and w(y;-,-) satisfies the equations (e.g., (3.42)) which
belong to the same class of (3.26), and admit the J-approximating problems
(e.g., (3.43)) which correspond to (3.27). Thus, we can repeat the argument
used through Lemma 3.4.13-3.4.16 again to get the Lipschitz continuity of
the second order partial derivatives of F' and w(y; -, -). We iterate this process
by m-times to reach the conclusion. We leave the details to the reader. [

3.4.3 Interior and Boundary Layer Correctors

Now we are in position to construct higher order correctors which correct
the error occurring in the interior and on the boundary layer of our physical
domain €2. This subsection involves many iterative arguments, so before we
make our argument rigorous, we would like to provide the key idea.

First and foremost, we emphasize that the asymptotic expansion of u°
occurs inside of the operator F', which differs from the linear case. That is,
if 2= u+ >, _, e"wr(e 'z, ) is our expansion, then after a computation
we get

F(D%i,x, E) =F <X0+8YT,£,I>
5 5
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where
Diu(-) + Dws(- /¢, -) if k=0
Xk D2wi(-/e,+) + Dy ywry1(-/e, ) + Dzwk+2(~/5, ) ifl1<k<r-2
D2w,_1(-/e,") + Dy yw,(-/, ) ifk=r—1,
D2w,(-/e,") it k=r,
(3.44)
and Y" defined by
Y= X' peX? 44X (3.45)

Here we have denoted D,D,+D,D, by D, ,. To further simplify our notation,
let us drop the dependency of (e7'z, z). Then a Taylor expansion of F with
respect to the Hessian gives,

r

F(X°+eY") = F(X°) +eF, (X)W 4+ —=F,

p|~ PininPirir (XY, - Y]
+O(g"),

11J1 irjr

which would be valid provided that ||Y"|[ o) < C with a positive constant
independent of . This in turn requires us to have a uniform control (i.e.,
independent of €) on the supremum norm of second order derivatives of wy
in both x and y-variables.

Moreover, one should note that Y™ = Y, ¥ 1 X" is a summation of
the terms of different e-order. For this reason we rearrange the terms in the
Taylor expansion according to the e-power as below.

F(X°+eY") = F(X°) +cF, (X)X, + -

T
1
T - Oy xym ..., x"™
TE ! Z Diyjy ---Piygy (X >Xi1j1 Xiljz
I=1 " nit-tm=r
T €n1+...+nl 0
ni ny
+ Z Z Al Fpim--'l’im (X )Xiljl o Xiljl
=1 r+1<ni+-+n;<rl ’
+ O(ET—H).
(3.46)

It suggests us to find wy, ..., w, in such a way that F(X°) =0, F, (X°) X, =
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0, and so on.
To satisty F((X") = 0, wy must be chosen such that DJw, = Dyw(-; Diu, x).

Then F(X°) = F(D2u) = 0 by Lemma 3.4.10. Furthermore, one should ob-
tain, for k =1,...,r — 2,

k
1 0 ni n
0= Z ﬁ Z Fpilh"'piljl (X )Xiljl o .Xiz;'z

o kq . (3.47)
. ni ng
= Iy, (X )Xij + Z il Z Fpiljlmpiljl (X )Xi1j1 o 'Xizjz

= sz’j (XO)Dyiyj W42 + (I)k+27
which yields the equation for wy, where

DPppo = Fpij (XO)Dwiijk + 2Fp¢j (XO>D17iyj Wi41
k
1 0 n n
+ ﬁ Z Fpiljl"'pizﬂ'z (X )Xi11j1 o 'Xizéz'
=2 " nite4n=k

Notice that the summation on the right hand side involves X' for [ < k — 1
only; in other words, the term @, has nothing to do with the functions w,
with » > k 4+ 2. Thus, we are able to obtain w2 by solving the equation
(3.47) as long as ®;,o satisfies certain inductive hypotheses. On the other
hand, since wyyo makes the ef-th order term in (3.46) to vanish, there is
no opportunity to kill the e"~! and £"-th order terms; recall that the same
situation has happened in the linear setting. This in turn suggests that we
can have at most

F(X°+eY") =0,

which would lead us to O(e"!)-rate of convergence (Theorem 3.1.2). Finally
we make a remark that as in the linear case, we would come up with the
compatibility condition of wyg,o, which determines uniquely wy. Unlike the
linear case (Lemma 3.3.7), however, this relationship is more hidden in the
induction argument. We will discuss this issue in the proof in more detail.
Now we make our argument rigorous. Throughout this subsection we set
m > 2. First we enhance the regularity of u, since now we have F' € C™!.

Lemma 3.4.18. Assume that F wverifies the hypotheses (F1)-(F4). Then
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u € C™22(Q) and
||U||Cm+2,a(§2) < Cg 0

Proof. By Proposition 3.4.11 we know that F' is C’i’l locally in 8™ and glob-
ally in Q. Since u solves (3.4) where g € C™>1(Q) and 092 € C™*?!, the
regularity theory (Theorem 2.2.7) implies that v € C™™2(Q)) and

HuHcm+2,a(Q) < CF,Q(H““Loo(Q) + H9H0m+271((2)>

where Cpq is a constant depending only on the derivatives of F up to m-th
order, and on 2. By (3.37), Crg in turn depends only on the constants ap-
pearing in the structure conditions (F1)-(F4) and m. By an a priori estimate,
on the other hand, we may bound the supremum norm of v by a constant
depending only on A, A, Q and HgHLOQ(Q). It completes the proof. ]

Next we construct the interior higher order correctors. The regularity
theory established in Subsection 3.4.2 now plays an essential role in proving
the existence of the correctors and obtaining a uniform control on L*-bound
of their second order derivatives.

Lemma 3.4.19. Suppose m > 2. Then there exist a family of non-trivial
1-periodic functions {wy : R" x Q — R}ycpgimyyy for which the following
holds.

(i) wi(-,x) € C**(R") uniformly for all x € Q and lwe (-, 2) | o2 @ny <
Cm,k:,g,Q~

(1) wi(y,-) € C™2+2YQ) uniformly for all y € R™ and
Hwk(y, ')HCm—2k+2,l(Q) < CmJg’g’Q.

Moreover, there holds for any x1, s € Q that

m—2k+1
Y I Dbwi(sw1) = Dhwi(,02) || oo gy < Cmpglzr = ).
=0

(i4i) Provided that k > 3, for each x € Q, wy(-, z) solves

(v, @) Dy,ywi (-, ) + @i (-, 2) =0 in R, (3.48)
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where
Q) = aijDux W2 + 245 Dy, W1

E E ni n
+ all]l zl]leljl Xu]ﬂ

=2 'nl—i- +n=k—2

n — J—
XZT; Dy, 2y Wi, + 2Dy, . W1+ Dy, o Wnoo, T=1,...,1,
o 2 2, 0.2 _
Wirjr.iy = Fpiljl---piljl (Dmu + Dyw('v Dzuv ')7 K ')v I=1,..., k=2

Proof. We are going to use an induction argument to construct {wy }1< k<[D]+1

as well as families of functions {v, : @ — R}_ 1<k<[m]+1 and {dr R x Q —
R}1<k< J+1, Which verify the following conditions:

(IP1) ¢p(-, ) € C**(R™) uniformly for all z € Q and |k (-,

) HCQ,a(Rn) S
Cm,k,g,Q-

(IP2) ¢x(y,-) € C™2+41(Q) uniformly for y € R™ and ||¢r(y, )| gm-2rss, 1) <

Conk.g.0- Moreover, ¢ (0,-) = 0 in Q and there holds for any x1, 25 € Q
that

m—2k+3

Z || Di:ghk(a xl) - Dic(bk(? 513'2) || C2.(Rn) < ~m,k,g,ﬂ|$1 — T2|.
=0

(IP3) W € C™=2421(Q) satisfying [l cmsiszaqy < Conkgs:
It will turn out at the end that as we define

where XV (y, x) := Dy, w(y; Dau, x), {wy }r<k<p)1 satisfies Lemma 3.4.19.
Let us make a few remarks on the function X” (y, x), which has the partic-

ular importance in this proof. First we observe from Proposition 3.4.11 and

Lemma 3.4.18 that X% (-, z) € C*>*(R") for all z € 2 and ||Xij(-,x)||c2,a(Rn) <

C’T(n)g - In addition, x¥(y,-) € C™11(Q) uniformly for y € R™ and

HX Y, Hcmu )SC'r(n)gQ’
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and, in particular for z1,z, € Q, there holds

3
o

H Di:XU<7x1) - DiX”(am) ||C2,Q(Rn) < C»,(ngQ|$1 - m2|
!

Il
o

It is noteworthy to see that, in view of the equation (3.42), x*(-, z) solves
aTS('v I)Dyrysxij('7 .T) + a’ij('v I) = C_Lij(x) in Rn?

where a;; ($) Fpu (D2u, ) € C™11(Q) whose C™11(Q2)-norm is bounded

above by C’Ww’Q

Let us now begin our induction argument. As the first step, we define
bo1(w) = tho() = Gz (2) = Vs () = 0 on © and 64y, 2) = 0, da(y, ) —
w(y; D2u,x) on R" x Q. If m = 2 or 3, then w;(y,x) = 0 and wy(y,z) =
w(y; D?u, x), as we define them according to (3.49). The assertions (i) and
(ii) of Lemma 3.4.19 are then immediate from Lemma 3.4.2 and Proposition
3.4.11. Since we have k < 2 when m = 2 or 3, the assertion (iii) can be
dismissed. Thus, Lemma 3.4.19 is proved for the case m = 2 and 3.

Now we consider the case when m > 4. One can easily see that ¢; and ¢9
[resp., -1, Yo, Yym) and Pym) 4] chosen in the first step still verify (IP1)-(IP2)
[resp., (IP3)].

In order to run the induction argument, we choose 3 < k < [%] + 1 and
suppose that we have already found the families {¢;_2}1<i<k—1, {P1}1<i<k—1
and {w;}1<i<r—1 which satisfy (IP1)-(IP3) and Lemma 3.4.19 respectively.
We then define @ : R" x Q@ — R by

o), = aij xlx](gbk 2+ Xabeaxbwka + QCLz‘ijiyj((bkq =+ Xabeazbwkf?))

ni n
+§ : 2 : @iy jy.. Zl]lel]l Xlljl

=2 'n1+ +n=k—2

One may notice that ®;. does not involve the functior}s Y,_9 and ¢, for r > k.
Consider the following problem: For each x € ), there exists a unique
constant W;_o(x) such that the following PDE,

aij (-, ) Dy v + B4 (-, ) = Uy o(x) in R”, (3.50)

attains a bounded 1-periodic solution v. Note that a;;(-, ) is uniformly ellip-
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tic with the ellipticity constants A and A. Moreover, a;,;,..i,;, (-, ) is 1-periodic
and belongs to C™ 41(R") whose C™41(R™)-norm is bounded above by a
constant K, ;4. This fact together with our induction hypotheses, (IP1)-
(IP3) and Lemma 3.4.19 (i) and (ii), yields that & (-, z) € C%*(R") where its
C%*(R™)-norm is bounded above by a constant K’mk’g’g. Therefore, Lemma
3.3.2 yields that the PDE (3.50) is solvable with a C*“(R")-solution, and de-
note it by ¢x(-, z). In particular, let us choose ¢ (-, z) such that ¢, (0,z) = 0.
Since the domain 2 is bounded, ¢ (-, x) € C**(R") uniformly for z € Q and
||qbk(-,a:)|]02,a(Rn) < Cpk.g0- Therefore, ¢y verifies (IP1).

To know the regularity of ¢ in x-variable, we utilize Proposition 3.4.11.
We know that a;, j, i, (y,-) € C™7H(Q) and its ™41 (Q)-norm is bounded
above by Ly, kg0. Then again by using our induction hypotheses, we ob-

tain ®y(y,-) € O™ **41(Q) whose C™~*41(Q)-norm is bounded above by
L.k g,0- Thus, Proposition 3.4.11 implies that both W;_5 and ¢y.(y, -) belong
to C™m~2F41(Q)) with the estimate that

maX{H\I]kuHCm—Zk-M,I(Q) ok (y, ')”Cm—2k+4,1(Q)} < ém,k,g,ﬂ-

In particular, we obtain for any 1,z € Q that

m—2k+3

Z || Digbk(',l‘l) - D;st(,l’g) ||02,a(Rn) S ~’rn,k:,g,Q|=’L'1 — Tag|.

=0

Hence, ¢y, satisfies (IP2) as well. )
Moreover, we choose the function ¥;_5 : €2 — R by the solution of

{aijD$iCqu7Z)k‘—2 = -V, o inQ, (3.51)

Yp—2 =10 on 0.

Recall from Lemma 3.4.9 that @,; is uniformly elliptic in  with the ellip-
ticity constants A and A. Also Proposition 3.4.11 implies that a;; € C™~1(Q)
whose C™~11(Q)-norm is bounded above by Cy,, ;. Since Wy _o € C™=2k+41((),
there exists a unique solution 1,_» € C™~#+61(Q) of (3.51) and

[vk—2ll gm—2ts01 (@) < Cllaglom-1.10 21 o0y + 18l gm-21(6)) < Crk-2,90-

Thus, ¥_» satisfies the induction hypothesis (IP3).
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Define vy, : R* x Q — R by

(Y, ) = or(y, ) + X" (y, ) Dy Pr—2().

It then follows from the observations above that v (-, z) € C**(R") with the
estimate [[vx(", 2)||c2amn) < Ampgo and that vg(y,-) € Cm2k+21(Q) with
the estimate ~

Hvk(y7 '>H0m—2k+271(ﬁ) S Amvkvgvg'

Furthermore, we have for any pair of 1, z, € ) that

m—2k+1
Z H D;vak('rrl) - D;Uk('y'rQ) H C2a(R™) S Am,k‘,g,ﬂ|l‘1 - LU2|.
i=0

One may also check that A,, 1,0 = Cm7k7979+0(1) C_’ka_QVQVQ and /Imvk’g,g =

m,g,2

Cm7k7gjﬂ+c7(3’)g7g
that

Ci k—2,9.0- Moreover, we combine (3.50) and (3.51) and obtain

aij (4, ) Dy, vi (-, ) + Pr(-, )
= (&) Dy 01, ) + Op (-, )+
+ [am('vx)Dyryinj('vx) + aij('>$)]Dmxj¢k—2(x)
= Uy_o(z) + Aij Do, Vp—a()
=0 in R".
Hence, vy, satisfies Lemma 3.4.19.

We have obtained so far ¢y_s, ¢ and v, which satisfy (IP1)-(IP3) and
Lemma 3.4.19 respectively. Now we apply the same argument above using

i)k-l—l - aijD:via:j (¢k—1 + Xabeazb¢k—3) + 2aijD$iyj (¢k + Xabeaxb¢k—2)

k—1 1
. . . . % nl .« .. % nl
T Z il Z iyt Xy Xy

=2 ni+-+n;=k—1

where X! . = X! for1 <1< k—3and X}.? = Dy, ,, wy—2+2D,, ,, wp_1+
D vg. Then we obtain ©;_1, ¢ry1 and vy which satisfy (IP1)-(IP3) and

YirYjr
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Lemma 3.4.19 respectively. Applying the same argument once again using
CBI<:—|—2 - aij TiTj (¢k + XabD:caxbwk—Q) + 2aiijiyj (¢k+1 + Xabea:cbwk—l)

n,
+ Z Z ai1j1-~-imXZ§1 ' Xll;l’
=2 . ni+--+n;= k
where Xl = Xl for 1 <1<k -3, Xk_Q = Dy, z;, Wp—2 + 2Dy, 4. w1+

Dy, Yjp (%7 and ij — D:J: L Wg—1 +2szl Yjp vk_'_Dley]T'UkJrla we get wka ¢k+2
and vyo satisfying (IP1)-(IP3) and Lemma 3.4.19 respectively.

Now let us define wy, as in (3.49); i.e., wi(y, ) = vp(y, ) + ¥r(z). Then
wy, satisfies Lemma 3.4.19; in particular, the estimates are satisfied with the
constant max{ A g0+ Amig0} + Cmiga. In addition, one can check that

i)k+1 - aij :vlarj (¢k 1 + Xabeazb¢k—3) + 2aijDaciyj (¢k + Xabeaxb¢k—2)

§ ' E : ny ny

+ all]l Zl]leljl o 'Xiljl
1=2 'n1+ Fny=k—1

= Oy,

which implies that the functions v,_; and ¢, are not changed by replacing
v by wy in the induction argument. Therefore, our induction argument runs

through k = 3, , []+1, by which we obtain the families {12 }1<k<m] 41,
{¢k}1<k< J+1 and {wk}1<k<[ 415 where wpz] = vz and Wzt = U[Z]+1-
Recall that we have chosen ¢jm) = jm) 1 = 0 Thus, we have constructed all

the desired families {t}_ 1<k<[ 2415 {¢k}1<k< 1+1 and {wk}1<k<[m]+1 which
satisfy (IP1)-(IP3) and Lemma 3.4.19 respectlvely It completes our proof.
[

Remark 3.4.20. As we note in the remark below Proposition 3.4.11, we
see how the coupling effect contribute to the regularity of x — wi(y,x). If
the z and y-variables were decoupled, we would have obtained wy(-,x) €

C«m—k+2,1 (Q)

To this end we define the k-th order interior corrector wf of (3.6) for each
1<Ek<[F]+1ande>0by

wi(x) = wg (;x) (r €Q), (3.52)
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where wy,’s are given in accordance with Lemma 3.4.19, and define 7%, : Q —
R by
_ m1
5, = u 4 ews 4 - - + ¢l Wimi -

Now we are in position to introduce the boundary layer corrector. The
underlying idea of seeking the boundary layer corrector is the same as in
the linear case; we correct the boundary oscillation occurred by the inte-
rior correctors by solving the corresponding boundary value problem (c.f.
(3.25)). Due to the nonlinearity of the problem (3.3), however, we cannot
find the boundary layer corrector in an order-wise manner. Instead, we con-
sider a boundary value problem which involves the entire boundary oscillation
caused by the interior correctors; i.e., we solve for each ¢ > 0 the following
PDE,

F (D%, + D*0¢  x,e o) = F (D%, x,e'x) in Q, (3.53)
0., =—-n,+g on 0f). '

One may notice from Lemma 3.4.19 that 7}, € 02_(@) that the right hand side
of (3.53) is a uniformly continuous function on € for each € > 0. Thus, Per-
ron’s method (e.g., Theorem 2.1.5) ensures the unique existence of a viscosity

solution 65, € C(€2) of (3.53).

3.4.4 Proof of Theorem 3.1.2

We shall now prove our main result concerning the higher order convergence
rates for fully nonlinear equations.

Proof of Theorem 3.1.2. Suppose that m > 4. The first part of the proof
verifies the discussion we made in the beginning of the previous subsection.
Fix e, € (0,1) and pick any ¢ > 0. We will skip the calculation if it has
already been done in the previous subsection.

In what follows let us denote by 7., the positive integer [] + 1. We
choose the family {wy}1<g<y,, from Lemma 3.4.19. Next we define the family
{X*}1<k<r,, as in (3.44) and then the function Y™™ as in (3.45). By Lemma
3.4.19 (i)-(ii), we have a uniform bound on the matrix norm of X*, which is
independent of ¢, namely,

|| Xk(./‘g’ ) || Lo () S Cm,k,g,ﬂ- (354)
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It is then immediately follows that

, 1—¢gm
sup ||V (-/e, )M poo(y < (1 —€x) L 1

O<e<ex — &

<L, (3.55)

where L, = (1 — &) "max{1,Cin140;- > Crnrmgal-

In the rest of this proof, we set ¢ € (0,&,] to be fixed. We choose any
zr € Q and adopt the Taylor expansion of F(D?yS,, z,x/e) with respect to
the M-variable up to (r,, — 1)-th order. For brevity, we omit the dependency
on (e7'x,z). Then, by the choice of our interior correctors wg, we end up
with

F(D*nE) = F(X° 4+ eY™)
. rm—1 Ek
= F(X ) + EFP
k=1
rm—1 k
k 0 ni n
= F(X?) + Z < I Z Fpiygy i (XD X - X
k=1 =1 " nit--+n=k

0 Tm ..\ Tm 5
1141 Pig iy (X )Y;U'l Y;kjk + Rm

+ R
_ i
(3.56)
where
epm

R = TO !Fpim“_piww (XO)Yij;?l Y. for some g € [0, €],

Tm—2
B ™m €n1+"'+nk 0 n n
an = an + Z Z TFpiljl"'pikjk (X )Xilzi T Xlk].;k

k=1 rp—1<ni+-4nip<rmk

One should note that Fpiljl---pimk (X?) are exactly the coefficients @iy i

appearing in (3.48). Now due to (3.54) and (3.55), we have
|R,| < CrgoLime™,

and thus, . )
’an| < ‘an‘ =+ Cm’g’QLirmfZ)rmgrmfl < Cogrmfl.

The second part of this proof is devoted to the establishment of the esti-
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mate (3.7). The essence is to construct barriers and argue by the comparison
principle. Choose R > 0 in such a way that Q C Bg(0). Consider the func-
tions 75% : Q — R defined by

Mo =1 + 05, £ (20) 7 Coe™ IR — [2*) (v € Q).

By the uniform ellipticity of F' (structure condition (F2)) and the choice of
the boundary layer corrector (3.53), there holds

F(D*p5t) < F(D*n, + D*05,) — Coe™ ' = F(D*n,) — Coe™ ' <0
in the viscosity sense, and 15" |aq > 15, + 05, = g. Thus, 151 is a viscosity
supersolution of (3.3). In a similar manner, one can verify that 75~ is a

viscosity subsolution of (3.3). Thus, the comparison principle yields 75~ <
u® <nSt  in Q. It then follows that

lu®

— e — Ol 1o () < (2X) o™,
which proves (3.7).

The proof for the case m = 2 or 3 shares the same idea presented above,
but is simpler. In this case, n°,(z) = u(x) + e*wy(e 'z, x), and thus, we do
not need the expansion (3.56); instead we can directly argue as in the second
part. The rest of the proof is exactly the same, so is omitted. O]
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Chapter 4

Higher Order Convergence
Rates in Theory of
Homogenization: Oscillatory
Initial Data

4.1 Introduction

We are interested in higher order convergence rates in periodic homogeniza-
tion of fully nonlinear uniformly parabolic Cauchy problems, accompanied
with rapidly oscillating initial data. We conduct our analysis based on the
theory of viscosity solutions. Readers may consult [20], [50], [51] and [52] for
standard existence and regularity theory of viscosity solutions.

4.1.1 Main Result

The governing problem under our consideration is formulated as

1 t
up = < F (52D2u€,x,t, f’ —2) in R™ x (0,7),
£ g £ (41)
x

u(z,0) =g (x, —) on R",
£

Our main result is stated as follows.
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Theorem 4.1.1. Assume that F' and g verify (4.6) - (4.8) and (4.10) - (4.11)
respectively. Let u® be the bounded viscosity solution to (4.1) for e > 0. Then
for each integer d > 0, there exist sequences {Uaqx}ey, {Wak o of spatially
periodic functions on R™ x [0,T] x R™ x [0,00) and a sequence {7, }3°, of
periodic functions on R™ x [0,T] x R™ x R such that for any mtege;“ m > 2,
any € < 1, anyx € R" and 0 <t < T,

[5)-1m—2d vt vt
E 8k+2d ( <x7ta_7_2) +wd,k <I,t,—,_2)>
d=0 k=0 € ¢ €€ (4.2)
< Ce™
and in particular for c,e®|loge| <t < T,

L5 ]-1m—2d vt
E €k+2d # . t. = — < Cmgmfl 4.3
Z T, 87 2 = ) ( )

=0 k=0

Q

where ¢, and C,, depend only onn, \, A, a, m, T and K.
Let us make a few remarks regarding Theorem 4.1.1 as follows.

Remark 4.1.2. In Section 4.4.3, we observe that vqy, is of the form

6d,k($a t: Y, 3) = Ud,k('xa t) Y, S) - @d,k(aja t)7

and satisfies an exponential decay estimate in s — o0o. The functions vy
and Vg will be called the initial layer corrector and respectively the effective
initial data of order k+2d. The exponential decay estimate amounts to (4.3),
which is the higher order convergence rate (4.3) away from the initial time
zone.

