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Abstract

Statistical Method Development for
Genetic Association Analyses of
Dichotomous Phenotypes with
Related Samples and

Its Application to Genetic Studies

Wonji Kim

Interdisciplinary Program in Bioinformatics
The Graduate School

Seoul National University

Recent improvements in sequencing technology have enabled
the investigation of so-called “missing heritability”, and a large number
of affected subjects have been sequenced in order to detect significant
associations between human diseases and genetic variants. However,
the cost of genome sequencing is still high, and a statistically powerful
strategy for selecting informative subjects would be useful.

Numerous methods for estimating heritability of dichotomous



phenotypes have been proposed. However, unlike quantitative
phenotypes, heritability estimation for dichotomous phenotypes is
computationally and statistically complex, and the use of heritability is
infrequent. In particular, heritability estimates often suffer from
substantial bias due to sampling scheme of family-based study. In
family-based study, family members are often brought into a study via
affected proband and therefore a proportion of affected relatives is
larger than population prevalence. This bias refers to the ascertainment
bias but there have been no much studies in adjusting method of
ascertainment bias for heritability of dichotomous tratt.

In this study, | propose a new statistical method for selecting
cases and controls for sequencing studies based on disease family
history in terms of improvement in statistical power of genetic
association studies. | assume that disease status is determined by
unobserved liability score. The liability threshold model assumes
dichotomous phenotypes are determined by unobserved latent variables
that are normally distributed, and our method consists of two steps: first,
the conditional means of liability are estimated given the individual’s
disease status and those of their relatives with the liability threshold
model, and second, the informative subjects are selected with the
estimated conditional means. Our simulation studies showed that
statistical power is substantially affected by the subject selection
strategy chosen, and power is maximized when affected (unaffected)
subjects with high (low) risks are selected as cases (controls). The



proposed method was successfully applied to genome-wide association
studies for type-2 diabetes, and our analysis results reveal the practical
value of the proposed methods.

In addition, | developed a statistical method to estimate
heritability of dichotomous phenotypes using a liability threshold
model in the context of ascertained family-based samples. This model
can be applied to general pedigree data. The proposed methods were
applied to simulated data and Korean type-2 diabetes family-based
samples, and the accuracy of estimates provided by the experimental

methods was compared with that of established methods.

Key words: Genome-wide association studies (GWAS), Family history
of disease, Risk Prediction, Heritability, Liability threshold model,

Ascertainment bias
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Chapter 1

Introduction

1.1 An Overview of Genetic Association Analyses

of Dichotomous Phenotypes

Genetic association studies test association between a complex
disease and genetic diversity in order to identify candidate causal genes
or genomic regions [1]. At the level of a single nucleotide
polymorphism (SNP), a higher frequency of certain alleles in a subject
with a disease can be considered to mean that the SNP increases the
risk of the disease. In addition to SNP, insertion/deletions (indels) and
copy-number variants can be used as genetic variants for association

studies and results can be interpreted in a similar way.

The Genome-wide association study (GWAS) was first proposed

by Risch and Merikangas arguing that association studies are generally

1
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more powerful than the linkage study in detecting genes of modest
effect but requires much more markers to be tested [2]. They predicted
that the complex diseases would require large-scale testing of
association analysis. It also has been shown that genetic susceptibility
to common complex disease includes many genes, most of which have
small effects, leading to the importance of large-scale GWAS in a
large-scale of sample sizes [3, 4]. Recently, several methods to improve
statistical power of GWAS were proposed by accounting for sample
structure in GWASs [5, 6]. They used linear mixed model and its

extension to multi-loci was also developed [7].

As part of the effort for large-scale GWAS, several international
projects have been undertaken. The international HapMap Project
(http://hapmap.ncbi.nim.nih.gov/) genotyped for 3.1 million SNPs in
DNA samples of 269 subjects from several populations which have
ancestry of Africa, Asia and Europe [8]. It aims to develop a haplotype
map of the human genome and figure out common patterns of human
genetic variation involved in human disease. The 1000 Genomes
Project  (http//www.internationalgenome.org/) has  validated
approximately 84.4 million variants in 2,504 subjects from 26
populations consisting of African, American, Est Asian, European and

South Asian [9]. It ran between 2008 and 2015, and aims to find most

2



genetic variants with frequencies of 1% or more in the studied
populations. More recently, UK Biobank
(https://www.ukbiobank.ac.uk/) was established and recruited 488,377
subjects aged between 40-69 years from across the United Kingdom
[10]. DN A samples for 488,377 participants were genotyped at 807,411
variants containing SNPs and short indels. A web-based database,
PheWeb (http://pheweb.sph.umich.edu:5000/), has provided thousands

of GWAS results based on UK Biobank along with a fine display.

By April 2018, the GWAS has successfully discovered more than
69,000 SNP-trait associations (https://www.ebi.ac.uk/gwas/home/) [11-
13]. These studies were rapidly growing in size and complexity, and in
5,152 studies, 3,378 publications were added to the GWAS catalog

(Figure 1.1).



<5x10°® were shown.

Figure 1.1 GWAS catalog as of 2018. All SNP-trait association with P-value
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1.2 Heritability Estimation of Dichotomous

Phenotypes

In 1950, Dempster and Lerner developed an algorithm to
estimate the heritability of a binary trait [14], and their derivation was
extended to the polychotomous traits by Gianola [15]. Their models
were involved in the liability threshold model, which assumes that there
is an underlying liability whose value is the sum of normally and
independently distributed genetic and environmental components. In
liability threshold models, the person is affected to the disease if his/her
liability exceeds certain threshold of the underlying disease. A
simulation study using Depmster’s algorithm was performed by Van
Vleck [16]. It was based on sib and parent-offspring family structure,
and the estimated values of heritability were quite closed to the true
values in a situation that a prevalence of a disease was ranged from 0.2
to 0.8 and the true heritability was below 0.7. There are several
methods to estimate heritability of a dichotomous phenotype based on
generalized linear mixed model (GLMM) such as logit-based algorithm
[17, 18] and beta-binomial model [19, 20]. However, some of GLMM-
based algorithm to estimate genetic variance components for multiple

related relatives was developed but estimation of heritability is not



possible since environmental variance component is not included [21].
More recently, a method of estimating the proportion of phenotypic
variance explained by a group of SNPs was proposed and it

successively adjusted case-control ascertainment bias [22, 23].



1.3 The Purpose of This Study

The main purpose of this thesis is to develop statistical methods
for genetic association analyses of dichotomous phenotype with related
samples. In order to achieve this aim, | proposed two methods. One is a
method to improve statistical power of GWAS by selecting informative
cases and controls for DNA sequencing based on their family history.
The other is intended to estimate heritability of a dichotomous

phenotype based on liability threshold model for ascertained samples.

In the first study, | proposed a new statistical method for
selecting informative cases and controls based on the disease status of
their relatives. The proposed method is based on the conditional
expectation of unobserved liability for subjects when the disease status
of those subjects and their relatives are given. | assumed that the
unobserved liability scores are normally distributed, and its conditional
expectation will be the expectation of truncated normal distribution. In
extensive simulation studies, | found that the statistical power is most
increased when subjects with high and low risk are selected as cases
and controls, respectively. Our methods were applied to GWAS of
type-2 diabetes (T2D) and | compared the results for randomly selected

samples and samples selected based on the proposed method.



In the second study, | proposed a method for heritability
estimation of dichotomous phenotypes using liability threshold model.
In particular, the proposed method can be applied to the ascertained
samples by proband which refers to instances when family members
are introduced to a study due to other family members already included
in the study. Using the Expecteation-Maximization (EM) algorithm, the
proposed method can estimate heritability and coefficients of covariates
on the liability scale [14]. In addition, its statistical significance was
assessed via a conditional expected score test (CEST) for the
hypotheses if heritability is equal to zero or if coefficients of covariates
are equal to zero. Using extensive simulation studies, 1 compared the
proposed model to GCTA and | found that estimates of the proposed
method are more generally unbiased for randomly selected families
than that of GCTA. For ascertained samples, the proposed method
works well similarly with that for randomly selected families, but
GCTA produced substantial downward bias. | applied the proposed
method to the T2D dataset to estimate the heritability of T2D in Korea

population, and Lymphangioleiomyomatosis (LAM) dataset for GWAS.



1.4 QOutline of the thesis

This thesis is organized as follows: Chapter 1 introduces to this
study with an overview of GWAS and heritability estimation of
dichotomous trait. Chapter 2 contains an example of GWAS for case-
control study for LAM disease including a strategy for fine mapping.
Chapter 3 is about a method to select informative subjects for DNA
sequencing using family history to improve a statistical power. Chapter
4 deals with a method to estimate heritability of dichotomous
phenotype for ascertained samples. Both Chapter 3 and 4 are based on
the liability threshold model and population prevalence of a disease is
required. Their performances were evaluated using extensive
simulation study and applied to the real datasets. Finally, the summary

and conclusions are presented in Chapter 5.



Chapter 2

Application of Genome-wide Association
Study and Fine-mapping for Independent

Samples

2.1 Introduction

Lymphangioleiomyomatosis (LAM) is a rare aggressive low-
grade neoplasm which affects almost exclusively women at
reproductive age or older and causes progressive cystic lung destruction
leading to fatal respiratory failure in subjects with severe disease [24-
29]. LAM is characterized by an abnormal proliferation of smooth
muscle-like and epithelioid cells in innumerable tiny clusters in the

lungs, in association with thin-walled cysts and lung parenchymal

10



destruction [30, 31]. Progressive cyst enlargement and inflammation
contribute to decline in lung function measured as both decreased FEV1
and DLco. The diagnosis of LAM is based on clinical features, chest
computed tomography findings of thin-walled cysts, and either
pathology seen on lung biopsy or elevated serum vascular endothelial

growth factor D (VEGF-D) levels.

LAM occurs at high frequency (> 10%) in women with
Tuberous Sclerosis Complex (TSC); and at much lower frequency in
women (about 1 in 100,000) without that disorder, in which it is called
sporadic (S-LAM). TSC is due to germline or somatic mutations in
either TSC1 (25%) or TSC2 (75%) [32]. Tumor development in TSC
follows the classic Knudson model of a germline mutation
complemented by a somatic second hit mutation in the other
corresponding allele in tumors [32, 33]. Limited data are available for
S-LAM, but it appears that TSC2 mutations are seen in the vast
majority of S-LAM lesions. About 50% S-LAM subjects have kidney
angiomyolipoma, a tumor which is seen in 70-80% of adults with TSC.
Angiomyolipoma share histologic, expression, and genetic features

with LAM, though are not identical pathologic lesions.

Genome-wide association studies (GWAS) are utilized to

identify genetic variants and susceptibility loci associated with complex

11



traits and common diseases. Although there is no precedent for genetic
influence on the development of S-LAM, | hypothesized that DNA
sequence variants outside of TSC2/TSC1 might be associated with

disease risk, and go unrecognized due to the low prevalence of this

disorder.

12



2.2 Materials and Methods

2.2.1 Discovery cohort

Over 600 female S-LAM patients were identified and collected
through international solicitation from 2010 to 2014 from 14 countries
(Table 2.1). S-LAM was diagnosed using standard diagnostic criteria
[1-5, 7] by their treating physicians. Genomic DNA was extracted from
saliva using the QlAamp DNA mini kit (Qiagen, Germany), and 479 S-
LAM DNA samples were genotyped with the Infinium OmniExpress-
24 v1.2 BeadChip, which assesses 716,503 SNPs across the entire
genome. 34 non-white S-LAM subjects were excluded from further

analyses.

Genotype data from the same genotyping chip were available
for 1261 healthy female volunteers from the COPDGene Consortium,
and were obtained from dbGaP (phs000951.v2.p2.c1). These
COPDGene participants had smoked at least 10 pack years and were 45

to 80 years old, and were without known COPD [34, 35].

