
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이 학 박 사 학 위 논 문

Meta-analytical Strategies for Biomarker 

Selection in Transcriptomic Data

메타분석 전략을 활용한 전사체상

바이오마커의 선별

2019년 2월

서울대학교 대학원

생물정보협동과정 생물정보학전공

Joon Yoon



Meta-analytical Strategies for Biomarker 

Selection in Transcriptomic Data

By

Joon Yoon

Supervisor: Professor Heebal Kim

Feb, 2019

Department of Interdisciplinary Program in 

Bioinformatics

Seoul National University



메타분석 전략을 활용한 전사체상

바이오마커의 선별

지도교수 김 희 발

이 논문을 이학박사 학위논문으로 제출함

2018 년 12 월

서울대학교 대학원

생물정보협동과정 생물정보학전공

Joon Yoon

Joon Yoon 의 이학박사 학위논문을 인준함

2018 년 12 월

       위 원 장          김 선     (인)

       위    원          윤 철 희    (인)

위    원          조 서 애    (인)

위    원          유 재 웅    (인)

부위원장          김 희 발    (인)



I

Abstract

Meta-analytical Strategies for Biomarker 

Selection in Transcriptomic Data

Joon Yoon

Interdisciplinary Program in Bioinformatics

The Graduate School

Seoul National University

The Next Generation Sqeuencing (NGS) decade resulted in 

explosive advancements in technology and on knowledge in the 

bioinformatic area of science. The timely manner of sequencing 

together with its cheap prices supported the accumulation of a massive 

pool of biological data, which lead to new findings. Much more 

complicated study designs along with the advanced statistical analyses 

have been proposed, which are responsible for the rise of 

bioinformatics to one of the fastest growing fields of interdisciplinary 

science. Inevitably, determining appropriate statistical models and 

summary methods is directly dependent on the experimental designs. 
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As the results of those studies have to be presented and understood by 

many specialists in different communities, the summary techniques and 

presentations are also crucial. Meta analytical approaches on complex 

study designs can simplify the statistical models and enable appropriate 

deduction techniques in candidate filtering. The most credible 

candidates can be detected via multiple testing correction and other 

guidelines on error pruning. However, suggesting study-specific 

candidates or understanding the employed models and choosing 

presentation methods are solely on the analyst’s discretion so far.

In this thesis, the meta-analysis includes 1) multi-population data 

analysis that analyzes the populations separately (split data analysis), 2) 

different test methods or statistical models are used for a same dataset, 

3) combining and results from an independent study. The major 

objective is on curating the multiple results into a study-specific 

biomarker of interest, using meta-analytical approaches. Chapter 2 

holds the idea of meta-analysis in a sense that the program itself is 

made for comparison and summarization of p-values from several test 

results. The study itself is the first step into the meta-analytical 

strategies in biomarker selection. It is the most primitive chapter of the 

thesis, but can be used to compare the meta-analytically defined 

biomarkers in Chapter 3, for example. A basic set of plots is employed 
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to highlight the most concordant results in different statistical models 

and tests. The incorporated pairwise scatter plot of the first module 

simply illustrates the correlation of p-values between a pair of tests or 

models. In the next module, interactive p-value thresholds are shown in 

the selected scatter plot, and the results are summarized in a Venn 

diagram. In the final module, a heatmap-like plot shows comprehensive 

results of all models/tests used in the study and pinpoints which 

candidates are concordantly significant in those results. The GUI-

program proposed in the chapter is applicable to all studies that 

generate p-values or other statistics, and is demonstrated under several 

platforms and designs: microarray, GWAS, RNA-Seq, and family-based 

study. In Chapter 3, the final candidate genes comprise significant 

DEGs between male and female cattle in two of the employed pipelines. 

In the RNA-seq protocol, selection of mRNA relies on the poly-A tails 

of the reads. Unfortunately, some non-coding RNAs, including the 

lncRNAs, can be transcribed and have poly-A tails. In this case, 

transcripts from the lncRNAs are not distinguishable from those of the 

mRNAs. The chapter elucidates that the inclusion of a lncRNA 

annotation in the upstream RNA-seq process results in a dramatic 

difference in significant candidate lists and that the conventional 

pipeline neglects the quantification of ambiguous gene expression, 
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which may result in erroneous interpretation. The effect of lncRNA 

annotation is also different among tissues, and such tissue-specific 

patterns have been attested by the concordance of significance in two 

different DEG analysis pipelines. In conclusion, we suggest genes that 

were unaffected by the annotation as most credible, from the original 

candidates where only the mRNA annotation is used (conventional 

pipeline). In Chapter 4, a sugar substitute that displays anti-

inflammatory/obesity effect is analyzed at a gene-level. A normal diet 

group (ND), high-fat diet group (HFD), and high-fat diet with D-

allulose intake group (ALL) from two tissues, liver and epididymal fat 

(eWAT), are used for the study. The chapter describes crosstalk genes, 

which are inter-tissue co-expressed genes that are defined to have 

concordant regulation pattern between liver and eWAT in this study. 

The two tissues are chosen for their known interaction. The meta-

analytical approach here is to summarize the expression profiles in two 

different tissues, and to draw the concordantly regulated gene 

expression between-tissues. Furthermore, the study-specific candidates 

are the “Recovered genes” that are initially up- or down-regulated by 

the high fat diet group, but reverts back to normal-level after D-allulose 

intake. These genes, selected from the pool of cross-talk genes, showed 

a correlation with the two inflammation-related genera: Lactobacillus 
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and Coprococcus. For this study, much of the extraneous factors (i.e. 

exercise, food intake, etc.) are well controlled as it is a mouse study, 

and such rebound of gene expression can be thought of as the outcome 

of D-allulose intake. The study employs 3 statistical models for liver 

and eWAT each, and correlation test to derive the recovered genes 

through meta-analysis of those models. The final 20 RecGs are 

concordantly expressed in technical validation by qRT-PCR in both 

tissues. In displaying the candidates, a modified version of the volcano 

plot has been proposed; the lava plot, which incorporates p-value, fold-

change, and a factor in the statistical model (in this study, the tissue 

factor has been illustrated). The plot highlights the direction of 

expression regulation, with fold-change, and the significance of the 

statistical test with color-coded p-values of two tissues for each point (a 

gene). For Chapter 5, integration of Trait associated genes and 

differentially expressed genes requires 4 TAG models and 3 DEG 

models for each tissues. The study-specific biomarker in this chapter is 

defined as toggles genes, which are body weight-related in all diet 

groups, and have specific expression pattern in the high fat diet (HFD) 

group. Of the genes that have HFD-specific expression pattern, those in 

direct relation or association with body-weight are a more plausible 

candidate for obesity. The chapter focuses on the TAGs (based on raw 
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p-value) that are significant DEGs after multiple testing correction. By 

testing only the significant TAGs in the DEG analysis, I could gain 

statistical power. Such hierarchical approach is only advantageous 

when the p-values are adjusted; raw p-values from the second analyses 

will be the same even if more genes are used. By reducing the number 

of tests in the second step of the hierarchical pipeline, statistical power 

is gained, and reliable candidates can be detected in larger numbers. 

From Chapters 2 to 5, various meta-analytical techniques have been 

suggested and illustrated through NGS datasets. By integrating multiple 

statistical models and multi-class biomarkers, I have simplified 

scientific ideas that are specific to the datasets, and derived candidate 

biomarkers by defining a pipeline to integrate the results. Simple 

variations in the pipeline and plot characteristics helped to fuse ideas 

that have not been handled before. Given the results, I anticipate that 

researchers conducting ‘-omics’ analyses with or without advanced 

knowledge in statistics or programming can employ my meta-analytical 

approaches and plots to efficiently highlight and present their works to 

a broad spectrum of audiences.

Key words: NGS, P-value, Fold-change, Meta-analysis, DEG, TAG, 

RecG
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1.1 Next-generation sequencing (NGS)

1.1.1 History of sequencing technologies

Sequencing is defined as the process of decoding the nucleotide of the 

DNA sequence of the genome. Even though Maxam and Gilbert 

developed the first modern sequencing technology in 1977 (Maxam and 

Gilbert 1977), that of Sanger (Sanger, Nicklen et al. 1977) is known as 

the first generation sequencing method or conventional sequencing 

method today. Sanger sequencing uses ddNTP (dideoxyribo nucleotides 

triphosphate) that do not have OH in 3’ carbon of center sugar. The use 

of ddNTP is for termination; the oxygen in OH residue of 3’ carbon 

provides the energy that can continue the chain reaction of DNA 

synthesis. However, ddNTP, which does not have 3’-OH residue makes 

the chain reaction terminated. Using such termination mechanism, 

fragments of DNAs with one base pair length difference are amplified, 

and electrophoresis for ordering the DNA fragments is conducted. The 

nucleotide of the DNA can be identified following the order of each 

nucleotide. The early stage Sanger sequencing has short read length and 

small throughput of data generation. In 1986, Applied Biosystems(ABI) 

introduced automated DNA sequencing that uses fluorescent primer 

labeled differently for each ddNTP. The different fluorescent spectrum 

of each ddNTP is used in a combined electrophoresis gel, and 
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nucleotide ordering was conducted using a computer (Smith, Sanders et

al. 1986). Using such advanced method, one can conduct sequencing 

more efficiently and quickly, compared to manual decoding. In 1995, 

the first-generation sequencing became automated with capillary 

electrophoresis.

1.1.2 The next generation sequencing (NGS)

Sanger sequencing method is widely used, and it contributed to the 

many types of research especially in the bioinformatics field. However, 

the cost of the first-generation sequencing is expensive, and the amount 

of data generation is limited. To solve these limitations of Sanger 

sequencing, new sequencing technology named “Next-Generation 

Sequencing” made its debut. This technology had low cost and rapid 

data generation speed compared to previous Sanger sequencing method, 

and it was employed in various types of research (Metzker 2010). 

Pyrosequencing is known as the first commercialized NGS technology, 

and it was developed by Jonathan Rothberg (Rothberg and Leamon 

2008). The core algorithm of this method is detecting the 

pyrophosphate (PPi) release on nucleotide incorporation. The released 

PPis are converted quantitatively to ATPs by ATP sulfurylase. 
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Generated ATP provides energy for the luciferase-mediated conversion 

of luciferin to oxyluciferin. The oxyluciferin generates visible light 

which can be detected by a camera; the intensity of light is positively 

correlated to the amount of synthesized nucleotide. Here, same

fluorescence is used for detection signal between 4 dNTPs; therefore, 

each dNTPs—A, T, G, and C—are used once at a time. Each base is 

summarized in the post-sequencing step. 

In pyrosequencing, DNA synthesis is conducted until the end of 

homopolymer (repeats of same base sequence) at a time. The detection 

of the number of synthesized bases relies on the amount of generated 

signal when homopolymer elongates each run. However, the intensity 

of the signal is not precisely identical to the number of elongated bases 

in the real experiment because of enzyme efficiency limitation and 

signal interruption. Such variation is directly related to the read length 

and ultimately with different sequence length. For this reason, 

pyrosequencing suffers from InDel sequencing errors frequently (in the 

homopolymer region), compared to the Sanger sequencing. 

Pyrosequencing can read the fragmented DNA sequence using a single

direction method, and paired-end read can be generated using the mate-

pair library. Read length is 600 base pair in average, in GS FLX system 

of Roche, and it is fairly close to the read length of Sanger capillary 
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sequencing technology. 

The most representative NGS platform is the Illumina sequencing 

platform. The platform is represented by Hiseq, which is the most 

popular and widely used sequencing platform in 2016. The core

technology of the Illumina sequencing platform is the sequencing by 

synthesis (SBS), and it is based on the nucleotide called reversible 

terminator. Reversible terminator blocks 3’-end for nucleotide binding,

in a similar fashion to ddNTP of Sanger sequencing. However, a 

reversible terminator can recover its 3’-OH residue for elongation as 

the name might suggest. A nucleotide that has blocked 3’-OH, is 

incorporated into the primer sequence, and the process of DNA 

synthesis is terminated. Each reversible terminator is labeled with a 

fluorescence dye, and a camera can detect it. After detecting the single-

nucleotide elongation, the 3’-end recovers its OH residue. These three 

steps (nucleotide incorporation, detecting fluorescence, recover 3’-OH) 

comprise one cycle, which is the core sequencing algorithm of Illumina 

sequencing platforms. Only one nucleotide can be detected in a single

cycle, so Illumina’s sequencing platform does not suffer from frequent 

InDel type sequencing error—a common pyrosequencing problem as 

aforementioned. Illumina’s sequencing platform read the fragmented 

DNA sequence using single or paired-end read method and read length 
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vary (50bp to 300bp). The read length of Illumina platforms is shorter 

than that of the GS FLX system (a pyrosequencer), but it is much more 

cost-effective. In addition, Illumina’s sequencing platform has the best 

performance, in terms of sequencing error rate, among existing NGS 

platforms. 

While Sanger sequencing technology is categorized as first-generation 

sequencing technology, NGS technology is classified under two 

categories: the second- and the third-generation. Two aforementioned 

major sequencing platforms—Rosche and Illumina—are classified as 

second-generation sequencing. Second-generation technology has 

distinct characteristics compared to Sanger sequencing. First, the read 

length of second-generation sequencing is shorter than that of Sanger 

sequencing. As an example, the Sanger sequencing has a read length of 

almost 1kbp, and it is much longer than that of Illumina’s Hiseq. The 

second difference is in data generation throughput and time. The

second-generation sequencing generates much more output in a 

dramatically shorter period of time, compared to Sanger sequencing. 

For example, one Hiseq2500 device generates 20 human genome data 

of 10X coverage in almost one day, and it is tens of thousands times 

faster than the Sanger sequencing device. Third is the cost. Researchers 

believe that sequencing the genome will cost under $100 per individual, 
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in the near future. Forth, sequencing reactions are conducted in a 

smaller sized device compared to Sanger. Lastly, the error rate is higher 

than Sanger sequencing method. The error rate of Illumina platform 

and pyrosequencing is known as 0.26% and 1.07%, which is greater 

than the Sanger’s error rate of about 0.1%.

1.1.3 Advancements and trends in sequencing technologies

The second generation NGS platforms (Illumina Hiseq and Roche GS 

FLX sequencing systems) have some common limitations. First, the 

detection system uses fluorescence for both. Illumina system uses 

nucleotides labeled with the specific fluorescence color for each base,

while GS FLX system detects the amount of light as a signal of the 

nucleotide incorporation. This type of technology must have imaging

system for detecting the signals; this is where errors can be generated

and accumulated. For example, in each cycle of Illumina sequencing, 

fluorescence molecules in the cluster have to be removed for next

nucleotide incorporation. However, quite frequently, some fluorescence 

molecules remain in the cluster. The unremoved fluorescence 

molecules get accumulated and fluorescence signal can be confused 

with the error signal. This is the reason for the lower quality scores in 



8

end of the read in Illumina sequencing system. Imaging system using 

camera also can be a problem for the miniaturized sequencer. 

Additionally, the second generation sequencing relies on the PCR 

reaction for preparing the sequencing library. However, the GC 

contents—the proportion of G and C nucleotide in total nucleotides—

can affect the PCR result; this is called “PCR bias”. The whole genome 

cannot be amplified monotonously, and high or low GC regions add

more difficulty in PCR amplification. Therefore, sequencing results 

using the PCR-based library are inevitably biased. Finally, the error rate 

of these sequencing technologies is still higher than that of the 

conventional Sanger method. In order to resolve these

problems/limitations, researchers studied and developed several

sequencing platforms and technologies. Two commercialized 

sequencing platforms, ion torrent from life science and RS system from 

Pacific Biosystem, are representative examples.

Ion torrent (Rothberg, Hinz et al. 2011) is based on the similar pipeline

of GS FLX system which uses the byproduct of nucleotide 

incorporation similar to pyrophosphate. Instead of using the 

pyrophosphate, ion torrent system detects the hydrogen ion, which is 

also a byproduct of nucleotide incorporation using the pH level. This is

beneficial compared to pyrosequencing since fluorescence molecule 
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and imaging device are no longer required. With these benefits, 

sequencing process can be processed on a small semiconductor chip. So 

the sequencing device can be efficiently and safely miniaturized. InDel 

errors, the major type of error in pyrosequencing, can also be reduced 

because the signal can be detected more accurately. In addition, 

sequencing time is also decreased because the sequencing step is 

minimized. The Ion torrent has many benefits compared to the second 

generation NGS system, however, it still is based on the amplification 

of DNA fragment using emulsion PCR in library construction. 

Therefore, sequencing result is not GC bias-free, and DNA fragments 

with high or low GC ratio cannot be decoded efficiently.

Pacbio RS system (English, Richards et al. 2012) proposed another 

sequencing algorithm. It fixed the DNA polymerase in the bottom of 

the well and the DNA synthesis process is conducted in that fixed point. 