Remark 4.1.3. Moreover, Wqy, ts of the form

wd,k;<x7 t,y, 3) = wd,k<x7 Ly, 3) + ﬁd,k(‘rv t)v

where wqy and gy will be called the interior corrector and respectively the
effective limit profile of order k + 2d. Furthermore, wqy will be paired with a
space-time-periodic function wjfk such that

wik<x7 tu Y, 8) = wi&k(% tu Y, S) + ﬂd,k (ZL’, t)
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Here wjfk will play the role of the interior corrector in purely periodic homog-

entzation problems. In addition, Wy, and ﬂ)jfk for k = 0,1 will turn out to be
constant in the fast variables (y, s), so the interior error estimate (4.3) is of
the form u® — g — Up1 — 522170,2 — - ++. This indicates that there is no rapid
oscillation in the interior up to order €.

Remark 4.1.4. In Theorem 4.1.1 and to the rest of this paper, we assume
that F 1is concave in its matriz variable. Such an assumption is made to
have C%% correctors in fast variables (y,s) = (e 'xz,e7%t), and smooth limit
profiles in slow variables (x,t). These are essential, at least in our approach,
to establish higher order convergence rates, since it requires accurate error
correction at each order of ¢.

On the other hand, the interior equation for the effective problem of (4.1)
1 a linear equation. However, this does not make the problem easier in the
sense that we have strong nonlinear coupling effect near the initial time layer
when we construct higher order correctors. The particular scaling is used to
derive smooth initial layer correctors in slow variables. We shall discuss more
on this issue later.

4.1.2 Historical Background

Periodic homogenization of (4.1) (or (4.5), to be more exact) is rigorously
justified in [2] and [42]; see also the references therein, and [29] for first
order fully nonlinear equations as well as [3] for iterated homogenization.
There is a wide range of literature on the rate of convergence regarding the
homogenization problems of type (4.1) or (4.5), provided that the initial data
is non-oscillatory; that is, ¢ is independent on its second argument. Recent
development can be found, for instance, in [31], [44] and [15] using continuous
dependence estimates, [28] based on a different approach, and [37], [40] in
stationary ergodic settings; see also the references therein for classical results
in this regard.

Higher order convergence rate in the theory of homogenization has been
studied in various settings. We refer to [12], [33] for divergence type elliptic
equations, [46] for perforated domains with mixed boundary conditions, [18§]
for Maxwell equations, [5] for wave equations, [27] for some numerical results,
and also the references therein. Recently, the authors proved in [34] higher
order convergence rate for non-divergence type elliptic equations, based on
the theory of viscosity solutions.
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As far as we know, however, there has not yet been any result on (higher
order) convergence rate in homogenization of (4.1), which is the main concern
of this paper. Here we also achieve higher order convergence rate (in Proposi-
tion 4.5.2) for uniformly parabolic equations with non-oscillatory initial data,
that is,

u; = F <D2us,x,t, z, %) in R" x (0,7),
g€ (4.4)
u(x,0) = g(x) on R".

Moreover, we achieve a quantitative error estimate (in Proposition 4.5.3) in
the following homogenization problem away from the initial time zone,

/
w=F (D%f,x,t, g ;) in R" x (0,7T),

(4.5)
u*(x,0) =g (x, g) on R".

The estimate depends on a particular structure on F', which will be specified
later, and in some cases, we obtain the sharp estimate, which is a convergence
rate of order ¢.

4.1.3 Heuristic Discussion and Main Difficulties

The main difficulties in achieving higher order convergence rate are due
to the nonlinear structure of (4.1). If our operator were linear, that is,
F(P,x,t,y,s) = tr(A(z,t,y,s)P), the construction of the higher order cor-
rectors would be independent to each iterative step. However, since we deal
with fully nonlinear operators, the effect coming from the rapid oscillation
of the correctors are accumulated in the Hessian variable as we iterate the
approximation process.

A notable observation here is that the coupling effect due to the non-
linear structure of the governing operator changes the nature of the interior
correctors, if one desires to establish a higher order convergence rate. Let us
remark that the effect coming from the rapid oscillation of the initial layer
corrector does not completely vanish in the interior and even remains to be of
order 1 near the initial time layer, although it eventually becomes very small
as one stays away from the initial time zone. Now that the interior equa-
tion is fully nonlinear, such an effect is recorded in the Hessian variable and
does not go away, resulting a strong correlation between the constructions of
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initial layer correctors and interior correctors. Let us remark that one does
not encounter such a coupling effect in the context of linear equations, since
the linearity lets us to construct initial layer corrector and interior correctors
independently.

In order to resolve this issue, we find a new type of cell problems for higher
order interior correctors, which are only spatially periodic. Still we observe
that each interior corrector is paired with a space-time-periodic corrector, i.e.,
the standard one, and the difference between these two turns out to decay
exponentially fast in time. This allows us to iterate the approximation scheme
and eventually leads us to a higher order error correction in the interior as
well.

Another interesting observation is the regularity theory in slow variables.
This is especially new for the initial layer corrector and the effective ini-
tial data, where we achieve exponential decay estimates for the difference
between them; let us note that the case of interior corrector is rather a du-
plicate of our previous work [34], which concerns non-divergence type elliptic
equations. The exponential decay estimate regarding initial layer corrector is
deduced from the Harnack inequality for viscosity solutions, and can be con-
sidered classical if one thinks of linear elliptic equations on spatially periodic
domain. One may also find some variations in this regard in several other
places. For example, see [31], [15] for continuous dependence estimates, and
[1] for elliptic boundary correctors. The novelty here is that we establish the
exponential decay estimate for the derivatives of any order, which is certainly
not precedented.

Let us make the final remark on homogenization of (4.5). The key dif-
ference in the homogenization process between (4.1) and (4.5) is that the
initial layer corrector of the latter problem may not be differentiable in the
slow variables in general, while the former produces smooth initial layer cor-
rectors. The main reason for such a distinction is that the operator of (4.1)
oscillates in accordance with the oscillation of the initial data, which stabi-
lizes the influence of the fully nonlinearity of the operator near the initial time
layer to a controllable level. This ensures the base-case initial layer corrector
(and the base-case effective initial data) to be smooth enough in the slow
variables to induce higher order ones. However, the operator of (4.5) makes
too much impact on the oscillation of the solution near the initial layer and,
as a result, defects the regularity of the base-case initial layer corrector in a
substantial way.

We observe that the higher order convergence rate in the framework of
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(4.5) is a highly sophisticated matter that requires a thorough analysis on the
limiting behavior of the sequence {52F(€%P, z,t,y,8)}es0 as € — 0. Instead,
we prove the convergence rate for certain uniformly parabolic operators F
and initial data g. We observe that the convergence rate is determined by
that of the sequence {52F(8%P, x,t,y,$)}eso to its limit operator, if any; and
if the speed of the latter convergence is fast enough, we obtain the optimal
rate of convergence for u to its limit profile, away from the initial time layer
by the order of £2|loge|.

4.1.4 Outline

This paper is organized as follows. In Section 4.2, we introduce the notations
and the standing assumptions that will be used throughout this paper, unless
stated otherwise. In Section 4.3, we establish the regularity theory in the slow
variables and, in Section 4.4, we construct higher order initial layer correctors
and interior correctors. Especially, our main result, Theorem 4.1.1, is proved
in Section 4.4.3. Section 4.5 is devoted to proving some additional results,
namely the higher order convergence rate in homogenization of (4.4), and the
convergence rate in homogenization of (4.5).

4.2 Notation and Standing Assumptions

Let n > 1 be the spatial dimension and 7" > 0 be the terminal time. We will
call z (resp., t, y, and s) the slow spatial (resp., slow temporal, fast spatial,
and fast temporal) variable.

By 8™ we denote the space of all real symmetric matrices of order n,
endowed with (L?, L*)-norm; that is, |P| = (357, p};)'/? for any P € S™.
By E;; = (€},) we will denote the (i, j)-th standard basis matrix for S"
that is e?('Ll = 271(04.0j, + 040;x) with 0 being the Kronecker delta. By tr(P)
we denote the trace of P.

Let F' be a smooth functional on §". By gTI;(P) we denote the derivative

of I in direction F;; at P. By D;fF we denote the k-th order derivative of F
on 8" such that

OFF OFF

DYF(P) = (
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For notational convenience, we also understand D’;F in the sense of Fréchet
derivatives. That is, for each P € S”, we consider D} F'(P) as the (symmetric)
multilinear map from (S™)* to R such that

OF

DFE(PY(Qy, - -, =
pF ()@ Q) ODirjy - OPigjy

1 k
(P>qi1j1 © iy

for any @ = (¢};) € 8" with 1 < [ < k; here and thereafter we use the
summation convention for repeated indices. In particular, we have

D,F(P)(Q) = tr(D,F(P)Q).

By C*%(X) we shall denote the usual Holder space on X. Especially,
when X = R"™ x [0, 00), we shall define E**(R" x [0,00); 3), with 3 > 0, by
the subspace of C**(R" x [0, 00)) consisting of functions f : R" x [0,00) — R
satisfying

Hf“Ek’a(R”X[O,oo);ﬁ) = HfHCkva(Rnx[O,oo)) + Slilg (653 Hf(WS)HCk’a(R")) <C,

for some finite C' > 0.

Given a function or a mapping f on X x Y, with X a space of slow
variables and Y a space of fast variables (y,s), f is said to be spatially
periodic, if

f(',y+k,s):f(',y,3), kEZn,

while f is said to be periodic, if
fCy+ks+1)=f(,y,s), ke€ZlcZ.

Here X may consist of z, (z,t) or (P,x,t).

We will use the parabolic terminologies, such as |(z,t)] = (|z|> + |¢|)
For more details, we refer to [50]. See [20] for the classical existence theory,
the comparison principle and the stability theory of viscosity solutions. Also
see [50], [51] and [52] for the basic regularity theory for viscosity solutions,
such as the Harnack inequality, and interior and boundary regularity.

Now let us make the standing assumptions throughout this paper. Assume
that F': 8" x R" x [0,7] x R" x R — R is uniformly elliptic, periodic and
concave. By uniform ellipticity and concavity, we indicate that there are

1/2
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0 < A < A such that

NQI < F(P+Q,z,ty,s) = F(Px,ty,s) <AQ, QeS&"Q=0, (4.6)

and
1 1 P
§F(P7x7t7yas)+§F<Q7xvt7y78)SF( ;—anatayws)? Qesn
By periodicity we mean that
F(P,x,t,y+k,s+1)=F(Puxtys), keZ'leZ. (4.7)

Suppose further that F' € C*(S"™ x R"™ x [0,T]; C*(R" x R)) for some 0 <
a < 1, i.ede is some K > 0 for which

Z | DEDEOY F(P, x,t, -, -

|l +-20=1

1—|k
M oy < KIPITDe 1> 0. (4.8)

Let us remark that (4.8) implies the zero source term condition,
F(0,z,t,y,s) =0. (4.9)

On the other hand, let g : R® x R — R be a periodic function, by which
we indicate

gle,y+ k) =g(zy), keZ" (4.10)
Also suppose that g € C*°(R"; C**(R"™)) and

S [1DEg(a, M grage < K. 120, (4.11)
|pl=t

4.3 Regularity Theory in Slow Variables

Let us establish the regularity theory in slow variables, (z,t), regarding vis-
cosity solutions to uniformly parabolic problems.
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4.3.1 Spatially Periodic Cauchy Problem
Let f:R" x [0,7] x R™ x [0,00) — R be function satisfying

f<w7 t?y _I_ k? S) = f(x7t7y7 s)’ k 6 Zn? (4'12)

and assume that f € C*(R™ x [0,T]; E“(R™ x [0,00);3)), for some 8 > 0,
such that

sSup ||Dgatyf(xat7'7')||E04(]R“><[O,oo);,3) < K’ L= 0, (413)
|ul+2v=1
with 0 < a < 1 and K > 0 being the same constants used in (4.8).
For each (z,t) € R"x |0, T], let us consider the following spatially periodic
and uniformly parabolic Cauchy problem,

{US = F(D;’U, xZ, t7 Y, 3) + f('ru tv Y, S) in Rn X (O’ 00)7 (414)

v(xut’ya()) :g(ﬁ,y) on R".

By the standard existence theory [20], we know that there exists a unique
viscosity solution v(z,t,-,-) € BUC(R™ x [0,00)) to (4.14). Due to the peri-
odicity of F', f and g, we deduce that v satisfies

v(z, t,y + k,s) =v(x,t,y,s), keZ", (4.15)

for any (z,t,y,s) € R™ x [0,T] x R™ x [0, 00).

We shall begin with an easy observation that the spatial oscillation of
v(z,t,y,s) in y decays exponentially fast as s — oo. The exponential rate
will turn out to be independent of (x,t).

Lemma 4.3.1. For each (z,t) € R" x [0,T], there exists a unique v € R
such that

ePlo(x,t,y,s) — 7| < C, (4.16)
for any (x,t,y,s) € R x [0, T] x R" x [0, 00), where 0 < By < [ depends only
onn, \, N and 8, and C > 0 depend only onn, X\, A, 3, By and K.

Proof. Since (z,t) will be fixed throughout the proof, let us write v = v(y, s),
F = FM,y,s), f = f(y,s) and g = ¢g(y) for notational convenience. By
S(s), I(s) and O(s) let us denote supg. v(-, s), infg= v(+, s) and respectively
oscgn U(+, ). Also write Y = (0,1)" and 2Y = (0,2)". By the spatial peri-
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odicity (4.15) of v, we have S(s) = supyy v(+,s) = supy v(+, s), and similar
identities for I(s) and O(s) as well.
Fix sy > 0. Then

Os <S(30) + %(6_630 — e‘ﬂs)> = Ke P> f(y,s),

for any y € R™ and s > sg, due to (4.13). Since we have (4.9), we deduce
that S(sg) + %(6_680 — e7P%) is a supersolution to (4.14) in R™ x [sg, 00).
Similarly, one can observe that I(sg) — %(6_550 — e77%) is a subsolution to
(4.14) in R™ x [sg,00). Thus, by the comparison principle [20] for viscosity
solutions, we deduce that

K K
Is0) = (e =) < u(y.s) € Slo) + (e =), (@17
for any y € R™ and s > sq.
Now for each nonnegative integer k, let us define

K
or(y, s) =v(y,s + k) — I(k) + 56’5’“, yeR" s >0.
From (4.17) with s and sy replaced by s + k and k respectively, we deduce
that
Uk(y78) Z Oa Yy € Rn78 Z 0.

On the other hand, we see that vy, is a (spatially periodic) viscosity solution
to
D = F(D2ug, s+ k) + fly, s+ k) in 2Y x (0,1).

Therefore, we may apply the Harnack inequality in Y x [%,1] and deduce

27
from the spatial periodicity of v, that

S (’H %) —I(k)+%e“”“ <o (I(k+ 1) — I(k) +%€_Bk> ,

where ¢; depends only on n, A and A. Utilizing (4.17) with sq = k + % and

s = k+ 1, we obtain that S(k+1) < S(k+ 1) + %e‘ﬁk. Combining these
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two inequalities, we arrive at
Sk+1)—1(k) < (I(k—i—l)—](l{;)—i——eﬁk) . (4.18)

Now we define
K

wi(y,s) = S(k)+ Ee_ﬁk —v(y,s+k), yeR" s>0.

Then by (4.17) and (4.14), wy is a spatially periodic nonnegative viscosity
solution to

Oswy = —F(=Dlwy,y, s + k) — f(y, s + k) in2Y x (0,1).

Notice that the operator —F(—M,y, s) satisfies the same ellipticity condition
(4.6). Hence, we may invoke a similar argument as above and prove that

Stk)—I(k+1)< e (S(k) —S(k+1)+ %eﬁk) . (4.19)

Notice that the constant ¢; here is the same as that in (4.18).
By (4.18) and (4.19), we have

C1 — 10 i 201K ei’Bk,
g+ 1 (c1 + 1)y

O(k+1) < (4.20)

Iterating (4.20) with respect to k and using O(0) = oscgn ¢ < 2K, we arrive
at

e"*0(s) < cp K with 0 < 3y < min (ﬁ,log 21 i 1) , (4.21)
L —
where ¢y > 0 is another constant depending only on n, A\, A, 8 and Sy.

The estimate (4.21) implies that O(s) — 0 as s — 00. On the other
hand, we know from (4.17) that both S(s) and I(s) converge as s — oc.
Combining these two observations, we deduce that S(s) and I(s) converge to
the same limit, which we shall denote by . Then (4.16) follows immediately
from (4.21). O

Remark 4.3.2. The proof of Lemma 4.3.1 does not involve the periodicity
of Fin s.
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By Lemma 4.3.1, we are able to define v : R” x [0,7] — R by

O(z,t) = lim v(x,t,0,s). (4.22)
5—00

The limit value in the right hand side of (4.22) is precisely the unique constant
7 in the statement of Lemma 4.3.1. With v at hand, (4.16) reads

P |u(a,t,y, s) — o(x, )| < C, (4.23)

for any (z,t,y,s) € R" x [0,T] x R" x [0, 00).

One may notice that the proof of Lemma 4.3.1 does not involve the as-
sumptions on the concavity of F'in P, the C® regularity of F' and f in (y, s)
and the C%° regularity of ¢ in y. Assuming these conditions additionally, we
are allowed to use the interior and boundary C*® estimates (the so-called
Schauder theory) for viscosity solutions (with some 0 < & < «). As a result,
we improve the estimate (4.23) in terms of C*® norm.

Lemma 4.3.3. There exists 0 < & < a, depending only on n, X\, A and «,
such that v € L*(R™ x [0,T]) and v € L>®(R™ x [0,T]; C*>%(R" x [0,00)))
with

|77<x7t)| + HU(SL’,t, i ) - @<x7t)HEZ’@(R"X[O,OO);BQ) <, (4'24>
for any (z,t,s) € R" x [0,T], where C > 0 depends only on n, \, A, B, By
and K.

Proof. Let us fix (z,f) € R™ x [0,7] and simply write F(P,y,s), f(y,s),
9(y), v(y,s), and ~ for F(P,x,t,y,s), f(zx,t,y,s), g(z,y), v(z,t,y,s) and,
respectively, v(z,t). Let us denote by Y and 2Y" the cubes (0,1)" and (0, 2)".

In view of (4.14), the function o(y, s) = v(y, s) — v is a viscosity solution
to

{ﬁs = F(D;f}vy?‘g) + f(yu 3) in 2Y" < (0’ OO)’ (425)

o(y,0) = g(y) — on 2Y.

Since F' is uniformly elliptic and concave in P, and since F' and f are C*
while g is C** in (y, s), we may apply the boundary C%¢ estimate [51] to
(4.25) for some 0 < & < a, depending only on n, A, A and «. This yields
that o € C*%(Y x [0, s9]) with

||77||C2ﬂ(§7x[0,50]) <a <||17||Loo(2Yx[0,1)) + ||f||ca(2y><[o,1)) + ||9||C2»a(2y)> )
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where 0 < sy < % and ¢; > 0 depend only on n, A\, A, a and K. Utilizing

(4.16), (4.13) and (4.11) (with m = 0), we derive that

||6||C275‘(Y><[O,50]) < ¢y, (4.26)

where ¢y > 0 is determined only by n, A\, A, a, 8, By and K.
Now let us fix a nonnegative integer k and define

Uk(y,s) =v(y,s +k) (yeR" s>0).
Then from (4.25), we know that o solves
d50 = F(Djoy,y,s + k) + f(y,s + k) in2Y x(0,2).

Hence, it follows from the interior C?% estimate (with @ being the same as
that in (4.26)) that 0, € C**(Y X [so, o + 1]) with

||6/€||C2v&(§7x[so,so+1]) < ¢ <||1~)k||Loo(2Yx(o,2)) + ||f||ca(2Yx(o,2))> )

where ¢3 > 0 depends only on n, A\, A, « and K. Utilizing (4.16) and (4.13)
(with m = 0), we deduce that

HﬁkHcZ&(?X[SO,SOH]) < 046_50k, (4.27)

where ¢4 > 0 is determined only by n, A\, A, a, 5, By and K.
Iterating (4.27) with respect to k and utilizing (4.26) for the initial case
of this iteration argument, we arrive at (4.24). O

Let us remark that Lemma 4.3.3 yields the compactness (in (y,s)) of
{v(z;,t;,y,8)}2, and {0(x;, t;, y, $) }52, when (z;,t;) — (z,t). By the stability
theory [20] of viscosity solutions, we obtain that v and © are continuous in
(x,t), stated as below. Let us also point out that the following lemma is a
version of continuous dependence estimates, and we refer to [31], [15] and
other literature for more discussions in this regard.

Lemma 4.3.4. Let & be the Holder exponent chosen in Lemma 4.5.3. Then
v € C(R"x[0,T)) and v € C(R" x [0, T}; Cr¥(R™ x [0,00))) for any 0 < & <
Q.

Proof. As in the proof of Lemma 4.3.3, we will fix (z,t) € R™ x [0,T] and
continue with using the simplified notation for F', f, g, v, v and v. Let us take
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any sequence (z;,t;) — (x,t) as i — 0o. For notational convenience, let us
write F5(P,y,s) = F(P,xi,ti,y,s), fi(y,s) = f(wit,y,5), 6:(y) = g(xs,9),
vi(y,s) = v(x, ti,y,8), v = v(xg, t;) and 0;(y,s) = vi(y,s) — vi. By C we
denote a positive constant that depends only on n, A\, A, «, 3, 5y and K, and
will let it vary from one line to another.

We prove v; — v first. By (4.24) we have

[vill 2.0 mr x0,00)) < O

for any ¢ = 1,2,---. Hence, we know from the Arzela-Ascoli theorem that
for any subsequence {w;}32; of {v;}{2,, there exist a further subsequence
{wj, }?2, and a certain function w € C**(R™ x [0, 00)) such that w;, — w in
CEY(R™ x [0,00)) as k — oo, for any 0 < & < & One may notice that w;,
solves

aswjk = ij (Dzwjk’ Y, S) + fjk (yv S) in R™ x (07 OO),
w;, (y,0) = g;.(y) in R,

in the viscosity sense. Due to the regularity assumptions (4.8), (4.11) and
(4.13) on F, g and respectively f, we know that F; — F uniformly on
S"xR"x[0,00), g; = ¢ uniformly on R™ and f; — f uniformly on R"x [0, 00),
as i — oo. Hence, letting k — oo, we observe from the stability theory [20]
that the limit function w also solves

w, = F(DZw,y,s) + f(y,s) inR™x (0,00),
w(y,0) = g(y) on R",

in the viscosity sense. However, the above equation is identical with the
equation (4.14). Since v is the unique solution to (4.14), we deduce that
w = v on R" x [0, 00).

What we have proved so far is that for any subsequence of {v;}3°,, there
exists a further subsequence which converges to v. Thus, v; — v as i — o0
in CE%(R™ x [0,00)) for any 0 < & < a.

Now we are left with showing that ~; — 7. Due to (4.24), we have
e* 125 (-, 3)”02»&(]1@) <C, (4.28)

for any s > 0, uniformly for all i = 1,2, ---. Since 0;(y, s) = v;(y, s) —7; and
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0(y,s) = v(y, s) — 7, we deduce from (4.28) and (4.24) that
v — | < 2Ce 0% 4 |;(0, 5) — v(0, s)|.

Given any 6 > 0, we fix a sufficiently large sy such that 4Ce=%0% < §, and
correspondingly choose ig such that 2|v;(0, sg) — v(0, s9)| < 0 for all i > 4.
Then we have |y; — | < 0 for all i > iy, proving that v; — v as i — 0.
Thus, the proof is finished. m

By Lemma 4.3.4, we are ready to prove the differentiability of v and
v in the slow variables (z,t), and an exponential decay estimate for the
derivatives of v — v. Here we use Lemma 4.3.4 to obtain compactness (in
(y,s)) of the difference quotients (in (x,t)) of v. Arguing similarly as in the
proof of Lemma 4.3.4, we deduce that the difference quotients converge to a
single limit, proving the differentiability of v.