13



2.2.2 Quality control analyses of SNP genotype data

I evaluated the quality of SNPs and subjects in the discovery
data set using PLINK [36] and ONETOOL [37]. | excluded all SNPs
for which: the Hardy-Weinberg equilibrium (HWE) test [38] gave P <
1x10°; minor allele frequency (MAF) was < 0.05; or genotype call
rates were less than 95%. | also discarded any subjects whose missing
genotype rates were > 5%, or showed identity-by-state > 80% with any
other subject. These filtering procedures were first applied separately to
cases and controls, and were repeated on the pooled dataset. In addition,
any SNP showing a difference in missing data rate between cases and
controls by Fisher’s exact test [39], with P < 1x10™° was removed. Last,
EIGENSTRAT [40] was applied to the pooled data and principal
component (PC) scores were calculated. PC scores were used to detect
subjects with an outlying genetic background, and such outliers were
then removed. These filters led to retention of 426 S-LAM cases and
852 female controls for analysis in the discovery phase with 549,599

SNP genotypes (Figure 2.1).

14



Table 2.1 Distribution of LAM patients according to their

nationality

Discovery Replication

LAM LAM
USA 190 196
France 54 0
Spain 40 0
Italy 35 0
United Kingdom 32 0
Germany 21 0
Australia 20 0
Poland 15 0
Israel 7 0
Canada 4 0
Panama 1 0
Puerto Rico 1 0
Scotland 1 0
Unknown 5 0
Total 426 196

15



Figure 2.1 Workflow of quality control for the LAM GWAS

discovery data set. Multiple standard quality controls were performed

for both cases (female S-LAM subjects) and controls (healthy women

without COPD from COPDGene consortium) to exclude outlier SNPs

and subjects.

Case Control Raw
479 subjects 1,261 subjects Data
716,503 SNPs 630,860 SNPs
Case Control Only
479 subjects 1,261 subjects overlapped SNPs
619,797 SNPs 619,797 SNPs
SNP QC Quality
Missing genotype rate > 0.05 - 11,702 SNPs - 40 SNPs Controls
P-value of HWE < 1x10*% - 142 SNPs - 39 SNPs
MAF < 0.05 - 41,838 SNPs - 45,099 SNPs
Subject QC
Non-White - 34 subjects - 0 subject
Missing genotype rate > 0.05 - 12 subjects - 0 subjects
IBS > 0.8 - 4 subjects - 0 subjects
Case Control
429 subjects 1,261 subjects
566,115 SNPs 574,709 SNPs
I |
!
Pooled Data Only
1,690 subjects overlapped SNPs
558,124 SNPs
SNP QC Quality
P-value of Fisher’s exact test < 1x10-% - 8,495 SNPs Controls
Missing genotype rate > 0.05 - 0 SNPs
MAF < 0.05 - 30 SNPs
SNPs relevant to Nicotine dependence -8 SNPs
Subject QC
Outlier (EIGENSTRAT) - 3 subjects (3 cases)
Missing genotype rate > 0.05 & IBS > 0.8 - 0 subjects
Matching - 409 subjects (409 controls)

Pooled Data
1,278 subjects

549,591 SNPs

M 2-tf & 3
¥ |l I ’



2.2.3 Replicationdata

Replication analysis was done on an additional independent set
of 196 non-Hispanic white (NHW) female S-LAM subjects, for the two
SNPs identified in the discovery study, provided by one co-author (JM,
Table 2.1). Careful scrutiny was performed by a third party to ensure
that there was no overlap between the primary analysis population and
the replication population. Genotyping was performed by TagMan SNP
genotyping assays C 832391 10 and C_27296040 10 for SNPs
rs2006950 and rs4544201, respectively (ThermoFisher Scientific).
Nine randomly selected S-LAM subjects from the discovery study were
also genotyped by this method to confirm genotyping accuracy in the
replication analysis. Their discovery study genotypes matched the
TagMan analysis genotypes perfectly, and these 9 subjects were not
included in the replication analyses. 409 NHW healthy females from
COPDGene Consortium who were not used for discovery analyses

were used as controls for comparison in the replication study.

17



2.2.4 Statistical analyses with genetic data

GWAS analyses with discovery data were conducted using

conditional logistic regression (CLR).

Principal Components (PC) Analysis scores were estimated
with EIGENSTRAT [40], and used to adjust population substructure.
CLR requires matching of cases and controls, and matching quality is
affected by the number of PC scores matching. Each case was matched
with two controls using the Matching R package [41]. Figure 2.2 shows
that matching with age and two PC scores corresponding to the two
greatest eigenvalues provide the variance inflation factor closest to 1.
Thus CLR was conducted with cases and controls matched with age
and 2 PC scores. CLR analyses were performed with the R package
survival [42] and genome-wide significance was assessed by P-value <

5x10°8,

| also conducted gene-based analyses to identify genes with
significant association with S-LAM using the SKAT-O statistic [43].
SNPs within each gene were used to provide a SNP set file, and age,

squared age and 10 PC scores were included as covariates.

18



Figure 2.2 Variance inflation factors according to the number of
PC scores used for the discovery data. Cases and controls were
matched with different numbers of PC scores (2 — 10 PC scores) and
age, and CLR was applied to matched cases and controls. Variance
inflation factors were calculated for different numbers of PC scores,

and plotted against the numbers of PC scores.

1.1104

1.1054

1.100

Genomic inflation factor

1.0951

1.080

2 4 6 8 10
Number of PC scores
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2.2.5 Genotype imputation and statistical analyses with
imputed genotypes

I imputed untyped SNPs located within 1 mega-base of the two
genome-wide significant SNPs on chromosome 15 to do fine-mapping.
Imputation was conducted using the Sanger Imputation Service
(https://imputation.sanger.ac.uk). |1 used Haplotype Reference
Consortium release v1.1 and considered predominantly European
ancestry [44]. Pre-phasing and imputation was conducted with
SHAPEIT [45] and the PBWT package [46], respectively, and
imputation accuracy was evaluated with the INFO metric [47]. Imputed
SNPs were filtered out if INFOs, MAFs or P-values for the HWE test
were < 0.3, 0.05, or 1x10°, respectively. Linkage disequilibrium (LD)
blocks were chosen by using Haploview with default options [48] and |
applied CLR to all SNPs in the LD block with the genome-wide
significant SNPs from the initial genotyping. Furthermore, | applied
PICS software to imputed and genotyped SNPs within the 34kb LD
block containing the genome-wide significant SNPs to calculate the

probability of each individual SNP being the causal SNP [49].

20



2.2.6 Topologically associated domains (TADs) and
chromatin interactions

To identify chromatin interactions in the region of interest on
chromosome 15026.2, | used a 3D genome browser

(www.3dgenome.org) to predict TADs [50]. I checked for TADs

around the genome-wide significant SNPs and protein coding genes
belonging to each TAD were investigated. | analyzed TADs from four
cell lines/tissues judged closest to LAM: (i) human fetal lung fibroblast
(IMR90), (ii) lung-related tissues (LUNG), (iii) H1 derived
mesenchymal stem cells (H1-MSC), and (iv) Human Umbilical Vein

Endothelial Cells (HUVEC).

21
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2.2.7 Statistical analyses with RNA sequencing data

Whole transcriptome RNA-Seq analysis was performed on one
abdominal LAM tumor and four kidney angiomyoliopomas at the
Broad Institute of Harvard and MIT. Briefly, mRNA-Seq was
performed using polyA cDNA capture followed by cDNA library
synthesis (Illumina Truseq RNA Library Prep Kit), and sequencing on
[Hlumina machines, following the same methods and in the same facility
in which the GTEx RNA-seq project occurred [24]. Read data was
processed into FASTQ files with standard QC methods, and aligned to
the genome (hgl9, NCBI37) using Tophat v2.0.10 [51]. Fastq files
were also converted into RSEM format [52]. RSEM values were
compared to RNA-seq data from 2463 tumors of 27 different histologic
types fromthe TCGA [53]. RPKM values for NR2F2 were compared to
the GTEx data set of normal human tissues (~7,000 samples from 53

normal tissue types, vep release) [54].

22



2.2.8 Immunohistochemistry analyses

Immunochistochemistry was performed as described elsewhere
[55] using a primary mouse monoclonal antibody against NR2F2
[Abcam Cat.Num# ab41859 Concentration 1:100 (10ug/ml) ]. Briefly,
formalin-fixed, paraffin-embedded tumor sections were deparaffinized
in xylene, rehydrated; and antigen retrieval was performed in EDTA
(pH 8.0, Diagnostic BioSystems). Endogenous peroxidase activity was
blocked with 3% H,0,, blocking was done with 5% goat serum,
followed by incubation overnight with antibody at 4°C, washing in
TBST, and incubation with anti-goat secondary antibody (Vector Labs,
Burlingame, CA, dilution 1:300) The peroxidase reaction was
developed using DAB substrate (DakoCytomation). Both LAM lung

samples and kidney angiomyolipomas were stained by similar methods.
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2.3 Results

2.3.1 GWAS analysis of S-LAM identifies two intergenic
SNPson chromosome 15

After multiple filtration steps and elimination of SNPs and
samples as described in the Methods and shown in Figure 2.1, GWAS
was performed on 426 S-LAM subjects and 852 control subjects from
the COPDGene project, for 549,599 SNPs using CLR. Two non-coding

SNPs rs4544201 and rs2006950 on chromosome 15 met genome-wide
-10
significance  (rs4544201: P-value=8.51 x 10 ; rs2006950: P-

-10
value=3.92x10 ).

Quantile-quantile plots for CLRs and Manhattan plots
demonstrated that the distribution of observed P-values met the
expected distribution, with the exception of the two SNPs (Figure 2.3),
indicating that the analyses were free of systematic P-value inflation.
Multi-dimensional scaling plots indicated genetic similarity between
cases and controls in the discovery analyses (Figure 2.4). Since the
control COPDGene cohort were smokers, this association analysis
might have been confounded by SNP alleles associated with nicotine
addiction. 1 checked p-values for SNPs associated with nicotine
addiction from the GWAS catalog [13] and other SNPs correlated with

24



those (> >0.8) (Table 2.2). None of those SNPs showed a significant
difference in allele frequency in the LAM and COPDGene cohorts,
indicating that our findings are not confounded by nicotine addiction
SNPs. Table 2.3 provides summaries for the two genome-wide

significant SNPs.

rs4544201 and rs2006950 are located on 15026.2, 11,563 nt apart, inan
intergenic gene desert between MCTP2 (1.1Mb away) and NR2F2
(700kb away), that contains many IncRNAs (Figure 2.5). Both SNPs
have minor and major alleles of A and G, and showed a lower minor
allele frequency (MAF) in the S-LAM cohort than the control
population. The odds ratios (ORs) of a single minor allele in the S-
LAM cohort were 0.49 and 0.47 respectively, in comparison to the
control population (Table 2.3). To adjust for the possible effect of the
‘Winner’s curse’, | used br2 [56], and found that the bias-adjusted OR

for rs4544201 and rs2006950 were 0.57 and 0.53, respectively.

Replication analysis was performed for the 2 SNPs with association
with LAM using 196 additional non-Hispanic white (NHW) S-LAM
patients and 409 NHW healthy females from COPDGene participants
who were not used for discovery analyses. Similar ORs for association
of the minor allele of these SNPs with S-LAM were seen in the

replication data (Table 2.3, ORrss524201=0.33, ORriso006050 = 0.28).
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Furthermore, | compared the MAFs of the 2 SNPs in LAM patients
with those available from 7 other studies (composed of NHW European
or USA populations), including the UKBiobank study of 337,199
individuals. The MAFs of the 2 SNPs in LAM patients were
significantly smaller than those reported in every other cohort (Table

2.4).

rs4544201 and rs2006950 belong to the same LD block on
15026.2 [48], and are strongly correlated (D’=0.977, r*=0.854; Figure
2.6). To examine the potential association of other SNPs in this region
with S-LAM, | used the genotyped SNP data to impute genotype data
for all SNPs within 1 megabase of these two SNPs. Eighteen imputed
SNPs in the 34kb LD block had P-values for association with LAM

similar to rs4544201 and rs2006950 (Table 2.5).