However, it still uses fluorescence molecules and imaging device like 

second-generation sequencing, which results in the same limitations of

second-generation sequencing technologies. As a noteworthy

characteristic however, Pacbio RS system adopts single molecular

sequencing technology although it uses fluorescence system. This

means that RS system does not use DNA amplification of the DNA 

fragment for library construction like other sequencing platforms 
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(Illumina, Roche, and Ion torrent). Sequencing without PCR process 

has some benefits in GC bias and RNA-seq; the resulting sequence files

contain less GC biased data, it can cover more genomic regions and 

transcriptome compared to other systems. RS system also generates 

long read length sequencing data compared to other sequencing 

platforms. Long read length provides advantage in specificity, 

haplotype, and isoforms. However, even with those benefits, Pacbio RS 

system has a higher error rate (approximately >15%), which is a big 

problem. The method called CCS system (circular consensus 

sequencing system) (Travers, Chin et al. 2010) has been developed for 

complementing this weakness. Here, hairpin structured adaptor attaches 

to the end of DNA fragment, and the sequencing process can be 

repeatedly conducted for individual DNA fragment. DNA fragment is 

sequenced at least three times, and the consensus base call can 

efficiently reduce the error rate of RS system using independent 

sequencing reactions for the same location.

Illumina also improved on their weak points: (1) the read length has 

increased. Miseq V2, which is the most recent sequencing platform of 

Illumina, produces 300bp pair-end data. By using the overlapping 

library, almost 500bp of single read can be generated for metagenome 

community analysis. (2) PCR-free library preparation kit provides 
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unbiased sequencing library. PCR amplification and gel electrophoresis 

was used for typical sequencing library preparation for Illumina. PCR-

free Library preparation kit (Kozarewa, Ning et al. 2009) does not 

conduct PCR and use magnetic bead base for DNA isolation in library 

preparation protocol. Because it does not amplify DNA using PCR, the 

genome coverage of sequencing in high or low GC contents region can 

be increased. So biased dispersion of sequencing coverage in genomic 

location is greatly reduced. This can be used to for various genomes 

with high AT regions. The third is the molecule technology for long 

read data generation. This technology is developed based on the 

Botryllus schlosseri genome assembly research (Voskoboynik, Neff et

al. 2013). The main concept of this technology is size-specific DNA 

fragment partitioning. It analyzes and conducts assembly for the 

partitioned genomic region based on the index sequences. This induces

the same effect like genome size reducing, so the molecule system can 

be useful for the high heterozygous genome. 

Nanopore sequencing (Branton, Deamer et al. 2008) is the 3rd-

generation sequencing platform in the true sense of the word, while the 

others can be considered as 2.5th-generation. It does not use 

fluorescence molecules and imaging devices. It does not amplify DNA 

fragments, and it conducts sequencing on a single molecule of DNA 
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fragment. The prototype device of Oxford nanopore is portable (palm 

size), and it can conduct sequencing by connecting the sequencer to a 

laptop computer with a USB 3.0 cable. The algorithm of the nanopore

system is similar to that of the Pacbio system. However, it identifies the 

nucleotide using the electronic signal from the nanopore protein instead 

of fluorescence. Even though the accuracy and the throughput of 

Oxford nanopore have to be improved, this sequencing platform 

foretells the blueprint of future sequencing; portable sequencer, cheaper, 

higher throughput, single molecule, etc.

In conclusion, the sequencing paradigm changes rapidly. For example, 

GS FLX, the first-second generation NGS system, is no longer 

available in the current market. Also, generated data from different 

sequencers have different error characteristics according to their

sequencing algorithms. In example, the error profile of the Pacbio

system is different from those of second-generation sequencing 

platforms, almost entirely. Therefore, researchers who want to analyze

NGS data have to understand the unique characteristics and principles

of sequencing technologies to employ proper analytical tools.

1.1.4 RNA sequencing and its applications

The NGS technique is also successfully applied in other biological 
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sources especially in RNA. In the application of NGS approach for 

RNA, several studies were successfully published: such as, (1) 

transcript annotation based on the reference genome (Roberts, Pimentel 

et al. 2011); (2) novel transcript finding including exon, isoform, and 

gene (Grabherr, Haas et al. 2011); (3) synonymous and non-

synonymous variants identification (Lu, Lu et al. 2010); (4) DEG find 

in given conditions (Robinson and Oshlack 2010); (5) orthologous gene 

finding among the different species (Zhu, Li et al. 2014). Of many 

applications, the most acclaimed research is to detect DEG in RNA 

research field. Although the primary goal of the RNA-seq is to identify 

RNA sequence, it is possible to quantify the target transcript by using 

mapped reads count on reference genome with transcriptome 

annotation (Mortazavi, Williams et al. 2008). Before the development 

of RNA-seq, cDNA microarray chip was widely used in order to detect 

DEG. However, since some limitations were introduced from the 

comparative studies against microarray and RNA-seq (Mortazavi, 

Williams et al. 2008, Wang, Gerstein et al. 2009), mRNA extraction 

platform gradually switched over from microarray to RNA-seq. There 

are many advantages to employing NGS based RNA study. First, the 

dependency on existing knowledge is less in the RNA-seq platform. In 

the microarray platform, probe design step for targeted RNA should be 
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conducted before experimenting. In order to construct probe, targeted 

RNA sequence should be known. On the other hand, the RNA-seq

experiment can be directly performed without preliminary information. 

While RNA annotations (Gene annotations) are well developed in 

model organisms, the annotation is still not well-organized in non-

model organisms. For this reason, RNA-seq is widely used in diverse 

species instead of the microarray. Second, RNA-seq is better than 

microarray regarding reusability. Due to the probe designing step in 

microarray generated microarray data can measure only targeted RNA. 

On the contrary, RNA-seq can simultaneously measure diverse types of 

RNA sequences such as mRNA, miRNA (Humphreys and Suter 2013), 

lncRNA (Tilgner, Knowles et al. 2012), etc., because of 

unnecessariness of the probe design. Although some RNA annotation is 

insufficient in the present state, RNA-Seq data can be re-used anytime 

when the statement of annotation is improved enough to apply real data 

analysis. Finally, RNA-seq provides highly reproducible gene 

expression measures (Marioni, Mason et al. 2008, Mortazavi, Williams 

et al. 2008). In the microarray platform, there are several problems 

related to the technical biases including dye effect and several batch 

effects (Churchill 2002). In short, hybridization step mainly causes 

technical biases in the microarray. On the other hand, RNA-seq is less 



15

technical biased than microarray because hybridization is unnecessary. 

From these advantages, today in 2015, a large number of studies 

perform identification of transcriptomic features related to diverse 

conditions on several species. More detailed reviews about these 

transcriptome analysis are included in Chapter 1.2.
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1.2 Transcriptome data analysis

1.2.1 Reference genome-based approach

The RNA-seq analysis pipeline can be divided into majorly two 

groups: (1) reference genome-based and (2) de novo assembly-based 

approaches. However, this thesis is focused on the reference genome-

based approach on model organisms that do not require de novo

assembly. Most of RNA-seq analyses include re-sequencing step based 

on the well-constructed reference genome and transcriptome annotation. 

In this case, the model-species such as human, mouse, and arabidopsis

with reliable background knowledge are often used; the reference 

genomes of model species are generally in high quality (sequencing 

generated in high depth coverages and validated). Therefore, if the 

reference genome is available, the re-sequencing approach is preferable. 

The reference genome-based approach often includes four steps as 

shown in Figure 1.1-a. First, reads are generated from the RNA samples 

and filtered for adapter sequences, which would cause inaccurate result 

in downstream analysis. In addition, reads of poor quality is also 

filtered out as they could lead to complications in RNA-seq experiment.

Some computational methods were developed for generating clean 

reads (Lindgreen 2012). Among various methods, Trimmomatic 
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(Bolger, Lohse et al. 2014) is widely used in the first step of RNA-seq 

experiment using Illumina’s platform. In the next step, reads are 

aligned to the appropriate position of the reference genome. The widely 

used aligners include; BWA (Li and Durbin 2009), Bowtie2 (Langmead 

and Salzberg 2012), ELAND (Bentley, Balasubramanian et al. 2008), 

TopHat (Trapnell, Pachter et al. 2009), GSNAP (Nookaew, Papini et al. 

2012), and etc. While some studies compared performance of various 

aligners, (Grant, Farkas et al. 2011) concluded that it is impossible to 

determine the best aligners considering all conditions because mapping 

rate is profoundly affected by many factors (i.e. genome structure). 

Therefore, employing and comparing several aligners is recommended.

Subsequently, the next step is the quantification step (Trapnell, Roberts 

et al. 2012, Anders, Pyl et al. 2014). In this step, the number of reads

mapped on each feature (exon, gene, isoform or etc) of the reference

genome is counted based on transcriptome annotation. Finally, 

statistical analysis is performed using the raw-counts. Generally, the 

computational methods can be classified into two groups, but both of 

the groups use similar statistical methods. More detailed literature 

reviews for RNA-seq analysis in the statistical perspective is included

in Chapter 1.2.2.

1.2.2 Statistical analysis for RNA-seq data
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The computational methods (Garber, Grabherr et al. 2011) and

statistical methods (Rapaport, Khanin et al. 2013, Soneson and 

Delorenzi 2013) were developed along with the advance of the RNA-

seq platform. In the statistical view, the RNA-seq analysis can be 

divided into two different topics: normalization and testing. In case of 

normalization, main purpose is to accurately measure relative gene 

expression by adjusting for systematic biases, such as gene length, 

library size, GC-contents, and etc (Robinson and Oshlack 2010). The

statistical methods proposed to tackle these problems include: (1) reads

per kilobase of exon model per million mapped reads (RPKM) 

(Mortazavi, Williams et al. 2008); (2) guanine-cytosine content (GC-

content) normalization (Risso, Schwartz et al. 2011); (3) Quantile 

normalization (Hansen, Irizarry et al. 2012); (4) trimmed mean of M-

values (TMM). RPKM was introduced to consider gene length when 

measuring relative gene expressions. By doing this, the different 

possibility of read mapping to longer or shorter genes can be 

normalized. In addition, some studies have reported that GC-content 

could influence gene expression, which could result in false positives in 

downstream analysis (Hansen, Irizarry et al. 2012). In another report, a 

method of GC-content normalization was suggested (Risso, Schwartz et

al. 2011). Quantile normalization, based on the rank of the gene 
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expression, has been widely used in microarray which is helpful for 

controlling batch effects. Finally, TMM normalization is the most

commonly used method for determining relative expression of genes. 

In case of the other normalizations, experimental design cannot be 

considered when calculating relative gene expressions. However, RNA-

seq experiment is generally performed under the given conditions for 

detecting DEGs. In the transcriptome analysis, one of the basic 

assumptions is that most genes are not differentially expressed in any 

conditions. TMM normalized values and normalized factors are

calculated based on this idea, using whole gene expression and library 

sizes in each sample (Robinson and Oshlack 2010). In addition, 

calculated normalized factors can be used in generalized linear model 

(GLM) as additional offsets.

RNA-seq and microarray analysis are different in several ways when 

viewed from statistical perspective. One of the differences is usage of 

GLM in RNA-seq analysis for detecting DEGs. To perform statistical 

analysis, several assumptions on the distribution of gene expression are 

needed. Several controversies exist in distribution of gene expression 

derived from RNA-seq experiment. It can be assumed that the relative 

gene expression derived from microarray follows normal distribution. 

Under this circumstance, well-established statistical methods such as t-
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test, ordinary regression, and analysis of variance (ANOVA), can be 

used for the test corresponding to the experimental design (Forster, Roy 

et al. 2003, Sreekumar and Jose 2008). On the other hand, integer count 

can be observed in RNA-seq (abundances is observed as count), similar 

to serial analysis of gene expression (SAGE). Several statistical models 

were well-established for considering count-type distribution as in 

SAGE (Vêncio, Brentani et al. 2004, Robinson and Smyth 2008). 

Based on these models, edgeR was developed (Robinson, McCarthy et 

al. 2010). The distribution of the mapped-counts was considered as 

over-dispersed Poisson model (negative binomial distribution) with

using empirical Bayes method to estimate degree of overdispersion in 

the genes. In general, Poisson distribution can be assumed to model the 

mapped count. However, Poisson-model-based approaches failed due to 

the overdispersion problem (Auer and Doerge 2011, Fang and Cui 

2011). For this reason, recent studies use negative-binomial distribution. 

Under this assumption, many statistical methods such as edgeR, DESeq 

(Anders and Huber 2012) and DESeq2 (Love, Huber et al. 2014) were 

developed which use GLM, considering mapped-count as response

variable. The model can easily be extended to complex design by 

including additional factors. Generally, the transcriptome is highly 

sensitive to variables compared to the genomic sequence, therefore 
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controlling for these variables is important. Uncontrolled factors can be 

adjusted using GLM and this is the reason why GLM is widely used in 

RNA-seq analysis. With the reduction of the cost associated with RNA-

seq experiment, RNA-seq experiment with more complicated design

will become a feasible option and hence the importance of GLM-based 

RNA-seq analysis is expected in the future.
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Table 1.1. An overview of differentially expression analysis tools
Normalization, 

Quantitative 
analysis and 
Differential 

Expression tools

EdgeR DESeq DESeq2 limmavo
om

Balllgow
n

cuffdiff2 EBSeq baySeq PoissonS
eq

NOIseq SAMseq

Quantification 
measure

Count-
based

Count-
based

Count-
based

Count-
based, 
linear 
model

Linear 
model

Count-
based

Count-
based,
Linear 
model

Count-
based

Count-
based

Count-
based

Count-
based

Normalization TMM/Upp
er quartile/

RLE 
(DESeq-

like)/None 
(all scaling 
factors are 
set to be 

one)

Median-of-
ratio

Median-of-
ratio

TMM FPKM Geometric
(DESeq-

like)
/quartile/cl
assic-fpkm

Median 
Normalizat

ion

Scaling 
factors 

(quantile/T
MM/total)

Total count 
of least

differental 
genes

(assessed 
by GOF)

RPKM/TM
M/Upper 
quartile

Poisson 
Sampling

Read count 
distribution 
assumption

Negative 
binomial 

distribution

Negative 
binomial 

distribution
, 

Poisson 
distribution 
(no or few 
replicates)

Negative 
binomial 

distribution

Negative 
binomial 

distribution

Beta 
negative 
binomial 

distribution

Negative 
binomial 

distribution

Negative 
binomial 

distribution

Negative 
binomial 

distribution

Negative 
binomial 

distribution

Nonparam
etric 

method, 
empirical 

distribution 
(no or few 
replicates)

Nonparam
etric 

method

Differential 
expression test

Exact test Exact test Exact test Empirical 
Bayes 

method

Parametric 
F-test 

comparing 
nested 
linear 

models

t-test Evaluates 
the 

posterior 
probability 

of 
differential
ly and non-
differential

ly 
expressed 

entities 
(genes or 
isoforms) 

via 
empirical 
Bayesian 
methods

Assesses 
the 

posterior 
probabilitie
s of models 

for 
differential
ly and non-
differential

ly 
expressed 
genes via 
empirical 
Bayesian 
methods 
and then 
compares 

these 
posterior 

likelihoods

Score 
statistic on 
the basis of 

the a 
Poisson 

log limear 
model

Contrasts 
fold 

changes 
and 

absolute 
differences 

within a 
condition 

to 
determine 
the null 

distribution 
and then 
compares 

the 
observed 

differences 
to this null

Wilcoxon 
rank 

statistic 
and a 

resampling 
strategy
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Support for 
multi-factored 
experiments

Yes Yes Yes Yes Yes No No No Yes Yes Yes

True positive rate High Low Low/Medi
um

Low/Medi
um

Medium/H
igh

Low Independe
nt of 

sample 
size

Low High Not clear Low(small 
sample 
sizes)/

High(large 
enough 
sample 
sizes)

Support 
differential 

express detection 
without 

replicated 
samples

Yes Yes No No No Yes No No Yes Yes No

Detection of 
differential 

isoforms

No No No No Yes Yes Yes No No No No

Runtime for 
experiments

Minutes Minutes Minutes Minutes Seconds
(standard 
laptop)

Hours Hours Hours Seconds highly 
dependent 
on sample 

size

highly 
dependent 
on sample 

size
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1.3 Biomarker selection

1.3.1 Statistical thresholds

In statistics, use of p-values from test statistics quickly became more 

conventional compared to simple comparison of means. Traditional 

biological literature have used fold-change, of the means, as the 

differential expression threshold. While summarizing multiple values to 

a single mean or average loses variance information, test statistics such 

as t-test, considers the variance of all values in each group. In multi-

group comparisons, the mean and variance of group 1 is compared to 

that of another via ANOVA or t-test under normality assumptions. 

While nonparametric tests can be use on small datasets, linear models 

with normality assumptions were frequently used by bioinformaticians 

in microarray analysis and in FPKM or RPKM-based RNA-seq 

analyses, along with the threshold of p-value < 0.05. 

The p-values in big datasets such as NGS or microarray data, however, 

had to be adjusted for multiple testing problem; the GWAS studies with 

hundred-thousands of SNPs had to be analyzed, and the increase in 

number of tests results in an increase in error. The simplest method is 

Bonferroni correction, which is followed by the false discovery rate 

(FDR) (Benjamini and Hochberg 1995). The Bonferroni correction 
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multiplies the raw p-values by the number of genes tested from the 

dataset. The FDR divides the Bonferroni corrected p-values by their 

raw p-value rank, which leads to more power over Bonferroni. While 

various methods have been proposed to correct multiple testing 

problem, the two aforementioned methods are the only ones accepted 

by researchers at a consensus level. Even after the RNA-seq paradigm 

has shifted from FPKM and RPKM to raw gene expression counts with 

Poisson and negative binomial assumptions, p-values and multiple 

testing threshold still hold their grounds in suggesting plausible 

candidates.