Lemma 4.3.5. Let & be the Holder exponent chosen in Lemma 4.3.53. Then
there exist D,,v(z,t) and Dy v(z,t,-,-) € C**(R" x [0,00)), for any 1 <
k <n, such that

| Dy 0(x,8)] + || Dy (v(2, 8+, ) — @(‘r’t>>||E2»&(Rnx[o,oo);ﬁl) <,

for any (z,t) € R" x [0,T], where 0 < By < By depends only on n, A\, A and
Bo, and C' > 0 depends only on n, X\, A\, o, B, By, f1 and K. Moreover, we
have 5 € C'(R" x [0,T]) and v € C'(R™ x [0, T]; C2¥(R" x [0,00))) for any
0<a<a.

Remark 4.3.6. According to the parabolic terminology, C* regularity in (x,t)
only involves derivatives in x. For more details, see Section 4.2.

Proof of Lemma 4.3.5. Throughout this proof, let us write by C' a positive
constant depending only on n, A\, A, a, § and K, and allow it to vary from
one line to another. Fix (z,t) € R" x [0,7] and 1 < k < n. We shall omit
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the dependence on t for notational convenience. Let us define

1
Aa<y75> = /0 DPF(pDzv(:C +oe, Y, 8) + (1 - p)ng('xaya 8),1’,@], S)dpv

F(Div(x + oey,y, s),x + e, y,s) — F(Dv(z + oex, y,5), 2,9, 5)

\Ilcf(y?S) = o
+ f(x+06k,y,5) —f((L',y,S)
O' )
Goly) = g9z + U%g) — g(z, y)7

for (y,s) € R™ x [0, 00), and nonzero o € R.
Clearly, A,, ¥, and G, are periodic in y. The ellipticity of A, follows
immediately from (4.6). Indeed, A, satisfies

NQ| < tr(A,(y.9)Q) < AIQ| (Q €8™.Q>0), (4.29)

for any (y,s) € R™ x [0,00). It should be remarked that the lower and the
upper ellipticity bounds of A, are not only independent of o but also the

same as those of F.
By (4.8) and (4.24), we know that A, € C*(R" x [0,00)) and

||Aa||ca(RnX[07m)) <C. (4.30)

Let us remark here that we need Lipschitz regularity of D,F in P in order
to have (4.30).
Similarly, we may deduce from (4.8), (4.13) and (4.24) that ¥, € C*(R™x
[0, 00)) satisfies
1Yol pa (gn x0,000:80) < C- (4.31)

On the other hand, it follows directly from (4.11) that G € C*%(R") and
1Golliamny < K. (4.32)

Now we define

(l’ + Uekay>s> _ v(x,y,s) and Fa _ 1_)(3: + Uek) B 2_)(1’)7

o o

v
Vo(y,s) =

for (y,s) € R™ x [0,00) and nonzero ¢ € R. Linearizing the equation (4.14),
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we see that V, is a viscosity solution to

{asva = tr(As(y, ) D3Ve) + Woly,s) in R" x (0,00), (433)

Vo(y,0) = Go(y) on R".

Owing to (4.30) - (4.32), we observe that the equation (4.33) belongs to
the same class of (4.14). Hence, Lemma 4.3.3 is applicable to the problem
(4.33). In particular, the exponent 5 in the statement of Lemma 4.3.3 is
replaced here by (. Thus, we obtain some 0 < 8; < fy, depending only on
n, A, A and fy, such that

ITo| + ||VO'||E275¢(R"><[07OO);61) <C. (4.34)

Now we invoke the compactness argument used in the proof of Lemma
4.3.4. Choose any sequence o; — 0 as ¢ — oo. Then by (4.34), there exist a
subsequence {7;}52, of {¢;};2, and a function V'€ C**(R" x [0, 00)) such
that V, — V in CEY(R™ x [0,00)) as j — oo, for any 0 < & < a.

On the other hand, from the regularity assumptions on F' and f ((4.8)
and (4.13) respectively) and the continuity of D}v(x,t,y,s) in (z,t) (Lemma
4.3.4), we deduce that A, — A and ¥, — ¥ locally uniformly in R™ x [0, o)
as 0 — 0, where

Ay, s) = DpF(DZU(x,y, S), T, Y, S),
U(y,s) = kaF(Dzv(x, y,8),2,y,s) + Dy, f(x,y,s).

It also follows from the regularity assumption (4.11) on g that G, — G
uniformly in R with
G(y) = Doy g(2,y).

Hence, it follows from the stability of viscosity solutions (see [20] for the
details) that the limit function V' of V., is a viscosity solution to

{Vs = tr(A(y, s)DyV) + ¥(y,s) in R" x (0,00), (4.35)

V(y,0) = G(y) on R,
However, A, G and ¥ also satisfy (4.29), (4.32) and respectively (4.31). Thus,

(4.35) belongs to the same class of (4.14), which implies that V' is the unique
(spatially periodic) viscosity solution to (4.35). This shows that V,, — V' in
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C2%(R™ x [0,00)) as 0 — 0, for any 0 < & < @. In other words,

loc
V(y,s) = Dy v(z,y,s).

Equipped with the uniform estimate (4.34) and the observation that V, —
V', we may also prove that I'; — I" as ¢ — 0, for some I' € R. Since this part
repeats the argument used in the end of the proof of Lemma 4.3.4, we skip
the details. Let us remark that

I'=D,,0v(x).

The second assertion of Lemma 4.3.5 can be justified by following the
proof of Lemma 4.3.4 regarding (4.35). To avoid the redundancy of the ar-
gument, we omit the details. O]

From the proof of Lemma 4.3.5, we observe that the regularity of v and v
in (z,t) can be improved in a systematic way. Induction on the order of the
derivatives (in (z,t)) of v and v leads us to the following proposition.

Proposition 4.3.7. Under the assumptions (4.6) - (4.11) and (4.12) - (4.13),
v € C®(R™ x [0,T]; C**(R"™ x [0,00))) and v € C®(R™ x [0,T]) with

S° [IDtayote, )] + 1D (a1, ) — 00 ) oy | < Con

lul+2v=m

(4.36)

for all (z,t) € R" x [0,T] and any m > 0, where 0 < B, < B depends only
onn, \, A\, m and 3, and C,, > 0 depends only on n, A\, A, a, B, m and K.

Remark 4.3.8. As pointed out in Remark 4.3.2, the proof of this proposition
does not use the periodicity of F' in s. Moreover, 0 < B,, < --- < By < B for
any m > 1 and C,, depends on the choice of By, - , Bm.-

Proof of Proposition 4.3.7. The proof of this proposition repeats the argu-
ment of Lemma 4.3.5. One may notice that although the statement of this
lemma only involves the derivatives in x, the proof works equally well for the
derivatives in t. Here we will only provide the sketch of the proof, and leave
out the details to avoid redundancy.

Let V) and V}, be the k-th order derivative (in (x,t)) of v and respectively
v. Let (Py) be the equation which V} solves, and suppose (as the induction
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hypothesis) that the coefficient Ay, the source term Wy, and the initial data
Gy, of (Py) belong to the same class of (4.14). We know that this hypothesis
is satisfied when k = 1, since in that case the equation (P) is precisely
(4.35). By the induction hypothesis, Lemma 4.3.4 is applicable, which gives
us higher regularity of V} in the fast variables.

Now let {V} »}oz0 be the sequence of difference quotients of Vj, (in (x,1)).
To avoid confusion, let us denote by (P, ) the equation for V. Let us also
denote by Ay, ¥ » and Gy, the coeflicient, the source term and respectively
the initial data of (P ).

Following the proof of Lemma 4.3.5, we may observe that (P,) is ob-
tained by linearizing (Py). Utilizing the structure conditions of F', f and g,
one may deduce that (P,) belongs to the same class of (FP) with the struc-
ture conditions for (P ) being independent of . Moreover, one may observe
from the regularity assumptions on F' and f that A, and ¥;, converge to
some Ay and Uy 4, respectively, as ¢ — 0 locally uniformly in the under-
lying domain of (y, s). Here one needs to use the continuity of D}Vj in (x,t)
that will be given in the induction hypotheses. On the other hand, G, will
converge to some Gy, uniformly in y, due to the regularity assumption on
G.

Hence, the stability theory of viscosity solutions will ensure that any
limit of V., is a viscosity solution to the problem (Py;) having Agi1, Viiq
and Gy as the coefficient, the source term and, respectively, the initial
data. Then the uniqueness of (viscosity) solutions to (Pyyq) will lead us to
the observation that Vi, converges to a single limit function, say Vi41. In
other words, Vj is differentiable (in (z,?)) and the corresponding derivative
is Vi41. Utilizing this fact, one may also prove that Vj, is differentiable with
the derivative being Vj.y1.

We observe that Lemma 4.3.4 provides us the desired estimate for V;, and
Vi, while Lemma 4.3.5 yields that for Vi, and Vj,;. The rest of the proof
can now be finished by an induction argument. O

4.3.2 Cell Problem

Due to the uniform ellipticity and the periodicity of F', we know from the
classical work [22] that there is a functional F': 8" x R" x [0,7] — R such
that for each (P, z,t) € 8™ x R™ x [0, T], the following equation,

W, = F(D;w + Pty s) — F(Pxt) inR" xR, (4.37)
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has a periodic viscosity solution w € BUC(R™ x R). We also know that F is
uniformly elliptic with the same ellipticity constants of F', and it is concave
in the Hessian variable P.

Moreover, periodic viscosity solutions to (4.37) are unique up to an ad-
ditive constant, if any. This also allows us to define another functional w :
S"xR"x[0,7] x R" x R — R such that w(P, x,t,-,-) is the unique viscosity
solution to (4.37) which also satisfies

w(P,x,t,0,0) =0.

We shall now study the regularity of F' and w in (P, z,t), which follows
closely to the authors’ previous work [34]. We begin by improving the reg-
ularity of w in the fast variables (y, s), based on the interior C** estimates
[51] for viscosity solutions to concave equations. We leave the proof to the
reader, as it is straightforward from the classical regularity result, and the
property of the cell problem.

Lemma 4.3.9. There exists 0 < a < « depending only on n, A\, A and «
such that w(P, z,t,-,-) € C**(R" x R) with

HUJ(P,ZB,t, ) ')||027&(Rn><R) < C|P|7
for each (P, x,t) € 8" x R" x [0, T], where C' > 0 depends only onn, A\, A, «
and K. Moreover, w € C(8™ x R" x [0, T]; C**(R™ x R)) for any 0 < & < &.

With the above lemma at hand, we can proceed with the proof of (con-
tinuous) differentiability of F' and w in (P, x,t). The proof is also similar to
that of Lemma 4.3.5.

Lemma 4.3.10. Let & be the Holder exponent chosen in Lemma 4.5.9. Then
there exist Dy DYF(P,x,t) and Dy Diw (P, x,t,-,-) € C**(R™ x R), for any
pair (K, 1) of multi-indices satisfying |k| + |p| = 1, such that

|DEDEF(P,x,t)| + || Dy Diw (P, z,t,-,-) || ) < C| P,

for any (P,z,t) € " x R" x [0, T], where C > 0 depends only onn, A, A, «
and K. Moreover, we have F € C1(S§" x R" x [0,T]) and w € C'(S™ x R™ x
0, T]; C>%(R"™ x R)) for any 0 < & < a.

Remark 4.3.11. As pointed out in Remark 4.3.6, C* regularity in (P, x,t)
does not involve that in t, according to the parabolic terminology.
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Proof of Lemma 4.3.10. In this proof, we use C' to denote a positive constant
that depends only on n, A\, A, @ and K, and allow it to vary from one
line to another. We shall prove this lemma for the derivatives in P only,
since the same argument applies to the proof for the derivatives in z. Fix
(Pyz,t) € 8" x R" x [0,7] and 1 < 4,5 < n. Recall from Section 4.2 that
by E;; we denote the (7,7)-th standard basis matrix in S™. For notational
convenience, we shall skip the dependence of F', w and F on (z,t). Define

As(y, s)
1
= / DyF(pDjw(P + 0Eyj,y, s) + (1 — p)Diw(P,y,s) + poEij,y, s)dp,
0

w(P+oE;;,y,s)—w(P,y,s
Wa(y,s)z ( J a) ( )’
r _F(P—i—aE,;j)—F(P)
o o ?

for (y,s) € R™ x R. By linearization, we deduce that W, is a (viscosity)
solution to

OWy = tr(As(y, s)(DiW, + Ey)) =Ty in R" x R. (4.38)

Clearly, A, is periodic on R™ x R. More importantly, A, is uniformly
elliptic in the sense of (4.29) and Holder continuous with the uniform estimate
(4.30). It should be stressed that the lower and upper ellipticity bounds for of
A, are given by A and, respectively, A and are independent of . Hence, (4.38)
belongs to the same class of (4.37). As a result, Lemma 4.3.9 is applicable to
(4.38). This yields that W, € C**(R" x R) and

ITo| + ”Wchz,&(Ran) <C|E;|l < C. (4.39)

Notice that Lemma 4.3.9 ensures w € C(S"; C*%(R™ x R)) for any 0 <
& < a. This combined with uniform ellipticity (4.6) of F' yields that we have
A, = Ain C¥R" x R) as 0 — 0 for any 0 < & < @, where

A(y,s) = DF(Dw(P,y,s) + Py, s).

On the other hand, the uniform estimate (4.39) and the periodicity of W,
implies that any subsequence of {(I',, W,)} ,o contains a further subsequence
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that converges in R x C*%(R" x R), for any 0 < & < a@. However, the
stability [20] of viscosity solutions ensures that a (uniform) limit (I', W) of

{(Ts, Ws) }o0, if any, should satisfy
W, = tr(A(y, s)(DiW + E;))—T inR" xR,

in the viscosity sense. Since A is periodic and uniformly elliptic (in the sense
of (4.29)) and W is also periodic, the classical argument [22] ensures the
uniqueness of I'. Moreover, since W, (0,0) = 0 for all nonzero o, the limit W
should also be unique. Therefore, I'; — I' and W, — W as ¢ — 0, where
the latter holds in C*%(R™ x R) for any 0 < & < a.

By the definition of I', and W, we conclude that F' and w are differen-
tiable at P in direction F;; with

=D, F(P) and W(y,s)= D, w(P,y,s).

Dij

The rest of the proof then follows from Lemma 4.3.9, and hence we omit the
details. O

The following proposition is obtained by induction on the order of deriva-
tives of F' and w in the slow variables (P, x,t).

Proposition 4.3.12. Assume that F verifies (4.6) - (4.8). Then F € C>(S8"x
R" x [0,T]) and w € C*(S8" x R" x [0, T]; C*>*(R"™ x R)) and

3 [yD;;Dga;F(P,x,t)\ + || DEDEOYw(P,
e+l 2v=m

< C’m|P](1_|”|)+,

Il 027&(Ran)}

(4.40)

forall (P,z,t) € S"xR"x[0,T] and for each integer m > 0, where 0 < a < «
depends only on n, A\, A and o, and C,, > 0 depends only onn, A\, A, a, m
and K.

Proof. One may notice that the higher regularity of F' and w in the slow
variables (P, x,t) can be obtained by inductively applying Lemma 4.3.10 on
the number of derivatives. Since the whole argument resembles that of the
proof of Proposition 4.3.7, we omit the details. ]
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4.4 Higher Order Convergence Rate

This section is devoted to achieving the higher order convergence rates of
the homogenization process of (4.1). We expect that away from the initial
time zone, by which we indicate the strip 0 < t < &2, the solution, u°, of
(4.1) becomes less affected by the rapidly oscillatory behavior of the initial
data, and that it behaves more as a solution to certain Cauchy problem
with a non-oscillatory initial data. Thus, it is reasonable to split u° into the
non-oscillatory part and the oscillatory part near the initial time layer.

For this reason, we construct two types of the higher order correctors
associated with the homogenization problem (4.1), namely the initial layer
corrector and the interior corrector. The former type captures the oscillatory
behavior of u® near the initial time layer, while the latter describes its behav-
ior in the interior. The construction of these correctors of higher orders will
be based on the regularity theory in the slow variables established in Section
4.3.

Throughout this section, the constants K > 0 and 0 < o < 1 will be used
to denote those in (4.8) and (4.11). Also we shall denote by fx,; a positive,
generic constant that depends only on n, A\, A, k and [, and by C}; a positive,
generic constant that depends only on n, A\, A, o, K, k and [.

Let S(m,a;d, k) be the class of all spatially periodic functions or map-
pings, f, on R" x [0, T] x R" x [0, 00) such that f € C*°(R" x [0, T]; C**(R" x
[0,00)) and for each integer [ > 0, there is a positive constant Cy, 5,4, de-
pending at most on n, A\, A, o, K, m, &, d, k and [, such that

Z HDZa;/f(ma b ')HCm»ﬂ(R"x[O,oo) < Cm,&7d7k7l7

| +2v=1

for all (z,t) € R™ x [0,T]. By E(m,a&;d, k) be the subclass of S(m,a;d, k)
consisting of all functions or mappings f such that for each integer | > 0,
there are positive constants 34, depending only on n, A\, A, d, k and [, and
Ci.a.dk, depending on the same parameters as above, such that

> DL f (@t Mlpmeen o oo < O
|| +2v=1

for all (x,t) € R” x [0,7]. In particular, we shall write by S(d, k) the space
of all functions or mappings, f, on R™ x [0,T], whose obvious extension to
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R™ x [0,T] x R™ x [0, 00) belongs to the class S(0,0;d, k).

4.4.1 Initial Layer Corrector

In this subsection, we aim at proving the following proposition.

Proposition 4.4.1. Assume F and g verify (4.6) - (4.8) and (4.10) - (4.11).
Then there exist a sequence {vp € S(2,a;k)}32, of spatially periodic func-
tions on R™ x [0, T] x R" x [0, 00) and a sequence {v € S(k)}2, of functions
on R" x [0,T] such that vy — vy € E(2,a;k) for each k > 0. Moreover, for
any integer m > 0, set

. - x t ) . S
YRS DE O CE S EE ) I ACED SELTE)
k=0 k=0 (4.41)
4.41
Then one has
1 t t
05, = 5 F (521)2@;,:0,1&, L —2> + <x,t, L —2) in R™ x (0,T),
€ €' e e e
55,(2.0) + Giu(2) = g (2. 5) onR",
(4.42)
where %, satisfies
[WE (x,t,y,5)] < Cpe™ e Pms, (4.43)

forany0<€§%.

Remark 4.4.2. We shall see later that this proposition holds even when F' is
periodic only in the fast spatial variable y. Moreover, we shall call vi(x,t,y, s)
the k-th order initial layer corrector and the function g, : R™ — R, defined
by

the k-th order effective initial data.
Let us begin with heuristic arguments by the formal expansion. The com-
putation presented here uses the Taylor expansion of F' in its matrix variable

P. We should mention that such an approach has already been shown in the
authors’ previous work [34].
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Differentiating v¢, with respect to t, we obtain
9 k T 1
0,0, e"0svp | x,t, —
o)=Y etom (0.2 )
z t _
+ Zsk”@ ( ( 82) — vy (x, t)) .

In order to proceed with the derivatives of o, in variable x, let us introduce
a S"-valued mapping Vi, = Vi(z,t,y,s) on R" x [0, T] x R"™ x [0, 00) defined
by

(4.45)

D2y, k=0,
Vk = D;’Ul + nyU(), k= 1, (446)
D;Uk + ny'Uk—l + Dg(”k—? - @k—Q)v k> 27

and corresponding define

Vi, 0<k<m,
Vi = Dy, + D?(Vpp_y — 1), k=m+1, (4.47)
Di(vm—vm), k=m+ 2.

With Vj, one can write

x t r t
2 D¢ (z, 1) Zaka (x t,— ) =W (:L‘,t, 575_2) +eV <:U,t, 5,5—2) ,
(4.48)
where in the second identity we wrote V7 for the sum of 5k_1‘7k over 1 <k <
m+ 2.
For notational convenience, let us write

Az, t,y,s) = D];F(V(),Lt,y, s), k>1, (4.49)
for (z,t,y,s) € R" x [0,T] x R™ x [0,00), and especially
A= A17

which is a S"-valued mapping, uniformly elliptic in the sense that tr(A(z, t,y, s)NV)
satisfies the ellipticity condition (4.6). What we shall do is the Taylor expan-
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sion of F' in the matrix variable with base point V and perturbation V.
In the following computation, we shall omit the variables (x,t,e 'z, e %t) in
the exposition, since they do not play any important role.

F (D*v;,)
=F(Vo+eVy)

mo _k
= F(Vo) +etr(AVS) + > %Ak(VWi, VO 4R
k=2

m k
1
= F(Vp) +etr(AVy) + & tr(AVk)+Zﬁ S AWV V)
k=2

=2 i 4+i=k

iy i >1
+ B,
(4.50)
where R}, is the remainder term from the Taylor expansion, i.e.,
R, = F(Vo +eV5) — F(Vy) —etr(AVS) = > 2— L VE), (451)
k=2

and E! is the term that contains further errors,

mt2 girt ik

— an + Z Z X Ak(v;p o 7‘72'1@)7 (452)

k=2 m+1<i1+-+ir<k(m+2)
1<iy, - ixg<m—+42

Hence, plugging ¢, into (4.1) and equating the power of €, and noting (4.45)
and (4.50), we obtain a sequence of equations that vy should solve. The next
lemma gives a rigorous justification of the above heuristic arguments.

Lemma 4.4.3. One can recursively construct sequences {vy € S(2,a;k)}22,
and {vx € S(k)}2,, with v, — vy € E(2,a;k), as follows.

(1) vo(z,t,-,-) is the spatially periodic solution of

(4.53)

dsvo = F(Djvo, x,t,y,s) in R™ x (0,00),
vo(x,t,y,0) = g(x,y) on R"™,

)



CHAPTER 4. CAUCHY PROBLEMS WITH OSCILLATORY INITTAL
DATA

(i1) For each 2 <k <m, vg(z,t,-,-) is the spatially periodic solution of

Osur, = tr(A(z, t,y, s)Divg) + Pl t,y,5)  in R™ x (0, 00), (4.54)
vg(x,t,y,0) =0 on R", '
where
(0, k=1,
tr(A(Dayvr_1 + D2 (vh—2 — V_2)) — Or(vk_o — Vy_2)
oy =

k
+Zl_1' Z Al(‘/ip"'a‘/;z)? k22

=2 i+t =k
\ 11,054 >1

(4.55)

(iii) For each k > 0,

Up(z,t) = slg?o vg(z,t,0,5).
Proof. 1t is clear from Proposition 4.3.7 that vy € S(2,&;0) and v, € S(0)
with vg—09 € F(2,@;0). Henceforth, we shall suppose m > 1, and assume fur-
ther, as the induction hypothesis, that we have already found vy € S(2, @; k)
and v, € S(k) satisfying v, — vx € E(2,a;5k), for 0 <k <m — 1.

Recall the mappings V;, and Ay from (4.46) and (4.49). Since v, — Uy, €
E(2,a;k), we have V,, € E(0,a; k) for each 0 < k < m — 1. This along with
the structure condition (4.8) of F' that Ay € E(0,a; k) for each k£ > 0 as well.

Now let @, be as in (4.55). One may notice that ®,, only involves func-
tions vy and v, for 0 < k < m — 1, which are assumed to be known already.
Hence, combining the induction hypothesis that v, — v € E(2, @; k), and the
observation that Vi, A, € FE(0,a; k), deduce that ®,, € E(0,a;m). Thus,
one can apply Proposition 4.3.7 again to the viscosity solution v, (z,t,-,-)
of (4.54), and verify that v,, € S(2,a;m), v, € S(2,a;m) and v, — v, €
E(2,a;m). The proof is then completed by the induction principle. ]

Remark 4.4.4. Let us remark that the proof above does not involve the
periodicity of F' in the fast temporal variable s. This is why Proposition 4.4.1
holds even if we only assume the spatial periodicity of F' (that is periodicity
iny), as mentioned in Remark 4.4.2.