To attempt to identify the causal SNP(s) among these SNPs
with low P-values, | performed PICS analysis for all SNPs in Table 2.5,
and the original two SNPs showing association. rs41374846 had both
significant association with LAM, and the largest PICS probability
(Ppics=0.65, Table 2.6), making it the candidate causal SNP in this

association [49].
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Figure 2.3 Quantile-quantile plot and Manhattan plot for discovery
LAM GWAS dataset. a) The observed distributions of P-values for
549,591 genotyped SNPs are plotted relative to the expected (null)
distribution for each of CLR analyses. b) Each dot represents the P-
value of a single SNP, plotted on the genome scale at bottom. The Y-
axis value is the negative logarithm of the P-value for association
between each genotyped SNP and LAM. Two SNPs on 15026.2 met

genome-wide significance (P <5 x 10°®) by CLR.
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Figure 2.4 Multi-dimensional scaling plot. Multi-dimensional scaling plots were generated using a pool of our Discovery S-
LAM cohort, our COPDGene controls, and 1000 Genome project data. Red and blue circles indicate S-LAM and COPDGene

samples used for our discovery analyses, respectively, and grey circles represent participants for 1000Genome projects.
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Table 2.2 P-values for SNPs associated with nicotine addiction. P
values are shown in comparison of allele frequencies for the S-LAM

discovery cohort and the COPDGene controls.

CHR SNP P-value
1 rs1060061 0.4885
6 rs9503551 0.0840
7 rs4285401 0.3263
8 rs804292 0.8145
8 rs6470120 0.1152
9 rs10491551 0.7217
4 rs10517300 0.6066
15 rs1051730 0.9759

21 rs2836823 0.1560
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Figure 2.5 Genomic region on chromosome 15 containing the SNPs
associated with LAM. a) Ideogram of chromosome 15. b) Three Mb
region containing the SNPs associated with LAM. Manhattan plot at
top shows P-values for SNPs in this region, including the two SNPs
meeting genome-wide significance (red dots). There are 3 protein-
coding genes NR2F2, MCTP2, and SPATA8 which were represented in
yellow shaded boxs, and many IncRNAs in this region. ¢) Expanded
Manhattan plot of the 250kb region containing the genotyped and
imputed SNPs showing association with LAM. SNP rs41374846 is
indicated by purple, and other SNPs are colored according to their r?

value in relation to rs41374846.
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Table 2.3 Genome-wide significant SNPs.

rs4544201 rs2006950
Chromosome 15026.2 15026.2
SNP position (hg19) 96167827 96179390
Minor / Major alleles AlG AlG
Minor allele frequency
S-LAM 0.1655 0.1420
Control 0.2750 0.2529
Genotype counts
(AA/AG/ GG/ Missing)
S-LAM 16/108/299/3 11/99/316/0
Control 62/343/444/3  58/315/479/0
Discovery data
Odds ratio
Original 0.4916 0.4732
Bias adjusted 0.5677 0.5315
P-value 8.51x10 3.92x10
Replication data
Odds ratio 0.3288 0.2731
P-value 4.32x10° 1.56x10
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Table 2.4 Minor allele frequencies for SNPs rs4544201 and rs2006950 in multiple populations.

LAM patients Normal
SNP
MAF MAF
Data N (95% ClI) Data N (95% Cl)
rs4544201 Discovery 190 0.1684 COPDGene 1958 0.2742
(USA/NHW/females) (0.131,0.206) (USA/NHW/females) ™ (0.257, 0.292)
Discovery 933 0.1631 COPDGene 1924 0.2774
(EUR/NHW/females) (0.130, 0.197) (USA/NHW/males) ’ (0.260, 0.295)
Replication )
(UgA/NHW/femaIes) 185 107 ey 1153 023
(0.107,0178)  (USA/NHW/females) (0.238, 0.274)
1000GP 50 0.2600
(USA/NHW/females) (0.174, 0.346)
1000GP 213 0.2300
(EUR/NHW/females) (0.190, 0.270)
ECLIPSE 792 0.2563
(EUR/NHW/females) (0.235, 0.278)
UK Biobark 337199 0-2605
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GhomAD" S 4gy  0-2601
(EUR/NHW/both) ’ (0.253, 0.267)
rs2006950 Discovery 190 0.1474 COPDGene 1961 0.2546
(USA/INHW/females) (0.112,0.183) (USA/NHW/females) (0.238, 0.272)
Discovery 930 0.1377 COPDGene 1226 0.2557
(EUR/NHW /females) (0.107,0.169) (EUR/NHW/males) (0.238, 0.273)
Replication 0.1148 MESA-Lung
186 . -Lung 0.2283
(USAINHW/females) (0.082,0.147) (USAINHW/females) -2° (0211, 0.246)
1000GP 50 0.2300
(USA/NHW /females) (0.148, 0.312)
1000GP 213 0.2160
(EUR/NHW/females) (0.177, 0.255)
ECLIPSE 90 0.2431
(EUR/NHW/females) (0.222, 0.264)
UKBiobank’ 237109 02432
(EUR/NHW/both) ' (0.242, 0.244)
GnomAD® 7 496 0.2421
(EUR/NHW/both) ' (0.235, 0.249)




“MESA = Multi-Ethnic Study of Atherosclerosis. Nonhispanic whites females were chosen and MAFs were calculated.
“1000GP = 1000 Genome Project

" ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points
" http://pheweb.sph.umich.edu:5000/

* http://gnomad.broadinstitute.org
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Figure 2.6 Linkage disequilibrium (LD) block around the two

genome wide significant SNPs, rs4544201 and rs2006950. Graph

represents all genotyped SNPs in the 34kb LD block on chromosome

15026.2. The color of each rectangle and number within indicates the

level of LD between a pair of SNPs, with complete LD (D'=100%, no

number shown) indicated by red, and no LD indicated by white.
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Table 2.5 Statistical analyses of imputed SNPs with CLR.

. _ P-value for
CHR  SNP POS  Alleless MAF INFO ;
CLR

15  rs41374846 96143559 A/G 02605 09097  3430%10"°
15 rs59125351 96144157 GIT 02510 09771 3299x10
15 rs17581137 96146414 C/A 02336 09893 1384%10"°
15 156496126 96148439 C/G 02330 09890 1814x10
15  rs2397810 96148765 C/T 02330 09890 1814x10""
15 1510520790 96151040 T/G 0.2478 09958 3571x10
15  rs55804812 96151256 A/T 02475 09952 4178x10 "
15  rs16975389 96153782 C/T 0.2463 0997 5801%10" "
15  rs16975396 96158705 G/T 02466 09983 9502x10
15 rs4628911 96167905 T/C 02472 1.0000 5147x10""
15  rs6496128 96168303 G/A 02472 1.0000 514710
15 158029996 96168770 A/G 02472 09998 5147x10
15  rs4551988 96169589 C/G 02472 09998 5147x10"°
15 158878263 96171069 A/C 02493 09979 6361x10
15  rs8040665 96175692 G/T 0.2487 09976  7356x10 "
15 1596175733 96175733 A/G 02466 09975 5204%10""
15 158040168 96176096 G/C  0.2466 09981 522410

15  rs17504029 96177670 T/A 0.2478 09876  1900x10

" Minor/Major alleles are listed.
TINFO is the metric about imputation quality provided by IMPUTE2.
* CLR was applied to imputed SNP genotype data to identify SNPs

with significant association (P < 5x10°®) with S-LAM.
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Table 2.6 PICS analysis to identify probable causal SNPs in the chr

159 region. SNP rs41374846 (shown in bold) was identified as the

probable causal SNP, with the highest PICS probability. SNPs are

sorted by PIC probability.

CHR  SNP POS P-value p'’ 2t pmz'aisimy
15  rs41374846 96143559 3432x10° 10000 10000  0.6485
15 rs59125351 96144157  3229x10 . 09703 07941  0.0352
15 rs55804812 96151256  4.178x10 . 09557 07758  0.0290
15 1516975389 96153782  5.801x10 . 09555 07700 00272
15 510520790 96151040 3571x10 . 09486 07698  0.0271
15 516975306 96158705 9.502x10 . 09480 07581  0.0239
15 rs58878263 96171069  6.361x10 . 09328 07287 00172
15 rs8029996 96168770  5.147x10 . 09325 07230 00161
15 rs6496128 96168303  5.147x10 . 09325 07230 00161
15 rs4628911 96167905  5.147x10 . 09325 07230 00161
15 rs8040665 96175692  7.356x10 . 09254 07171 00151
15 rs17581137 96146414  1384x10 . 09529 07125  0.0143
15 rs4544201 06167827  5.47x10 . 09317 07116 00142
15 rs4551988 06169589  5.147x10 . 09183 07113 00141
15 52307810 96148765  1814x10 . 09451 07008 00125
15 rs6496126 96148430  1814x10 . 09380 07005 00124
15 158040168 96176096  5.224x10 . 09233 06887 00108

"D'=D,5/Dyax Where D,p:

D

max *

expected haplotype frequencies.

the frequency of the haplotype AB and

* 12: squared correlation coefficient
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2.3.2 Association of GWAS-significant SNPs with NR2F2

The majority of SNPs associated with human disease or other
phenotypes are thought to cause the association through effects on
enhancer or other regulatory element function of a coding gene within
the topologically associated domain (TAD) containing the SNP [57].
To identify the TAD containing these SNPs, | used TAD information
available for four tissues: IMR90 cells, a fetal lung myofibroblast cell
line; lung tissue; H1-MSC, a mesenchymal stem cell line; and HUVEC,
human umbilical vein endothelial cells (Figures 2.7-10). In all four of
these cells/tissues, NR2F2 was the only protein-coding gene within or
near the boundary of the TAD containing the GWAS SNPs. This
suggests that this SNP region may influence expression of NR2F2 as its
mechanism of association with S-LAM.

To examine this possibility in further detail, | conducted gene-
based analyses of association of SNPs within all three protein-coding
genes in the 2 MB region of chromosome 15 surrounding the GWAS-
SNPs using SKAT-O. NR2F2 was the only one of the three genes
located in this chromosomal region that showed a significant
association (P-value=0.03, Table 2.7).