1.3.2 Biomarker Presentation

In presentation of candidate genes, traditional scatter plots, Venn 

diagrams, box plots are frequently used in bioinformatics. More and 

more people alter basic plots to highlight and emphasize their findings. 

In pre-2003, while the resolution of microarray results were not up to 

today’s level, findings from microarray analyses could not be trusted,

and had to be validated. And for technical validation, certain threshold 

of mean difference had to exist to detect DEGs. Here, the fold-change 

made its return to bioinformatics, and has been used as a 

complimentary threshold to p-values. In 2003, the Volcano plot made 

its debut (Cui and Churchill 2003), which is a plot that comprise x-axis 
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with fold-change between groups and y-axis with –log(p-value,10). Up-

and down-regulation information is shown by the x-axis, and fold-

change threshold could be added as vertical lines. The p-value of each 

gene are plotted according to the fold-change, and is usually color-

coded based on the horizontal threshold of adjusted or raw p-values.
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Chapter 2. GRACOMICS: Software for GRaphical 

COMparison of multiple results with omics data
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2.1 Abstract

Analysis of large-scale omics data has become more and more 

challenging due to high dimensionality. More complex analysis 

methods and tools are required to handle such data. While many 

methods already exist, those methods often produce different results. To 

help users obtain more appropriate results (i.e. candidate genes), we 

propose a tool, GRACOMICS that compares numerous analysis results 

visually in a more systematic way; this enables the users to easily 

interpret the results more comfortably. 

GRACOMICS has the ability to visualize multiple analysis results 

interactively. We developed GRACOMICS to provide instantaneous 

results (plots and tables), corresponding to user-defined threshold 

values, since there are yet no other up-to-date omics data visualization 

tools that provide such features. In our analysis, we successfully 

employed two types of omics data: transcriptomic data (microarray and 

RNA-seq data) and genomic data (SNP chip and NGS data).

GRACOMICS is a graphical user interface (GUI)-based program 

written in Java for cross-platform computing environments, and can be 

applied to compare analysis results for any type of large-scale omics 

data. This tool can be useful for biologists to identify genes commonly 

found by intersected statistical methods, for further experimental 
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validation.
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2.2 Introduction

Over the last decade, success in microarray data studies has led to an 

expansion of large-scale omics data analyses and their data types. Vast 

amounts of data, in various forms, are produced for a common goal: to 

find genetic variants related to a phenotype of interest (e.g., disease 

status, etc.). In unison with technological advances, many statistical 

tools were developed for separate types of omics data analyses. In our 

study, we will illustrate the application of our tool for different omics 

data types.

Many microarrays studies aim to detect “gene expression signatures” 

specific to various human diseases by comparing expression levels 

between two distinct groups. The main idea is to identify overexpressed 

and underexpressed genes, as compared to a control group, and label 

them as deleterious or protective, respectively. The success of this 

approach in human cancer, and other diseases (Pan 2002), promoted the 

development of many statistical methods. However, unifying the 

analysis results from disjointed methods cannot keep up with the 

explosive rate of publications concerning the specific phenotype of 

interest. Thus, annotation and replication studies are required in this 

current era. Many databases, such as the National Center for 

Biotechnology Information (NCBI), have been used to infer biological 



31

information from omics data and make note of novel findings that were 

detected as previously reported “markers.”

The popularity of another type of array-based study, focusing on 

single nucleotide polymorphism (SNP) association studies, has steadily 

increased. In fact, SNP analysis has been crucial in uncovering the 

genetic correlations of genomic variants with quantitative traits, 

complex diseases, and drug responses (Hirschhorn and Daly 2005). 

One well-known data source, the Welcome Trust Case Control

Consortium (WTCCC) database, which handles 14,000 cases of seven 

common diseases and 3,000 shared controls, has led to many influential 

publications. While various analysis methods have been published, and 

public databases such as dbSNP (Sherry, Ward et al. 2001) and 

HapMap (Gibbs, Belmont et al. 2003) are available, utilizing them well 

is another issue. 

Following the footsteps of array-based approaches, an era of high-

throughput sequencing began, and this technology has been applied to 

RNA-seq and whole exome and genome sequencing. RNA-seq has 

properties that are different from microarrays, for example, a high 

dynamic range and low background expression levels. To address these 

properties, several statistical methods using Poisson or negative 

binomial distributions have been proposed (Vitale, Frabetti et al. 2007, 
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Huang, Sherman et al. 2009, Choi, Lee et al. 2014). In the case of 

exome and genome sequencing, issues with missing heritability have 

led researchers to study more than just common variants, and various 

methods have now been proposed to handle rarer variants (Troyanskaya, 

Garber et al. 2002, Nagato, Kobayashi et al. 2005, PATANI, JIANG et 

al. 2008).

As for visualization tools, there are only a few programs available 

for comparison. Multi Experiment Viewer (MeV) (Howe, Holton et al. 

2010) is one of the most popular tools included in the TM4 suite, which 

is used to analyze microarray data. Although it supports several 

statistical methods of microarray data analysis, MeV provides only 

multiple outputs in treeview. Similar to MeV, PLINK (Purcell, Neale et 

al. 2007) is a widely used genome association analysis toolset, but does 

not provide graphical interactive comparison of results.

Here, we focused on exploring the inconsistent results that can be 

produced from method-specific assumptions and parameters. Taking an 

extra step to check, understand, and interpret the different results can be 

challenging for scientists without computational proficiency. We aimed 

to ease such problems by proposing a visual comparison tool in a user-

friendly environment. In addition to its accessibility, GRACOMICS can 

reflect a change in results according to an immediate alteration of 
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significance levels. Such characteristics are valuable, and likely 

essential for effective, interactive, and integrative comparison of 

multiple results. Therefore, the proposed tool, GRACOMICS, provides 

a novel approach to visually compare several test results through 

graphical user interface (GUI) components. 

In addition to its interactive GUI, our tool provides three distinctive 

layouts for comparison, including pairwise plots, summary tables, and a 

“heatmap-like” summary table highlighting pivotal markers, commonly 

detected by different methods. Two of the modules, the Pairwise 

Comprehensive Scatter Plots Module (Pair-CSP) and the Pairwise 

Detailed Scatter Plot Module  (Pair-DSP), compare and contrast a pair 

of methods at the same time, while the third, the Multiple Results 

Comparison Module  (Multi-RC), can handle all the employed 

methods (more than two) at once. Note that the user can define the top 

N significant markers (from input files) that will be used in the modules, 

for more interactive and efficient comparison. Furthermore, simple 

web-annotation functionality adds to the benefits, in terms of biological 

interpretation.

2.3 Materials and Methods

2.3.1 Microarray dataset and statistical methods
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For microarray studies, statistical tests were performed to detect 

differentially expressed genes (DEGs) between two groups: cases and 

controls. A pre-processing step is necessary for statistical analysis of 

the raw expression profiles, including background correction, global or 

local normalization, log-transformation, etc. Such processing steps may 

alter the results and should be performed only after fully understanding 

the platform and target probes of the analysis. We employed a 

microarray dataset, GSE27567 (LaBreche, Nevins et al. 2011), from the 

Gene Expression Omnibus (GEO) database, consisting of 45,101 

Affymetrix probes from 93 individual mice. To detect the DEGs from 

the microarray data, we perform two group comparison tests between 

tumor-bearing mice and non-transgenic controls. We employed 

statistical tests such as t-test, significant analysis of microarray (SAM) 

(Tusher, Tibshirani et al. 2001), permutation, and Wilcoxon rank-sum 

test.

2.3.2 SNP dataset and statistical methods

In genome-wide association (GWA) studies, researchers focus on the 

positions of genetic variants that are significantly related to the 

phenotype of interest. There is no gold standard for pre-processing such 

data, but a few guidelines exist. Many steps, such as normalization and 
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bias removal are included in data pre-processing, and the analysis 

results are very dependent on those steps. In our analysis, we used a 

bipolar disorder data in the WTCCC database, which includes 354,019 

SNPs from 4,806 individuals (1,868 bipolar disorder patients and 2,938 

normal controls). As a first step, we conducted a quality control process 

based on specific criteria (Oh, Lee et al. 2012). For the association test 

between genotype and phenotype, using SNP data, we used statistical 

methods such as chi-square test, Fisher’s exact test, logistic regression 

with covariate adjusting, and logistic regression without covariate 

adjusting. These association tests were implemented using the PLINK 

tool (Purcell, Neale et al. 2007).

2.3.3 RNA-seq dataset and statistical methods

We employed results from RNA-seq, another type of transcriptome 

measuring platform.  Recently, its advantages over microarray 

platforms have been described by many comparative reports 

(Morozova, Hirst et al. 2009). Thus, a more elaborated estimation 

became possible by RNA-seq, in short. However, RNA-seq gene 

expression is measured in counts (i.e., number of strands synthesized), 

and therefore direct application of RNA-seq methods to microarray 

analysis is impossible. Instead, RNA-seq analysis methods are 
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developed by applying statistical methodologies based on analyzing 

serial analysis of gene expression (SAGE) platform data, a traditional 

approach for measuring gene expression in counts. Here, we employed 

RNA-seq data from a previous study (Bullard, Purdom et al. 2010)

using edgeR (Robinson, McCarthy et al. 2010), DESeq (Anders and 

Huber 2010), and NBPSeq (Di, Schafer et al. 2011) methods. The 

RNA-seq data from a MicroArray Quality Control Project (MAQC) 

had 7 replicates and one pooled sample each from two types of samples, 

Ambion’s (Austin, TX, USA) human brain reference RNA, and 

Stratagene’s (Santa Clara, CA, USA) human universal reference RNA. 

After filtering out the NA values; 10,473 genes remained, with three 

DE-analysis methods.

2.3.4 NGS dataset and statistical methods

Shortcomings of common variants in explaining the whole heritability 

of diseases has led to the study of rarer variants (Troyanskaya, Garber 

et al. 2002, Nagato, Kobayashi et al. 2005, PATANI, JIANG et al. 

2008). Unlike common variants, rare variant analyses, based on single 

genetic associations, often shows large false-negative results, unless the 

sample or effect sizes are very large. Hence, collapsed genotype scores 

for a set of rare variants are suggested for an analysis scheme. For our 
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input, we employed the results from rare variant association tests such 

as C-alpha (Neale, Rivas et al. 2011), burden test (Wu, Lee et al. 2011), 

and SKAT-O (Lee, Emond et al. 2012). These association tests were 

implemented using the FARVAT tool (Choi, Lee et al. 2014). For 

illustrative purposes, we used the simulation dataset of FARVAT 

consisting of 100 SNPs and 16 genes which was enlarged to have 

10,000 SNPs and 2,000 genes, using the same settings. 

2.3.5 Implementation of GRACOMICS

GRACOMICS is a java-based stand-alone program using a GUI 

platform. It was developed under Java because statistical analysis tools 

are generally developed by diverse codes such as R, SAS, etc. Java 

programs are renowned for their compatibility with various computing 

environments, are supported by all operating systems, and can easily be 

executed by other programs written in different computer languages. 

GRACOMICS can read tabular types of tab-separated values (TSV) 

files containing p-values for each method in columns and genetic 

markers in rows. Also, using simple mouse clicks, rather than command 

lines as input, helps bridge the gap between biology-based researchers 

and computer science-based researchers. Our plan was to design and 

implement a user-friendly program any researcher could use in any 
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environment. The proposed tool, GRACOMICS, has the following 

three interactive modules with distinct features:

(1) Pairwise Comprehensive Scatter Plots Module (Pair-CSP)

Pair-CSP provides a scatter plot of pairwise comparisons between 

statistical method inputs simultaneously (Figures 2.1 and 2.4). Pair-CSP 

automatically generates these pairwise scatterplots using the p-values 

from the input file(s), letting the user interpret the similarities between 

the test results through correlation plots and correlation coefficients at a 

glance. When the significance level is manipulated, the pairwise 

scatterplots change accordingly, to display markers over the threshold 

only. There are two reasons behind this feature: one is to reduce 

computational time for drawing multitudinous points, and the other is 

to show only what the researcher wants to see, i.e., the meaningful 

results.

(2) Pairwise Detailed Scatter Plot Module (Pair-DSP)

Pair-DSP is an interactive plot to compare the results between two 

methods on a more detailed level than Pair-CSP (Figures 2.2 and 2.5). 

This module is linked to Pair-CSP, enabling the user to directly access 

Pair-DSP from Pair-CSP for extended summarization of the chosen 

biomarkers. The summary organizes meaningful results via a Venn 

diagram, a table, and a marker list. For the known marker’s function, 
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simple annotation of a single biomarker is offered via the NCBI 

database. Its simple annotation function automatically provides a link 

to the NCBI web page corresponding to its marker type, for 

convenience. In addition, for pathway analysis of microarray data, 

GRACOMICS connects to the web-based DAVID database (Huang, 

Sherman et al. 2009). As a result, researchers can summarize their list 

of significant results, and then check the biological functions of the 

chosen markers.

(3)  Multiple Results Comparison Module (Multi-RC)

Multi-RC provides simultaneous comparison of numerous test results 

(Figures 2.3 and 2.6). Researchers can choose an interesting subset of 

methods and set their significance levels separately. A tabular output 

with rows as significant markers and columns as statistical methods, is 

provided (with p-values in each cell). Each cell is color-coded red or 

green, representing significant or not, respectively. Also, variation of 

color intensities are used to represent the degree of significance, with 

more significant markers colored more intensely. In addition, Multi-RC 

summarizes commonly significant results and provide links to their 

annotation. As an extra option (with a checkbox) for meta-studies, we 

implemented Fisher’s method in combining p-values to provide overall 

importance in version 1.1.
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Figure 2.1. Pair-CSP plot with GSE27567 data.

Four test results were compared, and all pairwise scatterplots and their 
correlation coefficients are given in the Pair-CSP module.
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Figure 2.2. Pair-DSP plot with GSE27567 data.

Wilcoxon rank sum tests and t-tests were chosen for detailed 
investigation, Venn diagram and the summary tables are key features of 
Pair-DSP.



43

Figure 2.3. Multi-RC plot with GSE27567 data.

The Multi-RC module provides an overall summary in a heatmap-like 
tabular format which highlights markers with the lowest average p-
values. The user can then choose which methods to investigate by using 
the checkboxes in the top-left panel.
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Figure 2.4. Pair-CSP plot with WTCCC SNP data.

Four tests results were compared, and all pairwise scatterplots and their 
correlation coefficients are given in Pair-CSP.
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Figure 2.5. Pair-DSP plot with WTCCC SNP data.

Two logistic models, one with and the other without covariates, has 
been chosen for detailed investigation, Venn diagrams and the summary 
tables are key features of Pair-DSP.
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Figure 2.6. Multi-RC plot with WTCCC SNP data.

The Multi-RC module provides an overall summary in a heatmap-like 
tabular format which highlights markers with the lowest average p-
values. Note rs1112069 is colored in red by 3 of the 4 tests, as 
discussed in the manuscript.
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2.3.6 Availability and requirements

Project name: GRACOMICS (License: LGPL 2.1)

Project home page: http://bibs.snu.ac.kr/software/GRACOMICS

Operating system: Platform-independent

Programming language: Java

Other requirements: Java 1.7.0_45 or higher

2.3.7 List of abbreviations

SNP: Single nucleotide polymorphism 

GUI: Graphic User Interface

NCBI: National Center for Biotechnology Information 

WTCCC: Wellcome Trust Case Control Consortium

Mev: Multi Experiment Viewer

Pair-CSP: Pairwise Comprehensive Scatter Plots Module

Pair-DSP: Pairwise Detailed Scatter Plot Module

Multi-RC: Multiple Results Comparison Module  

DEGs: differentially expressed genes 

GEO: Gene Expression omnibus 

SAM: significant analysis of microarray 
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GWA: genome-wide association 

TSV: tab separated values TSV

SAGE: serial analysis of gene expression

MAQC: MicroArray Quaility Control Project
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2.4 Results and Discussion

2.4.1 Results

Application of GRACOMICS to real microarray data 

In Figure 2.1, the plots provided by Pair-CSP compare the test results 

of t-test, Wilcoxon rank-sum test, SAM, and permutation test, 

displaying the top 1,500 markers by their average p-values (the user 

can designate the number or percentage of markers to be displayed). 

Pair-CSP reveals a close relationship between each pair of methods; 

most correlation coefficients are over 0.9, except for those with the 

Wilcoxon rank-sum test. Although both Wilcoxon rank-sum and 

permutation tests are nonparametric tests, the Wilcoxon rank-sum test 

uses only rank information, while the permutation test uses the variance 

information that arises when defining t-test statistics. Thus, they 

provide different results. 

