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Abstract

Homogenization theory is a study of the averaging behavior of a family of
partial differential equations that exhibit rapid oscillation in small scales un-
der certain pattern. This thesis consists of three papers concerning higher
order convergence rates in periodic homogenization of fully nonlinear partial
differential equations. The first paper focuses on interior corrections of uni-
formly elliptic partial differential equations in non-divergence form, and the
second paper studies the effect coming from highly oscillatory initial data for
uniformly parabolic Cauchy problems. In the last paper we discover an in-
teresting issue regarding viscous Hamilton-Jacobi equations that initial data
has to possess special geometric property determined with respect to the ef-
fective Hamiltonian, in order to achieve higher order convergence rates. In
all three papers, the heart of analysis lies in developing a regularity theory in
non-oscillatory variables in small scales, which allows us to construct higher
order correctors through a careful induction scheme. Here the higher order
correctors are designed to fix the errors coming from the nonlinear structure
of the highly oscillatory partial differential equations, and the higher order
convergence rates follows after a suitable barrier argument.

Keywords: homogenization, fully nonlinear equation, periodic setting, con-
vergence rate, corrector, viscosity solution, higher order, regularity
Student Number: 2013-20229
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Chapter 1

Introduction

When a composite material has a complex structure in the microscopic scale,
it affects the effective property in the macroscopic scale in a nontrivial man-
ner. Such a phenomenon is called homogenization, which has been of great
interest to many scientists in physics, biology, material science and engineer-
ing, but also to mathematicians, due to the necessity of rigorous justification
of homogenization process, and its potential to open up new fields and ideas
in mathematical analysis.

Homogenization theory in mathematics is a study of a family of partial
differential equations, abbreviated by PDEs in sequel, which are rapidly oscil-
lating in small scales. The pattern of complex structure constitutes an essen-
tial part of the study. The fundamental pattern is the periodic structure, in
which case the heterogeneous structure repeats from one cell to another, and
one can always obtain an average in a compact set. One may also generalize
the oscillating pattern from periodic one, as long as one can obtain average
in macroscopic scales. This opens up a room for randomness to be involved
in homogenization theory. Nevertheless, there are still many important prob-
lems in homogenization theory left open under periodic settings. We refer to
the classicial monographs [7, 32] for the general overview of homogenization
theory.

A homogenization problem can be formulated as follows. Let ε > 0 be the
parameter describing the size of small scales, and F ε a differential operator
that encodes rapidly oscillating structure in ε-scale. We are interested in the
behavior of solution uε to

F ε[uε] = 0,
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CHAPTER 1. INTRODUCTION

and homogenization theory aims to answer the following questions.

• Does uε converges? If so, in which sense?

• If uε converges in a correct sense, what is the limiting PDE for the limit
profile?

• How fast does the convergence take place?

Let us elaborate more on what these questions mean in the mathematical
context. The first question asks a correct space X for which

uε → ū in X

for a certain ū ∈ X. The second question asks if one can determine an
operator F̄ such that

F̄ [ū] = 0.

The operator F̄ is often called the effective operator corresponding to F ε, and
we require that F̄ is homogeneous in small scales. For instance, if F ε[uε] =
F (D2uε, x

ε
), then we ask F̄ to be independent of the rapidly oscillating vari-

able x
ε

and the effective problem becomes F̄ [ū] = F̄ (D2ū).
The last question is about the quantitative error estimate between uε

and the limit profile ū. More specifically, one seeks a quantity δ(ε) > 0 that
decays as ε→ 0 such that

‖uε − ū‖X ≤ δ(ε).

The problem becomes very difficult when one attempts to establish a sharp
estimate so that the above inequality cannot be improved further.

This thesis is concerned with higher order convergence rates in homog-
enization of fully nonlinear PDEs, established by the series of collaboration
[34] - [36] with my Ph.D. advisor K.-A. Lee. The results in a nutshell provide
a rigorous justification of the formal expansion,

uε(x) = ū(x) + εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
+ · · · ,

under a various class of fully nonlinear PDEs having periodically oscillating
structure. Here w1, w2, · · · , are called the correctors that captures the precise
oscillating pattern of uε at each order of error correction.
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CHAPTER 1. INTRODUCTION

Let us briefly summarize the main results. The first result [34] is the
higher order convergence rates in the framework of uniformly elliptic, fully
nonlinear PDEs in non-divergence form. Due to the nonlinear structure of the
PDE, the error subject to the correction at a fixed order becomes an accu-
mulation of the errors left from all the previous orders, making the problem
qualitatively different from the framework considered in the classical litera-
ture. Here we overcome the difficulty by establishing a regularity theory in
slow variables, which are non-oscillatory variables in small scales, and obtain
higher regularity for the main corrector function and the effective functional.
This allows us to construct a sequence of higher order interior correctors in an
inductive manner, which eventually leads us to the higher order convergence
rates up to the order of the regularity of the given operator, the prescribed
domain and the boundary data.

The second result [35] is the higher order convergence rates in the frame-
work of uniformly parabolic, fully nonlinear PDEs with a periodically oscil-
lating initial data. This work was initiated for the purpose of studying the
effect of rapid oscillation coming from a lower dimensional data. In order
to neglect the curvature influence of a boundary and its interplay with the
underlying periodic structure, we considered Cauchy problems, where the ini-
tial layer can be considered a flat surface with respect to the interior domain.
Despite such a simple structure of the lower dimensional object, we found
a zone near the initial layer, where the nonlinear structure of the operator
becomes highly sensitive and produces coupling effect between initial layer
correctors and interior correctors. One of the key features in this work is the
regularity theory for initial layer correctors in slow variables, which gives ex-
ponential decay estimates of the effect coming from the rapid oscillation of
the initial data.

The last result [36] is the higher order convergence rates in the framework
of viscous Hamilton-Jacobi equations. In this work, we address an interesting
issue regarding Hamilton-Jacobi equations that one has to choose an initial
data with respect to the effective Hamiltonian in order to achieve the higher
order convergence rates. Here we obtain a sufficient class of such initial data,
which turns out to be very geometric, and closely related to the level surface
of effective Hamiltonian where the gradient vanishes.

This thesis is organized as follows. Next chapter is devoted to the prelim-
inaries for the entire thesis, beginning from the notion of viscosity solution
to the associated existence and regularity theory. In Chapter 3, 4 and 5, we
present the main results in [34], [35] and respectively [36].
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Chapter 2

Preliminaries

Let us define the notion of viscosity solution and list up some important
properties and associated regularity theory, which will be required in this
thesis. Viscosity solution is a notion of weak solutions to a certain class of
PDEs, which naturally have the comparison principle, i.e., if a subsolution
is less than or equal to a supersolution on the boundary, then the inequality
continues to hold in the interior. Here we shall only present the theory for
the class of fully nonlinear, uniformly elliptic, second order PDEs, in order
to simplify the exposition. For a more comprehensive overview on the theory
of viscosity solution, especially for parabolic PDEs, and viscous Hamilton-
Jacobi equations subject to study of this thesis, we refer to [20].

2.1 Existence Theory of Viscosity Solution

Set n ≥ 1 to the dimension of the underlying space, and Ω a domain, that is,
an open connected set, of Rn. Denote by Sn the space of all real symmetric
n×n matrices. A functional F : Sn×Ω→ R is said to be uniformly elliptic,
if there are 0 < λ ≤ Λ such that

λ|N | ≤ F (M +N, x)− F (M,x) ≤ Λ|N |,

for any M,N ∈ Sn and any x ∈ Ω.

Definition 2.1.1 (Viscosity Solution). Let F : Sn × Ω → R be a uniformly
elliptic functional, and let u : Ω→ R be a function.

4



CHAPTER 2. PRELIMINARIES

(a) u is called a viscosity subsolution of F (D2u, x) = 0 in Ω, if u ∈ C(Ω),
and for any x0 ∈ Ω and any φ ∈ C2(Ω) such that u − φ has a local
maximum at x0, one has

F (D2φ(x0), x0) ≥ 0.

(b) u is called a viscosity supersolution of F (D2u, x) = 0 in Ω, if u ∈ C(Ω),
and for any x0 ∈ Ω and any φ ∈ C2(Ω) such that u − φ has a local
minimum at x0, one has

F (D2φ(x0), x0) ≤ 0.

(c) u is called a viscosity solution of F (D2u, x) = 0 in Ω, if u is simultane-
ously a viscosity subsolution and a viscosity supersolution of F (D2u, x) =
0 in Ω.

Remark 2.1.2. Let us remark that one only requires the continuity to de-
fine a viscosity solution. Moreover, viscosity solution is designed in such a
way that any classical subsolution cannot touch it strictly from below, and
similarly any classical supersolution cannot touch it strictly from above.

Here we shall collect some basic existence and stability results of viscosity
solution to a uniformly elliptic, fully nonlinear PDE. For a more thorough
review with complete proofs, we ask the reader to consult [20].

Basic existence theory of viscosity solution begins with a comparison prin-
ciple, which roughly states that if a subsolution stays always below a super-
solution on the boundary, then the relation continues to hold in the interior.
A precise statement of a comparison principle is given as below.

Theorem 2.1.3 (Comparison Principle; Bounded Domain). Let Ω be a
bounded domain, and F : Sn × Ω → R be a uniformly elliptic continuous
functional. Suppose that v, w ∈ C(Ω̄) is a viscosity subsolution and respec-
tively a viscosity supersolution of

F (D2u, x) = 0 in Ω. (2.1)

If v ≤ w on ∂Ω, then v ≤ w in Ω.

Note that the theorem above is formulated for bounded domains. How-
ever, we also encounter PDEs on unbounded domains, and the treatment

5



CHAPTER 2. PRELIMINARIES

is somewhat different from the case of bounded domains. First we need
to restrict the class of viscosity solutions to BUC(Ω), which consists of all
bounded uniformly continuous functions on Ω. Here we shall only consider
the case of the entire space, Ω = Rn.

Theorem 2.1.4 (Comparison Principle; Entire Space). Let µ > 0 be given
and F : Sn ×Rn → R be a uniformly elliptic continuous functional. Suppose
that v, w ∈ BUC(Rn) are a viscosity subsolution and respectively a viscosity
supersolution of

F (D2u, x)− µu = 0 in Rn. (2.2)

Then v ≤ w in Rn.

With the comparison principle, one obtains the existence of viscosity so-
lution by Perron’s method. In fact, Perron’s method is available whenever a
PDE has the comparison principle. We shall again divide the statement into
the case of bounded domains and unbounded domains.

Theorem 2.1.5 (Perron’s Method; Bounded Domain). Let Ω be a bounded
domain, F : Sn × Ω̄ → R a uniformly elliptic continuous functional and
φ ∈ C(∂Ω). Then the function u : Ω̄ → R, defined by the supremum over
all viscosity subsolutions v ∈ C(Ω̄) of (2.1) with v ≤ φ on ∂Ω, is a viscosity
solution of (2.1) satisfying u ≤ φ on ∂Ω.

The well-definedness of u above follows easily from the uniform ellipticity
and continuity of F together with the boundedness of Ω. Clearly, one can
also obtain a viscosity solution by taking the infimum among all viscosity
supersolutions which is no less than the specified boundary data on ∂Ω.

Next we state Perron’s method for the case of entire space.

Theorem 2.1.6 (Perron’s Method; Entire Space). Let F : Sn × Rn → R be
a uniformly elliptic continuous functional such that F (0, ·) is bounded on Rn,
and let µ > 0 be arbitrary. Then the function u : Rn → R, defined by

u(x) = sup{v(x) : v ∈ BUC(Rn) is a viscosity subsolution of (2.2)},

is the unique viscosity solution of (2.2).

Let us finish this subsection with the stability theorem of viscosity solu-
tion.

6



CHAPTER 2. PRELIMINARIES

Theorem 2.1.7 (Stability Under Uniform Convergence). Let Fk : Sn×Ω→
R be uniformly elliptic continuous functionals with fixed ellipticity constants
for k = 1, 2, · · · . Suppose that uk is a viscosity solution of Fk(D

2uk, x) = 0
in Ω for each k = 1, 2, · · · . Assume further that there are a uniformly elliptic
continuous functional F : Sn×Ω→ R and a continuous function u : Ω→ R
for which Fk → F locally uniformly in Sn × Ω and uk → u locally uniformly
in Ω. Then u is also a viscosity solution of F (D2u, x) = 0 in Ω.

2.2 Regularity Theory of Viscosity Solution

Here we shall collect some of the basic regularity results for viscosity solu-
tions. Especially we will focus on elliptic PDEs, mainly following the classical
monograph [9]. For corresponding results regarding parabolic PDEs, we ask
the reader to consult [50] - [52].

Let λ and Λ be positive numbers with λ ≤ Λ and throughout this section,
we shall use them to denote ellipticity bounds, unless stated otherwise. Let
F : Sn × Ω → R be a uniformly elliptic functional with ellipticity bounds λ
and Λ. By definition, we have

λ

n
tr(M+)− Λ tr(M−) ≤ F (M,x)− F (0, x) ≤ Λ tr(M+)− λ

n
tr(M−),

for any M ∈ Sn and x ∈ Ω, where by M+ and M− we denoted the unique
matrices with nonnegative eigenvalues such that M = M+−M−. This moti-
vates us to study the extremal operators, called the Pucci operators. We shall
consider a wider class of viscosity solutions associated with these operators.

Definition 2.2.1 (Class S). Let f ∈ C(Ω). We say u ∈ S+(λ,Λ, f) in Ω, if
u is a viscosity subsolution of

Λ tr((D2u)+)− λ tr((D2u)−) = f(x) in Ω.

Similarly, we say u ∈ S−(λ,Λ, f) in Ω, if u is a viscosity supersolution of

λ tr((D2u)+)− Λ tr((D2u)−) = f(x) in Ω.

Finally, we call u ∈ S(λ,Λ, f) in Ω if u ∈ S+(λ,Λ, f) ∩ S−(λ,Λ, f) in Ω.

Let us begin with the Alexander-Bellman-Pucci estimate for the class S−

and S+, which roughly states that a viscosity supersolution cannot be too

7



CHAPTER 2. PRELIMINARIES

negative in the interior, if it is nonnegative on the boundary, and the interior
maximum negative value is controlled by the amount of large positive values
of the associated source term. This can be easily visualized if one notice that
the positive value of a source term contributes to convexity of a solution,
since the Hessian at the point has to have a large positive eigenvalue due to
the ellipticity of the operator. A precise statement is given as follows.

Theorem 2.2.2 (Alexander-Bellman-Pucci Estimate). Let f ∈ C(BR), and
suppose that u ∈ S−(λ,Λ, f) in BR. If u ≥ 0 on ∂BR, then there is C > 0
depending only on n, λ and Λ such that

sup
BR

u− ≤ CR
wwf+

ww
Ln(BR∩{u=Γu})

,

where Γu is the convex envelope of −u− in B2R, with u extended by zero
outside of BR.

With the Alexander-Bellman-Pucci estimate, one can extend the Krylov-
Safanov theory, which mainly states the Harnack inequality, for the class S.
The Harnack inequality gives the comparability of values between any pair
of interior points, so that if a viscosity solution is large at one point, then
it cannot be too small at any other interior point. This yields an algebraic
decay estimate on the oscillation of a solution as one goes from a ball to an
half ball. Hence, a universal interior Hölder regularity follows easily as an
easy corollary.

Theorem 2.2.3 (Krylov-Safanov Theory). Let f ∈ C(Q̄1) and suppose that
u ∈ S(λ,Λ, f) in Q1.

(a) Harnack inequality: If u ≥ 0 in Q1, there exists a constant C > 1 de-
pending only on n, λ and Λ such that

sup
Q1/2

u ≤ C

(
inf
Q1/2

u+ ‖f‖Ln(Q1)

)
.

(b) Interior Cα estimate: u ∈ Cα(Q̄1/2) and

‖u‖Cα(Q̄1/2) ≤ C
(
‖u‖L∞(Q1) + ‖f‖Ln(Q1)

)
,

where 0 < α < 1 and C > 0 depend only on n, λ and Λ.

8



CHAPTER 2. PRELIMINARIES

We also obtain a uniform regularity estimate up to the boundary.

Theorem 2.2.4 (Boundary Regularity). Let f ∈ C(Ω̄) and suppose that Ω
satisfies a uniform exterior sphere condition with radius R, that is, for any
x0 ∈ ∂Ω, there exists a ball B ⊂ Ωc of radius R such that B∩∂Ω = {x0}. Also
let ϕ ∈ C(∂Ω) with a modulus of continuity ρ. Then for any u ∈ S(λ,Λ, f)
in Ω, there exists a modulus of continuity ρ∗ determined only by n, λ, Λ,
diam(Ω), R, ‖ϕ‖L∞(Ω) and ‖f‖L∞(Ω) such that

|u(x)− u(y)| ≤ ρ∗(|x− y|),

for any x, y ∈ Ω̄.

Another application of Krylov-Safanov theory is the Liouville theorem.

Theorem 2.2.5 (Liouville Theorem). If u ∈ S(λ,Λ, 0) in Rn is globally
bounded, then u is a constant.

Next let us state the higher regularity theory for homogeneous PDEs of
the form

F (D2u) = 0.

First comes the universal interior C1,α estimates, or the Krylov theory, which
only requires uniform ellipticity of the operator. However, it is not always true
that a viscosity solution becomes C2,α, even if F is a smooth functional. One
requires an additional structure condition to achieve C2,α regularity, and a
typical sufficient condition is the convexity of the operator. This is the so-
called Evans-Krylov theory. Let us also remark that the minimal condition
for C2,α regularity still remains open.

Theorem 2.2.6 (Interior Regularity; Homogeneous Case). Let F be a uni-
formly elliptic functional on Sn with ellipticity constants λ and Λ. Suppose
that u is a viscosity solution of F (D2u) = 0 in B1.

(a) Interior C1,α estimate: u ∈ C1,α(B̄1/2) and

‖u‖C1,α(B̄1/2) ≤ C
(
‖u‖L∞(B1) + |F (0)|

)
,

where 0 < α < 1 and C > 0 depend only on n, λ and Λ.

9
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(b) Interior C2,α estimate: Assume further that F is convex on Sn. Then
u ∈ C2,α(B̄1/2) and

‖u‖C2,α(B̄1/2) ≤ C
(
‖u‖L∞(B1) + |F (0)|

)
,

where 0 < α < 1 and C > 0 depend only on n, λ and Λ.

With the interior higher regularity for homogeneous PDEs, one may ex-
pect a similar regularity for heterogeneous PDEs with smooth coefficients.
The proof follows the basic idea of the Schauder theory, that is, first approx-
imating the solution by that of a homogeneous PDE obtained by “freezing
coefficient”, and then iterating the approximation with the updated solution
under an appropriate rescaling. Now that we are dealing with fully nonlinear
PDEs, we encounter different operators at each iteration step, and the key is
to establish a uniform estimate for the class of the operators appear in the
entire iteration process.

For an appropriate Hölder class of operators with a linear growth, let us
introduce a class Cα

∗ (Sn×Ω) which consists of all functional F : Sn×Ω→ R
such that

‖F‖Cα∗ (Sn×Ω) = sup
M∈Sn

(
1

1 + |M |
‖F (M, ·)‖Cα(Ω)

)
<∞.

Theorem 2.2.7 (Interior Regularity; Heterogeneous Case). Let F ∈ C(Sn×
B1) be a uniformly elliptic functional with ellipticity constants λ and Λ, sat-
isfying F (0, ·) = 0 in B1, and let f ∈ C(B1). Suppose that u is a viscosity
solution of F (D2u, x) = f(x) in B1.

(a) Interior C1,α estimate: Suppose that there exist 0 < ᾱ ≤ 1 and C̄ > 0
such that for each x0 ∈ B1/2, any viscosity solution v ∈ C(B̄1/2(x0)) of
F (D2v, x0) = F (0, x0) in B1/2(x0) belongs to C1,ᾱ(B̄1/4(x0)) and

‖v‖C1,ᾱ(B̄1/4(x0)) ≤ C̄ ‖v‖L∞(B1/2(x0)) .

Then for any 0 < α < ᾱ, a viscosity solution u of F (D2u, x) = f(x) in
B1 belongs to C1,α(B̄1/4) and

‖u‖C1,α(B̄1/4) ≤ C
(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
,

10
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where 0 < α < ᾱ and C > 0 depend only on n, λ, Λ, ᾱ and C̄.

(b) Interior C2,α estimate: Suppose that there exist 0 < ᾱ ≤ 1 and C̄ > 0
such that for each x0 ∈ B1/2 and each M ∈ Sn, any viscosity solution of
F (D2v +M,x0) = F (M,x0) in B1/2(x0) belongs to C2,ᾱ(B̄1/4(x0)) and

‖v‖C2,ᾱ(B̄1/4(x0)) ≤ C̄ ‖v‖L∞(B1/2(x0)) .

Let 0 < α < ᾱ and suppose further that F ∈ Cα
∗ (Sn × B1) and f ∈

Cα(B1). Then a viscosity solution u of F (D2u, x) = f(x) in B1 belongs
to C2,α(B̄1/4) and

‖u‖C2,α(B̄1/4) ≤ C
(
‖u‖L∞(B1) + ‖f‖Cα(B1)

)
,

where 0 < α < ᾱ depends only on n, λ, Λ, ᾱ and C̄, and C > 0 depends
further but at most on the seminorm [F ]Cα∗ (Sn×B1).

Remark 2.2.8. Note that assertion (a) and (b) hold under more general as-
sumptions. Especially, (a) holds even with a source term f having singulari-
ties at interior points, only if the blowup rate is of order r−α uniformly around
the singularities. More specifically, it is required that ‖f‖Ln(Br(x0) ≤ cr1−α for
some c > 0.

Due to Theorem 2.2.6, Theorem 2.2.7 (a) holds with a universal expo-
nent α. Moreover, Theorem 2.2.7 (b) also holds with a universal exponent α,
provided that F is a convex functional on Sn.

Finally, we have higher regularity for classical solutions in C2,α class, when
the operator and the data are smooth.

Theorem 2.2.9 (Higher Regularity). Suppose that F ∈ Cm,1
∗ (Sn× Ω̄), ∂Ω ∈

Cm+2,1 and g ∈ Cm+2,1(∂Ω). If u ∈ C2,α(Ω) is a solution of F (D2u, x) = 0
in Ω with boundary condition u = g on ∂Ω. Then u ∈ Cm+2,α(Ω̄).

11



Chapter 3

Higher Order Convergence
Rates in Theory of
Homogenization: Equations in
Non-Divergence Form

3.1 Introduction

We establish higher order convergence rates in the theory of periodic ho-
mogenization of both linear and fully nonlinear uniformly elliptic equations
of non-divergence form. It is known that the equations containing highly
oscillating variables x

ε
, where the oscillation takes place periodically in the

microscopic scale, exhibit a limiting behavior as ε → 0. More precisely, for
the following ε-problems with linear operators,{

aij
(
x
ε

)
Diju

ε = f in Ω,

uε = g on ∂Ω,
(3.1)

the solutions uε converge to a function u as ε→ 0, which solves a boundary
value problem {

āijDiju = f in Ω,

u = g on ∂Ω,
(3.2)

12
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whose operator is homogenous (i.e., the matrix (āij) is constant) with respect
to the environment. For more details, one may refer to [7] and [32]. A similar
behavior also exists when the operator consists of nonlinearity, namely,{

F
(
D2uε, x, x

ε

)
= 0 in Ω,

uε = g on ∂Ω.
(3.3)

As in the linear case, the solutions uε exhibit a limiting behavior, and the
limit profile u turns out to be a solution of the following PDE,{

F̄ (D2u, x) = 0 in Ω,

u = g on ∂Ω.
(3.4)

where F̄ is no longer oscillatory in the microscopic scale. For more details,
see [22].

In this paper, we give a quantitative analysis on the rate of convergence
between the solution uε and its limit profile u, and we further accelerate
the rate by involving appropriate corrector functions for both interior and
boundary layer of the physical domain. Finally we end up with a rigorous
justification of the following two scale expansion of the solution uε:

uε(x) = u(x) +ε(wε1(x) +zε1(x)) + · · ·+εm(wεm(x) +zεm(x)) +O(εm−1), (3.5)

where wεk and zεk are the k-th order correctors which fix the error occurring
in the interior and on the boundary layer respectively, and m is the positive
integer related to the regularity of the operator of the ε-problem. The above
expression is explicit if the ε-problem is linear, but rather implicit when a
nonlinearity comes in. We make a remark that our result is true also for
operators with lower order dependence; essentially most of the challenges
lie in proving the case for (3.1) and (3.3) while the desired extensions and
generalizations are fairly straightforward to obtain.

3.1.1 Main Result

Our main results are as follows. First we consider the higher order conver-
gence rates for linear equations.

Theorem 3.1.1. Let m ≥ 2 be an integer. Set Ω to be a bounded domain in
Rn with Cm+2,α boundary and let f ∈ Cm,α(Ω̄) and g ∈ Cm+2,α(Ω̄) for some

13
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exponent 0 < α ≤ 1 and an integer m ≥ 2. Suppose that (3.1) satisfies the
structure conditions (L1)-(L3) given in Section 3.2. Assume that {uε}ε>0 is
the family of the solutions of (3.1) and u is the homogenized limit of {uε}ε>0

which solves (3.2). Then there are interior correctors wεk and boundary layer
correctors zεk, respectively defined by (3.24) and (3.25), for k = 1, . . . ,m such
that

‖uε − ηεm − θεm‖L∞(Ω) ≤ Cεm−1 (3.6)

for any ε ∈ (0, 1), where

ηεm = u+ εwε1 + ε2wε2 + · · ·+ εmwεm, θεm = εzε1 + ε2zε2 + · · ·+ εmzεm

on Ω̄ and C depends only on n,m, α, σ, λ,Λ,Ω, ‖f‖Cm,α(Ω̄) and ‖g‖Cm+2,α(Ω̄).

The result concerning fully nonlinear equations is stated below.

Theorem 3.1.2. Let m ≥ 2 be an integer. Set Ω to be a bounded domain
of Rn with ∂Ω ∈ Cm+2,1 and let g ∈ Cm+2,1(Ω̄). Suppose that F ∈ Cm(Sn ×
Ω̄ × Rn) satisfies the structure conditions (F1)-(F4) given in Section 3.2.
Then there are interior correctors wεk for k = 1, . . . , [m

2
]+1 and the boundary

layer corrector θεm, respectively defined by (3.52) and (3.53) such that for any
ε∗ ∈ (0, 1),

‖uε − ηεm − θεm‖L∞(Ω) ≤ Cε[m
2

], ∀ε ∈ (0, ε∗], (3.7)

where
ηεm = u+ εwε1 + ε2wε2 + · · ·+ ε[m

2
]+1wε[m

2
]+1

on Ω̄ and C > 0 depends only on n,m, ε∗, σ, λ,Λ, F, g and Ω.

3.1.2 Historical Background

Classical results in the theory of homogenization could be found in the books
[7] and [8], and the references therein. In particular, the notion of higher or-
der correctors are introduced in these books, and one can find a higher order
convergence rate for divergent operator on 1-dimensional space. This prob-
lem, however, is still open for higher dimensions where boundary oscillation
plays a crucial role.

Periodic homogenizations for first and second order nonlinear equations
have been studied by many authors, such as Lions, Papanicolaou and Varad-
han [39], Evans [21, 22], Caffarelli [10] and Majda and Souganidis [41] and

14
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Evans and Gomes [24], etc. For homogenization with respect to an almost
periodic or stationary ergodic environment has been considered by Ishii [30],
Lions and Souganidis [40] and Caffarelli, Souganidis and Wang [13], etc.

Rates of convergence in the theory of periodic homogenization were con-
sidered by several authors in various circumstances; for example, Capuzzo
Dolcetta and Ishii [17] and Camilli and Marchi [15] and Marchi [45], etc.
In a stationary ergodic setting, also see Caffarelli and Souganidis [12]. How-
ever, as far as we know, there has been no literature concerning higher order
convergence rates for homogenization of both linear and nonlinear elliptic
equations in nondivergence form.

3.1.3 Heuristic Discussion and Main Difficulties

Let us summarize the main strategies of this paper and make a few remarks
on the key features observed in achieving the rates.

The main feature of this work is the construction of higher order correctors
based on a new regularity theory in slow variables. In order to find the next
order approximation, we consider the linearized operator near the previous
approximation. Since the linearized operator belongs to the same class of the
previous one, we are able to proceed our argument in an inductive manner.
The relationship between the current approximation and the next one is
quite complicated in the nonlinear setting, unlike the linear case; however,
such difficulty could be overcome by capturing the stability of correctors with
respect to the shape of the limit profile, but not to the physical variable x.

Our induction argument consists of two substeps at each main step. First
substep is to improve the previous approximation by constructing a globally
periodic corrector and then bending it based on the shape of the limit profile.
Then the improved interior approximation creates new errors, of a higher
order, away from the given boundary data. The second substep is to fix the
new errors by constructing a boundary layer corrector.

Additionally it is noteworthy that at each step of finding the k-th order
interior corrector, we encounter a compatibility condition which uniquely
determines the (k − 2)-th order interior corrector. It illustrates the reason
why the higher order asymptotic expansion (3.5) starts from ε-order but not
from ε2-order, as seen in many literatures (e.g., [21, 22]). It is closely related
to the invariance of the quadratic rescaling of the governing equation.

There are two main differences between the linear and fully nonlinear
settings. First the asymptotic expansion (3.5) is made inside of the operator
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for the fully nonlinear case, which creates an additional error unlike the linear
case. Readers may compare the equation (3.48) to (3.23). Fortunately, all the
additional errors are controllable and have no influence on determining the
order of convergence rates.

Secondly, there is a coupling effect of the fast variable y = ε−1x and the
slow variable x of the interior correctors in the fully nonlinear case, unlike
the linear case. Moreover, it causes the difference in the order of convergence
rates as seen in Main Theorem I and II. The order is closely related to
the regularity of interior correctors, and the coupling effect in the nonlinear
case forces the next corrector to have two “degrees” less regularity than the
current one (see Lemma 3.4.19).

3.1.4 Outline

This chapter is organized as follows. In the next section, we list up nota-
tion, terminology and the standing assumptions throughout this chapter.
Section 3.3 is devoted to linear equations. We review the basic homogeniza-
tion scheme via the viscosity method in Section 3.3.1. Interior and bound-
ary layer correctors of higher order are obtained in Subsection 3.3.2. We
present the proof of Theorem 3.1.1 in Section 3.3.3. Section 3.4 is devoted
to fully nonlinear equations. The basic homogenization scheme of fully non-
linear equations is shown in Subsection 3.4.1. In Section 3.4.2 we investigate
the regularity of the effective operator and the corrector function in the slow
variable. In Section 3.4.3 we seek the higher order interior and boundary
layer correctors, and finally prove Theorem 3.1.2 in Section 3.4.4.

3.2 Notation and Standing Assumptions

Throughout this chapter, we shall use the following notation. Sn is the space
of all n × n symmetric matrices. |M | denotes the (L2, L2)-norm of M (i.e.,
|M | = sup|x|=1 |Mx|). By Br(x), we denote the ball of radius r > 0 centered
at a point x, which belongs either to Rn or to Sn. By Br we denote Br(0).
Similarly, Qr(x) denotes the cube centered with side length r > 0 centered
at a point x ∈ Rn. As above, by Qr we denote Qr(0).

S(λ,Λ, f) and S∗(λ,Λ, f) are the classes of viscosity solutions defined in
Definition 2.2.1. Ck,α(Ω) is the space of all k-times continuously differentiable
function in Ω whose k-th order derivatives are in Cα(Ω). Also by Ck,α

loc (Ω) we
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denote the space consisting of all functions belonging to Ck,α(K) in any
compact K ⊂ Ω. We shall also use the adimensional norms ‖·‖∗Ck,α(Ω) as well

as ‖·‖(j)

Ck,α(Ω)
, whose definition can be found in [25, Chapter 4].

By cn, Cn we denote dimensional constants. By c0, c, C0, C we denote the
positive constants which depends only on the structure constants appearing
in the structure conditions (L1)-(L3) or (F1)-(F4) given below. By Cf1,...,fk

and C(f1, · · · , fk) we denote positive constants depending on the constants in
the structure conditions and further on f1, . . . , fk where fi can be a constant,
a function, etc. We will use the summation convention of repeated indices.

Now let us list up the standing assumptions associated with the operators
of (3.1) and (3.3). The linear coefficient A(y) = (aij(y)) ∈ Cm,α(Rn;Sn) will
satisfy the following conditions.

(L1) (Periodicity) A(y + k) = A(y);

(L2) (Uniform Ellipticity) λ|ξ|2 ≤ aij(y)ξiξj ≤ Λ|ξ|2;

(L3) (Regularity) ‖A‖Cm,α(Rn) ≤ σ,

where y, ξ ∈ Rn and k ∈ Zn and λ, Λ and σ are positive constants such that
λ ≤ Λ.

On the other hand, we shall impose the following conditions to the fully
nonlinear functional F ∈ Cm(Sn × Ω̄× Rn).

(F1) (Periodicity) F (M,x, y + k) = F (M,x, y);

(F2) (Uniform Ellipticity) λ|N | ≤ F (M +N, x, y)− F (M,x, y) ≤ Λ|N |;

(F3) (Regularity) ‖F‖Cm,1(B̄L×Ω̄×Rn) ≤ σ(1 + L);

(F4) (Concavity) F (tM + (1− t)P ) ≥ tF (M) + (1− t)F (P ),

where M , N , P ∈ Sn with N ≥ 0, x ∈ Ω̄, y ∈ Rn, k ∈ Zn, and t ∈ [0, 1] and
L > 0, and λ, Λ and σ are positive constants such that λ ≤ Λ.
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3.3 Linear Equations

3.3.1 Basic Homogenization Scheme

Let us fix ε > 0. The coefficient matrix (aij(·/ε)) of (3.1) is uniformly elliptic
in Ω̄ with constants λ and Λ, and belongs to Cm,α(Ω̄). According to Theorem
2.2.7 and Theorem 2.2.9, there exists a unique solution uε ∈ Cm+2,α(Ω̄) of
(3.1). In [22] it is shown that {uε}ε>0 is uniformly bounded in Cα(Ω̄) and
hence has a limit. For the sake of completeness, we prove a weaker result
that {uε}ε>0 has a uniform modulus of continuity, which still guarantees the
existence of limit.

Lemma 3.3.1. Let {uε}ε>0 ⊂ Cm+2,α(Ω̄) be the unique family which solve
(3.1) for each ε > 0. Then there is a function u ∈ C(Ω̄) and a subsequence
{uεk}∞k=1 of {uε}ε>0 such that uεk → u uniformly in Ω̄ as k →∞.

Proof. We have uε ∈ S(λ,Λ, f) in Ω for all ε > 0 by the assumption (L2).
By the setting, g has a modulus of continuity ρ(r) = [g]Cα(Ω̄)r

α. Since ∂Ω ∈
Cm+2,α, Ω satisfies a uniform sphere condition, say with radius R > 0. Thus,
Theorem 2.2.4 implies that uε has a modulus of continuity ρ∗, which depends
only on n, λ,Λ, ‖f‖L∞(Ω) , ‖g‖L∞(Ω) , diam(Ω), R and ρ.

As the modulus of continuity ρ∗ is independent on ε, the family {uε}ε>0 is
equicontinuous on Ω̄. Moreover, by an a priori estimate we have ‖uε‖L∞(Ω) ≤
C(‖f‖L∞(Ω) + ‖g‖L∞(Ω)), where C depends only on n, λ, Λ and diam(Ω), for
each ε > 0.

Now the conditions for the Arzela-Ascoli theorem are met, which ensures
the existence of a subsequence {uεk}∞k=1 of {uε}ε>0 which converges uniformly
in Ω̄.

The limit function u will later turn out to be unique and satisfy (3.2)
in the classical sense. The next lemma plays a key role in proving this fact.
The proof can be also found in [22]; nevertheless we contain the proof for
completeness.

Lemma 3.3.2. For each M ∈ Sn there exists a unique γ ∈ R for which the
following equation admits a 1-periodic solution

aijDyiyjw + aijMij = γ in Rn. (3.8)

Moreover, the solutions of (3.8) lie in C2,α(Rn) and are unique up to an
additive constant.
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To prove this lemma we consider the following penalized problem for
δ ∈ (0, 1)

Lemma 3.3.3. Let M ∈ Sn. There exists a unique bounded 1-periodic solu-
tion wδ of

aijDyiyjw
δ + aijMij − δwδ = 0 in Rn. (3.9)

for each δ ∈ (0, 1). Moreover, wδ lies in C2,α(Rn) with the estimate

sup
0<δ<1

wwδwδww
C2,α(Rn)

≤ C|M |. (3.10)

Proof. In view of Theorem 2.1.4 (a) (with F (N, y) = aij(y)Nij + aij(y)Mij),
we know that (3.9) has a comparison principle. By the hypothesis (L2), all
the eigenvalues of (aij) lie in the interval [λ,Λ], which implies that

‖aijMij‖L∞(Rn) ≤ n ‖A(y)‖Cα(Rn) |M | ≤ nσ|M |. (3.11)

It then follows that the constant functions wδ− = −nσ|M |/δ and wδ+ =
nσ|M |/δ are a subsolution and a supersolution respectively to (3.9) for
each δ ∈ (0, 1). Thus, Perron’s method (Theorem 2.1.6 with F (N, y) =
aij(y)Nij + aij(y)Mij, u = wδ− and v = wδ+) ensures that there is a unique
bounded 1-periodic viscosity solution wδ ∈ C(Rn). It is immediate that

sup
0<δ<1

wwδwδww
L∞(Rn)

≤ nσ|M |. (3.12)

Let us apply an interior Schauder estimate in a ball B√n(y0) for y0 ∈ Rn

(see Theorem 2.2.7). Then wδ ∈ C2,α(B√n/2(y0)) and there is c0 such thatwwwδww∗
C2,α(B√n/2(y0))

≤ c0

(wwwδww
L∞(B√n(y0))

+ nσ|M |
)
≤ 2nδ−1c0σ|M |.

Since y0 was chosen in an arbitrary way and B√n/2(y0) contains a periodic
cube, the estimate (3.10) is verified with C = 2nδ−1c0σ.

We observe that the oscillation of wδ is bounded independent of δ, al-
though its L∞ norm is not bounded in a uniform way.

Lemma 3.3.4. Let M ∈ Sn and wδ be the unique solution to (3.9). Then

sup
0<δ<1

osc
Rn

wδ ≤ C|M |. (3.13)
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Moreover,
sup

0<δ<1

www̃δww
C2,α(B1(y0))

≤ C|M |, (3.14)

where w̃δ := wδ − wδ(0).