We are now ready to prove Proposition 4.4.1
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Proof of Proposition 4.4.1. Let {v}72, and {7}, be the sequence taken
from Lemma 4.4.3, and let ©5, and g5, be as in (4.41). Then it follows from
(4.45), (4.50), (4.53) and (4.54) that the functions o;, and g, defined by
(4.41) satisfy (4.42) with

m

¢8 z, t yY,S Z /Uk Z, t y Y, S ) ’lj(l’,t)) _6_2E51<$7t>y7 8)7

k=m—1

where EZ is given by (4.52). The rest of the proof is devoted to the proof of
(4.43).
From the fact that vy — vx € F(2,a; k) for any k > 0, we know that

m

> Flovlz. by, s) — vl 1))] < Cpe™le e, (4.56)

k=m—1

for any 0 < ¢ < % On the other hand, from the observation that Vi, Ay €
E(0,@; k), the remainder term R¢, in (4.51) can be estimated as

5m+1
|Rin(l’,t, Y, S)| S m |Bm+1(vni7 Ce ,Vnaz)| (l‘,t, Y, S) S Cmgm-i-le_ﬁms’
(4.57)
for any 0 < ¢ < % Noting that the summation indices 71, ,7; in the

definition of E? are subject to the restriction i1 + --- + 4, > m + 1, we
deduce from (4.57) that

|EE (z,t,y,5)| < Cppe™ e Pms, (4.58)

for all 0 < e < 3. Thus, (4.43) follows from (4.56) and (4.58). This completes
the proof. O

4.4.2 Interior Corrector

In this subsection, we shall construct the higher order interior correctors. Here
we shall consider a more general class of homogenization problems compared
to (4.1). This will be essential in achieving the higher order convergence rate
away from the initial time layer, and we shall discuss more in this direction
in Section 4.4.3.
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Proposition 4.4.5. Assume that F verifies (4.6) - (4.8). Let {V}. € E(0,a; k)}2,
be a sequence of S™-valued, spatially periodic mappings on R™ x [0, T] x R™ x
[0,00) and let {gr € S(k)}2, be a sequence of functions on R™.

Then there exist a sequence {wy € S(2,a;k)}p, of spatially periodic
functions on R™ x [0,T] x R x [0,00) and a sequence {wi € S(2,a;k)}2,

of periodic functions on R™ x [0, T] x R" xR, satisfying wy, — w?f € E(2,a;k)

with wy = wy = wl’ = w =0, and a sequence {uy, € S(k)};2, of functions

on R™ x [0,T], satisfying ux(-,0) = gr for any integer k > 0, such that the
following s true. Define

t
E Ek ( (x7t7£7 _2> —l—ﬂk(JC,t)) )
€ €
k=0
t

Y S
. t,—, — up (T .
7’8782 k\4y
k
Then one has

ws (x,t) = W,
WE (1, t) = Zek (w;:E
=0
onis, = ~F | D% +§:e’ka ot L
t%Wm 52 m e PR 76762
1 N x t . x t o

_gF (kZ:OS Vk,l’,t,g,€—2>+¢m (.T,t,g,;) m R X(O,T),
(4.59)

and

1 r t z 1
oyt = —F (52D2@Dﬁ’5,x,t, -, —2> 4 e (x,t, -, —2) in R" x (0,T),
€ g€ g€

with some ¥, spatially periodic and some V%< periodic such that
e (@, ty, )| + e |(Ur, — vh) (@, t,y, 8)] < Cre™ ™, (4.60)
for any 0 < e < 1.

Remark 4.4.6. The function w?f 18 the time-periodic version of wy, i.e.,
the former is also periodic in the fast time variable s as well as y. In what
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follows, we shall call
Wiz, t,y,s) = wi(x, t,y, s) + ux(z,t),
the k-th order interior corrector, and uy the k-th order effective limit profile.

To illustrate the idea why we consider two functions wy and wf, let us
consider a Cauchy problem with a non-oscillatory initial data, but with an
operator of the type considered in (4.59), say

( 1 t
8tu€ = —2F (€2D2'LL€ + %, z,t, E, —2>
£ €' € n
in R" x (0,7),
. g voxtfi (4.61)
62 Y b 87 82
(v (2,0) = g(z) on R".

As g being non-oscillatory in e-scales, we expect D?uf to be of order 1 in the
interior. Now that

1
) (F (52P+%>$at>ya 8) —F(‘/(),l',t,y,S)) - tI’(A(QZ’,t,y, S)P)7
9

with A given by (4.49), it is reasonable to guess that the effective problem
of (4.61) is the same with the one corresponding to

t
O, = tr (A (x,t, f, —2> DQQE) in R" x (0,7,
e'e

u(z,0) = g(x) on R".

(4.62)

However, A(x,t,y,s) = D,F(Vy,x,t,y,s) and Vy(z,t,y,s) decays exponen-
tially fast in s, so the effective problem of (4.62) will also coincide with that

t
OtF = tr (A# <x,t, g, ) D2ﬁ€> in R" x (0,7)

g2
(x,0) = go(x) on R".
where A% : R" x [0,T] x R* x R — 8" is defined by

A#(z,t,y,5) = D,F(0,7,t,y,s).
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It is noteworthy that A* is periodic in both y and s and uniformly elliptic.
Hence, to A# corresponds a unique effective coefficient A : R™ x [0, T] — S™.
Moreover, due to [22], there exists a unique S™-valued mapping x* = (Xﬁ)

on R" x [0,7] x R" x R such that for each (z,t) € R" x [0, 7], Xﬁ(z,t, - +) s
the unique periodic solution to the following cell problem,

Osxl; = tr(A* (2, t,y, 5)(D2X], + Ey)) — tr(A(2,1)Ey;)  in R" x R,

Xi(2,t,0,0) = 0.

(4.63)

In particular, A is uniformly elliptic with the same ellipticity bounds as
those of A#. Moreover by Proposition 4.3.12, we know that A € S(0), x* €
S(2, ;0), where « is the Holder exponent in the regularity assumption (4.8)
of F'.

The following lemma ensures the existence of the matrix corrector map-
ping that exactly captures the oscillatory behavior of the coefficient A.

Lemma 4.4.7. There exists a unique mapping x = (xi;) : R" x [0,T] x R™ x
0, 00) = 8™ such that x;j(x,t,-,-) is the spatially periodic solution to

ainj = tI‘(A(CC, Ly, 8)(D§XU + EZ])) - tI‘(A({L‘, t>EZJ) i R (07 OO)?
Xij(xatayao) :ij(xata?%()) on Rn,

(4.64)

for each (z,t) € R"x [0, T]. Moreover, x € S(2,a;0) and x—x* € FE(2,a;0).

Proof. Fix (z,t) € R" x [0,7], 1 < 4,j < n and consider the following
spatially periodic Cauchy problem,

Dsipiy = tr(A(z, t,y, s)Divij) + bij(x,t,y,s)  in R™ x (0, 00),
©ij(z,t,y,0) =0 on R",
with
bij('ru tv Y, S) = tr((A(:c, tv Y, S) - A#(.%, t? Y, S))(D2XZ£<ZU, ta Y, S) + EZ]))

Y

Since Vi € E(0,a; k) and x# € S(k), we know that b;; decays exponentially
fast as s — oo. Thus, Lemma 4.3.1 implies that the function,

@ij(z,t) = lim py(2,t,0,5),
S— 00
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is well defined. Now it follows from the regularity assumption (4.8) on F
together with Proposition 4.3.7 that this lemma is satisfied by

Xij(xa Ly, S) = XZ?(‘T’ LY, S) + (90ij(x7 l,y, S) - @ij(l’, t))
We omit the details. O

In what follows, let us write

v

w, =% k=01, (4.65)
f D2wy, + Dyywy—1 + D2(wi—p + lg—2), k> 2. '

Note that we set W, = W; = 0, which is coherent the assertion in Proposition
4.4.5 that wg = w; = 0. Next set W,f by the time-periodic version of W,
that is,

i [0 k=0,1, e
o Dwa + Dyywi | + D2(w}_y + Ts), k>2. '

Also let Ay be as in (4.49), and set Ak# € S(0,a; k) to its time-periodic
version,
Ak#(:c,t,y,s) = DﬁF(O,x,t,y, s), k>1.

It follows from V; € S(0,a;0) that Ay — A € E(0,a; k) for any k > 0.
We are now ready to construct the higher order interior correctors as
follows.

Lemma 4.4.8. One can recursively construct a sequence {wy, € S(2,a; k)}32,
of spatially periodic functions on R" x [0, T] x R"™ x [0, 00), a sequence {w}f €
S(2,a;k)}2, of periodic functions on R™ x [0, T] x R" x R with wy, — w} €
E(2,a:k), a sequence {u € S(k)}2, of functions on R™ x [0,T] satisfying
the following.

(i) wi (z,t,-,-) is the periodic solution to

{@w?f = tr(A%*(x,t,y, S)Dgw,f) + d)k#(x, t,y,s) mR" xR, (4.67)

wy (2,t,0,0) =0,
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for each (z,t) € R™ x [0, T], where

(

0, k=0,1,
tr(A¥ (D # D> # = )) ) # -~
r(A™( eyWp_1 T S(wi_y + Ug_2))) (W] o + Up—2)

S B SR U TE) b2

=2 .11+ =
7'l>1

7 = ¢

\

(11) wy(z,t,-,-) is the spatially periodic solution to

dswy, = tr(A(z, t,y, s)Diwy) + Pp(x,t,y,5)  in R™ x (0, 00),
wg(z,t,y,0) = w,f(a:, t,y,0) on R™,

(4.68)
for each (x,t) € R™ x [0,T], where
(0, k=01,
tl“(A(Dzywk_1 + Di (wk_Q + Q_Lk_g)))
- at(wk o + Up—2)

+Z Z V+m1a"'7viz+wil) kz2.

=2 '11+ i =
Zl>1

\ _Al(‘/iu"')‘/;z))v

(111) uy 1s the unique solution of

(4.69)

&ﬂk = tI‘(A(JZ‘, t)Dgﬂk) + (i)]g(l', t) m R™ x (O, T),
ur(,0) = gr(2) on R",

where ®y(x,t) is the unique number for which there erists a unique
pertodic solution to

aggb,f& = tr(A%(z,t,v, S)D§¢f) + CDk#(x,t,y, s) — ®p(z,t) in R x R,
o7 (2,1,0,0) =0,

(4.70)
for each (z,t) € R" x [0,T].
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Proof. Since <I>k,# = 0 for k£ = 0,1, one should have w,’f =0for k=0,1 as
well, since w,fé is the unique periodic solution to (4.67). This also implies that
wg = 0 for £ =0, 1. Hence, we only need to construct wff and wy, for k > 2.

Let us remark that the construction of w;f and Uy_o, for k > 2, is indepen-
dent of w;. Moreover, the construction is very similar with the elliptic case,
which can be found in the previous work [34, Lemma 3.3.2] by the authors.
Especially, wf is given by

wi (z,t,y,5) = ¢p (z,t,y,8) + tr (x* (2, t,y, ) D2t _o(x, 1)) ,

with x# and gbk# given as the unique periodic solutions to (4.63) and respec-
tively (4.70); here one can also deduce that ¢ € S(2,a; k). We shall leave
this part to the reader, and proceed directly with the construction of wy, only.

Fix any m > 2, and suppose that we have already found wlf, gbk# and
Up_g, for k < m, and wyg, for k£ < m — 1, that satisfy the assertions of this
lemma. Note that ®,, only involves these functions. Since wy € S(2,a; k)
and w € S(2,a; k) together satisfy wy, — w] € F(2,a; k) as the induction
hypotheses for 0 < k£ < m — 1, one can derive along with the assumption
Vi € S(0,a; k) that @, € S(0,a;m) and ®,, — ®# € S(0,a;m). Hence, one
can argue analogously as with the proof of Lemma 4.4.7 and deduce that for
each (z,t) € R™ x [0,T], there exists a unique, spatially periodic solution

¢m<x7 t7 ) ) to

Ospm = tr(A(z, t,y,5)D2dm) + P2, t,y,5) — ®,,(z,t) in R™ x (0, 00),
¢m(x>tay70) = qﬁ#l(fl?,t,y,()) on Rn>
(4.71)
and ¢,, € S(2,a;m) with ¢,, — ¢# € E(2,a;m); the last inclusion follows
from @, — QJ#L € E(0,a;m) and A — A* € E(0,a;0). Finally, we define
Wy, R" % [0, 7] x R x [0,00) — R by

Wi (2, t,y, 8) = dm(x, t,y, s) + tr(x(z,t, vy, S)Diﬁm,g(:c,t)).
Then it follows from (4.71) and (4.64) that

asu}m = 85¢m + tr((aSX)Diﬂ’m—Q)
= tr(AD2bm) + P — P + tr((AD2x — A) D2 —»)
= tr(AD2wp,) + Ppn,
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in (y, s), with each (x,t) fixed, which verifies the interior equation in (4.68).
The initial condition is straightforward. On the other hand, w,, € S(2,a;m)
and w,, — w# € E(2,a;m), since we have ¢,,, — ¢7. € E(2,a;m), x — x" €
E(2,®;0) and @y,,—2 € S(m — 2). We omit the details. O

Equipped with Lemma 4.4.8, we are ready to prove Proposition 4.4.5.

Proof of Proposition 4.4.5. Here we shall only address the notable difference
in the computation involving the Taylor expansion, when proving Proposition
4.4.5 (iv), and leave the rest of the argument to the reader, since the main
argument follows closely to the proof of Proposition 4.4.1. Let us define

X, =V, + Wy,

with W}, given as in (4.65). Since Wy = W; = 0, we have Xy = V{ and
X1 = V4. Thus, one can proceed as in the computation in (4.50) and deduce
that

F(Vo+eXy,) — F(Vo +€V,,) + 45,

= P tr(AXy — W)
k=2
m k 1
+ ngZﬁ Z (AZ<X11> 7Xu) Al(‘/;l, 7‘/;1))
k=2  1=2  i1teti=k
i1, 2>1
= Z e tr(AW;)
k=2
m k 1
+Z€k2ﬁ Z (AZ<V;1+W1'17"'7‘/;l+ml)_Al<‘/i17"'aV;z))7

where 97 is the error term of the form (4.52), V5 = >°/", 7'V} and X, =
Db XX + Z;ﬂjniﬂ "Wy, with

Wk) 0 S k S m,
Wi = < Dyyty, + DX(Wy 1 + U—1), k=m+1, (4.72)
D2 (W, + Tp), k=m+2.
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Hence, it follows from the recursive equations (4.68) of wy that

m

F(Vo+eXs,) = F(Vo+eViy) — B, = Y " (0awy, + Oy (wp—2 + T—2)).
k=2

This shows that wg, solves (4.59) with the remainder term ¢%,. We skip the
rest of the proof. O]

4.4.3 Nonlinear Coupling Effect and the Bootstrap Ar-
gument

The main goal of this subsection is to establish our main result, Theorem
4.1.1. Throughout this subsection, let us assume that F' and g verify (4.6) -
(4.8) and (4.10) - (4.11).

We shall begin with the analyze the effect arising from the rapid oscillation
on the initial data of (4.1), and approximate the associated solution u°® with
the higher order initial layer correctors. Here the approximation is up to a
viscosity solution to a new homogenization problem, but this time with a
non-oscillatory initial condition.

Lemma 4.4.9. Under the assumption of Theorem 4.1.1, one can construct
{ve 150, {0k}, 05, and g5, be as in Proposition 4.4.1. Let u5, be the bounded
viscosity solution of

( m
~e 1 212~ k Tt
oS, = 5_2F (8 D, +kZ&? Vi, @, t, - ?>
- =0 in R™ x (0,T), (79
— €_2F <Z€ Vk, ZE,t, g, g)
k=0
L4, (2,0) = g5, (x) on R",
with Vi given as in (4.47). Then one has, for any 0 < e < %,
[uf(z,t) — 05, (2, 1) — @, (2, 1) < Cppe™ 1, (4.74)
for all x € R™ and 0 <t <T'. In particular,
[us(z,t) — @5, (2, 1) < Crue™ 1, (4.75)
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for all z € R™ and c,,e*|loge| <t <T.

Proof. We claim that @, + v;, solves

(

1 t
at(a;+@;)=€—2F <52D2(a;+@€) ot 2 L

2)
t ee in R" x (0,7),
+Tfn (l’,t, E, —2)
E €

A\

(i, +55,) (2,0) = g (=, ) on R,
3 €
(4.76)
with the remainder term r;, satisfying
e (x,t,5,8)| < Cpe™ e Pms, (4.77)

Then since both u;, + v;, and u° are bounded uniformly continuous in R" X
[0, 77, one can deduce from the standard comparison principle [20] and the
exponential decay estimate (4.77) of r¢ that

|u®(z,t) — o, (z,t) — (a:t|<sup/|r (& 17 )| dr < Cpe™

ﬁGR"

for any z € R and 0 <t < T, as desired. The error estimate (4.75) away from
the initial time layer follows immediately from (4.74) and the exponential
decay estimate that v, — v} € F(2,a;k).

From the initial conditions of (4.73) and (4.42), one can easily verify
the initial condition of (4.76). Hence, it only remains to check the interior
equation and the exponential decay estimate of the remainder term. However,
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from the computation (4.48) of D?%¢,, one can proceed as

¢
F (521)2 (@, + %), .t~ —)

g g2
m m+2 Tt
_ 212~¢e k k1) s
=F 5Dum+25Vk—|— Zst,x,t,€,€2
k=0 k=m+1

o x t x t
=F D%, + Y Vi, t, =, = | +hif (2t =, —
( m ; b g’ g2 m g’ g2

_ 29 ~¢ = k { i l,e
=¢c“ow,, + F (Ze Vi, x, t, 6,62) + h,; (x,t,

e
(‘f)wl ~
SN——

k=0
m m—+2 o
= 20,5, + F (Z Vit Y Vit - —2>
€' e
k=0 k=m+1

z t
+ (hy + h2) (x,t, - ;)

=20, (@, + U5,) + (=™, + hyyf + hey) (x t, g ;—2) ,

where Vj, is given by (4.47), ¢, is given as in Proposition 4.4.1 and by hl*
and h%¢ we simply denoted the terms so that we have the equalities above.
Let us remark that h,,° and hZf are well-defined, since D?*uS, and 9,4, exist
in the classical sense. This is because the operator governing the interior
equation (4.73) for u%, is uniformly elliptic, smooth and concave; here the
smoothness comes from the fact that Vi, € E(0,a; k). Hence, the standard
regularity theory [51] ensures the smoothness of @¢ , although it may not
possess a uniform regularity for the time derivative and the spatial Hessian.
In addition, it follows from the ellipticity condition (4.6) of F' that for each
1 = 1,2, one has

m—+2
|hi(z,t,y,8)| < Co Z e ‘Vk(x,t,y, s)’ < Cppe™ e Pms, (4.78)
k=m+1
for any 0 < e < %, where the second estimate follows from the exponential
decay estimate of vy — vy.
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This shows that @¢, + 07, satisfies the interior equation of (4.76) with
g, e (B 2.

The decay estimate (4.77) of r5, can be deduced from (4.43) and (4.78), which
finishes the proof. O

One may compare (4.73) with (4.61), and realize that we are in a position
to invoke Proposition 4.4.5 to construct the higher order interior correctors
for the new homogenization problem. This eventually leads us to a higher
order approximation of @, by the interior correctors, again up to some func-
tion with order £2. The function turns out to be a viscosity solution to a new
homogenization problem essentially belongs to the same class of (4.1), which
allows us to run a bootstrap argument.

Lemma 4.4.10. Under the conclusion of Lemma 4.4.9, let {Vi}2, and
{9172 be asin (4.46) and respectively (4.44). Then one can construct {wy }72,
{wi ey, {a}e,, WS, and W< as in Proposition 4.4.5. Let ug,, be the
bounded viscosity solution to

( m
e 1 472 k r 1
atul,m = 5_4F ( D ulm -+ %5 (Vk —+ Wk),x,t, g, 5_2>
. - in R™ x (0,7,
—lF Zek(v + Wh),x,t vt
84 k k)4 787 82
k=0
U1m z,0) ZE W12 <a: 0,— 0) on R",
\
(4.79)
where Wy, is given as in (4.65). Then for any 0 <e < %,
|as, ws,(z,t) — %l , (2, 1) < Cpe™ (4.80)
for all z € R" and 0 <t <T. Moreover, one has
|, (2, t) — Wi (x,t) — *ul (2, )] < Cre™ ! (4.81)

for all z € R™ and c,,e®|loge| <t <T.
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Proof. We assert that ), + £2u‘im is a viscosity solution to
(815 ('UNan + EQUim)

1 - T t
= —F | D* (0, + *uS m + "V, t, =, —
e ( (@ ' Z e'e? ] iR x (0,T),

r t
— —F (ng‘/;g,ﬂf t > ([L‘,t,g,g)

k(ﬁ}m-f—é‘ ul,m) (.%',0) :gm( ) on Rn,
(4.82)
with some remainder term r; satisfying
(.t y, 8)] < Cpe™ (4.83)

Then one can deduce the desired estimate (4.80) by means of the comparison
principle, as in the proof of Lemma 4.4.9. Moreover the error estimate (4.81)
away from the initial time layer follows from (4.80) and the exponential decay
estimate of wy — w,f.

Note that Vi, € E(0,a;k) and that v, € S(k), which implies g, =
Uk(-,0) € S(k), for any k > 0, so the sequences {V;}2, and {gx}32, satisfy
the assumption of Proposition 4.4.5. Thus, we obtain the sequence {wy}32,
of higher order interior correctors, and the sequence {uy}72, of higher order
effective limits. From Proposition 4.4.5 and the definitions, (4.44) and (4.41),
of gr and g5, we observe that (4.79) that

W5, (2, 0) + £%uf,, (2,0) = Y Py (x,0) = Y e¥gu(x) = g5, (2).
k=0 k=0

This verifies the initial condition of (4.82).
On the other hand, since we have

m+2
2D c(z,t) Zeka (xt )
x t w2 r t
k k17
= eWilat,— =)+ eWilaxt,— =,
Yewi(nt i)+ 3 (nnt5)

k=m+1
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with W), given as in (4.72), it follows from the interior equations of (4.59)
that

2 12 S k Tt
F( D (w + €2 U1m +Ze Vk,x,t,g,§>

k=0

m m+2
_ 4712 k k1x z 1
—F<5Duim+25 (Vi + W) + Z EWk,x,t,?;)
x
€

k=0 k=m+1

_ A2 e vt le
_F<6Du1’m+26 (Vi + W), x €,§>+hm (x,t,

k=0
4 " k x t 1, r t
= £ atuim—i_F (kzgg (Vk+Wk> Q?,t,g,g) +h‘m€ <x7tag>8_2)
m m+2 T 1
4 k k1
= 3tu1m+F<Z€ (Ve + W) + Z €Wk,$>t7g>€—2>
k=0 k=m-+1
h1€+h2€ E
8

=0 (0 + i) + (—e% +hs o+ hY) (x 422 ) ,

where v¢, is given by (4.59), and by hl€ and h%¢ we simply denoted the terms
so that we have the equalities above. Arguing similarly as with the proof of
Lemma 4.4.9, one can justify the well-definedness of h%¢, for i = 1,2, and
deduce that

m—+2
{hi;f(x,t,y,s)‘ < Cy Z e ‘Wk(x,t,y,s) < Ce™tt (4.84)
k=m+1

for any 0 < ¢ < —, where the second estimate follows from the observation
that wy, € S(2, & k:)
Hence, @, + %uj ,, satisfies the interior equation of (4.82) with

= = e (g + 1),

and the estimate (4.83) of ¢, follows from (4.60) and (4.84). This finishes
the proof. O
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As a corollary to the above lemmas, we achieve the following.

Corollary 4.4.11. One has, for any 0 < e < %,
u® (. 1) — 0, (2, 1) — @, (2, ) — e*ul (2, 1)] < Cre™ (4.85)
forallx € R™ and 0 <t <T. In addition,
|u® (z, 1) — 5 (x,t) — e2uf,, (x,1)| < Crae™ !, (4.86)
for all z € R™ and c,e®|loge| <t <T.

It is worthwhile to repeat that uf,, is a solution to a homogenization
problem essentially of the same type with (4.1). Hence, we can iterate the
above arguments, provided that we can construct the higher order initial
layer correctors and interior correctors in a more general setting. Here we
shall only present the argument and skip the proof, since the main idea and
the computations are already shown in the proofs of Proposition 4.4.1 and
Proposition 4.4.5.