In order to compare the Wilcoxon rank-sum test to other tests more 

systematically, we used Pair-DSP focusing on the t-test and the 

Wilcoxon rank-sum test. As shown in Figure 2.2, Pair-DSP displays a 

pairwise plot of the two methods using p-values, and summarizes the 

number of genes commonly identified by the two methods. Unlike the 

pairwise plot of Pair-CSP, the pairwise plot of Pair-DSP shows far more 

detailed information. For example, a red color represents the significant 
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genes identified by t-test only, a blue color signifies those identified by 

Wilcoxon rank-sum test only, and purple color indicates those 

identified by both tests. The gene name, in tool tip form, of a point is 

provided when the cursor is put directly over the single point. The 

summary table, at the top right, shows a decrease in the number of 

significant genes commonly identified by the two methods goes from 

1,049 to 12, as the cut-off value decreases from 5% to 0.1%. Pair-DSP 

also provides a Venn diagram displaying the numbers of genes 

identified commonly and separately by the two methods. Pair-DSP 

shows that 171 genes remained significant by both t-tests and Wilcoxon 

rank-sum tests at the 1% significance level. 86 genes were significant 

by t-test only and 141 genes by Wilcoxon rank-sum test only, at the 

same significance level. The bottom right table shows the list of genes 

identified by the two methods. 

To investigate the functions of the identified genes, simple 

annotation is provided via the NCBI database. This simple annotation 

function automatically opens a link to the NCBI web page 

corresponding to the gene of interest, for convenience. In addition, for a 

pathway analysis annotation database, GRACOMICS provides 

connection to the web-based DAVID database (Huang, Sherman et al. 

2009). For example, clicking the gene Cyyr1, followed by a right click 
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shows a popup window with two menus of “Link to NCBI annotation 

database” and “Link to DAVID annotation database”. From the NCBI 

database, researchers can investigate known gene functions, and related 

papers in PubMed, for each gene. We observed that Cyyr1 (Vitale, 

Frabetti et al. 2007) and Il9 (Nagato, Kobayashi et al. 2005) are genes 

reported in PubMed. Next, when using DAVID to analyze the 

functional annotation of the 171 commonly identified genes from t-tests 

and Wilcoxon rank-sum tests, we observed the gene list to be enriched 

in the GO term “cell cycle arrest,” with a p-value of 4.1e-3. As a result, 

researchers can summarize their list of significant results, and then 

check the biological functions and related publications of the chosen 

markers. 

The Multi-RC module allows simultaneous comparison of two or 

more results, as shown in Figure 2.3. We selected four methods:  t-test, 

SAM, Wilcoxon rank-sum test, and permutation test, with a cut-off 

value of 0.1%. In this setting, we observed 12 common significant 

genes between all the methods. The genes BB471471, Cyyr1, Il9, and

St6galnac1 (PATANI, JIANG et al. 2008) were consistent candidates 

from all four methods. However, while BB471471 was at the top of the 

list, no reports were found of its association with tumours or any other 

diseases. Therefore, we suggest the BB471471 is a worthy candidate to 
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examine further for its possible association with tumours. By analyzing 

this real microarray data analysis with GRACOMICS, we identified 

several commonly significant DEGs from comparisons from each 

method, to obtain the most reliable candidate DEGs.

Application of GRACOMICS to real SNP data 

In Figure 2.4, the plots are provided by Pair-CSP, which compares the 

test results of chi-square test, Fisher’s exact test, and logistic regression 

analyses. In the figure, two results from logistic regression analyses are 

provided: one is without covariates and the other is with the adjusting 

covariate effects of sex, age and the first two principal components. 

Although the significance of covariates can be easily tested, it is not 

always straightforward to determine which adjusting covariates to 

include in the model (Troyanskaya, Garber et al. 2002).  Here, we 

focused on the results from the two logistic models and demonstrate 

how efficiently GRACOMICS can be used to compare these two results, 

showing that the correlation between the two logistic regression models 

was 0.598. 

For a further detailed comparison between these two results, Pair-

DSP, in Figure 2.5, was conducted on these two logistic models. The 

summary table, at the top right, shows that the number of significant 

genes commonly identified by the two methods gradually decreases 
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from 15 to 4, as the cut-off value decreases from 5.0e-6 to 2.4e-6. The 

Venn diagram illustrates that Pair-DSP successfully identified 

rs1344484 (Palo 2010), rs708647, rs2192859 (Kwon, Park et al. 2014), 

rs11647459 and rs4627791(Jiang and Zhang 2011), in purple, as the 

most commonly detected SNPs. The four SNPs in red, rs11112069, 

rs1375144, rs11622475, and rs4627791, were detected by the with-

covariates model only. We found rs11112069 as the top result (in 

average p-value), with low p-values in all four analyses. This SNP is 

within intron-2 of CHST11, a gene which has previously been reported 

as bipolar disorder-associated (Chen, Lu et al. 2014). 

In the next module (Multi-RC; Figure 2.6), users can see the change 

in p-values for each marker, according to the method used or 

adjustments for covariates. Rs11112069 is displayed at the top of the 

list, and is marked in red (very significant) from 3 of the 4 tests, with a 

fairly low p-value for the fourth test also. To further analyze the top 

results, GRACOMICS can automatically distinguish marker types and 

links to dbSNP in the NCBI database for selected SNPs. From the 

annotation, researchers can attain detailed SNP information, such as 

location of the SNP, its mapped gene, clinical significance, etc. Unlike 

the microarray example, DAVID is not directly applicable to SNP data. 

However, we expect that other annotation databases will be added to 
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future updates.

Application of GRACOMICS to real RNA-seq data 

As shown in Figure S2.1, Pair-CSP shows that all three analysis 

methods; edgeR, DESeq, and NBPSeq, yield very similar results. All of 

the correlation coefficients are over 0.86, and the highest was between 

edgeR and DESeq. In addition, the plots illustrate that edgeR generates 

lower P-values than the others, due to scattered points being skewed 

toward the y-axis (edgeR). Under the 1% significance level, 

approximately 7,000 genes were detected as DEGs by each method. In 

Figure S2.2, Pair-DSP shows that more DEGs were identified by edgeR, 

as compared to DESeq. In the Venn diagram, significant genes that 

intersected ranged from 7087 to 1621, when decreasing the cut-off 

values from 0.01 to 1.0E-100. Finally, we can observe that most of 

genes are very significant in Multi-RC. As shown in Figure S2.3, 6983 

genes were detected by all the methods under a 1% significant level. 

Here, the gene symbol of RNA-seq data is its Ensemble ID, and these 

should be converted to official gene symbols for successful functional 

annotation. Although implementing the Ensemble annotation function 

on the web is possible, we did not include it in the current version of 

GRACOMICS, because accommodating several symbols in the 

program may lead to user confusion. Although we determined that only 
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official gene symbols should be accommodated in the tool, later 

versions can be updated with such functions, if there are user demands.

Application of GRACOMICS to simulated NGS data 

Using a simulated rare variant dataset (Choi, Lee et al. 2014), we 

successfully cataloged significant genes that were test-specific or 

marginal in all tests. The results are shown in Figures S2.4~S2.6. In this 

analysis, gene names were masked as Genes 1 ~ 2000 and therefore 

could not be annotated to NCBI or DAVID. However, if a real dataset is 

used, the genes can be annotated in similar fashion as microarray and 

RNA-seq datasets. In accord with the above three applications, we 

could infer which methods showed higher correlation, in terms of p-

values, from the Pair-CSP, followed by a detailed comparison of the 

number of significant genes detected in each method, and finally, by 

comparing the p-values in a tabular heatmap form. Here, we observed 

the highest correlation of 0.961 between the C-Alpha and SKAT-O 

methods, and these two methods shared 129 genes with a p-value 

threshold of < 0.05. The top-ranked genes all showed p-values ~ 0.001 

using all the methods, and would be candidates of interest for end-users 

if this was a real data analysis.

2.4.2 Discussion

From the aforesaid illustration, we demonstrated the potential of 
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GRACOMICS to successfully highlight biologically meaningful results 

from multiple methods. Traditional bioinformatics studies, and some 

recent works, show that simple comparison of results has been widely 

used for biological interpretation. For example, a transcriptome study 

concluded that in a situation where the most reliable list of markers is 

desirable, the best approach was to examine the intersection of genes 

identified by all tried methods, or by more conservative tests 

(Troyanskaya, Garber et al. 2002). Since checking the underlying 

assumptions of all methods is not easy, and even if the assumptions are 

met, each method may provide different results, which are hard to 

interpret. The easiest and most conventional method is to find 

commonly identified markers to trim down the candidate list, and carry 

on further analysis. While GRACOMICS cannot give conclusive 

evidence that the highlighted markers are significant, it can help the 

biologist narrow down the candidate list, based on the intersection of 

markers for efficiency for further validations, such as RT-PCR. 

In addition to comparison of multiple results of the same datasets, 

GRACOMICS can be applicable to other types of studies. First, 

GRACOMICS can compare the results from different datasets, such as 

different tissues or organs. An RNA study compared differentially 

expressed test results from various tissues, such as liver, adipose tissue, 
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muscle, and brain (Jiang and Zhang 2011). GRACOMICS can 

effectively provide the list of common genes, as well as tissue-specific 

genes. Second, GRACOMICS can compare results from different 

platforms, such as microarray vs. RNA-seq (Nookaew, Papini et al. 

2012). Here, GRACOMICS can trim down the list of candidates 

significant to both platform results, for further biological validation. 

Finally, meta-analysis combining independent results from different 

studies can be analyzed by GRACOMICS; the p-values from each 

study can be efficiently compared to others and can be combined easily 

by Fisher’s method. For meta-analysis, the compared results should be 

from independent datasets. However, when one single dataset was 

analyzed by multiple methods, the independent assumption is violated; 

the interpretation of this Fisher’s combined p-value should be made 

with caution.

2.4.3 Conclusion

Comparative study of omics data analyses is unavoidable; however, 

many researchers skip the comparative step because it is a complicated 

process. GRACOMICS enables easy comparison of several methods 

for analyzing specific omics data platforms by any user. The four omics 

data employed are active areas of study in bioinformatics. We 

employed microarray & RNA-seq data at the transcriptomic level, and 
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SNP and NGS data at the genomic level, to display the utility of 

GRACOMICS. So far, GRACOMICS can also employ proteomic 

analysis results, and will be extended to accommodate other types of 

annotations for proteomics data in a future study. In summary, we 

believe that this will be a highly valuable and straightforward tool for 

non-computational biologists, strongly assisting them in their 

interpretation of results from new cutting-edge technologies.
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Additional file 1 - Figure S2.1. Pair-CSP plot with MAQC RNA-seq 

data.

Three tests results have been compared, and all pairwise scatterplots 
and their correlation coefficients are given on Pair-CSP.
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Additional file 2 - Figure S2.2. Pair-DSP plot with MAQC RNA-seq 

data.

EdgeR and DESeq were chosen for detailed investigation. Venn 
diagrams and the summary tables are key features of Pair-DSP.
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Additional file 3 - Figure S2.3. Multi-RC plot with MAQC RNA-

seq data.

The Multi-RC module provides an overall summary in a heatmap-like 
tabular format which highlights markers with the lowest average p-
values.
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Additional file 4 - Figure S2.4. Pair-CSP plot with simulated NGS 

data.

Three tests results were compared, and all pairwise scatterplots and 
their correlation coefficients are given on the Pair-CSP GUI.
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Additional file 5 - Figure S2.5. Pair-DSP plot with simulated NGS 

data.

C-alpha and SKAT-O were chosen for detailed investigation. Venn 
diagrams and the summary tables are key features of Pair-DSP.
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Additional file 6 - Figure S2.6. The Multi-RC plot with simulated 

NGS data.

The Multi-RC module provides an overall summary in a heatmap-like 
tabular format which highlights markers with the lowest average p-
values.
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This chapter will be published in Asian-Australasian Journal of Animal 

Sciences as a partial fulfillment of Joon Yoon’s Ph.D program

Chapter 3. Multi-tissue Observation of the Long 
Non-coding RNA Effects on Sexually Biased Gene 

Expression in Cattle
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3.1 Abstract

Recent studies have implied that gene expression has high tissue-

specificity, and therefore it is essential to investigate gene expression in 

a variety of tissues when performing the transcriptomic analysis. In 

addition, the gradual increase of lncRNA annotation database increased 

the importance and proportion of mapped reads accordingly. We 

employed simple statistical models to detect the sexually 

biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq

samples across two factors: sex and tissue. 

We employed simple statistical models to detect the sexually 

biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq

samples across two factors: sex and tissue. We employed two 

quantification pipeline: mRNA annotation only and mRNA+lncRNA 

annotation.

As a result, the tissue-specific sexually dimorphic genes are affected by 

the addition of lncRNA annotation at a non-negligible level. In addition, 

many lncRNAs are expressed in a more tissue-specific fashion and with 

greater variation between tissues compared to protein-coding genes. 

Due to the genic region lncRNAs, the differentially expressed gene list 

changes, which results in certain sexually biased genes to become 

ambiguous across the tissues.
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In a past study, it has been reported that tissue-specific patterns can be 

seen throughout the differentially expressed genes between sexes in 

cattle. Using the same dataset, this study used a more recent reference, 

and the addition of conjugate lncRNA information, which revealed 

alterations of DEG lists that result in an apparent distinction in the 

downstream analysis and interpretation. We firmly believe such 

misquantification of genic lncRNAs can be vital in both future and past 

studies.

Keywords: Cattle, Sexually dimorphic, Genic lncRNA, RNA-seq, 

Expression profile, Tissue specificity



68

3.2 Introduction

Recent studies have shown the importance of long non-coding RNA 

(lncRNA) annotation is growing with time. Their quantified expression 

levels are at a fair level and therefore needs additional handling if a 

study handles transcriptome. In recent literature (Derrien, Johnson et al. 

2012), the simple definition of a lncRNA is written as non-coding 

RNAs that are long, stable, commonly spliced, and polyadenylated, 

plus transcribed from their own promoters. Also, in (Zhang, Yang et al. 

2014), the author states that most large intergenic non-coding RNAs 

(lincRNAs) appear indistinguishable from mRNAs, due to the 5' cap 

structures and 3' poly(A) tails. Such characteristics should arouse a 

question in a scientist’s mind if the mRNA expression really from a 

mRNA. Furthermore, we have to be sure that our mRNA expression 

level is trustworthy, in order to detect differential gene expression. By 

adding the lncRNA annotation and accounting for their counts, one can 

remove ambiguous reads that were originally quantified as mRNA in 

traditional approaches.

Our understanding of the molecular mechanisms underlying sexual 

dimorphism remains imperfect. A common practice in the 

transcriptomic analysis is to attesting the gene expression between 

groups of population and treatments. While many of dimorphism 
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studies are published for humans, rodents, and fruit flies, only a few 

were attempted in cattle (Chitwood, Rincon et al. 2013, Gómez, 

Caamaño et al. 2013). To add, most bovine transcriptomic research 

focuses on the tissue growth and development, which are exclusive

studies on pre-implantation embryos. Other tissues should also be taken

into account for further insight into these mechanisms. 

Bovine meat and milk are everyday sources of human nutrition (Mwai, 

Hanotte et al. 2015). The gender and gender-specific genes of the food-

producing animal are known to affect the quality and quantity of those 

nutrients (Splan, Cundiff et al. 1998, Gill, Bishop et al. 2009). 

Investigation of sexual dimorphism in metabolic tissues such as muscle, 

liver and adipose tissue from cattle is important for both research and 

the food production industry. Previous works have already proven the 

gender- and tissue-specific effects in expression profiles (Yang, Schadt 

et al. 2006). The between-gender expression should be compared in 

every tissue that is available. 

While the entire brain is filled with sexually dimorphic (or biased) 

features, the hypothalamus-pituitary axis is a primary structure that 

controls sexual dimorphism in the central nervous system (CNS), as 

well as peripheral tissues. The pituitary gland regulates the central 

endocrine of metabolism, sexual maturation, and growth. Its unique cell 
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types in the anterior secrete polypeptide hormones such as growth 

hormone and gonadotropins, a family of protein hormones including 

luteinizing hormones and follicle stimulating hormones, by 

appropriately orchestrating signals from environmental and internal 

stimuli. Furthermore, profound sex differences exist in hormonal 

regulation and responses of the pituitary gland to external stressors, 

which leads to the females displaying a higher vulnerability to various 

neuropsychiatric disorders (Handa, Burgess et al. 1994, Rhodes and 

Rubin 1999). Hence, examination of sexually dimorphic gene 

expression profiles in the pituitary gland in multiple metabolic tissues 

will improve our understanding of sexual dimorphism in both 

metabolic and physiological perspectives (Nishida, Yoshioka et al. 

2005, Sanchez-Cardenas, Fontanaud et al. 2010). 

In the present study, we aimed to revisit the tissue-specific sexually 

dimorphic genes that contribute to bovine sexual dimorphism. 

Generalized linear model is utilized for analyzing complex RNA-seq

data from samples collected from several different tissues- liver, muscle, 

visceral adipose tissue and pituitary gland: a simple two-group 

comparison for detecting sexually dimorphic genes in each tissue. We 

followed two pipelines—mRNA annotation only and mRNA with 

lncRNA annotation—and we report the differences in these approaches 
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for identification of sexually dimorphic genes in several tissues. While 

a few of the recent studies published results of mRNA and lncRNA 

profiling in RNA-seq, none were written on revisiting the old datasets 

and how the list of DEGs differentiates from the original manuscripts 

(Seo, Caetano-Anolles et al. 2016).