Proof. Define ŵδ(y) := wδ(y) − minRn w
δ ≥ 0 in Rn. Note that ŵδ and wδ

achieve its global maximum and minimum, and ŵδ ∈ C2,α(Rn). Additionally,
oscRn w

δ = maxRn ŵ
δ. Moreover, plugging ŵδ into (3.9) we obtain

aijDyiyj ŵ
δ − δŵδ = δmin

Rn
wδ − aijMij in Rn. (3.15)

Let us restrict our domain to B√n(y0) where y0 is an arbitrary point in
Rn. Note that B√n/2(y0) contains a periodic cube Q1(y0). This implies that
supB√n/2(y0) ŵ

δ = supRn ŵ
δ and infB√n/2(y0) ŵ

δ = infRn ŵ
δ = 0. Now we apply

the Harnack inequality over B√n(y0) to (3.15) (see Theorem 2.2.3 (a) with
f = δminRn w

δ − aijMij). Then

sup
B√n/2(y0)

ŵδ ≤ c0

wwwλ−1(δmin
Rn

wδ − aijMij)
www
L∞(B√n(y0))

≤ 2c0λ
−1nσ|M |;

here we utilized (3.11) and (3.12). Since the above bound is independent of
δ ∈ (0, 1), and since y0 is an arbitrary point, we have shown (3.13) with
C = 2c0λ

−1nσ.
Define now w̃δ(y) := wδ(y)− wδ(0) in Rn. By (3.13), |w̃δ| ≤ c̃0|M | in Rn

where c̃0 = 4c0λ
−1nσ. Moreover, w̃δ ∈ C2,α(Rn) and satisfies

aijDyiyj w̃
δ + aijMij − δw̃δ = δwδ(0) in Rn.

Using a similar argument when proving (3.10), we get

sup
0<δ<1

www̃δww
C2,α(B1(y0))

≤ c̃1c0nσ(λ−1 + 1)|M |,

which verifies (3.14) with C = c̃1c0nσ(λ−1 + 1).

Now we are ready to prove Lemma 3.3.2

Proof of Lemma 3.3.2. In view of (3.12), we can take a subsequence {δkwδk(0)}∞k=1

of {δwδ}0<δ<1 and a number γ ∈ R such that δkw
δk(0)→ γ as k →∞. Then

(3.13) implies that δkw
δk → γ uniformly in Rn as k →∞.
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On the other hand, by the compact embedding, the uniform estimate
(3.14) yields thatwwδkwδk − γwwL∞(Rn)

+
www̃δk − www

C2(Rn)
→ 0 as k →∞, (3.16)

for some 1-periodic w ∈ C2,α(Rn). Note that one may need to take a further
subsequence of {δk}∞k=1 to ensure the convergence above.

By the stability of viscosity solutions, w solves (3.8) in the viscosity sense.
Then the C2,α(Rn)-regularity of w forces itself to be a classical solution.

To this end we prove that the constant γ is unique. Suppose to the con-
trary that there is another γ′ ∈ R to which a subsequence of {δwδ}0<δ<1

converges uniformly in Rn. Denote w′, which belongs to C2,α(Rn), by the
corresponding limit of a subsequence of {w̃δ}0<δ<1.

Assume without lose of generality that γ < γ′. As w and w′ being
bounded, we are able to add a constant t0 to w in such a way that w′(y0)+t0 <
w(y0) at a point y0 ∈ Rn. Take t1 by the infimum value of t such that
w′ + t ≥ w in Rn. Then w′ + t1 touches w by above at a point y1. Since w is
a solution of (3.8),

γ ≤ aij(y1)Dyiyj(w
′ + t1)(y1) + aij(y1)Mij = γ′,

which is a contradiction. It shows that the constant γ must be unique.
Furthermore, the Liouville theorem (e.g., Theorem 2.2.5) implies that the

uniform convergence (3.16) could be made along the full sequence; i.e., the
limit function is also unique.

The last assertion of Lemma 3.3.2 is also an easy consequence of the
Liouville theorem.

From now on we denote wδ(·;M) by the unique solution of (3.9) for a
given M ∈ Sn. Also ŵδ(·;M) := wδ(·;M)−minRn w

δ(·;M) and w̃δ(·;M) :=
wδ(·;M)−wδ(0;M). In addition, let us write w(·;M) by the solution of (3.8)
for a given M ∈ Sn which is normalized by 0; i.e., w(0;M) = 0.

By Lemma 3.3.2 we can understand γ as a functional M 7→ γ(M) on
Sn. The linear structure of the equation (3.8) allows us to obtain further
information about the functional γ which is stated in the next lemma.

Lemma 3.3.5. Let γ be the functional on Sn obtained from Lemma 3.3.2.

(i) There is a constant symmetric matrix (āij) such that γ(M) = āijMij.

21



CHAPTER 3. EQUATIONS IN NON-DIVERGENCE FORM

(ii) The matrix (āij) is elliptic with the same ellipticity constants of (aij);
i.e., λ|ξ|2 ≤ āijξiξj ≤ Λ|ξ|2 for all ξ ∈ Rn.

Proof. The assertion (i) is a direct consequence of Lemma 3.3.3, and is left
to the reader.

We prove the assertion (ii). Since the proofs are similar, we only show
the first inequality. Choose any ε > 0 and assume for a contradiction that
there exists ξ ∈ Rn for which āijξiξj < (λ − ε)|ξ|2. In view of (3.16), there
corresponds δ ∈ (0, 1) for which

wwδwδ(·; ξ · ξt)− āijξiξjwwL∞(Rn)
< ε|ξ|2. For

the moment we abbreviate wδ(·; ξ · ξt) by wδ. Then

aijDyiyjw
δ = δwδ − aijξiξj ≤

wwδwδ − āijξiξjwwL∞(Rn)
+ (āijξiξj − λ|ξ|2) < 0

in Rn, which is contradictory to the fact that wδ achieves a global minimum.

The constant matrix (āij) from Lemma 3.3.5 is called the effective coef-
ficients of (aij) in the following lemma. It is proved in [22], but we present
the proof for completeness.

Lemma 3.3.6. Suppose that (3.1) satisfies the structure conditions (L1)-
(L2) and let {uε}ε>0 ⊂ Cm+2,α(Ω) be the family of solutions to (3.1). Then
there exists a unique function u, which has a modulus of continuity on Ω̄,
such that uε → u uniformly in Ω̄ as ε→ 0. Moreover, u ∈ Cm+2,α(Ω̄) and it
solves (3.2).

Proof. We already proved part of the first assertion in Lemma 3.3.1. Since
uε → u uniformly in Ω̄ up to a subsequence and uε = g on ∂Ω for all ε > 0,
we have u = g on ∂Ω. On the other hand, the maximum principle implies
that (3.2) has at most one solution. Therefore, the convergence of uε → u is
valid without extracting a subsequence.

We claim that u is a viscosity solution to (3.2). If it is true, then Theorem
2.2.7 and Theorem 2.2.9 imply that u ∈ Cm+2,α(Ω̄).

Thus, we are only left with proving the above claim. Let P be a paraboloid
which touches u by above at x0 in a neighborhood. By replacing P by P +
η|x−x0|2 (η > 0) we may assume that P touches u strictly by above. Assume
to the contrary that āijDijP − f(x0) < 0. By the continuity of f , we can
choose r > 0 in such a way that Br(x0) ⊂ Ω and āijDijP − f(x) < 0 for any
x ∈ Br(x0).
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Define P ε(x) := P (x)+ε2w(ε−1x;D2P ). Note that P ε ∈ C2,α(Ω̄). In view
of (3.8) we obtain

aij

(x
ε

)
DijP

ε(x)− f(x) = āijDijP − f(x) < 0 in Br(x0).

Hence, P ε is a supersolution of (3.1) so that the strong maximum princi-
ple implies (uε − P ε)(x0) < max∂Br(x0)(u

ε − P ε). Letting ε → 0 then gives
max∂Br(x0)(u − P ) ≥ 0, which violates the assumption that P touches u
strictly by above at x0. Therefore, āijDijP − f(x) ≥ 0 for any x ∈ Ω. It
shows that u is a viscosity subsolution of (3.2).

In a similar manner, we are able to prove that u is a viscosity supersolution
of (3.2). This completes the proof.

3.3.2 Interior and Boundary Layer Correctors

In this subsection, we seek the interior and boundary layer correctors. We
make a remark from the previous section before we begin. Recall from the
linear algebra, {Eij|i, j = 1, . . . , n} is the standard basis of Sn. Any matrix
M ∈ Sn can be written as M = MijE

ij where M = (Mij). Set M = Ekl

in Lemma 3.3.2 for k, l ∈ {1, . . . , n} and write χkl := w(·;Ekl) ∈ C2,α(Rn).
Notice that χkl(0) = 0. In view of (3.8) and Lemma 3.3.5 (i), χkl solves

aijDijχ
kl + akl = ākl. (3.17)

Multiplying (3.17) with Mkl and summing over the indices k, l = 1, . . . , n, we
see that χklMkl solves (3.8) with M = (Mkl). Define

w2(y, x) = χkl(y)Dxkxlu(x) + ψ2(x) (y ∈ Rn, x ∈ Ω̄),

where u is given by Lemma 3.3.6 and ψ2 is chosen arbitrarily from Cm,α(Ω̄)
for the moment. By Lemma 3.3.6, w2(·, x) ∈ C2,α(Rn) for each x ∈ Ω̄ while
w2(y, ·) ∈ Cm,α(Ω̄) for each y ∈ Rn. Moreover, w2(·, x) solves

aijDyiyjw2(·, x) + aijDxixju(x) = 0 in Rn

for each x ∈ Ω̄. We call w2 the second order (interior) corrector of (3.1). The
first order corrector will be defined afterward as a compatibility condition of
the third order corrector.

Interior correctors of higher orders are discovered in the similar direction.
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Lemma 3.3.7. There are a family {āi1...ik |1 ≤ i1, . . . , ik ≤ n, k ≥ 2} of con-
stants and a family {χi1...ik |1 ≤ i1, . . . , ik ≤ n, k ≥ 2} of 1-periodic functions
in C2,α(Rn) which satisfy the following recursive equation

aijDijχ
i1...ik + 2aikjDyjχ

i1...ik−1 + aik−1ikχ
i1...ik−2 = āi1...ik in Rn (3.18)

for each 1 ≤ i1, . . . , ik ≤ n. Here we understand χ ≡ 1 and χi ≡ 0 for each
i = 1, . . . , n. Furthermore, for each k ≥ 2, χi1...ik(0) = 0 and

|āi1...ik |+
wwχi1...ikww

C2,α(Rn)
≤ Ck, ∀1 ≤ i1, . . . , ik ≤ n. (3.19)

Proof. We already know {āij}i,j=1,...,n and {χij}i,j=1,...,n from the comment
above this lemma; one may notice that (3.18) is exactly the same with (3.17)
if k = 2. The constant C2 can be taken by the sum of those from (3.10) and
(3.14).

The construction of the families {āi1...ik} and {χi1...ik} (for k ≥ 3) can be
done by an induction argument, mainly following the lines of the proofs of
Lemma 3.3.2, 3.3.3 and 3.3.4. To avoid the redundancy, we leave it to the
reader.

Now let m ≥ 3. By Lemma 3.3.6 we have u ∈ Cm+2,α(Ω̄). For 1 ≤ k ≤
m− 2, define ψk ∈ Cm−k+2,α(Ω̄) recursively by the unique solution of{

āijDxixjψk = −
∑k+2

l=3 āi1...ilDxi1 ...xil
ψk−l+2 in Ω,

ψk = 0 on ∂Ω,
(3.20)

where we understand ψ0 ≡ u. This can be done by an induction argument. Fix
k and suppose that ψl ∈ Cm−l+2,α(Ω̄) for all 0 ≤ l < k. Then the right hand
side of (3.20) belongs to Cm−k,α(Ω̄). Now the existence and regularity theories
ensure that the boundary value problem (3.20) attains a unique solution
ψk ∈ Cm−k+2,α(Ω̄). This induction holds because the induction hypothesis is
met for k = 1.

Furthermore, we have the following.

Lemma 3.3.8. Let m ≥ 3 and set ψk as above for 1 ≤ k ≤ m− 2. Then

‖ψk‖Cm−k+2,α(Ω̄) ≤ C̃k,m,Ω

(
‖f‖Cm,α(Ω̄) + ‖g‖Cm+2,α(Ω̄)

)
, (3.21)

for each k = 0, 1, . . . ,m− 2, where we understand ψ0 = u.
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Proof. Since u ∈ Cm+2,α(Ω̄) solves (3.2), f ∈ Cm,α(Ω̄), g ∈ Cm+2,α(Ω̄) and
∂Ω ∈ Cm+2,α, Theorem 2.2.9 and an a priori estimate yield that

‖u‖Cm+2,α(Ω̄) ≤ Cm,Ω

(
‖f‖Cm,α(Ω̄) + ‖g‖Cm+2,α(Ω̄)

)
.

The proof is finished by adopting an induction argument. One can also prove
that

C̃k,m,Ω ≤ Cm−k+2,Ω

k+2∑
l=3

ClC̃k−l+2,m,Ω.

Set for each 1 ≤ k ≤ m

wk(y, x) =
k∑
l=1

χi1...il(y)Dxi1 ...xil
ψk−l(x) + ψk(x) (y ∈ Rn, x ∈ Ω̄), (3.22)

where ψm−1 ∈ C3,α(Ω̄) and ψm ∈ C2,α(Ω̄) are arbitrary functions which
satisfy the inequality (3.21) respectively when k = m− 1 and m. Recall that
we have set χi ≡ 0 for all i = 1, . . . , n, which implies that w1(y, x) = ψ1(x);
that is, w1 is independent of the y-variable.

Lemma 3.3.9. Let m ≥ 3 be an integer and wk be given by (3.22) for each
k = 1, . . . ,m. Then wk(·, x) ∈ C2,α(Rn) for each x ∈ Ω̄ and wk(y, ·) ∈
Cm−k+2,α(Ω̄) for each y ∈ Rn with the estimate

‖wk(·, x)‖C2,α(Rn)+‖wk(y, ·)‖Cm−k+2,α(Ω̄) ≤ C̄k,m,Ω

(
‖f‖Cm,α(Ω̄) + ‖g‖Cm+2,α(Ω̄)

)
,

where C̄k,m,Ω =
∑k

l=1 n
lClC̃k−l,m,Ω + C̃k,m,Ω for each k = 1, . . . ,m.

Moreover, for 3 ≤ k ≤ m, wk solves recursively

aijDyiyjwk + 2aijDxiyjwk−1 + aijDxixjwk−2 = 0 in Rn × Ω. (3.23)

Proof. The estimate follows from (3.19) and (3.21). The equation (3.23) is
immediate from (3.18) and (3.20).

Define now the k-th order interior corrector wεk of (3.1) for each 1 ≤ k ≤ m
and ε > 0 by

wεk(x) := wk

(x
ε
, x
)

(x ∈ Ω̄). (3.24)
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By Lemma 3.3.9, wεk ∈ C2,α(Ω̄) for each ε > 0. Thus, the following boundary
value problem has a unique solution lying in C2,α(Ω̄);{

aij
(
x
ε

)
Dijz

ε
k = 0 in Ω,

zεk = −wεk on ∂Ω.
(3.25)

We denote the solution by zεk and call it the k-th order boundary layer cor-
rector of (3.1). Lemma 3.3.9 yields a uniform bound of zεk, namely,

sup
ε>0
‖zεk‖L∞(Ω) ≤ c0 sup

ε>0
‖wεk‖L∞(Ω) ≤ c0C̄k,m,Ω

(
‖f‖Cm,α(Ω̄) + ‖g‖Cm+2,α(Ω̄)

)
.

Note that for any ε > 0, zε1 ≡ 0 on Ω̄, since wε1 ≡ ψ1 on Ω̄ where ψ1 vanishes
on ∂Ω.

3.3.3 Proof of Theorem 3.1.1

We are now in position to achieve the higher order convergence rates in the
framework of linear equations.

Proof of Theorem 3.1.1. Fix ε > 0. Let wεk and zεk be defined as in the pre-
vious section for each k = 1, . . . ,m. Define

ηεm := u+ εwε1 + ε2wε2 + · · ·+ εmwεm, θεm := εzε1 + ε2zε2 + · · ·+ εmzεm

on Ω̄. Then both ηεm and θεm belong to C2,α(Ω̄). We utilize (3.8), (3.23) and
(3.25). A lengthy but elementary computation gives

aij

(x
ε

)
Dij(η

ε
m + θεm) = aij

(x
ε

)
Dijη

ε
m = f + εm−1ϕεm

in Ω, where

ϕεm(x) =
m−1∑
l=2

[
2ailj

(x
ε

)
Dyjχ

i1...il−1

(x
ε

)
+ ail−1il

(x
ε

)
χi1...il−2

(x
ε

)]
×Dxi1 ···xilψm−l−1(x)

+ ε

m∑
l=2

ail−1il

(x
ε

)
χi1...il−2

(x
ε

)
Dxi1 ...xil

ψm−l(x) (x ∈ Ω).
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Now we set ε ∈ (0, 1). According to (3.19) and (3.21), we have

‖ϕεm‖L∞(Ω) ≤ Lm,Ω

(
‖f‖Cm,α(Ω̄) + ‖g‖Cm+2,α(Ω̄)

)
where

Lm,Ω

= σ

[
m−1∑
l=3

nl−1
{

2(Cl−1 + Cl−2)C̃m−l−1,Ω + Cl−2C̃m−l,Ω

}
+ nm−1Cm−2C̃0,Ω

]
.

Here Ck and C̃k are the constants chosen as in (3.19) and (3.21).
On the other hand, we have ηεm + θεm = g +

∑m
k=1 ε

k(wεk + zεk) = g on ∂Ω.
Thus, uε − ηεm − θεm ∈ C2,α(Ω̄) solves the following equation,{

aij
(
x
ε

)
Dijv = −εm−1ϕεm in Ω,

v = 0 on ∂Ω.

An a priori estimate then gives

‖uε − ηεm − θεm‖L∞(Ω) ≤ c0Lm,Ω

(
‖f‖Cm,α(Ω̄) + ‖g‖Cm+2,α(Ω̄)

)
.

3.4 Fully Nonlinear Equations

3.4.1 Basic Homogenization Scheme

This subsection is devoted to the homogenization process of (3.3) to (3.4). It
generalizes the homogenization result of linear equations (see Section 3.3.1).
One may find a general argument in [22] for some lemmas. However, we
present all the proofs which are adequate for our situation.

Lemma 3.4.1. Assume for each ε > 0 that uε ∈ C(Ω̄) is a viscosity solution
of (3.3). Then there is a function u ∈ C(Ω̄) and a subsequence {uεk}∞k=1 of
{uε}ε>0 such that uεk → u uniformly in Ω̄ as k →∞.

Proof. The proof is identical to that of Lemma 3.3.1. One may notice that
the proof of Lemma 3.3.1 does not involve the linear structure of (3.1).
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As we did in Section 3.3.1, we will ascertain the effective equation which
u solves in the viscosity sense at the end of this section. Before we start,
we point out that the argument throughout this subsection is valid by only
assuming that F ∈ C0,1(B̄L× Ω̄×Rn) for each L > 0 (i.e., (F3) with m = 0).

Lemma 3.4.2. To each (M,x) ∈ Sn × Ω̄ there corresponds a unique γ ∈ R
for which the following equation

F (D2
yw +M,x, y) = γ in Rn (3.26)

attains a 1-periodic solution w ∈ C2,α(Rn). Moreover, w is unique up to an
additive constant. Moreover, if the solution w satisfies w(0) = 0, then

‖w‖C2,α(Rn) ≤ C|M |.

As we did in the linear case, we start with an approximating problem.

Lemma 3.4.3. Let (M,x) ∈ Sn × Ω̄ and δ ∈ (0, 1). Then there is a unique
bounded 1-periodic function wδ ∈ C2,α(Rn) which solves

F (D2
yw

δ +M,x, y)− δwδ = 0 in Rn, (3.27)

with the uniform estimate

sup
0<δ<1

wwδwδww
C2,α(Rn)

≤ C|M |. (3.28)

Proof. Fix (M,x) ∈ Sn×Ω̄. The unique existence of the solution wδ to (3.27)
follows the same argument as in Lemma 3.3.3, so is omitted. Moreover, we
have

sup
0<δ<1

wwδwδww
L∞(Rn)

≤ σ(1 + |M |). (3.29)

To improve the regularity of wδ to C2,α(Rn) we make use of interior C2,α

estimate (Theorem 2.2.7) instead of the interior Schauder estimate. We know
from the hypothesis (F4) that F is concave with respect to M and from the
hypothesis (F3) that for any y, y0 ∈ Rn

β(y, y0) := sup
N∈Sn

|F (M +N, x, y)− F (M +N, x, y0)|
1 + |N |

≤ σ(1 + |M |)|y − y0|.
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On the other hand, since wδ is a solution to (3.27) in Rn, we have wδ ∈
S(λ/n,Λ, δwδ − F (M,x, ·)) in Rn. As we restrict ourselves to the cube Q2,
we obtain from Theorem 2.2.3 (b) that wδ ∈ C α̃(Q̄1) and

wwwδww
Cα̃(Q̄1)

≤
c0(δ−1 + 2)σ(1 + |M |), for each δ > 0. Since Q1 is a periodic cube of wδ, we
obtain a uniform Hölder estimate on δwδ over Rn, namely,

sup
0<δ<1

wwδwδww
Cᾱ(Rn)

≤ 3c0σ(1 + |M |).

Now Theorem 2.2.7 applies to wδ so that we get a constant C|M | > 1 for
which wδ ∈ C2,α(B̄C−1

|M|
√
n(y0)) and

wwwδww∗
C2,α(B̄

C−1
|M|
√
n

(y0))
≤ C|M |

(wwwδww
L∞(B√n(y0))

+ 1
)
≤ C̃|M |δ

−1,

where ‖·‖∗C2,α(E) is the adimensional C2,α norm on E. Since y0 ∈ Rn was an

arbitrary point and B√n(y0) contains a periodic cube of wδ, we obtain the
estimate (3.28).

Our next step is to find a uniform bound of the oscillation of wδ for
δ ∈ (0, 1).

Lemma 3.4.4. Let M ∈ Sn, x ∈ Ω̄ and wδ be the unique solution to (3.27).
Then

sup
0<δ<1

osc
Rn

wδ ≤ C(1 + |M |).

Moreover, there holds

sup
0<δ<1

www̃δww
C2,α(Rn)

≤ C|M |, (3.30)

where w̃δ := wδ − wδ(0) in Rn.

Proof. The proof follows the line of the proof of Lemma 3.3.4.

It is noteworthy to observe that the derivatives of wδ are bounded inde-
pendent of δ ∈ (0, 1). To be specific, since Dwδ = Dw̃δ and D2wδ = D2w̃δ,
we obtain from (3.30) that

sup
0<δ<1

(wwDwδww
L∞(Rn)

+
wwD2wδ

ww
L∞(Rn)

+ [D2wδ]Cα(Rn)

)
≤ C|M |. (3.31)
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We are now in position to prove Lemma 3.4.2.

Proof of Lemma 3.4.2. One may notice that the proof of Lemma 3.3.2 has
nothing to do with the linear structure of (3.8). Indeed, (3.29) and (3.30) re-
spectively correspond to (3.12) and (3.14). Hence, by the compact embedding,
we are able to extract a subsequence {δkwδk , w̃δk}∞k=1 from {δwδ, w̃δ}0<δ<1

such thatwwδkwδk − γwwL∞(Rn)
+
www̃δk − www

C2(Rn)
→ 0 as k →∞, (3.32)

for some γ ∈ R and w ∈ C2,α(Rn). In addition, we have that |γ| ≤ σ(1+ |M |)
and ‖w‖C2,α(Rn) ≤ C|M |. The rest of the proof is exactly the same with that
of Lemma 3.3.2 and hence is omitted.

Definition 3.4.5. Let (M,x) ∈ Sn × Ω̄.

(i) For each δ ∈ (0, 1), we denote wδ(·;M,x) by the unique bounded 1-
periodic solution of (3.27) and w̃δ(·;M,x) = wδ(·;M,x) − wδ(0;M,x)
in Rn. By the uniqueness of the solution, we can understand wδ(y; ·, ·) as
the mapping (M,x) 7→ wδ(y;M,x) defined on Sn × Ω̄ for each y ∈ Rn.

(ii) In a similar way, we write F̄ (M,x) by the unique number γ of (3.26) and
w(·;M,x) by the bounded 1-periodic solution of (3.26) which is normal-
ized by w(0;M,x) = 0. Again the uniqueness allows us to understand
F̄ [resp., w(y; ·, ·) for each y ∈ Rn] as the mapping (M,x) 7→ F̄ (M,x)
[resp., w(y;M,x)] defined on Sn × Ω̄.

Note that (3.26) now reads{
F (D2

yw +M,x, y) = F̄ (M,x) in Rn,

w is 1-periodic.
(3.33)

The next lemma states that δwδ and w̃δ are locally Lipschitz continuous
in (M,x). One may also find a proof for (3.34) in [2] and [22] regarding a
more general situation. The proof for (3.35) can also be found in [42] with a
different argument.

Lemma 3.4.6. For any L > 0 and (M,x), (M ′, x′) ∈ B̄L × Ω̄, we havewwδwδ(·;M ′, x′)− δwδ(·;M,x)
ww
L∞(Rn)

≤ CL(‖M ′ −M‖+ |x′ − x|),(3.34)
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and www̃δ(·;M ′, x′)− w̃δ(·;M,x)
ww
L∞(Rn)

≤ CL(‖M ′ −M‖+ |x′ − x|).(3.35)

Proof. For brevity, let us denote by vδ1 [resp., vδ2] the function wδ(·;M ′, x′)
[resp., wδ(·;M,x)]. Also by ṽδ1 [resp., ṽδ2] let us denote w̃δ(·;M ′, x′) [resp.,
w̃δ(·;M,x)].

We prove (3.34) first. By the Lipschitz continuity of F , we get

F (D2
yv

δ
2 +M,x, y) ≥ δvδ2 − σ(1 + L)(‖M ′ −M‖+ |x′ − x|)

which implies that vδ2 − δ−1σ(1 + L)(‖M ′ −M‖ + |x′ − x|) is a subsolution
of (3.27). By the comparison principle (Theorem 2.1.4), we arrive at

δvδ2 − δvδ1 ≤ σ(1 + L)(‖M ′ −M‖+ |x′ − x|) in Rn.

By a similar argument, we obtain (3.34) with CL ≥ σ(1 + L).
Now we move on to the proof of (3.35). The main idea is to use the lin-

earisation of F . Define aδij =
∫ 1

0
Fpij(N

δ
t , xt, ·)dt and bδk =

∫ 1

0
Fxk(N

δ
t , xt, ·)dt

where N δ
t := t{D2vδ1 + M ′} + (1 − t){D2vδ2 + M} and xt := tx + (1 − t)x′.

It is immediate from the structure conditions (F1)-(F3) that aδij and bδk
(i, j, k = 1, . . . , n) are 1-periodic and uniformly bounded in Rn by the Lip-
schitz constant of F . Furthermore, (aδij) is uniformly elliptic with the same
ellipticity constants λ and Λ of F .

Now define vδ := vδ1 − vδ2 and ṽδ := ṽδ1 − ṽδ2. Then vδ, ṽδ ∈ C2,α(Rn) solve

aδijDijw + aδij(M
′
ij −Mij) + bδk(x

′
k − xk) = δvδ in Rn. (3.36)

As this equation belongs to the same class of (3.9), we arrive the conclusion by
the same argument used in Lemma 3.3.4. We left the details to the reader.

Lemma 3.4.7. The convergence in (3.32) is uniform in (M,x) ∈ B̄L × Ω̄
for each L > 0; i.e.,

lim
δ→0

sup
(M,x)∈B̄L×Ω̄

wwδwδ(·;M,x)− F̄ (M,x)
ww
L∞(Rn)

= 0,

and

lim
δ→0

sup
(M,x)∈B̄L×Ω̄

www̃δ(·;M,x)− w(·;M,x)
ww
C2(Rn)

= 0.
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Proof. Fix L > 0. Put CL = sup{C|M | : M ∈ B̄L} and then take C̃L =
max{σ(1 + L), CL}. Then it follows from (3.29) and (3.30) that for any δ ∈
(0, 1),

sup
(M,x)∈B̄L×Ω̄

{wwδwδ(·;M,x)
ww
L∞(Rn)

,
www̃δ(·;M,x)

ww
C2,α(Rn)

}
≤ C̃L.

The above uniform estimates allow us to extract a subsequence {δkwδk}∞k=1

[resp. {w̃δk}∞k=1] from {δwδ}0<δ<1 [resp. {w̃δ}0<δ<1] such that (3.32) holds
regardless of a particular choice of (M,x) ∈ B̄L × Ω̄. The rest of the proof is
the same with that in Lemma 3.4.2.

It is an immediate consequence of Lemma 3.4.6 and 3.4.7 that the effective
operator F̄ and the corresponding corrector w(y; ·, ·) are locally Lipschitz
continuous (uniform in y). Due to its particular role in the rest of this paper,
we present the statement without proof.

Lemma 3.4.8. F̄ and w(y; ·, ·) are Lipschitz continuous locally in Sn and
globally in Ω̄. Moreover, the Lipschitz continuity of the latter is uniform in
y ∈ Rn.

There are additional properties of F̄ . A more general proof is contained
in [22]. Here we make a slight adjustment of the proof according to our
situation; the main difference is that we have C2,α-corrector, which makes
the proof simpler.

Lemma 3.4.9. (i) F̄ is uniformly elliptic with the same constants λ and
Λ of F .

(ii) F̄ is concave on Sn.

Proof. The proof for the assertion (i) is similar to that of the assertion (ii)
of Lemma 3.3.5, so is omitted.

Now we establish the proof of (ii). Let M,N ∈ Sn and x ∈ Ω̄ be given.
For simplicity let us write wM by the solutions of (3.33) with respect to M .

Suppose toward a contradiction that there is some t ∈ (0, 1) and M,N ∈
Sn such that

F̄ (tM + (1− t)N, x) < tF̄ (M,x) + (1− t)F̄ (N, x).

Put X := tM + (1 − t)N ∈ Sn. Adding a constant to wX if necessary, we
may assume that wX < twM + (1 − t)wN in Rn. Then we obtain from the
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concavity of F that

F̄ (X, x) < tF̄ (M,x) + (1− t)F̄ (N, x) ≤ F (X +D2
y(tw

M + (1− t)wN), x, y)

in Rn. However, since F̄ (X + D2
yw

X , x, y) = F̄ (X, x) in Rn, the comparison
principle implies that wX ≥ twM +(1− t)wN in Rn, which is a contradiction.

As we mentioned in the beginning of this section, we determine the equa-
tion which u solves in the viscosity sense.

Lemma 3.4.10. Assume that F ∈ C(Sn × Ω̄ × Rn) satisfy the hypotheses
(F1)-(F4). Then the function u from Lemma 3.4.1 solves (3.4). Moreover, u
is unique and belongs to the class of C2,α(Ω̄).

Proof. The proof of that u is a viscosity solution of (3.4) is similar to that
of Lemma 3.3.6. Instead of using strong maximum principle, one may take
advantage of Theorem 2.1.3. The details are left to the reader.

As long as we know that u solves (3.4), the fact that u ∈ C2,α(Ω) follows
readily from Theorem 2.2.7. The proof is similar to that in Lemma 3.4.3,
so the details are omitted; instead of taking advantage of (F1)-(F4), we use
Lemma 3.4.9 (i)-(iii). We make a remark here that the exponent α is the
same with which we chose in Lemma 3.4.3 because the ellipticity constants
of F̄ coincide with those of F (Lemma 3.4.9 (i)).

3.4.2 Regularity Theory in Slow Variables

In the previous subsection, we observed that the Lipschitz regularity of F ,
in particular in the (M,x)-variable, yields the Lipschitz regularity of F̄ and
w(y; ·, ·), where the regularity for the latter is uniform in y ∈ Rn. Then,
it is natural to ask whether higher regularity of F in (M,x)-variable gives
higher regularity for F̄ and w(y; ·, ·), and we prove in this subsection that
the answer is affirmative. Specifically, we observe that they have the same
regularity as F does. This regularity result plays the key role in the rest
of this paper, especially in seeking higher order interior correctors. To be
precise, we observe the following.

Proposition 3.4.11. F̄ and w(y; ·, ·) are Cm,1 locally in Sn and globally in
Ω̄ and for any L > 0,wwF̄ww

Cm,1(B̄L×Ω̄)
+ ‖w(y, ·, ·)‖Cm,1(B̄L×Ω̄) ≤ CL,m (3.37)
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Moreover, for any (M ′, x′), (M,x) ∈ B̄L × Ω̄ there holds∑
0≤i+j≤m−1

wwDi
MD

j
xw(·;M ′, x′)−Di

MD
j
xw(·;M,x)

ww
C2,α(Rn)

≤ CL,m(‖M ′ −M‖+ |x′ − x|).
(3.38)

Remark 3.4.12. Note that the estimate (3.38) implies that Di
yw(y; ·, ·) ∈

Cm−1,1(B̄L × Ω̄) for i = 1, 2. This will turn out as the coupling effect as we
mentioned in Sect. 3.1.

Before we begin the proof, let us illustrate the heuristics of our argument.
In the first place, we only assume that F satisfies the structure condition (F3)
with m = 1, which means that F is C1,1 locally in Sn and globally in Ω̄×Rn,
and arrive at the conclusion that F̄ and w(y; ·, ·) are also C1,1 locally in Sn
and globally in Ω̄. We also observe that the equation, which involves the
partial derivatives of F̄ and w(y; ·, ·) in M and x-variable, satisfies the same
structure conditions of F . This implies that under our original assumption
(F3) we are able to iterate the argument to get Cm,1 regularity of F̄ and
w(y; ·, ·) which is local in Sn and global in Ω̄.

As the first step, we prove that if F ∈ C1,1, then the L∞-norm in (3.34)
and (3.35) can be improved by C2,α-norm.

Lemma 3.4.13. For each L > 0 and (M,x), (M ′, x′) ∈ B̄L × Ω̄, there hold
for all δ ∈ (0, 1),wwδwδ(·;M ′, x′)− δwδ(·;M,x)

ww
C2,α(Rn)

≤ CL(‖M ′ −M‖+ |x′ − x|) (3.39)

and www̃δ(·;M ′, x′)− w̃δ(·;M,x)
ww
C2,α(Rn)

≤ CL(‖M ′ −M‖+ |x′ − x|).

Proof. The main idea has been already introduced in the proof of Lemma
3.4.6. We only need to obtain a uniform C0,α(Rn)-estimate on the linearized
coefficients aδij and bδk; recall all the notations used in Lemma 3.4.6. Here we
only present the proof for aδij, since that of bδk follows the same argument.

By the estimate (3.31), we have that for any t ∈ [0, 1],
wwN δ

t

ww
L∞(Rn)

≤
CL + L. Hence, we deduce from the condition (F3) that

wwaδijwwL∞(Rn)
≤

σ(CL + L + 1). Again by (3.31), for any y1, y2 ∈ Q1,
wwN δ

t (y1)−N δ
t (y2)

ww ≤
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CL|y1− y2|α. Thus, the periodicity of aδij yields that [aδij]C0,α(Rn) ≤ C̃L, where

C̃L = σ(CL +L+ 1)(CL + 1). Summing up we get that
wwaδijwwC0,α(Rn)

≤ 2C̃L.

It is also easy to see that
wwδvδww

C0,α(Rn)
≤ 6c0σ(1 + L). Therefore, we

may apply the interior Schauder estimate to (3.36) in a ball B√n containing
a periodic cube to get the conclusion, as in Lemma 3.3.3 and 3.3.4.

As a corollary, we obtain the same Lipschitz continuity of w(y; ·, ·) in
(M,x)-variable which is uniform in the C2,α(Rn)-norm.

Lemma 3.4.14. For each L > 0 and (M,x), (M ′, x′) ∈ B̄L × Ω̄, there holds

‖w(·;M ′, x′)− w(·;M,x)‖C2,α(Rn) ≤ CL(‖M ′ −M‖+ |x′ − x|).

Proof. Apply the uniform convergence (Lemma 3.4.7) to get

‖w(·;M ′, x′)− w(·;M,x)‖C2(Rn) ≤ CL(‖M ′ −M‖+ |x′ − x|).

Then use the uniform boundedness of C2,α(Rn)-norm of w(·;M ′, x′)−w(·;M,x)
(Lemma 3.4.2) and the compactness embedding to improve this inequality
to C2,α(Rn)-norm.

In the subsequent two lemmas, we show that F̄ and w(y; ·, ·) are differen-
tiable and further that the partial derivatives are locally Lipschitz continuous
on Sn× Ω̄. The former is done by linearizing the equation (3.33). In order to
get the latter, however, we need to begin our argument from the linearized
equation (3.36).

Lemma 3.4.15. There exist F̄pkl , F̄xk , Dpklw(y; ·, ·) and Dxkw(y; ·, ·) for each
y ∈ Rn on Sn×Ω̄. In addition, there hold for any L > 0 and (M,x) ∈ B̄L×Ω̄,

|F̄pkl(M,x)|+ |F̄xk(M,x)|
+ ‖Dpklw(·;M,x)‖C2,α(Rn) + ‖Dxkw(·;M,x)‖C2,α(Rn)

≤ CL.

(3.40)

Proof. Here we only provide the proof for the M -partial derivatives of F̄ and
w(y; ·, ·). The argument for the x-partial derivatives is similar so we omit it
to avoid the redundancy.
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Pick any L > 0 and (M,x) ∈ B̄L × Ω̄. By vh we denote h−1[w(·;M +
hEkl, x)−w(·;M,x)]. As we linearize the equation (3.33) with M +hEkl and
M , and divide the both sides by h, we observe that vh satisfies

aij,hDijvh + akl,h = γh (3.41)

where aij,h :=
∫ 1

0
Fpij(Nt,h, x, ·)dt, γh := h−1[F̄ (M + hEkl, x)− F̄ (M,x)] and

Nt,h := tD2
yw(·;M + hEkl, x) + (1− t)D2

yw(·;M,x) +M + thEkl.
By following the argument in the proof of Lemma 3.4.13, we observe that

for any h with |h| small, aij,h is also uniformly elliptic with the ellipticity
constants λ and Λ, and belongs to C0,α(Rn) with ‖aij,h‖C0,α(Rn) ≤ cL. Also

we know from Lemma 3.4.8 that |γh| ≤ c̃L.
Therefore, the linearized equation (3.41) belongs to the same class of

(3.9). Even though the coefficients of (3.41) vary with respect to the pa-
rameter h, the proof of Lemma 3.3.2 is still applicable because we have a
uniform convergence of aij,h as h → 0; indeed, Lemma 3.4.14 implies that
aij,h → aij := Fpij(D

2
yw(·;M,x) +M,x, ·) uniformly in Rn as h→ 0. Conse-

quently, there exist a unique constant γ and a bounded 1-periodic function
v ∈ C2,α(Rn) such that

|γh − γ|+ ‖vh − v‖C2(Rn) → 0

as h→ 0 and that v satisfies

aijDijv + akl = γ in Rn. (3.42)

By the convergence above, γ = F̄pkl(M,x) and v = Dpklw(·;M,x). One
should notice that we do not force v(0) to be 0 here; otherwise, we could not
say that v = Dpklw(·;M,x). The uniform estimate (3.40) now follows from
Lemma 3.4.8 and 3.4.14.