First comes the construction of higher order initial layer correctors.

Proposition 4.4.12. Assume that F' verifies (4.6) - (4.8). Fix integers d > 0
and m > 2d. Let {Xqy € S(0,a;d,k)}32, be a sequence of S™-valued, spa-

tially periodic mappings on R™"x [0, T|xR" %[0, 00), and {Xjfk € S(0,a:d, k)2,

be a sequence of S™-valued periodic mappings on R™ x [0,T] x R™ x R such
that Xd7k—ka € E(0,a;d, k). Also let {gar € S(2,a;d,k)}2, be a sequence
of periodic functions on R™ x R™.

Then there exist a sequence {vay € S(2,a;d, k)}%2, of spatially periodic
functions on R™ x [0, T] x R" x [0,00) and a sequence {vqy € S(d,k)}32, of
functions on R™ x [0, T] such that vqy — Var € E(2,a;d, k) and the following
is true. Set

m—2d -

it _ k _

U27m($,t) - ; € (Ud,k <(L’,t, g7 ?) - Ud,k(xat)) ;
m—2d

Tom(@) = > 0an(,0).
k=0
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Then vy, and gg.,, satisfy

(0,05,
= —2;217 e2IpDpe 4 ZEkXM, ot 2, i2
< - £ e i R™ x (0,7T),
1 > K Tz t R Tz t
_ €2d+2F (kz_%g Xd,k7x7t727§> +¢d’m <x,t,g,€—2)
m—2d .
Ugm(7,0) + ggm(x) = Z " g,k (SC, —) on R",
\ 7 7 k=0 €

with some spatially periodic function ¥g,, verifying
‘wcsl,m(x7 tu Y, 5)‘ S Cdjm&?m*Qd*le*ﬁd,ms’
forany 0 <e < 1.

Remark 4.4.13. One may notice that Proposition 4.4.1 is simply the special
case with d = 0, and Xy = ka =0 forany k >0, gop =g and go = 0
for any k > 1. Moreover, the new homogenization problem (4.79) falls under
the case d = 1, Xy = Vi + Wy, ka = W,f and g1 x(2,y) = Ugs2(z,0) —
wk+2(m7 07 Y, O)

Next follows the construction of the higher order interior correctors.

Proposition 4.4.14. Assume that F' verifies (4.6) - (4.8). Fiz integers d > 0
andm > 2d. Let {Yyr € S(0,a;5d,k)}32, be a sequence of S™-valued, spatially
periodic mappings on R"™ x [0, T] x R™ x [0, 00), and {Y;ﬁ € S(0,a:d, k)2,
be a sequence of S™-valued periodic mappings on R™ x [0,T] x R™ x R such
that Yar — Y, € BE(2,a;d,k). Also let {gax € S(d,k)}32, be a sequence of
functions on R,

Then there are a sequence {wqy € S(2,a;d,k)}32, of spatially periodic
functions on R™ x [0, T] x R™ x [0, 00), a sequence {wjfk € S(2,a;d, k)2, of
periodic functions on R" x [0, T| x R™ xR, satisfying wd,k_wﬁk € F(2,a;d, k)
and waoy = way = wjfo = wffl = 0, and a sequence {tqy € S(d,k)}2, of
functions on R™ x [0, T, satisfying ta(-,0) = gax, such that the following is
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true. Define
2d
e ~ T t
Wy, (2 e 7g7€—2 + Ugp(z,t) |,
k=0
m—2d Tt
~ k _
wfé(x,t) = € wjfk xvtagvg_Q +ud,k($7t)
k=0
Then one has
a15U~Jfl,m
_LF 2d+2D2 £+Z€Y thx 2
T g2d+2 dk> 52
k=0

t
52d+2 (Zé de,xt >+wdm <1’t g g) in R" % (0,7),
and
oy

1 2d+2 12~ - k r 1
:»32(1+2F<5 +Dwﬁ’€+25%ﬁ7x,t7gu§
k=0

1 m [ X t e, # i t 3 n
- 52d+2F <Z€ Yd,k7$’t7g7§> T Ydm xatvgag in R" x(0,7),
k=0

with some spatially periodic function ¥y, and some periodic function i
satisfying

et y,s)| + P

m—2d—1
S Ctd,m6 )

(¢§,m - 1/)3;’2)(1'7 LY, 3)

1
Jor any 0 <e < 3.

Remark 4.4.15. Proposition 4.4.5 is the special case with d =0, Yy, = Vi
and Y;ﬁ = 0.

Finally, we are ready to prove our main result.

Proof of Theorem 4.1.1. Since the case 2 < m < 3 is already proved in
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Corollary 4.4.11, we shall consider the case m > 4 only.

Let us construct {Xx}7%0, {Xax}72o {9k }i20: {Yar}iZo, {Yih 220 and
{Gar}sey, for d > 1, as follows. For the initial case d = 1, take

Xip=Vi+ Wi, X =WE,

where Vi, W, and W/ are as in (4.46), (4.65) and respectively (4.66). Also
define

g1k = —wes2(+,0,-,0),
with wy, as in Lemma 4.4.10. One can see from above that { X7 5 }72, {ka}zozo
and {g1x}72, satisfy the assumption of Proposition 4.4.12 with d = 1.
Now let d > 1 be any, and suppose that { X, }72, {ka}i‘;o and {gax 7,
are already given as in Proposition 4.4.12. Then we obtain {vgx}52, and
{Var}22, from which one can define, as in (4.46),

D2vqy, k=0,
Var = Djvd,l + Dayvap, k=1,
D;'Ud,k + DayyVag—1 + D2(vVar—2 — Vag—2), k> 2,
and
Gak = Vax(-,0).
Then we set, for £ > 0,
Xk, 0<k<2d-1,
Yor =
Xag + Vig—2a, k> 2d,

and

Y = X7,
Then from the assumptions that X, ka € S(0,a;d, k) with X4 — XZ;TL,C €
E(0,a;d, k) and the observation that Vg, € E(0,a;d,k) it follows that
{Yar}o, {Ydﬁ}zio and {gax )7, defined as above satisfy the conditions
of Proposition 4.4.14. Thus, one obtains {wa}32,, {wjfk}zozo and {aqx}e2,

as in the proposition.
With such a choice of higher order interior correctors and effective limit
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profiles, we set
W — 0, k=0,1,
we Dzwd,kz + DyyWag—1 + D2(Wag—2 + Uag—2), k> 2,
and its time-periodic version by
0, k=01,
Wfk = 2 # # 2/ H#
7 Dywd,k + Dwywd,k—1 + Dx(wd,k—2 + Ugr—2), k>2.

Now define, for £ > 0,

o Y 0<k<2d+1,
TNV + Wagooa, k> 2d+2.

and respectively the time-periodic version by
# _ yv#
x# _{Yd’k_Xd’k, 0<k<2d+1,
d+1,k — # # . # #
Y+ Wikoa= X0k + Wik o k=>2d+2,
as well as the new oscillatory initial data by
gd+1,k = _wd,k+2<'7 07 ) 0)

By means of wgy, € S(2,a;d,k), wffk € S(2,a;d,k) with wgy — wzl%k €
E(2,a;d,k), ugr € S(d,k) and the assumptions on Yy, and Yd’f’;, one can
verify that {Xg11.}7, {Xim}io:o and {ga41.4 7, also satisfy the assump-
tions of Proposition 4.4.12, which allows us to run an induction argument.

To this end, given m > 4 and 1 < d < |3 — 1, we obtain 9,,, 97,,
satisfying Proposition 4.4.12 (iii), and g ,,, zbﬁi satisfying Proposition 4.4.14
(iv). Following the arguments from Lemma 4.4.9 to Lemma 4.4.10, one can
prove, as in the conclusion of Corollary 4.4.11, that

‘ufl,m($7 t) - ﬁz,m(xa t) - wz,m(x> t) - 62u2+1,m<x7 t)| < Cd,mgmia (487>

for all » € R" and 0 < ¢ < T, where we wrote by u;, for r € {d,d + 1} by
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the bounded viscosity solution to

m—2r
1 Tz t
e 2r+2 12, & k L
Oy, = 52r+2F (z-: Dy, + kz_; "Xk, T, t, = 52>
) - in R™ x (O,T),
1 m—zr k l’ t
_€2r+2F (kz_; € Xr,kaxvta27€_2>
m—2r T
us, (r,0) = kg, (x, —) on R".
\ r,m( ) kZ:% g 7k E
(4.88)

It also follows immediately from the exponential decay estimates of v3,,
and w3, — @], which can be deduced by vy, — Ugx € E(2,a;d, k) and
respectively wqy — wjfk € E(2,a;d, k) for all k> 0, that

Uim(l’, t) - wj;fz(x7 t) - €2u3+l,m(]’.7 t) < Cdm’lgmil? (489>

for all z € R™ and ¢g,,e%| loge| <t < T.
Finally, we add up (4.87) side by side for all 1 < d < [ | —1 and combine
it with (4.85). This yields

13]-1
u®(z,t) — 2 (05 (2, 1) + WG (1)) — gQL%JuT%J (z,1)] < Cpe™ .
=0

QL

Since the governing operator of the initial value problem (4.88) for Ul | sat-
isfies the zero source term condition in the sense of (4.9), and the associated
initial data is bounded by some constant C,,, UT% | as the bounded viscosity
solution should also be bounded by the same constant C),,. Thus, we arrive at
the global higher order convergence rate (4.2), as desired. The error estimate
(4.3) away from the initial time layer can be derived similarly by adding
(4.86) with (4.89) side by side for all 1 < d < [% | — 1. This completes the
proof. O]
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4.5 Further Observations

This section is devoted to making some further observations on the (higher
order) convergence rates for uniformly parabolic Cauchy problems. In Section
4.5.1, we obtain the higher order convergence rate for (4.4). In Section 4.5.2,
we achieve the optimal convergence rate for (4.5) under some additional
structure condition on the operator F' and the initial data g.

4.5.1 Non-Oscillatory Initial Data and Higher Order
Convergence Rate

Based on the construction of the higher order correctors, we are able to
achieve the higher order convergence rate of the homogenization process of
the problem (4.4). The iteration argument is basically the same with the
proof of Theorem 4.1.1. The key difference here is that we begin with the
higher order error correction in the interior, not near the initial time layer.
This seems to be reasonable, since the initial data of (4.4) is not rapidly
oscillatory.

The construction of the higher order interior correctors for (4.4) is essen-
tially the same with Proposition 4.4.5, and has already been studied in the
authors’ previous work [34] in the framework of elliptic equations.

Proposition 4.5.1. Assume that F' satisfies (4.6) - (4.8). Let {gx € S(k)}32,
be a sequence of functions on R™. There exist a sequence {wy, € S(2,a; k)}32,
of periodic functions on R™ x [0,T] x R" x R and a sequence {uy € S(k)}2,
of functions on R™ x [0,T] such that ux(x,0) = gr(z), wo = wy; =0, and the
following hold. Set

- t
ws, (x,t) = Zsk (wk (x,t, g, §> + uk(x,t)> :
k=0

Then one has

t t
atuN)fn =F (D2U~}fnax7ta Ea _2) + wfn <x,t, {7 —2> in R™ x (O,T),
e € g €

with some periodic 1, satisfying
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forcmy0<€§%.

Proof. The main difference of the proof here from that of Proposition 4.4.5
is that the function @y in Lemma 4.4.8 is chosen by the solution to

8,5120 = F(Dzﬂo, l’,t) in R™ x (O,T),
wo(z,0) = go(z)  on R™,

instead of a linear equation (5.81) for & = 0. It should be stressed that the
matrix corrector X and the effective coefficient A are chosen to be the same
as those in Section 4.4.2. We omit the rest of the proof to avoid redundant
arguments. O

Equipped with Proposition 4.5.1 together with Proposition 4.4.1 and
Proposition 4.4.5, we are ready to state and prove the higher order con-
vergence rate regarding the homogenization problem of (4.4).

Proposition 4.5.2. Assume that F satisfies (4.6) - (4.8), and Let g €
C*®(R™) be a function whose derivatives are bounded by K uniformly for all
orders. Under these assumptions, let u® be the bounded viscosity solution to
(4.4) for e > 0. Then for each integer d > 0, there exist sequences {Vax}5,
{War}e2, of spatially periodic functions on R™ x [0,T] x R™ x [0,00) and a
sequence {wdk}k o of periodic functions on R™ x [0,T] x R* x R such that
one has, for any m > 2, any e < % 5, any x € R" and any 0 <t < T,

—2d
we cht2d Tt ~ Tt
.’]Z’,t,—,— +w l’,t,—,—
Oz (e (.25 ) e (0. .5
< Cpe™,
and in particular, for cpe*|loge| <t < T,
[5]-1m—24
us( > ( s i) < Cpe™
g’ g2
d=0 k=0

where ¢, and C,, depend only onn, \, A, a, m, T and K.

Proof. Let us fix m > 2. Due to Proposition 4.5.1, we derive that for any
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0<e<i,

{ua(m,t) —w; (x,t) — 52u8’m{ < Ce™
for any x € R" and any 0 < ¢ < T, where ug,, is the bounded viscosity
solution to to (4.88) for d = 0, Xox = X, = Wi, with T, given as in (4.65).
Thus, vug,, falls under the setting of Proposition 4.4.12, and hence we may

proceed as in the proof of Theorem 4.1.1 and achieve the desired estimates.
This finishes the proof. O

4.5.2 General Fully Nonlinear Problem and Conver-
gence Rate
Let us begin with a short overview the homogenization process of the prob-

lem (4.5), which can be found in [2] and [42]. First we make an additional
assumption on F' that there is F, : S* x R" x [0,T] x R" x R for which

1
2R (—2P,x, t,y, s) — F.(P,z,t,y,s) ase—0, (4.90)
£

locally uniformly for all (P, z,t,y,s) € (S"\{0}) x R" x [0, T] x R" x R. Here
F, is called the recession operator (corresponding to F'). It is clear from its
definition that F also satisfies the conditions (4.6) - (4.7).

Following Lemma 4.3.1 and the comments above it, we obtain a (unique)
function v : R" x [0, 7] x R™ x [0, 00) — R such that v(z,t, -, -) is the spatially
periodic solution to

{US = F*(Dzv,x,t,y,s) in R™ x (0, 00), (4.91)

v(z,t,y,0) = g(y,r)  onR"
for each (x,t) € R" x [0,T]. Also it induces v : R" x [0,7] — R given by

o(z,t) = lim v(x,t,0,s). (4.92)

S§—00

On the other hand, let F' and w be defined as in the beginning of Section
4.3.2. Under these circumstances, the e-problem (4.5) is homogenized to the
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following effective problem

(4.93)

u, = F(D*u,z,t) in R" x (0,7),
) on R",

according to [2] and [42], in the sense that the viscosity solution u® of (4.5)
converges to the viscosity solution @ of (4.93) locally uniformly in R™ x (0, T").

The following proposition gives the optimal rate of u*° — u under some
additional assumptions.

Proposition 4.5.3. Assume F' and g verify (4.6) - (4.8) and (4.10) - (4.11).
Suppose that F, satisfies, with some 0 < § < 1,

|F(P,x,t,y,s) — F.(P,z,t,y,s)| < K|P|°, (4.94)

and that v and v satisfy the conclusion of Proposition 4.3.7. Under these
circumstances, let u® and @ be the viscosity solutions to (4.5) and, respectively,
(4.93). Then there are positive constants ¢ and C, depending only on n, A,
A, a, 0 and K, such that for any 0 < e < %,

uf (z,t) — a(z, )| < Cemin2-20), (4.95)
for all x € R™ and ce*|loge| <t < T.

Remark 4.5.4. The inequality (4.94) implies that

1
e’F <_2P,£U,t,y,s> — FL.(Pr,t,y,8)| < K52_26|P|6, (4.96)
g

for any (P,x,t,y,s) € 8" x R" x [0,T] x R™ x R. In comparison of (4.96)
with (4.95), we realize that the rate of u* — u depends sensitively on the rate
of (4.90).

Remark 4.5.5. The second additional assumption that v and v satisfy the
assertion of Proposition 4.3.7 has been made because this assumption fails
to hold for general F,. The main reason is that nonlinear F, is Lipschitz
continuous (in the matriz variable P) at best, which prevents us from hav-
ing Proposition 4.3.7. We shall provide some concrete example later in this
regard.
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Proof of Proposition 4.5.3. Throughout this proof, we will write by ¢ and C'
positive constants depending at most on n, A\, A, o, § and K, and let them

vary from one line to another.
Define v° : R" x [0,7] — R by

X

!
(z,t) =v |z, t,—, — | —v(x,t).
@)= (a5 ) =0l

Since v and v are assumed to satisfy (4.36) for all m > 0, we observe that o°
is a (classical solution) to

t t
0 =F (ngs,x,t, 57_2) + ¢ (a:,t,z, —2> in R" x (0,7),
€€ g€

T

0°(x,0) =g (ac, g) — 0(z,0) on R",
with ¢ : R" x [0,T] x R® x [0,00) — R being defined by
¢8($atay’ 8) = F* (E_Q%,l',t,y,S) —F (8_2‘/0 + 5_1‘/1 + ‘/2,:1:7t;y73) )

where
Vo =D2v, Vi=Dyu, Vy=Di(v—7).

One may notice that (4.36) implies that all V;, Vi and V, satisfy the
exponential decay estimate. Thus, utilizing (4.94), we observe that

F, (5_2%,1',25,3/, s) —F (5_2%,x,t,y,s)‘ < Qe P95, (4.97)

for any (z,y,s) € R" x R" x [0,00) and any 0 < ¢ < 3. On the other hand,
we have from (4.6) that

‘F (5_2‘/0,x, t,y, s) - F (5_2\/0 +e Vi + Va2, t,y, s)| < Cete P, (4.98)

for any (z,t,y,s) € R x [0,T] x R" x [0,00) and any 0 < ¢ < 1. Combining
(4.97) with (4.98), we arrive at

[¥° (. t,y,5)| < Ce e,
for any (x,t,y,s) € R" x [0,7] x R" x [0,00) and any 0 < ¢ < %

Thus, arguing analogously as in the proof of Lemma 4.4.9, with the
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bounded viscosity solution u° of

( 1 t
@ = =F (D + e Wyrt, 2, =
b g2 g’ g2
. , in R" x (0,7),
P x
_€_2F <€ %,I,t,g,;)
(@ (2,0) = g(x) on R".

one has, for any 0 < e < %,
[uf (2,8) — (2, 8)| < Ce>, (4.99)

for all x € R™ and all ce?|loge| <t <T.

On the other hand, we know that Proposition 4.3.12 is true under the
assumptions (4.6) - (4.8) on F. Hence, it follows from the estimate (4.40)
and the assumption (4.36), which holds also for g, that the solution @ to
(4.93) satisfies u € C*°(R"™ x [0,7]) and

> [Dtoa(x,t) < G, (4.100)

|| +2v=l
for any | > 0. Now let w(z,t,-,-) be the unique periodic solution of
w, = F (D}w + D2u(x,t), x,t,y,s) — F(DJu(z,t),z,t) inR" xR
w(z,t,0,0) =0,

for each (z,t) € R™ x [0,T]. Due to Proposition 4.3.12 and (4.100), we have
w € C®(R" x [0, T]; C**(R™ x R)), for any 0 < & < @, and

Z ”Dga:il)(.x,t,‘,')ch,a(RnXR) < Cl7

| +2v=1

for any [ > 0.
Therefore, arguing as above, we observe that the function w® : R™ x

[0,7] — R, defined by

t
WF(z,t) = u(z,t) + *w (:p,t, f, —) ,

g’ g2
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solves
Tt R r t .
( g —2) +¢ ([E,t,g,;) in R" x (O,T),
= g(x on R",
for some ¢ : R™ x [0,7] x R" x R — R satisfying
‘ws(l‘7 t? y7 8)‘ S CE?

for any (z,t,y,s) € R" x [0,T] x R" x R and any 0 < ¢ < 1.
Now we may proceed as in the proof of Lemma 4.4.10 and deduce that

t
u(x,t) — w° (x,t, f, —2> - szui(x,t)‘ < C¢, (4.101)
e'e

for all x € R" and all 0 < t < T, provided 0 < ¢ < %, where uf is the
bounded viscosity solution of (4.79); we would like to focus on the fact that
the governing operator of (4.79) has zero source term in the sense of (4.9),
and the initial data of (4.79) is bounded. Thus, uj is bounded globally, espe-
cially independent of €. Finally, the error estimate (4.95) can be deduced by

combining (4.99) and (4.101). O

Let us finish this subsection with an example that reveals that the as-
sumptions of Proposition 4.5.3 are satisfied for certain F' and g.

Example 4.5.6. Let F, be independent of (x,t,y,s) and satisfy F.(P) <
—F.(=P) for any nonzero matrix P € 8™. For instance, one may take F,
by Pucci’s minimal operator for the lower ellipticity bound X' > X\ and the
upper ellipticity bound A" < A. On the other hand, let g be given by g(x,y) =
U(x)p(y) on R™ x R™, with ¢ being a smooth periodic function and ¢ being
a smooth bounded function.

Let us write by F_(P) and F.(P) the functionals F.(P) and, respectively,
—F.(—P), and consider the spatially periodic Cauchy problem,

8svi = Fi(Dzvi) i R™ x (0, OO),
ve(y,0) = o(y)  onR"

According to Lemma 4.3.1, there are unique real numbers v, and ~vy_ such that
i = limy_,o0 v+ (0, 8). Notice that va € C*® for some 0 < a < 1 depending
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only onn, A and A, owing to the convexity of Fy and the concavity of F_.
Let us observe that v, > ~_. First it follows from the comparison prin-

ciple that vy > v_ in R™ x (0,00), which implies v, > ~v_. Moreover, since

F.(P) > F_(P) for any nonzero P € 8", the function w = v, — v_ solves

Os(vy —v_) > tr(A(y, s)D2(vy —v-)) in R" x (0,00),

where A s the linearized coefficient associated with F,. This implies that
the function W(s) = mingn(vy(-,s) — v_(+,s)) is non-decreasing for s > 0,
whence we have y; > y_.

Now let v be the solution to (4.91). Then the uniqueness of v implies
that v(x,y,s) = ¢($)U—(?J7S> Zf ¢(x) > 0 and U(ZL’,y,S) = ¢($)U+(Z/a 8) Zf
W(x) < 0. This also implies that the function v defined by (4.92) satisfies
0(x) = v4(x) if Y(x) =2 0 and 0(x) = 7-9(z) if Y(x) <0.

This tmplies that if ¢ changes sign at some point, then v and v are not
even differentiable at that point. On the other hand, we have v and v satis-
fying the conclusion of Proposition 4.3.7, provided that v is either uniformly
positive or uniformly negative.
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Chapter 5

Higher Order Convergence
Rates in Theory of
Homogenization: Viscous
Hamilton-Jaboci Equations

5.1 Introduction

This paper concerns the higher order convergence rates of the homogenization
of viscous Hamilton-Jacobi equations. The model problem is of the form,

X

u; —etr (A ( ) D2u€> +H (Dug, f) =0 inR" x (0,00),
£ £
ut =g on R" x {t = 0}.

(5.1)

Here the diffusion matrix A is periodic and uniformly elliptic, and the Hamil-
tonian H is periodic in the spatial variable while it is convex and grows
quadratically in the gradient variable. The initial data g will be chosen to
have smooth solutions for the effective Hamilton-Jacobi equation. At the
end of this paper, we shall extend the result to the fully nonlinear, viscous
Hamilton-Jacobi equation in the form of

u; + H <6D2u6, Du®, E) =0 inR" x (0,00),
€
ut=yg on R" x {t = 0}.

(5.2)
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This paper is in the sequel of the authors’ previous works [34] and [35],
where the higher order convergence rates were achieved in the periodic ho-
mogenization of fully nonlinear, uniformly elliptic and parabolic, second or-
der PDEs. We found it interesting in the previous works that even if we
begin with a nonlinear PDE at the first order approximation, we no longer
encounter such a nonlinear structure in the second and the higher order ap-
proximations. Instead, we always obtain a linear PDE with an external source
term, which can be interpreted as the nonlinear effect coming from the error
that is left undetected in the previous step of the approximation.