NR2F2, also known as COUP-transcription factor Il, encodes a
member of the steroid/thyroid hormone superfamily of nuclear
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receptors [58], and plays important roles in many developmental
processes, including the neural crest [59], which is considered a
potential candidate cell of origin of LAM [60], as well as in
lymphangiogenesis and in angiogenesis [61]. Hence, | considered it a
potential target of regulation by one of the SNPs showing a strong

association with LAM (Table 2.6), and performed further studies.
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Figure 2.7 Hi-C heatmap and TADs defined in IMR90 cells. The
heatmap shows the degree of physical interaction defined by Hi-C
analysis for genomic region pairs from a 3Mb region of chromosome
159. A deeper red color at the intersection point reflects a greater
degree of interaction between the two genomic regions. The dotted
lines indicate probable TAD structures in this region. The two blue
shaded regions at bottom indicate the genome wide significant SNP
region (left) and NR2F2 (right). The black circle reflects the interaction

point between the SNP region and NR2F2.
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Figure 2.8 Hi-C heatmap and TADs defined in lung tissue. The

heatmap shows the degree of physical interaction defined by Hi-

C

analysis for genomic region pairs from a 3Mb region of chromosome

159. A deeper red color at the intersection point reflects a greater

degree of interaction between the two genomic regions. The dotted

lines indicate probable TAD structures in this region. The two blue

shaded regions at bottom indicate the genome wide significant SNP

region (left) and NR2F2 (right). The black circle reflects the interaction

point between the SNP region and NR2F2.
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Figure 2.9 Hi-C heatmap and TADs defined in H1 derived
mesenchymal stem cells (h1-MSC) cells. The heatmap shows the
degree of physical interaction defined by Hi-C analysis for genomic
region pairs froma 3Mb region of chromosome 15q. A deeper red color
at the intersection point reflects a greater degree of interaction between
the two genomic regions. The dotted lines indicate probable TAD
structures in this region. The two blue shaded regions at bottom
indicate the genome wide significant SNP region (left) and NR2F2
(right). The black circle reflects the interaction point between the SNP

region and NR2F2.
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Figure 2.10 Hi-C heatmap and TADs defined in HUVEC cells. The
heatmap shows the degree of physical interaction defined by Hi-C
analysis for genomic region pairs from a 3Mb region of chromosome
159. A deeper red color at the intersection point reflects a greater
degree of interaction between the two genomic regions. The dotted
lines indicate probable TAD structures in this region. The two blue
shaded regions at bottom indicate the genome wide significant SNP
region (left) and NR2F2 (right). The black circle reflects the interaction

point between the SNP region and NR2F2.
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Table 2.7 Gene-based analyses of SNP association with LAM. Three
protein-coding genes were found on chromosome 15 from 94.2 Mb to
98.2 Mb, the 2 Mb region surrounding the GWAS-SNPs, and gene-

based analysis for association with LAM was performed using SKAT-

0.
Gene CHR Start’ End’ Number of SNPs  P-value
NR2F2 15 96869157 96883492 5 0.0307
MCTP2 15 94774767 95027181 4 0.3579
SPATA8 15 97326619 97328845 3 0.5250

" Start position of the corresponding gene.

"End position of the corresponding gene.
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2.3.3 Analysis of NR2F2 in kidney angiomyolipoma and

LAM

Using RNA-seq data, | compared the gene expression of 4 four
kidney angiomyolipomas and one abdominal LAM tumor with an
extensive set of human cancers (from TCGA [53]), and normal tissues
(from GTEX [54]) (Figure 2.11). NR2F2 expression was higher in the
LAM-related tumors than any TCGA cancer (Figure 2.11a), and was
also relatively highly expressed in LAM-related tumors in comparison
to normal tissues (Figure 2.11b, P-value=6.38x10®, Limma statistic) .
In contrast, two other genes, SPATA8 and MCTP2, that were next
closest to the SNP region showing association with LAM (1.1 and
1.2Mb distant, Figure 2.4b) had no expression in the LAM-related

tumors (data not shown).

Immunohistochemistry (IHC) analysis also demonstrated strong
nuclear expression of NR2F2 in both LAM Ilung and Kkidney

angiomyolipoma sections (Figure 2.12).
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Figure 2.11 Comparison of NR2F2 expression in kidney angiomyolipoma/LAM with cancer (TCGA) and normal tissues
(GTEX).

Boxplot figures are shown to compare expression of NR2F2 in 4 angiomyolipoma and one abdominal LAM lesion with 2463
cancers of 27 types (from TCGA, brackets on x-axis include the number of samples analyzed per tumor type; abbreviations are
explained in Table 2.8) in RSEM units (a); and with ~7,000 samples of 47 normal tissues (from GTEX) in RPKM units (b).
Remarkably, NR2F2 gene expression is the highest compared to all TCGA tumors and higher compared to most GTEx normal
tissues; similar to cervix, fallopian tubes, uterus and ovaries. The median value, interquartile range, and 95% ranges are shown,
with outliers indicated by circles. In the X axis, the each number in brackets is the number of samples corresponding each tissue.

Full terms for TCGA tumor abbreviations are explained in Table 2.8.
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NR2F2 Gene Expression Comparison of TCGA and LAM/AML Tumors
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NR2F2 expression comparison of LAM/AML and GTEx tissues

b)

oo

1

e

I pooig 3j0um
L euibep

- snain

- ploJAyL

L snsa

L yoewois

L uas|ds

wn3|| [euluLa | - aunsa| |lews
(B3] Jamo1) pasodx3 ung - UNS

(o1gndesdng) pasodx3 ung JON - UNS
L ajeisoid

Aeymig

seajued

- Aeap

[e1q1L - aAeN

T

L [e1919%S - 3|9sNI
puelo Aealjes Jouiw

I Bun

1A

Xaj0Q - Aaupiy
30LIUBA Y37 - WeaH
abepuaddy [euy - veaH
L agn | ueido|e4

suenasny - snbeydos3

T

es0onj - snBeydos3

|- uopounr |eabeydosaonses - snbeydos3
| 9sJaAsUBI] - UO|OD

plowbis - uojod
L XIAJS90pUT - XIAIRD

XIAIB20)03 - XIAIBD

SIS|qOIql) PaULIOjSUE) | - S|19D
sajkooydwA| pawiojsuen-Ag3 - s|1eD
L anss|| Alewwep -iseag

esbiu epuUelsqns - ulelg

(1-0 [B21A139) PIOD [EUIDS - UleIg
(e1Bueb |eseq) uswend - ueig

(e16ueb |eseq) suaqunode sN3joNN - ulelg

snwejeyiodAH - uieig

I sndwedoddiH - uiesg
(6Y8) Xau09 |ejuoi - uiesg
Xay0D - ulesg

wn|jegasa) - ukesg
L aaydsiwaH Jejjegaie) - ueig

L (e1Bueb |eseq) slepne) - ueig

L (pzva) xau02 ajenbuid Jouajuy - ulelg
I ejepbAwy - ueig

I Jappeig

- e L - Aispy

I Aleuolo) - Alauy

I eyoy - Aispy

- pue|o eualpy

- (wmuawQ) [e1a9sIA - asodipy

|- snoauenagng - asodipy

= TAVAVYT

150 +

WldS

49



Table 2.8 TCGA tumor abbreviations

Abbreviation | Cancer type

KIRP Kidney renal papillary cell carcinoma

KIRC Kidney Renal Clear Cell Carcinoma

SARC Sarcoma

PAAD Pancreatic Adenocarcinoma

ov Ovarian Serous Cystadenocarcinoma

BRCA Breast Invasive Carcinoma

UCS Uterine Carcinosarcoma

KICH Kidney Chromophobe

UCEC Uterine Corpus Endometrial Carcinoma

LIHC Liver Hepatocellular Carcinoma

SKCM Skin Cutaneous Melanoma

ACC Adrenocortical Carcinoma

BLCA Bladder Urothelial Carcinoma

MESO Mesothelioma

COAD Colon Adenocarcinoma

LUAD Lung Adenocarcinoma

THCA Thyroid Carcinoma

READ Rectum Adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

LUSC Lung Squamous Cell Carcinoma

GBM Glioblastoma Multiforme

CESC Cervical Squamous Cell Carcinoma and Endocer
vical Adenocarcinoma

HNSC Head and Neck Squamous Cell Carcinoma

LGG Low Grade Glioma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymp
homa

LAML Acute Myeloid Leukemia
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Figure 2.12 Immunohistochemistry for NR2F2 in LAM and Kkidney
angiomyolipoma. Strong nuclear staining is seen in lung LAM cells (a)
and angiomyolipoma cells (b) (brown stain). Some other cells also have

nuclear staining for NR2F2 but most do not.

a) b)

Lung LAM Kidney angiomyolipoma
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2.4 Discussion

LAM occurs almost exclusively in women of childbearing age.
Most LAM patients who come to medical attention are sporadic cases
without TSC, and the origins of LAM in S-LAM patients are
completely unknown. In the present study, I conducted a GWAS in a
large cohort of S-LAM subjects. Two intergenic SNPs, rs4544201 and
rs2006950, were identified ina 34kb LD block on chromosome 15, that
met genome-wide significance for association with LAM (Table 2.3).

The association was replicated in a validation population.

The SNPs with association to S-LAM lie in a gene desert on
distal chromosome 15026.2. The nearest protein-coding gene is NR2F2,
700kb away, and consideration of chromatin TADs in this region
indicates that only NR2F2 is infon the border of the TAD region
containing the SNPs showing association with S-LAM in four relevant
cells/tissues, suggesting that these SNP alleles may influence NR2F2
expression as the potential mechanism of their association with S-LAM

development.

NR2F2 is an orphan nuclear receptor known to play important
roles in both normal tissue development and in tumorigenesis [62],
making it a promising candidate driver gene in LAM pathogenesis.

LAM occurs nearly exclusively in women, and estrogen levels
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influence LAM development and progression [63, 64]. SiRNA
knockdown of ERa (Estrogen Receptor) in MCF-7 breast cancer cells
decreased NR2F2 expression, while treatment with estradiol increased
its expression [65]. This interaction between ERa and NR2F2 may also

play a role in LAM development.

NR2F2 is highly expressed in LAM and angiomyolipoma by
RNA-Seq analysis in comparison to large cancer and normal tissue data
sets, and NR2F2 shows high expression with nuclear localization in
both LAM and angiomyolipoma by IHC. Although I did not identify an
eQTL relationship for any of the 20 SNPs associated with S-LAM for
any gene in any normal tissue or cancer type [54], it is possible that
such an eQTL relationship exists for LAM cells. | also note that the
region of these SNPs contains several non-coding long RNAs, some
antisense transcripts, and microRNA miR1469 (Figure 2.11a). It is
possible that expression of one or more of these noncoding genes are
affected by these SNP alleles, and have a role in LAM development, a

possibility which requires further investigation.

Lymphatic involvement in LAM is a hallmark pathologic
feature with LAM cell clusters in the lung showing marked enrichment
for lymphatic vessels [66, 67]. VEGF-D is a probable driver of

lymphatic vessel growth in LAM, as serum VEGF-D lewels are
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increased in the majority of LAM patients, and serves as a diagnostic
biomarker of LAM [68]. In mice, NR2F2 has been shown to be
required, with SOX18, for the polarized expression of PROX1 in a
subset of endothelial cells within the cardinal vein at embryonic day 9.5,
an event that leads to development of the lymphatic endothelium [69].
Hence there is also a potential connection between NR2F2, VEGF-D,

lymphatic development, and LAM pathogenesis.

There are potential limitations to our study. Although our cohort
of samples was large for a rare disease like S-LAM, it was of only
moderate size for GWAS. Second, to collect sufficient LAM subjects, |
employed a worldwide recruitment strategy for S-LAM patients of
European origin. Although our controls were all from the USA, they
were selected for European ancestry. In addition, | employed
EIGENSTRAT to identify genetic outliers from both our S-LAM and
control cohorts to further reduce genetic heterogeneity. Further
functional analyses to confirm our hypothesis that NR2F2 is the gene
affected by this SNP is limited by the absense of a reliable LAM tumor
cell line, the low abundance of LAM cells in LAM lung specimens, and

lack of a LAM animal model.

In conclusion, our GWAS has identified non-coding SNPs on

chr15g26.2 whose alleles are associated with S-LAM, that are located
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in a TAD containing the orphan nuclear receptor NR2F2, suggesting a
model in which these SNP alleles influence NR2F2 expression and
thereby LAM pathogenesis. NR2F2 is relatively highly expressed in
LAM and LAM-related tumors. NR2F2 has not previously been
implicated in LAM, and these novel and unexpected findings will
hopefully lead to better understanding of the pathogenesis of this often

progressive and lethal lung disorder.