3.3 Materials and Methods

3.3.1 Animal handling and RNA-seq procedures

The dataset is open in public from previous literature (Seo, Caetano-

Anolles et al. 2016). However, in their preprocessing of the dataset, the 

outdated protocol such as reference file, annotation file, alignment and 

quantification programs have been updated with a more concurrent in-

house pipeline. As a note, the sex-chromosome annotation is discarded

due to its absence in bostau8 reference (the most concurrent bovine 

reference file). The detailed Animal handling and RNA-seq procedures 

are provided in the Supplementary File 1 as an excerpt from their 

original manuscript, as no extra handling or processing of animals and

RNA samples were done.

Here, the mRNA pipeline (original) only considers mRNA-to-gene 

annotation, while our pipeline includes the lncRNA annotation 

additional to that of the mRNA in the quantification step. After 

preprocessing of the data, Hisat2 (Kim, Langmead et al. 2015) and 
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featureCounts (Liao, Smyth et al. 2014) (non-stranded) have been 

employed to acquire the counts of our features. Hisat2 and 

featureCounts are a pair of the most concurrent genome-based 

quantification tools that are compatible with those from the previous 

study (since validations will be cited). In the process, the General 

Transfer Format (GTF) file from UCSC genome browser has been used, 

and the lncRNA annotation GTF from ALDB (A Domestic-Animal 

Long Noncoding RNA Database) (Li, Zhang et al. 2015) has been 

utilized. To account for the lncRNAs, we merged the two GTFs were 

merged as one and quantified with featureCounts. As a result, we 

achieved 19212, 19823, 19144, 19918, and 19208, 19817, 19139, 

19913 genes respectively in the 4 tissues (Liver, Fat, Muscle, and 

Pituitary Gland) for mRNA and mRNA + lncRNA pipelines. Default 

options were used except for the unstranded option for both programs. 

There were a few contaminated and ambiguous samples that had low 

mapping and annotation rates; such samples are highlighted in the 

Supplementary Table 3.1, and are removed from the analysis for quality 

control purposes.

3.3.2 Statistical model for detecting sexually dimorphic genes in 

each tissue using GLM implemented in edgeR
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In a previous study, various sexually dimorphic genes were detected 

by two group tests in four tissues using the same data (Seo, Caetano-

Anolles et al. 2016). The study considered a count-type distribution 

such as Poisson and negative binomial (one solution for over-dispersion 

in Poisson assumption), which is suitable for measuring gene 

expression from RNA-seq data given data characteristics. Hence, GLM 

is employed for analysis of RNA-seq data by assuming gene expression 

as a negative binomial in edgeR to detect DEGs. However, the study 

used an outdated source, reference (bostau7 and annotation), while we 

have updated those sources (bostau8 and annotation) and added 

lncRNA information in our protocol. 

We chose the simpler model for identification of sexually dimorphic 

genes using RNA-seq data composed of two factors (sex and tissues). 

The simplest approach for the analysis of this data is to perform a two-

group test between data from female and males in each tissue, 

separately, as has been performed in previous studies using microarray 

data. To extend this method in RNA-seq analysis, we employed a 

generalized linear model (GLM) with only one explanatory variable 

(sex group variable) as shown.

log(E(Y))=μ+Sex

The reason behind this is that the tissue specificity is obvious when 
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using the MDS to cluster our expression profiles which shows much 

higher between-tissue variance than between-individual or –group, as 

shown in Supplementary Figure S3.1. In other words, the tissue has 

more effect on the expression level than sex or individual, which is 

concordant with the previous work (Seo, Caetano-Anolles et al. 2016). 

When a full model considering the sex and tissue is fitted, the 

interaction term is significant for a major part of the considered genes; 

this also means that the sexually dimorphic genes should be separately 

attested for each tissue. In other words, a simple analysis of deviance 

(ANODEV) model is more adequate compared to a reduced two-factor 

model, which includes tissue as a covariate, when the interaction term 

between sex and tissue is significant, and that effect of sex on gene 

expression changes with the tissue. Since lncRNA expression is also 

known for its tissue-specificity (Iwakiri, Terai et al. 2017), we carried 

out the analysis using the tissue-specific simple ANODEV model. The 

ANODEV model is a GLM that is frequently used in RNA-seq studies 

by considering the dependent variable as a Poisson distribution; it is a 

GLM compatible version of analysis of variance analysis (ANOVA) 

(Nelder 2006). We used an FDR < 0.05 significance cutoff for multiple 

testing adjustments and summarized the significant genes for each 

tissue separately.
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3.3.3 Availability of supporting data

The public datasets supporting the results of this article is available in 

the GEO database, GSE65125 in 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65125.

3.3.4 List of Abbreviations

ANODEV: Analysis of deviance

CNS: Central nervous system

DEGs: Differentially expressed genes

FDR: False Discovery Rate

GLM: Generalized linear model 

GTF: General Transfer Format

lncRNA: long non-coding RNA

qRT-PCR: Quantitative real-time PCR

3.3.5 Supplementary file excerpt

Excerpt from (Seo, Caetano-Anolles et al. 2016) on Animal handling 

and RNA-seq procedures as we used the published dataset and refined 
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the study. [These are direct quotes from the article, and should be 

removed from the manuscript while checking for plagiarism.]

“All animal procedures were approved by the National Institute of 

Animal Science Institutional Animal Use and Care Committee 

(NIASIAUCC), Republic of Korea, and performed in accordance with 

the animal experimental guidelines provided by NIASIAUCC. Samples 

were collected from Korean cattle raised in the Daekwanryung 

experimental branches of the National Institute of Animal Science 

(NIAS). 10 cattle were slaughtered at age of (>22 months) and carcass 

weight was 353 ± 36 kg after slaughter. Abdominal adipose tissue, liver, 

intact longissimus dorsi muscle, and pituitary gland tissue samples 

were immediately separated after slaughter. Tissue samples were stored 

at -80 °C, and total RNA was isolated from the four tissues using the 

TRIzol reagent (Invitrogen) based on the manufacturer instructions. 

Total RNA quality and quantity was verified using a NanoDrop1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and 

Bioanalyzer 2100 (Agilent technologies,Palo Alto CA, USA). The 

mRNA in total RNA was converted into a library of template molecules 

suitable for subsequent cluster generation using the reagents provided 

in the Illumina ® TruSeq™ RNA Sample Preparation Kit. In summary, 

mRNA was purified using poly-A selection, then chemically 
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fragmented and converted into single-stranded cDNA using random 

hexamer priming. The second strand is then generated to create double-

stranded cDNA that is ready for TruSeq library construction. The short 

ds-cDNA fragments were then connected with sequencing adapters, and 

suitable fragments were separated by agarose gel electrophoresis. 

Finally, truseq RNA libraries were built by PCR amplification, 

quantified using qPCR according to the qPCR Quantification Protocol 

Guide, qualified using the Agilent Technologies 2100 Bioanalyzer. 

(Agilent technologies,Palo Alto CA, USA). Based on the generated 

RNA libraries, paired-end sequencing (101 bp read-length and 

approximately 150 to 180 insert size) was performed using the HiSeq™ 

2000 platform (Illumina,San Diego, USA). Next, to measure 

transcriptome levels with generated RNA-seq reads we performed the 

following widely used RNA-seq pipeline: (1) We employed 

Trimmomatic (v0.32) (Bolger, Lohse et al. 2014) with following option: 

PE -phred33 ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 MINLEN:75 2 

for making clean reads.”

3.4 Results and Discussion

3.4.1 Results

Identification of sexually dimorphic genes using the one-way model 

in each tissue
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By using our simple ANODEV model, we identified differentially 

expressed genes for each pipeline and summarized their results by 

finding the intersecting genes (concordant genes) and pipeline-specific 

genes. In the original pipeline, mRNA only annotation, there were 37, 

23, 40, and 31 genes significant for muscle, adipose tissue, pituitary 

gland, and liver, respectively. For our pipeline, with mRNA and 

lncRNA annotation, 38, 23, 40, and 31 genes were respectively 

detected. Although the numbers may seem similar, as in pituitary gland, 

the proportion of intersecting gene is not significant when considering 

all tissues. Specifically, out of the 23 significant genes, only 3 genes are 

significant in adipose tissue expression. Other tissues also display a 

sufficient number of pipeline-specific DEGs as shown in (Table 3.1):

Table 3.1. The number of detected DEGs in the two protocols.

Type* Muscle Adipose 

Tissue

Pituitary 

Gland

Liver

Intersect 17 3 33 23

mRNA only 20 20 7 8

mRNA & 

lncRNA

21 20 7 8

*The three types in the table are intersection DEG between the two pipelines and each 

pipeline-specific DEGs.



79



80

One can easily observe the different composition of DEGs that results 

from the addition of lncRNA annotation and their tissues. In the 

(Additional Figures 3.1-8) of the supplementary of the online version, 

the top 10 genes of each analysis are illustrated with between-sex 

boxplots; different gene and rank composition can be seen from the 

figures, yet, we focus on the downstream analyses of the full DEG lists.

Identification of sexually dimorphic genes in relation to sex 

biasedness.

Sex biasedness is usually defined by the over-expression in one or the 

other sex. Hence, the upregulated genes in the female samples can be 

defined as female-biased, and the genes down-regulated in the female 

samples can be defined as male-biased in our analysis (the males are 

used as controls). In the following plot, the first quadrant contains 

genes that are female-biased in both protocols, the third quadrant 

contains those biased for males, and the second and fourth quadrants 

contain ambiguous genes that change regulation direction by the 

inclusion of lncRNA annotation. 

Figure 3.1, is a union of the significant results between the two 

pipelines, for each tissue; in other words, the figure displays the DEGs 

from mRNA pipeline and mRNA+lncRNA pipeline combined. The 
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grey nodes are the intersection genes, DEGs from the mRNA only 

pipeline are color-coded with blue, while the DEGs from our pipeline 

(mRNA & lncRNA) are coded in red. One can observe the intersection 

genes have similar Fold-changes, and the pipeline-specific genes have 

significant differences between the fold-change of expression.

Therefore, we provide separate lists of DEG for the concordant 

(intersect) and discordant (mRNA only- or mRNA & lncRNA-specific) 

genes for the different tissues. The grey genes, which are concordantly 

significant between the two pipelines, are the most stable and 

unaffected by the inclusion of lncRNA. We suggest these genes to be 

carried on to technical validation, for their consistency. Genes such as 

CYP7A1 and EPYC are included in the intersect list and has been 

validated with qRT-PCR in the previous study (Seo, Caetano-Anolles et 

al. 2016) to be sexually dimorphic in both cattle and rat species. The 

full list of concordant genes is provided in the (Supplementary Table 

S3.2). Of course, a comprehensive validation is more appropriate, yet a 

partial validation of a list implies sex biasedness on the rest of the 

genes in the list when further technical validation is impossible. To add, 

the newly detected DEGs in the second pipeline illustrates that 

checking the DEG list in common practice with our suggested pipeline 

is vital.
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Figure 3.1. FC-FC plot of 4 tissues.
The fold-change in the mRNA pipeline is in the x-axis and fold-change in the suggested pipeline is in the y-axis. The plot 
displays the difference in fold-changes between the same BAM files under different quantification pipeline. The intersecting 
genes (grey; black border), and pipeline-specific genes (blue and red) are respectively color-coded. 
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Downstream GO term and KEGG pathway analysis

We analyzed our DEG sets with DAVID (Wei Huang and Lempicki 

2008) for GO term and KEGG pathway analysis. Newly appearing and 

disappearing list of GO terms and KEGG pathways are identified in 

Tables 3.2 and 3, respectively.

According to Tables 3.2 and 3.3, for the muscle, pancreatic secretion 

pathway (bta04972) and BP term of anterior/posterior pattern 

specification (BP_GO:0009952) are uniquely found for the mRNA only 

pipeline. In contrast, cholesterol metabolic process (BP_GO:0008203) 

and chromosome segregation (BP_GO:0007059) is found in our new 

pipeline. In adipose tissue, motor activity (MF_GO:0003774) and 

cytoplasm (CC_GO:0005737) are respectively found unique for mRNA 

only and our pipeline. As for the liver, retinol metabolism (bta00830) 

and chemical carcinogenesis (bta05204) disappears from the list as the 

lncRNA is added to the gene list. As bolded and italicized in Table 3.3, 

an interesting term that has been removed by the addition of lncRNA in 

the pituitary gland is the ‘nicotine addiction.’ Those genes were mostly 

down-regulated in the female samples in comparison to males. 

Additionally, long-term synaptic potentiation (BP_GO:0060291) is 

found unique for the original pipeline, and serine-type peptidase 
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activity (MF_GO0008236) is found unique for the new pipeline, as 

shown in Figure 3.2. The serine-type peptidase activity has been 

reported as a sex-biased gene in previous literature (Immonen, Sayadi 

et al. 2017).
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Table 3.2. Summary of GO terms for both pipelines in their 
respective tissues.

Tissue
Pipeline

8
Term

Coun

t
PValue

Fold 

Enrichmen

t

P. 

Gland
mRNA

GO:0016998~cell wall 

macromolecule catabolic 

process

5
3.69E-

08
135

P. 

Gland
mRNA

GO:0050829~defense response 

to Gram-negative bacterium
5

1.61E-

06
55.38462

P. 

Gland
mRNA GO:0019835~cytolysis 4

9.66E-

06
90.94737

P. 

Gland
mRNA

GO:0050830~defense response 

to Gram-positive bacterium
5

1.05E-

05
34.83871

P. 

Gland
mRNA

GO:0007417~central nervous 

system development
3

0.00473

7
28.17391

P. 

Gland
mRNA GO:0007155~cell adhesion 4

0.00669

4
9.988439

P. 

Gland
mRNA GO:0007586~digestion 2

0.05674

9
33.23077

P. 

Gland
mRNA

GO:0060291~long-term 

synaptic potentiation
2

0.05886

8
32

P. 

Gland
mRNA

GO:0021766~hippocampus 

development
2

0.07148

7
26.18182

P. 

Gland
mRNA

GO:0005615~extracellular 

space
14

1.20E-

08
7.120197

P. 

Gland
mRNA

GO:0005578~proteinaceous 

extracellular matrix
4

0.00540

5
10.79679
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P. 

Gland
mRNA GO:0003796~lysozyme activity 6

2.25E-

10
154.0588

P. 

Gland
mRNA

GO:0005540~hyaluronic acid 

binding
2

0.04552

5
41.57143

P. 

Gland
mRNA

GO:0005201~extracellular 

matrix structural constituent
2 0.07886 23.59459

Adipos

e
mRNA GO:0003774~motor activity 2

0.02984

6
59.52273

Muscle mRNA
GO:0009952~anterior/posterio

r pattern specification
2

0.04882

2
36.42688

P. 

Gland

mRNA+

lncRNA

GO:0016998~cell wall 

macromolecule catabolic 

process

5
2.79E-

08
144

P. 

Gland

mRNA+

lncRNA

GO:0050829~defense response 

to Gram-negative bacterium
5

1.22E-

06
59.07692

P. 

Gland

mRNA+

lncRNA
GO:0019835~cytolysis 4

7.86E-

06
97.01053

P. 

Gland

mRNA+

lncRNA

GO:0050830~defense response 

to Gram-positive bacterium
5

8.01E-

06
37.16129

P. 

Gland

mRNA+

lncRNA

GO:0007417~central nervous 

system development
3

0.00415

4
30.05217

P. 

Gland

mRNA+

lncRNA
GO:0007155~cell adhesion 4

0.00554

2
10.65434

P. 

Gland

mRNA+

lncRNA
GO:0007586~digestion 2

0.05318

3
35.44615

P. 

Gland

mRNA+

lncRNA

GO:0021766~hippocampus 

development
2

0.06702

8
27.92727

P. mRNA+ GO:0005615~extracellular 12 1.21E- 6.103026
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Gland lncRNA space 06

P. 

Gland

mRNA+

lncRNA

GO:0005578~proteinaceous 

extracellular matrix
4

0.00540

5
10.79679

P. 

Gland

mRNA+

lncRNA
GO:0003796~lysozyme activity 6

2.25E-

10
154.0588

P. 

Gland

mRNA+

lncRNA

GO:0008236~serine-type 

peptidase activity
2

0.03701

1
51.35294

P. 

Gland

mRNA+

lncRNA

GO:0005540~hyaluronic acid 

binding
2

0.04552

5
41.57143

P. 

Gland

mRNA+

lncRNA

GO:0005201~extracellular 

matrix structural constituent
2 0.07886 23.59459

Adipos

e

mRNA+

lncRNA
GO:0005737~cytoplasm 6

0.02000

1
2.983789

Muscle
mRNA+

lncRNA

GO:0008203~cholesterol 

metabolic process
2

0.05975

7
31.27602

Muscle
mRNA+

lncRNA

GO:0007059~chromosome 

segregation
2

0.08001

7
23.11706

* The two pipelines are separated by a double-line break. The pipeline 
specific terms and their specific values are bolded if there are differences 

between the two pipelines’ result.
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Table 3.3. Summary of KEGG pathways for both pipelines in their 
respective tissues.