Lemma 3.4.16. F̄pkl, F̄xk , Dpklw(y; ·, ·) and Dxkw(y; ·, ·) are Lipschitz con-
tinuous locally in Sn and globally in Ω̄. Moreover, the Lipschitz continuity of
the latter two is uniform y ∈ Rn.

Proof. Here we only present the proof for the M -partial derivatives. The
proof for the x-partial derivatives is the same, and we leave it to the reader.

Substituting M ′ [resp., x′] with M +hEkl [resp., x] in the equation (3.36)
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and dividing by h the both sides, one obtains

aδij,hDijv
δ
h + aδkl,h − δvδh = 0 in Rn,

where aδij,h :=
∫ 1

0
Fpij(N

δ
t,h, x, ·)dt, vδh := h−1[wδ(·;M + hEkl, x)−wδ(·;M,x)]

and N δ
t,h := tD2

yw
δ(·;M + hEkl, x) + (1− t)D2

yw
δ(·;M,x) +M + thEkl.

By Lemma 3.4.13, we have
wwvδhwwC2,α(Rn)

≤ CL for any 0 < |h| < 1

and δ > 0. Then the Arzela-Ascoli theorem yields that for each δ > 0,
there is a bounded 1-periodic vδ ∈ C2,α(Rn) such that vδh → vδ in C2(Rn)
along a subsequence of h. Moreover, this lemma implies that aδij,h → aδij :=

Fpij(D
2
yw

δ(·;M,x) + M,x, ·) uniformly in Rn as h → 0. Since aδij is also
uniformly elliptic with the same ellipticity constants λ and Λ, the stability
of the viscosity solutions (c.f. the proof of Lemma 3.3.2) then ensures that
the limit function vδ solves

aδijDijv
δ + aδkl − δvδ = 0 in Rn. (3.43)

Due to the uniqueness of the solution of (3.43) (c.f. Lemma 3.3.3), we now
know that vδh → vδ in C2(Rn) as h→ 0; i.e., the convergence is valid for the
full sequence of h.

From now on we write aδij = aδij(·;M,x) [resp., vδ = vδ(·;M,x)] to spec-
ify the dependency on (M,x). We claim that the equation (3.43) is a δ-
penalization of the equation (3.42); i.e., the limit of the normalized function
ṽδ(·;M,x) := vδ(·;M,x)−vδ(0;M,x) solves the equation (3.42). It is enough
to prove that aδij(·;M,x) → aij(·;M,x) = Fpij(D

2
yw(·;M,x) + M,x, ·) uni-

formly in Rn as δ → 0, since then the rest of the proof follows the lines of
Lemma 3.4.2. However, by Lemma 3.4.7 and 3.4.13, we have

lim
(δ,h)→(0+,0)

sup
(M,x)∈B̄L×Ω̄

wwaδij,h(·;M,x)− aij(·;M,x)
ww
L∞(Rn)

= 0,

which gives the desired convergence.
Next we claim that for each L > 0, aδij(y; ·, ·) is Lipschitz continuous in

B̄L × Ω̄ uniformly for y ∈ Rn and δ ∈ (0, 1). If so, then we arrive at our
conclusion by applying Lemma 3.4.6, since the equations (3.43) and (3.27)
are in the same class.

To see this, choose any L > 0 and (N, z), (N ′, z′) ∈ B̄L × Ω̄. According
to (3.31), the C2,α(Rn)-norm of both wδ(·;N, z) and wδ(·;N ′, z′) is uniformly
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bounded by CL. Thus, the structure condition (F3) together with (3.39)
yields thatwwaδij(·;N, z)− aδij(·;N ′, z′)wwL∞(Rn)

≤ C̃L(‖N −N ′‖+ |z − z′|),

where C̃L = CLσ(1 + CL), which proves the claim.

Remark 3.4.17. Note that the limit of the normalized function ṽδ(·;M,x)
may not be equal to Dpklw(·;M,x), since we cannot assure that Dpklw(0;M,x) =
0. In fact, those two functions differ by an additive constant. It is the main
reason why we do not use the δ-penalization argument to derive Lemma
3.4.15, although the proofs are essentially the same.

We are now in position to present the proof of our main proposition of
this subsection.

Proof of Proposition 3.4.11. Observe from Lemma 3.4.16 the first order par-
tial derivatives of F̄ and w(y; ·, ·) satisfies the equations (e.g., (3.42)) which
belong to the same class of (3.26), and admit the δ-approximating problems
(e.g., (3.43)) which correspond to (3.27). Thus, we can repeat the argument
used through Lemma 3.4.13-3.4.16 again to get the Lipschitz continuity of
the second order partial derivatives of F̄ and w(y; ·, ·). We iterate this process
by m-times to reach the conclusion. We leave the details to the reader.

3.4.3 Interior and Boundary Layer Correctors

Now we are in position to construct higher order correctors which correct
the error occurring in the interior and on the boundary layer of our physical
domain Ω. This subsection involves many iterative arguments, so before we
make our argument rigorous, we would like to provide the key idea.

First and foremost, we emphasize that the asymptotic expansion of uε

occurs inside of the operator F , which differs from the linear case. That is,
if ηεr := u +

∑r
k=1 ε

kwk(ε
−1x, x) is our expansion, then after a computation

we get

F
(
D2ηεr , x,

x

ε

)
= F

(
X0 + εY r,

x

ε
, x
)
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where

Xk =


D2
xu(·) +D2

yw2(·/ε, ·) if k = 0

D2
xwk(·/ε, ·) +Dx,ywk+1(·/ε, ·) +D2

ywk+2(·/ε, ·) if 1 ≤ k ≤ r − 2,

D2
xwr−1(·/ε, ·) +Dx,ywr(·/ε, ·) if k = r − 1,

D2
xwr(·/ε, ·) if k = r,

(3.44)
and Y r defined by

Y r = X1 + εX2 + · · ·+ εr−1Xr. (3.45)

Here we have denotedDxDy+DyDx byDx,y. To further simplify our notation,
let us drop the dependency of (ε−1x, x). Then a Taylor expansion of F with
respect to the Hessian gives,

F (X0 + εY r) = F (X0) + εFpij(X
0)Y r

ij + · · ·+ εr

r!
Fpi1j1 ...pirjr (X

0)Y r
i1j1
· · ·Y r

irjr

+O(εr+1),

which would be valid provided that ‖Y r‖L∞(Ω) ≤ C with a positive constant
independent of ε. This in turn requires us to have a uniform control (i.e.,
independent of ε) on the supremum norm of second order derivatives of wk
in both x and y-variables.

Moreover, one should note that Y r =
∑r

k=1 ε
k−1Xk is a summation of

the terms of different ε-order. For this reason we rearrange the terms in the
Taylor expansion according to the ε-power as below.

F (X0 + εY r) = F (X0) + εFpij(X
0)X1

ij + · · ·

+ εr
r∑
l=1

1

l!

∑
n1+···+nl=r

Fpi1j1 ...piljl (X
0)Xn1

i1j1
· · ·Xnl

iljl

+
r∑
l=1

∑
r+1≤n1+···+nl≤rl

εn1+···+nl

l!
Fpi1j1 ...piljl (X

0)Xn1
i1j1
· · ·Xnl

iljl

+O(εr+1).

(3.46)

It suggests us to find w1, . . . , wr in such a way that F (X0) = 0, Fpij(X
0)X1

ij =

39



CHAPTER 3. EQUATIONS IN NON-DIVERGENCE FORM

0, and so on.
To satisfy F (X0) = 0, w2 must be chosen such thatD2

yw2 = D2
yw(·;D2

xu, x).
Then F (X0) = F̄ (D2

xu) = 0 by Lemma 3.4.10. Furthermore, one should ob-
tain, for k = 1, . . . , r − 2,

0 =
k∑
l=1

1

l!

∑
n1+···+nl=k

Fpi1j1 ...piljl (X
0)Xn1

i1j1
· · ·Xnl

iljl

= Fpij(X
0)Xk

ij +
k∑
l=2

1

l!

∑
n1+···+nl=k

Fpi1j1 ...piljl (X
0)Xn1

i1j1
· · ·Xnl

iljl

= Fpij(X
0)Dyiyjwk+2 + Φk+2,

(3.47)

which yields the equation for wk, where

Φk+2 = Fpij(X
0)Dxixjwk + 2Fpij(X

0)Dxiyjwk+1

+
k∑
l=2

1

l!

∑
n1+···+nl=k

Fpi1j1 ...piljl (X
0)Xn1

i1j1
· · ·Xnl

iljl
.

Notice that the summation on the right hand side involves X l for l ≤ k − 1
only; in other words, the term Φk+2 has nothing to do with the functions wr
with r ≥ k + 2. Thus, we are able to obtain wk+2 by solving the equation
(3.47) as long as Φk+2 satisfies certain inductive hypotheses. On the other
hand, since wk+2 makes the εk-th order term in (3.46) to vanish, there is
no opportunity to kill the εr−1 and εr-th order terms; recall that the same
situation has happened in the linear setting. This in turn suggests that we
can have at most

F (X0 + εY r) = O(εr−1),

which would lead us to O(εr−1)-rate of convergence (Theorem 3.1.2). Finally
we make a remark that as in the linear case, we would come up with the
compatibility condition of wk+2, which determines uniquely wk. Unlike the
linear case (Lemma 3.3.7), however, this relationship is more hidden in the
induction argument. We will discuss this issue in the proof in more detail.

Now we make our argument rigorous. Throughout this subsection we set
m ≥ 2. First we enhance the regularity of u, since now we have F̄ ∈ Cm,1.

Lemma 3.4.18. Assume that F verifies the hypotheses (F1)-(F4). Then
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u ∈ Cm+2,α(Ω̄) and
‖u‖Cm+2,α(Ω̄) ≤ Cm,g,Ω.

Proof. By Proposition 3.4.11 we know that F is C1,1 locally in Sn and glob-
ally in Ω̄. Since u solves (3.4) where g ∈ Cm+2,1(Ω̄) and ∂Ω ∈ Cm+2,1, the
regularity theory (Theorem 2.2.7) implies that u ∈ Cm+2,α(Ω̄) and

‖u‖Cm+2,α(Ω̄) ≤ CF̄,Ω(‖u‖L∞(Ω) + ‖g‖Cm+2,1(Ω̄),

where CF̄,Ω is a constant depending only on the derivatives of F̄ up to m-th
order, and on Ω. By (3.37), CF̄,Ω in turn depends only on the constants ap-
pearing in the structure conditions (F1)-(F4) and m. By an a priori estimate,
on the other hand, we may bound the supremum norm of u by a constant
depending only on λ,Λ,Ω and ‖g‖L∞(Ω). It completes the proof.

Next we construct the interior higher order correctors. The regularity
theory established in Subsection 3.4.2 now plays an essential role in proving
the existence of the correctors and obtaining a uniform control on L∞-bound
of their second order derivatives.

Lemma 3.4.19. Suppose m ≥ 2. Then there exist a family of non-trivial
1-periodic functions {wk : Rn × Ω̄ → R}1≤k≤[m

2
]+1 for which the following

holds.

(i) wk(·, x) ∈ C2,α(Rn) uniformly for all x ∈ Ω̄ and ‖wk(·, x)‖C2,α(Rn) ≤
Cm,k,g,Ω.

(ii) wk(y, ·) ∈ Cm−2k+2,1(Ω̄) uniformly for all y ∈ Rn and

‖wk(y, ·)‖Cm−2k+2,1(Ω̄) ≤ Cm,k,g,Ω.

Moreover, there holds for any x1, x2 ∈ Ω̄ that

m−2k+1∑
l=0

wwDl
xwk(·, x1)−Dl

xwk(·, x2)
ww
C2,α(Rn)

≤ Cm,k,g,Ω|x1 − x2|.

(iii) Provided that k ≥ 3, for each x ∈ Ω̄, wk(·, x) solves

aij(·, x)Dyiyjwk(·, x) + Φk(·, x) = 0 in Rn, (3.48)
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where

Φk = aijDxixjwk−2 + 2aijDxiyjwk−1

+
k−2∑
l=2

1

l!

∑
n1+···+nl=k−2

ai1j1...iljlX
n1
i1j1
· · ·Xnl

iljl
,

Xnr
irjr

= Dxirxjr
wnr + 2Dxiryjr

wnr+1 +Dyiryjr
wnr+2, r = 1, . . . , l,

ai1j1...iljl = Fpi1j1 ...piljl (D
2
xu+D2

yw(·;D2
xu, ·), ·, ·), l = 1, . . . , k − 2.

Proof. We are going to use an induction argument to construct {wk}1≤k≤[m
2

]+1

as well as families of functions {ψk : Ω̄→ R}−1≤k≤[m
2

]+1 and {φk : Rn × Ω̄→
R}1≤k≤[m

2
]+1, which verify the following conditions:

(IP1) φk(·, x) ∈ C2,α(Rn) uniformly for all x ∈ Ω̄ and ‖φk(·, x)‖C2,α(Rn) ≤
Cm,k,g,Ω.

(IP2) φk(y, ·) ∈ Cm−2k+4,1(Ω̄) uniformly for y ∈ Rn and ‖φk(y, ·)‖Cm−2k+4,1(Ω̄) ≤
C̃m,k,g,Ω. Moreover, φk(0, ·) = 0 in Ω̄ and there holds for any x1, x2 ∈ Ω̄
that

m−2k+3∑
l=0

wwDl
xφk(·, x1)−Dl

xφk(·, x2)
ww
C2,α(Rn)

≤ C̃m,k,g,Ω|x1 − x2|.

(IP3) ψk ∈ Cm−2k+2,1(Ω̄) satisfying ‖ψk‖Cm−2k+2,1(Ω̄) ≤ C̄m,k,g,Ω.

It will turn out at the end that as we define

wk(y, x) = φk(y, x) + χij(y, x)Dxixjψk−2(x) + ψk(x), (3.49)

where χij(y, x) := Dpijw(y;D2
xu, x), {wk}1≤k≤[m

2
]+1 satisfies Lemma 3.4.19.

Let us make a few remarks on the function χij(y, x), which has the partic-
ular importance in this proof. First we observe from Proposition 3.4.11 and
Lemma 3.4.18 that χij(·, x) ∈ C2,α(Rn) for all x ∈ Ω̄ and ‖χij(·, x)‖C2,α(Rn) ≤
C

(1)
m,g,Ω. In addition, χij(y, ·) ∈ Cm−1,1(Ω̄) uniformly for y ∈ Rn andwwχij(y, ·)ww

Cm−1,1(Ω̄)
≤ C

(2)
m,g,Ω,
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and, in particular for x1, x2 ∈ Ω̄, there holds

m−2∑
l=0

wwDl
xχ

ij(·, x1)−Dl
xχ

ij(·, x2)
ww
C2,α(Rn)

≤ C
(2)
m,g,Ω|x1 − x2|.

It is noteworthy to see that, in view of the equation (3.42), χij(·, x) solves

ars(·, x)Dyrysχ
ij(·, x) + aij(·, x) = āij(x) in Rn,

where āij(x) = F̄pij(D
2
xu, x) ∈ Cm−1,1(Ω̄) whose Cm−1,1(Ω̄)-norm is bounded

above by C
(2)
m,g,Ω.

Let us now begin our induction argument. As the first step, we define
ψ−1(x) = ψ0(x) = ψ[m

2
](x) = ψ[m

2
]+1(x) ≡ 0 on Ω̄ and φ1(y, x) ≡ 0, φ2(y, x) =

w(y;D2
xu, x) on Rn × Ω̄. If m = 2 or 3, then w1(y, x) = 0 and w2(y, x) =

w(y;D2
xu, x), as we define them according to (3.49). The assertions (i) and

(ii) of Lemma 3.4.19 are then immediate from Lemma 3.4.2 and Proposition
3.4.11. Since we have k ≤ 2 when m = 2 or 3, the assertion (iii) can be
dismissed. Thus, Lemma 3.4.19 is proved for the case m = 2 and 3.

Now we consider the case when m ≥ 4. One can easily see that φ1 and φ2

[resp., ψ−1, ψ0, ψ[m
2

] and ψ[m
2

]+1] chosen in the first step still verify (IP1)-(IP2)
[resp., (IP3)].

In order to run the induction argument, we choose 3 ≤ k ≤ [m
2

] + 1 and
suppose that we have already found the families {ψl−2}1≤l≤k−1, {φl}1≤l≤k−1

and {wl}1≤l≤k−1 which satisfy (IP1)-(IP3) and Lemma 3.4.19 respectively.
We then define Φ̃k : Rn × Ω̄→ R by

Φ̃k = aijDxixj(φk−2 + χabDxaxbψk−4) + 2aijDxiyj(φk−1 + χabDxaxbψk−3)

+
k−2∑
l=2

1

l!

∑
n1+···+nl=k−2

ai1j1...iljlX
n1
i1j1
· · ·Xnl

iljl
.

One may notice that Φ̃k does not involve the functions ψr−2 and φr for r ≥ k.
Consider the following problem: For each x ∈ Ω̄, there exists a unique

constant Ψk−2(x) such that the following PDE,

aij(·, x)Dyiyjv + Φ̃k(·, x) = Ψk−2(x) in Rn, (3.50)

attains a bounded 1-periodic solution v. Note that aij(·, x) is uniformly ellip-
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tic with the ellipticity constants λ and Λ. Moreover, ai1j1...iljl(·, x) is 1-periodic
and belongs to Cm−l,1(Rn) whose Cm−l,1(Rn)-norm is bounded above by a
constant Km,l,g,Ω. This fact together with our induction hypotheses, (IP1)-
(IP3) and Lemma 3.4.19 (i) and (ii), yields that Φ̃k(·, x) ∈ C0,α(Rn) where its
C0,α(Rn)-norm is bounded above by a constant K̃m,k,g,Ω. Therefore, Lemma
3.3.2 yields that the PDE (3.50) is solvable with a C2,α(Rn)-solution, and de-
note it by φk(·, x). In particular, let us choose φk(·, x) such that φk(0, x) = 0.
Since the domain Ω is bounded, φk(·, x) ∈ C2,α(Rn) uniformly for x ∈ Ω̄ and
‖φk(·, x)‖C2,α(Rn) ≤ Cm,k.g,Ω. Therefore, φk verifies (IP1).

To know the regularity of φk in x-variable, we utilize Proposition 3.4.11.
We know that ai1j1...imjm(y, ·) ∈ Cm−l,1(Ω̄) and its Cm−l,1(Ω̄)-norm is bounded
above by Lm,k,g,Ω. Then again by using our induction hypotheses, we ob-
tain Φ̃k(y, ·) ∈ Cm−2k+4,1(Ω̄) whose Cm−2k+4,1(Ω̄)-norm is bounded above by
L̃m,k,g,Ω. Thus, Proposition 3.4.11 implies that both Ψk−2 and φk(y, ·) belong
to Cm−2k+4,1(Ω̄) with the estimate that

max{‖Ψk−2‖Cm−2k+4,1(Ω̄) , ‖φk(y, ·)‖Cm−2k+4,1(Ω̄)} ≤ C̃m,k,g,Ω.

In particular, we obtain for any x1, x2 ∈ Ω̄ that

m−2k+3∑
i=0

wwDi
xφk(·, x1)−Di

xφk(·, x2)
ww
C2,α(Rn)

≤ C̃m,k,g,Ω|x1 − x2|.

Hence, φk satisfies (IP2) as well.
Moreover, we choose the function ψk−2 : Ω̄→ R by the solution of{

āijDxixjψk−2 = −Ψk−2 in Ω,

ψk−2 = 0 on ∂Ω.
(3.51)

Recall from Lemma 3.4.9 that āij is uniformly elliptic in Ω̄ with the ellip-
ticity constants λ and Λ. Also Proposition 3.4.11 implies that āij ∈ Cm−1,1(Ω̄)
whose Cm−1,1(Ω̄)-norm is bounded above by Cm,g,Ω. Since Ψk−2 ∈ Cm−2k+4,1(Ω̄),
there exists a unique solution ψk−2 ∈ Cm−2k+6,1(Ω̄) of (3.51) and

‖ψk−2‖Cm−2k+6,1(Ω̄) ≤ C‖āij‖Cm−1,1(Ω̄),Ω
(‖ψ‖L∞(Ω) + ‖Ψ‖Cm−2,1(Ω̄)) ≤ C̄m,k−2,g,Ω.

Thus, ψk−2 satisfies the induction hypothesis (IP3).
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Define vk : Rn × Ω̄→ R by

vk(y, x) := φk(y, x) + χij(y, x)Dxixjψk−2(x).

It then follows from the observations above that vk(·, x) ∈ C2,α(Rn) with the
estimate ‖vk(·, x)‖C2,α(Rn) ≤ Am,k,g,Ω and that vk(y, ·) ∈ Cm−2k+2,1(Ω̄) with
the estimate

‖vk(y, ·)‖Cm−2k+2,1(Ω̄) ≤ Ãm,k,g,Ω.

Furthermore, we have for any pair of x1, x2 ∈ Ω̄ that

m−2k+1∑
i=0

wwDi
xvk(·, x1)−Di

xvk(·, x2)
ww
C2,α(Rn)

≤ Ãm,k,g,Ω|x1 − x2|.

One may also check that Am,k,g,Ω = Cm,k,g,Ω +C
(1)
m,g,ΩC̄m,k−2,g,Ω and Ãm,k,g,Ω =

C̃m,k,g,Ω+C
(2)
m,g,ΩC̄m,k−2,g,Ω. Moreover, we combine (3.50) and (3.51) and obtain

that

aij(·, x)Dyiyjvk(·, x) + Φk(·, x)

= aij(·, x)Dyiyjφk(·, x) + Φ̃k(·, x)+

+ [ars(·, x)Dyrysχ
ij(·, x) + aij(·, x)]Dxixjψk−2(x)

= Ψk−2(x) + ĀijDxixjψk−2(x)

= 0 in Rn.

Hence, vk satisfies Lemma 3.4.19.
We have obtained so far ψk−2, φk and vk which satisfy (IP1)-(IP3) and

Lemma 3.4.19 respectively. Now we apply the same argument above using

ˆ̃Φk+1 = aijDxixj(φk−1 + χabDxaxbψk−3) + 2aijDxiyj(φk + χabDxaxbψk−2)

+
k−1∑
l=2

1

l!

∑
n1+···+nl=k−1

ai1j1...iljlX̂
n1
i1j1
· · · X̂nl

iljl
,

where X̂ l
irjr = X l

irjr for 1 ≤ l ≤ k−3 and X̂k−2
irjr

= Dxirxjr
wk−2+2Dxiryjr

wk−1+
Dyiryjr

vk. Then we obtain ψk−1, φk+1 and vk+1 which satisfy (IP1)-(IP3) and

45



CHAPTER 3. EQUATIONS IN NON-DIVERGENCE FORM

Lemma 3.4.19 respectively. Applying the same argument once again using

ˆ̃Φk+2 = aijDxixj(φk + χabDxaxbψk−2) + 2aijDxiyj(φk+1 + χabDxaxbψk−1)

+
k∑
l=2

1

l!

∑
n1+···+nl=k

ai1j1...iljlX̂
n1
i1j1
· · · X̂nl

iljl
,

where X̂ l
irjr = X l

irjr for 1 ≤ l ≤ k − 3, X̂k−2
irjr

= Dxirxjr
wk−2 + 2Dxiryjr

wk−1 +

Dyiryjr
vk and X̂k−1

irjr
= Dxirxjr

wk−1 + 2Dxiryjr
vk +Dyiryjr

vk+1, we get ψk, φk+2

and vk+2 satisfying (IP1)-(IP3) and Lemma 3.4.19 respectively.
Now let us define wk as in (3.49); i.e., wk(y, x) = vk(y, x) + ψk(x). Then

wk satisfies Lemma 3.4.19; in particular, the estimates are satisfied with the
constant max{Am,k,g,Ω + Ãm,k,g,Ω}+ C̄m,k,g,Ω. In addition, one can check that

ˆ̃Φk+1 = aijDxixj(φk−1 + χabDxaxbψk−3) + 2aijDxiyj(φk + χabDxaxbψk−2)

+
k−1∑
l=2

1

l!

∑
n1+···+nl=k−1

ai1j1...iljlX
n1
i1j1
· · ·Xnl

iljl

=: Φ̃k+1,

which implies that the functions ψk−1 and φk+1 are not changed by replacing
vk by wk in the induction argument. Therefore, our induction argument runs
through k = 3, · · · , [m

2
]+1, by which we obtain the families {ψk−2}1≤k≤[m

2
]+1,

{φk}1≤k≤[m
2

]+1 and {wk}1≤k≤[m
2

]+1, where w[m
2

] = v[m
2

] and w[m
2

]+1 = v[m
2

]+1.
Recall that we have chosen ψ[m

2
] = ψ[m

2
]+1 ≡ 0. Thus, we have constructed all

the desired families {ψk}−1≤k≤[m
2

]+1, {φk}1≤k≤[m
2

]+1 and {wk}1≤k≤[m
2

]+1 which
satisfy (IP1)-(IP3) and Lemma 3.4.19 respectively. It completes our proof.

Remark 3.4.20. As we note in the remark below Proposition 3.4.11, we
see how the coupling effect contribute to the regularity of x 7→ wk(y, x). If
the x and y-variables were decoupled, we would have obtained wk(·, x) ∈
Cm−k+2,1(Ω̄).

To this end we define the k-th order interior corrector wεk of (3.6) for each
1 ≤ k ≤ [m

2
] + 1 and ε > 0 by

wεk(x) = wk

(x
ε
, x
)

(x ∈ Ω̄), (3.52)
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where wk’s are given in accordance with Lemma 3.4.19, and define ηεm : Ω̄→
R by

ηεm = u+ εwε1 + · · ·+ ε[m
2

]+1wε[m
2

]+1.

Now we are in position to introduce the boundary layer corrector. The
underlying idea of seeking the boundary layer corrector is the same as in
the linear case; we correct the boundary oscillation occurred by the inte-
rior correctors by solving the corresponding boundary value problem (c.f.
(3.25)). Due to the nonlinearity of the problem (3.3), however, we cannot
find the boundary layer corrector in an order-wise manner. Instead, we con-
sider a boundary value problem which involves the entire boundary oscillation
caused by the interior correctors; i.e., we solve for each ε > 0 the following
PDE, {

F (D2ηεm +D2θεm, x, ε
−1x) = F (D2ηεm, x, ε

−1x) in Ω,

θεm = −ηεm + g on ∂Ω.
(3.53)

One may notice from Lemma 3.4.19 that ηεm ∈ C2(Ω̄) that the right hand side
of (3.53) is a uniformly continuous function on Ω̄ for each ε > 0. Thus, Per-
ron’s method (e.g., Theorem 2.1.5) ensures the unique existence of a viscosity
solution θεm ∈ C(Ω̄) of (3.53).

3.4.4 Proof of Theorem 3.1.2

We shall now prove our main result concerning the higher order convergence
rates for fully nonlinear equations.

Proof of Theorem 3.1.2. Suppose that m ≥ 4. The first part of the proof
verifies the discussion we made in the beginning of the previous subsection.
Fix ε∗ ∈ (0, 1) and pick any ε > 0. We will skip the calculation if it has
already been done in the previous subsection.

In what follows let us denote by rm the positive integer [m
2

] + 1. We
choose the family {wk}1≤k≤rm from Lemma 3.4.19. Next we define the family
{Xk}1≤k≤rm as in (3.44) and then the function Y rm as in (3.45). By Lemma
3.4.19 (i)-(ii), we have a uniform bound on the matrix norm of Xk, which is
independent of ε, namely,wwXk(·/ε, ·)

ww
L∞(Ω)

≤ Cm,k,g,Ω. (3.54)

47



CHAPTER 3. EQUATIONS IN NON-DIVERGENCE FORM

It is then immediately follows that

sup
0<ε≤ε∗

‖Y rm(·/ε, ·)‖L∞(Ω̄) ≤ (1− ε∗)L∗
1− εrm
1− ε

< L∗ (3.55)

where L∗ = (1− ε∗)−1 max{1, Cm,1,g,Ω, . . . , Cm,rm,g,Ω}.
In the rest of this proof, we set ε ∈ (0, ε∗] to be fixed. We choose any

x ∈ Ω and adopt the Taylor expansion of F (D2ηεm, x, x/ε) with respect to
the M -variable up to (rm− 1)-th order. For brevity, we omit the dependency
on (ε−1x, x). Then, by the choice of our interior correctors wεk, we end up
with

F (D2ηεm) = F (X0 + εY rm)

= F (X0) +
rm−1∑
k=1

εk

k!
Fpi1j1 ...pikjk (X0)Y rm

i1j1
· · ·Y rm

ikjk
+Rε

m

= F (X0) +
rm−1∑
k=1

εk
k∑
l=1

1

l!

∑
n1+···+nl=k

Fpi1j1 ...piljl (X
0)Xn1

i1j1
· · ·Xnl

iljl

+ R̃ε
m

= R̃ε
m,

(3.56)

where

Rε
m =

εrm0
rm!

Fpi1j1 ...pirmirm
(X0)Y rm

i1j1
· · ·Y rm

irmjrm
for some ε0 ∈ [0, ε],

R̃ε
m = Rε

m +
rm−2∑
k=1

∑
rm−1≤n1+···+nk≤rmk

εn1+···+nk

k!
Fpi1j1 ...pikjk (X0)Xn1

i1j1
· · ·Xnk

ikjk
.

One should note that Fpi1j1 ...pikjk (X0) are exactly the coefficients ai1j1...ikjk
appearing in (3.48). Now due to (3.54) and (3.55), we have

|Rε
m| ≤ C̃m,g,ΩL

rm
∗ ε

rm ,

and thus,
|R̃ε

m| ≤ |Rε
m|+ Ĉm,g,ΩL

(rm−2)rm
∗ εrm−1 ≤ C0ε

rm−1.

The second part of this proof is devoted to the establishment of the esti-
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mate (3.7). The essence is to construct barriers and argue by the comparison
principle. Choose R > 0 in such a way that Ω̄ ⊂ BR(0). Consider the func-
tions ηε,±m : Ω̄→ R defined by

ηε,±m = ηεm + θεm ± (2λ)−1C0ε
rm−1(R2 − |x|2) (x ∈ Ω̄).

By the uniform ellipticity of F (structure condition (F2)) and the choice of
the boundary layer corrector (3.53), there holds

F (D2ηε,+m ) ≤ F (D2ηεm +D2θεm)− C0ε
rm−1 = F (D2ηεm)− C0ε

rm−1 ≤ 0

in the viscosity sense, and ηε,+m |∂Ω ≥ ηεm + θεm = g. Thus, ηε,+m is a viscosity
supersolution of (3.3). In a similar manner, one can verify that ηε,−m is a
viscosity subsolution of (3.3). Thus, the comparison principle yields ηε,−m ≤
uε ≤ ηε,+m in Ω̄. It then follows that

‖uε − ηεm − θεm‖L∞(Ω) ≤ (2λ)−1C0ε
rm−1,

which proves (3.7).
The proof for the case m = 2 or 3 shares the same idea presented above,

but is simpler. In this case, ηεm(x) = u(x) + ε2w2(ε−1x, x), and thus, we do
not need the expansion (3.56); instead we can directly argue as in the second
part. The rest of the proof is exactly the same, so is omitted.
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Chapter 4

Higher Order Convergence
Rates in Theory of
Homogenization: Oscillatory
Initial Data

4.1 Introduction

We are interested in higher order convergence rates in periodic homogeniza-
tion of fully nonlinear uniformly parabolic Cauchy problems, accompanied
with rapidly oscillating initial data. We conduct our analysis based on the
theory of viscosity solutions. Readers may consult [20], [50], [51] and [52] for
standard existence and regularity theory of viscosity solutions.

4.1.1 Main Result

The governing problem under our consideration is formulated as
uεt =

1

ε2
F

(
ε2D2uε, x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

uε(x, 0) = g
(
x,
x

ε

)
on Rn,

(4.1)

Our main result is stated as follows.
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Theorem 4.1.1. Assume that F and g verify (4.6) - (4.8) and (4.10) - (4.11)
respectively. Let uε be the bounded viscosity solution to (4.1) for ε > 0. Then
for each integer d ≥ 0, there exist sequences {ṽd,k}∞k=0, {w̃d,k}∞k=0 of spatially

periodic functions on Rn × [0, T ]× Rn × [0,∞) and a sequence {w̃#
d,k}∞k=0 of

periodic functions on Rn × [0, T ]× Rn × R such that for any integer m ≥ 2,
any ε ≤ 1

2
, any x ∈ Rn and 0 ≤ t ≤ T ,∣∣∣∣∣∣uε(x, t)−
bm

2
c−1∑

d=0

m−2d∑
k=0

εk+2d

(
ṽd,k

(
x, t,

x

ε
,
t

ε2

)
+ w̃d,k

(
x, t,

x

ε
,
t

ε2

))∣∣∣∣∣∣
≤ Cmε

m−1,

(4.2)

and in particular for cmε
2| log ε| ≤ t ≤ T ,∣∣∣∣∣∣uε(x, t)−

bm
2
c−1∑

d=0

m−2d∑
k=0

εk+2dw̃#
d,k

(
x, t,

x

ε
,
t

ε2

)∣∣∣∣∣∣ ≤ Cmε
m−1, (4.3)

where cm and Cm depend only on n, λ, Λ, α, m, T and K.

Let us make a few remarks regarding Theorem 4.1.1 as follows.

Remark 4.1.2. In Section 4.4.3, we observe that ṽd,k is of the form

ṽd,k(x, t, y, s) = vd,k(x, t, y, s)− v̄d,k(x, t),

and satisfies an exponential decay estimate in s → ∞. The functions vd,k
and v̄d,k will be called the initial layer corrector and respectively the effective
initial data of order k+2d. The exponential decay estimate amounts to (4.3),
which is the higher order convergence rate (4.3) away from the initial time
zone.

Remark 4.1.3. Moreover, w̃d,k is of the form

w̃d,k(x, t, y, s) = wd,k(x, t, y, s) + ūd,k(x, t),

where wd,k and ūd,k will be called the interior corrector and respectively the
effective limit profile of order k+ 2d. Furthermore, wd,k will be paired with a

space-time-periodic function w#
d,k such that

w̃#
d,k(x, t, y, s) = w#

d,k(x, t, y, s) + ūd,k(x, t).
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Here w#
d,k will play the role of the interior corrector in purely periodic homog-

enization problems. In addition, w̃d,k and w̃#
d,k for k = 0, 1 will turn out to be

constant in the fast variables (y, s), so the interior error estimate (4.3) is of
the form uε − ū0,0 − ū0,1 − ε2w̃0,2 − · · · . This indicates that there is no rapid
oscillation in the interior up to order ε.

Remark 4.1.4. In Theorem 4.1.1 and to the rest of this paper, we assume
that F is concave in its matrix variable. Such an assumption is made to
have C2,α correctors in fast variables (y, s) = (ε−1x, ε−2t), and smooth limit
profiles in slow variables (x, t). These are essential, at least in our approach,
to establish higher order convergence rates, since it requires accurate error
correction at each order of ε.

On the other hand, the interior equation for the effective problem of (4.1)
is a linear equation. However, this does not make the problem easier in the
sense that we have strong nonlinear coupling effect near the initial time layer
when we construct higher order correctors. The particular scaling is used to
derive smooth initial layer correctors in slow variables. We shall discuss more
on this issue later.

4.1.2 Historical Background

Periodic homogenization of (4.1) (or (4.5), to be more exact) is rigorously
justified in [2] and [42]; see also the references therein, and [29] for first
order fully nonlinear equations as well as [3] for iterated homogenization.
There is a wide range of literature on the rate of convergence regarding the
homogenization problems of type (4.1) or (4.5), provided that the initial data
is non-oscillatory; that is, g is independent on its second argument. Recent
development can be found, for instance, in [31], [44] and [15] using continuous
dependence estimates, [28] based on a different approach, and [37], [40] in
stationary ergodic settings; see also the references therein for classical results
in this regard.

Higher order convergence rate in the theory of homogenization has been
studied in various settings. We refer to [12], [33] for divergence type elliptic
equations, [46] for perforated domains with mixed boundary conditions, [18]
for Maxwell equations, [5] for wave equations, [27] for some numerical results,
and also the references therein. Recently, the authors proved in [34] higher
order convergence rate for non-divergence type elliptic equations, based on
the theory of viscosity solutions.
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As far as we know, however, there has not yet been any result on (higher
order) convergence rate in homogenization of (4.1), which is the main concern
of this paper. Here we also achieve higher order convergence rate (in Proposi-
tion 4.5.2) for uniformly parabolic equations with non-oscillatory initial data,
that is, uεt = F

(
D2uε, x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

uε(x, 0) = g(x) on Rn.

(4.4)

Moreover, we achieve a quantitative error estimate (in Proposition 4.5.3) in
the following homogenization problem away from the initial time zone,

uεt = F

(
D2uε, x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

uε(x, 0) = g
(
x,
x

ε

)
on Rn.

(4.5)

The estimate depends on a particular structure on F , which will be specified
later, and in some cases, we obtain the sharp estimate, which is a convergence
rate of order ε.

4.1.3 Heuristic Discussion and Main Difficulties

The main difficulties in achieving higher order convergence rate are due
to the nonlinear structure of (4.1). If our operator were linear, that is,
F (P, x, t, y, s) = tr(A(x, t, y, s)P ), the construction of the higher order cor-
rectors would be independent to each iterative step. However, since we deal
with fully nonlinear operators, the effect coming from the rapid oscillation
of the correctors are accumulated in the Hessian variable as we iterate the
approximation process.