55



This chapter was published in Statistics in Medicine
as a partial fulfillment of Wonji Kim’s Ph.D program.

Chapter 3

Selecting Cases and Controls for
Genome-wide Association Studies Using

Family Histories of Disease

3.1 Introduction

Over the last several decades, DNA sequencing technologies
have greatly improved, and the rate of decline in sequencing costs has
even outpaced Moore’s law [70-73]. This progress has enabled well-
powered investigations into the associations between human diseases
and rare variants. Clues to the so-called “missing heritability” problem

are also expected to emerge, as rare causal variants have been
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suggested as a possible cause [74, 75]. However, large-scale genetic
association analyses often suffer from extreme multiple testing
problems, and the cost of whole-genome sequencing is still expensive.
Furthermore, the common disease-rare variant hypothesis [76] assumes
multiple rare disease susceptibility loci, suggesting that causal variants
for each affected subject may be substantially different, and this genetic
heterogeneity among affected subjects has also complicated genetic
association analyses. Therefore, in spite of remarkable improvement in
sequencing technology, development of efficient strategies for selecting
informative subjects is still necessary, and various statistical methods
have been investigated for use in genetic association studies.

Subjects with many affected relatives tend to contain more
disease genotypes for heritable diseases, and it has been empirically
shown that their ascertainment for genetic studies have often led to
additional improvements in statistical power [77-80]. In particular, the
probability of being affected depends on both the number of
affected/unaffected relatives and familial relationships. For instance,
subjects with affected siblings have a greater chance of being affected
than those with unaffected siblings, and the former rather than the latter
are often selected for association analyses [77-80]. Between subjects

with three affected and one unaffected grandparent and those with a
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single affected parent, it is unclear which would be more efficient for
genetic association studies. However, such complicated scenarios have
rarely been considered due to the absence of appropriate statistical
approaches, and many genetic association studies use only the number
of affected first-degree relatives [77-80].

In this report, | propose a new statistical method for selecting
informative subjects based on the disease status of their relatives [81] .
In our method, quantifying the how informative subjects are for
association analyses requires knowing the prevalence and heritability of
diseases a priori. In particular, prevalence is defined by the proportion
of affected individuals in a population, and it is often available for
many diseases. However, heritability for dichotomous phenotypes,
which is defined by the proportion of the total phenotypic variance
attributable to genetic components and estimated by familial correlation
for quantitative phenotypes, can have different interpretations
according to considered statistical models. For instance, heritability can
be estimated from twin studies [82] or Falconer’s liability threshold
model [83]. The former estimates heritability through correlation of the
disease status of monozygotic vs. dizygotic twins. The latter assumes
that there are unobserved liability scores, and heritability is defined by

correlation of liability scores, which can be understood as a correlation
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at the model scale [84], and some literature shows their asymptotic
relationship [23]. Heritability estimation at the observed data scale [84]
is intuitively easier to understand, but its application to general family
structures is not straightforward. Therefore, | consider heritability
estimates from the liability threshold model in the remainder of this
report.

Our model is based on the expectation of unobserved liability
scores for subjects when the disease status of those subjects and their
relatives are conditioned. The liability threshold model assumes that the
disease status of each subject is affected if the unobserved liability
score exceeds a threshold that is determined by prevalence; otherwise,
the status is unaffected. It should be noted that this liability threshold
model is equivalent to the probit model for independent samples [85].
The unobserved liability scores are assumed to follow the normal
distribution, and | calculate the conditional expectation with moment-
based methods [86]. The proposed method can utilize the disease status
of any type of relative, and using extensive simulation studies, I show
that the statistical power is maximized when subjects with high and low
risk are selected as cases and controls, respectively. The proposed
methods were applied to genome-wide association studies (GWAS) for

type-2 diabetes (T2D) with data collected from the Korea Association
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REsource (KARE) project and Seoul National University Hospital in
Korea (SNUH). The discovery of promising disease susceptibility loci

illustrates the practical value of the proposed method.
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3.2 Methods

3.2.1 Notations and the disease model

We assume that there are n independent subjects and that
subject i has n; relatives (i=1, ..., n). | assume that the disease locus is
biallelic, and denote normal and disease alleles by d and D, respectively.
Their allele frequencies are assumed to be py and pp, respectively. The
genotypes are coded as the number of disease alleles, and genotype
frequencies are assumed to follow HWE in a population. | denote the
genotypes of subject i and his/her relative j by Gi and Gjj' respectively,
and the genotype vectors are defined by

Gh Gl

l
G] G.

in; i
We consider the liability threshold model [83], and dichotomous
phenotypes are determined by the unobserved continuous liability score.
The liability scores of subject i and his/her relative j are denoted by L;
and Ljj", respectively. The liability vector for relatives of subject i is

denoted by

r
Lil

L7 =

1A H

I

n;

and that of both L; and L} is
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We assume that liabilities are determined by summing the
environmental effect, main genetic effect, polygenic effect, and random
error. The environmental effects for subject i and his/her relatives are
denoted by Z;j and Z;', and their vectors are defined by

zi Z]

ZT 7.

in; i
Liability scores tend to be similar between family members, and |
consider the simple additive polygenic effect model. | denote a wxw
dimensional identity matrix by I, and a w dimensional column vector,

of which all elements are 0 and 1 by Oy and 1, respectively. Then, if |

let agz and o2 be variances of polygenic effects and random residual
effects, respectively, and let Z include the intercept, 1 can assume that
Li=Zp,+Gp+P +E,
P; ~ MVN(Oni+1' nglpi)J E;, ~ MVN(Oni+1' Uezlni+1)- @)
Here, W¥; indicates the Kinship coefficient matrix for both subject i and

his/her relatives. | denote the kinship coefficient between subject i and

his/her relative j by zjj and that between two relatives j and j' by nirjj,.

Similarly, d; and d;; denote the inbreeding coefficients for subject i
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and his/her relative j, respectively. The inbreeding coefficient, which
ranges from 0 to 1, quantifies the departure from HWE and can be
easily estimated using known pedigree by currently available R

packages, e.g. pedigreemm [87, 88]. Then, ¥/ and W, are defined by

1+dj, 2mn}, 2701,
wr — 271.[12 1+dj, ) :
L : . ., Zn'l (ni—l)ni
Zni’"lni 27Tir(n,-—1)ni 1+ dirn,-
and
/ 1+d, .. 2nf, 2m, \
Yi=|2ny, . 1+d; 2m, |
2my . 2m, 144

Genomic relationships may have more information to better infer
individual liability than the kinship coefficients. However, the genomic
relationship matrix can be obtained only when the genotypes are known,
which may not be the case in our study design.

The dichotomous phenotypes for subject i and his/her relative |

are denoted by Y; and Y,

respectively, and they are coded as 1 for
cases and 0 for controls. In a liability threshold model, Y; and Y;} are
determined by L; and L};, respectively; if L, and Lj; are above a

certain threshold value c, Y; and Y} become 1, and otherwise they
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become 0. ¢ can be determined from the prevalence of the diseases, and
the phenotype vector for relatives of the subject i is denoted by
Yi I(L}; >c¢)

Y =

L

i) \i(t,>¢))

and that for the subject iand his/her relatives is denoted by

Several algorithms have been suggested to estimate ¢ with prevalence,
g, and heritability, h?, known a priori. For instance, if | denote the
cumulative function of a standard normal distribution by ® and there
are no covariate effects other than the intercept, I can set Sy to be 0
without the loss of generality, and ¢ can be obtained by the following

equation:

C
Ol———|=1-4q.
< Jogi + 1) 1
If the environmental effect, Z, follows the normal distribution, and |

denote its variance byos?, c can be obtained by

c
NI
Joi+oi +1
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3.2.2 Selection of samples with extreme phenotypes

Subjects with extreme phenotypes lead to improvement of
statistical power in genetic association studies [89-93], and association
analyses have often been conducted with such subjects. At the sample
selection stage, genotypes of subjects are not known, and | assume S =
0 in equation (1). In particular, environmental factors can affect the
dichotomous phenotypes and if their effects are known, | can then
define the adjusted extreme phenotypes for dichotomous phenotypes by
the following conditional expectation (CE) of liability scores:

CE = E(L; = Z;B,Y;, Z))
CEs were calculated with a moment-based method [86] and the detailed
algorithm is provided in the Appendix. Once | calculated these for all
subjects, n, affected subjects with the largest CEs and n, unaffected
subjects with the smallest CEs were selected for genetic association
studies.

Computation of CEs assumes that h? (heritability), q
(prevalence), Z, and fo are known. While h? g, and Z are often
available a priori, the regression coefficients of environment effects are
usually estimated from logistic regression, and they cannot be used as
estimates of Sy in equation (1). For independent subjects, liability

threshold models are equivalent to the generalized linear model with an
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inverse of a cumulative normal distribution as a link function, and if |
assume that mean and variance for the cumulative normal distribution
are 0 and 1.6, respectively, it is approximately equal to the logistic
regression [94]. Therefore, if | let

o/ = 1.6h* and ¢/ = 1.6(1 — h?),
regression coefficients from logistic regressions can be directly used as

Bo.
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3.2.3 Statistical power when the family history of disease
is controlled

The statistical power for genetic association analysis with a
case-control study design can be calculated when the relatives’
phenotypes are conditioned. | consider the liability model in equation
(1) and assume a major disease gene model. If I let g be the prevalence

of the disease and | denote the genotype relative risks by

_P(,=1/6,=Dd) __ P(Y,=1|G; = DD)
TP, =16, =dd) 2T Py, = 116, = dd)’

f

under HWE, penetrances can be parameterized by

q
p5f2 + 2PpPafi + pc%

P(Y; = 1|G; = dd) =

P(Y; = 1|G; = Dd) = P(Y; = 1|G; = dd)f;
and
P(Y; = 1|G; = DD) = P(Y, = 1|G; = dd)f,.
The expected disease allele frequencies (DAFs) for the affected subject

i and the unaffected subject i' are

PG Y, = 1Y) = ) P(G,GIIY, = 1Y)
o

Z P(Y, =1,Y]|G; G")P(G, GT)
P(Y,=1,Y)

and
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P(Gillyil = 1'Y11; = ZP(GiI'Gfllyil = 1'Y11;
G’

_ ZP(YI,I = 1'YLcIGlIIGfI)P(Gl[; G:"

If agz = 0, both conditional probabilities can be simplified to

P(G;|Y,=1,Y]

ni
P(G,)P(Y; = 1|G;)
= P(Y|G!:) |P(GY|G,) ¢,
P(Y, =1Y]) e 1_1[ (lJI ij (G716,
i J=

and otherwise, P(G;|Y; = 1,Y/) can be numerically calculated. DAFs
for case i and control i' can be obtained by
P(G;= DD|Y; =1,Y]) + 0.5P(G, = Dd|Y; = 1,Y/
and
P(G;,, = DD|Y,, =1,Y]) + 0.5P(G;, = Dd|Y;, = 1, Y}).