Tissue Pipeline* Term Count PValue
Fold 

Enrichment

P. Gland mRNA
bta04970:Salivary 

secretion
3 0.006106 22.84036

P. Gland mRNA
bta05033:Nicotine 

addiction
2 0.059304 30.09127

Liver mRNA
bta00140:Steroid 

hormone biosynthesis
3 0.002403 36.2823

Liver mRNA
bta00830:Retinol 

metabolism
2 0.072718 24.1882

Liver mRNA
bta05204:Chemical 

carcinogenesis
2 0.08862 19.6961

Muscle mRNA
bta04972:Pancreatic 

secretion
2 0.049696 31.59583

P. Gland
mRNA+

lncRNA

bta04970:Salivary 

secretion
3 0.008538 19.57745

Liver
mRNA+

lncRNA

bta00140:Steroid 

hormone biosynthesis
2 0.058602 29.56335

*The two pipelines are separated by a double-line break. The pipeline specific 
terms and their specific values are bolded if there are differences between the 

two pipelines’ result.
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Differential gene expression in relation to anti-obesity and anti-

inflammation

In our DEG analysis, the three groups were cross-analyzed in two 

tissues: liver and epididymal fat. The significant DEGs between ND vs. 

HFD, ND vs. ALL, and HFD vs. ALL were summarized, functionally 

annotated, and classified for their roles in the biological pathways. In 

the one-way models of the liver, 1) ND vs. HFD produced 3,892 (up: 

2298, down: 1594), 2) ND vs. ALL produced 1,202 (up: 551, down: 

651), and 3) HFD vs. ALL produced 2,625 (up: 766, down: 1859) 

DEGs (FDR adjusted p-value < 0.05). As for the epididymal fat, 1) ND 

vs. HFD produced 1,915 (up: 1442, down: 473), 2) ND vs. ALL 

produced 606 (up: 262, down: 344), and 3) HFD vs. ALL produced 

2,394 (up: 315, down: 2079) DEGs. Further interpretation on the 

within-tissue intersecting genes of those analyses are as follows: 

A. 1) and 2) intersecting genes contains genes that did not recover from 

HFD effect even with the allulose intake (directions match) or that 

allulose intake overshoots the recovery (directions discordant).

B. 1) and 3) intersecting genes contains genes that are ameliorated by 

allulose intake—recovery gene (RecG)—(if the regulation direction is 

discordant, intake of allulose results in an ND-like expression of the 
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genes in ALL group), and genes that are not related to obesity or 

inflammation (concordant directions) 

C. 2) and 3) intersecting genes contains three types; partial recovery for 

the discordant regulation, and non-related genes or overshooting genes 

for the concordant regulation direction.

In the liver, the A genes comprise 644 matching and 19 discordant. 

Similarly, the B genes comprise 36 and 1566, and the C genes are 194 

non-related, 152 overshooting, and 129 partial recovered genes were 

observed. As for the epididymal fat, respectively 353, 5, 0, 874, 27, 68, 

and 46 genes were observed. The discordant genes of list B (liver and 

epididymal; 1566 and 874) are important for crosstalk evaluation in the 

following chapters.

Crosstalk gene detection

According to the lava plot, the significant DEGs displayed a higher 

between-group DE correlation in the two tissues, compared to the full 

expression profile (Figure 4.3a, 4.3b). This means that the significant 

gene’s expression in one tissue has some interaction with the same 

gene’s expression in the other tissue; hence, the definition of cross-talk. 

We could observe there may be a correlation between the crosstalk 

genes in terms of Fold changes also.
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By using a boxplot, we compared the Spearman correlation between the 

log2-transformed fold changes between the two tissues in two different 

datasets: Full data and significant gene set (Figure 4.3c). In 

concordance with the lava plot, the significant genes displayed the 

much higher correlation between Fold changes compared to that of the 

whole dataset.

In addition to the lava plot and box plot, we illustrated the between-

tissue crosstalk with TMM normalized expression of our analyses 

(Figure 4.4). To show the expression profile of the RecGs, TMM 

expression of 4 one-way models—ND vs. HFD and HFD vs. ALL, in 

two tissues—were employed. Since the TMM normalization is applied 

to ND-HFD samples and HFD-ALL samples differently, the two HFD 

values are both incorporated in the plot. There is no surprise that the 

range of expression is different between the two tissues. However, the 

expression profile of the significant genes showed a similar pattern 

across the tissues; there is some clear distinction between HFD versus 

ALL samples, which may not be as significant against ND, yet the 

proof of gene expression regulation of allulose on HFD samples is 

clearly present. Generally, the ALL samples show much similar 

expression with the ND compared to that of HFD in the profile. The 

heatmap is a direct in silico validation of the RecG, which are candidate 
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genes that are regulated by allulose to a normal diet-like level. From the 

selected RecGs, we further narrowed down the candidates with log2 

fold-change > 1 and intersected in the two lists to retrieve 60 crosstalk 

RecGs. The fold-change threshold ensures enough between-group 

difference to be easily detected in technical validation (i.e. qRT-PCR) 

of the 60 genes. The tissue-specific p-values of the ND versus HFD and 

HFD versus ALL, sub-category, and gene function is summarized 

(Table 4.3). The sub-categories are color-coded by each gene’s relation 

to Cancer, Cell division, inflammation, immune system, and Others.
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Figure 4.3. Lava plot of normal diet group vs. high fat diet group and the 

box plot of the Spearman correlation for DEG vs. all genes.

The significant genes are color-coded based on the combined p-value (Fisher’s 
method) of the two tissue-specific test p-values. The X-axis is the log2 fold change of 
the Liver analysis, while the Y-axis is the log2 fold change of the Epididymal analysis. 
For the detection of crosstalk genes, the genes have to be concordantly significant, in 
terms of FDR-adjusted p-value, and have marginal log2 fold change > 1. Hence, the 
vertical lines (blue and red) are log2 fold change cutoffs for Epididymal DEGs, and 
similarly, the horizontal lines (blue and red) are cutoffs for the Liver DEGs. To 
illustrate the correlation between significant DEGs and the two tissue-specific p-
values, a) significant DEGs and b) all genes are plotted. As for the boxplot c), all 
three models—HFDvsALL, NDvsALL, and NDvsHFD—are represented by red, blue, 
and green-like colors, respectively. The darker colors are the correlation value of all 

genes, while the lighter colors are for the significant genes.
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Figure 4.4. Heatmap of recovered genes (RecG) in the two tissues.

The group indicators represent the HFD_1 from ALLvsHFD, HFD_3 from NDvsHFD, 
ALL, and ND group. The 4 groups on the left are from the liver analysis, and the 
other 4 are from the epididymal analysis. Scaled colors are TMM normalized gene 
expression of each groups, and as the ALL and ND groups and the two HFD groups 

are similar, they are paired with each other in the heatmap.
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Microbiome analysis in relation to anti-obesity and anti-inflammation

In SCFAs analysis, D-allulose supplementation was significant 

decreased in acetate concentration and concentration of propionate and 

butyrate was shown to increase tendency. The two Genera—

Lactobacillus and Coprococcus—of the Firmicutes were highlighted as 

inflammation-related genus (Figure 4.5a). The Wilcoxon rank sum test 

has been used to test the differential abundance between the groups (P 

<0.05). The ALL group has a significant increase in Lactobacillus and 

Coprococcus genus composition compared to the other two groups. To 

investigate the RecGs that are correlated with the microbiota that are 

representative for anti-inflammation, we calculated the correlation 

(Spearman) between microbiome abundance of the two aforementioned 

genera and gene expression profiles of the RecGs (Supplementary table 

4.2). In addition, to link both tissues with the abundance of the two 

genera, we focused on the crosstalk genes that have negative 

correlation in both tissues. This is due to the fact that 59 of the RecGs 

are overexpressed in HFD samples compared to ND and ALL. As a 

result, we discovered 20 genes with Gm12250 as the most correlated 

gene. From the aforementioned 5 sub-categories, the majority of the 

final 20 genes are inflammation-related suggesting the strong 

relationship between inflammation and the two genera of interest.
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Figure 4.5. Heatmap of the TMM normalized microbiome abundance 
and their Wilcoxon Rank Sum test results and Correlation plot for the 
Lactobacillus and Coprococcus-related genes.

The production of (A) acetate (CH3COOH), (B) propionate (CH3CH2COOH) and (C) 
butyrate (C4H8O2), representative SCFAs, was shown in figure 43 in feces. Acetate 
production was increased by ALL group compared to HFD group, however, 
propionate and butyrate productions had increasing tendency compared to HFD group.
(D) The microbiome abundance is color-scaled based on their TMM-normalized 
abundance. Group Indicators are above and the phylum information is given to the 
right of the microbiome heatmap. Statistical test between group is given by the 
Wilcoxon rankSum columns; the green is for up-regulation and red is for down-
regulation. Each column of the tests are the results for NDvsALL, NDvsHFD, and 
HFDvsALL. The asterisk (*) on the test names represent the control samples. (E) The 
correlogram of the twenty most correlated genes to the inflammation-related 
Firmicutes, Lactobacillus and Coprococcus, in two tissues are illustrated. The 
negative to positive correlation is color-coded with blue and yellow. The left two 
columns are for liver, and the other two are for eWAT. Accordingly, “_L” is for liver 
and “_E” is for eWAT. 
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4.4.2 Discussion
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A positive energy imbalance excess energy intake, decreased energy 

expenditure, and cause obesity, which leads to metabolic complications 

and chronic inflammation. Many studies suggest that D-allulose has 

beneficial effects against obesity and diabetes in mice (Hossain, 

Kitagaki et al. 2011, Han, Han et al. 2016, Shintani, Yamada et al. 

2017). However, its underlying molecular mechanisms in chronic 

inflammation caused by obesity remain unclear. In past study, D-

allulose improved the diet-induced obesity by regulation of the mRNA 

expressions in small intestine, liver and eWAT (Shintani, Yamada et al. 

2017). This study demonstrated molecular mechanisms of metabolic 

regulation in response to D-allulose supplementation in diet-induced 

obese C57BL/6J mice under pair-fed condition, based on the 

transcriptomic analysis of mRNA-seq and microbiome.

WAT is an active endocrine organ, which secretes adipokines including 

cytokines, chemokines, and hormones as well for storing energy (Jung 

and Choi 2014). Appropriate adipokine secretion exerts an effect on 

energy homeostasis, glucose and lipid metabolism in normal status. 

However, obesity and HFD feeding promotes inflammatory cytokines 

secretion and decreased anti-inflammatory adipokines from WAT.

In our study, HFD feeding in mice, plasma interleukin 1-β, interleukin 

6, TNF-α, interferon-
»and resistin levels were elevated, but D-allulose 
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supplement lowered those plasma levels together with reduction of 

body weight and body fat mass. In RecGs, CCl2, Clec7a, Gm12250, 

Itgax, Trem2 and UBD, which promotes inflammatory cytokines 

secretion, were down regulated in eWAT and liver due to D-allulose 

supplementation. 

It is a well-known fact that gene expression profiles differ among 

tissues, and such difference can be hazardous in statistical models with 

tissue as a main factor. In a two-way model without interaction term, 

the assumption is that the gene expression slope between the two are 

the same, which can be proven by the insignificance of the interaction 

term in the full model. We have checked the two-way models and their 

interaction terms; the majority of the interaction terms in the models 

were significant, suggesting a split data analysis between tissues. As a 

safest measure, considering the tissue-specificity, we used simple 

ANODEV models in each tissue to select the genes affected by D-

allulose supplementation. Then, we filtered out less-informative 

candidates, and trimmed down the crosstalk gene list of interest by 

removing discordant regulation between tissues. A narrower definition 

of crosstalk—concordant expression regulation—shows more direct 

interaction between the tissues. However, the discordant regulation may 

also provide insight into the between-tissue communication where up-
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regulation in a tissue may cause down-regulation in the other, vice 

versa. In terms of gene expression pattern/profile between tissues, DEG 

candidates displayed much higher correlation; the spearman correlation 

between fold change in liver versus that of the epididymal fat of the 

significant genes are well above the correlation using all the genes. As 

shown in the box plot, all 3 models support our hypothesis—there is 

correlation between the differential expression profiles of two tissues, 

in other words, significant effect of treatment on gene expression is 

similar between liver and epididymal fat. And to display that similarity, 

the profile of the RecG in the two tissues is illustrated with a heatmap. 

The overall pattern of ALL group expression being much closer to the 

ND instead of HFD in both of the tissues also confirms our candidate 

RecG genes are genes that have recovered to a ‘normal-like’ expression 

compared to the only HFD group. The gene expression patterns are also 

mostly concordant throughout the heat map (i.e. the HFD up-regulated 

genes in the liver are also up-regulated in the epididymal fat). In order 

to filter out the candidates with minor expression differences, we used a 

threshold of |log2 fold change|>1 additional to the FDR corrected p-

value cutoff. (McCarthy and Smyth 2009) The fold-change threshold is 

given by the horizontal and vertical lines in the lava plot. The resulting 

60 genes are likely to have enough absolute gene expression differences 

for clear technical validation, since it is well over the minimum value 
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of 0.13 in log2 suggested in McCarthy et al. Many studies have 

attempted to determine the factors that contribute to the variation in 

results obtained by transcriptome study (microarray and RNAseq) 

versus the qPCR validation. (Morey, Ryan et al. 2006) There are

consistent reports of lower correlations, between test and validation, for 

genes exhibiting small degrees of change—generally less than 2-fold—

as compared to those showing greater than 2-fold change. (Rajeevan, 

Vernon et al. 2001, Wurmbach, Yuen et al. 2003, Etienne, Meyer et al. 

2004) In RecGs, 14 genes are related to cell division (Ccnb1, Cdc20, 

Cdca7l, Cenpf, Cep55, Ckap2l, Espl1, Foxm1, Kif20a, Knl1, Nuf2, 

Prc1, Sgol2a, Top2a), 13 genes (Abcc12, Atf3, Cdkn3, Ddias, Dlgap5, 

Dtl, Exoc3l4, Hk3, Myo1f, Pbk, Spag5, Tpx2, Uhrf1) to cancer, 13 

genes to inflammation (Card11, Ccl2, Cd180, Chil3, Clec7a, Gm12250, 

Itgax, Mmp12, Plk1, Timp1, Tnip3, Trem2, Ubd) and 7 genes (Adam8, 

Cd300lb, Fbxo40, Kif2c, Lat2, Lgals3, Slamf7) to immune system. In 

over-energy status by HFD, inflammatory cytokines levels and their 

gene expressions were elevated from excessive fat accumulation (You, 

Yang et al. 2005, Polak, Klimcakova et al. 2006). These increase in 

cytokine levels induce oxidative stress, increase ROS activity, and 

damage the DNA, protein and lipid (Iyengar, Gucalp et al. 2016). We 

can call it tumor microenvironment and its role in promoting tumor 

growth. Cancer is initiated and develops in such situation. In our study, 
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the D-allulose supplementation down regulated 47 in RecgGs, related 

to tumor microenvironment, are up regulated by obesity in liver and 

eWAT, simultaneously. 

HFD could also result in changes to the gut microbiome by altering the 

content of histidine, glutamate, SCFAs, and other factors, and promote 

gut-barrier dysfunction and conditions prevalent in obesity (and its 

complications) by altering the host response (Andersen 2017). All of 

these metabolic alterations that result in increased systemic 

inflammation, macrophage activity, and TLR activation contribute to 

the increased cardiometabolic burden in obesity and its complications. 

However, the damaged gut environment could be improved by a large 

portion of beneficial intestinal bacteria in gastrointestinal tract. 

Lactobacillus, the most widely used probiotic bacteria, has anti-

inflammatory effects. Lactobacillus rhamnosus GG has been found to 

decrease the degradation of IĸB and thereby minimize the production 

of the inflammatory cytokine, IL-8 (Zhang, Li et al. 2005). Another 

example of this particular effect is the pretreatment of epithelial cells 

with Lactobacillus casei DN-114 001, resulting in inhibition of IĸB 

degradation and reduced NF-ĸB activation and decrease the production 

of the proinflammatory cytokines TNF-α and IFN-γ25. Lactobacillus 

paracasei CNCM I-4034 (and its supernatant) has been found to 
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dramatically reduce the production of the Th1 cytokines, IL-6, IL-8, IL-

12, TNF-α in human intestinal DCs challenged with Salmonella typhi. 

Lactobacillus rhamnosus Lc705 has been found to have a strong 

downregulating effect on several proinflammatory genes, such as IL-8 

and TNF-α, while upregulating genes that encode anti-inflammatory 

cytokines, such as IL-1019. Patients receiving Lactobacillus casei 01 

revealed a significant difference between IL-10, IL-12, and TNF-α 

changes over the course of the study, with a shift towards anti-

inflammatory Th2 cytokine release24. Lactobacillus plantarum 2142 

has been found to significantly decrease IL-8 and TNF-α mRNA levels, 

decreasing Th1 inflammatory responses. Lactobacillus casei CRL 431 

administration decreased inflammatory cytokines in a diet-induced 

obese mouse model, including TNF-α, IL-6, and IL-17. Coprococcus 

are producers of the anti-inflammatory SCFA butyrate, and 

experimental colonization with Akkermansia implicated members of 

the genera in immune tolerance of commensal gut microbes, these 

results suggested that intestinal bacterial shifts could help mediate 

beneficial effects of vitamin D therapy in multiple sclerosis patients. 