The previous papers were concerned with uniformly elliptic (or parabolic)
PDEs that are nonlinear in the second order derivatives, where the nonlinear
perturbation is still made in the same order of the linear structure. A key
difference in the current paper is that we impose a nonlinear structure (in the
gradient term) that has quadratic growth at the infinity, so that this nonlin-
earity cannot be attained by order 1 perturbations of a linear structure. We
believe that the quadratic growth condition can be generalized to superlinear
growth condition, only if the solution of the corresponding effective problem
is smooth enough.

Another interesting fact we found in studying Hamilton-Jacobi equations
is that the geometric shape of the initial data turns out to play an impor-
tant role in achieving higher order convergence rates. In particular, what we
observe in this paper is that the geometric shape of the initial data has to
be selected according to the nonlinear structure of the effective Hamiltonian,
which to the best of our knowledge has not yet been addressed in any exist-
ing literature. The main reason for this requirement is to ensure the solution
of the effective problem to be sufficiently smooth such that one can proceed
with the approximation as much as one desires.

In this paper, we establish higher order convergence rates when the initial
data is convex, while the Hamiltonian is convex. However, a natural question
is if one can generalize one of these structure conditions, which seems to be
an interesting yet challenging problem. We shall come back to this in the
forthcoming paper.

The periodic homogenization of (viscous) Hamilton-Jacobi equations is by
now considered to be standard, and one may consult the classical materials
[21] and [39] for a rigorous justification. For the notion of viscosity solutions
and the standard theory in this framework we refer to [9] and [20].

For the recent development in the rate of convergence in periodic ho-
mogenization of (viscous) Hamilton-Jacobi equations, we refer to [14], [17],
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[43], [47] and the references therein. Nevertheless, this is the first work on
the higher order convergence rates in the regime of (viscous) Hamilton-Jacobi
equations. For the higher order convergence rates for other type of equations,
we refer to [34], [35] and the references therein.

The paper is organized as follows. In Section 5.2, we introduce basic no-
tation used throughout this paper, and list up the standing assumptions
regarding the main problem (5.1). From Section 5.3 to Section 5.5, we are
concerned with the homogenization problem of (5.1). In Section 5.3, we sum-
marize some standard results on the cell problem and the effective Hamilto-
nian. In Section 5.4, we establish the regularity theory of interior correctors
in the slow variable. Based on this regularity theory, we construct the higher
order interior correctors in Section 5.5 and prove Theorem 5.5.6, which is
the first main result. Finally in Section 5.6, we generalize this result to the
homogenization of (5.2), and prove Theorem 5.6.6, which is the second main
result.

5.2 Notation and Standing Assumptions

Throughout the paper, we set n > 1 to be the spatial dimension. The param-
eters A\, A, a, o, 5, ', K, L, and i will be fixed positive constants, unless
stated otherwise. By Z"™ we denote the space of n-tuple of integers. By S&™
we denote the space of all symmetric n x n matrices.

Definition 5.2.1. Given k,l > 0 integers, 0 < p < 1 real number, X and Y
metric spaces, we define C'(X; C**(Y)) by the space of functions f = f(x,y)
on X XY satisfying the following.

(i) f(-,y) € CYX) forally €Y.
(ii) {D™f(x,)}rex is uniformly bounded in C**(Y') for any 0 < m <.

(111) Given any sequence xy — x in X, one has DI f(xy,-) — D f(x,-) in
Ct1(Y) for any 0 < m < 1.

From Section 5.3 to Section 5.5, we study the higher order convergence
rates in homogenization of (5.1). Throughout these sections, we assume that
the diffusion matrix A satisfies the following, for any y € R".

(i) A is periodic:
Aly + k) = A(y). (5.3)
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(ii) A is uniformly elliptic:

M < A(y) < Al (5.4)
(iii) A € C*Y(R") and

Al o my < K (5.5)

On the other hand, we shall assume that the Hamiltonian H verifies the
following, for any (p,y) € R™ x R™.

(i) H is periodic in y:
H(p,y+ k) =H(p,y), (5.6)
for any k € Z".

(ii) H has quadratic growth in p:
alp* =o' < H(p,y) < Blp|* + 5. (5.7)
(ili) H is convex in p:
Htp+ (1 —t)q,y) <tH(p,y) + (1 = )H(q,y), (5-8)
for any 0 <t <1 and any ¢ € R".
(iv) H € C>(R™;C*(R")) and
DI sy <K (L4 BE9) . (59

for any nonnegative integer k.

The assumptions on the initial data g will be given in the beginning of
Section 5.5, since we need to derive the effective Hamiltonian beforehand.
On the other hand, the structure conditions for (5.2) will be given in the
beginning of Section 5.6.

5.3 Preliminaries

Let us begin with the well-known cell problem for our model equation (5.1),
stated as below. This lemma is by now considered to be standard (for in-
stance, see [21] and [22]), since the diffusion coefficient A is uniformly elliptic
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and the Hamiltonian H is convex. Nevertheless, we shall present a proof for
the reader’s convenience.

Lemma 5.3.1. For each p € R", there exists a unique real number, v, for
which the following PDE,

—tr(A(y)D*w) + H(Dw + p,y) =~ in R", (5.10)

has a periodic viscosity solution w € C**(R™) for any 0 < u < 1. Moreover,
we have
alp]* — o' <y < Bpf + 4" (5.11)

Furthermore, a periodic solution w of (5.10) is unique up to an additive
constant, and satisfies

lw = w(O)| oo geny + 1DW]| 1 (gemy < Cps (5.12)

where C' > 0 depends only onn, A\, A, a, /, 8, 5, K, u and |p|.

We shall divide the proof into two steps. The first step concerns the
approximating problem and a uniform Lipschitz estimate.

Lemma 5.3.2. For each p € R™ and § > 0, there exists a unique periodic
viscosity solution w® € CO(R™) to

—tr(A(y)D*w’) + H(Duw® + p,y) + 6w’ =0 in R, (5.13)
which satisfies
—BIpfP =B <6 |0 || p gy < —alpl® + (5.14)
and a uniform Lipschitz estimate

| Dw < C(1+ pl), (5.15)

5
| 2oe gy
where C > 0 depends only on A\, A, o, o and K.

Proof. Due to (5.7), we know that —d(a|p|* — a’) and —6(8|p|* + ') are a
supersolution and, respectively, a subsolution of (5.13). Thus, the comparison
principle yields a unique viscosity solution, w?®, of (5.13), satisfying (5.14).
The uniqueness of w® implies its periodicity, that is, w’(y + k) = w°(y) for
all y € R” and all k € Z".
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Hence, we are only left with proving the uniform Lipschitz estimate (5.15).
We shall show it first under the claim that w® € C3(R"), and then justify
this claim at the end of the proof.

Under the assumption that w® € C3(R"), let us differentiate (5.13) in y
and take the inner product with Dw, which yields a uniformly elliptic PDE
for the function v = | Dw’|?,

—2tr(A(y)[D*w’ (y)]*) — tr(A(y) D*v) + B(y) - Dv+2E(y) - Dw’ (y) +25v = 0,
in R", where B(y) = D,H(Dw’(y) + p,y) and E(y) = D, H(Dw®(y) +(157,];£>
Since v is periodic and continuous, v achieves a global maximum at some
point yo € R™. Denote
M = D*u’(yo) and g = Dw’(yo).
Then it follows from (5.16) that
—tr(A(yo) M?) + E(yo) - ¢ < 0. (5.17)
However, due to the ellipticity condition (5.4), we have
—tr(A(yo) M?) > N\ M|?. (5.18)
On the other hand, it follows from the regularity assumption (5.9) that
[E(yo)l < K(1+ M|+ [p+ql*). (5.19)

Inserting (5.18) and (5.19) into (5.17), we obtain
2 _ K 2
IM[" < - (L+ [M]+Ip +q7)ldl. (5.20)

By means of Young’s inequality ab < ea? + 4—1€b2, one may continue with the
estimation in (5.20) as

|M|* < Ci(1+ |g| + |g* + [p)]gl,

where C depends only on A and K.
Let us return to (5.13). Due to (5.4), (5.7) and (5.14), the PDE (5.13)
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evaluated at yy becomes
alg+plP—a’ < H(g+p, yo) = tr(Alyo) M) —dw(yo) < AIM|+5[p|+4". (5.21)

After some manipulation using Young’s inequality and (5.21), we obtain that

lg]> < Co (1+ [p*) + Ci/ (1 + |q] + |a]?)lal, (5.22)

where Cy > 0 depends only on n, A\, A, a, o, 8 and J'.
Let C'5 > 0 be such that

1
(1+t+ )t < E154 for all t > Cs,
1

in which case ('3 depends only on (4, whence on A and K only. Then we
conclude from (5.22) that

lq? < max {205(1 + [p[?), C2} < Cu(1 + [p]?),

where C; = max{2C,, C2}, proving the uniform Lipschitz estimate (5.15).

Thus, we are left with proving that any viscosity solution w® of (5.13)
belongs to the class C?(R"). As a matter of fact, it is sufficient to show that
any such viscosity solution belongs to the class C*#(R"), for some 0 < u < 1,
since improving the regularity from C%* to C? follows immediately from a
bootstrap argument; for instance, see Theorem 2.2.9.

By means of the weak Bernstein method [6], we know at least that w®
is locally Lipschitz in R™. Thus, for each ball Bg, w can be viewed as the
viscosity solution of

tr(A(y)D*w’) = f(y),

with f = —H(Dw® + p,-) + 0w’ € L>®(Bg). Hence, it follows from the C1#
estimate (Theorem 2.2.7 (a)) that w € C."(Bg) for some 0 < pu < 1.
Thus, f € C*(Bg/2), and under assumption (ii) on H in this lemma, we can
apply the C*” estimate (Theorem 2.2.7 (b)) and obtain w’ € C*"(Bp/4) for
some 0 < v < min{yu, i}. Since this holds for any R > 0, we conclude that
w’ € CIZO’CV(R”), from which one can improve the regularity (Theorem 2.2.9)

so that w € C3(R™). This finishes the proof. O
With the uniform Lipschitz estimate for the approximating solution w?,

we can finish the proof of Lemma 5.3.1.
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Proof of Lemma 5.5.1. Throughout the proof, C), will denote a positive,
generic constant that depends at most on n, A\, A, «a, o/, 5, 5/, K, p and
|p|, unless stated otherwise. Moreover, we shall fix 0 < p < 1.

Let p € R™ be given. We know a priori that periodic viscosity solutions
of (5.10), if any, are unique up to an additive constant. Suppose that w’ is
another periodic viscosity solution of (5.10). Then v = w — w’ satisfies the
following linearized equation,

—tr(A(y)D*v) + B(y) - Dv =0 in R,

where B(y) = [, D,H(tDyw + (1 —t)D,u’ + p,y)dt. Now that v is bounded,
we deduce from the Liouville theorem that v is a constant function on R".

Henceforth, we prove the existence of a unique real number, =, such that
the cell problem (5.10) admits a periodic viscosity solution. Let w® € C%(R")
be the unique periodic viscosity solution of (5.13), satisfying (5.14) and the
uniform Lipschitz estimate (5.15).

By periodicity and (5.15), we have oscgs w® < C(1+ |p|). This also yields
that w® — w?’(0) € C*(R") and

1 = 0P ()] gy + || D < O(1+ Jp).

5
| o ey
Due to (5.7), (5.14) and (5.15), we know that

| H(Duw’ + p, ) + 6w , < C(1L+[p))*.

M oo e
Considering the second and the third terms on the left hand side of (5.13)
as an external force, we may apply the interior C1* estimate (Theorem 2.2.7
(a)) in a ball such that the concentric ball with half the radius contains the
periodic cell, and then use the periodicity of w? to derive that w® — w’(0) €
Cl#(R") and

H w’ — w6<0) ” Lo (R™) + [Dw‘;} < .

Cn(R™)
Now the C''* regularity of w® yields that

HH(Dw‘s—I—p,')—i—&u ) §C|p|.

’ HCH(R”

Hence, it follows from the interior C*# estimates (Theorem 2.2.7 (b)) (again
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we choose a large ball containing the periodic cell, as we did when applying
the interior O estimates) and the periodicity of w® that w® — w’(0) €
C?*(R™) and

[’ =0 (0) || o zmy + || D ) < Cp. (5.23)

Mot en

Due to the compactness of both of the sequences {w® — w®(0)}s=o and
{—6w}ss0 in CHH(R™), we know that w® — w’(0) — w and —dw® — 7 in
C%H (R™), for any 0 < p/ < p, for some w € C?#(R") and some v € R, along
a subsequence. Now that viscosity solutions are stable under the uniform
convergence, we know that w is a viscosity solution of (5.10) with the limit
v on the right hand side. This proves the existence part of Lemma 5.3.1.

To investigate the uniqueness of v, we suppose towards a contradiction
that there is another real number ', corresponding to the same p, such that
(5.10) has a periodic viscosity solution, say w’. Without losing any generality,
let us assume vy > 4’. Then it is easy to see that w’ is a strict subsolution
of (5.10). However, due to the periodicity of w’ — w, w" — w attains a local
maximum at some point, whence we arrive at a contradiction. Thus, v must
be unique.

The inequality (5.11) follows immediately from the inequality (5.14) and
the fact that —dw® — v uniformly in R". To see that the estimate (5.12)
holds, we first observe from the convergence of w? —w?(0) — w in C?# (R"),
for any 0 < y/ < p, and the estimate (5.23) that w € C**(R"™) and satisfies
(5.12). Note that we used w(0) = 0, which follows from the construction
of w. Now if w' is another periodic viscosity solution of (5.24), then due to
the uniqueness that we have shown in the beginning of this proof, we have
w' — w'(0) = w. Therefore, w' satisfies (5.12), which completes the proof of
this lemma. O

~ Due to the uniqueness of 7 in Lemma 5.3.1, we may define a functional
H : R® — R in such a way that for each p € R", H(p) is the unique real
number for which the following PDE,

—tr(A(y)D*w) + H(Dw + p,y) = H(p) in R", (5.24)

has a periodic solution in C%#(R") (for any 0 < u < 1). Moreover, the second
part of Lemma 5.3.1 yields a functional w : R™ x R” — R such that for each
p € R", w(p,-) € C**(R") (for any 0 < pu < 1) is the unique periodic
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viscosity solution of (5.24) that is normalized so as to satisfy
w(p,0) = 0. (5.25)

Let us list up some basic properties of H that were already found in [22].
We provide the proof for the sake of completeness.

Lemma 5.3.3. H satisfies the following properties.

(i) H has the same quadratic growth as that of H:
alp]* =o' < H(p) < Blp* + B, (5.26)
for any p € R™.
(ii) H is also conver:
H(tp+ (1 —t)q) < tH(p) + (1 —t)H(q), (5.27)
forany 0 <t <1, and any p,q € R™.
(iii) H € CYYR") and

loc

|H(p) — H(q)| < C(1+ |p| + |gl)|p — ql, (5.28)

where C' > 0 depends only onn, X\, A, o, o, 3, 5" and K.

Proof. Notice that (5.26) follows immediately from (5.11) and (5.24). Thus,
we shall only prove (ii) and (iii).

For the notational convenience, let us write w,(y) = w(p,y). To prove
(5.27), we assume to the contrary that there are some p,qg € R" and 0 <t < 1
such that

tH(p)+ (1 —t)H(q) < H(tp+ (1 — t)q). (5.29)

For the notational convenience, let us write r = tp + (1 — t)q and @, =
twy, + (1 — t)w,. Then due to (5.29) and (5.8), one can easily deduce that w,
is a periodic viscosity solution of

—tr(A(y)D*@,) + H(Dw, +r,y) < H(r) in R™

In other words, w, is a strict viscosity subsolution of the PDE for w, which
is precisely the cell problem (5.10) with p = r. Therefore, it follows from the
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comparison principle that w, — w, cannot attain any local maximum. How-
ever, as W, — w, being a non-constant continuous periodic function, it surely
attains local maximum at some point, whence we arrive at a contradiction.
Therefore, we must have (5.27) for any 0 < ¢ <1 and any p,q € R™.

Finally let us prove (5.28). To do so, we go back to the penalized problem
(5.13). Analogous with the notation w,, let us denote by w) the unique
viscosity solution of (5.13) corresponding to p. Due to the uniform gradient
estimate (5.15) and the regularity assumption (5.9), we have

|H(Dw) + p,y) — H(Dw) + q,y)| < C(1+ |p| + |a])|p — ql,

where C' > 0 depends only on n, A\, A, a, o, 3, ' and K. Therefore, we have
— tr(A(y) D*wy) + H(Dwy + q,y) + 6wy, < C(1+ |p| +|gl)lp — q| in R",

in the viscosity sense. In other words, w) — 0~'C(1 + [p| + [q|)|p — ¢| is a
viscosity subsolution of (5.13) with p replaced by ¢. Hence, it follows from
the comparison principle that

dwy, — dwy < C(1+ Ip| + la)lp — gl,

on R™. Passing to the limit § — 0 in the last inequality, we arrive at

H(p) — H(q) < C(1+Ipl+lql)lp — 4l

Similarly, one may also obtain that

H(q) — H(p) < C(1+|pl+ lgl)lp — 4,

proving (5.28). This completes the proof of Lemma 5.3.3. O

5.4 Regularity in Slow Variables

In this section, we shall investigate the regularity of H and w in the slow
variable p. Such a regularity has been established in the authors’ previous
works [34] and [35], for fully nonlinear elliptic and, respectively, parabolic
PDEs. Let us first observe the continuity of w in p variable.
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Lemma 5.4.1. w € C(R"; C**(R")), for any 0 < p < 1, and given L > 0
and p € Br, one has

lew(p. Y ey + 105200 M grongany < C (5.30)

where C' > 0 depends only onn, \, A, o, o, B, 5/, K, pn and L.

Proof. Let us fix 0 < g < 1. The estimate (5.30) follows immediately from
(5.12) and the choice of w that w(p,0) = 0. Thus, we prove that w is contin-
uous in p variable with respect to the C** norm in y variable.

Let {px}72, be a sequence of vectors in R™ converging to some py € R™ as
k — oo. Let us write, for the notational convenience, wy(y) = w(px,y) and
v = H(py) for k =0,1,2,---. We already know from (5.28) that v, — 7o as
k — oo. Hence, it suffices to prove that wy — wg in C?# (R") as k — oo, for
any 0 < u/ < p.

Due to (5.30), we know that {wy}32, is uniformly bounded in C%#(R"),
for any 0 < p < 1. Now that wy is periodic for all £ = 1,2, - s, the Arzela-
Ascoli theorem yields that for any subsequence {vg }72, C {wy}32, there are
a further subsequence {vy,}32, and a periodic function v € C**(R") such
that vy, — v in C*#(R"), for any 0 < u < 1, as ¢ — oco. Now that py, — po
and v, — 7o as ¢ — 00, we deduce from the stability of viscosity solutions
that v and ~, satisfies

—tr(A(y)D*v) + H(Dv + po,y) = v in R".

Since v(0) = 0, the second part of Lemma 5.3.1 implies that v = wy. This
shows that any subsequence of {wy}?2, contains a further subsequence that
converges to wy in C%# (R™), for any 0 < p/ < p. Moreover, we know from
v € C**(R") that wy € C**(R") as well. Therefore, wy, — wy in C>* (R™),
for any 0 < ¢/ < p as k — oo, which completes the proof in view of Definition
5.2.1. O

Next we prove that H and w are continuously differentiable in p.

Lemma 5.4.2. H € C'(R") and
|DypH (p)| < C(1+ Ipl),

where C' > 0 depends only on n, \, A, a, o, B, 5" and K. Moreover, w €
CLR™; C?#(R™)), for any 0 < p < 1, such that for any L > 0 and any
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p € By,
| Dpw(p, ')HcZ,u(Rn) < Cf,

where Cp, > 0 depends only onn, X\, A, o, o, B, 5/, K, u and L.

Proof. Let us fix 0 < p < 1. Throughout this proof, we shall write by C7 a
positive constant depending at most on n, A, A, «, o/, 8, 5, K, i and L. We
will also let it differ from one line to another, unless stated otherwise.

Fix L>0,pe€ By,0<pu<1land1 <k <n. Write wy,(y) = w(p+hex, y)

and v, = H(p + heg) for any h € R with |h| < 1. Also write Wj(y) =
h= Y (wi(y) — wo(y)), and Ty = h~'(y, — 7). Then W), turns out to be a
periodic viscosity solution to

—tr(A(y)D*W,) + By(y) - (DW), +e;) =T, in R, (5.31)

where
1
Buly) = / D, H(tDywy + (1 — t)Dywo + p + the, y)dt.
0

It follows from (5.30) and (5.9) that B, € C*(R"™) and
I Bull g ny < Crs (5.32)

for any h € R with 0 < |h| < L — |p|; recall from p € By, that L — |p| > 0.
Moreover, we know from (5.28) that

for any h € R with 0 < |h| < L — |p|, where Cy > 0 depends only on n, «,
o, B, and K.

One may notice that (5.31) belongs to the same class of (5.37), whence
it follows from Lemma 5.4.3 below that W), € C**(R") and

Wil g2uuny < Crs (5.34)

for any h € R with 0 < |h| < L — |p|. On the other hand, from the fact that
Lemma 5.4.1 implies Dw;, — Dwg in C**(R™), we know that B, — By in
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CH(R™), where By is defined by
Bo(y) = DpH(Dywo + p,y).
As with the estimate (5.32), we also know that
| Bollenny < .

According to the Arzela-Ascoli theorem, there is some Wy € C%H(R")
such that W), — Wy in C** (R™) for any 0 < i/ < p, along a subsequence.
Moreover, we may choose I'y € R such that I', — I’y along a further subse-
quence. Then by the stability of viscosity solutions, W, becomes a periodic
solution to

—tr(A(y) D*Wy) + Bo(y) - (D,Wo +ex) =T in R™ (5.35)
Let us remark that the convergence I';, — I'y along a subsequence implies
To| < Co(1+1pl), (5.36)

where Cj is the same constant chosen in (5.33).

Now that (5.35) belongs to the same class of (5.37), it follows from
Lemma 5.4.3 below that [y is unique. From the uniqueness of the limit T,
we infer that [', — I'y without extracting any subsequence. By definition,
[y = D, H(p). The estimate on D,H(p) in Lemma 5.4.2 now follows from
(5.36).

Moreover, since any limit Wy of {W},}o<jnj<1 satisfies Wy(0) = 0, we also
have from the last part of Lemma 5.4.3 below that W is unique, and belongs
to C*#(R"), with the estimate

[Wollesee) < C

Owing to the uniqueness of the limit W,, we conclude that W, — W, in
C?#'(R™) along the full sequence, which implies that Wy = D, w(p, -).

The continuity of D, H and D, w in variable p can be proved similarly
as in the proof of Lemma 5.4.1. To avoid repeating arguments, we omit the
details and leave this part to the reader. O

Lemma 5.4.3. Let B € C*(R") be a periodic, vector-valued mapping. Then
for each p € R™, there exists a unique real number, -y, for which the following
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PDE,
—tr(A(y)D*v) + B(y) - (Dv+p) =~ inR", (5.37)

admits a periodic viscosity solution v € C**(R™). Moreover, v satisfies
Y < ApH I B oo ey -

Furthermore, a periodic viscosity solution v of (5.37) is unique up to an
additive constant, and satisfies

v — U(O)ch(Rn) < Clpl,

where C' > 0 depends only on n, A, A, i and || B[ gy gn)-

Proof. The proof is essentially the same with that of Lemma 5.3.1, and hence
it is omitted. O]

In what follows, let us write B(p) = D,H(p), v(p,y) = Dyw(p,y) and

B(p,y) = DpH(Dyw(p,y) + p,y). (5.38)

In view of the proof of Lemma 5.4.2, we may understand B(p) as the unique
real vector in R" for which the following (decoupled) system,

—tr(A(y) D*v) + B(p,y) - (Dyv + 1) = B(p), (5.39)

has a periodic viscosity solution, where [ is the identity matrix in S™. More-
over, v(p,-) can be considered as the unique periodic viscosity solution of
(5.39) such that

v(p,0) = 0. (5.40)

It is remarkable that after linearization in (5.10), we end up with a cell
problem whose gradient part has a linear growth, as shown in (5.39). More-
over, one may expect that the linear structure of the “new” cell problem
(5.39) will be preserved throughout the linearization we do in the future to
obtain higher regularity of H and w in p. This is the brief idea behind the
proof of the following proposition. One may find a similar proposition for
uniformly elliptic, fully nonlinear PDEs in the authors’ previous work [34]
and [35].
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Lemma 5.4.4. H € C®(R") and w € C=(R™; C**(R")), for any 0 < pu < 1,
such that for any k=0,1,2,---, any L > 0 and any p € By,

Dy H (p)| + || Dyw(p. ) | )< G, (5.41)

CQ,/L(Rn
where Cy 1, > 0 depends only on n, A\, A, a, &', B, ', K, p, k and L.