Therefore, if 1 assume that there are n,cases and n, controls and let
1 &
s = _Z{P(Gi = DDI|Y, = 1,Y[) + 0.5P(Gi = Dd|Y; = 1,Y[)}
Mg i=1
and

nu
1
Pl = — Z{P(Gi, = DD|Y, = 1,YI) + 0.5P(G, = Dd|Y, = 1,Y))},
u

ir=1
the statistical power for a Cochran Armitage test [95, 96] under the

alternative hypothesis can be obtained from
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a__ .,u\2
X2 (df =1,NCP = (P ~ Pp) )

ps (1 =pg)/n, +py(1 —pi)/ny
If I denote the o quantile of the central chi-square distribution with a

single degree of freedom by yZ(df = 1), the statistical power at

significance level o becomes

(p5 —pp)° >

Ply2|df = 1,NCP =
{X < / ps(1—p8)/n, + pp(1—pH)/n,

> y2(df = 1)}.
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3.3 Simulation study

3.3.1 The simulation model

We assume that there are n subjects with known phenotypes
and that n, cases and n, controls are selected among these for
genotyping (n > ng + ny). | also assume that phenotypes for each
subject’s relatives are available, and | consider three different scenarios:
(1) phenotypes of two parents and four siblings are known; (2)
phenotypes of four grandparents, two parents, and four siblings are
known; and (3) phenotypes of two parents and four siblings are known
for half of the subjects, and phenotypes of four grandparents, two
parents, and four siblings are known for the other half. Pedigrees for
scenarios 1 and 2 are provided in Figure 3.1. The pp was assumed to be
0.2, and genotype frequencies were obtained under HWE. Founders’
genotypes in each family were generated from B(2, pp), and the non-
founders’ genotypes were obtained by randomly generated Mendelian
transmissions. To generate phenotypes, | considered the disease model
in equation (1). 1 assumed no environmental effect, and S, was assumed
to be 0. The polygenic effect and random errors for relatives of subject
i were independently generated from the multivariate normal

distribution with variances agz and o2, respectively. The main genetic
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effect was obtained by the product of £ and the number of disease

alleles. If | let

2 __ 2B°pppa + oy 2 _ 26°ppp4
= and h;, = :
zﬁzprd + O-gz + Uez Z.BZPD Pa + O-g2 + Uez

2 and f are obtained by the assumed h® and hZ. Here, h* and h?

indicate the heritability and the relative proportion of variance
explained by the disease genes. Once liabilities were generated, they
were transformed into affected if larger than the threshold c, and
otherwise were considered unaffected. The value of ¢ was chosen to
preserve the assumed prevalences of ¢ = 0.1 or g = 0.2. For the
evaluation of type-1 errors and power, | assumed h? to be 0 and 0.005,
respectively, and h? was assumed to be 0.2 and 0.4, respectively. If h?
was set to 0, # became 0, which indicates the null hypothesis (no
association between genetic variants and phenotypes). Empirical size
and power estimates were calculated with 2,000 replicates at several
significance levels. In each replicate, | assumed that n = 10,000, and
both n, and n, were assumed to be 500. Genetic association analyses
were conducted under the assumption that genotypes were available
only for n, cases and ny controls.

We considered five different strategies for selecting cases and

controls: (S1) cases and controls were randomly selected from affected
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and unaffected subjects, respectively; (S2) affected subjects with the
highest CEs were selected as cases, and controls were randomly
selected; (S3) affected subjects with the highest CEs and unaffected
subjects with the lowest CEs were selected as cases and controls,
respectively; (S4) cases were randomly selected, and unaffected
subjects with the lowest CEs were selected as controls; and (S5)
affected subjects with the lowest CEs and unaffected subjects with the
highest CEs were selected as cases and controls, respectively.
Moreover, for comparing the proposed method to a simple heuristic
rule, 1 additionally considered another strategy (S6), where the largest
(smallest) number of affected first-degree relatives was selected as
cases (controls). And then, I compared empirical sizes and powers

using logistic regression.
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Figure 3.1 Family history of disease. The person indicated by an

arrow is a proband.

(a) Scenario 1

(b) Scenario 2
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3.3.2 Evaluation of selection strategy with simulated data

We investigated the effect of the selection strategy with
simulated data. Six strategies, S1 to S6, which | described in the
Method section, were used for genetic association analyses and were
performed with the logistic regression. For each strategy, | selected 500
cases and 500 controls from 10,000 individuals, and empirical type-I
errors and power were evaluated for each scenario with 2,000 replicates.
Quantile-quantile (QQ) plots (Figure 3.2)
show that the nominal significance level was generally well preserved
for scenario 1, and the empirical type-1 error rates generally preserved
the nominal significance level (Table 3.1). Figures 3.3-4 and Tables
3.2-3 show that the nominal significance levels were generally well
preserved for scenarios 2 and 3 as well. Therefore, | can conclude that
selection of cases and controls using CEs does not affect statistical
validity.

Empirical power levels were calculated at 0.005, 0.05, and 0.01
significance levels. | assumed that h2 = 0.005, h* = 0.2 or 0.4, and q =
0.1 or 0.2. Table 3.4 (scenario 1) shows that S3 was always the most
efficient strategy among S1-S5, followed by S2 and S4. Interestingly,
the statistical power estimates for S3 tended to be larger when the
prevalence was larger and heritability was smaller, which indicates that
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the proposed method would be useful for common diseases. S5 always
gave the highest rates of false-negative findings, as this strategy
minimizes differences in DAFs between cases and controls. Table 3.5
(scenario 2) and Table 3.6 (scenario 3) showed very similar patterns to
scenario 1. Therefore, | concluded that cases and controls ascertained
with S3 leads to substantial improvement in power.

S6, the simple heuristic rule, showed an empirical power almost similar
to that of S3 in scenario 1 (Table 3.4), ie., S3 and S6 show no
significant difference in performance when pedigrees are composed of
only nuclear families with the same structure. However, since the
proposed method considers not only the affected relatives, but also the
unaffected relatives, S3 will be superior to S6 if many nuclear families
of different structures are available. Moreover, S3 showed a better
performance than S6 when pedigree structures were complex, as shown
in Table 3.5 and Table 3.6, because S3 utilizes the disease status of all
relatives, and not just first-degree ones. Therefore, as the degree of the
known relatives increases, the proposed method gains strength because

it uses all information, rather than being a simple heuristic rule.
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Figure 3.2 Quantile-quantile (QQ) plots of simulated data for
scenario 1. | assume that h? = 0.2 and g = 0.1, and scenario 1 was
assumed for relatives’ family structure. QQ plots were generated from

2,000 replicates
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Table 3.1 Empirical type-I error estimates for scenario 1. Scenario

1 was considered for family structures of subjects’ relatives. The

empirical type-l errors were estimated with 2,000 replicates, and

heritabilities were set to be 0.2 and 0.4.

2 Significance a b c d e f
h levels S1 S2 S3 S4 S5 S6
0.005 0.0055 0.0065 0.0040 0.0070 0.0050  0.0050
01 0.01 0.0070 0.0135 0.0090 0.0100 0.0105 0.0085
0.05 0.0515 00605 00510 00525 0.0555 0.0430
07 0.005 0.0020 0.0050 0.0040 0.0070 0.0070  0.0050
0.2 0.01 0.0050 0.009 00100 00110 00115 0.0100
0.05 0.0395 00430 00550 0.0540 0.0520 0.0505
0.005 0.0045 0.0045 0.0050 0.0040 0.0060  0.0030
01 0.01 0.0090 00120 00115 00085 0.0145 0.0115
0.05 0.0440 00475 0.0450 0.0445 0.0495 0.0600
o 0.005 0.0050 0.0050 0.0045 0.0035 0.0070 0.0045
0.2 0.01 0.0110 00095 00085 0.0085 0.0105 0.0095
0.05 0.0555 0.0490 0.0460 0.0470 0.0510 0.0450

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly

selected

‘s3 affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls)

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected

as controls

°s5: affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls)

f86 . affected(unaffected) subjects with the largest(smallest) number of affected first-degree

relatives were selected as cases(controls)
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Figure 3.3 Quantile-quantile (QQ) plots of simulated data for
scenario 2. | assume that h? = 0.2 and g = 0.1, and scenario 2 was
assumed for relatives’ family structure. QQ plots were generated from

2,000 replicates
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Figure 3.4 Quantile-quantile (QQ) plots of simulated data for

scenario 3. | assume that h? = 0.2 and g = 0.1, and scenario 3 was

assumed for relatives’ family structure. QQ plots were generated from

2,000 replicates
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Table 3.2 Empirical type-I error estimates for scenario 2. Scenario

2 was considered for family structures of subjects’ relatives. The

empirical type-l errors were estimated with 2,000 replicates, and

heritabilities were set to be 0.2 and 0.4.

2 Significance a b c d e f
h levels S1 S2 S3 S4 S5 S6
0.005 0.0035 0.0035 0.0040 0.040 0.0040 0.0045
01 0.01 0.0075 0.0095 0.0090 0.0095 0.0105 0.0095
0.05 0.0500 0.0560 0.500 0.0500 0.0500 0.0420
07 0.005 0.0070 0.0030 0.0050 0.0065 0.0065 0.0045
0.2 0.01 0.0145 00095 00080 0.009 0.0090 0.0110
0.05 0.0545 00415 00455 0.0460 0.0535 0.0540
0.005 0.0055 0.0090 0.0075 0.0045 0.0035 0.0055
01 0.01 0.0100 00155 00120 0.0090 0.0095 0.0100
0.05 0.0455 00555 0.0520 0.0420 0.0440 0.0375
o 0.005 0.0070 0.0050 0.0030 0.0035 0.0055 0.0065
0.2 0.01 00130 00100 00075 00065 00110 0.0110
0.05 0.0530 0.0570 0.0535 0.0500 0.0475 0.0550

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly

selected

‘s3 affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls)

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected

as controls

°s5: affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls)

f86 . affected(unaffected) subjects with the largest(smallest) number of affected first-degree

relatives were selected as cases(controls)
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Table 3.3 Empirical type-I error estimates for scenario 3. Scenario

3 was considered for family structures of subjects’ relatives. The

empirical type-l errors were estimated with 2,000 replicates, and

heritabilities were set to be 0.2 and 0.4.

2 Significance a b c d e f
h levels S1 S2 S3 S4 S5 S6
0.005 0.0050 0.0045 0.0030 0.0025 0.0035 0.0045
01 0.01 0.0070 0.0090 0.0080 0.0085 0.0085 0.0095
0.05 0.0470 0.0450 0.0580 0.0525 0.0515 0.0520
07 0.005 0.0040 0.0055 0.0060 0.0070 0.0065 0.0060
0.2 0.01 0.0075 0009 00105 00120 00135 0.0130
0.05 0.0420 00440 00570 0.0570 0.0495 0.0650
0.005 0.0060 0.0075 0.0055 0.0025 0.0050 0.0055
01 0.01 0.0095 00135 00105 0.009 00115 0.0130
0.05 0.0450 0.0560 0.0480 0.0500 0.0515 0.0540
o 0.005 0.0055 0.0040 0.0060 0.0040 0.0045 0.0045
0.2 0.01 0.0085 00075 00120 0.0080 0.085 0.0100
0.05 0.0475 0.0450 0.0460 0.0480 0.0455 0.0490

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly

selected

‘s3 affected(unaffected) subjects withthe highest(lowest) CEs were selected as cases(controls)

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected

as controls

°s5: affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls)

f86 . affected(unaffected) subjects with the largest(smallest) number of affected first-degree

relatives were selected as cases(controls)
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Table 3.4 Empirical power estimates for scenario 1. The empirical

power levels were estimated with 2,000 replicates at different levels of

significance. | assumed that h,?=0.005, h? = 0.2 and 0.4, and q = 0.1

and 0.2.
2 Significance a b c d e f
h levels S1 S2 S3 S4 S5 S6
0.005 0.2675 04820 0.6635 04255 0.0030 0.6645
01 0.01 03505 05795 0.7450 05245 0.0085 0.7450
0.05 05880 0.8070 0.8980 0.7545 0.0520 0.8980
07 0.005 02210 05520 0.8220 04825 0.009 0.8265
0.2 0.01 02840 06515 0.8815 05745 0.0195 0.8810
0.05 05260 0.8480 0.9645 0.7790 0.0930 0.9670
0.005 0.2700 0.4445 0.6090 04325 0.0085 0.6090
01 0.01 03525 05285 0.6925 05130 0.0155 0.6915
0.05 05950 0.7640 0.8670 0.7530 0.0675 0.8660
o 0.005 01825 04730 0.7010 04210 0.0055 0.6935
0.2 0.01 02425 05625 0.7825 05005 00135 0.7780
0.05 04725 07855 0.9215 0.7210 0.0530 0.9225