Coprococcus abundance was decreased in inflammatory bowel disease. 

In this study, D-allulose make beneficial intestinal bacteria, 

Lactobacillus and Coprococcus, flourish in intestine which was 
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damaged by HFD. Also, concentration of SCFAs, their metabolites, was 

increased in ALL group compared to other groups. SCFAs regulate 

several leukocyte functions including production of cytokines (TNF-α, 

IL-2, IL-6 and IL-10), eicosanoids and chemokines (MCP-1 and CINC-

2). We therefore focused on the RecGs that have negative correlation 

with the two genera’s abundance; the increased proportion of the two 

genera are likely to reduce expression of RecGs that are up-regulated in 

HFD samples. We trimmed our candidate genes from 60 to 20 that have 

negative correlation in two genera in both tissues. These RecGs are 

technically validated (Figure 4.6).There are several studies that have 

reported the correlation between gene expression profile and 

microbiome abundance, suggesting the co-expression of genes with 

differential microbiome composition has significant effect on traits 

differences. (Morgan, Kabakchiev et al. 2015, Meisel, Sfyroera et al. 

2018, Richards, Muehlbauer et al. 2018) Gm12250, is at the top of the 

list in terms of average of the four correlation values, it is the most 

probable candidate to be interacting with the two genera. This gene is 

also known as interferon-gamma-inducible p46 GTPase (Irgb10) and 

regulates innate immunity and inflammation to infection of pathogens. 

Shengli et al. reported that bacteria interactions promote intestinal 

inflammation in HFD induced obese mice. The D-allulose supplement 

increases the relative abundance of the two beneficial intestinal bacteria, 
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lactobacillus, and coprococcus, which reduces intestinal inflammation 

and interferon-
» expression that ultimately seems to result GM12250 

expression reduction.
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Figure 4.6 qRT-PCR Results of the 20 RecG candidates.

The three groups—ND, HFD, ALL—are respectively color-coded according to the legends. A) is from Liver, and B) is from eWAT.   
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4.4.3 Conclusion

In conclusion, our study demonstrates the effects of D-allulose 

supplements against obesity and obesity-related inflammation; D-

allulose potentially protects against HFD-induced obesity and obesity-

mediated inflammation. It is plausible that these pathologies are 

mediated by down-regulating mRNA levels related to inflammatory 

response in liver and eWAT and flourishing beneficial intestinal 

bacteria, Lactobacillus and Coprococcus, in intestine. This leads to 

decreased inflammatory markers in plasma and hepatic tissue fibrosis.

Accordingly, D-allulose can be used as a functional food source for the 

prevention or treatment of obesity and obesity-related inflammation. 
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Supplementary Figure S4.1 Sequencing protocols.

(a) TruSeq Stranded mRNA Sample Prepartation Protocol given by illumina has been followed. (b) NextSeq500 System Protocol given by illumina.
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This chapter may be published elsewhere

as a partial fulfillment of Joon Yoon’s Ph.D program

Chapter 5. Tracing the inflammatory effects of high 
fat diet in obesity related traits in diet-induced obese 

mice via trait associated gene detection
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5.1 Abstract

Due to practical issues, RNA-seq studies were focused mainly on 

detecting the differentially expressed genes (DEGs) between two or 

more conditions. In such cases, the gene expression is used as the 

response variable in a statistical model. Only a handful of studies 

looked into the genes associated with quantitative traits, such as obesity 

index, as response variable in multi-sample RNA-seq experiments. By 

employing the idea of trait associated genes (TAGs), we summarized 

condition-specific gene expression profile of a mouse obesity and D-

allulose related data (n=27; 3 conditions).  

Using the same data set, we focused on the DEGs that are specific to 

the high fat diet group compared to the other two conditions—normal 

diet and D-allulose treated high fat diet group—in a previous study. In 

an accord with that study, we aimed to detect the bodyweight-

associated genes by adjusting conditional effect.

Here, we used simple linear models for each condition and two-way no 

interaction models to detect the TAGs. Although the test results did not 

pass the multiple testing threshold for the condition specific models, we 

derived candidate genes by employing the fisher’s combined p-value to 

screen out the less likely candidates from our original pool of 

candidates. The candidates are validated through literatures and 
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downstream analyses on their gene functions.

Keywords: RNA-seq, DEG, TAG, hierarchical, multiple testing
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5.2 Introduction

The RNA-seq experiments have led the past few years in the 

transcriptome analysis filed, and while more advanced technologies 

have been introduced, the cost-effectiveness of RNA-seq is 

unmatchable at the current stage. The current protocols of RNA-seq are 

stabilized and accurate enough to provide the resolutions needed for the 

detailed analyses that most studies demand. This may be to the point 

where technical validation is no longer needed as some recent studies 

implied that RNA-seq is most suitable for profiling mRNA expression 

in terms of reliability (Marioni, Mason et al. 2008, Mortazavi, Williams 

et al. 2008). While the gene expression profiles do not follow the 

normal distribution, use of data transformation and generalized linear 

models under Poisson family distribution assumptions were successful 

to detect candidate differentially expressed genes (DEGs). The RNA-

seq era is following that of the microarray, and in the same light, more 

complex and broad ideas are being tested on RNA-seq experiments. As 

the average number of biological replicates per study is increasing, 

statistical methods can be applied in a more diverse fashion, including 

the quantitative trait association study versus gene expression levels. 

Model assumptions on the response variable is directly related to the 

number of samples and kind of variable. A continuous variable such as 
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body weight usually follows or is easily transformed to follow normal

distribution; it is well known that the analyses are much simpler under 

normality assumptions. However, enough sample and conditions should 

be considered for such assumption.

In this study, the data is from three conditions: normal diet (ND), high 

fat diet (HFD), and high fat diet with D-allulose intake (ALL). In terms 

of body weight, the ND group and D-allulose group are in a similar 

weight range, while the HFD group is the only group in the obese range.

While the body weight distribution in each group follows the Gaussian 

distribution, when all three groups are combined, a normal weight 

range biased bimodal distribution is made. An appropriate 

transformation and covariate adjustment can ameliorate but cannot 

nullify the bimodality. Hence, the 3 conditions should be separately 

attested for downstream validation. For a more reliable candidate gene 

suggestion, we summarized the concordant genes from a covariate-

adjusted model and condition-specific simple models. As a downstream 

analysis of these concordant genes, we performed hierarchical DEG 

testing which dramatically reduced the number of tests. By hierarchical 

DEG testing, we performed the statistical test with only the significant 

TAGs that are concordant between models 1 and 2, in each tissue. 

Moreover, the final candidate gene list have been attested for gene 
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function.

5.3 Materials and Methods

5.3.1 Animals and diets

Total of 27 male C57BL/6J mice (4weeks old) were purchased from the 

Jackson Laboratory (Bar Harbor, USA). The animals were kept in a 

controlled environment: temperature (20-23 ˚C), lighting (alternating 

12-h periods of light and dark), and fed a pelletized commercial non-

purified diet for one week after arrival. The mice were divided into six 

groups (n=9) at random. They were fed the following experimental 

diets respectively for 16 weeks, as shown in Table 4.1: normal diet 

control (ND, American Institute of Nutrition AIN- 76 semisynthetic 

diet), high-fat diet control (HFD, 20% fat plus 1% cholesterol based on 

the AIN-76 diet) and 5% D-allulose (ALL, 5% D-allulose substituted 

for sucrose in HFD, w/w). D-allulose was purchased from Sigma

Aldrich (Saint Louis, USA). The HFD was formulated to provide 39.5% 

of the total energy from fat, by replacing carbohydrate energy with lard 

and corn oil, and had the same amount of vitamins and minerals per kJ 

as the ND. The ALL group was given its D-allulose diet, and HFD 

group was given iso-caloric diets based on the energy intake of the ALL 
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group in a pair-fed manner. Free access to distilled water was given to 

the mice during the experimental period. Their food intake was 

recorded daily, and body weights were monitored every two weeks. All 

animal procedures were approved by the Ethics Committee for animal 

studies at Kyungpook National University, Republic of Korea 

(Approval No. KNU-2016-130).

5.3.2 Histopathology analysis 

Epididymal white adipose tissue (eWAT) and liver were removed from 

mice and fixed in a buffer solution of 10% formalin. All fixed tissues 

were processed ordinarily for paraffin embedding, and 4 mm sections 

were prepared and stained with hematoxylin and eosin(H&E) and 

Masson’s trichrome (MT). Stained areas were observed using an optical 

microscope (Nikon, Tokyo, Japan) with a magnifying power of ×200. 

5.3.3 Short Chain Fatty Acid Analysis

Short-chain fatty acids (SCFA) analysis was done according to the 

guidelines of the authors. (Schwiertz, Taras et al. 2010) Briefly, 50 

mg of deep-frozen caecum was mixed with 500 μL of extraction 

solution (comprising 100 mmol oxalic acid /l and 40 mmol sodium 

azide /l), incubated on a horizontal shaker for an hour at room 
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temperature, and centrifuged at 16 000 ×g for 10 min. The supernatant 

was filtered through a 0.45 μm Minisart RC 4 syringe filter (Sartorius 

Stedim Biotech, Germany), transferred to a Clear gas chromatography 

vial (Shimadzu, United States) and tightly sealed using a Ribbed blue 

screw vial cap with bonded silicone (Shimadzu, United States) until 

analysis. A GC-2010 (Shimadzu, Japan) and HP-Innowax 30 m × 0.32 

mm × 0.25 μm column (Agilent, United States) were used for detection; 

N2 gas served as a carrier gas. One μL of each sample was injected by 

Shimadzu Auto-sampler AOC-20is (Shimadzu, Japan) at 260°C and 

detected by a flame ionized detector (FID). The column temperature 

was increased from 100°C up to 180°C at a rate of 25°C/min. A volatile 

free acid standard mix (Supelco, United States) was used as analytical

standard of C2 through C5.

5.3.4 Statistical analysis of phenotype data

All data were presented as the mean and standard deviation. Statistical 

analysis was performed using software SPSS (version 11.0, SPSS, Inc., 

Chicago, IL, USA). Statistical differences between ND and HFD results 

and HFD and ND results were determined using Student’s t-test. 

5.3.5 RNA-seq experiment
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The RNA-seq has been performed by a sequencing company called 

LAS (www.lasscience.co.kr). In sample quality control, OD 

measurements were done by DropSense96 (Trinean) and quality check 

by Bioanalyzer RNA Chip (Agilent Technologies). For library 

preparation, TruSeq Stranded mRNA Sample Preparation Protocol 

given by Illumina has been followed. The workflow includes: Purify 

and Fragment mRNA, Synthesize First Strand cDNA, Synthesize 

Second Strand cDNA, Adenylate 3’ Ends, Ligate Adapters, Enrich 

DNA fragments, and Validate Library. After all preparations, samples 

were sequenced by following the NextSeq500 System Protocol given 

by Illumina. To measure the transcriptome levels with generated RNA-

seq reads, we performed one of the most practical RNA-seq pipelines: 

(1) We employed Trimmomatic (v0.36) (Bolger, Lohse et al. 2014) with 

the following option: PE -phred33 ILLUMINACLIP:TruSeq3-

PE.fa:2:30:10 MINLEN:75 2 to achieve clean reads. The clean reads 

are doubled checked through fastQC (Andrews 2014) (2) Then we 

aligned the reads using the Hisat2 (Kim, Langmead et al. 2015) to the 

GRCm38 reference using the “--rna-strandness RF” option. (3) The 

aligned reads are annotated to their corresponding genes by loci, based 

on the downloaded GRCm38 gene annotation file from the UCSC 

genome browser in General Transfer Format (GTF). Here, the 

featureCounts (Liao, Smyth et al. 2014) has been employed, with “-p -s
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2 -t exon -g gene_id” options as the Hisat2-featureCounts pair is the 

most concurrent and frequently used genome-based quantification 

pipeline, followed by STAR (Dobin, Davis et al. 2013) and transcript-

based programs.

5.3.6 Statistical analysis of RNA-seq

The body weight has been transformed to pass the Shapiro’s normality 

test (Shapiro and Wilk 1965) and was carried on to the linear regression 

analysis. For the TAG analysis (Cho, Kim et al. 2016, Seo, Kim et al. 

2016), we use the body weight as the response variable, and the gene 

expression and covariates are fitted on the independent variable. The 

expression profiling of the genes is normalized with trimmed mean of 

M-values (TMM; (Robinson and Oshlack 2010)) to account for the 

total count of each. We used two linear models, 1) Two-factor model 

and 2) simple linear model, where the diet group is the covariate and 

n=27. As for the second model, we performed simple linear model in 

each group, using 9 samples each. 

M1: ���g
L �: �Ü�Ú�Ü
E�%�K�R�Ü
E�Ý�Ü

M2: ���g
L �: �Ü�Ú�Ü
E�Ý�Ü��

The Q-Q plot of the models have been checked for model stability and 

to test if the model went through an appropriate covariate adjustment.

The DEGs between groups have been summarized in the previous 
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chapter. By linking the DEG between groups and the TAGs against 

body weight, we suggest the body weight associated candidate genes 

that are overexpressed in the HFD. The results have been summarized 

for intersecting genes between models, and presented as a Venn 

diagram. We were only interested in the significant TAGs that are also 

significant DEGs, so we carried on the DEG testing with the candidate 

TAGs only. Such a hierarchical approach is advantageous in multiple 

testing correction; the number of total test decreases from thousands to 

just 6 in epididymal fat and 9 in the liver. We named the intersecting 

genes as the ‘toggle genes’ that are body weight associated genes,

which are expressed in a differentiable fashion due to the high-fat diet.



156

5.4 Results and Discussion

5.4.1 Results

After reviewing the Q-Q plots (Figures 5.1-5.4), using M1 alone 

seemed inappropriate, and candidates from M2 showed many stable p-

values. Therefore, we have summarized the intersection of M1 and 

three M2 models with a four-way Venn diagram (Figures 5.5 and 5.6). 

As a result, we discovered 6 and 9 body weight associated genes in 

epididymal fat and liver, respectively. Out of those body weight TAGs, 

we have filtered out 3 from epididymal fat candidates and none from 

liver candidates, while finding the toggle genes. We defined the toggle 

genes by those who are significant at FDR-level in the HFD specific 

DEGs, and significant at raw p-value level in the TAGs. The gene 

functions of the toggle genes have been annotated (Table 5.1). From 

epididymal fat samples, we suggest Acoxl, Mlec, and Agt genes, and 

Arhgap11a, Capn1, Gsta1, Gstm1, Gstm2, Limk1, Saa1, Saa2, and 

RP23-361K13.1 for the liver. The Acoxl gene is related to lipid 

metabolism and fatty-acid oxidation, Mlec gene is related to 

glycosylation, and the Agt gene is related to inflammation, blood 

pressure, and hypertension. The 3 genes detected from the epididymal 

fat samples show association to inflammation and obesity according to 

their functions. As for the liver samples, the Arhgap11a gene is related 
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to the colon cancer and breast cancer cell line, the Capn1 gene is 

related to inflammation and chronic cervicitis, and the Gsta1 gene is 

related to ovarian tumors. The Gstm1 gene is related to liver cirrhosis 

and larynx cancer, and Gstm2 is related to testis seminoma (which is a 

kind of carcinoma), and Saa1 and Saa2 are known to be tumor-related. 

While the above genes are related to one or more types of cancers, the 

relation between cancer, obesity, and inflammation has been introduced

in past literature. Lastly, the Limk1 gene is related to heart diseases and 

vein problems in the brain. The number of candidate genes is too small 

to carry on through downstream analysis such as KEGG or DAVID;

however, the toggle genes show promising gene functions that have 

high relation to obesity and inflammation (Wei Huang and Lempicki 

2008). The gene with the lowest p-value has been plotted on the scatter 

plot (gene expression vs. body weight) and boxplot (gene expression vs. 

group) in Figure 5.7.
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Figure 5.1. Q-Q plot of M1 in epididymal fat samples.

The Q-Q plot of model 1, has expected p-value on the x-axis and observed p-value on 
the y-axis. The 45-degree line is in black, and the confidence interval is in grey 
shading. In general, a stable model is where the observed p-values follow the 45 

degrees line and only the significant genes to peak over the confidence intervals.
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Figure 5.2. Q-Q plot of M2 in ND, ALL, and HFD epididymal fat samples.

The Q-Q plot of model 2, in 3 respective groups, the expected p-value is on the x-axis and observed p-value is on the y-axis. The 45-degree

line is in black, and the confidence interval is in grey shading.
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Figure 5.3. Q-Q plot of M1 in liver samples.

The Q-Q plot of model 1, has expected p-value on the x-axis and observed p-value on 
the y-axis. The 45-degree line is in black, and the confidence interval is in grey 
shading. In general, a stable model is where the observed p-values follow the 45 

degrees line and only the significant genes to peak over the confidence intervals.
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Figure 5.4. Q-Q plot of M2 in ND, ALL, and HFD liver samples.