Proof. We follow the proof of Lemma 5.4.2. Due to Lemma 5.4.2 and the
regularity assumption (5.9), we already know that B € C'(R"; C1#(R")), for
any 0 < p < 1, with B defined in (5.38). Thus, in order to run the same
argument in the proof of Lemma 5.4.2, we need the Lipschitz regularity of
B = D,H in p. However, this can be shown as in the proof of (5.28) of
Lemma 5.3.3. This is because we can also understand the constant vector
B(p) as the limit of {—0v°}5-0, with v° being the unique periodic viscosity
solution of

—tr(A(y)D*°) + B(p,y) - (D’ +1)+6v° =0 in R™

Once we know that B is Lipschitz in p, it follows from Lemma 5.4.2 and
the elliptic regularity theory that the difference quotient Vi, = h=t(vy, — vo)
is uniformly bounded in C?#(R"), as it being a periodic viscosity solution of

—tr(A(y) D*V) + Bu(y) - DyVi, + Bi(y) - (Dyvo(y) + 1) = B, in R,

with _Uh :_U<p + hek, '), Bh = B(p + h@k, '), Bh = h_l(Bh - BO) and Bh =
h=Y(Bj, — By). Hence, we deduce from the stability of viscosity solutions that
any pair (Vo, Bo) of {Vi}o<jnj<1 and, respectively, { B, }o<|nj<1 must satisfy

—tr(A(y) D*Vo) + Bo(y) - DyVo + Bo(y) - (Dyvo(y) +1) = By in R". (5.42)

Since (5.42) belongs to the same class of (5.37), we know from Lemma
5.4.3 that V and B, are unique. Thus, we derive the differentiability of B
and v in p. Arguing as in the proof of Lemma 5.4.1, we may also observe that
DPB and D,v are continuous in p.

One may now iterate this argument to obtain higher regularity of B and
v in p, which automatically implies that of H and w. We leave out the details
to the reader. O
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5.5 Interior Corrector and Higher Order Con-
vergence Rate

In this section, we construct the higher order interior correctors for the ho-
mogenization problem (5.1), based on the regularity result achieved in Section
5.4.

We begin with the effective Hamilton-Jacobi equation for (5.1), which is
given by

Oytig + H(Dip) =0 in R"™ x (0, 00),
Orto + H(Dilo) =0 1 (0, 00) (5.43)
U =g on R" x {t =0}.
The characteristic curve, which starts from zy € R", is given by
E(t;20) = w0 + DpyH (D,g(o))t. (5.44)

Note that this is indeed a line with direction D,H(D,g(x)). Moreover, the
gradient of @ is constant along this curve. To be specific, we have

l)wﬂ(f(t;$0),t) ::Z)xg(x0>' (5'45>

It is noteworthy that the initial data, g, does not play any role when
deriving the effective Hamiltonian H, as shown in Section 5.4. This allows
us to choose the initial data g a posteriori so as to make sure that

{(€tx),t) > 0} {(E(t:a)),t) - £ > 0} =0, (5.46)

if and only if z # 2/, as well as that

U (€t 2),t) 1 > 0} =R" x (0,00). (5.47)

z€eR™

One may easily observe that there are infinitely many initial data g that
satisfy the conditions (5.46) and (5.47), once H is determined. A trivial
example is an affine function, which can be generalized to any smooth, convex
and globally Lipschitz function.

Once we have the initial data g, we can observe from the characteristic
equations for (5.43) that 1y € C*°(R" x [0,00)) (see Lemma 5.5.1). Setting

B(x,t) = D,H(D, (1)), (5.48)
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we obtain B € C®°(R" x [0,00)), according to Lemma 5.4.4. In order to
construct the higher order correctors, we need to have smooth solutions for
first order linear PDEs with B as the drift term. For this reason, we require
that

B(x,t) # 0,

for any (z,t) € R" x (0,00). In view of (5.45) and (5.47), the image of B on
R™ x (0, 00) coincides with that of D,H(D,g) on R™. Hence, we ask D,g not
to be the critical points of H.

Let us list up the conditions for g to be imposed in the rest of this paper:

(i) g is convex:
g(tr + (1 —t)2') < tg(x) + (1 —t)g(2"), (5.49)
for any 0 <t <1 and any z, 2’ € R™.

(ii) g € C*(R™) N Lip(R"), and there is L > 0 such that

k
[F27 P (5.50)
for any k =1,2,---. Moroever, g is normalized so as to satisfy
9(0) = 0. (5.51)

(iii) D,g is not a critical point of H:
for any x € R™.

Under these assumptions, we obtain a unique smooth solution of (5.43)
that is semi-concave in the sense of (5.53), as stated below.

Lemma 5.5.1. Let H satisfy (5.26) — (5.28) and (5.41), and g satisfy (5.49)
— (5.51). Then there exists a unique solution uy € C*°(R™ x [0,00)) of (5.43)
satisfying

1
Uo(x + z,t) — 2ug(x,t) + up(x — 2,t) < C (1 + ;) 22, (5.53)
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for some constant C' > 0 and all x,z € R™ and t > 0. Moreover, one has, for
any 1,7 =0,1,2,--- and any T > 0,

| DL g (z,t)| < Ciyry (5.54)

uniformly for all (x,t) € R™ x [0,T], where C; jr is a positive constant de-
pending at most onn, o, o, B, 5/, K, L, i, j and T.

In order to prove this lemma, observe first a basic regularity result for
first order PDEs.

Lemma 5.5.2. Let T > 0 and B € C*(R™ x (0,T7);R™) and f € CY(R" x
(0,7)) be such that for some L > 0, one has, for any i,j > 0 with i+ j <1,

| D30 B(x, t)| + | D3] f (2, 1) < L, (5.55)
for all (z,t) € R" x (0,T). Suppose that v € CY(R" x [0,T)) is a solution of

v+ B(x,t) - Dv+ f(z,t) =0 i R" x (0,7),
v=>0 on R" x {t = 0}.

Then v satisfies, for each T >0 and i,7 >0 with i+ 7 < 1,
|DLojv(w, 1) < O, (5.56)
for all (x,t) € R* x [0,T], where Cpr depends only onn, L and T.

Proof. Let us denote by (£(t),t) the characteristic curve of v starting from
xo € R™. Then we know from [23, Section 3| that p(t) = D,v({(t),t), q(t) =
Ow(&(t),t) and z(t) = v(&(t),t) satisfy

p(t) = —=D:B((1),1) - p(t) — Do f(£(2), 1),
q(t) = —=0B(E(t),1) - p(t) — 0 f(£(D), 1),
At) = —fE(t),0).

Therefore, it follows from (5.55) that

lp(t)] + lq(t)] < Cre™ + Lt,

and
|z(t)] < Lt,
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for any 0 < ¢ < T, from which the estimate (5.56) follows immediately. [J

Let us present the proof of Lemma 5.5.1.

Proof of Lemma 5.5.1. Due to (5.26), (5.27), (5.41) and (5.50), we know that
there exists a unique solution @ of (5.43) satisfying (5.53); see [23, Theorem
7 in Section 3]. Moreover, it follows from [23, Theorem 8 in Section 3] that
ug is given by the Hopf-Lax formula, i.e.,

tio(z,t) = min {ti (%) + g(y)} :

yeR™

where L is the Legendre transform of H. According to [23, Lemma 2 in
Section 3|, @y is Lipschitz continuous on R™ x [0, 00), with

’Di&gﬂ()(l‘, t)‘ < Ca

for any (z,t) € R" x [0,00) and ¢,j > 0 with i+ j = 1, where C' > 0 depends
only on n, o, o/, B, ' and L (with L > 0 being the constant in (5.50)).
Under the convexity assumptions (5.27) and (5.49) on H and g, we are
able to prove the smoothness of 4y on R™ x [0, 00). To see this, we only need
to verify that the characteristic curves (5.44) corresponding to the problem

(5.43) exist for all time ¢ > 0. Since H and g are convex and twice con-
tinuously differentiable, we know that D2H(p) and D7g(x) are nonnegative
definite for any p € R™ and x € R™. Hence, the composition D,H(D,g) is

monotone in the sense that
(DyH(Dyg(1)) — DpyH(Dag(x2))) - (21 — 22) > 0, (5.57)

for any x1,z, € R". Now if the characteristic curves {({(t;21),t) : ¢ > 0}
and {(£(t;x2),t) : t > 0} coincide with each other at some ¢t = t, > 0, then
we must have

(DpH(Drg(21)) — DpH(Dyg(2)))to = —(1 — 3),

which violates (5.57). Thus, we verify that {(£(¢; x1),t) : t > 0}0{(&(t; 22), 1)
t > 0} = 0 for distinct pair of points 1, x5 € R"™. Thus, the characteristic
curve exist globally, which implies @y € C*°(R™ x [0, 00)).

Now that we know the smoothness of @y, we can derive the estimate (5.54)
by applying Lemma 5.5.2 inductively on each derivative of @y. To be more
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specific, given integers k,[ > 0, the function v(x,t) = D*9dliy(x,t) — D¥g(x)
satisfies -

v + B(z,t) - Dv+ f(x,t) =0 in R™ x (0, 00),

v=0 on R" x {t =0},

where B(z,t) = D,H(D,iio(z,t)) and f(z,t) consists of lower order terms.
Hence, assuming that (5.54) holds for any ¢,j > 0 with 0 <: <k, 0 <5 <1
and i +j < k+[, one may verify that B and f satisfy (5.55), under the regu-
larity assumptions (5.41) and (5.50) of H and g, the normalization condition
(5.51) of g together with the estimate (5.54) for lower order derivatives of .
This finishes the proof. O

Recall from (5.48) the function B associated with the limit profile and
the effective Hamiltonian H. Due to (5.54) and (5.41), we know that B €
C*®(R™ x [0,00)) and, for each 4,j =0,1,2,---, and any 7" > 0,

| Do B(x,t)| < Cijr, (5.58)

uniformly for all (z,t) € R x [0, T], where C; ;1 is another positive constant
determined by the same parameters listed above.

In what follows, we shall seek a sequence of the interior correctors for the
homogenization problem (5.1). The first order interior corrector w; will be
in the form of

wi(z,t,y) = o1z, t,y) + w(2,1), (5.59)
where ¢, denotes
¢1(,t,y) = w(Dyto(z,1),y), (5.60)

with w = w(p,y) being the periodic (viscosity) solution of (5.24) normalized
so as to satisfy (5.25). Here @, is an effective data that is not determined yet.
Let us remark that one may choose u; by any regular data, if one stops seeking
interior correctors at this step. However, if one would like to go further and
construct the second order corrector wsy, one needs to select u; specifically by
the solution of an effective limit equation, which arises from the solvability
condition of ws,.

We will continuously observe such a relationship between the consecutive
correctors. In fact, in the proof of Lemma 5.5.3 below, it will turn out that
the k-th order interior corrector wy, for k > 2, is in the form of

wk(x7tay> = (bk(xat?y) + X(ﬁ,t,y) ’ Dxakfl(xat) + I_Lk<l’,t), (561>
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where ¢y (z, t, -) will be the periodic viscosity solution of a certain cell problem
normalized so as to satisfy ¢x(z,t,0) = 0, and x : R” x [0,00) x R" — R"
will be defined by

x(x,t,y) = v(Dyug(x,t),y),

with v = v(p,y) being the periodic solution of (5.39) normalized so as to
satisfy (5.40). Here @_; will be determined specifically such that the cell
problem for ¢, is solvable, while u; will be “free” to choose before one tries
to construct the (k + 1)-th corrector wy1.

It is noteworthy that, owing to Lemma 5.4.4, we have y € C®°(R" x
0, 00); C*#(R™)) and, for any i,5 = 0,1,2,--+ and any T > 0,

H chagX(Lta' ) < CijRrr, (5.62)

) H CQ,[J,(RTL

uniformly for all (z,t) € R™ x [0,T]. In addition, we know from (5.39) and
(5.40) that for each (z,t) € R" x (0,00), x(z,t,-) is the unique periodic
viscosity solution of

—tr(A(y)sz) + B(z,t,y) - (Dyx + I) = B(x,t) in R", (5.63)

which also satisfies
x(z,t,0) = 0. (5.64)

For the rest of this section, we will justify the existence of the higher order
interior correctors in a rigorous way. The corresponding work has been done
by the authors in [34] and [35] in the framework of fully nonlinear, uniformly
elliptic or parabolic, second order PDEs in non-divergence form.

To simplify the notation, let us write

wo(x,t,y) = ug(x,t), (5.65)
and by Wy, for k =0,1,2,---, the vector-valued mapping,
Wi(x,t,y) = Dywgia(z, t,y) + Dywg(z,t,y). (5.66)
Note from (5.59), (5.60) and (5.65) that

Wo(z,t,y) = Dyér(x,t,y) + Dytio(x, t). (5.67)
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We shall also write by By, for k =1,2,---, the mapping,
By(w,t,y) = DyH(Wo (. t,y)), (5.68)

where D]’;H is understood in the sense of Fréchet derivatives, and to make
the notation coherent to the notation of B, we will write

B(z,t,y) = Bi(x,t,y).

Let us also remark that, due to (5.9), (5.54) and (5.41), we have By €
C*®(R™ x [0,00); C*(R™)), for any 0 < u < 1. In particular, we obtain,
forany 7,7 =0,1,2,---,any k=1,2,--- and any T > 0,

H D:ZvagBk(x7 i, < Cz‘,j,k,T, (569)

) H Cr(R™)

uniformly for all (z,t) € R" x [0, T, where C; j ;v > 0 depends only on n, A,
A’a7alﬁ/87/8/’K?'L’I['L’/l:?j?ka'ndT'

Lemma 5.5.3. Suppose that A, H and g satisfy (5.3) — (5.5), (5.6) — (5.9)
and, respectively, (5.49) — (5.52). Then there exists a sequence {wy}72, sal-
1sfying the following.

(i) wy, € C(R™ x [0,00); C**(R™)), for any 0 < u < 1, and

H D;&gwk(x, l,- ) < Cijkrs (5.70)

) H CQ,H(RTL

for each i,j = 0,1,2,---, any T > 0, and uniformly for all (x,t) €
R"™ x [0, T, where C; ;7 > 0 depends only onn, A\, A, o, o/, B, (', K,
L, p, i, 7, kandT.

(11) wy satisfies
wg(z,0,0) = 0. (5.71)

(1ii) For each (x,t) € R™ x (0,00), wi(x,t,-) is a periodic solution of

at’lU()(Qf, tv y) - tr(A(y)Dzwl) + H(Dywl + Dacw0<x> ta y)7 y) =0 n Rna
(5.72)
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for k=1, and

Opwy—1(w,t,y) — tr(A(y)Diwk)

+ B(I, tyy) ) (Dywk: + wak—l(xvtvy)) + (I)k—l(‘ra tay) =0 n Rna
(5.73)

for k > 2, where

(I)k—l(x7 757 y) =2 tr(A<y)(D$Dywk—1(x7 ta y) + DiUJk_Q(LU, tv y)))

k—1
1
+Zﬁ Z Bl(x’t7y)(ml(x7t7y)7”' 7Wiz<x7tay))7

=2 i 4etig=k—1
i1, 01 2>1

(5.74)

with the last summation term understood as zero when k = 2.

Remark 5.5.4. The summation term in the definition (5.74) of ® amounts
to the nonlinear effect of the Hamiltonian H in p. In view of (5.68), one
may easily observe that the whole summation term becomes zero when H
is linear in p. The choice of @y is specifically designed to achieve (5.92),
which will eventually leads us to the higher order convergence rate for the
homogenization problem (5.1). We will also see later in (5.110) and (5.112)
that the choice of @, changes according to the type of nonlinearity that needs
to be taken care of.

Proof of Lemma 5.5.3. Throughout this proof, we shall fix 0 < p < 1, and
denote by Ci ... . a positive constant depending only on the subscripts as well
as the parameters n, A\, A, o, o/, 5, f', K, L and p. We will also allow it to
vary from one line to another, for notational convenience.

Define ¢; by (5.60). Since 1y € C*°(R"™ x [0,00)), we know from (5.41)
that ¢; € C®(R"™ x [0, 00); C**(R™)). Moreover, it follows from (5.54) that
for each 7,7 =0,1,2,---, and any 7" > 0,

H Dlzagd)l (‘CE? t? ) || C2:1(R™) S Ci,j,T7
uniformly for all (x,¢) € R” x [0,T]. In view of the definition of wy in (5.65),
¢1(z, t,-) is a periodic viscosity solution of (5.72), for each (z,t) € R"x (0, 00),
as Uy being the solution of (5.43).
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Let us now fix k > 1 and suppose that we have already found {w;}}—;
that satisfies the assertions (i) and (ii) of this lemma. Moreover, assume that
we have already obtained u;_; € C°(R"™ x [0, 00)) such that

‘Diagﬂk_1($, t)‘ < Cz‘,j,k,Ta (575)

forany i,j =0,1,2,---, any T > 0 and any (z,t) € R" x [0, T]. Additionally,
suppose that we have also found ¢ € C°°(R™ x [0, 00); C**(R™)) such that
for each (x,t) € R" x [0,00), ¢x(z,t,-) is a periodic function normalized by

¢k<x7 t 0) =0, (576>
and that we have, for any 7,7 =0,1,2,--- and any T > 0,

H D;ag(bk<x7 t, ) H C2:1(R) < Oi,j,k,T, (577>

uniformly for all (z,t) € R" x [0,T].
Define wy, by
wl(m7 t, 3/) - ¢1(l’, t y)a

if k=1, and by
wk(mat:y) = ¢k<x7tay) + X(l’,t,y) : Dxﬂk,1($,t),

if £ > 2. We deduce from (5.75), (5.77) and (5.62) that w, € C>®°(R" x
0, 00); C*#(R™)) and satisfies

H D;@gﬁ]k(l’, t, ) H C2:1(R™) < Ci,j,k,T7 (578)

for any i,j =0,1,2,---, any 7" > 0 and any (z,t) € R" x [0, 7.

In view of the estimate (5.78), we observe that wy satisfies the assertion
(i) of Lemma 5.5.3. Moreover, it follows from the hypothesis (5.76), and the
fact (5.64) that wy, verifies the assertion (ii) of this lemma as well. Henceforth,
we shall assume, as the last hypothesis for this induction argument, that wy
satisfies the assertion (iii) of this lemma.
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In order to find uy, we first define

fk(xvtuy) = at'lf)k(l',t,y) + B(Q?,t,y) ’ Dmﬁ)k(m,t,y)
- QtT(A(y)(Dny’LZ]k(ZE, tv ?/) + Diwk’—l('xa ta y)))

_|_z_:ll‘ Z Bl(:v,t,y)(ml(if,tvy)f” 7Wil(x7t’y))‘

Using (5.5), (5.69), (5.75), (5.77), (5.62) and (5.78) together with the in-
duction hypothesis (5.70), we deduce that f, € C*°(R" x [0,00); C*(R"))
and o

1 D20 fi () || ugany < Crnr (5.79)

for any 7,7 =0,1,2,--+, any 7' > 0 and any (x,t) € R" x [0, 7.
Now that fi is periodic in y, we may consider the following cell problem:

there exists a unique function f; : R™ x (0,00) — R such that for each
(x,t) € R" x [0, 00), the PDE,

- tr<A(y>D§¢k+1) +B(I7 t, y) 'Dy(bk—i-l +fk($7 2 y) = fk(xv t) in Rnﬂ (580>

has a periodic viscosity solution. Following the argument in the proof of
Lemma 5.4.3, we see that the cell problem (5.80) is solvable. Moreover, if we
normalize ¢r11 so as to satisfy

¢k+1($a ta 0) = 07

such a periodic viscosity solution ¢y, is unique. Furthermore, applying the
regularity theory in the slow variable established in Lemma 5.4.4, we deduce
from (5.69) and (5.79) that f, € C®(R™ x (0,00)) and ¢p; € C®(R" x
0, 00); C%#(R™)). In particular, we have, for any 7,7 = 0,1,2,--- and any
T >0, ' '

}Diaffk(%tﬂ + H D;af¢k+1($7t’ ) chu(Rn) < Cijigers

uniformly for all (z,t) € R™ x [0,7].
With f; at hand, we consider the first order linear PDE,

{atak + B(z,t) - Dyt + fe(z,t) =0 in R™ x (0, 00), (5.81)

u, =0 on R" x {t = 0},
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where B is defined by (5.48). Recall from (5.52) that B vanishes nowhere
in R” x (0,00). Thus, it follows from the classical existence and regularity
theory for the first order linear PDE (see e.g. Lemma 5.5.2) that there exists
a unique solution u; € C*(R"™ x [0, 00)) of (5.81) such that

| Didtug(z, )| < Ci s (5.82)

for any ¢,j =0,1,2,---, any 7' > 0 and any (z,t) € R" x [0, 7.
Define wy, by
wi(z,t,y) = Oz, t,y) + (2, t), (5.83)

which coincides with the expression (5.59) and (5.61) for any k& > 1. Using
(5.78) and (5.82), we see that wy, defined by (5.83), verifies the assertions (i)
and (ii) of Lemma 5.5.3. Besides, let us notice that

fk(xa ta y) = at’LT)k(.fE, t>y) + B(x,t,y) ' wak(x7ta y) + (I)k’(xata y)7 (584)

where @, is defined by (5.74), since we have D,w(x,t,y) = Dywi(z,t,y).
To this end, let us set w1 by

warl(xa ta 3/) = (karl(:Ca t: Z/) + X(xa ta y) ' Dxﬁk(xa t)
Then we observe from (5.80), (5.81), (5.63) and (5.84) that

Oyw (2, t,y) — tr(A(y) Djwpia (2,t,y))
+ B(z,t,y) - (DyWr41(2,t,y) + Dywy(,t,y)) + Pr(z,t,y)
= Oyt (x, t) — tr(A(y) Diusa (2, t,y)) + Bla, t,y) - ¢err + fulz,t,y)
+ (= tr(A(y) Dix(x, t, ) + B(x,t,y) - (Dyx(x,t,y) + 1)) - Dytig(, 1)
= Ouug(x,t) + fe(x,t) + B(x,t) - Dyug(x,t)
= 0.

Hence, we have proved that . satisfies the assertion (iii) of Lemma 5.5.3.

Recall that we have started with {wl}ﬁ;é, Up—1, ¢ and Wy, and obtained
Wk, Uk, Pr+1 and W4 that satisfy all the induction hypotheses (5.75), (5.76)
and assertion (i) - (iii) of this lemma. Moreover, we have established the
initial case for the induction hypotheses in the beginning of this proof. Thus,
the proof is complete. n

We shall call wy, chosen from Lemma 5.5.3, the k-th order interior cor-
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rector for the homogenization problem (5.1), due to the following lemma.
Although the computation involved in the proof below is similar to what can
be found in [34, Section 3.3] and [35, Section 4.1], we present it in detail for
the sake of completeness.

Lemma 5.5.5. Let {wy}32, be chosen as in Lemma 5.5.3. Then for each
integer m > 1 and each 0 < e < %, the function 15, defined by

Mo, t) = o, 1) + 3 P (4,2 (5.85)
k=1 <
s a viscosity solution of

s, — etr (A (g) D2nfn> v H (Dn;;, g) = <a: ¢, g) in R™ x (0, 00),

Ufnzg OHRnX{tIO}a

(5.86)
where Y5, € C(R™ x [0,00); L>(R™)) satisfies, for any T > 0,

[ (25, ) oo (gny < Conre™, (5.87)

uniformly for all (x,t) € R"* x [0, T], where Cp, 1 > 0 is a constant depending
only onn, \, A, o, o/, B, ', K, L, u, m and T.