A notable observation here is that the coupling effect due to the non-
linear structure of the governing operator changes the nature of the interior
correctors, if one desires to establish a higher order convergence rate. Let us
remark that the effect coming from the rapid oscillation of the initial layer
corrector does not completely vanish in the interior and even remains to be of
order 1 near the initial time layer, although it eventually becomes very small
as one stays away from the initial time zone. Now that the interior equa-
tion is fully nonlinear, such an effect is recorded in the Hessian variable and
does not go away, resulting a strong correlation between the constructions of
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initial layer correctors and interior correctors. Let us remark that one does
not encounter such a coupling effect in the context of linear equations, since
the linearity lets us to construct initial layer corrector and interior correctors
independently.

In order to resolve this issue, we find a new type of cell problems for higher
order interior correctors, which are only spatially periodic. Still we observe
that each interior corrector is paired with a space-time-periodic corrector, i.e.,
the standard one, and the difference between these two turns out to decay
exponentially fast in time. This allows us to iterate the approximation scheme
and eventually leads us to a higher order error correction in the interior as
well.

Another interesting observation is the regularity theory in slow variables.
This is especially new for the initial layer corrector and the effective ini-
tial data, where we achieve exponential decay estimates for the difference
between them; let us note that the case of interior corrector is rather a du-
plicate of our previous work [34], which concerns non-divergence type elliptic
equations. The exponential decay estimate regarding initial layer corrector is
deduced from the Harnack inequality for viscosity solutions, and can be con-
sidered classical if one thinks of linear elliptic equations on spatially periodic
domain. One may also find some variations in this regard in several other
places. For example, see [31], [15] for continuous dependence estimates, and
[1] for elliptic boundary correctors. The novelty here is that we establish the
exponential decay estimate for the derivatives of any order, which is certainly
not precedented.

Let us make the final remark on homogenization of (4.5). The key dif-
ference in the homogenization process between (4.1) and (4.5) is that the
initial layer corrector of the latter problem may not be differentiable in the
slow variables in general, while the former produces smooth initial layer cor-
rectors. The main reason for such a distinction is that the operator of (4.1)
oscillates in accordance with the oscillation of the initial data, which stabi-
lizes the influence of the fully nonlinearity of the operator near the initial time
layer to a controllable level. This ensures the base-case initial layer corrector
(and the base-case effective initial data) to be smooth enough in the slow
variables to induce higher order ones. However, the operator of (4.5) makes
too much impact on the oscillation of the solution near the initial layer and,
as a result, defects the regularity of the base-case initial layer corrector in a
substantial way.

We observe that the higher order convergence rate in the framework of
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(4.5) is a highly sophisticated matter that requires a thorough analysis on the
limiting behavior of the sequence {ε2F ( 1

ε2
P, x, t, y, s)}ε>0 as ε→ 0. Instead,

we prove the convergence rate for certain uniformly parabolic operators F
and initial data g. We observe that the convergence rate is determined by
that of the sequence {ε2F ( 1

ε2
P, x, t, y, s)}ε>0 to its limit operator, if any; and

if the speed of the latter convergence is fast enough, we obtain the optimal
rate of convergence for uε to its limit profile, away from the initial time layer
by the order of ε2| log ε|.

4.1.4 Outline

This paper is organized as follows. In Section 4.2, we introduce the notations
and the standing assumptions that will be used throughout this paper, unless
stated otherwise. In Section 4.3, we establish the regularity theory in the slow
variables and, in Section 4.4, we construct higher order initial layer correctors
and interior correctors. Especially, our main result, Theorem 4.1.1, is proved
in Section 4.4.3. Section 4.5 is devoted to proving some additional results,
namely the higher order convergence rate in homogenization of (4.4), and the
convergence rate in homogenization of (4.5).

4.2 Notation and Standing Assumptions

Let n ≥ 1 be the spatial dimension and T > 0 be the terminal time. We will
call x (resp., t, y, and s) the slow spatial (resp., slow temporal, fast spatial,
and fast temporal) variable.

By Sn we denote the space of all real symmetric matrices of order n,
endowed with (L2, L2)-norm; that is, |P | = (

∑n
i,j=1 p

2
ij)

1/2 for any P ∈ Sn.

By Eij = (eijKL1) we will denote the (i, j)-th standard basis matrix for Sn
that is eijKL1 = 2−1(δikδjl + δilδjk) with δ being the Kronecker delta. By tr(P )
we denote the trace of P .

Let F be a smooth functional on Sn. By ∂F
∂pij

(P ) we denote the derivative

of F in direction Eij at P . By Dk
pF we denote the k-th order derivative of F

on Sn such that

Dk
pF (P ) =

(
∂kF

∂pi1j1 · · · ∂piljl · · · ∂pikjk
(P )

)
=

(
∂kF

∂pi1j1 · · · ∂pjlil · · · ∂pikjk
(P )

)
.
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For notational convenience, we also understand Dk
pF in the sense of Fréchet

derivatives. That is, for each P ∈ Sn, we consider Dk
pF (P ) as the (symmetric)

multilinear map from (Sn)k to R such that

Dk
pF (P )(Q1, · · · , Qk) =

∂kF

∂pi1j1 · · · ∂pikjk
(P )q1

i1j1
· · · qkikjk ,

for any Ql = (qlij) ∈ Sn with 1 ≤ l ≤ k; here and thereafter we use the
summation convention for repeated indices. In particular, we have

DpF (P )(Q) = tr(DpF (P )Q).

By Ck,α(X) we shall denote the usual Hölder space on X. Especially,
when X = Rn × [0,∞), we shall define Ek,α(Rn × [0,∞); β), with β > 0, by
the subspace of Ck,α(Rn× [0,∞)) consisting of functions f : Rn× [0,∞)→ R
satisfying

‖f‖Ek,α(Rn×[0,∞);β) = ‖f‖Ck,α(Rn×[0,∞)) + sup
s>0

(
eβs ‖f(·, s)‖Ck,α(Rn)

)
≤ C,

for some finite C ≥ 0.
Given a function or a mapping f on X × Y , with X a space of slow

variables and Y a space of fast variables (y, s), f is said to be spatially
periodic, if

f(·, y + k, s) = f(·, y, s), k ∈ Zn,

while f is said to be periodic, if

f(·, y + k, s+ l) = f(·, y, s), k ∈ Zn, l ∈ Z.

Here X may consist of x, (x, t) or (P, x, t).
We will use the parabolic terminologies, such as |(x, t)| = (|x|2 + |t|)1/2.

For more details, we refer to [50]. See [20] for the classical existence theory,
the comparison principle and the stability theory of viscosity solutions. Also
see [50], [51] and [52] for the basic regularity theory for viscosity solutions,
such as the Harnack inequality, and interior and boundary regularity.

Now let us make the standing assumptions throughout this paper. Assume
that F : Sn × Rn × [0, T ] × Rn × R → R is uniformly elliptic, periodic and
concave. By uniform ellipticity and concavity, we indicate that there are

56



CHAPTER 4. CAUCHY PROBLEMS WITH OSCILLATORY INITIAL
DATA

0 < λ ≤ Λ such that

λ|Q| ≤ F (P +Q, x, t, y, s)− F (P, x, t, y, s) ≤ Λ|Q|, Q ∈ Sn, Q ≥ 0, (4.6)

and

1

2
F (P, x, t, y, s) +

1

2
F (Q, x, t, y, s) ≤ F

(
P +Q

2
, x, t, y, s

)
, Q ∈ Sn.

By periodicity we mean that

F (P, x, t, y + k, s+ l) = F (P, x, t, y, s), k ∈ Zn, l ∈ Z. (4.7)

Suppose further that F ∈ C∞(Sn × Rn × [0, T ];Cα(Rn × R)) for some 0 <
α < 1, i.ede is some K > 0 for which∑
|κ|+|µ|+2ν=l

wwDκ
pD

µ
x∂

ν
t F (P, x, t, ·, ·)

ww
Cα(Rn×R)

≤ K|P |(1−|κ|)+ , l ≥ 0. (4.8)

Let us remark that (4.8) implies the zero source term condition,

F (0, x, t, y, s) = 0. (4.9)

On the other hand, let g : Rn×Rn → R be a periodic function, by which
we indicate

g(x, y + k) = g(x, y), k ∈ Zn. (4.10)

Also suppose that g ∈ C∞(Rn;C2,α(Rn)) and∑
|µ|=l

‖Dµ
xg(x, ·)‖C2,α(Rn) ≤ K, l ≥ 0. (4.11)

4.3 Regularity Theory in Slow Variables

Let us establish the regularity theory in slow variables, (x, t), regarding vis-
cosity solutions to uniformly parabolic problems.
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4.3.1 Spatially Periodic Cauchy Problem

Let f : Rn × [0, T ]× Rn × [0,∞)→ R be function satisfying

f(x, t, y + k, s) = f(x, t, y, s), k ∈ Zn, (4.12)

and assume that f ∈ C∞(Rn × [0, T ];Eα(Rn × [0,∞); β)), for some β > 0,
such that

sup
|µ|+2ν=l

‖Dµ
x∂

ν
t f(x, t, ·, ·)‖Eα(Rn×[0,∞);β) ≤ K, l ≥ 0, (4.13)

with 0 < α < 1 and K > 0 being the same constants used in (4.8).
For each (x, t) ∈ Rn×[0, T ], let us consider the following spatially periodic

and uniformly parabolic Cauchy problem,{
vs = F (D2

yv, x, t, y, s) + f(x, t, y, s) in Rn × (0,∞),

v(x, t, y, 0) = g(x, y) on Rn.
(4.14)

By the standard existence theory [20], we know that there exists a unique
viscosity solution v(x, t, ·, ·) ∈ BUC(Rn × [0,∞)) to (4.14). Due to the peri-
odicity of F , f and g, we deduce that v satisfies

v(x, t, y + k, s) = v(x, t, y, s), k ∈ Zn, (4.15)

for any (x, t, y, s) ∈ Rn × [0, T ]× Rn × [0,∞).
We shall begin with an easy observation that the spatial oscillation of

v(x, t, y, s) in y decays exponentially fast as s → ∞. The exponential rate
will turn out to be independent of (x, t).

Lemma 4.3.1. For each (x, t) ∈ Rn × [0, T ], there exists a unique γ ∈ R
such that

eβ0s|v(x, t, y, s)− γ| ≤ C, (4.16)

for any (x, t, y, s) ∈ Rn× [0, T ]×Rn× [0,∞), where 0 < β0 < β depends only
on n, λ, Λ and β, and C > 0 depend only on n, λ, Λ, β, β0 and K.

Proof. Since (x, t) will be fixed throughout the proof, let us write v = v(y, s),
F = F (M, y, s), f = f(y, s) and g = g(y) for notational convenience. By
S(s), I(s) and O(s) let us denote supRn v(·, s), infRn v(·, s) and respectively
oscRn v(·, s). Also write Y = (0, 1)n and 2Y = (0, 2)n. By the spatial peri-
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odicity (4.15) of v, we have S(s) = sup2Y v(·, s) = supY v(·, s), and similar
identities for I(s) and O(s) as well.

Fix s0 ≥ 0. Then

∂s

(
S(s0) +

K

β
(e−βs0 − e−βs)

)
= Ke−βs ≥ f(y, s),

for any y ∈ Rn and s ≥ s0, due to (4.13). Since we have (4.9), we deduce
that S(s0) + K

β
(e−βs0 − e−βs) is a supersolution to (4.14) in Rn × [s0,∞).

Similarly, one can observe that I(s0) − K
β

(e−βs0 − e−βs) is a subsolution to

(4.14) in Rn × [s0,∞). Thus, by the comparison principle [20] for viscosity
solutions, we deduce that

I(s0)− K

β
(e−βs0 − e−βs) ≤ v(y, s) ≤ S(s0) +

K

β
(e−βs0 − e−βs), (4.17)

for any y ∈ Rn and s ≥ s0.
Now for each nonnegative integer k, let us define

vk(y, s) = v(y, s+ k)− I(k) +
K

β
e−βk, y ∈ Rn, s ≥ 0.

From (4.17) with s and s0 replaced by s + k and k respectively, we deduce
that

vk(y, s) ≥ 0, y ∈ Rn, s ≥ 0.

On the other hand, we see that vk is a (spatially periodic) viscosity solution
to

∂svk = F (D2
yvk, y, s+ k) + f(y, s+ k) in 2Y × (0, 1).

Therefore, we may apply the Harnack inequality in Ȳ × [1
2
, 1] and deduce

from the spatial periodicity of vk that

S

(
k +

1

2

)
− I(k) +

K

β
e−βk ≤ c1

(
I(k + 1)− I(k) +

K

β
e−βk

)
,

where c1 depends only on n, λ and Λ. Utilizing (4.17) with s0 = k + 1
2

and
s = k + 1, we obtain that S(k + 1) ≤ S(k + 1

2
) + K

β
e−βk. Combining these
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two inequalities, we arrive at

S(k + 1)− I(k) ≤ c1

(
I(k + 1)− I(k) +

K

β
e−βk

)
. (4.18)

Now we define

wk(y, s) = S(k) +
K

β
e−βk − v(y, s+ k), y ∈ Rn, s ≥ 0.

Then by (4.17) and (4.14), wk is a spatially periodic nonnegative viscosity
solution to

∂swk = −F (−D2
ywk, y, s+ k)− f(y, s+ k) in 2Y × (0, 1).

Notice that the operator −F (−M, y, s) satisfies the same ellipticity condition
(4.6). Hence, we may invoke a similar argument as above and prove that

S(k)− I(k + 1) ≤ c1

(
S(k)− S(k + 1) +

K

β
e−βk

)
. (4.19)

Notice that the constant c1 here is the same as that in (4.18).
By (4.18) and (4.19), we have

O(k + 1) ≤ c1 − 1

c1 + 1
O(k) +

2c1K

(c1 + 1)ν
e−βk. (4.20)

Iterating (4.20) with respect to k and using O(0) = oscRn g ≤ 2K, we arrive
at

eβ0sO(s) ≤ c2K with 0 < β0 < min

(
β, log

c1 + 1

c1 − 1

)
, (4.21)

where c2 > 0 is another constant depending only on n, λ, Λ, β and β0.
The estimate (4.21) implies that O(s) → 0 as s → ∞. On the other

hand, we know from (4.17) that both S(s) and I(s) converge as s → ∞.
Combining these two observations, we deduce that S(s) and I(s) converge to
the same limit, which we shall denote by γ. Then (4.16) follows immediately
from (4.21).

Remark 4.3.2. The proof of Lemma 4.3.1 does not involve the periodicity
of F in s.
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By Lemma 4.3.1, we are able to define v̄ : Rn × [0, T ]→ R by

v̄(x, t) = lim
s→∞

v(x, t, 0, s). (4.22)

The limit value in the right hand side of (4.22) is precisely the unique constant
γ in the statement of Lemma 4.3.1. With v̄ at hand, (4.16) reads

eβ0s|v(x, t, y, s)− v̄(x, t)| ≤ C, (4.23)

for any (x, t, y, s) ∈ Rn × [0, T ]× Rn × [0,∞).
One may notice that the proof of Lemma 4.3.1 does not involve the as-

sumptions on the concavity of F in P , the Cα regularity of F and f in (y, s)
and the C2,α regularity of g in y. Assuming these conditions additionally, we
are allowed to use the interior and boundary C2,ᾱ estimates (the so-called
Schauder theory) for viscosity solutions (with some 0 < ᾱ ≤ α). As a result,
we improve the estimate (4.23) in terms of C2,ᾱ norm.

Lemma 4.3.3. There exists 0 < ᾱ < α, depending only on n, λ, Λ and α,
such that v̄ ∈ L∞(Rn × [0, T ]) and v ∈ L∞(Rn × [0, T ];C2,ᾱ(Rn × [0,∞)))
with

|v̄(x, t)|+ ‖v(x, t, ·, ·)− v̄(x, t)‖E2,ᾱ(Rn×[0,∞);β0) ≤ C, (4.24)

for any (x, t, s) ∈ Rn × [0, T ], where C > 0 depends only on n, λ, Λ, β, β0

and K.

Proof. Let us fix (x, t) ∈ Rn × [0, T ] and simply write F (P, y, s), f(y, s),
g(y), v(y, s), and γ for F (P, x, t, y, s), f(x, t, y, s), g(x, y), v(x, t, y, s) and,
respectively, v̄(x, t). Let us denote by Y and 2Y the cubes (0, 1)n and (0, 2)n.

In view of (4.14), the function ṽ(y, s) = v(y, s)− γ is a viscosity solution
to {

ṽs = F (D2
y ṽ, y, s) + f(y, s) in 2Y × (0,∞),

ṽ(y, 0) = g(y)− γ on 2Y.
(4.25)

Since F is uniformly elliptic and concave in P , and since F and f are Cα

while g is C2,α in (y, s), we may apply the boundary C2,ᾱ estimate [51] to
(4.25) for some 0 < ᾱ ≤ α, depending only on n, λ, Λ and α. This yields
that ṽ ∈ C2,ᾱ(Ȳ × [0, s0]) with

‖ṽ‖C2,ᾱ(Ȳ×[0,s0]) ≤ c1

(
‖ṽ‖L∞(2Y×[0,1)) + ‖f‖Cα(2Y×[0,1)) + ‖g‖C2,α(2Y )

)
,
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where 0 < s0 ≤ 1
2

and c1 > 0 depend only on n, λ, Λ, α and K. Utilizing
(4.16), (4.13) and (4.11) (with m = 0), we derive that

‖ṽ‖C2,ᾱ(Y×[0,s0]) ≤ c2, (4.26)

where c2 > 0 is determined only by n, λ, Λ, α, β, β0 and K.
Now let us fix a nonnegative integer k and define

ṽk(y, s) = ṽ(y, s+ k) (y ∈ Rn, s ≥ 0).

Then from (4.25), we know that ṽk solves

∂sṽk = F (D2
y ṽk, y, s+ k) + f(y, s+ k) in 2Y × (0, 2).

Hence, it follows from the interior C2,ᾱ estimate (with ᾱ being the same as
that in (4.26)) that ṽk ∈ C2,ᾱ(Ȳ × [s0, s0 + 1]) with

‖ṽk‖C2,ᾱ(Ȳ×[s0,s0+1]) ≤ c3

(
‖ṽk‖L∞(2Y×(0,2)) + ‖f‖Cα(2Y×(0,2))

)
,

where c3 > 0 depends only on n, λ, Λ, α and K. Utilizing (4.16) and (4.13)
(with m = 0), we deduce that

‖ṽk‖C2,ᾱ(Ȳ×[s0,s0+1]) ≤ c4e
−β0k, (4.27)

where c4 > 0 is determined only by n, λ, Λ, α, β, β0 and K.
Iterating (4.27) with respect to k and utilizing (4.26) for the initial case

of this iteration argument, we arrive at (4.24).

Let us remark that Lemma 4.3.3 yields the compactness (in (y, s)) of
{v(xi, ti, y, s)}∞i=1 and {ṽ(xi, ti, y, s)}∞i=1 when (xi, ti)→ (x, t). By the stability
theory [20] of viscosity solutions, we obtain that v and ṽ are continuous in
(x, t), stated as below. Let us also point out that the following lemma is a
version of continuous dependence estimates, and we refer to [31], [15] and
other literature for more discussions in this regard.

Lemma 4.3.4. Let ᾱ be the Hölder exponent chosen in Lemma 4.3.3. Then
v̄ ∈ C(Rn× [0, T ]) and v ∈ C(Rn× [0, T ];C2,α̂

loc (Rn× [0,∞))) for any 0 < α̂ <
ᾱ.

Proof. As in the proof of Lemma 4.3.3, we will fix (x, t) ∈ Rn × [0, T ] and
continue with using the simplified notation for F , f , g, v, γ and ṽ. Let us take
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any sequence (xi, ti) → (x, t) as i → ∞. For notational convenience, let us
write Fi(P, y, s) = F (P, xi, ti, y, s), fi(y, s) = f(xi, ti, y, s), gi(y) = g(xi, y),
vi(y, s) = v(xi, ti, y, s), γi = v̄(xi, ti) and ṽi(y, s) = vi(y, s) − γi. By C we
denote a positive constant that depends only on n, λ, Λ, α, β, β0 and K, and
will let it vary from one line to another.

We prove vi → v first. By (4.24) we have

‖vi‖C2,ᾱ(Rn×[0,∞)) ≤ C,

for any i = 1, 2, · · · . Hence, we know from the Arzela-Ascoli theorem that
for any subsequence {wj}∞j=1 of {vi}∞i=1, there exist a further subsequence
{wjk}∞k=1 and a certain function w ∈ C2,ᾱ(Rn× [0,∞)) such that wjk → w in

C2,α̂
loc (Rn × [0,∞)) as k → ∞, for any 0 < α̂ < ᾱ. One may notice that wjk

solves {
∂swjk = Fjk(D

2
ywjk , y, s) + fjk(y, s) in Rn × (0,∞),

wjk(y, 0) = gjk(y) in Rn,

in the viscosity sense. Due to the regularity assumptions (4.8), (4.11) and
(4.13) on F , g and respectively f , we know that Fi → F uniformly on
Sn×Rn×[0,∞), gi → g uniformly on Rn and fi → f uniformly on Rn×[0,∞),
as i → ∞. Hence, letting k → ∞, we observe from the stability theory [20]
that the limit function w also solves{

ws = F (D2
yw, y, s) + f(y, s) in Rn × (0,∞),

w(y, 0) = g(y) on Rn,

in the viscosity sense. However, the above equation is identical with the
equation (4.14). Since v is the unique solution to (4.14), we deduce that
w = v on Rn × [0,∞).

What we have proved so far is that for any subsequence of {vi}∞i=1, there
exists a further subsequence which converges to v. Thus, vi → v as i → ∞
in C2,α̂

loc (Rn × [0,∞)) for any 0 < α̂ < ᾱ.
Now we are left with showing that γi → γ. Due to (4.24), we have

eβ0s ‖ṽi(·, s)‖C2,ᾱ(Rn) ≤ C, (4.28)

for any s ≥ 0, uniformly for all i = 1, 2, · · · . Since ṽi(y, s) = vi(y, s)− γi and
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ṽ(y, s) = v(y, s)− γ, we deduce from (4.28) and (4.24) that

|γi − γ| ≤ 2Ce−β0s + |vi(0, s)− v(0, s)|.

Given any δ > 0, we fix a sufficiently large s0 such that 4Ce−β0s0 ≤ δ, and
correspondingly choose i0 such that 2|vi(0, s0) − v(0, s0)| ≤ δ for all i ≥ i0.
Then we have |γi − γ| ≤ δ for all i ≥ i0, proving that γi → γ as i → ∞.
Thus, the proof is finished.

By Lemma 4.3.4, we are ready to prove the differentiability of v and
v̄ in the slow variables (x, t), and an exponential decay estimate for the
derivatives of v − v̄. Here we use Lemma 4.3.4 to obtain compactness (in
(y, s)) of the difference quotients (in (x, t)) of v. Arguing similarly as in the
proof of Lemma 4.3.4, we deduce that the difference quotients converge to a
single limit, proving the differentiability of v.

Lemma 4.3.5. Let ᾱ be the Hölder exponent chosen in Lemma 4.3.3. Then
there exist Dxk v̄(x, t) and Dxkv(x, t, ·, ·) ∈ C2,ᾱ(Rn × [0,∞)), for any 1 ≤
k ≤ n, such that

|Dxk v̄(x, t)|+ ‖Dxk(v(x, t, ·, ·)− v̄(x, t))‖E2,ᾱ(Rn×[0,∞);β1) ≤ C,

for any (x, t) ∈ Rn × [0, T ], where 0 < β1 < β0 depends only on n, λ, Λ and
β0, and C > 0 depends only on n, λ, Λ, α, β, β0, β1 and K. Moreover, we
have v̄ ∈ C1(Rn × [0, T ]) and v ∈ C1(Rn × [0, T ];C2,α̂

loc (Rn × [0,∞))) for any
0 < α̂ < ᾱ.

Remark 4.3.6. According to the parabolic terminology, C1 regularity in (x, t)
only involves derivatives in x. For more details, see Section 4.2.

Proof of Lemma 4.3.5. Throughout this proof, let us write by C a positive
constant depending only on n, λ, Λ, α, β and K, and allow it to vary from
one line to another. Fix (x, t) ∈ Rn × [0, T ] and 1 ≤ k ≤ n. We shall omit
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the dependence on t for notational convenience. Let us define

Aσ(y, s) =

∫ 1

0

DpF (ρD2
yv(x+ σek, y, s) + (1− ρ)D2

yv(x, y, s), x, y, s)dρ,

Ψσ(y, s) =
F (D2

yv(x+ σek, y, s), x+ σek, y, s)− F (D2
yv(x+ σek, y, s), x, y, s)

σ

+
f(x+ σek, y, s)− f(x, y, s)

σ
,

Gσ(y) =
g(x+ σek, y)− g(x, y)

σ
,

for (y, s) ∈ Rn × [0,∞), and nonzero σ ∈ R.
Clearly, Aσ, Ψσ and Gσ are periodic in y. The ellipticity of Aσ follows

immediately from (4.6). Indeed, Aσ satisfies

λ|Q| ≤ tr(Aσ(y, s)Q) ≤ Λ|Q| (Q ∈ Sn, Q ≥ 0), (4.29)

for any (y, s) ∈ Rn × [0,∞). It should be remarked that the lower and the
upper ellipticity bounds of Aσ are not only independent of σ but also the
same as those of F .

By (4.8) and (4.24), we know that Aσ ∈ C ᾱ(Rn × [0,∞)) and

‖Aσ‖Cᾱ(Rn×[0,∞)) ≤ C. (4.30)

Let us remark here that we need Lipschitz regularity of DpF in P in order
to have (4.30).

Similarly, we may deduce from (4.8), (4.13) and (4.24) that Ψσ ∈ C ᾱ(Rn×
[0,∞)) satisfies

‖Ψσ‖Eᾱ(Rn×[0,∞);β0) ≤ C. (4.31)

On the other hand, it follows directly from (4.11) that G ∈ C2,α(Rn) and

‖Gσ‖C2,α(Rn) ≤ K. (4.32)

Now we define

Vσ(y, s) =
v(x+ σek, y, s)− v(x, y, s)

σ
and Γσ =

v̄(x+ σek)− v̄(x)

σ
,

for (y, s) ∈ Rn × [0,∞) and nonzero σ ∈ R. Linearizing the equation (4.14),
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we see that Vσ is a viscosity solution to{
∂sVσ = tr(Aσ(y, s)D2

yVσ) + Ψσ(y, s) in Rn × (0,∞),

Vσ(y, 0) = Gσ(y) on Rn.
(4.33)

Owing to (4.30) - (4.32), we observe that the equation (4.33) belongs to
the same class of (4.14). Hence, Lemma 4.3.3 is applicable to the problem
(4.33). In particular, the exponent β in the statement of Lemma 4.3.3 is
replaced here by β0. Thus, we obtain some 0 < β1 < β0, depending only on
n, λ, Λ and β0, such that

|Γσ|+ ‖Vσ‖E2,ᾱ(Rn×[0,∞);β1) ≤ C. (4.34)

Now we invoke the compactness argument used in the proof of Lemma
4.3.4. Choose any sequence σi → 0 as i → ∞. Then by (4.34), there exist a
subsequence {τj}∞j=1 of {σi}∞i=1 and a function V ∈ C2,ᾱ(Rn × [0,∞)) such

that Vτj → V in C2,α̂
loc (Rn × [0,∞)) as j →∞, for any 0 < α̂ < ᾱ.

On the other hand, from the regularity assumptions on F and f ((4.8)
and (4.13) respectively) and the continuity of D2

yv(x, t, y, s) in (x, t) (Lemma
4.3.4), we deduce that Aσ → A and Ψσ → Ψ locally uniformly in Rn× [0,∞)
as σ → 0, where

A(y, s) = DpF (D2
yv(x, y, s), x, y, s),

Ψ(y, s) = DxkF (D2
yv(x, y, s), x, y, s) +Dxkf(x, y, s).

It also follows from the regularity assumption (4.11) on g that Gσ → G
uniformly in Rn with

G(y) = Dxkg(x, y).

Hence, it follows from the stability of viscosity solutions (see [20] for the
details) that the limit function V of Vτj is a viscosity solution to{

Vs = tr(A(y, s)D2
yV ) + Ψ(y, s) in Rn × (0,∞),

V (y, 0) = G(y) on Rn.
(4.35)

However, A, G and Ψ also satisfy (4.29), (4.32) and respectively (4.31). Thus,
(4.35) belongs to the same class of (4.14), which implies that V is the unique
(spatially periodic) viscosity solution to (4.35). This shows that Vσ → V in
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C2,α̂
loc (Rn × [0,∞)) as σ → 0, for any 0 < α̂ < ᾱ. In other words,

V (y, s) = Dxkv(x, y, s).

Equipped with the uniform estimate (4.34) and the observation that Vσ →
V , we may also prove that Γσ → Γ as σ → 0, for some Γ ∈ R. Since this part
repeats the argument used in the end of the proof of Lemma 4.3.4, we skip
the details. Let us remark that

Γ = Dxk v̄(x).

The second assertion of Lemma 4.3.5 can be justified by following the
proof of Lemma 4.3.4 regarding (4.35). To avoid the redundancy of the ar-
gument, we omit the details.

From the proof of Lemma 4.3.5, we observe that the regularity of v and v̄
in (x, t) can be improved in a systematic way. Induction on the order of the
derivatives (in (x, t)) of v and v̄ leads us to the following proposition.

Proposition 4.3.7. Under the assumptions (4.6) - (4.11) and (4.12) - (4.13),
v ∈ C∞(Rn × [0, T ];C2,ᾱ(Rn × [0,∞))) and v̄ ∈ C∞(Rn × [0, T ]) with∑
|µ|+2ν=m

[
|Dµ

x∂
ν
t v̄(x, t)|+ ‖Dµ

x∂
ν
t (v(x, t, ·, ·)− v̄(x, t))‖E2,ᾱ(Rn×[0,∞);βm)

]
≤ Cm,

(4.36)

for all (x, t) ∈ Rn × [0, T ] and any m ≥ 0, where 0 < βm < β depends only
on n, λ, Λ, m and β, and Cm > 0 depends only on n, λ, Λ, α, β, m and K.

Remark 4.3.8. As pointed out in Remark 4.3.2, the proof of this proposition
does not use the periodicity of F in s. Moreover, 0 < βm < · · · < β0 < β for
any m ≥ 1 and Cm depends on the choice of β0, · · · , βm.

Proof of Proposition 4.3.7. The proof of this proposition repeats the argu-
ment of Lemma 4.3.5. One may notice that although the statement of this
lemma only involves the derivatives in x, the proof works equally well for the
derivatives in t. Here we will only provide the sketch of the proof, and leave
out the details to avoid redundancy.

Let Vk and V̄k be the k-th order derivative (in (x, t)) of v and respectively
v̄. Let (Pk) be the equation which Vk solves, and suppose (as the induction
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hypothesis) that the coefficient Ak, the source term Ψk and the initial data
Gk of (Pk) belong to the same class of (4.14). We know that this hypothesis
is satisfied when k = 1, since in that case the equation (Pk) is precisely
(4.35). By the induction hypothesis, Lemma 4.3.4 is applicable, which gives
us higher regularity of Vk in the fast variables.

Now let {Vk,σ}σ 6=0 be the sequence of difference quotients of Vk (in (x, t)).
To avoid confusion, let us denote by (Pk,σ) the equation for Vk,σ. Let us also
denote by Ak,σ, Ψk,σ and Gk,σ the coefficient, the source term and respectively
the initial data of (Pk,σ).

Following the proof of Lemma 4.3.5, we may observe that (Pk,σ) is ob-
tained by linearizing (Pk). Utilizing the structure conditions of F , f and g,
one may deduce that (Pk,σ) belongs to the same class of (Pk) with the struc-
ture conditions for (Pk,σ) being independent of σ. Moreover, one may observe
from the regularity assumptions on F and f that Ak,σ and Ψk,σ converge to
some Ak+1 and Ψk+1, respectively, as σ → 0 locally uniformly in the under-
lying domain of (y, s). Here one needs to use the continuity of D2

yVk in (x, t)
that will be given in the induction hypotheses. On the other hand, Gk,σ will
converge to some Gk+1 uniformly in y, due to the regularity assumption on
G.

Hence, the stability theory of viscosity solutions will ensure that any
limit of Vk,σ is a viscosity solution to the problem (Pk+1) having Ak+1, Ψk+1

and Gk+1 as the coefficient, the source term and, respectively, the initial
data. Then the uniqueness of (viscosity) solutions to (Pk+1) will lead us to
the observation that Vk,σ converges to a single limit function, say Vk+1. In
other words, Vk is differentiable (in (x, t)) and the corresponding derivative
is Vk+1. Utilizing this fact, one may also prove that V̄k is differentiable with
the derivative being V̄k+1.

We observe that Lemma 4.3.4 provides us the desired estimate for Vk and
V̄k, while Lemma 4.3.5 yields that for Vk+1 and V̄k+1. The rest of the proof
can now be finished by an induction argument.

4.3.2 Cell Problem

Due to the uniform ellipticity and the periodicity of F , we know from the
classical work [22] that there is a functional F̄ : Sn × Rn × [0, T ] → R such
that for each (P, x, t) ∈ Sn × Rn × [0, T ], the following equation,

ws = F (D2
yw + P, x, t, y, s)− F̄ (P, x, t) in Rn × R, (4.37)
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has a periodic viscosity solution w ∈ BUC(Rn×R). We also know that F̄ is
uniformly elliptic with the same ellipticity constants of F , and it is concave
in the Hessian variable P .

Moreover, periodic viscosity solutions to (4.37) are unique up to an ad-
ditive constant, if any. This also allows us to define another functional w :
Sn×Rn× [0, T ]×Rn×R→ R such that w(P, x, t, ·, ·) is the unique viscosity
solution to (4.37) which also satisfies

w(P, x, t, 0, 0) = 0.

We shall now study the regularity of F̄ and w in (P, x, t), which follows
closely to the authors’ previous work [34]. We begin by improving the reg-
ularity of w in the fast variables (y, s), based on the interior C2,α estimates
[51] for viscosity solutions to concave equations. We leave the proof to the
reader, as it is straightforward from the classical regularity result, and the
property of the cell problem.

Lemma 4.3.9. There exists 0 < ᾱ ≤ α depending only on n, λ, Λ and α
such that w(P, x, t, ·, ·) ∈ C2,ᾱ(Rn × R) with

‖w(P, x, t, ·, ·)‖C2,ᾱ(Rn×R) ≤ C|P |,

for each (P, x, t) ∈ Sn×Rn× [0, T ], where C > 0 depends only on n, λ, Λ, α
and K. Moreover, w ∈ C(Sn×Rn× [0, T ];C2,α̂(Rn×R)) for any 0 < α̂ < ᾱ.

With the above lemma at hand, we can proceed with the proof of (con-
tinuous) differentiability of F̄ and w in (P, x, t). The proof is also similar to
that of Lemma 4.3.5.

Lemma 4.3.10. Let ᾱ be the Hölder exponent chosen in Lemma 4.3.9. Then
there exist Dκ

pD
µ
x F̄ (P, x, t) and Dκ

pD
µ
xw(P, x, t, ·, ·) ∈ C2,ᾱ(Rn × R), for any

pair (κ, µ) of multi-indices satisfying |κ|+ |µ| = 1, such that∣∣Dκ
pD

µ
x F̄ (P, x, t)

∣∣+
wwDκ

pD
µ
xw(P, x, t, ·, ·)

ww
C2,ᾱ(Rn×R)

≤ C|P |1−|κ|,

for any (P, x, t) ∈ Sn ×Rn × [0, T ], where C > 0 depends only on n, λ, Λ, α
and K. Moreover, we have F̄ ∈ C1(Sn×Rn× [0, T ]) and w ∈ C1(Sn×Rn×
[0, T ];C2,α̂(Rn × R)) for any 0 < α̂ < ᾱ.

Remark 4.3.11. As pointed out in Remark 4.3.6, C1 regularity in (P, x, t)
does not involve that in t, according to the parabolic terminology.
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Proof of Lemma 4.3.10. In this proof, we use C to denote a positive constant
that depends only on n, λ, Λ, α and K, and allow it to vary from one
line to another. We shall prove this lemma for the derivatives in P only,
since the same argument applies to the proof for the derivatives in x. Fix
(P, x, t) ∈ Sn × Rn × [0, T ] and 1 ≤ i, j ≤ n. Recall from Section 4.2 that
by Eij we denote the (i, j)-th standard basis matrix in Sn. For notational
convenience, we shall skip the dependence of F , w and F̄ on (x, t). Define

Aσ(y, s)

=

∫ 1

0

DpF (ρD2
yw(P + σEij, y, s) + (1− ρ)D2

yw(P, y, s) + ρσEij, y, s)dρ,

Wσ(y, s) =
w(P + σEij, y, s)− w(P, y, s)

σ
,

Γσ =
F̄ (P + σEij)− F̄ (P )

σ
,

for (y, s) ∈ Rn × R. By linearization, we deduce that Wσ is a (viscosity)
solution to

∂sWσ = tr(Aσ(y, s)(D2
yWσ + Eij))− Γσ in Rn × R. (4.38)

Clearly, Aσ is periodic on Rn × R. More importantly, Aσ is uniformly
elliptic in the sense of (4.29) and Hölder continuous with the uniform estimate
(4.30). It should be stressed that the lower and upper ellipticity bounds for of
Aσ are given by λ and, respectively, Λ and are independent of σ. Hence, (4.38)
belongs to the same class of (4.37). As a result, Lemma 4.3.9 is applicable to
(4.38). This yields that Wσ ∈ C2,ᾱ(Rn × R) and

|Γσ|+ ‖Wσ‖C2,ᾱ(Rn×R) ≤ C|Eij| ≤ C. (4.39)

Notice that Lemma 4.3.9 ensures w ∈ C(Sn;C2,α̂(Rn × R)) for any 0 <
α̂ < ᾱ. This combined with uniform ellipticity (4.6) of F yields that we have
Aσ → A in C α̂(Rn × R) as σ → 0 for any 0 < α̂ < ᾱ, where

A(y, s) = DpF (D2
yw(P, y, s) + P, y, s).

On the other hand, the uniform estimate (4.39) and the periodicity of Wσ

implies that any subsequence of {(Γσ,Wσ)}σ 6=0 contains a further subsequence
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that converges in R × C2,α̂(Rn × R), for any 0 < α̂ < ᾱ. However, the
stability [20] of viscosity solutions ensures that a (uniform) limit (Γ,W ) of
{(Γσ,Wσ)}σ 6=0, if any, should satisfy

Ws = tr(A(y, s)(D2
yW + Eij))− Γ in Rn × R,

in the viscosity sense. Since A is periodic and uniformly elliptic (in the sense
of (4.29)) and W is also periodic, the classical argument [22] ensures the
uniqueness of Γ. Moreover, since Wσ(0, 0) = 0 for all nonzero σ, the limit W
should also be unique. Therefore, Γσ → Γ and Wσ → W as σ → 0, where
the latter holds in C2,α̂(Rn × R) for any 0 < α̂ < ᾱ.