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly

selected

‘s3 affected(unaffected) subjects withthe highest(lowest) CEs were selected as cases(controls)

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected

as controls

°s5: affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls)

f86 . affected(unaffected) subjects with the largest(smallest) number of affected first-degree

relatives were selected as cases(controls)
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Table 3.5 Empirical power estimates for scenario 2. The empirical

power levels were estimated with 2,000 replicates at different levels of

significance. | assumed that h,?=0.005, h? = 0.2 and 0.4, and q = 0.1

and 0.2.
2 Significance a b c d e f
h levels S1 S2 S3 S4 S5 S6
0.005 02715 04960 0.7275 05165 0.0070 0.6730
01 0.01 0.3555 05855 0.7970 0.6160 0.0110 0.7565
0.05 06115 08010 0.9320 0.8240 0.0415 0.9030
07 0.005 01930 05940 0.9000 05485 0.0165 0.8115
0.2 0.01 02750 06840 0.9310 06530 0.0270 0.8685
0.05 05030 08595 0.9775 08415 0.0960 0.9565
0.005 0.2630 04355 0.6425 04625 0.0060 0.5850
01 0.01 03540 05285 0.7320 05585 0.0120 0.6795
0.05 05955 07495 0.8930 07875 0.0555 0.8720
o 0.005 01910 05080 0.7940 04870 0.0050 0.7185
0.2 0.01 02695 05975 0.8520 05800 0.0080 0.7855
0.05 04985 0.8030 0.9525 0.7885 0.0480 0.9185

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly

selected

‘s3 affected(unaffected) subjects withthe highest(lowest) CEs were selected as cases(controls)

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected

as controls

°s5: affected(unaffected) subjects withthe lowest(highest) CEs were selected as cases(controls)

f86 . affected(unaffected) subjects with the largest(smallest) number of affected first-degree

relatives were selected as cases(controls)
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Table 3.6 Empirical power estimates for scenario 3. The empirical
power levels were estimated with 2,000 replicates at different levels of

significance. | assumed that h,?=0.005, h? = 0.2 and 0.4, and q = 0.1

and 0.2.
2 Significance a b c d e f
h q levels S1 S2 S3 S4 S5 S6
0.005 02700 04970 0.7475 05180 0.0045 0.6645
01 0.01 03490 05825 0.8065 06075 0.0095 0.7495
0.05 05980 07950 0.9245 08120 0.0405 0.9065
07 0.005 02135 05635 0.8860 05770 0.0185 0.8030
0.2 0.01 02850 0.6505 0.9215 0.6595 0.0340 0.8605
0.05 05380 08385 0.9825 08565 0.1130 0.9600
0.005 0.2615 04455 0.6375 04470 0.0090 0.5935
01 0.01 0.3485 05330 0.7205 05390 0.0185 0.6810
0.05 05855 07570 0.8795 07710 0.0655 0.8450
o 0.005 02130 04695 0.7860 05025 0.0090 0.7125
0.2 0.01 02890 05775 0.8475 06005 00175 0.7905
0.05 05020 07890 0.9515 0.7990 0.0570  0.9225

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly
selected

‘s3 affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls)

d . .
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected
as controls

°s5: affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls)

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first-degree
relatives were selected as cases(controls)
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3.3.3 Robustness of CE to choices of prevalence and
heritability

The proposed selection strategy requires heritability and
prevalence estimates, and the efficiency of the selection strategy can
depend on the accuracy of these estimates. Therefore, | evaluated the
sensitivity of the proposed method to misspecification of h? and q
values using simulated data. | considered the family structures in
scenario 3, and the DAF in the population was assumed to be 0.2.
Phenotypes for 10,000 subjects were generated with h,> = 0.005, h?=
0.3, and g = 0.3. To evaluate the effect of misspecified values for (h?, q),
these values were set to (0.1, 0.1), (0.2, 0.2), (0.4, 0.4), and (0.5, 0.5)
for calculating CEs. Table 3.7 shows the relative ratio of power
estimates for misspecified h? and g compared to the results when h? and
q are correctly specified, with a value of 100 indicating that the power
estimates are not affected. Results showed that the effect of
misspecification of h? and q seems to be almost negligible, at least for
the considered simulation models.

Furthermore, ascertained cases and controls remain unchanged
as long as the ranks of calculated CEs among cases (and controls) stay
the same. | calculated the correlations between orders of true CEs and

those with misspecified h? and g. Figure 3.5 gives the contour plot of
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these correlations. It shows that correlations were always greater than
0.998, even when there were substantial differences between the true
and misspecified h? and q. Therefore, I can conclude that the rank of

CEs remains largely the same, regardless of the values of h? and q used.
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Table 3.7 Empirical relative power estimates for misspecified
heritabilities and prevalences for scenario 3. The empirical power
levels were estimated with 2,000 replicates at different levels of
significance and the ratios of the power estimates from misspecified (h?,
q) to those from the correctly defined (h? q) were calculated as
percentage. | assumed that h,°=0.005 and (h% q) = (0.3, 0.3) for
generating phenotypes. Four misspecified pairs of (h? q) were

considered.
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2 Significance

h' g s1* 2’ s3° s4° S5
levels
0.005 102.899  100.705  99.888  100.657  88.235
01 01 0.01 103586  99.774  99.946  99.841 92857
0.05 100.106 98425  100.154  100.540  100.000
0.005 104348 98325 100503 101221  97.059
02 02 0.01 102110 98417 100270 101351  98.214
0.05 98301  98.308  99.897 101439  97.222
0.005 106.087  97.884 100447 101.972  91.176
04 01 0.01 106.118 97513 100486 101510  91.071
0.05 96.603  99.650 100410  98.741  103.333
0.005 95072  101.146 100.280 102723  88.235
05 02 0.01 99.367  99.925  100.054 103.021  94.643
0.05 102.866 ~ 99.242  100.513 100540  104.444

°S1 : cases and controls were randomly selected from affected and unaffected subjects,

respectively

b
S2 : affected subjects with the highest CEs were selected as cases, and controls were

randomly selected

‘s3 affected(unaffected) subjects with the highest(lowest) CEs were selected as

cases(controls)

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were

selected as controls

°s5 affected(unaffected) subjects with the lowest(highest) CEs were selected as
cases(controls)
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Figure 3.5 Contour plot for the correlation between orders of
conditional expectations (CEs) calculated from true and
misspecified (h?,q). Orders of CEs were obtained for the various
choices of heritability and prevalence, and their correlations with true
orders were calculated. Data were generated from (h?,q) = (0.3,0.3)

and ‘X’ is a point where correlation is exactly 1.
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3.4 Application to genome-wide association of
type-2 diabetes

3.4.1 The KARE cohort

The KARE cohort was collected to construct an indicator of
disease with genetic influences in an attempt to predict the occurrence
of various diseases. There are 8,842 participants consisting of 4,183
males and 4,659 females, and they were recruited from two Korean
community cohorts, Ansung and Ansan, both in the Gyeonggi Province
of South Korea. Participants are 40 to 69 years old. In total, 1,179
subjects were diagnosed as having T2D by a standard guideline
(glucose at baseline > 126 mg/dL, glucose 120 minutes after the insulin
challenge > 200 mg/dL, or HbAlc > 6.5%). The disease status of their
relatives was collected by a survey from all participants, and 1,037
subjects (125 cases and 912 controls) answered that they have affected
relatives. In total, there were 1,230 affected relatives available.

The 8,842 subjects were genotyped for 352,228 SNPs with the
Affymetrix Genome-Wide Human SNP Array 6.0. In our genome-wide
association studies, | discarded SNPs for which the HWE p-values were
less than 107, the genotype call rates were less than 95%, and the minor

allele frequencies (MAF) were less than 0.05. | also eliminated subjects
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with gender inconsistencies, whose identity by state (IBS) was more
than 0.8, or whose call rates were less than 95%. As a result, 310,515

SNPs for 8,842 subjects were utilized for GWAS.
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3.4.2 The SNUH data

T2D patients were diagnosed by World Health Organization
criteria from Seoul National University Hospital (SNUH), and 681
subjects with positive family history of diabetes in first-degree relatives
were preferentially included. The disease status of their relatives was
obtained based on the recall of the proband. However, family members
were encouraged to perform a 75 g oral glucose tolerance test, and
subjects positive for a glutamic acid decarboxylase autoantibody test
were excluded. In total, the disease statuses of 7,825 relatives were
available, among which 2,875 subjects had T2D.

T2D patients were genotyped with the Affymetrix Genome-
Wide Human SNP Array 5.0, and 480,589 SNP genotypes were
obtained. The same quality control conditions were applied as for the
KARE samples, and 189,610 SNPs and two subjects were excluded. In
total, 679 subjects with 290,979 SNP genotypes were used for the

association analyses.
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3.4.3 Associationanalyses using the pooled data

We used the proposed method to select cases and controls from
KARE and SNUH samples for genetic association analyses of T2D.
There were a total of 9,523 subjects (8,842 subjects from KARE and
681 subjects from SNUH). I excluded variants for which HWE p-
values were less than 107, missing rates were greater than 5%, or
MAFs were less than 0.05 and subjects whose call rates were less than
95% or IBS was more than 0.8. The remaining 9,521 subjects with
272,795 SNP genotypes were used for the analyses, and phenotypes of
7,804 relatives were available.

In the Korean population, about 9.9% of adults over 30 years of
age were expected to have T2D in 2009 [97], and the heritability of
T2D has been reported to be approximately 26% [98]. Therefore, | set
the prevalence and heritability values at 0.099 and 0.26, respectively,
and calculated CEs for the 9,521 subjects using the T2D status of their
relatives. Based on these CEs, | selected 1,000 cases and 4,000 controls
with S1 and S3. To adjust for population substructure, 1 calculated a
genetic relationship matrix and applied the EIGENSTRAT approach
[99]. | obtained the top ten principal component (PC) scores with the
largest eigenvalues, and they were included as covariates. | also
included sex, age, and squared age as covariates.
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3.4.4 Results

We performed genome-wide association study for T2D using
the pooled data to compare the performance between selection
strategies which | considered in simulation study. The QQ-plots in
Figure 3.6 show that GWAS using all subjects and using only the cases
and controls ascertained with S1 and S3 preserve the nominal
significance levels. Several studies showed that estimates from
association analyses with cases and controls selected with family
histories of diseases can be inflated [77, 78, 80, 100], and | conducted
the other GWAS with permuted phenotypes. Figure 3.7 shows QQ-
plots from GWAS with permuted phenotypes and | can conclude that
statistical testing is robust against such problems. Figure 3.8 shows
Manhattan plots for the analyses, with the genome-wide significance
level adjusted by Bonferroni correction (P-value=1.872x107") indicated
by dashed horizontal lines. The Manhattan plots reveal that the most
significant results were obtained from GWAS using all subjects,
followed by GWAS using cases and controls ascertained with S3. Table
3.8 shows results for SNPs that were significant in at least one of the
GWAS analyses, and it has been reported in some researches that
rs10946398, rs7754840, rs9465871, rs7747752, rs9348440, and
rs10811661 are associated with T2D. Results showed that GWAS using
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cases and controls ascertained with S3 produced more significant SNPs
than GWAS using cases and controls ascertained with S1. With the
exception of rs10811661, p-values of all SNPs from the S3 GWAS
were smaller than those from the S1 GWAS, and the genome-wide
significance of SNPs from the S3 GWAS was much larger (Figure 3.9).
Therefore, | can conclude that cases and controls ascertained with S3

leads to substantial improvement of power for GWAS.
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Figure 3.6 Quantile-quantile (QQ) plots for the results from

genome-wide association study (GWAS) of type 2 diabetes.
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Figure 3.7 Quantile-quantile (QQ) plots

permuted phenotypes.
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Figure 3.8 Manhattan plots for the results from GWAS of type 2

diabetes.
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Table 3.8 Results from GWAS. The significance level adjusted by