The Q-Q plot of model 2, in 3 respective groups, the expected p-value is on the x-axis and observed p-value is on the y-axis. The 45-degree
line is in black, and the confidence interval is in grey shading
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Figure 5.5. 4-group Venn diagram of the body weight TAGs in 
epididymal fat.

Venn diagram of eWAT sample M1 and three M2s. The toggle gene candidates are 

chosen from the middle intersection where the 6 TAGs are chosen by all four models. 
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Figure 5.6. 4-group Venn diagram of the body weight TAGs in the 
Liver.

Venn diagram of liver sample M1 and three M2s. The toggle gene candidates are 

chosen from the middle intersection where the 9 TAGs are chosen by all four models.
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Figure 5.7. Expression pattern plots of a toggle gene (DEG-TAG) 
candidate.

The scatter plot (above) with the regression line shows the relationship between the 
gene expression and body weight. The box plot (below) shows the gene expression 
levels between groups. The plots are color-coded with HFD in orange, ALL in grey, 
and the ND in blue. The ND and ALL gene expression do not have a significant

statistical difference, yet the HFD group does.
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Table 5.1 Functions of toggle genes.

Gene Tissue Function Reference
Acoxl  eWAT lipid metabolism GO

Mlec   eWAT glycosylation
(Schallus, 
Jaeckh et al. 
2008)

Agt    eWAT
inflammation, blood pressure, 
hypertension

(Vorkapic, 
Dugic et al. 
2016)

Rbm17 eWAT Nucleotide binding N/A
Lamp1 eWAT Salla disease (Schleutker, 

Haataja et 
al. 1991)

Car12 eWAT Non-related to diseases N/A

Arhgap11a Liver
colon cancer, breast cancer cell 
line

RefSeq, GO

Gstm1     Liver liver cirrhosis, larynx cancer

(Jaskula-
Sztul, 
Rienikainen 
et al. 1998)

Gstm2     Liver testis seminoma 
(Aceto, Di 
Ilio et al. 
1989)

Limk1     Liver
heart diseases and vein problems 
in the brain

(Yamada, 
Metoki et al. 
2008)

Saa1      Liver tumor
(Yang, Liu 
et al. 2016)

Saa2      Liver tumor
(Yang, Liu 
et al. 2016)

RP23 
361K13.1  

Liver pseudo gene, not yet a function
N/A

Capn1     Liver chronic cervicitis, inflammation
(Fukuta, 
Miyamoto 
et al. 2011)

Gsta1     Liver Inflammation, tumor
(Chen, 
Tseng et al. 
2010)

The least important genes have been grayed out.
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5.4.2 Discussion

Although the data pricing has decreased and the quality went up, 

scientists occasionally suffer from test results being not significant at 

the multiple testing level. A conventional approach is to correct the 

multiple testing problem with Bonferroni method, and if not enough 

genes are significant, FDR is employed. When FDR does not work, 

scientists work around by trying to decrease the number of tests as low 

as possible. A hierarchical approach is a simple solution when we are 

fusing two kinds of candidate lists (Cho, Kim et al. 2016). One can test 

the A model and with the significant list from A, test the B model. 

Since multiple testing correction is directly related to the number of 

genes used for model B, such an approach can be more powerful than 

merely getting the significant intersecting lists, at a given significance 

level. Yet, we cannot overlook the fact that the raw p-value does not 

change; which means, this is a matter of how to summarize and present

the given results. In this case, however, the candidates are only 

significant at raw p-value level for TAGs and significant at FDR level 

in the DEGs. The FDR significant DEGs are also significant at the 

Bonferroni level, under the hierarchical condition, since the number of 

tests is only 6 for the epididymal fat and 9 for the liver samples. We can 

say that our toggle genes are significant DEGs at Bonferroni level and 
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TAGs at raw level. Bonferroni candidates are much more convincing 

compared to those significant after FDR correction.

As the number of samples in RNA-seq studies increases with the data

quality and types, we will be able to access datasets that consist of 

phenotypic traits and gene expression at multiple conditions. Our 

hierarchical approach on linking TAGs and DEGs, as toggle genes, can 

be used as a powerful summary technique to present the link between 

traits and conditions with the differential expression of individuals.
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Chapter 6. General Discussion

In the past decade, high-throughput techniques made dramatic 

contributions to the elucidation of biological processes and mechanisms. 

While conservatives might argue that there are many false positive 

results among those publications, none are willing to cross-check the 

validations provided by the authors of those publications. It is difficult 

to check all the underlying assumptions and requirements of statistical 

tools, and the required technical validations are temporary measures of 

biological validations in actuality. Throughout the chapters, I illustrated 

meta-analytical approaches that suggest study-specific biomarkers.

In chapter 2, I contributed to a GUI-program that compares multiple 

test results to prune out the study-specific false positives and suggest 

the most concordantly significant biomarkers such as DEGs. The study 

has been applied to several platforms and data: (1) microarray dataset 

with multiple test methods, (2) GWAS of NGS genome dataset with 

multiple test methods, (3) RNA-seq dataset with multiple tools in R (4) 

Family dataset of NGS genome with multiple test methods. As the 

study was from my novice years as a bioinformatician, I neglected to 

include factors like tissues or biological replicate data. The program 

could be extended to cover those factors without changing the codes; it

will only require p-values from those tests, followed by an appropriate 
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interpretation. The program has been reviewed by several wet lab co-

workers, and have been introduced in a University level textbook 

Epigenetic Gene Expression and Regulation by Blakey and Litt as a 

useful tool in bioinformatics. I believe unprofessional researchers, in 

terms of coding, can take advantage of our program in future research. 

However, the user should have a clear understanding of the statistical 

methods and what the globally significant biomarker means in their 

study.

In chapter 3, I observed the potential errors in the current mRNA 

expression quantification pipeline. Although some of the non-coding 

RNAs such as miRNAs and lincRNAs have been elucidated in some 

papers, none have connected those dots with RNA-seq analyses. The 

problem rises where the lncRNA transcripts overlap with those of 

mRNAs, more frequently on the opposite strand, and the annotations of 

those transcripts therefore are overlapped. In addition, there are 

numerous publications on how the lncRNA expression profiles are 

tissue-specific, and I have confirmed the tissue-specific patterns in our 

study. By comparing two pipelines—mRNA-only and mRNA-lncRNA 

annotation—I analyzed four tissues, which were affected by the 

inclusion of lncRNA differently. According to the results, the tissue of 

interest is a factor in terms of overlapping reads, which are defined as 
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ambiguous reads in this study; the analysis results may or may not 

contain substantial misquantification of mRNA expression levels. As 

aforementioned, however, the downstream analyses are also affected by 

such error, and the development of error pruning aligners and 

quantifiers is imperative for accurate mRNA expression profiling and 

differential expression analysis. I suggested using the concordantly 

significant genes that are not affected by the change of annotation 

pipelines for validations. While technical and biological validation 

could have improved the study, a follow-up study of these mRNA-

lncRNA overlaps is in progress. Until an improvement in the 

ambiguous read quantification is proposed, concurrent mRNA-seq 

protocols are prone to the errors caused by the mRNA-lncRNA overlap. 

The results from this study

In chapter 4, I focused on the study-defined inter-tissue crosstalk, or 

interaction, between liver and epididymal fat (eWAT). We defined the 

recovered genes (RecGs) and successfully validated the candidate 

genes. The 20 RecGs are High-fat diet group-specific genes that imply

that the D-allulose intake helped to regulate the expression level back 

to the normal level. Also, those genes have a significant positive 

correlation with the Lactobacillus and Coprococcus, which are 

inflammation-related microbiota. To present this information, I have 
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proposed a new plot that can handle p-value, fold change, and a factor 

in the study. The factor we used in our study is the tissue, and inter-

tissue crosstalk could be clearly observed. I find it unfortunate that the 

microbiome data in the analysis has been only used for quantification 

and between-group testing by Wilcoxon, so the depth of the study could 

have been improved if a more thorough analysis of the microbiome 

data could have been incorporated.

In chapter 5, I have revisited an idea from two of my previous works 

that handles differentially expressed genes (DEG)-phenotype-

associated genes (PAG) and DEG-trait-associated genes (TAGs). The 

basic idea of PAG and TAG is the same except for the platform, 

microarray and RNA-seq; the trait is used as the explanatory variable 

instead of the gene expression levels. I have used the idea to perform 

hierarchical approach to gain power in multiple testing adjustment. 

Therefore, I could detect TAGs that were significant in raw p-value < 

0.05, and DEG that are significant under Bonferroni adjusted p-value 

level of 0.05. Although the TAGs are not significant under multiple 

testing correction, it is well known that Bonferroni adjustments or FDR 

adjustments can be conservative, and false negatives can arise. I used 

the strict adjustment in the second-level DEG analysis (the first is TAG 

analysis), using the TAG candidates only. In our study, only 6 in 
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epididymal fat and 9 in liver were carried on to the DEG analysis, and 

all were found significant under Bonferroni levels. While the raw p-

values do not change, a non-hierarchical intersection method would 

only define those genes to be significant at FDR adjusted levels, not 

Bonferroni. The take-home message of this chapter is that the statistical 

power can be gained by simple manipulation of a conventional pipeline, 

and interpretation is always the key. Such hierarchical method can be 

employed in any multi-class or multi-model integration studies.

All in all, in this thesis, I have presented numerous meta-analytical

techniques and pipelines that can be employed by many, to suggest 

more formidable candidates in a more clear fashion to other researchers. 

Simple adjustments to the original workflows can have considerable 

effect visually and scientifically. I firmly believe some studies may

have been overlooked due to their lack of presentation and validity of 

the candidates and hope my works can work as a stepping stone for the 

publication of those works.
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요약 (국문 초록)

메타분석 전략을 활용한 전사체상 바이오마커의

선별

윤준

협동과정 생물정보학 전공

서울대학교 대학원

차세대 염기서열 분석은 생물정보학을 포함한 생명과학 분야

에 기술적으로나 지식적으로 비약적인 발전을 가져왔다. 또한, 

차세대 염기서열 분석은 그 신속성과 저렴한 비용으로 인해

수많은 생물학적 데이터의 생산과 이에 관한 연구에 활용되어

왔다. 이는 필연적으로 대용량 자료를 분석할 수 있는 복잡한

통계적 분석 기법의 발전으로 이어졌으며, 생물정보학 이라는

신생 분야의 발전을 촉진하는 원동력이 되었다. 그러나 복잡한

대용량 자료구조 및 통계적 분석 기법은 연구설계나 내용에

대한 직관적인 이해를 방해할 뿐만 아니라, 특히 생물정보학을

도구로서 활용하는 비전공자의 연구에 커다란 걸림돌이 된다. 

따라서 메타분석을 사용한 적합한 통계 모형 구축과 바이오마

커 선별 같은 생물정보학적 분석파이프라인은 연구자의 연구
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내용과 자료를 잘 대변해 줄 수 있어야 한다. 현재, 분석 방법

론과 프로그램은 많이 제시되어 있는 상태이지만, 이러한 기술

들을 연구자가 실제 연구에 어떻게 효과적으로 적용할 것인가

는 자료 특이적이며, 그 분석결과의 해석은 여전히 연구자의

재량에 달려있다.

이 학위논문은 다양한 실험설계 상황에서 각각의 설계에 부합

하는 의미 있는 후보 유전자를 발굴해 내기 위한 메타분석기

법을 중점을 두고 있다. 2장에서는 생물정보학 분석에서 p값

에 대한 메타 분석을 다루고 있다. 특히, 다양한 통계 모형과

검증에서 나온 결과를 비교 및 통합할 수 있는 시각화 방법과

여러 독립된 통계검증 결과에서 동시에 유의한 후보 유전자를

발굴하는 예제를 다루고 있다. 또한 이 장에서 제시된 기법을

사용한 GUI (Graphic User Interface) 기반 프로그램을

microarray, GWAS, RNA-seq, 가족 기반 데이터 등 다양한

형태의 데이터에 적용함으로써, 제시된 프로그램이 p값을 포

함한 다양한 통계치에 기반한 연구에 활용될 수 있음을 보였

다.

3장에서는 mRNA-seq 데이터 분석에서 long non-coding 

RNA (lncRNA) 를 고려하지 않음으로써 생기는 분석결과의
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문제점과 이에 타격을 입지 않는 바이오마커 선별을 다루고

있다. 일반적으로 mRNA-seq 프로토콜에서 mRNA를 선택적

으로 분리해 내는 방법은 poly-A tail을 이용한다. 그러나

lncRNA를 포함한 일부 non-coding RNA 들도 mRNA 와 마

찬가지로 전사과정에서 poly-A tail을 가진다. 이러한 경우에

RNA-seq 데이터 내에서 lncRNA 와 mRNA 는 명확히 구분

되지 않는다. 이 장에서는 RNA-seq 데이터 분석과정에서

lncRNA annotation 의 고려 유무가 최종 결과인 차등 발현

유전자 결과에 상당한 영향을 미친다는 것을 보여줌으로써, 

lncRNA를 고려하지 않은 기존의 분석방법이 후보 유전자 발

굴에 변수가 될 수 있음을 밝혔다. 더불어, lncRNA 

annotation이 후보 유전자 결과에 미치는 영향은 조직 별로

다른 양상을 나타낸다는 것을 두 개의 독립적인 차등발현 유

전자 분석방법을 통해 보여주었다. 결론적으로 lncRNA 

annotation 정보의 영향을 받지 않는 유전자들이 mRNA-seq 

실험설계목적에 가장 부합되는 후보 유전자 임을 제시하였다. 

4장에서는 항 염증과 비만에 효과를 보이는 감미료를 먹인 쥐

에 대한 RNA-seq및 Metagenome 분석을 통해 실험 목적에

부합하는 후보유전자발굴 과정을 다루었다. 정상식이집단
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(ND), 고지방식이집단 (HFD), D-allulose와 고지방식이집단

(ALL) 에 대해 각각 2개의 조직을 사용하였으며, 고지방식이

에 대한 D-allulose의 효과와 밀접하게 관련된 후보유전자를

발굴하기 위하여 “Recovery gene” (RecG) 을 정의하였다. 

RecG 은 개념적으로 고지방식이의 유전자 발현 상태에서 D-

allulose를 섭취했을 때 정상상태로 돌아가는 유전자를 말하여, 

실제 분석에서는 두 조직 모두에서 HFD 집단의 발현이 다른

두 집단에 비해 유의하게 높거나 낮고, ND 와 ALL 집단에서

는 발현량이 차이가 없으며, 염증과 관련된 유전자로 정의하였

다. 또한 이러한 RecG 의 발현 양상을 효과적으로 보여주기

위하여 기존의 Volcano plot을 변형한 “Lava plot” 을 고안하

였다. Lava plot 은 Volcano plot과 같이 각 유전자에 대한

p-value, fold-change 정보를 보여줌과 동시에, 통계모형에

서 추가적으로 고려한 요인(여기서는 조직)에 대한 정보를 보

여줄 수 있다. RecG의 염증 관련 미생물과의 관련성을

Metagenome 을 통해 확인하였고, qRT-PCR을 통해 최종

후보 RecG가 두 조직에서 RNA-seq 데이터와 동일한 양상

으로 발현하는 것을 확인하였다.

5장에서는 앞서 발굴된 HFD 집단 특이적 유전자들의 발현이
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몸무게와 관련이 있는지를 분석하였다. 먼저 Raw p값을 이용

하여 형질(몸무게)과 관련된 후보유전자를 발굴하고, adjusted 

p값을 이용하여 발굴된 후보 유전자에서 고지방식이와 관련된

최종 후보 유전자를 발굴하였다. 이러한 단계적 분석 방법은

실험의 최종 목적이 형질과 연관된 유전자(여기서는 몸무게)

인 경우에 1차적으로 후보유전자를 줄여줌으로써 검정력을 높

여 줌과 동시에 더 많은 후보유전자를 발굴할 수 있다는 장점

이 있다. 결과적으로, 단계적 분석 방법을 통해 몸무게와 고지

방식이 모두에 관련이 있는 후보유전자를 발굴하였으며, 그 기

능이 염증 또는 종양과 관련이 있는 것을 확인하였다.

이 학위논문에서는 제2장에서부터 5장에 걸쳐 차세대 염기서

열 분석 자료에 대한 다양한 메타분석기법을 제시하였다. 구체

적으로, 자료에 걸맞는 바이오마커의 선별과 신뢰성 있는 후보

유전자를 발굴하기 위한 기법과 더불어, 효과적인 시각화 기법

을 통해 과학적 연구결과에 대한 직관적 이해를 도울 수 있는

방안을 제시하였다. 또한 기존 분석 및 시각화 방법에 대한 간

단한 변형을 통해 기존에 다뤄지지 않았던 여러 생물학적 주

제들을 효과적으로 융합할 수 있었다. 본 논문의 파이프라인들

은 여러 분야의 연구자들이 OMICS 분석을 수행할 때 연구결
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과를 효과적으로 제시하는 데에 도움을 줄 것이라 기대된다.

주요어: 차세대염기서열분석, P값, 그룹간 배수, 메타분석, DEG, 

TAG, RecG

학번: 2013-20404
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