By the definition of Γσ and Wσ, we conclude that F̄ and w are differen-
tiable at P in direction Eij with

Γ = Dpij F̄ (P ) and W (y, s) = Dpijw(P, y, s).

The rest of the proof then follows from Lemma 4.3.9, and hence we omit the
details.

The following proposition is obtained by induction on the order of deriva-
tives of F̄ and w in the slow variables (P, x, t).

Proposition 4.3.12. Assume that F verifies (4.6) - (4.8). Then F̄ ∈ C∞(Sn×
Rn × [0, T ]) and w ∈ C∞(Sn × Rn × [0, T ];C2,ᾱ(Rn × R)) and∑

|κ|+|µ|+2ν=m

[∣∣Dκ
pD

µ
x∂

ν
t F̄ (P, x, t)

∣∣+
wwDκ

pD
µ
x∂

ν
t w(P, x, t, ·, ·)

ww
C2,ᾱ(Rn×R)

]
≤ Cm|P |(1−|κ|)+ ,

(4.40)

for all (P, x, t) ∈ Sn×Rn×[0, T ] and for each integer m ≥ 0, where 0 < ᾱ ≤ α
depends only on n, λ, Λ and α, and Cm > 0 depends only on n, λ, Λ, α, m
and K.

Proof. One may notice that the higher regularity of F̄ and w in the slow
variables (P, x, t) can be obtained by inductively applying Lemma 4.3.10 on
the number of derivatives. Since the whole argument resembles that of the
proof of Proposition 4.3.7, we omit the details.
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4.4 Higher Order Convergence Rate

This section is devoted to achieving the higher order convergence rates of
the homogenization process of (4.1). We expect that away from the initial
time zone, by which we indicate the strip 0 ≤ t ≤ ε2, the solution, uε, of
(4.1) becomes less affected by the rapidly oscillatory behavior of the initial
data, and that it behaves more as a solution to certain Cauchy problem
with a non-oscillatory initial data. Thus, it is reasonable to split uε into the
non-oscillatory part and the oscillatory part near the initial time layer.

For this reason, we construct two types of the higher order correctors
associated with the homogenization problem (4.1), namely the initial layer
corrector and the interior corrector. The former type captures the oscillatory
behavior of uε near the initial time layer, while the latter describes its behav-
ior in the interior. The construction of these correctors of higher orders will
be based on the regularity theory in the slow variables established in Section
4.3.

Throughout this section, the constants K > 0 and 0 < α < 1 will be used
to denote those in (4.8) and (4.11). Also we shall denote by βk,l a positive,
generic constant that depends only on n, λ, Λ, k and l, and by Ck,l a positive,
generic constant that depends only on n, λ, Λ, α, K, k and l.

Let S(m, ᾱ; d, k) be the class of all spatially periodic functions or map-
pings, f , on Rn× [0, T ]×Rn× [0,∞) such that f ∈ C∞(Rn× [0, T ];Ck,ᾱ(Rn×
[0,∞)) and for each integer l ≥ 0, there is a positive constant Cm,ᾱ,d,k, de-
pending at most on n, λ, Λ, α, K, m, ᾱ, d, k and l, such that∑

|µ|+2ν=l

‖Dµ
x∂

ν
t f(x, t, ·, ·)‖Cm,α(Rn×[0,∞)) ≤ Cm,ᾱ,d,k,l,

for all (x, t) ∈ Rn × [0, T ]. By E(m, ᾱ; d, k) be the subclass of S(m, ᾱ; d, k)
consisting of all functions or mappings f such that for each integer l ≥ 0,
there are positive constants βd,k,l, depending only on n, λ, Λ, d, k and l, and
Cm,ᾱ,d,k, depending on the same parameters as above, such that∑

|µ|+2ν=l

‖Dµ
x∂

ν
t f(x, t, ·, ·)‖Em,α(Rn×[0,∞);βd,k,l)

≤ Cm,ᾱ,d,k,l,

for all (x, t) ∈ Rn × [0, T ]. In particular, we shall write by S(d, k) the space
of all functions or mappings, f , on Rn × [0, T ], whose obvious extension to
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Rn × [0, T ]× Rn × [0,∞) belongs to the class S(0, 0; d, k).

4.4.1 Initial Layer Corrector

In this subsection, we aim at proving the following proposition.

Proposition 4.4.1. Assume F and g verify (4.6) - (4.8) and (4.10) - (4.11).
Then there exist a sequence {vk ∈ S(2, ᾱ; k)}∞k=0 of spatially periodic func-
tions on Rn× [0, T ]×Rn× [0,∞) and a sequence {v̄k ∈ S(k)}∞k=0 of functions
on Rn × [0, T ] such that vk − v̄k ∈ E(2, ᾱ; k) for each k ≥ 0. Moreover, for
any integer m ≥ 0, set

ṽεm(x, t) =
m∑
k=0

εk
(
vk

(
x, t,

x

ε
,
t

ε2

)
− v̄k(x, t)

)
, ḡεm(x) =

m∑
k=0

εkv̄k(x, 0).

(4.41)
Then one has

∂tṽ
ε
m =

1

ε2
F

(
ε2D2ṽεm, x, t,

x

ε
,
t

ε2

)
+ ψεm

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

ṽεm(x, 0) + ḡεm(x) = g
(
x,
x

ε

)
on Rn,

(4.42)
where ψεm satisfies

|ψεm(x, t, y, s)| ≤ Cmε
m−1e−βms, (4.43)

for any 0 < ε ≤ 1
2
.

Remark 4.4.2. We shall see later that this proposition holds even when F is
periodic only in the fast spatial variable y. Moreover, we shall call vk(x, t, y, s)
the k-th order initial layer corrector and the function ḡk : Rn → R, defined
by

ḡk(x) = v̄k(x, 0), (4.44)

the k-th order effective initial data.

Let us begin with heuristic arguments by the formal expansion. The com-
putation presented here uses the Taylor expansion of F in its matrix variable
P . We should mention that such an approach has already been shown in the
authors’ previous work [34].
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Differentiating ṽεm with respect to t, we obtain

ε2∂tṽ
ε
m(x, t) =

m∑
k=0

εk∂svk

(
x, t,

x

ε
,
t

ε2

)
+

m∑
k=0

εk+2∂t

(
vk

(
x, t,

x

ε
,
t

ε2

)
− v̄k(x, t)

)
.

(4.45)

In order to proceed with the derivatives of ṽεm in variable x, let us introduce
a Sn-valued mapping Vk = Vk(x, t, y, s) on Rn × [0, T ]× Rn × [0,∞) defined
by

Vk =


D2
yv0, k = 0,

D2
yv1 +Dxyv0, k = 1,

D2
yvk +Dxyvk−1 +D2

x(vk−2 − v̄k−2), k ≥ 2,

(4.46)

and corresponding define

Ṽk =


Vk, 0 ≤ k ≤ m,

Dxyvm +D2
x(vm−1 − v̄m−1), k = m+ 1,

D2
x(vm − v̄m), k = m+ 2.

(4.47)

With Ṽk, one can write

ε2D2ṽεm(x, t) =
m∑
k=0

εkṼk

(
x, t,

x

ε
,
t

ε2

)
= V0

(
x, t,

x

ε
,
t

ε2

)
+εV ε

m

(
x, t,

x

ε
,
t

ε2

)
,

(4.48)
where in the second identity we wrote V ε

m for the sum of εk−1Ṽk over 1 ≤ k ≤
m+ 2.

For notational convenience, let us write

Ak(x, t, y, s) = Dk
pF (V0, x, t, y, s), k ≥ 1, (4.49)

for (x, t, y, s) ∈ Rn × [0, T ]× Rn × [0,∞), and especially

A = A1,

which is a Sn-valued mapping, uniformly elliptic in the sense that tr(A(x, t, y, s)N)
satisfies the ellipticity condition (4.6). What we shall do is the Taylor expan-
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sion of F in the matrix variable with base point V0 and perturbation εV ε
m.

In the following computation, we shall omit the variables (x, t, ε−1x, ε−2t) in
the exposition, since they do not play any important role.

F
(
ε2D2ṽεm

)
= F (V0 + εV ε

m)

= F (V0) + ε tr(AV ε
m) +

m∑
k=2

εk

k!
Ak(V

ε
m, · · · , V ε

m) +Rε
m

= F (V0) + ε tr(AV1) +
m∑
k=2

εk

tr(AVk) +
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

Al(Vi1 , · · · , Vil)


+ Eε

m,

(4.50)

where Rε
m is the remainder term from the Taylor expansion, i.e.,

Rε
m = F (V0 + εV ε

m)− F (V0)− ε tr(AV ε
m)−

m∑
k=2

εk

k!
Ak(V

ε
m, · · · , V ε

m), (4.51)

and Eε
m is the term that contains further errors,

Eε
m = Rε

m +
m+2∑
k=2

∑
m+1≤i1+···+ik≤k(m+2)

1≤i1,··· ,ik≤m+2

εi1+···+ik

k!
Ak(Ṽi1 , · · · , Ṽik), (4.52)

Hence, plugging ṽεm into (4.1) and equating the power of ε, and noting (4.45)
and (4.50), we obtain a sequence of equations that vk should solve. The next
lemma gives a rigorous justification of the above heuristic arguments.

Lemma 4.4.3. One can recursively construct sequences {vk ∈ S(2, ᾱ; k)}∞k=0

and {v̄k ∈ S(k)}∞k=0, with vk − v̄k ∈ E(2, ᾱ; k), as follows.

(i) v0(x, t, ·, ·) is the spatially periodic solution of{
∂sv0 = F (D2

yv0, x, t, y, s) in Rn × (0,∞),

v0(x, t, y, 0) = g(x, y) on Rn,
(4.53)
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(ii) For each 2 ≤ k ≤ m, vk(x, t, ·, ·) is the spatially periodic solution of{
∂svk = tr(A(x, t, y, s)D2

yvk) + Φk(x, t, y, s) in Rn × (0,∞),

vk(x, t, y, 0) = 0 on Rn,
(4.54)

where

Φk =



0, k = 1,

tr(A(Dxyvk−1 +D2
x(vk−2 − v̄k−2))− ∂t(vk−2 − v̄k−2)

+
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

Al(Vi1 , · · · , Vil), k ≥ 2.

(4.55)

(iii) For each k ≥ 0,
v̄k(x, t) = lim

s→∞
vk(x, t, 0, s).

Proof. It is clear from Proposition 4.3.7 that v0 ∈ S(2, ᾱ; 0) and v̄0 ∈ S(0)
with v0−v̄0 ∈ E(2, ᾱ; 0). Henceforth, we shall supposem ≥ 1, and assume fur-
ther, as the induction hypothesis, that we have already found vk ∈ S(2, ᾱ; k)
and v̄k ∈ S(k) satisfying vk − v̄k ∈ E(2, ᾱ; k), for 0 ≤ k ≤ m− 1.

Recall the mappings Vk and Ak from (4.46) and (4.49). Since vk − v̄k ∈
E(2, ᾱ; k), we have Vk ∈ E(0, ᾱ; k) for each 0 ≤ k ≤ m− 1. This along with
the structure condition (4.8) of F that Ak ∈ E(0, ᾱ; k) for each k ≥ 0 as well.

Now let Φm be as in (4.55). One may notice that Φm only involves func-
tions vk and v̄k, for 0 ≤ k ≤ m− 1, which are assumed to be known already.
Hence, combining the induction hypothesis that vk− v̄k ∈ E(2, ᾱ; k), and the
observation that Vk, Ak ∈ E(0, ᾱ; k), deduce that Φm ∈ E(0, ᾱ;m). Thus,
one can apply Proposition 4.3.7 again to the viscosity solution vm(x, t, ·, ·)
of (4.54), and verify that vm ∈ S(2, ᾱ;m), v̄m ∈ S(2, ᾱ;m) and vm − v̄m ∈
E(2, ᾱ;m). The proof is then completed by the induction principle.

Remark 4.4.4. Let us remark that the proof above does not involve the
periodicity of F in the fast temporal variable s. This is why Proposition 4.4.1
holds even if we only assume the spatial periodicity of F (that is periodicity
in y), as mentioned in Remark 4.4.2.

We are now ready to prove Proposition 4.4.1
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Proof of Proposition 4.4.1. Let {vk}∞k=0 and {v̄k}∞k=0 be the sequence taken
from Lemma 4.4.3, and let ṽεm and ḡεm be as in (4.41). Then it follows from
(4.45), (4.50), (4.53) and (4.54) that the functions ṽεm and ḡεm defined by
(4.41) satisfy (4.42) with

ψεm(x, t, y, s) =
m∑

k=m−1

εk∂t(vk(x, t, y, s)− v̄(x, t))− ε−2Eε
m(x, t, y, s),

where Eε
m is given by (4.52). The rest of the proof is devoted to the proof of

(4.43).
From the fact that vk − v̄k ∈ E(2, ᾱ; k) for any k ≥ 0, we know that

m∑
k=m−1

εk |∂t(vk(x, t, y, s)− v̄k(x, t))| ≤ Cmε
m−1e−βms, (4.56)

for any 0 < ε ≤ 1
2
. On the other hand, from the observation that Vk, Ak ∈

E(0, ᾱ; k), the remainder term Rε
m in (4.51) can be estimated as

|Rε
m(x, t, y, s)| ≤ εm+1

(m+ 1)!
|Bm+1(V ε

m, · · · , V ε
m)| (x, t, y, s) ≤ Cmε

m+1e−βms,

(4.57)
for any 0 < ε ≤ 1

2
. Noting that the summation indices i1, · · · , ik in the

definition of Eε
m are subject to the restriction i1 + · · · + ik ≥ m + 1, we

deduce from (4.57) that

|Eε
m(x, t, y, s)| ≤ Cmε

m+1e−βms, (4.58)

for all 0 < ε ≤ 1
2
. Thus, (4.43) follows from (4.56) and (4.58). This completes

the proof.

4.4.2 Interior Corrector

In this subsection, we shall construct the higher order interior correctors. Here
we shall consider a more general class of homogenization problems compared
to (4.1). This will be essential in achieving the higher order convergence rate
away from the initial time layer, and we shall discuss more in this direction
in Section 4.4.3.
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Proposition 4.4.5. Assume that F verifies (4.6) - (4.8). Let {Vk ∈ E(0, ᾱ; k)}∞k=0

be a sequence of Sn-valued, spatially periodic mappings on Rn× [0, T ]×Rn×
[0,∞) and let {ḡk ∈ S(k)}∞k=0 be a sequence of functions on Rn.

Then there exist a sequence {wk ∈ S(2, ᾱ; k)}∞k=0 of spatially periodic
functions on Rn × [0, T ]× Rn × [0,∞) and a sequence {w#

k ∈ S(2, ᾱ; k)}∞k=0

of periodic functions on Rn× [0, T ]×Rn×R, satisfying wk−w#
k ∈ E(2, ᾱ; k)

with w0 = w1 = w#
0 = w#

1 = 0, and a sequence {ūk ∈ S(k)}∞k=0 of functions
on Rn × [0, T ], satisfying ūk(·, 0) = ḡk for any integer k ≥ 0, such that the
following is true. Define

w̃εm(x, t) =
m∑
k=0

εk
(
wk

(
x, t,

x

ε
,
t

ε2

)
+ ūk(x, t)

)
,

w̃#,ε
m (x, t) =

m∑
k=0

εk
(
w#
k

(
x, t,

x

ε
,
t

ε2

)
+ ūk(x, t)

)
.

Then one has

∂tw̃
ε
m =

1

ε2
F

(
ε2D2w̃εm +

m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)

− 1

ε2
F

(
m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)
+ ψεm

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

(4.59)

and

∂tw̃
#,ε
m =

1

ε2
F

(
ε2D2w̃#,ε

m , x, t,
x

ε
,
t

ε2

)
+ ψ#,ε

m

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

with some ψεm spatially periodic and some ψ#,ε
m periodic such that∣∣ψ#,ε

m (x, t, y, s)
∣∣+ eβms

∣∣(ψεm − ψ#,ε
m )(x, t, y, s)

∣∣ ≤ Cmε
m−1, (4.60)

for any 0 < ε ≤ 1
2
.

Remark 4.4.6. The function w#
k is the time-periodic version of wk, i.e.,

the former is also periodic in the fast time variable s as well as y. In what
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follows, we shall call

w̃k(x, t, y, s) = wk(x, t, y, s) + ūk(x, t),

the k-th order interior corrector, and ūk the k-th order effective limit profile.

To illustrate the idea why we consider two functions wk and w#
k , let us

consider a Cauchy problem with a non-oscillatory initial data, but with an
operator of the type considered in (4.59), say

∂tu
ε =

1

ε2
F

(
ε2D2uε + V0, x, t,

x

ε
,
t

ε2

)
− 1

ε2
F

(
V0, x, t,

x

ε
,
t

ε2

) in Rn × (0, T ),

uε(x, 0) = ḡ(x) on Rn.

(4.61)

As ḡ being non-oscillatory in ε-scales, we expect D2uε to be of order 1 in the
interior. Now that

1

ε2

(
F
(
ε2P + V0, x, t, y, s

)
− F (V0, x, t, y, s)

)
→ tr(A(x, t, y, s)P ),

with A given by (4.49), it is reasonable to guess that the effective problem
of (4.61) is the same with the one corresponding to∂tũε = tr

(
A

(
x, t,

x

ε
,
t

ε2

)
D2ũε

)
in Rn × (0, T ),

ũε(x, 0) = ḡ(x) on Rn.

(4.62)

However, A(x, t, y, s) = DpF (V0, x, t, y, s) and V0(x, t, y, s) decays exponen-
tially fast in s, so the effective problem of (4.62) will also coincide with that
of ∂tûε = tr

(
A#

(
x, t,

x

ε
,
t

ε2

)
D2ûε

)
in Rn × (0, T )

ûε(x, 0) = ḡ0(x) on Rn.

where A# : Rn × [0, T ]× Rn × R→ Sn is defined by

A#(x, t, y, s) = DpF (0, x, t, y, s).
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It is noteworthy that A# is periodic in both y and s and uniformly elliptic.
Hence, to A# corresponds a unique effective coefficient Ā : Rn× [0, T ]→ Sn.
Moreover, due to [22], there exists a unique Sn-valued mapping χ# = (χ#

ij)

on Rn× [0, T ]×Rn×R such that for each (x, t) ∈ Rn× [0, T ], χ#
ij(x, t, ·, ·) is

the unique periodic solution to the following cell problem,{
∂sχ

#
ij = tr(A#(x, t, y, s)(D2

yχ
#
ij + Eij))− tr(Ā(x, t)Eij) in Rn × R,

χ#
ij(x, t, 0, 0) = 0.

(4.63)
In particular, Ā is uniformly elliptic with the same ellipticity bounds as
those of A#. Moreover by Proposition 4.3.12, we know that Ā ∈ S(0), χ# ∈
S(2, α; 0), where α is the Hölder exponent in the regularity assumption (4.8)
of F .

The following lemma ensures the existence of the matrix corrector map-
ping that exactly captures the oscillatory behavior of the coefficient A.

Lemma 4.4.7. There exists a unique mapping χ = (χij) : Rn× [0, T ]×Rn×
[0,∞)→ Sn such that χij(x, t, ·, ·) is the spatially periodic solution to{

∂sχij = tr(A(x, t, y, s)(D2
yχij + Eij))− tr(Ā(x, t)Eij) in Rn × (0,∞),

χij(x, t, y, 0) = χ#
ij(x, t, y, 0) on Rn,

(4.64)
for each (x, t) ∈ Rn×[0, T ]. Moreover, χ ∈ S(2, ᾱ; 0) and χ−χ# ∈ E(2, ᾱ; 0).

Proof. Fix (x, t) ∈ Rn × [0, T ], 1 ≤ i, j ≤ n and consider the following
spatially periodic Cauchy problem,{

∂sϕij = tr(A(x, t, y, s)D2
yvij) + bij(x, t, y, s) in Rn × (0,∞),

ϕij(x, t, y, 0) = 0 on Rn,

with

bij(x, t, y, s) = tr((A(x, t, y, s)− A#(x, t, y, s))(D2
yχ

#
ij(x, t, y, s) + Eij)).

Since Vk ∈ E(0, ᾱ; k) and χ# ∈ S(k), we know that bij decays exponentially
fast as s→∞. Thus, Lemma 4.3.1 implies that the function,

ϕ̄ij(x, t) = lim
s→∞

ϕij(x, t, 0, s),
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is well defined. Now it follows from the regularity assumption (4.8) on F
together with Proposition 4.3.7 that this lemma is satisfied by

χij(x, t, y, s) = χ#
ij(x, t, y, s) + (ϕij(x, t, y, s)− ϕ̄ij(x, t)).

We omit the details.

In what follows, let us write

Wk =

{
0, k = 0, 1,

D2
ywk +Dxywk−1 +D2

x(wk−2 + ūk−2), k ≥ 2.
(4.65)

Note that we set W0 = W1 = 0, which is coherent the assertion in Proposition
4.4.5 that w0 = w1 = 0. Next set W#

k by the time-periodic version of Wk,
that is,

W#
k =

{
0, k = 0, 1,

D2
yw

#
k +Dxyw

#
k−1 +D2

x(w
#
k−2 + ūk−2), k ≥ 2.

(4.66)

Also let Ak be as in (4.49), and set A#
k ∈ S(0, α; k) to its time-periodic

version,
A#
k (x, t, y, s) = Dk

pF (0, x, t, y, s), k ≥ 1.

It follows from V0 ∈ S(0, ᾱ; 0) that Ak − A#
k ∈ E(0, ᾱ; k) for any k ≥ 0.

We are now ready to construct the higher order interior correctors as
follows.

Lemma 4.4.8. One can recursively construct a sequence {wk ∈ S(2, ᾱ; k)}∞k=0

of spatially periodic functions on Rn× [0, T ]×Rn× [0,∞), a sequence {w#
k ∈

S(2, ᾱ; k)}∞k=0 of periodic functions on Rn × [0, T ]×Rn ×R with wk −w#
k ∈

E(2, ᾱ; k), a sequence {ūk ∈ S(k)}∞k=0 of functions on Rn × [0, T ] satisfying
the following.

(i) w#
k (x, t, ·, ·) is the periodic solution to{
∂sw

#
k = tr(A#(x, t, y, s)D2

yw
#
k ) + Φ#

k (x, t, y, s) in Rn × R,
w#
k (x, t, 0, 0) = 0,

(4.67)
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for each (x, t) ∈ Rn × [0, T ], where

Φ#
k =



0, k = 0, 1,

tr(A#(Dxyw
#
k−1 +D2

x(w
#
k−2 + ūk−2)))− ∂t(w#

k−2 + ūk−2)

+
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

A#
l (W#

i1
, · · · ,W#

il
). k ≥ 2.

(ii) wk(x, t, ·, ·) is the spatially periodic solution to{
∂swk = tr(A(x, t, y, s)D2

ywk) + Φk(x, t, y, s) in Rn × (0,∞),

wk(x, t, y, 0) = w#
k (x, t, y, 0) on Rn,

(4.68)
for each (x, t) ∈ Rn × [0, T ], where

Φk =



0, k = 0, 1,

tr(A(Dxywk−1 +D2
x(wk−2 + ūk−2)))

− ∂t(wk−2 + ūk−2)

+
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

(Al(Vi1 +Wi1 , · · · , Vil +Wil)

− Al(Vi1 , · · · , Vil)),

k ≥ 2.

(iii) ūk is the unique solution of{
∂tūk = tr(Ā(x, t)D2

xūk) + Φ̄k(x, t) in Rn × (0, T ),

ūk(x, 0) = ḡk(x) on Rn,
(4.69)

where Φ̄k(x, t) is the unique number for which there exists a unique
periodic solution to{
∂sφ

#
k = tr(A#(x, t, y, s)D2

yφ
#
k ) + Φ#

k (x, t, y, s)− Φ̄k(x, t) in Rn × R,
φ#
k (x, t, 0, 0) = 0,

(4.70)
for each (x, t) ∈ Rn × [0, T ].
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Proof. Since Φ#
k = 0 for k = 0, 1, one should have w#

k = 0 for k = 0, 1 as

well, since w#
k is the unique periodic solution to (4.67). This also implies that

wk = 0 for k = 0, 1. Hence, we only need to construct w#
k and wk for k ≥ 2.

Let us remark that the construction of w#
k and ūk−2, for k ≥ 2, is indepen-

dent of wk. Moreover, the construction is very similar with the elliptic case,
which can be found in the previous work [34, Lemma 3.3.2] by the authors.
Especially, w#

k is given by

w#
k (x, t, y, s) = φ#

k (x, t, y, s) + tr
(
χ#(x, t, y, s)D2

xūk−2(x, t)
)
,

with χ# and φ#
k given as the unique periodic solutions to (4.63) and respec-

tively (4.70); here one can also deduce that φ#
k ∈ S(2, ᾱ; k). We shall leave

this part to the reader, and proceed directly with the construction of wk only.
Fix any m ≥ 2, and suppose that we have already found w#

k , φ#
k and

ūk−2, for k ≤ m, and wk, for k ≤ m − 1, that satisfy the assertions of this
lemma. Note that Φm only involves these functions. Since wk ∈ S(2, ᾱ; k)
and w#

k ∈ S(2, ᾱ; k) together satisfy wk − w#
k ∈ E(2, ᾱ; k) as the induction

hypotheses for 0 ≤ k ≤ m − 1, one can derive along with the assumption
Vk ∈ S(0, ᾱ; k) that Φm ∈ S(0, ᾱ;m) and Φm − Φ#

m ∈ S(0, ᾱ;m). Hence, one
can argue analogously as with the proof of Lemma 4.4.7 and deduce that for
each (x, t) ∈ Rn × [0, T ], there exists a unique, spatially periodic solution
φm(x, t, ·, ·) to{
∂sφm = tr(A(x, t, y, s)D2

yφm) + Φm(x, t, y, s)− Φ̄m(x, t) in Rn × (0,∞),

φm(x, t, y, 0) = φ#
m(x, t, y, 0) on Rn,

(4.71)
and φm ∈ S(2, ᾱ;m) with φm − φ#

m ∈ E(2, ᾱ;m); the last inclusion follows
from Φm − Φ#

m ∈ E(0, ᾱ;m) and A − A# ∈ E(0, ᾱ; 0). Finally, we define
wm : Rn × [0, T ]× Rn × [0,∞)→ R by

wm(x, t, y, s) = φm(x, t, y, s) + tr(χ(x, t, y, s)D2
xūm−2(x, t)).

Then it follows from (4.71) and (4.64) that

∂swm = ∂sφm + tr((∂sχ)D2
xūm−2)

= tr(AD2
yφm) + Φm − Φ̄m + tr((AD2

yχ− Ā)D2
xūm−2)

= tr(AD2
ywm) + Φm,
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in (y, s), with each (x, t) fixed, which verifies the interior equation in (4.68).
The initial condition is straightforward. On the other hand, wm ∈ S(2, ᾱ;m)
and wm − w#

m ∈ E(2, ᾱ;m), since we have φm − φ#
m ∈ E(2, ᾱ;m), χ − χ# ∈

E(2, ᾱ; 0) and ūm−2 ∈ S(m− 2). We omit the details.

Equipped with Lemma 4.4.8, we are ready to prove Proposition 4.4.5.

Proof of Proposition 4.4.5. Here we shall only address the notable difference
in the computation involving the Taylor expansion, when proving Proposition
4.4.5 (iv), and leave the rest of the argument to the reader, since the main
argument follows closely to the proof of Proposition 4.4.1. Let us define

Xk = Vk +Wk,

with Wk given as in (4.65). Since W0 = W1 = 0, we have X0 = V0 and
X1 = V1. Thus, one can proceed as in the computation in (4.50) and deduce
that

F (V0 + εXε
m)− F (V0 + εV ε

m) + ψεm

=
m∑
k=2

εk tr(A(Xk − Vk))

+
m∑
k=2

εk
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

(Al(Xi1 , · · · , Xil)− Al(Vi1 , · · · , Vil))

=
m∑
k=2

εk tr(AWk)

+
m∑
k=2

εk
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

(Al(Vi1 +Wi1 , · · · , Vil +Wil)− Al(Vi1 , · · · , Vil)),

where ψεm is the error term of the form (4.52), V ε
m =

∑m
k=1 ε

k−1Vk and Xε
m =∑m

k=1 ε
k−1Xk +

∑m+2
k=m+1 ε

k−1W̃k, with

W̃k =


Wk, 0 ≤ k ≤ m,

Dxywm +D2
x(wm−1 + ūm−1), k = m+ 1,

D2
x(wm + ūm), k = m+ 2.

(4.72)
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Hence, it follows from the recursive equations (4.68) of wk that

F (V0 + εXε
m)− F (V0 + εV ε

m)− Eε
m =

m∑
k=2

εk(∂swk + ∂t(wk−2 + ūk−2)).

This shows that w̃εm solves (4.59) with the remainder term ψεm. We skip the
rest of the proof.

4.4.3 Nonlinear Coupling Effect and the Bootstrap Ar-
gument

The main goal of this subsection is to establish our main result, Theorem
4.1.1. Throughout this subsection, let us assume that F and g verify (4.6) -
(4.8) and (4.10) - (4.11).

We shall begin with the analyze the effect arising from the rapid oscillation
on the initial data of (4.1), and approximate the associated solution uε with
the higher order initial layer correctors. Here the approximation is up to a
viscosity solution to a new homogenization problem, but this time with a
non-oscillatory initial condition.

Lemma 4.4.9. Under the assumption of Theorem 4.1.1, one can construct
{vk}∞k=0, {v̄k}∞k=0, ṽεm and ḡεm be as in Proposition 4.4.1. Let ũεm be the bounded
viscosity solution of

∂tũ
ε
m =

1

ε2
F

(
ε2D2ũεm +

m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)

− 1

ε2
F

(
m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

) in Rn × (0, T ),

ũεm(x, 0) = ḡεm(x) on Rn,

(4.73)

with Vk given as in (4.47). Then one has, for any 0 < ε ≤ 1
2
,

|uε(x, t)− ṽεm(x, t)− ũεm(x, t)| ≤ Cmε
m−1, (4.74)

for all x ∈ Rn and 0 ≤ t ≤ T . In particular,

|uε(x, t)− ũεm(x, t)| ≤ Cmε
m−1, (4.75)
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for all x ∈ Rn and cmε
2| log ε| ≤ t ≤ T .

Proof. We claim that ũεm + ṽεm solves

∂t (ũεm + ṽεm) =
1

ε2
F

(
ε2D2 (ũεm + ṽεm) , x, t,

x

ε
,
t

ε2

)
+ rεm

(
x, t,

x

ε
,
t

ε2

) in Rn × (0, T ),

(ũεm + ṽεm) (x, 0) = g
(
x,
x

ε

)
on Rn,

(4.76)
with the remainder term rεm satisfying

|rεm(x, t, y, s)| ≤ Cmε
m−1e−βms. (4.77)

Then since both ũεm + ṽεm and uε are bounded uniformly continuous in Rn ×
[0, T ], one can deduce from the standard comparison principle [20] and the
exponential decay estimate (4.77) of rεm that

|uε(x, t)− ṽεm(x, t)− ũεm(x, t)| ≤ sup
ξ∈Rn

∫ t

0

∣∣rεm(ξ, τ, ε−1ξ, ε−2τ)
∣∣ dτ ≤ Cmε

m−1,

for any x ∈ Rn and 0 ≤ t ≤ T , as desired. The error estimate (4.75) away from
the initial time layer follows immediately from (4.74) and the exponential
decay estimate that vk − v#

k ∈ E(2, ᾱ; k).
From the initial conditions of (4.73) and (4.42), one can easily verify

the initial condition of (4.76). Hence, it only remains to check the interior
equation and the exponential decay estimate of the remainder term. However,
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from the computation (4.48) of D2ṽεm, one can proceed as

F

(
ε2D2 (ũεm + ṽεm) , x, t,

x

ε
,
t

ε2

)
= F

(
ε2D2ũεm +

m∑
k=0

εkVk +
m+2∑

k=m+1

εkṼk, x, t,
x

ε
,
t

ε2

)

= F

(
ε2D2ũεm +

m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)
+ h1,ε

m

(
x, t,

x

ε
,
t

ε2

)

= ε2∂tũ
ε
m + F

(
m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)
+ h1,ε

m

(
x, t,

x

ε
,
t

ε2

)

= ε2∂tũ
ε
m + F

(
m∑
k=0

εkVk +
m+2∑

k=m+1

εkṼk, x, t,
x

ε
,
t

ε2

)

+
(
h1,ε
m + h2,ε

m

)(
x, t,

x

ε
,
t

ε2

)
= ε2∂t (ũεm + ṽεm) +

(
−ε2ψεm + h1,ε

m + h2,ε
m

)(
x, t,

x

ε
,
t

ε2

)
,

where Ṽk is given by (4.47), ψεm is given as in Proposition 4.4.1 and by h1,ε
m

and h2,ε
m we simply denoted the terms so that we have the equalities above.

Let us remark that h1,ε
m and h2,ε

m are well-defined, since D2ũεm and ∂tũ
ε
m exist

in the classical sense. This is because the operator governing the interior
equation (4.73) for ũεm is uniformly elliptic, smooth and concave; here the
smoothness comes from the fact that Vk ∈ E(0, ᾱ; k). Hence, the standard
regularity theory [51] ensures the smoothness of ũεm, although it may not
possess a uniform regularity for the time derivative and the spatial Hessian.
In addition, it follows from the ellipticity condition (4.6) of F that for each
i = 1, 2, one has

∣∣hi,εm (x, t, y, s)
∣∣ ≤ C0

m+2∑
k=m+1

εk
∣∣∣Ṽk(x, t, y, s)∣∣∣ ≤ Cmε

m+1e−βms, (4.78)

for any 0 < ε ≤ 1
2
, where the second estimate follows from the exponential

decay estimate of vk − v̄k.
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This shows that ũεm + ṽεm satisfies the interior equation of (4.76) with

rεm = ψεm − ε−2
(
h1,ε
m + h2,ε

m

)
.

The decay estimate (4.77) of rεm can be deduced from (4.43) and (4.78), which
finishes the proof.

One may compare (4.73) with (4.61), and realize that we are in a position
to invoke Proposition 4.4.5 to construct the higher order interior correctors
for the new homogenization problem. This eventually leads us to a higher
order approximation of ũεm by the interior correctors, again up to some func-
tion with order ε2. The function turns out to be a viscosity solution to a new
homogenization problem essentially belongs to the same class of (4.1), which
allows us to run a bootstrap argument.

Lemma 4.4.10. Under the conclusion of Lemma 4.4.9, let {Vk}∞k=0 and
{ḡk}∞k=0 be as in (4.46) and respectively (4.44). Then one can construct {wk}∞k=0,
{w#

k }∞k=0, {ūk}∞k=0, w̃εm and w̃#,ε
m as in Proposition 4.4.5. Let uε1,m be the

bounded viscosity solution to

∂tu
ε
1,m =

1

ε4
F

(
ε4D2uε1,m +

m∑
k=0

εk(Vk +Wk), x, t,
x

ε
,
t

ε2

)

− 1

ε4
F

(
m∑
k=0

εk(Vk +Wk), x, t,
x

ε
,
t

ε2

) in Rn × (0, T ),

uε1,m(x, 0) = −
m−2∑
k=0

εkwk+2

(
x, 0,

x

ε
, 0
)

on Rn,

(4.79)
where Wk is given as in (4.65). Then for any 0 < ε ≤ 1

2
,∣∣ũεm(x, t)− w̃εm(x, t)− ε2uε1,m(x, t)

∣∣ ≤ Cmε
m−1, (4.80)

for all x ∈ Rn and 0 ≤ t ≤ T . Moreover, one has∣∣ũεm(x, t)− w̃#,ε
m (x, t)− ε2uε1,m(x, t)

∣∣ ≤ Cmε
m−1 (4.81)

for all x ∈ Rn and cmε
2| log ε| ≤ t ≤ T .
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Proof. We assert that w̃εm + ε2uε1,m is a viscosity solution to

∂t
(
w̃εm + ε2uε1,m

)
=

1

ε2
F

(
ε2D2

(
w̃εm + ε2uε1,m

)
+

m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)

− 1

ε2
F

(
m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)
+ rεm

(
x, t,

x

ε
,
t

ε2

) in Rn × (0, T ),

(
w̃εm + ε2uε1,m

)
(x, 0) = ḡεm(x) on Rn,

(4.82)
with some remainder term rεm satisfying

|rεm(x, t, y, s)| ≤ Cmε
m−1. (4.83)

Then one can deduce the desired estimate (4.80) by means of the comparison
principle, as in the proof of Lemma 4.4.9. Moreover the error estimate (4.81)
away from the initial time layer follows from (4.80) and the exponential decay
estimate of wk − w#

k .
Note that Vk ∈ E(0, ᾱ; k) and that v̄k ∈ S(k), which implies ḡk =

v̄k(·, 0) ∈ S(k), for any k ≥ 0, so the sequences {Vk}∞k=0 and {ḡk}∞k=0 satisfy
the assumption of Proposition 4.4.5. Thus, we obtain the sequence {wk}∞k=0

of higher order interior correctors, and the sequence {ūk}∞k=0 of higher order
effective limits. From Proposition 4.4.5 and the definitions, (4.44) and (4.41),
of ḡk and ḡεm, we observe that (4.79) that

w̃εm(x, 0) + ε2uε1,m(x, 0) =
m∑
k=0

εkūk(x, 0) =
m∑
k=0

εkḡk(x) = ḡεm(x).