Proof. Aligned with the notation (5.66) of Wy, let us denote by X, the
matrix-valued mapping,

Xk(l‘7ta y) = Dzwk+1(x7ta y) + (DJIDZ/ + Dny)wk(x,t,y) + Diwk—l(xa t7y)a

(5.88)
for k =1,2,---, with w_; being understood as the identically zero function.
One may notice from (5.60), (5.59) and (5.65) that

X0<x7tay> = D§¢1($,t,y) (589>

Fixm>1land 0 < e < % For the moment, we shall replace w,,; and
Wpmao by the identically zero functions, only to simplify the exposition. With
this replacement, we have W,,, = D,w,,, X,, = (DmDy—i-Dny)wm—i—Dzwm_l
and X,,,11 = D2w,,.
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In view of (5.66) and (5.88), we have

Dn} (x,t) Zaka ( >

and
m+1

T]m x,t) Zs Xy ( >
Let us define Uy by
Wo(x,t,y) = —tr(A(y) Xo(z, t,y)) + H(Wo(z,t,9),y),
if £ =0, and by

Ui(z,t,y) = —tr(A(y)Xk(w t,y))

+Z Z Bi(x,t,y) Wi (z,t,y), -+, Wi (2, 1,9)),

=1 .21—&— =
1,[>1

if 1 <k <m — 1. Using Wy, one may rephrase the PDEs (5.72) and (5.73)
Oywi(z,t,y) + Yy(x,t,y) =0 in R, (5.90)

for0<k<m-1.
Denoting by T},_1(po, p) the (m — 1)-th order Taylor polynomial of H in
p at pg, namely,

%D H(po,y)(p,- -+ D),

MS

Ton-1(po, p)(y) =
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we have

Tt (Wo(x,t,y),ZEka(x,t Y ) Zs tr(A(y) Xe(z,t,y))

k=1

" ittt
+Z Z k! Bk(xﬂtay)(wh(xvtay)f" ,mk(ﬂf,t,y)),

k=2 m<ij+--+ir<km
1<iy, i <m

(5.91)

Hence, we apply the Taylor expansion of H in p at Wy up to (m —1)-th order
and derive that

—etr (4(2) D) + # (D0,

M <x,t, f) + B <x,t, f) ,
€ €

where E° is defined so as to satisfy

(5.92)

Il
g
)

k=0

Eran(xa tv y) - Rm—l (Wo(%’, ta y)> Z ngk(xa t, y)) (y)
k=1
m+1

+Ze tr(A(y) Xe(z,t,y))

m
=2 m<iy+-- +zk<km
1<i,,ixg<m

Z1+ i

Bk($ t y)(m1($’t>y)v" mk(x tvy))a

(5.93)

with R,,—1(po, p) being the (m — 1)-th order remainder term of H in p at po.
Now using (5.90), we observe that 7, solves (5.86) with

Ur(2, 1, y) = €™ (2,1, y) + By, (7,1, y). (5.94)

Note that the initial condition of (5.86) is satisfied, due to that of (5.43) and
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the assertion (ii) of Lemma 5.5.3. Hence, we are only left with proving the
estimate (5.87) for ¥,.
It is clear that (5.70) implies

||8twm(x, t, )||L00(RTL) S C’m,T7

for any 7" > 0 and any (z,t) € R x [0,7], where Cp,7 > 0 is a constant
depending only on n, A\, A, o, o/, 8, ', K, L, u, m and T. On the other
hand, using (5.9), (5.41) and (5.70), and noting that e* +% < ™ for any
1<y, -+ i < msatisfying m < iy + -+ - + i < km, we deduce from (5.93)
that

1B (2t ) oo (ny < Crare™, (5.95)

for any T > 0 and any (x,t) € Bg x [0, T], with C,, 7 > 0 being yet another
constant depending only on the same parameters listed above. This finishes
the proof. n

With the aid of Lemma 5.5.5, we prove the first main result of this paper.

Theorem 5.5.6. Suppose that the diffusion coefficient A, the Hamiltonian
H and the initial data g satisfy (5.3) — (5.5), (5.6) — (5.9), and respectively
(5.49) - (5.52). Under these conditions, let {u®}.~o be the sequence of the
viscosity solutions of (5.1). Then with the viscosity solution uy of (5.43) and
the sequence {wy }32, of k-th order interior correctors chosen in Lemma 5.5.3,
we have, for each integer m > 1, any 0 < e < % and any T > 0,

u(z,t) — up(z,t) — Zewk<xt >

uniformly for all (z,t) € R x [0,T], where Cy, v > 0 depends only on n, A,
A7 Q, a’} 57 ﬁ/7 K; L; My m and T'.

S C1m,T<(‘:ma

Proof. The proof follows from Lemma 5.5.5 and the comparison principle
for viscosity solutions. Let 75, be as in (5.85). Due to (5.87), we see that
N5, +Cmre™t and n;, —C,, 7™t are a viscosity supersolution and, respectively,
a viscosity subsolution of (5.1). Thus, the comparison principle yields that

|uf (2, 1) — g, (@, 8)] < TCre™,

uniformly for all (z,t) € R™ x [0, 7], which finishes the proof. O
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5.6 Generalization to Fully Nonlinear Hamil-
tonian

In this section, we generalize Theorem 5.5.6 to the fully nonlinear, viscous
Hamilton-Jacobi equation, (5.2), whose gradient term is convex and grows
quadratically at the infinity. Henceforth, we shall assume that the nonlinear
functional H satisfies the following conditions, for any (M, p,y) € 8" x R" x
R™.

(i) H is periodic in y:
H(M,p,y+k)=H(M,p,y), (5.96)
for any k € Z".
(ii) H is uniformly elliptic in M:
AIN| < H(M,p,y) = H(M + N,p,y) < A[N|, (5.97)
for any N € 8™ with N > 0.

(iii) H has interior C*# estimates: Let (M,p,y0) € S™ x R" x R™ and
a € R with ¢t € R such that H(M + tI,p,y0) = H(tl,p,y0) = a and
[t| < AHH(0,p,yo) — al. Then for any vy € C(0B1(yo)), there exists a
viscosity solution v € C(Bi(yo)) N C*(Bi(yo)) N C*#(By2(yo)) of

H(D2U+M+t-[7p7y0):a in Bl(y0)7
v = g on 0B (yo),

such that

HUHCQaﬂ(Bl/Q(yO)) <K ”UOHLOO(E)Bl(yO))'
(iv) H is convex in p:
H(M,tp+ (1 —t)q,y) <tH(M,p,y) + (1 —t)H(M,q,y),

for any 0 <t <1 and any ¢ € R".
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(v) H has quadratic growth in p:
alp]® —a’ < H(0,p,y) < Blpl* + 8" (5.98)
(vi) H € C>(8" x R"; C%(R"™)) and

| DY, DLH (M, p, - <K (1+ [MEP+ 4 |p|@D+) | (5.99)

) || CO,I(Rn)
for any pair (k,[) of nonnegative integers.

We shall impose the conditions (5.49) — (5.52) to the initial data g, as we
did in the preceding section, once the effective Hamiltonian H is determined.
The effective Hamiltonian H is derived by solving the cell problem (5.100),
stated as follows.

Lemma 5.6.1. For each p € R", there exists a unique real number ~y, for
which the following PDE,

H(D*w,Dw+p,y) =~ inR", (5.100)

has a periodic solution w € C**(R™), for some 0 < p < ji depending only
onn, A, A and fi. Moreover, v satisfies (5.11) and, furthermore, a periodic

solution w of (5.100) is unique up to an additive constant and it satisfies
(5.12).

Proof. As in the proof of Lemma 5.3.1, we shall consider the approximated
problem, with ¢ > 0,

H(D*w®, Duw® + p,y) + 6w’ =0 in R™. (5.101)

Due to the uniform ellipticity (5.97) and the presence of the term dw?, (5.101)
admits the comparison principle. Thus, there exists a unique viscosity solu-
tion w® of (5.101) satisfying (5.14). On the other hand, the uniqueness along
with the periodicity (5.96) of H implies that w® is also periodic in .

The uniform Lipschitz estimate (5.15) of w® can be deduced similarly as
in the proof of Lemma 5.3.2. The only difference is that when performinig the
classical Bernstein technique, the coefficients in the PDE (5.16) are given by
A(y) = DaH(D*w(y), Dw’(y)+p,y), Bly) = DyH(D*w’(y), Dw’(y)+p,y)
and E(y) = D,H(D*w’(y), Dw(y) + p,y). The rest of the argument follows
only with a minor modification, and we leave out the detail to the reader.
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Once we have the uniform Lipschitz estimate (5.15), we may consider

Gs(M,y) = —H(M, Duw’(y) + p,y) + H(0, Dw’(y) + p, y),
95(y) = —H(0, Dw’(y) + p, y) + sw’(y),

and rephrase (5.101) as

Gs(D*w’,y) = gs(y) in Bi(yo), (5.102)

where yo € R" is arbitrary. By (5.97), G5 is uniformly elliptic in M over
d > 0, while by (5.15) and (5.98), gs is uniformly bounded over 6 > 0. Hence,
applying the interior C''" estimate [9, Theorem 8.3] to (5.102), we obtain
that w® — w’(0) € C¥(Bya(yo)) for some 0 < n < 1, depending only on n,
A and A, and

| w® — w

IN

& (H W = O) || e oy T ||96”L°°<Bl(yo>>>

< C’l <%snc w’ + 1) ,

N ET

where C;,C} > 0 depend at most on n, \, A, a, o/, 3, 8/, K and |p|. Here
the second inequality can be deduced from (5.14), (5.15) and (5.98). Since
Yo is an arbitrary of R™, we observe from the last inequality and (5.15) that

w® — w’(0) € C1(R™) and
[w’ = (0) || o1.agny < Co, (5.103)

where Cy > 0 depends at most on n, A\, A, o, o, 5/, 5, i, K and |p|.
Now that w® — w®(0) € C1(R"), we may fix any g € R" and consider

Fﬁ(Ma y) = _H(M +t[,Dw6(?/+yo) +pay + y0) - &Ué(yo),
fs(y) = 0w’ (y + yo) — 0w’ (o),

where ¢ € R is chosen such that H(tI,q,yo) = a and [t| < X7 H(0, q, yo) — a
with ¢ = Duw’(yo) + p and a = —5w’(yp). Due to (5.15), we know that
t| < C)p. With Fs and f5, we can rewrite (5.101) as

. . t
Fs(D*°,y) = f5s(y) in By with v°(y) = w‘s(y—i—yo)—wé(yo)—i\yﬂ (5.104)
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Note that F5(0,0) = f5(0) = 0. Moreover, due to the structure condition
(iii) of H, Fj satisfies Fs also has the interior C*# estimate for fixed coefficient
(cf. [9, Theorem 8.1]). On the other hand, it follows from (5.103) that Fj
and f5 is C at the origin (cf. [9, Eq. (8.3)]) with v = min{n, i}. Hence,
the interior C*" estimate [9, Theorem 8.1 and Remark 3] is applicable for
(5.104), from which we deduce that v° € C**(B2) with

19 oty < C5 (1] ony + I fsllcvisn)

< C4 <BOSC w’ + [t + 5[@05]0”(81(@/0))) :
1(yo)

where C3, C3 > 0 depends at most on n, A\, A, o, o, ', ', fi, v, K and |p).
Since |t| < C), and yo € R™ is arbitrary, we conclude from (5.15), (5.103)
and the last inequality that w® — w?(0) € C?*¥(R") and

< Oy, (5.105)

1w = @O || a5, ) <

where Cy > 0 depends at most on n, A\, A, a, o, ', ', i1, v, K and |[p|.
With (5.105), we have, in particular, w® — w°(0) € C1(R"), whence one
can repeat the argument above now with any 0 < v = p < [1, so that we
have (5.23). The rest of the proof concerning the uniqueness of the limit of
{0w’}5-0 follows the same argument in that of Lemma 5.3.1, and we omit
the details. O

As in Section 5.4, we shall denote by H the effective Hamiltonian of H.
That is, H : R" — R is a function defined in such a way that for each p € R",
H(p) is the unique real number for which the following PDE,

H(D*w,Dw + p,y) = H(p) in R, (5.106)

has a periodic viscosity solution in C*#(R"). Moreover, we shall also denote
by w : R" x R™ — R by the functional such that for each p € R™, w(p,-) €
C*#(R™) is the unique periodic solution of (5.106) that is normalized so as
to satisfy (5.25).

Following the same arguments in their proofs, one may prove that A and
w satisfy Lemma 5.3.3 and Lemma 5.4.1, except for that w € C(R"; C**(R"))
for some fixed 0 < p < f, rather than any 0 < g < 1. This is because the
proofs of those lemmas do not rely on the linear structure of the diffusion
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coefficient, but more on its uniform ellipticity. A more important observation
is the generalization of Lemma 5.4.4, which amounts to the regularity of H
and w in the slow variables.

Lemma 5.6.2. H € C®(R") and w € C®(R"; C>*(R")), for any 0 < u < [i,
such that (5.41) holds, for any k =0,1,2,---, any L > 0 and any p € By.

Proof. Let us fix 0 < p < fi. It suffices to prove that A and w verify Lemma
5.4.2. Moreover, to see this fact, it is enough to show that the linearization
argument in the proof of Lemma 5.4.2 also works out when the Hamiltonian
H depends nonlinearly on the Hessian variable M.

Let wy, v, Wy and I'y, be as in the proof of Lemma 5.4.2. Then by
linearizing the cell problem (5.106) (in both of the Hessian and the gradient
variables), we observe that W}, solves

—tr(An(y) D* W) + Bi(y) - (DWy +e) =T, in R", (5.107)

where
1
An(y) = / —DMH(tDSwh +(1— t)Dzwo, Dywy, + p, y)dt,

0

and
1

Bi(y) = / DpH(DZwO, tDywp, + (1 — t)Dywo + p + the, y)dt.
0

In comparison of (5.107) with (5.31), one may see that the only major differ-
ence here is that the diffusion coefficient, Aj,, here is not fixed but depends
on the parameter h.

Nevertheless, A, is uniformly elliptic not only in y but also in h, due to
the assumption (5.97). This implies that Lemma 5.4.3 is still applicable, and
thus W, € C*#(R™) and satisfies (5.34) uniformly for h.

Moreover, since w satisfies (5.30), it follows from the regularity assump-
tion (5.99) of H that A, € C*(R") and

ARl nggny < €

where C' > 0 depends only on n, A and A. For the same reason, we deduce that
By, € C*(R™) and satisfies (5.32). Furthermore, since w € C(R™; C*#(R")),
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we have A, — Ay and By, — By in C*(R"), for any 0 < i/ < p, with
Ao(y) = —DMH(Dij, Dywo + p,y),

and
BO(?J) - DpH(Dzwm DywO +p7 y)

The rest of the proof follows similarly with that of of Lemma 5.4.2. In
particular, we obtain unique Wy € C*#(R") and 'y € R such that W} is the
periodic solution

— tI'(Ao(y)DQWO) + Bo(y) . (DWO + €k) = FO n Rn7

satisfying Wy(0) = 0. We leave out the details to the reader. O

Now we are in position to construct the higher order interior correctors
of the homogenization problem (5.2). We shall now let g satisfy the structure
conditions (5.49) — (5.52), with H being the effective Hamiltonian chosen to
satisfy the cell problem (5.106). Next we shall denote by @y the solution of
(5.43), with the updated data H and g, and write by B the function defined
by (5.48). Once again, we have from Lemma 5.5.1 and Lemma 5.6.2 that
iy € C®°(R"™ x [0,00)) and B € C®(R™ x [0,00)) with the estimates (5.54)
and (5.58).

Let wo, {Wi}32, and {X;}72, denote those defined in (5.65), (5.66) and,
respectively, (5.88), where the sequence {wy}32; of higher order interior cor-
rectors will be given as below.

Now that the Hamiltonian H is nonlinear in M, we need to apply the
Taylor expansion not only in the variable p but also in the variable M, in
order to obtain the PDEs (or, more precisely, the cell problems) for the
higher order interior correctors. In this direction, we consider the coefficient

By, defined by
Bk,l(xa t? y) = Dﬁ/[DzlgH(XO(xa ta y)a Wo(l?, t? y)7 y)a
for k,1 =0,1,2,---. In particular, we shall write

A(l’,t,y) = _BI,O(‘ratay) = —DMH(X()(Z’,t,y),W()(I,t,y),y),
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and
B(x7t7y) - BO,I(xat7y) - DpH(XO(xat7y)7 W()(.T,t,y),y).

Note that A is uniformly elliptic with the same ellipticity bounds as those of
H.

Lemma 5.6.3. Suppose that H and g satisfy (5.96) - (5.99) and, respectively,
(5.49) — (5.52). Then there exists a sequence {wy }72, satisfying the following.

(i) wp € C®°(R™ x [0,00); C**(R™)), for any 0 < u < fi, and satisfies the
estimate (5.70), for any i,7 = 0,1,2,---, any T > 0 and any (z,t) €
R™ x [0,T].

(11) wy, is normalized so as to satisfy (5.71).
(111) For each (z,t) € R™ x (0,00), w(x,t,-) is a periodic solution of
Oywo(x,t,y) + H(ijwl, Dyw; + Dywo(z,t,y),y) =0 inR", (5.108)
for k=1, and

w1 (x,t,y) — tr(A(z, t,y) Djwy)
+ B('Ia ta y) : (Dywk + wak:—l(xa t? y)) + q)k—l(J:a t; y) =0 in an
(5.109)

for k > 2, where

= —QtI(A(;Q t y)(DmDywkfl(Q; 2 y) + Diwk*2<x7 t y)))

I
—i—zl Z ZBr,lfr(xvtuy)(Xil(I,t,y),'-- X (2, t,y),

=2 " i+-ti=k—1 r=0
11,0501 21

mr+1(x7t7y)v e 7ml(xat7y))
(5.110)

with the last summation term understood as zero when k = 2.

Remark 5.6.4. As mentioned in Remark 5.5.4, ®p now takes care of the
nonlinear effect produced by H in both M and p wvariables. Moreover, the
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summation term in the definition (5.110) of @y is specifically constructed to
have (5.112), by which we will eventually derive the higher order convergence
rates for the homogenization problem (5.2).

Proof of Lemma 5.6.3. The proof follows essentially the same induction ar-
gument presented in that of Lemma 5.5.3. To avoid any repeating argument,
we shall only point out the major difference from the proof of Lemma 5.5.3,
and ask the reader to fill in the details.

Here we define ¢; by (5.60) with w being the (normalized) periodic solu-
tion of (5.106) (instead of (5.24)), and accordingly set w; by (5.59) with some
i1 to be determined. Then we observe that W, and X verify the expressions
(5.67) and, respectively, (5.89). Moreover, we verify that B;;_; satisfy the
estimate (5.69), for any [ =0,1,--- ,k and any k =1,2,---.

The function fj, which takes cares of all the nonlinear effect caused in
the k-th step of approximation, is now replaced by

fk<x7 ta y) = atwk<x7 t: y) + B(;C, tu y) ' wak<x7 tu y)
— 2tr(A(x, t,9) (D Dyt (, t,y) + D2wy_1(2,t,9)))

k—1 1
1
+Zﬁ Z ZBr,l_r(l',t,y)(Xil(ﬁ,t,y),--- >Xir($7t,y),

=2 " iy4-+tij=k—1 r=0
i1, 41121

Wi7-+1 <x7 ta Z/); Ty Wiz(x7 t? y>>7

Due to the periodicity of f in y, we consider the following cell problem: there
exists a unique fi : R™ x (0,00) — R™ such that for each (x,t) € R" x (0, 00),
the PDE,

_tr<A($at7y)D§¢k+l) + B(Q?,t,y) ' Dy(bk:Jrl + fk<x7t> y) = f_k(xat> in Rn?

has a periodic viscosity solution. The rest of the proof can be derived by
following that of Lemma 5.5.3, whence we omit the details. ]

The next lemma is the corresponding version of Lemma 5.5.5 for fully
nonlinear Hamiltonian H.

Lemma 5.6.5. Let {wi}32, be chosen as in Lemma 5.6.3. Then for each
integer m > 1 and each 0 < ¢ < %, the function n5,, defined by (5.85), is a
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viscosity solution of

o, + H <6D277fn, Dnt,, f) = (x, t, f) in R™ x (0, 00),
€ €
N, =g on R™ x {t = 0},

(5.111)

where 5, € C(R"™ x [0,00); L>(R™)) satisfies (5.87), for any T > 0 and all
(x,t) € R" x [0,7].

Proof. As in the proof of Lemma 5.6.3, we shall mention the key points that
need to be modified from the proof of Lemma 5.5.5, in order to take care
of the nonlinear effect in the Hessian variable of H. Let us begin by fixing
m>1land 0 <e< %, and replacing w;,+1 and w,,;2 by the identically zero
functions, again for the notational convenience.

We shall define ¥y, by
\IJO(‘Tv ta y) = H(XO(Ia t? y)7 W()(.ZU, t) y): y>a

if £ =0, and by

l
1
l_ Z ZBr,l—r(x>tay)(Xi1($7t7y)7'" 7Xir(x7tay)7

1 (ARl +'Ll k—1 r=0
i1, ,012>1

Mw

\Ijk<x> ta y)
l

VV?ZT+1 (fL’, ta y)? T Wil (.I', t? y))

if 1 <k < m — 1. Then it follows from the PDEs (5.108) and (5.109) that
(5.90) holds for 0 < k <m — 1.

Applying the Taylor expansion of H in (M, p) at (Xo, Wy) up to (m —1)-
th order, and after some calculations similar to those in (5.91), we obtain
that

H (5D2nm(q} t), Dn;,(z,t), ) Ze \I/k( )—l—Efn (m,t g) , (5.112)
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where E: is defined so as to satisfy

B (x,t,y)

— R, 1 ((Xo(a: t,y), Wo(z,t,y)) (Zeka x,t,y), Zé‘ka x,t y))( )
Z Z 1 k

=2 m<ij+-+ip<km
1<i1, i <m

ZBM Wz, 6 y) (X, (2t y) - Xy (2, y),

I/I/’il+1(x7t7y)7 e 7Wik(x7t?y))7

where R,,—1((Mo,po), (M, p)) denotes the (m — 1)-th order remainder term
of H in (M, p) at (Mo, po)-

We deduce from (5.112) that 7, solves (5.111) with ¢5, defined by (5.94).
The rest of the proof follows similarly to that of Lemma 5.5.5. In particular,
we have (5.95), since Bj;—; and wy satisfy the estimate (5.69) and, respec-
tively, (5.70). We leave out the details to the reader. O

Finally, we generalize Theorem 5.5.6 to the regime of fully nonlinear,
viscous Hamilton-Jacobi equation, as stated below.

Theorem 5.6.6. Suppose that the Hamiltonian H and the initial data g sat-
isfy (5.96) — (5.99) and, respectively, (5.49) — (5.52). Under these conditions,
let {uf}.~o be the sequence of the viscosity solutions of (5.2). Then with the
viscosity solution uy of (5.43) and the sequence {wy}3, of k-th order inte-
rior correctors chosen in Lemma 5.6.3, we have, for each integer m > 1, any
O<5§% and any T > 0,

u(x,t) — up(z,t) — Zéka(l“t )

uniformly for all (z,t) € R x [0,T], where Cy,r > 0 depends only on n, A,
A)a7al7/61/8I7K7L7M’ﬂ7mandT'

m
S C'm,Tg )

Proof. The proof follows the same comparison argument as that in the proof
of Theorem 5.5.6. Let 7, be as in Lemma 5.6.5. According to Lemma 5.6.5,
N5, +Cmre™t and n;, —C,, 7™t are a viscosity supersolution and, respectively,
a viscosity subsolution of (5.2), for some constant C,, 7 > 0 depending only

145



CHAPTER 5. VISCOUS HAMILTON-JACOBI EQUATIONS

onn, \, A\, a, o, B, 8/, K, L, u, i, m and T. Therefore, the comparison
principle yields that

|U€(ZE, t) - Ufn(%m S TOm,Tgma

uniformly for all (z,t) € R™ x [0, 7]. This completes the proof. O
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