This verifies the initial condition of (4.82).
On the other hand, since we have

ε2D2w̃εm(x, t) =
m+2∑
k=0

εkW̃k

(
x, t,

x

ε
,
t

ε2

)

=
m∑
k=0

εkWk

(
x, t,

x

ε
,
t

ε2

)
+

m+2∑
k=m+1

εkW̃k

(
x, t,

x

ε
,
t

ε2

)
,
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with W̃k given as in (4.72), it follows from the interior equations of (4.59)
that

F

(
ε2D2

(
w̃εm + ε2uε1,m

)
+

m∑
k=0

εkVk, x, t,
x

ε
,
t

ε2

)

= F

(
ε4D2uε1,m +

m∑
k=0

εk(Vk +Wk) +
m+2∑

k=m+1

εkW̃k, x, t,
x

ε
,
t

ε2

)

= F

(
ε4D2uε1,m +

m∑
k=0

εk(Vk +Wk), x, t,
x

ε
,
t

ε2

)
+ h1,ε

m

(
x, t,

x

ε
,
t

ε2

)

= ε4∂tu
ε
1,m + F

(
m∑
k=0

εk(Vk +Wk), x, t,
x

ε
,
t

ε2

)
+ h1,ε

m

(
x, t,

x

ε
,
t

ε2

)

= ε4∂tu
ε
1,m + F

(
m∑
k=0

εk(Vk +Wk) +
m+2∑

k=m+1

εkW̃k, x, t,
x

ε
,
t

ε2

)

+
(
h1,ε
m + h2,ε

m

)(
x, t,

x

ε
,
t

ε2

)
= ε2∂t

(
w̃εm + ε2uε1,m

)
+
(
−ε2ψεm + h1,ε

m + h2,ε
m

)(
x, t,

x

ε
,
t

ε2

)
,

where ψεm is given by (4.59), and by h1,ε
m and h2,ε

m we simply denoted the terms
so that we have the equalities above. Arguing similarly as with the proof of
Lemma 4.4.9, one can justify the well-definedness of hi,εm , for i = 1, 2, and
deduce that

∣∣hi,εm (x, t, y, s)
∣∣ ≤ C0

m+2∑
k=m+1

εk
∣∣∣W̃k(x, t, y, s)

∣∣∣ ≤ Cmε
m+1, (4.84)

for any 0 < ε ≤ 1
2
, where the second estimate follows from the observation

that wk ∈ S(2, ᾱ; k).
Hence, w̃εm + ε2uε1,m satisfies the interior equation of (4.82) with

rεm = ψεm − ε−2
(
h1,ε
m + h2,ε

m

)
,

and the estimate (4.83) of rεm follows from (4.60) and (4.84). This finishes
the proof.
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As a corollary to the above lemmas, we achieve the following.

Corollary 4.4.11. One has, for any 0 < ε ≤ 1
2
,∣∣uε(x, t)− ṽεm(x, t)− w̃εm(x, t)− ε2uε1,m(x, t)
∣∣ ≤ Cmε

m−1, (4.85)

for all x ∈ Rn and 0 ≤ t ≤ T . In addition,∣∣uε(x, t)− w̃#,ε
m (x, t)− ε2uε1,m(x, t)

∣∣ ≤ Cmε
m−1, (4.86)

for all x ∈ Rn and cmε
2| log ε| ≤ t ≤ T .

It is worthwhile to repeat that uε1,m is a solution to a homogenization
problem essentially of the same type with (4.1). Hence, we can iterate the
above arguments, provided that we can construct the higher order initial
layer correctors and interior correctors in a more general setting. Here we
shall only present the argument and skip the proof, since the main idea and
the computations are already shown in the proofs of Proposition 4.4.1 and
Proposition 4.4.5.

First comes the construction of higher order initial layer correctors.

Proposition 4.4.12. Assume that F verifies (4.6) - (4.8). Fix integers d ≥ 0
and m ≥ 2d. Let {Xd,k ∈ S(0, ᾱ; d, k)}∞k=0 be a sequence of Sn-valued, spa-

tially periodic mappings on Rn×[0, T ]×Rn×[0,∞), and {X#
d,k ∈ S(0, ᾱ; d, k)}∞k=0

be a sequence of Sn-valued periodic mappings on Rn × [0, T ] × Rn × R such
that Xd,k−X#

d,k ∈ E(0, ᾱ; d, k). Also let {gd,k ∈ S(2, ᾱ; d, k)}∞k=0 be a sequence
of periodic functions on Rn × Rn.

Then there exist a sequence {vd,k ∈ S(2, ᾱ; d, k)}∞k=0 of spatially periodic
functions on Rn × [0, T ]×Rn × [0,∞) and a sequence {v̄d,k ∈ S(d, k)}∞k=0 of
functions on Rn× [0, T ] such that vd,k− v̄d,k ∈ E(2, ᾱ; d, k) and the following
is true. Set

ṽεd,m(x, t) =
m−2d∑
k=0

εk
(
vd,k

(
x, t,

x

ε
,
t

ε2

)
− v̄d,k(x, t)

)
,

ḡεd,m(x) =
m−2d∑
k=0

εkv̄d,k(x, 0).
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Then ṽεd,m and ḡεd,m satisfy

∂tṽ
ε
d,m

=
1

ε2d+2
F

(
ε2d+2D2ṽεd,m +

m∑
k=0

εkXd,k, x, t,
x

ε
,
t

ε2

)

− 1

ε2d+2
F

(
m∑
k=0

εkXd,k, x, t,
x

ε
,
t

ε2

)
+ ψεd,m

(
x, t,

x

ε
,
t

ε2

) in Rn × (0, T ),

ṽεd,m(x, 0) + ḡεd,m(x) =
m−2d∑
k=0

εkgd,k

(
x,
x

ε

)
on Rn,

with some spatially periodic function ψεd,m verifying∣∣ψεd,m(x, t, y, s)
∣∣ ≤ Cd,mε

m−2d−1e−βd,ms,

for any 0 < ε ≤ 1
2
.

Remark 4.4.13. One may notice that Proposition 4.4.1 is simply the special
case with d = 0, and X0,k = X#

d,k = 0 for any k ≥ 0, g0,0 = g and g0,k = 0
for any k ≥ 1. Moreover, the new homogenization problem (4.79) falls under
the case d = 1, X1,k = Vk + Wk, X#

1,k = W#
k and g1,k(x, y) = ūk+2(x, 0) −

wk+2(x, 0, y, 0).

Next follows the construction of the higher order interior correctors.

Proposition 4.4.14. Assume that F verifies (4.6) - (4.8). Fix integers d ≥ 0
and m ≥ 2d. Let {Yd,k ∈ S(0, ᾱ; d, k)}∞k=0 be a sequence of Sn-valued, spatially

periodic mappings on Rn× [0, T ]×Rn× [0,∞), and {Y #
d,k ∈ S(0, ᾱ; d, k)}∞k=0

be a sequence of Sn-valued periodic mappings on Rn × [0, T ] × Rn × R such
that Yd,k − Y #

d,k ∈ E(2, ᾱ; d, k). Also let {ḡd,k ∈ S(d, k)}∞k=0 be a sequence of
functions on Rn.

Then there are a sequence {wd,k ∈ S(2, ᾱ; d, k)}∞k=0 of spatially periodic

functions on Rn× [0, T ]×Rn× [0,∞), a sequence {w#
d,k ∈ S(2, ᾱ; d, k)}∞k=0 of

periodic functions on Rn×[0, T ]×Rn×R, satisfying wd,k−w#
d,k ∈ E(2, ᾱ; d, k)

and wd,0 = wd,1 = w#
d,0 = w#

d,1 = 0, and a sequence {ūd,k ∈ S(d, k)}∞k=0 of
functions on Rn× [0, T ], satisfying ūd,k(·, 0) = ḡd,k, such that the following is
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true. Define

w̃εd,m(x, t) =
m−2d∑
k=0

εk
(
wd,k

(
x, t,

x

ε
,
t

ε2

)
+ ūd,k(x, t)

)
,

w̃#,ε
d,m(x, t) =

m−2d∑
k=0

εk
(
w#
d,k

(
x, t,

x

ε
,
t

ε2

)
+ ūd,k(x, t)

)
.

Then one has

∂tw̃
ε
d,m

=
1

ε2d+2
F

(
ε2d+2D2w̃εm +

m∑
k=0

εkYd,k, x, t,
x

ε
,
t

ε2

)

− 1

ε2d+2
F

(
m∑
k=0

εkYd,k, x, t,
x

ε
,
t

ε2

)
+ ψεd,m

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

and

∂tw̃
#,ε
d,m

=
1

ε2d+2
F

(
ε2d+2D2w̃#,ε

m +
m∑
k=0

εkY #
d,k, x, t,

x

ε
,
t

ε2

)

− 1

ε2d+2
F

(
m∑
k=0

εkY #
d,k, x, t,

x

ε
,
t

ε2

)
+ ψε,#d,m

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

with some spatially periodic function ψεd,m and some periodic function ψ#,ε
d,m

satisfying∣∣∣ψ#,ε
d,m(x, t, y, s)

∣∣∣+ eβd,ms
∣∣∣(ψεd,m − ψ#,ε

d,m)(x, t, y, s)
∣∣∣ ≤ Cd,mε

m−2d−1,

for any 0 < ε ≤ 1
2
.

Remark 4.4.15. Proposition 4.4.5 is the special case with d = 0, Y0,k = Vk
and Y #

d,k = 0.

Finally, we are ready to prove our main result.

Proof of Theorem 4.1.1. Since the case 2 ≤ m ≤ 3 is already proved in
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Corollary 4.4.11, we shall consider the case m ≥ 4 only.
Let us construct {Xd,k}∞k=0, {Xd,k}∞k=0, {gd,k}∞k=0, {Yd,k}∞k=0, {Y #

d,k}∞k=0 and
{ḡd,k}∞k=0, for d ≥ 1, as follows. For the initial case d = 1, take

X1,k = Vk +Wk, X#
1,k = W#

k ,

where Vk, Wk and W#
k are as in (4.46), (4.65) and respectively (4.66). Also

define
g1,k = −wk+2(·, 0, ·, 0),

with wk as in Lemma 4.4.10. One can see from above that {X1,k}∞k=0, {X#
1,k}∞k=0

and {g1,k}∞k=0 satisfy the assumption of Proposition 4.4.12 with d = 1.

Now let d ≥ 1 be any, and suppose that {Xd,k}∞k=0, {X#
d,k}∞k=0 and {gd,k}∞k=0

are already given as in Proposition 4.4.12. Then we obtain {vd,k}∞k=0 and
{v̄d,k}∞k=0 from which one can define, as in (4.46),

Vd,k =


D2
yvd,0, k = 0,

D2
yvd,1 +Dxyvd,0, k = 1,

D2
yvd,k +Dxyvd,k−1 +D2

x(vd,k−2 − v̄d,k−2), k ≥ 2,

and
ḡd,k = v̄d,k(·, 0).

Then we set, for k ≥ 0,

Yd,k =

{
Xd,k, 0 ≤ k ≤ 2d− 1,

Xd,k + Vd,k−2d, k ≥ 2d,

and
Y #
d,k = X#

d,k.

Then from the assumptions that Xd,k, X
#
d,k ∈ S(0, ᾱ; d, k) with Xd,k −X#

d,k ∈
E(0, ᾱ; d, k) and the observation that Vd,k ∈ E(0, ᾱ; d, k) it follows that

{Yd,k}∞k=0, {Y #
d,k}∞k=0 and {ḡd,k}∞k=0 defined as above satisfy the conditions

of Proposition 4.4.14. Thus, one obtains {wd,k}∞k=0, {w#
d,k}∞k=0 and {ūd,k}∞k=0

as in the proposition.
With such a choice of higher order interior correctors and effective limit
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profiles, we set

Wd,k =

{
0, k = 0, 1,

D2
ywd,k +Dxywd,k−1 +D2

x(wd,k−2 + ūd,k−2), k ≥ 2,

and its time-periodic version by

W#
d,k =

{
0, k = 0, 1,

D2
yw

#
d,k +Dxyw

#
d,k−1 +D2

x(w
#
d,k−2 + ūd,k−2), k ≥ 2.

Now define, for k ≥ 0,

Xd+1,k =

{
Yd,k, 0 ≤ k ≤ 2d+ 1,

Yd,k +Wd,k−2d, k ≥ 2d+ 2.

and respectively the time-periodic version by

X#
d+1,k =

{
Y #
d,k = X#

d,k, 0 ≤ k ≤ 2d+ 1,

Y #
d,k +W#

d,k−2d = X#
d,k +W#

d,k−2d, k ≥ 2d+ 2,

as well as the new oscillatory initial data by

gd+1,k = −wd,k+2(·, 0, ·, 0).

By means of wd,k ∈ S(2, ᾱ; d, k), w#
d,k ∈ S(2, ᾱ; d, k) with wd,k − w#

d,k ∈
E(2, ᾱ; d, k), ūd,k ∈ S(d, k) and the assumptions on Yd,k and Y #

d,k, one can

verify that {Xd+1,k}∞k=0, {X#
d+1,k}∞k=0 and {gd+1,k}∞k=0 also satisfy the assump-

tions of Proposition 4.4.12, which allows us to run an induction argument.
To this end, given m ≥ 4 and 1 ≤ d ≤ bm

2
c − 1, we obtain ṽεd,m, ḡεd,m

satisfying Proposition 4.4.12 (iii), and w̃εd,m, w̃#,ε
d,m satisfying Proposition 4.4.14

(iv). Following the arguments from Lemma 4.4.9 to Lemma 4.4.10, one can
prove, as in the conclusion of Corollary 4.4.11, that∣∣uεd,m(x, t)− ṽεd,m(x, t)− w̃εd,m(x, t)− ε2uεd+1,m(x, t)

∣∣ ≤ Cd,mε
m−1, (4.87)

for all x ∈ Rn and 0 ≤ t ≤ T , where we wrote by uεr,m for r ∈ {d, d + 1} by
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the bounded viscosity solution to

∂tu
ε
r,m =

1

ε2r+2
F

(
ε2r+2D2uεr,m +

m−2r∑
k=0

εkXr,k, x, t,
x

ε
,
t

ε2

)

− 1

ε2r+2
F

(
m−2r∑
k=0

εkXr,k, x, t,
x

ε
,
t

ε2

) in Rn × (0, T ),

uεr,m(x, 0) =
m−2r∑
k=0

εkgr,k

(
x,
x

ε

)
on Rn.

(4.88)
It also follows immediately from the exponential decay estimates of ṽεd,m
and w̃εd,m − w̃#

d,m, which can be deduced by vd,k − v̄d,k ∈ E(2, ᾱ; d, k) and

respectively wd,k − w#
d,k ∈ E(2, ᾱ; d, k) for all k ≥ 0, that∣∣∣uεd,m(x, t)− w̃#,ε

d,m(x, t)− ε2uεd+1,m(x, t)
∣∣∣ ≤ Cd,mε

m−1, (4.89)

for all x ∈ Rn and cd,mε
2| log ε| ≤ t ≤ T .

Finally, we add up (4.87) side by side for all 1 ≤ d ≤ bm
2
c−1 and combine

it with (4.85). This yields∣∣∣∣∣∣uε(x, t)−
bm

2
c−1∑

d=0

ε2d
(
ṽεd,m(x, t) + w̃εd,m(x, t)

)
− ε2bm

2
cuεbm

2
c(x, t)

∣∣∣∣∣∣ ≤ Cmε
m−1.

Since the governing operator of the initial value problem (4.88) for uεbm
2
c sat-

isfies the zero source term condition in the sense of (4.9), and the associated
initial data is bounded by some constant Cm, uεbm

2
c as the bounded viscosity

solution should also be bounded by the same constant Cm. Thus, we arrive at
the global higher order convergence rate (4.2), as desired. The error estimate
(4.3) away from the initial time layer can be derived similarly by adding
(4.86) with (4.89) side by side for all 1 ≤ d ≤ bm

2
c − 1. This completes the

proof.
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4.5 Further Observations

This section is devoted to making some further observations on the (higher
order) convergence rates for uniformly parabolic Cauchy problems. In Section
4.5.1, we obtain the higher order convergence rate for (4.4). In Section 4.5.2,
we achieve the optimal convergence rate for (4.5) under some additional
structure condition on the operator F and the initial data g.

4.5.1 Non-Oscillatory Initial Data and Higher Order
Convergence Rate

Based on the construction of the higher order correctors, we are able to
achieve the higher order convergence rate of the homogenization process of
the problem (4.4). The iteration argument is basically the same with the
proof of Theorem 4.1.1. The key difference here is that we begin with the
higher order error correction in the interior, not near the initial time layer.
This seems to be reasonable, since the initial data of (4.4) is not rapidly
oscillatory.

The construction of the higher order interior correctors for (4.4) is essen-
tially the same with Proposition 4.4.5, and has already been studied in the
authors’ previous work [34] in the framework of elliptic equations.

Proposition 4.5.1. Assume that F satisfies (4.6) - (4.8). Let {ḡk ∈ S(k)}∞k=0

be a sequence of functions on Rn. There exist a sequence {wk ∈ S(2, ᾱ; k)}∞k=0

of periodic functions on Rn× [0, T ]×Rn×R and a sequence {ūk ∈ S(k)}∞k=0

of functions on Rn × [0, T ] such that ūk(x, 0) = ḡk(x), w0 = w1 = 0, and the
following hold. Set

w̃εm(x, t) =
m∑
k=0

εk
(
wk

(
x, t,

x

ε
,
t

ε2

)
+ ūk(x, t)

)
.

Then one has

∂tw̃
ε
m = F

(
D2w̃εm, x, t,

x

ε
,
t

ε2

)
+ ψεm

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

with some periodic ψεm satisfying

|ψεm(x, t, y, s)| ≤ Cmε
m−1,
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for any 0 < ε ≤ 1
2
.

Proof. The main difference of the proof here from that of Proposition 4.4.5
is that the function ū0 in Lemma 4.4.8 is chosen by the solution to{

∂tū0 = F̄ (D2ū0, x, t) in Rn × (0, T ),

ū0(x, 0) = ḡ0(x) on Rn,

instead of a linear equation (5.81) for k = 0. It should be stressed that the
matrix corrector X and the effective coefficient Ā are chosen to be the same
as those in Section 4.4.2. We omit the rest of the proof to avoid redundant
arguments.

Equipped with Proposition 4.5.1 together with Proposition 4.4.1 and
Proposition 4.4.5, we are ready to state and prove the higher order con-
vergence rate regarding the homogenization problem of (4.4).

Proposition 4.5.2. Assume that F satisfies (4.6) - (4.8), and Let g ∈
C∞(Rn) be a function whose derivatives are bounded by K uniformly for all
orders. Under these assumptions, let uε be the bounded viscosity solution to
(4.4) for ε > 0. Then for each integer d ≥ 0, there exist sequences {ṽd,k}∞k=0,
{w̃d,k}∞k=0 of spatially periodic functions on Rn × [0, T ] × Rn × [0,∞) and a

sequence {w̃#
d,k}∞k=0 of periodic functions on Rn × [0, T ] × Rn × R such that

one has, for any m ≥ 2, any ε ≤ 1
2
, any x ∈ Rn and any 0 ≤ t ≤ T ,∣∣∣∣∣∣uε(x, t)−

bm
2
c−1∑

d=0

m−2d∑
k=0

εk+2d

(
ṽd,k

(
x, t,

x

ε
,
t

ε2

)
+ w̃d,k

(
x, t,

x

ε
,
t

ε2

))∣∣∣∣∣∣
≤ Cmε

m−1,

and in particular, for cmε
2| log ε| ≤ t ≤ T ,∣∣∣∣∣∣uε(x, t)−

bm
2
c−1∑

d=0

m−2d∑
k=0

εk+2dw̃#
d,k

(
x, t,

x

ε
,
t

ε2

)∣∣∣∣∣∣ ≤ Cmε
m−1,

where cm and Cm depend only on n, λ, Λ, α, m, T and K.

Proof. Let us fix m ≥ 2. Due to Proposition 4.5.1, we derive that for any
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0 < ε ≤ 1
2
, ∣∣uε(x, t)− w̃εm(x, t)− ε2uε0,m

∣∣ ≤ Cmε
m−1,

for any x ∈ Rn and any 0 ≤ t ≤ T , where uε0,m is the bounded viscosity

solution to to (4.88) for d = 0, X0,k = X#
0,k = Wk, with Wk given as in (4.65).

Thus, uε0,m falls under the setting of Proposition 4.4.12, and hence we may
proceed as in the proof of Theorem 4.1.1 and achieve the desired estimates.
This finishes the proof.

4.5.2 General Fully Nonlinear Problem and Conver-
gence Rate

Let us begin with a short overview the homogenization process of the prob-
lem (4.5), which can be found in [2] and [42]. First we make an additional
assumption on F that there is F∗ : Sn × Rn × [0, T ]× Rn × R for which

ε2F

(
1

ε2
P, x, t, y, s

)
→ F∗(P, x, t, y, s) as ε→ 0, (4.90)

locally uniformly for all (P, x, t, y, s) ∈ (Sn \{0})×Rn× [0, T ]×Rn×R. Here
F∗ is called the recession operator (corresponding to F ). It is clear from its
definition that F∗ also satisfies the conditions (4.6) - (4.7).

Following Lemma 4.3.1 and the comments above it, we obtain a (unique)
function v : Rn× [0, T ]×Rn× [0,∞)→ R such that v(x, t, ·, ·) is the spatially
periodic solution to{

vs = F∗(D
2
yv, x, t, y, s) in Rn × (0,∞),

v(x, t, y, 0) = g(y, x) on Rn.
(4.91)

for each (x, t) ∈ Rn × [0, T ]. Also it induces v̄ : Rn × [0, T ]→ R given by

v̄(x, t) = lim
s→∞

v(x, t, 0, s). (4.92)

On the other hand, let F̄ and w be defined as in the beginning of Section
4.3.2. Under these circumstances, the ε-problem (4.5) is homogenized to the

99



CHAPTER 4. CAUCHY PROBLEMS WITH OSCILLATORY INITIAL
DATA

following effective problem{
ūt = F̄ (D2ū, x, t) in Rn × (0, T ),

ū(x, 0) = ḡ(x) on Rn,
(4.93)

according to [2] and [42], in the sense that the viscosity solution uε of (4.5)
converges to the viscosity solution ū of (4.93) locally uniformly in Rn×(0, T ).

The following proposition gives the optimal rate of uε → ū under some
additional assumptions.

Proposition 4.5.3. Assume F and g verify (4.6) - (4.8) and (4.10) - (4.11).
Suppose that F∗ satisfies, with some 0 ≤ δ < 1,

|F (P, x, t, y, s)− F∗(P, x, t, y, s)| ≤ K|P |δ, (4.94)

and that v and v̄ satisfy the conclusion of Proposition 4.3.7. Under these
circumstances, let uε and ū be the viscosity solutions to (4.5) and, respectively,
(4.93). Then there are positive constants c and C, depending only on n, λ,
Λ, α, δ and K, such that for any 0 < ε ≤ 1

2
,

|uε(x, t)− ū(x, t)| ≤ Cεmin(1,2−2δ), (4.95)

for all x ∈ Rn and cε2| log ε| ≤ t ≤ T .

Remark 4.5.4. The inequality (4.94) implies that∣∣∣∣ε2F

(
1

ε2
P, x, t, y, s

)
− F∗(P, x, t, y, s)

∣∣∣∣ ≤ Kε2−2δ|P |δ, (4.96)

for any (P, x, t, y, s) ∈ Sn × Rn × [0, T ] × Rn × R. In comparison of (4.96)
with (4.95), we realize that the rate of uε → ū depends sensitively on the rate
of (4.90).

Remark 4.5.5. The second additional assumption that v and v̄ satisfy the
assertion of Proposition 4.3.7 has been made because this assumption fails
to hold for general F∗. The main reason is that nonlinear F∗ is Lipschitz
continuous (in the matrix variable P ) at best, which prevents us from hav-
ing Proposition 4.3.7. We shall provide some concrete example later in this
regard.
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Proof of Proposition 4.5.3. Throughout this proof, we will write by c and C
positive constants depending at most on n, λ, Λ, α, δ and K, and let them
vary from one line to another.

Define ṽε : Rn × [0, T ]→ R by

ṽε(x, t) = v

(
x, t,

x

ε
,
t

ε2

)
− v̄(x, t).

Since v and v̄ are assumed to satisfy (4.36) for all m ≥ 0, we observe that ṽε

is a (classical solution) to
ṽεt = F

(
D2ṽε, x, t,

x

ε
,
t

ε2

)
+ ψε

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

ṽε(x, 0) = g
(
x,
x

ε

)
− v̄(x, 0) on Rn,

with ψε : Rn × [0, T ]× Rn × [0,∞)→ R being defined by

ψε(x, t, y, s) = F∗
(
ε−2V0, x, t, y, s

)
− F

(
ε−2V0 + ε−1V1 + V2, x, t, y, s

)
,

where
V0 = D2

yv, V1 = Dxyv, V2 = D2
x(v − v̄).

One may notice that (4.36) implies that all V0, V1 and V2 satisfy the
exponential decay estimate. Thus, utilizing (4.94), we observe that∣∣F∗ (ε−2V0, x, t, y, s

)
− F

(
ε−2V0, x, t, y, s

)∣∣ ≤ Cε−2δe−δβs, (4.97)

for any (x, y, s) ∈ Rn × Rn × [0,∞) and any 0 < ε ≤ 1
2
. On the other hand,

we have from (4.6) that∣∣F (ε−2V0, x, t, y, s
)
− F

(
ε−2V0 + ε−1V1 + V2, x, t, y, s

)∣∣ ≤ Cε−1e−βs, (4.98)

for any (x, t, y, s) ∈ Rn× [0, T ]×Rn× [0,∞) and any 0 < ε ≤ 1
2
. Combining

(4.97) with (4.98), we arrive at

|ψε(x, t, y, s)| ≤ Cε−2δe−δβs,

for any (x, t, y, s) ∈ Rn × [0, T ]× Rn × [0,∞) and any 0 < ε ≤ 1
2
.

Thus, arguing analogously as in the proof of Lemma 4.4.9, with the
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bounded viscosity solution ũε of
ũεt =

1

ε2
F

(
D2ũε + ε−2V0x, t,

x

ε
,
t

ε2

)
− 1

ε2
F

(
ε−2V0, x, t,

x

ε
,
t

ε2

) in Rn × (0, T ),

ũε(x, 0) = ḡ(x) on Rn.

one has, for any 0 < ε ≤ 1
2
,

|uε(x, t)− ũε(x, t)| ≤ Cε2−2δ, (4.99)

for all x ∈ Rn and all cε2| log ε| ≤ t ≤ T .
On the other hand, we know that Proposition 4.3.12 is true under the

assumptions (4.6) - (4.8) on F . Hence, it follows from the estimate (4.40)
and the assumption (4.36), which holds also for ḡ, that the solution ū to
(4.93) satisfies ū ∈ C∞(Rn × [0, T ]) and∑

|µ|+2ν=l

|Dµ
x∂tū(x, t)| ≤ Cl, (4.100)

for any l ≥ 0. Now let w(x, t, ·, ·) be the unique periodic solution of{
ws = F

(
D2
yw +D2

xū(x, t), x, t, y, s
)
− F̄ (D2

xū(x, t), x, t) in Rn × R
w(x, t, 0, 0) = 0,

for each (x, t) ∈ Rn × [0, T ]. Due to Proposition 4.3.12 and (4.100), we have
w ∈ C∞(Rn × [0, T ];C2,α̂(Rn × R)), for any 0 < α̂ < ᾱ, and∑

|µ|+2ν=l

‖Dµ
x∂

ν
t w(x, t, ·, ·)‖C2,ᾱ(Rn×R) ≤ Cl,

for any l ≥ 0.
Therefore, arguing as above, we observe that the function w̃ε : Rn ×

[0, T ]→ R, defined by

w̃ε(x, t) = ū(x, t) + ε2w

(
x, t,

x

ε
,
t

ε2

)
,
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solvesw̃εt = F

(
D2w̃ε, x, t,

x

ε
,
t

ε2

)
+ ψε

(
x, t,

x

ε
,
t

ε2

)
in Rn × (0, T ),

w̃ε(x, 0) = ḡ(x) on Rn,

for some ψε : Rn × [0, T ]× Rn × R→ R satisfying

|ψε(x, t, y, s)| ≤ Cε,

for any (x, t, y, s) ∈ Rn × [0, T ]× Rn × R and any 0 < ε ≤ 1
2
.

Now we may proceed as in the proof of Lemma 4.4.10 and deduce that∣∣∣∣uε(x, t)− w̃ε(x, t, xε , tε2

)
− ε2uε1(x, t)

∣∣∣∣ ≤ Cε, (4.101)

for all x ∈ Rn and all 0 ≤ t ≤ T , provided 0 < ε ≤ 1
2
, where uε1 is the

bounded viscosity solution of (4.79); we would like to focus on the fact that
the governing operator of (4.79) has zero source term in the sense of (4.9),
and the initial data of (4.79) is bounded. Thus, uε1 is bounded globally, espe-
cially independent of ε. Finally, the error estimate (4.95) can be deduced by
combining (4.99) and (4.101).

Let us finish this subsection with an example that reveals that the as-
sumptions of Proposition 4.5.3 are satisfied for certain F and g.

Example 4.5.6. Let F∗ be independent of (x, t, y, s) and satisfy F∗(P ) <
−F∗(−P ) for any nonzero matrix P ∈ Sn. For instance, one may take F∗
by Pucci’s minimal operator for the lower ellipticity bound λ′ > λ and the
upper ellipticity bound Λ′ < Λ. On the other hand, let g be given by g(x, y) =
ψ(x)φ(y) on Rn × Rn, with φ being a smooth periodic function and ψ being
a smooth bounded function.

Let us write by F−(P ) and F+(P ) the functionals F∗(P ) and, respectively,
−F∗(−P ), and consider the spatially periodic Cauchy problem,{

∂sv± = F±(D2
yv±) in Rn × (0,∞),

v±(y, 0) = φ(y) on Rn.

According to Lemma 4.3.1, there are unique real numbers γ+ and γ− such that
γ± = lims→∞ v±(0, s). Notice that v± ∈ C2,α for some 0 < α < 1 depending
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only on n, λ and Λ, owing to the convexity of F+ and the concavity of F−.
Let us observe that γ+ > γ−. First it follows from the comparison prin-

ciple that v+ > v− in Rn × (0,∞), which implies γ+ ≥ γ−. Moreover, since
F+(P ) > F−(P ) for any nonzero P ∈ Sn, the function w = v+ − v− solves

∂s(v+ − v−) ≥ tr(A(y, s)D2
y(v+ − v−)) in Rn × (0,∞),

where A is the linearized coefficient associated with F+. This implies that
the function W (s) = minRn(v+(·, s) − v−(·, s)) is non-decreasing for s > 0,
whence we have γ+ > γ−.

Now let v be the solution to (4.91). Then the uniqueness of v implies
that v(x, y, s) = ψ(x)v−(y, s) if ψ(x) ≥ 0 and v(x, y, s) = ψ(x)v+(y, s) if
ψ(x) ≤ 0. This also implies that the function v̄ defined by (4.92) satisfies
v̄(x) = γ+ψ(x) if ψ(x) ≥ 0 and v̄(x) = γ−ψ(x) if ψ(x) ≤ 0.

This implies that if ψ changes sign at some point, then v and v̄ are not
even differentiable at that point. On the other hand, we have v and v̄ satis-
fying the conclusion of Proposition 4.3.7, provided that ψ is either uniformly
positive or uniformly negative.
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Chapter 5

Higher Order Convergence
Rates in Theory of
Homogenization: Viscous
Hamilton-Jaboci Equations

5.1 Introduction

This paper concerns the higher order convergence rates of the homogenization
of viscous Hamilton-Jacobi equations. The model problem is of the form,uεt − ε tr

(
A
(x
ε

)
D2uε

)
+H

(
Duε,

x

ε

)
= 0 in Rn × (0,∞),

uε = g on Rn × {t = 0}.
(5.1)

Here the diffusion matrix A is periodic and uniformly elliptic, and the Hamil-
tonian H is periodic in the spatial variable while it is convex and grows
quadratically in the gradient variable. The initial data g will be chosen to
have smooth solutions for the effective Hamilton-Jacobi equation. At the
end of this paper, we shall extend the result to the fully nonlinear, viscous
Hamilton-Jacobi equation in the form ofuεt +H

(
εD2uε, Duε,

x

ε

)
= 0 in Rn × (0,∞),

uε = g on Rn × {t = 0}.
(5.2)
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This paper is in the sequel of the authors’ previous works [34] and [35],
where the higher order convergence rates were achieved in the periodic ho-
mogenization of fully nonlinear, uniformly elliptic and parabolic, second or-
der PDEs. We found it interesting in the previous works that even if we
begin with a nonlinear PDE at the first order approximation, we no longer
encounter such a nonlinear structure in the second and the higher order ap-
proximations. Instead, we always obtain a linear PDE with an external source
term, which can be interpreted as the nonlinear effect coming from the error
that is left undetected in the previous step of the approximation.

The previous papers were concerned with uniformly elliptic (or parabolic)
PDEs that are nonlinear in the second order derivatives, where the nonlinear
perturbation is still made in the same order of the linear structure. A key
difference in the current paper is that we impose a nonlinear structure (in the
gradient term) that has quadratic growth at the infinity, so that this nonlin-
earity cannot be attained by order 1 perturbations of a linear structure. We
believe that the quadratic growth condition can be generalized to superlinear
growth condition, only if the solution of the corresponding effective problem
is smooth enough.

Another interesting fact we found in studying Hamilton-Jacobi equations
is that the geometric shape of the initial data turns out to play an impor-
tant role in achieving higher order convergence rates. In particular, what we
observe in this paper is that the geometric shape of the initial data has to
be selected according to the nonlinear structure of the effective Hamiltonian,
which to the best of our knowledge has not yet been addressed in any exist-
ing literature. The main reason for this requirement is to ensure the solution
of the effective problem to be sufficiently smooth such that one can proceed
with the approximation as much as one desires.

In this paper, we establish higher order convergence rates when the initial
data is convex, while the Hamiltonian is convex. However, a natural question
is if one can generalize one of these structure conditions, which seems to be
an interesting yet challenging problem. We shall come back to this in the
forthcoming paper.

The periodic homogenization of (viscous) Hamilton-Jacobi equations is by
now considered to be standard, and one may consult the classical materials
[21] and [39] for a rigorous justification. For the notion of viscosity solutions
and the standard theory in this framework we refer to [9] and [20].

For the recent development in the rate of convergence in periodic ho-
mogenization of (viscous) Hamilton-Jacobi equations, we refer to [14], [17],
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[43], [47] and the references therein. Nevertheless, this is the first work on
the higher order convergence rates in the regime of (viscous) Hamilton-Jacobi
equations. For the higher order convergence rates for other type of equations,
we refer to [34], [35] and the references therein.

The paper is organized as follows. In Section 5.2, we introduce basic no-
tation used throughout this paper, and list up the standing assumptions
regarding the main problem (5.1). From Section 5.3 to Section 5.5, we are
concerned with the homogenization problem of (5.1). In Section 5.3, we sum-
marize some standard results on the cell problem and the effective Hamilto-
nian. In Section 5.4, we establish the regularity theory of interior correctors
in the slow variable. Based on this regularity theory, we construct the higher
order interior correctors in Section 5.5 and prove Theorem 5.5.6, which is
the first main result. Finally in Section 5.6, we generalize this result to the
homogenization of (5.2), and prove Theorem 5.6.6, which is the second main
result.

5.2 Notation and Standing Assumptions

Throughout the paper, we set n ≥ 1 to be the spatial dimension. The param-
eters λ, Λ, α, α′, β, β′, K, L, and µ̄ will be fixed positive constants, unless
stated otherwise. By Zn we denote the space of n-tuple of integers. By Sn
we denote the space of all symmetric n× n matrices.

Definition 5.2.1. Given k, l ≥ 0 integers, 0 < µ ≤ 1 real number, X and Y
metric spaces, we define C l(X;Ck,µ(Y )) by the space of functions f = f(x, y)
on X × Y satisfying the following.

(i) f(·, y) ∈ C l(X) for all y ∈ Y .

(ii) {Dm
x f(x, ·)}x∈X is uniformly bounded in Ck,µ(Y ) for any 0 ≤ m ≤ l.

(iii) Given any sequence xk → x in X, one has Dm
x f(xk, ·) → Dm

x f(x, ·) in
Ck,µ(Y ) for any 0 ≤ m ≤ l.

From Section 5.3 to Section 5.5, we study the higher order convergence
rates in homogenization of (5.1). Throughout these sections, we assume that
the diffusion matrix A satisfies the following, for any y ∈ Rn.

(i) A is periodic:
A(y + k) = A(y). (5.3)
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(ii) A is uniformly elliptic:

λI ≤ A(y) ≤ ΛI. (5.4)

(iii) A ∈ C0,1(Rn) and
‖A‖C0,1(Rn) ≤ K. (5.5)

On the other hand, we shall assume that the Hamiltonian H verifies the
following, for any (p, y) ∈ Rn × Rn.

(i) H is periodic in y:
H(p, y + k) = H(p, y), (5.6)

for any k ∈ Zn.

(ii) H has quadratic growth in p:

α|p|2 − α′ ≤ H(p, y) ≤ β|p|2 + β′. (5.7)

(iii) H is convex in p:

H(tp+ (1− t)q, y) ≤ tH(p, y) + (1− t)H(q, y), (5.8)

for any 0 ≤ t ≤ 1 and any q ∈ Rn.

(iv) H ∈ C∞(Rn;C0,1(Rn)) andwwDk
pH(p, ·)

ww
C0,1(Rn)

≤ K
(
1 + |p|(2−k)+

)
, (5.9)

for any nonnegative integer k.

The assumptions on the initial data g will be given in the beginning of
Section 5.5, since we need to derive the effective Hamiltonian beforehand.
On the other hand, the structure conditions for (5.2) will be given in the
beginning of Section 5.6.

5.3 Preliminaries

Let us begin with the well-known cell problem for our model equation (5.1),
stated as below. This lemma is by now considered to be standard (for in-
stance, see [21] and [22]), since the diffusion coefficient A is uniformly elliptic
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and the Hamiltonian H is convex. Nevertheless, we shall present a proof for
the reader’s convenience.

Lemma 5.3.1. For each p ∈ Rn, there exists a unique real number, γ, for
which the following PDE,

− tr(A(y)D2w) +H(Dw + p, y) = γ in Rn, (5.10)

has a periodic viscosity solution w ∈ C2,µ(Rn) for any 0 < µ < 1. Moreover,
we have

α|p|2 − α′ ≤ γ ≤ β|p|2 + β′. (5.11)

Furthermore, a periodic solution w of (5.10) is unique up to an additive
constant, and satisfies

‖w − w(0)‖L∞(Rn) + ‖Dw‖C1,µ(Rn) ≤ C|p|, (5.12)

where C > 0 depends only on n, λ, Λ, α, α′, β, β′, K, µ and |p|.

We shall divide the proof into two steps. The first step concerns the
approximating problem and a uniform Lipschitz estimate.

Lemma 5.3.2. For each p ∈ Rn and δ > 0, there exists a unique periodic
viscosity solution wδ ∈ C0,1(Rn) to

− tr(A(y)D2wδ) +H(Dwδ + p, y) + δwδ = 0 in Rn, (5.13)

which satisfies

−β|p|2 − β′ ≤ δ
wwwδww

L∞(Rn)
≤ −α|p|2 + α′, (5.14)

and a uniform Lipschitz estimatewwDwδww
L∞(Rn)

≤ C(1 + |p|), (5.15)

where C > 0 depends only on λ, Λ, α, α′ and K.

Proof. Due to (5.7), we know that −δ(α|p|2 − α′) and −δ(β|p|2 + β′) are a
supersolution and, respectively, a subsolution of (5.13). Thus, the comparison
principle yields a unique viscosity solution, wδ, of (5.13), satisfying (5.14).
The uniqueness of wδ implies its periodicity, that is, wδ(y + k) = wδ(y) for
all y ∈ Rn and all k ∈ Zn.
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Hence, we are only left with proving the uniform Lipschitz estimate (5.15).
We shall show it first under the claim that wδ ∈ C3(Rn), and then justify
this claim at the end of the proof.

Under the assumption that wδ ∈ C3(Rn), let us differentiate (5.13) in y
and take the inner product with Dw, which yields a uniformly elliptic PDE
for the function v = |Dwδ|2,

−2 tr(A(y)[D2wδ(y)]2)−tr(A(y)D2v)+B(y) ·Dv+2E(y) ·Dwδ(y)+2δv = 0,
(5.16)

in Rn, where B(y) = DpH(Dwδ(y) + p, y) and E(y) = DyH(Dwδ(y) + p, y).
Since v is periodic and continuous, v achieves a global maximum at some

point y0 ∈ Rn. Denote

M = D2wδ(y0) and q = Dwδ(y0).

Then it follows from (5.16) that

− tr(A(y0)M2) + E(y0) · q ≤ 0. (5.17)

However, due to the ellipticity condition (5.4), we have

− tr(A(y0)M2) ≥ λ|M |2. (5.18)

On the other hand, it follows from the regularity assumption (5.9) that

|E(y0)| ≤ K(1 + |M |+ |p+ q|2). (5.19)

Inserting (5.18) and (5.19) into (5.17), we obtain

|M |2 ≤ K

λ
(1 + |M |+ |p+ q|2)|q|. (5.20)

By means of Young’s inequality ab ≤ εa2 + 1
4ε
b2, one may continue with the

estimation in (5.20) as

|M |2 ≤ C1(1 + |q|+ |q|2 + |p|2)|q|,

where C1 depends only on λ and K.
Let us return to (5.13). Due to (5.4), (5.7) and (5.14), the PDE (5.13)
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evaluated at y0 becomes

α|q+p|2−α′ ≤ H(q+p, y0) = tr(A(y0)M)−δw(y0) ≤ Λ|M |+β|p|+β′. (5.21)

After some manipulation using Young’s inequality and (5.21), we obtain that

|q|2 ≤ C2

(
1 + |p|2

)
+ C1

√
(1 + |q|+ |q|2)|q|, (5.22)

where C2 > 0 depends only on n, λ, Λ, α, α′, β and β′.
Let C3 > 0 be such that

(1 + t+ t2)t ≤ 1

4C1

t4 for all t ≥ C3,

in which case C3 depends only on C1, whence on λ and K only. Then we
conclude from (5.22) that

|q|2 ≤ max
{

2C2(1 + |p|2), C2
3

}
≤ C4(1 + |p|2),

where C4 = max{2C2, C
2
3}, proving the uniform Lipschitz estimate (5.15).

Thus, we are left with proving that any viscosity solution wδ of (5.13)
belongs to the class C3(Rn). As a matter of fact, it is sufficient to show that
any such viscosity solution belongs to the class C2,µ(Rn), for some 0 < µ < 1,
since improving the regularity from C2,µ to C3 follows immediately from a
bootstrap argument; for instance, see Theorem 2.2.9.

By means of the weak Bernstein method [6], we know at least that wδ

is locally Lipschitz in Rn. Thus, for each ball BR, w can be viewed as the
viscosity solution of

tr(A(y)D2wδ) = f(y),

with f = −H(Dwδ + p, ·) + δwδ ∈ L∞(BR). Hence, it follows from the C1,µ

estimate (Theorem 2.2.7 (a)) that w ∈ C1,µ
loc (BR/2) for some 0 < µ < 1.

Thus, f ∈ Cµ(BR/2), and under assumption (ii) on H in this lemma, we can
apply the C2,ν estimate (Theorem 2.2.7 (b)) and obtain wδ ∈ C2,ν(BR/4) for
some 0 < ν < min{µ, µ̄}. Since this holds for any R > 0, we conclude that
wδ ∈ C2,ν

loc (Rn), from which one can improve the regularity (Theorem 2.2.9)
so that w ∈ C3(Rn). This finishes the proof.

With the uniform Lipschitz estimate for the approximating solution wδ,
we can finish the proof of Lemma 5.3.1.
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Proof of Lemma 5.3.1. Throughout the proof, C|p| will denote a positive,
generic constant that depends at most on n, λ, Λ, α, α′, β, β′, K, µ and
|p|, unless stated otherwise. Moreover, we shall fix 0 < µ < 1.

Let p ∈ Rn be given. We know a priori that periodic viscosity solutions
of (5.10), if any, are unique up to an additive constant. Suppose that w′ is
another periodic viscosity solution of (5.10). Then v = w − w′ satisfies the
following linearized equation,

− tr(A(y)D2v) +B(y) ·Dv = 0 in Rn,

where B(y) =
∫ 1

0
DpH(tDyw+ (1− t)Dyw

′+ p, y)dt. Now that v is bounded,
we deduce from the Liouville theorem that v is a constant function on Rn.

Henceforth, we prove the existence of a unique real number, γ, such that
the cell problem (5.10) admits a periodic viscosity solution. Let wδ ∈ C0,1(Rn)
be the unique periodic viscosity solution of (5.13), satisfying (5.14) and the
uniform Lipschitz estimate (5.15).

By periodicity and (5.15), we have oscRn w
δ ≤ C(1 + |p|). This also yields

that wδ − wδ(0) ∈ C0,1(Rn) andwwwδ − wδ(0)
ww
L∞(Rn)

+
wwDwδww

L∞(Rn)
≤ C(1 + |p|).

Due to (5.7), (5.14) and (5.15), we know thatwwH(Dwδ + p, ·) + δwδ
ww
L∞(Rn)

≤ C(1 + |p|)2.

Considering the second and the third terms on the left hand side of (5.13)
as an external force, we may apply the interior C1,µ estimate (Theorem 2.2.7
(a)) in a ball such that the concentric ball with half the radius contains the
periodic cell, and then use the periodicity of wδ to derive that wδ − wδ(0) ∈
C1,µ(Rn) and wwwδ − wδ(0)

ww
L∞(Rn)

+
[
Dwδ

]
Cµ(Rn)

≤ C|p|.

Now the C1,µ regularity of wδ yields thatwwH(Dwδ + p, ·) + δwδ
ww
Cµ(Rn)

≤ C|p|.

Hence, it follows from the interior C2,µ estimates (Theorem 2.2.7 (b)) (again
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we choose a large ball containing the periodic cell, as we did when applying
the interior C1,µ estimates) and the periodicity of wδ that wδ − wδ(0) ∈
C2,µ(Rn) and wwwδ − wδ(0)

ww
L∞(Rn)

+
wwDwδww

C1,µ(Rn)
≤ C|p|. (5.23)

Due to the compactness of both of the sequences {wδ − wδ(0)}δ>0 and
{−δwδ}δ>0 in C2,µ(Rn), we know that wδ − wδ(0) → w and −δwδ → γ in
C2,µ′(Rn), for any 0 < µ′ < µ, for some w ∈ C2,µ(Rn) and some γ ∈ R, along
a subsequence. Now that viscosity solutions are stable under the uniform
convergence, we know that w is a viscosity solution of (5.10) with the limit
γ on the right hand side. This proves the existence part of Lemma 5.3.1.

To investigate the uniqueness of γ, we suppose towards a contradiction
that there is another real number γ′, corresponding to the same p, such that
(5.10) has a periodic viscosity solution, say w′. Without losing any generality,
let us assume γ > γ′. Then it is easy to see that w′ is a strict subsolution
of (5.10). However, due to the periodicity of w′ − w, w′ − w attains a local
maximum at some point, whence we arrive at a contradiction. Thus, γ must
be unique.

The inequality (5.11) follows immediately from the inequality (5.14) and
the fact that −δwδ → γ uniformly in Rn. To see that the estimate (5.12)
holds, we first observe from the convergence of wδ−wδ(0)→ w in C2,µ′(Rn),
for any 0 < µ′ < µ, and the estimate (5.23) that w ∈ C2,µ(Rn) and satisfies
(5.12). Note that we used w(0) = 0, which follows from the construction
of w. Now if w′ is another periodic viscosity solution of (5.24), then due to
the uniqueness that we have shown in the beginning of this proof, we have
w′ − w′(0) = w. Therefore, w′ satisfies (5.12), which completes the proof of
this lemma.

Due to the uniqueness of γ in Lemma 5.3.1, we may define a functional
H̄ : Rn → R in such a way that for each p ∈ Rn, H̄(p) is the unique real
number for which the following PDE,

− tr(A(y)D2w) +H(Dw + p, y) = H̄(p) in Rn, (5.24)

has a periodic solution in C2,µ(Rn) (for any 0 < µ < 1). Moreover, the second
part of Lemma 5.3.1 yields a functional w : Rn ×Rn → R such that for each
p ∈ Rn, w(p, ·) ∈ C2,µ(Rn) (for any 0 < µ < 1) is the unique periodic
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viscosity solution of (5.24) that is normalized so as to satisfy

w(p, 0) = 0. (5.25)

Let us list up some basic properties of H̄ that were already found in [22].
We provide the proof for the sake of completeness.

Lemma 5.3.3. H̄ satisfies the following properties.

(i) H̄ has the same quadratic growth as that of H:

α|p|2 − α′ ≤ H̄(p) ≤ β|p|2 + β′, (5.26)

for any p ∈ Rn.

(ii) H̄ is also convex:

H̄(tp+ (1− t)q) ≤ tH̄(p) + (1− t)H̄(q), (5.27)

for any 0 ≤ t ≤ 1, and any p, q ∈ Rn.

(iii) H̄ ∈ C0,1
loc (Rn) and

|H̄(p)− H̄(q)| ≤ C(1 + |p|+ |q|)|p− q|, (5.28)

where C > 0 depends only on n, λ, Λ, α, α′, β, β′ and K.

Proof. Notice that (5.26) follows immediately from (5.11) and (5.24). Thus,
we shall only prove (ii) and (iii).

For the notational convenience, let us write wp(y) = w(p, y). To prove
(5.27), we assume to the contrary that there are some p, q ∈ Rn and 0 < t < 1
such that

tH̄(p) + (1− t)H̄(q) < H̄(tp+ (1− t)q). (5.29)

For the notational convenience, let us write r = tp + (1 − t)q and w̃r =
twp + (1− t)wq. Then due to (5.29) and (5.8), one can easily deduce that w̃r
is a periodic viscosity solution of

− tr(A(y)D2w̃r) +H(Dw̃r + r, y) < H̄(r) in Rn.

In other words, w̃r is a strict viscosity subsolution of the PDE for wr which
is precisely the cell problem (5.10) with p = r. Therefore, it follows from the
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comparison principle that w̃r − wr cannot attain any local maximum. How-
ever, as w̃r −wr being a non-constant continuous periodic function, it surely
attains local maximum at some point, whence we arrive at a contradiction.
Therefore, we must have (5.27) for any 0 ≤ t ≤ 1 and any p, q ∈ Rn.

Finally let us prove (5.28). To do so, we go back to the penalized problem
(5.13). Analogous with the notation wp, let us denote by wδp the unique
viscosity solution of (5.13) corresponding to p. Due to the uniform gradient
estimate (5.15) and the regularity assumption (5.9), we have

|H(Dwδp + p, y)−H(Dwδp + q, y)| ≤ C(1 + |p|+ |q|)|p− q|,

where C > 0 depends only on n, λ, Λ, α, α′, β, β′ and K. Therefore, we have

− tr(A(y)D2wδp) +H(Dwδp + q, y) + δwδp ≤ C(1 + |p|+ |q|)|p− q| in Rn,

in the viscosity sense. In other words, wδp − δ−1C(1 + |p| + |q|)|p − q| is a
viscosity subsolution of (5.13) with p replaced by q. Hence, it follows from
the comparison principle that

δwδp − δwδq ≤ C(1 + |p|+ |q|)|p− q|,

on Rn. Passing to the limit δ → 0 in the last inequality, we arrive at

H̄(p)− H̄(q) ≤ C(1 + |p|+ |q|)|p− q|

Similarly, one may also obtain that

H̄(q)− H̄(p) ≤ C(1 + |p|+ |q|)|p− q|,

proving (5.28). This completes the proof of Lemma 5.3.3.

5.4 Regularity in Slow Variables

In this section, we shall investigate the regularity of H̄ and w in the slow
variable p. Such a regularity has been established in the authors’ previous
works [34] and [35], for fully nonlinear elliptic and, respectively, parabolic
PDEs. Let us first observe the continuity of w in p variable.
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Lemma 5.4.1. w ∈ C(Rn;C2,µ(Rn)), for any 0 < µ < 1, and given L > 0
and p ∈ BL, one has

‖w(p, ·)‖L∞(Rn) + ‖Dyw(p, ·)‖C1,µ(Rn) ≤ CL (5.30)

where C > 0 depends only on n, λ, Λ, α, α′, β, β′, K, µ and L.

Proof. Let us fix 0 < µ < 1. The estimate (5.30) follows immediately from
(5.12) and the choice of w that w(p, 0) = 0. Thus, we prove that w is contin-
uous in p variable with respect to the C2,µ norm in y variable.

Let {pk}∞k=1 be a sequence of vectors in Rn converging to some p0 ∈ Rn as
k → ∞. Let us write, for the notational convenience, wk(y) = w(pk, y) and
γk = H̄(pk) for k = 0, 1, 2, · · · . We already know from (5.28) that γk → γ0 as
k →∞. Hence, it suffices to prove that wk → w0 in C2,µ′(Rn) as k →∞, for
any 0 < µ′ < µ.

Due to (5.30), we know that {wk}∞k=1 is uniformly bounded in C2,µ(Rn),
for any 0 < µ < 1. Now that wk is periodic for all k = 1, 2, ·, s, the Arzela-
Ascoli theorem yields that for any subsequence {vk}∞k=1 ⊂ {wk}∞k=1 there are
a further subsequence {vki}∞i=1 and a periodic function v ∈ C2,µ(Rn) such
that vki → v in C2,µ(Rn), for any 0 < µ < 1, as i → ∞. Now that pki → p0

and γki → γ0 as i → ∞, we deduce from the stability of viscosity solutions
that v and γ0 satisfies

− tr(A(y)D2v) +H(Dv + p0, y) = γ0 in Rn.

Since v(0) = 0, the second part of Lemma 5.3.1 implies that v = w0. This
shows that any subsequence of {wk}∞k=1 contains a further subsequence that
converges to w0 in C2,µ′(Rn), for any 0 < µ′ < µ. Moreover, we know from
v ∈ C2,µ(Rn) that w0 ∈ C2,µ(Rn) as well. Therefore, wk → w0 in C2,µ′(Rn),
for any 0 < µ′ < µ as k →∞, which completes the proof in view of Definition
5.2.1.

Next we prove that H̄ and w are continuously differentiable in p.

Lemma 5.4.2. H̄ ∈ C1(Rn) and

|DpH̄(p)| ≤ C(1 + |p|),

where C > 0 depends only on n, λ, Λ, α, α′, β, β′ and K. Moreover, w ∈
C1(Rn;C2,µ(Rn)), for any 0 < µ < 1, such that for any L > 0 and any
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p ∈ BL,
‖Dpw(p, ·)‖C2,µ(Rn) ≤ CL,

where CL > 0 depends only on n, λ, Λ, α, α′, β, β′, K, µ and L.

Proof. Let us fix 0 < µ < 1. Throughout this proof, we shall write by CL a
positive constant depending at most on n, λ, Λ, α, α′, β, β′, K, µ and L. We
will also let it differ from one line to another, unless stated otherwise.

Fix L > 0, p ∈ BL, 0 < µ < 1 and 1 ≤ k ≤ n. Write wh(y) = w(p+hek, y)
and γh = H̄(p + hek) for any h ∈ R with |h| ≤ 1. Also write Wh(y) =
h−1(wh(y) − w0(y)), and Γh = h−1(γh − γ0). Then Wh turns out to be a
periodic viscosity solution to

− tr(A(y)D2Wh) +Bh(y) · (DWh + ek) = Γh in Rn, (5.31)

where

Bh(y) =

∫ 1

0

DpH(tDywh + (1− t)Dyw0 + p+ the, y)dt.

It follows from (5.30) and (5.9) that Bh ∈ Cµ(Rn) and

‖Bh‖Cµ(Rn) ≤ CL, (5.32)

for any h ∈ R with 0 < |h| ≤ L − |p|; recall from p ∈ BL that L − |p| > 0.
Moreover, we know from (5.28) that

|Γh| ≤ C0(1 + |p|), (5.33)

for any h ∈ R with 0 < |h| ≤ L − |p|, where C0 > 0 depends only on n, α,
α′, β, β′ and K.

One may notice that (5.31) belongs to the same class of (5.37), whence
it follows from Lemma 5.4.3 below that Wh ∈ C2,µ(Rn) and

‖Wh‖C2,µ(Rn) ≤ CL, (5.34)

for any h ∈ R with 0 < |h| ≤ L− |p|. On the other hand, from the fact that
Lemma 5.4.1 implies Dwh → Dw0 in C1,µ(Rn), we know that Bh → B0 in
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Cµ(Rn), where B0 is defined by

B0(y) = DpH(Dyw0 + p, y).

As with the estimate (5.32), we also know that

‖B0‖Cµ(Rn) ≤ CL.

According to the Arzela-Ascoli theorem, there is some W0 ∈ C2,µ(Rn)
such that Wh → W0 in C2,µ′(Rn) for any 0 < µ′ < µ, along a subsequence.
Moreover, we may choose Γ0 ∈ R such that Γh → Γ0 along a further subse-
quence. Then by the stability of viscosity solutions, W0 becomes a periodic
solution to

− tr(A(y)D2W0) +B0(y) · (DyW0 + ek) = Γ0 in Rn. (5.35)

Let us remark that the convergence Γh → Γ0 along a subsequence implies

|Γ0| ≤ C0(1 + |p|), (5.36)

where C0 is the same constant chosen in (5.33).
Now that (5.35) belongs to the same class of (5.37), it follows from

Lemma 5.4.3 below that Γ0 is unique. From the uniqueness of the limit Γ0,
we infer that Γh → Γ0 without extracting any subsequence. By definition,
Γ0 = DpkH̄(p). The estimate on DpH̄(p) in Lemma 5.4.2 now follows from
(5.36).

Moreover, since any limit W0 of {Wh}0<|h|≤1 satisfies W0(0) = 0, we also
have from the last part of Lemma 5.4.3 below that W0 is unique, and belongs
to C2,µ(Rn), with the estimate

‖W0‖C2,µ(Rn) ≤ CL.

Owing to the uniqueness of the limit W0, we conclude that Wh → W0 in
C2,µ′(Rn) along the full sequence, which implies that W0 = Dpkw(p, ·).

The continuity of DpkH̄ and Dpkw in variable p can be proved similarly
as in the proof of Lemma 5.4.1. To avoid repeating arguments, we omit the
details and leave this part to the reader.

Lemma 5.4.3. Let B ∈ Cµ(Rn) be a periodic, vector-valued mapping. Then
for each p ∈ Rn, there exists a unique real number, γ, for which the following
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PDE,
− tr(A(y)D2v) +B(y) · (Dv + p) = γ in Rn, (5.37)

admits a periodic viscosity solution v ∈ C2,µ(Rn). Moreover, γ satisfies

|γ| ≤ |p| ‖B‖L∞(Rn) .

Furthermore, a periodic viscosity solution v of (5.37) is unique up to an
additive constant, and satisfies

‖v − v(0)‖C2,µ(Rn) ≤ C|p|,

where C > 0 depends only on n, λ, Λ, µ and ‖B‖Cµ(Rn).

Proof. The proof is essentially the same with that of Lemma 5.3.1, and hence
it is omitted.

In what follows, let us write B̄(p) = DpH̄(p), v(p, y) = Dpw(p, y) and

B(p, y) = DpH(Dyw(p, y) + p, y). (5.38)

In view of the proof of Lemma 5.4.2, we may understand B̄(p) as the unique
real vector in Rn for which the following (decoupled) system,

− tr(A(y)D2v) +B(p, y) · (Dyv + I) = B̄(p), (5.39)

has a periodic viscosity solution, where I is the identity matrix in Sn. More-
over, v(p, ·) can be considered as the unique periodic viscosity solution of
(5.39) such that

v(p, 0) = 0. (5.40)

It is remarkable that after linearization in (5.10), we end up with a cell
problem whose gradient part has a linear growth, as shown in (5.39). More-
over, one may expect that the linear structure of the “new” cell problem
(5.39) will be preserved throughout the linearization we do in the future to
obtain higher regularity of H̄ and w in p. This is the brief idea behind the
proof of the following proposition. One may find a similar proposition for
uniformly elliptic, fully nonlinear PDEs in the authors’ previous work [34]
and [35].
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Lemma 5.4.4. H̄ ∈ C∞(Rn) and w ∈ C∞(Rn;C2,µ(Rn)), for any 0 < µ < 1,
such that for any k = 0, 1, 2, · · · , any L > 0 and any p ∈ BL,∣∣Dk

pH̄(p)
∣∣+
wwDk

pw(p, ·)
ww
C2,µ(Rn)

≤ Ck,L, (5.41)

where Ck,L > 0 depends only on n, λ, Λ, α, α′, β, β′, K, µ, k and L.

Proof. We follow the proof of Lemma 5.4.2. Due to Lemma 5.4.2 and the
regularity assumption (5.9), we already know that B ∈ C1(Rn;C1,µ(Rn)), for
any 0 < µ < 1, with B defined in (5.38). Thus, in order to run the same
argument in the proof of Lemma 5.4.2, we need the Lipschitz regularity of
B̄ = DpH̄ in p. However, this can be shown as in the proof of (5.28) of
Lemma 5.3.3. This is because we can also understand the constant vector
B̄(p) as the limit of {−δvδ}δ>0, with vδ being the unique periodic viscosity
solution of

− tr(A(y)D2vδ) +B(p, y) · (Dyv
δ + I) + δvδ = 0 in Rn.

Once we know that B̄ is Lipschitz in p, it follows from Lemma 5.4.2 and
the elliptic regularity theory that the difference quotient Vh = h−1(vh − v0)
is uniformly bounded in C2,µ(Rn), as it being a periodic viscosity solution of

− tr(A(y)D2Vh) +Bh(y) ·DyVh +Bh(y) · (Dyv0(y) + I) = B̄h in Rn,

with vh = v(p + hek, ·), Bh = B(p + hek, ·), Bh = h−1(Bh − B0) and B̄h =
h−1(B̄h− B̄0). Hence, we deduce from the stability of viscosity solutions that
any pair (V0, B̄0) of {Vh}0<|h|≤1 and, respectively, {B̄h}0<|h|≤1 must satisfy

− tr(A(y)D2V0) +B0(y) ·DyV0 +B0(y) · (Dyv0(y) + I) = B̄0 in Rn. (5.42)

Since (5.42) belongs to the same class of (5.37), we know from Lemma
5.4.3 that V0 and B̄0 are unique. Thus, we derive the differentiability of B̄
and v in p. Arguing as in the proof of Lemma 5.4.1, we may also observe that
DpB̄ and Dpv are continuous in p.

One may now iterate this argument to obtain higher regularity of B̄ and
v in p, which automatically implies that of H̄ and w. We leave out the details
to the reader.
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5.5 Interior Corrector and Higher Order Con-

vergence Rate

In this section, we construct the higher order interior correctors for the ho-
mogenization problem (5.1), based on the regularity result achieved in Section
5.4.

We begin with the effective Hamilton-Jacobi equation for (5.1), which is
given by {

∂tū0 + H̄(Dū0) = 0 in Rn × (0,∞),

ū0 = g on Rn × {t = 0}.
(5.43)

The characteristic curve, which starts from x0 ∈ Rn, is given by

ξ(t;x0) = x0 +DpH̄(Dxg(x0))t. (5.44)

Note that this is indeed a line with direction DpH̄(Dxg(x0)). Moreover, the
gradient of ū is constant along this curve. To be specific, we have

Dxū(ξ(t;x0), t) = Dxg(x0). (5.45)

It is noteworthy that the initial data, g, does not play any role when
deriving the effective Hamiltonian H̄, as shown in Section 5.4. This allows
us to choose the initial data g a posteriori so as to make sure that

{(ξ(t;x), t) : t > 0}
⋂
{(ξ(t;x′), t) : t > 0} = ∅, (5.46)

if and only if x 6= x′, as well as that⋃
x∈Rn
{(ξ(t;x), t) : t > 0} = Rn × (0,∞). (5.47)

One may easily observe that there are infinitely many initial data g that
satisfy the conditions (5.46) and (5.47), once H̄ is determined. A trivial
example is an affine function, which can be generalized to any smooth, convex
and globally Lipschitz function.

Once we have the initial data g, we can observe from the characteristic
equations for (5.43) that ū0 ∈ C∞(Rn × [0,∞)) (see Lemma 5.5.1). Setting

B̄(x, t) = DpH̄(Dxū0(x, t)), (5.48)
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we obtain B̄ ∈ C∞(Rn × [0,∞)), according to Lemma 5.4.4. In order to
construct the higher order correctors, we need to have smooth solutions for
first order linear PDEs with B̄ as the drift term. For this reason, we require
that

B̄(x, t) 6= 0,

for any (x, t) ∈ Rn × (0,∞). In view of (5.45) and (5.47), the image of B̄ on
Rn× (0,∞) coincides with that of DpH̄(Dxg) on Rn. Hence, we ask Dxg not
to be the critical points of H̄.

Let us list up the conditions for g to be imposed in the rest of this paper:

(i) g is convex:

g(tx+ (1− t)x′) ≤ tg(x) + (1− t)g(x′), (5.49)

for any 0 ≤ t ≤ 1 and any x, x′ ∈ Rn.

(ii) g ∈ C∞(Rn) ∩ Lip(Rn), and there is L > 0 such thatwwDk
xg
ww
L∞(Rn)

≤ L, (5.50)

for any k = 1, 2, · · · . Moroever, g is normalized so as to satisfy

g(0) = 0. (5.51)

(iii) Dxg is not a critical point of H̄:

DpH̄(Dxg(x)) 6= 0, (5.52)

for any x ∈ Rn.

Under these assumptions, we obtain a unique smooth solution of (5.43)
that is semi-concave in the sense of (5.53), as stated below.

Lemma 5.5.1. Let H̄ satisfy (5.26) – (5.28) and (5.41), and g satisfy (5.49)
– (5.51). Then there exists a unique solution ū0 ∈ C∞(Rn× [0,∞)) of (5.43)
satisfying

ū0(x+ z, t)− 2ū0(x, t) + ū0(x− z, t) ≤ C

(
1 +

1

t

)
|z|2, (5.53)
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for some constant C ≥ 0 and all x, z ∈ Rn and t > 0. Moreover, one has, for
any i, j = 0, 1, 2, · · · and any T > 0,∣∣Di

x∂
j
t ū0(x, t)

∣∣ ≤ Ci,j,T , (5.54)

uniformly for all (x, t) ∈ Rn × [0, T ], where Ci,j,T is a positive constant de-
pending at most on n, α, α′, β, β′, K, L, i, j and T .

In order to prove this lemma, observe first a basic regularity result for
first order PDEs.

Lemma 5.5.2. Let T > 0 and B ∈ C1(Rn × (0, T );Rn) and f ∈ C1(Rn ×
(0, T )) be such that for some L > 0, one has, for any i, j ≥ 0 with i+ j ≤ 1,

|Di
x∂

j
tB(x, t)|+ |Di

x∂
j
t f(x, t)| ≤ L, (5.55)

for all (x, t) ∈ Rn × (0, T ). Suppose that v ∈ C1(Rn × [0, T )) is a solution of{
vt +B(x, t) ·Dv + f(x, t) = 0 in Rn × (0, T ),

v = 0 on Rn × {t = 0}.

Then v satisfies, for each T > 0 and i, j ≥ 0 with i+ j ≤ 1,

|Di
x∂

j
t v(x, t)| ≤ CL,T , (5.56)

for all (x, t) ∈ Rn × [0, T ], where CL,T depends only on n, L and T .

Proof. Let us denote by (ξ(t), t) the characteristic curve of v starting from
x0 ∈ Rn. Then we know from [23, Section 3] that p(t) = Dxv(ξ(t), t), q(t) =
∂tv(ξ(t), t) and z(t) = v(ξ(t), t) satisfy

ṗ(t) = −DxB(ξ(t), t) · p(t)−Dxf(ξ(t), t),

q̇(t) = −∂tB(ξ(t), t) · p(t)− ∂tf(ξ(t), t),

ż(t) = −f(ξ(t), t).

Therefore, it follows from (5.55) that

|p(t)|+ |q(t)| ≤ CLe
Lt + Lt,

and
|z(t)| ≤ Lt,
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for any 0 < t < T , from which the estimate (5.56) follows immediately.

Let us present the proof of Lemma 5.5.1.

Proof of Lemma 5.5.1. Due to (5.26), (5.27), (5.41) and (5.50), we know that
there exists a unique solution ū0 of (5.43) satisfying (5.53); see [23, Theorem
7 in Section 3]. Moreover, it follows from [23, Theorem 8 in Section 3] that
ū0 is given by the Hopf-Lax formula, i.e.,

ū0(x, t) = min
y∈Rn

{
tL̄

(
x− y
t

)
+ g(y)

}
,

where L̄ is the Legendre transform of H̄. According to [23, Lemma 2 in
Section 3], ū0 is Lipschitz continuous on Rn × [0,∞), with

|Di
x∂

j
t ū0(x, t)| ≤ C,

for any (x, t) ∈ Rn× [0,∞) and i, j ≥ 0 with i+ j = 1, where C > 0 depends
only on n, α, α′, β, β′ and L (with L > 0 being the constant in (5.50)).

Under the convexity assumptions (5.27) and (5.49) on H̄ and g, we are
able to prove the smoothness of ū0 on Rn× [0,∞). To see this, we only need
to verify that the characteristic curves (5.44) corresponding to the problem
(5.43) exist for all time t > 0. Since H̄ and g are convex and twice con-
tinuously differentiable, we know that D2

pH̄(p) and D2
xg(x) are nonnegative

definite for any p ∈ Rn and x ∈ Rn. Hence, the composition DpH̄(Dxg) is
monotone in the sense that

(DpH̄(Dxg(x1))−DpH̄(Dxg(x2))) · (x1 − x2) ≥ 0, (5.57)

for any x1, x2 ∈ Rn. Now if the characteristic curves {(ξ(t;x1), t) : t > 0}
and {(ξ(t;x2), t) : t > 0} coincide with each other at some t = t0 > 0, then
we must have

(DpH̄(Dxg(x1))−DpH̄(Dxg(x2)))t0 = −(x1 − x2),

which violates (5.57). Thus, we verify that {(ξ(t;x1), t) : t > 0}∩{(ξ(t;x2), t) :
t > 0} = ∅ for distinct pair of points x1, x2 ∈ Rn. Thus, the characteristic
curve exist globally, which implies ū0 ∈ C∞(Rn × [0,∞)).

Now that we know the smoothness of ū0, we can derive the estimate (5.54)
by applying Lemma 5.5.2 inductively on each derivative of ū0. To be more
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specific, given integers k, l ≥ 0, the function v(x, t) = Dk
x∂∂

l
tū0(x, t)−Dk

xg(x)
satisfies {

vt + B̄(x, t) ·Dv + f(x, t) = 0 in Rn × (0,∞),

v = 0 on Rn × {t = 0},

where B̄(x, t) = DpH̄(Dxū0(x, t)) and f(x, t) consists of lower order terms.
Hence, assuming that (5.54) holds for any i, j ≥ 0 with 0 ≤ i ≤ k, 0 ≤ j ≤ l
and i+ j < k+ l, one may verify that B̄ and f satisfy (5.55), under the regu-
larity assumptions (5.41) and (5.50) of H̄ and g, the normalization condition
(5.51) of g together with the estimate (5.54) for lower order derivatives of ū0.
This finishes the proof.

Recall from (5.48) the function B̄ associated with the limit profile ū and
the effective Hamiltonian H̄. Due to (5.54) and (5.41), we know that B̄ ∈
C∞(Rn × [0,∞)) and, for each i, j = 0, 1, 2, · · · , and any T > 0,∣∣Di

x∂
j
t B̄(x, t)

∣∣ ≤ Ci,j,T , (5.58)

uniformly for all (x, t) ∈ Rn× [0, T ], where Ci,j,T is another positive constant
determined by the same parameters listed above.

In what follows, we shall seek a sequence of the interior correctors for the
homogenization problem (5.1). The first order interior corrector w1 will be
in the form of

w1(x, t, y) = φ1(x, t, y) + ū1(x, t), (5.59)

where φ1 denotes
φ1(x, t, y) = w(Dxū0(x, t), y), (5.60)

with w = w(p, y) being the periodic (viscosity) solution of (5.24) normalized
so as to satisfy (5.25). Here ū1 is an effective data that is not determined yet.
Let us remark that one may choose ū1 by any regular data, if one stops seeking
interior correctors at this step. However, if one would like to go further and
construct the second order corrector w2, one needs to select ū1 specifically by
the solution of an effective limit equation, which arises from the solvability
condition of w2.

We will continuously observe such a relationship between the consecutive
correctors. In fact, in the proof of Lemma 5.5.3 below, it will turn out that
the k-th order interior corrector wk, for k ≥ 2, is in the form of

wk(x, t, y) = φk(x, t, y) + χ(x, t, y) ·Dxūk−1(x, t) + ūk(x, t), (5.61)
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where φk(x, t, ·) will be the periodic viscosity solution of a certain cell problem
normalized so as to satisfy φk(x, t, 0) = 0, and χ : Rn × [0,∞) × Rn → Rn

will be defined by
χ(x, t, y) = v(Dxū0(x, t), y),

with v = v(p, y) being the periodic solution of (5.39) normalized so as to
satisfy (5.40). Here ūk−1 will be determined specifically such that the cell
problem for φk is solvable, while ūk will be “free” to choose before one tries
to construct the (k + 1)-th corrector wk+1.

It is noteworthy that, owing to Lemma 5.4.4, we have χ ∈ C∞(Rn ×
[0,∞);C2,µ(Rn)) and, for any i, j = 0, 1, 2, · · · and any T > 0,wwDi

x∂
j
tχ(x, t, ·)

ww
C2,µ(Rn)

≤ Ci,j,R,T , (5.62)

uniformly for all (x, t) ∈ Rn × [0, T ]. In addition, we know from (5.39) and
(5.40) that for each (x, t) ∈ Rn × (0,∞), χ(x, t, ·) is the unique periodic
viscosity solution of

− tr(A(y)D2
yχ) +B(x, t, y) · (Dyχ+ I) = B̄(x, t) in Rn, (5.63)

which also satisfies
χ(x, t, 0) = 0. (5.64)

For the rest of this section, we will justify the existence of the higher order
interior correctors in a rigorous way. The corresponding work has been done
by the authors in [34] and [35] in the framework of fully nonlinear, uniformly
elliptic or parabolic, second order PDEs in non-divergence form.

To simplify the notation, let us write

w0(x, t, y) = ū0(x, t), (5.65)

and by Wk, for k = 0, 1, 2, · · · , the vector-valued mapping,

Wk(x, t, y) = Dywk+1(x, t, y) +Dxwk(x, t, y). (5.66)

Note from (5.59), (5.60) and (5.65) that

W0(x, t, y) = Dyφ1(x, t, y) +Dxū0(x, t). (5.67)
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We shall also write by Bk, for k = 1, 2, · · · , the mapping,

Bk(x, t, y) = Dk
pH(W0(x, t, y)), (5.68)

where Dk
pH is understood in the sense of Fréchet derivatives, and to make

the notation coherent to the notation of B̄, we will write

B(x, t, y) = B1(x, t, y).

Let us also remark that, due to (5.9), (5.54) and (5.41), we have Bk ∈
C∞(Rn × [0,∞);Cµ(Rn)), for any 0 < µ < 1. In particular, we obtain,
for any i, j = 0, 1, 2, · · · , any k = 1, 2, · · · and any T > 0,wwDi

x∂
j
tBk(x, t, ·)

ww
Cµ(Rn)

≤ Ci,j,k,T , (5.69)

uniformly for all (x, t) ∈ Rn× [0, T ], where Ci,j,k,T > 0 depends only on n, λ,
Λ, α, α′, β, β′, K, L, µ, i, j, k and T .

Lemma 5.5.3. Suppose that A, H and g satisfy (5.3) – (5.5), (5.6) – (5.9)
and, respectively, (5.49) – (5.52). Then there exists a sequence {wk}∞k=1 sat-
isfying the following.

(i) wk ∈ C∞(Rn × [0,∞);C2,µ(Rn)), for any 0 < µ < 1, andwwDi
x∂

j
twk(x, t, ·)

ww
C2,µ(Rn)

≤ Ci,j,k,T , (5.70)

for each i, j = 0, 1, 2, · · · , any T > 0, and uniformly for all (x, t) ∈
Rn× [0, T ], where Ci,j,k,T > 0 depends only on n, λ, Λ, α, α′, β, β′, K,
L, µ, i, j, k and T .

(ii) wk satisfies
wk(x, 0, 0) = 0. (5.71)

(iii) For each (x, t) ∈ Rn × (0,∞), wk(x, t, ·) is a periodic solution of

∂tw0(x, t, y)− tr(A(y)D2
yw1) +H(Dyw1 +Dxw0(x, t, y), y) = 0 in Rn,

(5.72)
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for k = 1, and

∂twk−1(x, t, y)− tr(A(y)D2
ywk)

+B(x, t, y) · (Dywk +Dxwk−1(x, t, y)) + Φk−1(x, t, y) = 0 in Rn,

(5.73)

for k ≥ 2, where

Φk−1(x, t, y) = −2 tr(A(y)(DxDywk−1(x, t, y) +D2
xwk−2(x, t, y)))

+
k−1∑
l=2

1

l!

∑
i1+···+il=k−1
i1,··· ,i1≥1

Bl(x, t, y)(Wi1(x, t, y), · · · ,Wil(x, t, y)),

(5.74)

with the last summation term understood as zero when k = 2.

Remark 5.5.4. The summation term in the definition (5.74) of Φk amounts
to the nonlinear effect of the Hamiltonian H in p. In view of (5.68), one
may easily observe that the whole summation term becomes zero when H
is linear in p. The choice of Φk is specifically designed to achieve (5.92),
which will eventually leads us to the higher order convergence rate for the
homogenization problem (5.1). We will also see later in (5.110) and (5.112)
that the choice of Φk changes according to the type of nonlinearity that needs
to be taken care of.

Proof of Lemma 5.5.3. Throughout this proof, we shall fix 0 < µ < 1, and
denote by C∗,··· ,∗ a positive constant depending only on the subscripts as well
as the parameters n, λ, Λ, α, α′, β, β′, K, L and µ. We will also allow it to
vary from one line to another, for notational convenience.

Define φ1 by (5.60). Since ū0 ∈ C∞(Rn × [0,∞)), we know from (5.41)
that φ1 ∈ C∞(Rn × [0,∞);C2,µ(Rn)). Moreover, it follows from (5.54) that
for each i, j = 0, 1, 2, · · · , and any T > 0,wwDi

x∂
j
tφ1(x, t, ·)

ww
C2,µ(Rn)

≤ Ci,j,T ,

uniformly for all (x, t) ∈ Rn× [0, T ]. In view of the definition of w0 in (5.65),
φ1(x, t, ·) is a periodic viscosity solution of (5.72), for each (x, t) ∈ Rn×(0,∞),
as ū0 being the solution of (5.43).
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Let us now fix k ≥ 1 and suppose that we have already found {wl}k−1
l=0

that satisfies the assertions (i) and (ii) of this lemma. Moreover, assume that
we have already obtained ūk−1 ∈ C∞(Rn × [0,∞)) such that∣∣Di

x∂
j
t ūk−1(x, t)

∣∣ ≤ Ci,j,k,T , (5.75)

for any i, j = 0, 1, 2, · · · , any T > 0 and any (x, t) ∈ Rn× [0, T ]. Additionally,
suppose that we have also found φk ∈ C∞(Rn × [0,∞);C2,µ(Rn)) such that
for each (x, t) ∈ Rn × [0,∞), φk(x, t, ·) is a periodic function normalized by

φk(x, t, 0) = 0, (5.76)

and that we have, for any i, j = 0, 1, 2, · · · and any T > 0,wwDi
x∂

j
tφk(x, t, ·)

ww
C2,µ(Rn)

≤ Ci,j,k,T , (5.77)

uniformly for all (x, t) ∈ Rn × [0, T ].
Define w̃k by

w̃1(x, t, y) = φ1(x, t, y),

if k = 1, and by

w̃k(x, t, y) = φk(x, t, y) + χ(x, t, y) ·Dxūk−1(x, t),

if k ≥ 2. We deduce from (5.75), (5.77) and (5.62) that w̃k ∈ C∞(Rn ×
[0,∞);C2,µ(Rn)) and satisfieswwDi

x∂
j
t w̃k(x, t, ·)

ww
C2,µ(Rn)

≤ Ci,j,k,T , (5.78)

for any i, j = 0, 1, 2, · · · , any T > 0 and any (x, t) ∈ Rn × [0, T ].
In view of the estimate (5.78), we observe that w̃k satisfies the assertion

(i) of Lemma 5.5.3. Moreover, it follows from the hypothesis (5.76), and the
fact (5.64) that w̃k verifies the assertion (ii) of this lemma as well. Henceforth,
we shall assume, as the last hypothesis for this induction argument, that w̃k
satisfies the assertion (iii) of this lemma.
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In order to find ūk, we first define

fk(x, t, y) = ∂tw̃k(x, t, y) +B(x, t, y) ·Dxw̃k(x, t, y)

− 2 tr(A(y)(DxDyw̃k(x, t, y) +D2
xwk−1(x, t, y)))

+
k∑
l=2

1

l!

∑
i1+···+il=k
i1,··· ,i1≥1

Bl(x, t, y)(Wi1(x, t, y), · · · ,Wil(x, t, y)).

Using (5.5), (5.69), (5.75), (5.77), (5.62) and (5.78) together with the in-
duction hypothesis (5.70), we deduce that fk ∈ C∞(Rn × [0,∞);Cµ(Rn))
and wwDi

x∂
j
t fk(x, t, ·)

ww
Cµ(Rn)

≤ Ci,j,k,T , (5.79)

for any i, j = 0, 1, 2, · · · , any T > 0 and any (x, t) ∈ Rn × [0, T ].
Now that fk is periodic in y, we may consider the following cell problem:

there exists a unique function f̄k : Rn × (0,∞) → R such that for each
(x, t) ∈ Rn × [0,∞), the PDE,

− tr(A(y)D2
yφk+1)+B(x, t, y) ·Dyφk+1 +fk(x, t, y) = f̄k(x, t) in Rn, (5.80)

has a periodic viscosity solution. Following the argument in the proof of
Lemma 5.4.3, we see that the cell problem (5.80) is solvable. Moreover, if we
normalize φk+1 so as to satisfy

φk+1(x, t, 0) = 0,

such a periodic viscosity solution φk+1 is unique. Furthermore, applying the
regularity theory in the slow variable established in Lemma 5.4.4, we deduce
from (5.69) and (5.79) that f̄k ∈ C∞(Rn × (0,∞)) and φk+1 ∈ C∞(Rn ×
[0,∞);C2,µ(Rn)). In particular, we have, for any i, j = 0, 1, 2, · · · and any
T > 0, ∣∣Di

x∂
j
t f̄k(x, t)

∣∣+
wwDi

x∂
j
tφk+1(x, t, ·)

ww
C2,µ(Rn)

≤ Ci,j,k,T ,

uniformly for all (x, t) ∈ Rn × [0, T ].
With f̄k at hand, we consider the first order linear PDE,{

∂tūk + B̄(x, t) ·Dxūk + f̄k(x, t) = 0 in Rn × (0,∞),

ūk = 0 on Rn × {t = 0},
(5.81)
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where B̄ is defined by (5.48). Recall from (5.52) that B̄ vanishes nowhere
in Rn × (0,∞). Thus, it follows from the classical existence and regularity
theory for the first order linear PDE (see e.g. Lemma 5.5.2) that there exists
a unique solution ūk ∈ C∞(Rn × [0,∞)) of (5.81) such that∣∣Di

x∂
j
t ūk(x, t)

∣∣ ≤ Ci,j,k,T , (5.82)

for any i, j = 0, 1, 2, · · · , any T > 0 and any (x, t) ∈ Rn × [0, T ].
Define wk by

wk(x, t, y) = w̃k(x, t, y) + ūk(x, t), (5.83)

which coincides with the expression (5.59) and (5.61) for any k ≥ 1. Using
(5.78) and (5.82), we see that wk, defined by (5.83), verifies the assertions (i)
and (ii) of Lemma 5.5.3. Besides, let us notice that

fk(x, t, y) = ∂tw̃k(x, t, y) +B(x, t, y) ·Dxw̃k(x, t, y) + Φk(x, t, y), (5.84)

where Φk is defined by (5.74), since we have Dyw̃k(x, t, y) = Dywk(x, t, y).
To this end, let us set w̃k+1 by

w̃k+1(x, t, y) = φk+1(x, t, y) + χ(x, t, y) ·Dxūk(x, t).

Then we observe from (5.80), (5.81), (5.63) and (5.84) that

∂twk(x, t, y)− tr(A(y)D2
yw̃k+1(x, t, y))

+B(x, t, y) · (Dyw̃k+1(x, t, y) +Dxwk(x, t, y)) + Φk(x, t, y)

= ∂tūk(x, t)− tr(A(y)D2
yφk+1(x, t, y)) +B(x, t, y) · φk+1 + fk(x, t, y)

+ (− tr(A(y)D2
yχ(x, t, y)) +B(x, t, y) · (Dyχ(x, t, y) + I)) ·Dxūk(x, t)

= ∂tūk(x, t) + f̄k(x, t) + B̄(x, t) ·Dxūk(x, t)

= 0.

Hence, we have proved that w̃k+1 satisfies the assertion (iii) of Lemma 5.5.3.
Recall that we have started with {wl}k−1

k=0, ūk−1, φk and w̃k, and obtained
wk, ūk, φk+1 and w̃k+1 that satisfy all the induction hypotheses (5.75), (5.76)
and assertion (i) - (iii) of this lemma. Moreover, we have established the
initial case for the induction hypotheses in the beginning of this proof. Thus,
the proof is complete.

We shall call wk, chosen from Lemma 5.5.3, the k-th order interior cor-
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rector for the homogenization problem (5.1), due to the following lemma.
Although the computation involved in the proof below is similar to what can
be found in [34, Section 3.3] and [35, Section 4.1], we present it in detail for
the sake of completeness.

Lemma 5.5.5. Let {wk}∞k=1 be chosen as in Lemma 5.5.3. Then for each
integer m ≥ 1 and each 0 < ε ≤ 1

2
, the function ηεm, defined by

ηεm(x, t) = ū0(x, t) +
m∑
k=1

εkwk

(
x, t,

x

ε

)
, (5.85)

is a viscosity solution of∂tηεm − ε tr
(
A
(x
ε

)
D2ηεm

)
+H

(
Dηεm,

x

ε

)
= ψεm

(
x, t,

x

ε

)
in Rn × (0,∞),

ηεm = g on Rn × {t = 0},
(5.86)

where ψεm ∈ C(Rn × [0,∞);L∞(Rn)) satisfies, for any T > 0,

‖ψεm(x, t, ·)‖L∞(Rn) ≤ Cm,T ε
m, (5.87)

uniformly for all (x, t) ∈ Rn× [0, T ], where Cm,T > 0 is a constant depending
only on n, λ, Λ, α, α′, β, β′, K, L, µ, m and T .

Proof. Aligned with the notation (5.66) of Wk, let us denote by Xk, the
matrix-valued mapping,

Xk(x, t, y) = D2
ywk+1(x, t, y) + (DxDy +DyDx)wk(x, t, y) +D2

xwk−1(x, t, y),
(5.88)

for k = 1, 2, · · · , with w−1 being understood as the identically zero function.
One may notice from (5.60), (5.59) and (5.65) that

X0(x, t, y) = D2
yφ1(x, t, y). (5.89)

Fix m ≥ 1 and 0 < ε ≤ 1
2
. For the moment, we shall replace wm+1 and

wm+2 by the identically zero functions, only to simplify the exposition. With
this replacement, we have Wm = Dxwm, Xm = (DxDy+DyDx)wm+D2

xwm−1

and Xm+1 = D2
xwm.
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In view of (5.66) and (5.88), we have

Dηεm(x, t) =
m∑
k=0

εkWk

(
x, t,

x

ε

)
,

and

εD2ηεm(x, t) =
m+1∑
k=0

εkXk

(
x, t,

x

ε

)
.

Let us define Ψk by

Ψ0(x, t, y) = − tr(A(y)X0(x, t, y)) +H(W0(x, t, y), y),

if k = 0, and by

Ψk(x, t, y) = − tr(A(y)Xk(x, t, y))

+
k∑
l=1

1

l!

∑
i1+···+il=k
i1,··· ,il≥1

Bl(x, t, y)(Wi1(x, t, y), · · · ,Wil(x, t, y)),

if 1 ≤ k ≤ m− 1. Using Ψk, one may rephrase the PDEs (5.72) and (5.73)

∂twk(x, t, y) + Ψk(x, t, y) = 0 in Rn, (5.90)

for 0 ≤ k ≤ m− 1.
Denoting by Tm−1(p0, p) the (m− 1)-th order Taylor polynomial of H in

p at p0, namely,

Tm−1(p0, p)(y) =
m−1∑
k=0

1

k!
Dk
pH(p0, y)(p, · · · , p),
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we have

Tm−1

(
W0(x, t, y),

m∑
k=1

εkWk(x, t, y)

)
(y)−

m−1∑
k=0

εk tr(A(y)Xk(x, t, y))

=
m−1∑
k=0

εkΨk(x, t, y)

+
m∑
k=2

∑
m≤i1+···+ik≤km

1≤i1,··· ,ik≤m

εi1+···+ik

k!
Bk(x, t, y)(Wi1(x, t, y), · · · ,Wik(x, t, y)).

(5.91)

Hence, we apply the Taylor expansion of H in p at W0 up to (m−1)-th order
and derive that

− ε tr
(
A
(x
ε

)
D2ηεm(x, t)

)
+H

(
Dηεm(x, t),

x

ε

)
=

m−1∑
k=0

εkΨk

(
x, t,

x

ε

)
+ Eε

m

(
x, t,

x

ε

)
,

(5.92)

where Eε
m is defined so as to satisfy

Eε
m(x, t, y)−Rm−1

(
W0(x, t, y),

m∑
k=1

εkWk(x, t, y)

)
(y)

+
m+1∑
k=m

εk tr(A(y)Xk(x, t, y))

=
m∑
k=2

∑
m≤i1+···+ik≤km

1≤i1,··· ,ik≤m

εi1+···+ik

k!
Bk(x, t, y)(Wi1(x, t, y), · · · ,Wik(x, t, y)),

(5.93)

with Rm−1(p0, p) being the (m− 1)-th order remainder term of H in p at p0.
Now using (5.90), we observe that ηεm solves (5.86) with

ψεm(x, t, y) = εm∂twm(x, t, y) + Eε
m(x, t, y). (5.94)

Note that the initial condition of (5.86) is satisfied, due to that of (5.43) and

134



CHAPTER 5. VISCOUS HAMILTON-JACOBI EQUATIONS

the assertion (ii) of Lemma 5.5.3. Hence, we are only left with proving the
estimate (5.87) for ψεm.

It is clear that (5.70) implies

‖∂twm(x, t, ·)‖L∞(Rn) ≤ Cm,T ,

for any T > 0 and any (x, t) ∈ R × [0, T ], where Cm,T > 0 is a constant
depending only on n, λ, Λ, α, α′, β, β′, K, L, µ, m and T . On the other
hand, using (5.9), (5.41) and (5.70), and noting that εi1+···+ik ≤ εm for any
1 ≤ i1, · · · , ik ≤ m satisfying m ≤ i1 + · · ·+ ik ≤ km, we deduce from (5.93)
that

‖Eε
m(x, t, ·)‖L∞(Rn) ≤ Cm,T ε

m, (5.95)

for any T > 0 and any (x, t) ∈ B̄R × [0, T ], with Cm,T > 0 being yet another
constant depending only on the same parameters listed above. This finishes
the proof.

With the aid of Lemma 5.5.5, we prove the first main result of this paper.

Theorem 5.5.6. Suppose that the diffusion coefficient A, the Hamiltonian
H and the initial data g satisfy (5.3) – (5.5), (5.6) – (5.9), and respectively
(5.49) – (5.52). Under these conditions, let {uε}ε>0 be the sequence of the
viscosity solutions of (5.1). Then with the viscosity solution ū0 of (5.43) and
the sequence {wk}∞k=1 of k-th order interior correctors chosen in Lemma 5.5.3,
we have, for each integer m ≥ 1, any 0 < ε ≤ 1

2
and any T > 0,∣∣∣∣∣uε(x, t)− ū0(x, t)−

m∑
k=1

εkwk

(
x, t,

x

ε

)∣∣∣∣∣ ≤ Cm,T ε
m,

uniformly for all (x, t) ∈ Rn × [0, T ], where Cm,T > 0 depends only on n, λ,
Λ, α, α′, β, β′, K, L, µ, m and T .

Proof. The proof follows from Lemma 5.5.5 and the comparison principle
for viscosity solutions. Let ηεm be as in (5.85). Due to (5.87), we see that
ηεm+Cm,T ε

mt and ηεm−Cm,T εmt are a viscosity supersolution and, respectively,
a viscosity subsolution of (5.1). Thus, the comparison principle yields that

|uε(x, t)− ηεm(x, t)| ≤ TCm,T ε
m,

uniformly for all (x, t) ∈ Rn × [0, T ], which finishes the proof.
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5.6 Generalization to Fully Nonlinear Hamil-

tonian

In this section, we generalize Theorem 5.5.6 to the fully nonlinear, viscous
Hamilton-Jacobi equation, (5.2), whose gradient term is convex and grows
quadratically at the infinity. Henceforth, we shall assume that the nonlinear
functional H satisfies the following conditions, for any (M, p, y) ∈ Sn×Rn×
Rn.

(i) H is periodic in y:

H(M, p, y + k) = H(M, p, y), (5.96)

for any k ∈ Zn.

(ii) H is uniformly elliptic in M :

λ|N | ≤ H(M, p, y)−H(M +N, p, y) ≤ Λ|N |, (5.97)

for any N ∈ Sn with N ≥ 0.

(iii) H has interior C2,µ̄ estimates: Let (M, p, y0) ∈ Sn × Rn × Rn and
a ∈ R with t ∈ R such that H(M + tI, p, y0) = H(tI, p, y0) = a and
|t| ≤ λ−1|H(0, p, y0)− a|. Then for any v0 ∈ C(∂B1(y0)), there exists a
viscosity solution v ∈ C(B̄1(y0)) ∩ C2(B1(y0)) ∩ C2,µ̄(B̄1/2(y0)) of{

H(D2v +M + tI, p, y0) = a in B1(y0),

v = v0 on ∂B1(y0),

such that
‖v‖C2,µ̄(B̄1/2(y0)) ≤ K ‖v0‖L∞(∂B1(y0)) .

(iv) H is convex in p:

H(M, tp+ (1− t)q, y) ≤ tH(M, p, y) + (1− t)H(M, q, y),

for any 0 ≤ t ≤ 1 and any q ∈ Rn.
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(v) H has quadratic growth in p:

α|p|2 − α′ ≤ H(0, p, y) ≤ β|p|2 + β′. (5.98)

(vi) H ∈ C∞(Sn × Rn;C0,1(Rn)) andwwDk
MD

l
pH(M, p, ·)

ww
C0,1(Rn)

≤ K
(
1 + |M |(1−k)+ + |p|(2−l)+

)
, (5.99)

for any pair (k, l) of nonnegative integers.

We shall impose the conditions (5.49) – (5.52) to the initial data g, as we
did in the preceding section, once the effective Hamiltonian H̄ is determined.
The effective Hamiltonian H̄ is derived by solving the cell problem (5.100),
stated as follows.

Lemma 5.6.1. For each p ∈ Rn, there exists a unique real number γ, for
which the following PDE,

H(D2w,Dw + p, y) = γ in Rn, (5.100)

has a periodic solution w ∈ C2,µ(Rn), for some 0 < µ < µ̄ depending only
on n, λ, Λ and µ̄. Moreover, γ satisfies (5.11) and, furthermore, a periodic
solution w of (5.100) is unique up to an additive constant and it satisfies
(5.12).

Proof. As in the proof of Lemma 5.3.1, we shall consider the approximated
problem, with δ > 0,

H(D2wδ, Dwδ + p, y) + δwδ = 0 in Rn. (5.101)

Due to the uniform ellipticity (5.97) and the presence of the term δwδ, (5.101)
admits the comparison principle. Thus, there exists a unique viscosity solu-
tion wδ of (5.101) satisfying (5.14). On the other hand, the uniqueness along
with the periodicity (5.96) of H implies that wδ is also periodic in y.

The uniform Lipschitz estimate (5.15) of wδ can be deduced similarly as
in the proof of Lemma 5.3.2. The only difference is that when performinig the
classical Bernstein technique, the coefficients in the PDE (5.16) are given by
A(y) = DMH(D2wδ(y), Dwδ(y)+p, y), B(y) = DpH(D2wδ(y), Dwδ(y)+p, y)
and E(y) = DyH(D2wδ(y), Dw(y) + p, y). The rest of the argument follows
only with a minor modification, and we leave out the detail to the reader.
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Once we have the uniform Lipschitz estimate (5.15), we may consider

Gδ(M, y) = −H(M,Dwδ(y) + p, y) +H(0, Dwδ(y) + p, y),

gδ(y) = −H(0, Dwδ(y) + p, y) + δwδ(y),

and rephrase (5.101) as

Gδ(D
2wδ, y) = gδ(y) in B1(y0), (5.102)

where y0 ∈ Rn is arbitrary. By (5.97), Gδ is uniformly elliptic in M over
δ > 0, while by (5.15) and (5.98), gδ is uniformly bounded over δ > 0. Hence,
applying the interior C1,η estimate [9, Theorem 8.3] to (5.102), we obtain
that wδ − wδ(0) ∈ C1,η(B̄1/2(y0)) for some 0 < η < 1, depending only on n,
λ and Λ, andwwwδ − wδ(0)

ww
C1,η(B̄1/2(y0))

≤ C1

(wwwδ − wδ(0)
ww
L∞(B1(y0))

+ ‖gδ‖L∞(B1(y0))

)
≤ C̃1

(
osc
Rn

wδ + 1
)
,

where C1, C̃1 > 0 depend at most on n, λ, Λ, α, α′, β′, β′, K and |p|. Here
the second inequality can be deduced from (5.14), (5.15) and (5.98). Since
y0 is an arbitrary of Rn, we observe from the last inequality and (5.15) that
wδ − wδ(0) ∈ C1,η(Rn) andwwwδ − wδ(0)

ww
C1,η(Rn)

≤ C2, (5.103)

where C2 > 0 depends at most on n, λ, Λ, α, α′, β′, β′, µ̄, K and |p|.
Now that wδ − wδ(0) ∈ C1,η(Rn), we may fix any y0 ∈ Rn and consider

Fδ(M, y) = −H(M + tI,Dwδ(y + y0) + p, y + y0)− δwδ(y0),

fδ(y) = δwδ(y + y0)− δwδ(y0),

where t ∈ R is chosen such that H(tI, q, y0) = a and |t| ≤ λ−1|H(0, q, y0)−a|
with q = Dwδ(y0) + p and a = −δwδ(y0). Due to (5.15), we know that
|t| ≤ C|p|. With Fδ and fδ, we can rewrite (5.101) as

Fδ(D
2vδ, y) = fδ(y) in B1 with vδ(y) = wδ(y+y0)−wδ(y0)− t

2
|y|2. (5.104)
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Note that Fδ(0, 0) = fδ(0) = 0. Moreover, due to the structure condition
(iii) of H, Fδ satisfies Fδ also has the interior C2,µ̄ estimate for fixed coefficient
(cf. [9, Theorem 8.1]). On the other hand, it follows from (5.103) that Fδ
and fδ is Cν at the origin (cf. [9, Eq. (8.3)]) with ν = min{η, µ̄}. Hence,
the interior C2,ν estimate [9, Theorem 8.1 and Remark 3] is applicable for
(5.104), from which we deduce that vδ ∈ C2,ν(B̄1/2) withwwvδww

C2,ν(B̄1/2)
≤ C3

(wwvδww
L∞(B1)

+ ‖fδ‖Cν(B1)

)
≤ C̃3

(
osc
B1(y0)

wδ + |t|+ δ[wδ]Cν(B1(y0))

)
,

where C3, C̃3 > 0 depends at most on n, λ, Λ, α, α′, β′, β′, µ̄, ν, K and |p|.
Since |t| ≤ C|p| and y0 ∈ Rn is arbitrary, we conclude from (5.15), (5.103)
and the last inequality that wδ − wδ(0) ∈ C2,ν(Rn) andwwwδ − wδ(0)

ww
C2,ν(B̄1/2(y0))

≤ C4, (5.105)

where C4 > 0 depends at most on n, λ, Λ, α, α′, β′, β′, µ̄, ν, K and |p|.
With (5.105), we have, in particular, wδ − wδ(0) ∈ C1,1(Rn), whence one

can repeat the argument above now with any 0 < ν = µ < µ̄, so that we
have (5.23). The rest of the proof concerning the uniqueness of the limit of
{δwδ}δ>0 follows the same argument in that of Lemma 5.3.1, and we omit
the details.

As in Section 5.4, we shall denote by H̄ the effective Hamiltonian of H.
That is, H̄ : Rn → R is a function defined in such a way that for each p ∈ Rn,
H̄(p) is the unique real number for which the following PDE,

H(D2w,Dw + p, y) = H̄(p) in Rn, (5.106)

has a periodic viscosity solution in C2,µ(Rn). Moreover, we shall also denote
by w : Rn × Rn → R by the functional such that for each p ∈ Rn, w(p, ·) ∈
C2,µ(Rn) is the unique periodic solution of (5.106) that is normalized so as
to satisfy (5.25).

Following the same arguments in their proofs, one may prove that H̄ and
w satisfy Lemma 5.3.3 and Lemma 5.4.1, except for that w ∈ C(Rn;C2,µ(Rn))
for some fixed 0 < µ < µ̄, rather than any 0 < µ < 1. This is because the
proofs of those lemmas do not rely on the linear structure of the diffusion
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coefficient, but more on its uniform ellipticity. A more important observation
is the generalization of Lemma 5.4.4, which amounts to the regularity of H̄
and w in the slow variables.

Lemma 5.6.2. H̄ ∈ C∞(Rn) and w ∈ C∞(Rn;C2,µ(Rn)), for any 0 < µ < µ̄,
such that (5.41) holds, for any k = 0, 1, 2, · · · , any L > 0 and any p ∈ BL.

Proof. Let us fix 0 < µ < µ̄. It suffices to prove that H̄ and w verify Lemma
5.4.2. Moreover, to see this fact, it is enough to show that the linearization
argument in the proof of Lemma 5.4.2 also works out when the Hamiltonian
H depends nonlinearly on the Hessian variable M .

Let wh, γh, Wh and Γh be as in the proof of Lemma 5.4.2. Then by
linearizing the cell problem (5.106) (in both of the Hessian and the gradient
variables), we observe that Wh solves

− tr(Ah(y)D2Wh) +Bh(y) · (DWh + ek) = Γh in Rn, (5.107)

where

Ah(y) =

∫ 1

0

−DMH(tD2
ywh + (1− t)D2

yw0, Dywh + p, y)dt,

and

Bh(y) =

∫ 1

0

DpH(D2
yw0, tDywh + (1− t)Dyw0 + p+ the, y)dt.

In comparison of (5.107) with (5.31), one may see that the only major differ-
ence here is that the diffusion coefficient, Ah, here is not fixed but depends
on the parameter h.

Nevertheless, Ah is uniformly elliptic not only in y but also in h, due to
the assumption (5.97). This implies that Lemma 5.4.3 is still applicable, and
thus Wh ∈ C2,µ(Rn) and satisfies (5.34) uniformly for h.

Moreover, since w satisfies (5.30), it follows from the regularity assump-
tion (5.99) of H that Ah ∈ Cµ(Rn) and

‖Ah‖Cµ(Rn) ≤ C,

where C > 0 depends only on n, λ and Λ. For the same reason, we deduce that
Bh ∈ Cµ(Rn) and satisfies (5.32). Furthermore, since w ∈ C(Rn;C2,µ(Rn)),
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we have Ah → A0 and Bh → B0 in Cµ′(Rn), for any 0 < µ′ < µ, with

A0(y) = −DMH(D2
yw0, Dyw0 + p, y),

and
B0(y) = DpH(D2

yw0, Dyw0 + p, y).

The rest of the proof follows similarly with that of of Lemma 5.4.2. In
particular, we obtain unique W0 ∈ C2,µ(Rn) and Γ0 ∈ R such that W0 is the
periodic solution

− tr(A0(y)D2W0) +B0(y) · (DW0 + ek) = Γ0 in Rn,

satisfying W0(0) = 0. We leave out the details to the reader.

Now we are in position to construct the higher order interior correctors
of the homogenization problem (5.2). We shall now let g satisfy the structure
conditions (5.49) – (5.52), with H̄ being the effective Hamiltonian chosen to
satisfy the cell problem (5.106). Next we shall denote by ū0 the solution of
(5.43), with the updated data H̄ and g, and write by B̄ the function defined
by (5.48). Once again, we have from Lemma 5.5.1 and Lemma 5.6.2 that
ū0 ∈ C∞(Rn × [0,∞)) and B̄ ∈ C∞(Rn × [0,∞)) with the estimates (5.54)
and (5.58).

Let w0, {Wk}∞k=0 and {Xk}∞k=0 denote those defined in (5.65), (5.66) and,
respectively, (5.88), where the sequence {wk}∞k=1 of higher order interior cor-
rectors will be given as below.

Now that the Hamiltonian H is nonlinear in M , we need to apply the
Taylor expansion not only in the variable p but also in the variable M , in
order to obtain the PDEs (or, more precisely, the cell problems) for the
higher order interior correctors. In this direction, we consider the coefficient
Bk,l defined by

Bk,l(x, t, y) = Dk
MD

l
pH(X0(x, t, y),W0(x, t, y), y),

for k, l = 0, 1, 2, · · · . In particular, we shall write

A(x, t, y) = −B1,0(x, t, y) = −DMH(X0(x, t, y),W0(x, t, y), y),
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and
B(x, t, y) = B0,1(x, t, y) = DpH(X0(x, t, y),W0(x, t, y), y).

Note that A is uniformly elliptic with the same ellipticity bounds as those of
H.

Lemma 5.6.3. Suppose that H and g satisfy (5.96) – (5.99) and, respectively,
(5.49) – (5.52). Then there exists a sequence {wk}∞k=1 satisfying the following.

(i) wk ∈ C∞(Rn × [0,∞);C2,µ(Rn)), for any 0 < µ < µ̄, and satisfies the
estimate (5.70), for any i, j = 0, 1, 2, · · · , any T > 0 and any (x, t) ∈
Rn × [0, T ].

(ii) wk is normalized so as to satisfy (5.71).

(iii) For each (x, t) ∈ Rn × (0,∞), wk(x, t, ·) is a periodic solution of

∂tw0(x, t, y) +H(D2
yw1, Dyw1 +Dxw0(x, t, y), y) = 0 in Rn, (5.108)

for k = 1, and

∂twk−1(x, t, y)− tr(A(x, t, y)D2
ywk)

+B(x, t, y) · (Dywk +Dxwk−1(x, t, y)) + Φk−1(x, t, y) = 0 in Rn,

(5.109)

for k ≥ 2, where

Φk−1(x, t, y)

= −2 tr(A(x, t, y)(DxDywk−1(x, t, y) +D2
xwk−2(x, t, y)))

+
k−1∑
l=2

1

l!

∑
i1+···+il=k−1
i1,··· ,i1≥1

l∑
r=0

Br,l−r(x, t, y)(Xi1(x, t, y), · · · , Xir(x, t, y),

Wir+1(x, t, y), · · · ,Wil(x, t, y))

(5.110)

with the last summation term understood as zero when k = 2.

Remark 5.6.4. As mentioned in Remark 5.5.4, Φk now takes care of the
nonlinear effect produced by H in both M and p variables. Moreover, the
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summation term in the definition (5.110) of Φk is specifically constructed to
have (5.112), by which we will eventually derive the higher order convergence
rates for the homogenization problem (5.2).

Proof of Lemma 5.6.3. The proof follows essentially the same induction ar-
gument presented in that of Lemma 5.5.3. To avoid any repeating argument,
we shall only point out the major difference from the proof of Lemma 5.5.3,
and ask the reader to fill in the details.

Here we define φ1 by (5.60) with w being the (normalized) periodic solu-
tion of (5.106) (instead of (5.24)), and accordingly set w1 by (5.59) with some
ū1 to be determined. Then we observe that W0 and X0 verify the expressions
(5.67) and, respectively, (5.89). Moreover, we verify that Bl,k−l satisfy the
estimate (5.69), for any l = 0, 1, · · · , k and any k = 1, 2, · · · .

The function fk, which takes cares of all the nonlinear effect caused in
the k-th step of approximation, is now replaced by

fk(x, t, y) = ∂tw̃k(x, t, y) +B(x, t, y) ·Dxw̃k(x, t, y)

− 2 tr(A(x, t, y)(DxDyw̃k(x, t, y) +D2
xwk−1(x, t, y)))

+
k−1∑
l=2

1

l!

∑
i1+···+il=k−1
i1,··· ,i1≥1

l∑
r=0

Br,l−r(x, t, y)(Xi1(x, t, y), · · · , Xir(x, t, y),

Wir+1(x, t, y), · · · ,Wil(x, t, y)),

Due to the periodicity of fk in y, we consider the following cell problem: there
exists a unique f̄k : Rn×(0,∞)→ Rn such that for each (x, t) ∈ Rn×(0,∞),
the PDE,

− tr(A(x, t, y)D2
yφk+1) +B(x, t, y) ·Dyφk+1 + fk(x, t, y) = f̄k(x, t) in Rn,

has a periodic viscosity solution. The rest of the proof can be derived by
following that of Lemma 5.5.3, whence we omit the details.

The next lemma is the corresponding version of Lemma 5.5.5 for fully
nonlinear Hamiltonian H.

Lemma 5.6.5. Let {wk}∞k=1 be chosen as in Lemma 5.6.3. Then for each
integer m ≥ 1 and each 0 < ε ≤ 1

2
, the function ηεm, defined by (5.85), is a
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viscosity solution of∂tηεm +H
(
εD2ηεm, Dη

ε
m,
x

ε

)
= ψεm

(
x, t,

x

ε

)
in Rn × (0,∞),

ηεm = g on Rn × {t = 0},
(5.111)

where ψεm ∈ C(Rn × [0,∞);L∞(Rn)) satisfies (5.87), for any T > 0 and all
(x, t) ∈ Rn × [0, T ].

Proof. As in the proof of Lemma 5.6.3, we shall mention the key points that
need to be modified from the proof of Lemma 5.5.5, in order to take care
of the nonlinear effect in the Hessian variable of H. Let us begin by fixing
m ≥ 1 and 0 < ε ≤ 1

2
, and replacing wm+1 and wm+2 by the identically zero

functions, again for the notational convenience.
We shall define Ψk by

Ψ0(x, t, y) = H(X0(x, t, y),W0(x, t, y), y),

if k = 0, and by

Ψk(x, t, y) =
k−1∑
l=1

1

l!

∑
i1+···+il=k−1
i1,··· ,i1≥1

l∑
r=0

Br,l−r(x, t, y)(Xi1(x, t, y), · · · , Xir(x, t, y),

Wir+1(x, t, y), · · · ,Wil(x, t, y))

if 1 ≤ k ≤ m − 1. Then it follows from the PDEs (5.108) and (5.109) that
(5.90) holds for 0 ≤ k ≤ m− 1.

Applying the Taylor expansion of H in (M, p) at (X0,W0) up to (m− 1)-
th order, and after some calculations similar to those in (5.91), we obtain
that

H
(
εD2ηεm(x, t), Dηεm(x, t),

x

ε

)
=

m−1∑
k=0

εkΨk

(
x, t,

x

ε

)
+Eε

m

(
x, t,

x

ε

)
, (5.112)
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where Eε
m is defined so as to satisfy

Eε
m(x, t, y)

−Rm−1

(
(X0(x, t, y),W0(x, t, y)),

(
m+1∑
k=1

εkXk(x, t, y),
m∑
k=1

εkWk(x, t, y)

))
(y)

=
m∑
k=2

∑
m≤i1+···+ik≤km

1≤i1,··· ,ik≤m

εi1+···+ik

k!

k∑
l=0

Bl,k−l(x, t, y)(Xi1(x, t, y) · · · , Xil(x, t, y),

Wil+1
(x, t, y), · · · ,Wik(x, t, y)),

where Rm−1((M0, p0), (M, p)) denotes the (m − 1)-th order remainder term
of H in (M, p) at (M0, p0).

We deduce from (5.112) that ηεm solves (5.111) with ψεm defined by (5.94).
The rest of the proof follows similarly to that of Lemma 5.5.5. In particular,
we have (5.95), since Bl,k−l and wk satisfy the estimate (5.69) and, respec-
tively, (5.70). We leave out the details to the reader.

Finally, we generalize Theorem 5.5.6 to the regime of fully nonlinear,
viscous Hamilton-Jacobi equation, as stated below.

Theorem 5.6.6. Suppose that the Hamiltonian H and the initial data g sat-
isfy (5.96) – (5.99) and, respectively, (5.49) – (5.52). Under these conditions,
let {uε}ε>0 be the sequence of the viscosity solutions of (5.2). Then with the
viscosity solution ū0 of (5.43) and the sequence {wk}∞k=1 of k-th order inte-
rior correctors chosen in Lemma 5.6.3, we have, for each integer m ≥ 1, any
0 < ε ≤ 1

2
and any T > 0,∣∣∣∣∣uε(x, t)− ū0(x, t)−

m∑
k=1

εkwk

(
x, t,

x

ε

)∣∣∣∣∣ ≤ Cm,T ε
m,

uniformly for all (x, t) ∈ Rn × [0, T ], where Cm,T > 0 depends only on n, λ,
Λ, α, α′, β, β′, K, L, µ, µ̄, m and T .

Proof. The proof follows the same comparison argument as that in the proof
of Theorem 5.5.6. Let ηεm be as in Lemma 5.6.5. According to Lemma 5.6.5,
ηεm+Cm,T ε

mt and ηεm−Cm,T εmt are a viscosity supersolution and, respectively,
a viscosity subsolution of (5.2), for some constant Cm,T > 0 depending only
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on n, λ, Λ, α, α′, β, β′, K, L, µ, µ̄, m and T . Therefore, the comparison
principle yields that

|uε(x, t)− ηεm(x, t)| ≤ TCm,T ε
m,

uniformly for all (x, t) ∈ Rn × [0, T ]. This completes the proof.
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국문초록

균질화이론은미세영역에서특정한패턴으로빠르게진동하는일련의편미분

방정식의평균화현상을연구한다.본학위논문은완전비선형방정식의주기적
균질화에서의 고차수렴속도에 대한 세 편의 연구논문으로 구성되어 있다. 첫
번째논문은비축중성고른타원형방정식의내부수정에주안점을두고있고,
두 번째 논문은 고른 포물선형 코쉬 문제에서 빠르게 진동하는 초기조건이

끼치는 영향에 대하여 연구한다. 마지막 논문에서 우리는 점성적 해밀턴-야
코비 방정식에 관한 흥미로운 현상을 발견하는데, 고차수렴속도를 얻으려면
균질화된해밀턴작용소에따라결정되는특수한기하학적성질이만족되도록

초기조건을결정해야한다는사실이다.세편의연구논문을관통하는핵심적인
해석기법은 미세영역에서 진동하지 않는 변수에 대한 정칙성 이론을 개발하

는 것이다. 이러한 정칙성 결과는 고차 수정자를 귀납적으로 정 의할 수 있는
이론적 토대로 작용한다. 여기서 고차 수정자는 매우 진동적인 편미분방정식
의 비선형적 구조로부터 기인하는 오차를 수정할 수 있도록 설계되어 있고,
고차수렴속도는 고차 수정자를 사용한 적절한 장벽 논리로부터 얻게 된다.

주요어: 균질화, 완전비선형방정식, 주기적 상황, 수렴속도, 수정자, 점성해,
고차, 정칙성
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