Bonferroni correction is 1.872x107" and significant SNPs are indicated

in bold type.
GWAS
SNP CHR  POS Gene :32}2;"5' u?i/r\]/gA 581 u(;;\i/r\]/;\ 53
rs10946398 6 20661034 CDKAL1 8.25x10? 2.03x10° 3.35x107"°
rs 7754840 6 20661250 CDKAL1 7.03x10"  1.82x10% 1.88x107"?
rs9460546 6 20663632 CDKAL1 5.10x10"® 6.53x10® 3.91x10™2
rs9465871 6 20717255 CDKAL1 8.91x107®  240x107  1.61x10™
rST747752 6 20725423 CDKAL1 1.31x10™  1.69x107 5.39x1072
rs7767391 6 20725240 CDKAL1 1.84x10  1.78x107  7.21x107
rs9348440 6 20641336 CDKAL1 1.20x10** 590107  3.35x107*
rs2328549 6 20718240 CDKAL1 353x10*  248x10° 5.02x10™!
rs2328529 6 20631953 CDKAL1 552x10°  335x10°  4.34x107
rs10811661 9 22134094 CDKN2B-AS1 2.84x10° 151x10®  1.04x10°
rs7741604 6 20731524 CDKAL1 474x10°  1.16x10°  2.23x10°
rs1526959 12 79753790 SYT1 1.16x10®  300x10°  2.89x10°
rs4291090 6 20570039 CDKAL1 1.81x10®%  320x10*  6.40x107
rs2820001 6 20758943 CDKAL1 3.23x10%  9.19x10°  2.05x10°
rs10946406 6 20758760 CDKAL1 4.01x10®  161x10%  502x107
152294809 6 20599888 CDKAL1 452x10%  4.90x10*  241x10°
rs9366357 6 20599628 CDKAL1 6.09x10®°  434x10*  4.22x10°
rs12679402 8 41958980 AP3M2 845x10°  253x10°  1.26x10°
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Figure 3.9 Scatter plot for P-values of GWAS of type 2 diabetes
using S1 and S3. Red dots indicate significance SNPs when all

subjects are used for GWAS.
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3.5 Discussion

Many studies have reported that family history of a disease is
related to statistical power [77, 78, 80, 100]. However, the effect of
family history on genetic association analyses has not been carefully
investigated, and its use for these analyses has been limited. For
instance, subjects may be selected for genetic association analyses only
if they have a certain number of affected relatives [101]. The effect of
family history on genetic association analyses depends on the familial
distance between relatives and the number of affected and unaffected
relatives. In this report, | proposed a new statistical method for
selecting the most informative cases and controls based on the family
history of disease. The proposed method simultaneously takes into
account both familial distance and number of relatives, and | show that
selecting cases and controls using this method leads to a substantial
improvement in statistical power. Our simulation results show that the
improvement in statistical power tends to be larger for common and
less heritable diseases. The proposed method was implemented using
the R code, and it can accept various input file formats such as vcf,
PLINK, and gen files. It can be downloaded free of cost from

http://healthstat.snu.ac.kr/software/seISAMPLE.
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Multiple studies have shown that subjects with extreme
phenotypes lead to substantial improvement in statistical power [102-
106], and our proposed method can be considered as a statistical
method to select such subjects with extreme phenotypes for
dichotomous phenotypes. Association studies with extreme phenotypes
were often utilized for continuous phenotypes [89-93], but it is not
straightforward to define extreme phenotypes for dichotomous
phenotypes. However, subjects with many affected relatives are
expected to have higher liability scores, and thus, the presence of a
higher number of affected relatives can be used to define extreme
phenotypes. Alternatively, if there are continuous phenotypes
correlated with the dichotomous phenotypes of interest, they can be
utilized to define the extreme phenotypes. Extreme phenotypes can be
defined in relation to those continuous phenotypes, and they can be
utilized to select subjects. For instance, fasting glucose levels can be
used to define extreme phenotypes for type-2 diabetes. Moreover, the
use of subjects with extreme phenotypes in GWAS is not the case for
selection bias because the choice of subjects is based on phenotype, not
on genotype. These approaches can be used with existing software such

as MTG2 [107].
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However, despite its flexibility, the proposed method has some
limitations. First, our method involves the assumption that the liability
scores follow a multivariate normal distribution; however, the
estimated CEs may be biased if multivariate normality is violated [108].
The generalized linear model can be understood as a latent variable
model if its link function is an inverse function of some cumulative
distribution [85]. For instance, link functions for logistic and probit
regressions are inverse functions of the cumulative logistic and
standard normal distribution functions, respectively. Therefore, our
liability threshold model can be considered as an extended probit model
[85], and the distribution of unknown liability scores can be chosen by
comparing several candidate link functions based on the Akaike
information criteria [109]. Second, there may be a recall bias for the
family history of disease, and this bias could be substantial if accuracy
Is heterogeneous between cases and controls. Third, the proposed
method requires that heritability and prevalence of the disease are
known a priori. However, even if these values were unknown or
incorrect, cases and controls selected with the proposed method would
remain the same as long as the order of CEs among the affected and
unaffected subjects was preserved. Alternatively, other approaches such

as a generalized linear mixed model (GLMM) can be utilized to
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estimate the heritability and prevalence. For instance, GLMM can be
applied with the family histories of diseases considered as responses.
However, this method requires numerical integration, and its
maximization becomes very complicated [110]. Alternatively, | can
consider the use of generalized estimating equations [111]. However,
family histories of diseases have a highly unbalanced structure, which
often leads to slow or non-convergence of maximum likelihood
estimations or to inflated statistical inferences [112]. Therefore, further
investigation is necessary. Fourth, estimates from a logistic regression
would be unbiased if cases and controls were randomly selected from
affected and unaffected subjects, respectively; howewver, if cases and
controls are selected based on the family histories of the disease, it
could lead to bias [113]. Fortunately, homogeneity tests between cases
and controls are statistically valid as long as the estimates of odds ratio
are carefully interpreted [113].

Since the introduction of high throughput sequencing
technology, substantial reductions in the cost for large-scale genetic
association analyses have occurred, and many analyses have been
launched to identify loci that show susceptibility. However, large-scale
genetic analyses suffer from serious multiple-testing problems, and

sequencing remains more expensive than phenotyping. Therefore,
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various statistical methods have been investigated to improve the power
of testing. Our results reveal that additional statistical power can be
achieved in association analyses with careful selection of cases and
controls, and that the family history of disease is very useful for this
purpose. Furthermore, the family history of disease is often obtained at
relatively low costs, and therefore, the proposed method may be a
useful strategy for improving the success of genome-wide association

analyses.
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3.6 Appendix

3.6.1 Calculation of the conditional expectation (CE)

Conditional expectation (CE) is derived with the moment-
based approach with minor modifications [86]. If | let Ia(-) be an
indicator function and define that

(c0) ifY]=

A_{(C,OO) ifY, =1
L (—o0,0) ifY;=0

[ A—
(~0,0) ify=0 "4 _{

t
and I, (L) = (IA{1 (LD, Ly (L) L, (Ll.)> , the CE for subject i

is defined by

E(LillAi(Li) = 1ni+1)'
We use the moment-generating function (mgf) of the truncated
multivariate normal distribution to calculate the conditional distribution.
By definition, | can define the joint probability density function (pdf) of
L; by

1

1
f(Ll) = |277,'Zl-|_2 exp <_§LEZL_1LL)
where ¥; = h®W; + (1 —h?)L, . The conditional pdf of L; given

Ih, (L) =1, ., becomes

1
fu (L) = (LI, (L) =1, ,,) = o [ forli€ A,

0 ,otherwise
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where a; = P(I, (L) = 1,,,,). 1 can then find the mgf by

t
m(t) = E (eI, (L) =1,,,,)

1 1
- —_(1ty—-11 _ o4t

where t; = (t{l,...,t{ni,ti)t. | let § = Z;t;, and then the exponential

term of mgf can be simplified to

exp (%tfziti) exp {_%(Li - &) I (L - Ei)}:

and mgf becomes

exp(tix;t,/2) 1.,
m(ti) = W eXp{—ELEZi Li}dLi.
We let gij indicate the (j,k)th element of X and F;,(x) indicate a

marginal pdf for the kth element of L of the conditional pdf, f;, (L),

i.e.,
F (x) = f G L)Ly = DALk = 1,0, m +1,
(AD _g

where subscript —k means that the kth element is removed from the
corresponding vector. F;, (x)will be derived in the next section. If I
further denote

Fij

_ {Fik(c) — Fy (o) ifyl,=1fork=1,..,n;ory,=1fork=n;+1
~ |F,, (=) —F; (c) ,otherwise
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then the CE for subject i can be calculated by

ni+1

. om(t;) 3 .
Hi = ot = i (ny+ Dk Fik-

bolt=0n41 k=1
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3.6.2 Derivationof F;(x)

The (nj+1)-dimensional liability vector, L;, can be partitioned
into (Lj);jand Ljj" forj = 1,...,nj or Li" and L; for j = n;+1. For notational
convenience, | only considered j = nj+1, which can be readily extended
to the other subjects. The partitioned liability vector has the following

distribution:

b = (E) ~ MV ((05 ) ((zziii:)f z1l>)

If I denote the lower and upper truncated points of L; as a; and b;

respectively, the truncated points for L; are defined as

a; = (2{) and b; = Cf)
When a; < L < by, the truncated normal distribution function is
fUL L =x)=a'f(L],L; =x)I(a; < L; < b;)
=a  f(L; =0 f (7] = 0I(a; < L; < by).
By the property of multivariate normal distribution, the marginal pdf of

LiatLi =xis given by

Because a conditional distribution of a normal distribution is also
normally distributed, | know that LY|L; = x is normally distributed
with
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E(LY|L; = x) = Z'x and var(L}|L; = x) = X] — Z[1(Z[).
Therefore, the multivariate marginal pdf of L; becomes

b]
Finrn () = @ f (L= %) | f(LIIL, = x)dL.

q;

Here, f:%i f(LY|L; = x)dL? can be computed using statistical software,

such as the function pmvnorm() in the R package mvtnorm [114].
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Chapter 4

Heritability Estimation of Dichotomous
Phenotypes Using a Liability Threshold
Model on Ascertained Family-based

Samples

4.1 Introduction

Phenotypes are affected both by environmental factors and
genes, and family members are expected to possess similar phenotypes
due to their genetic similarity. Heritability was defined to quantify
phenotypic similarity attributable to heritable components, and this
concept has been widely used to understand the genetic architecture of

phenotypes [115]. For example, heritability can be used to compare the

111



importance of genetic components among different phenotypes.
Additionally, if large-scale genetic data are available, genetic
correlation matrices can be estimated [116]. These data can then be
incorporated into a linear mixed model to provide SNP heritability
estimation. SNP heritability provides information regarding the relative
proportion of variance attributable to the genotyped SNPs, and this
technique can be used to identify the degree of missing heritability.
Estimation of broad-sense heritability requires the study of
bilinear relatives such as sibling or monozygotic twins, and in practice,
narrow-sense heritability has often been utilized. Narrow-sense
heritability is defined as the proportion of the total phenotypic variation
explained by additive genetic effects [115]. Various methods have been
developed for estimating the heritability of continuous traits. For
example, restricted maximum likelihood methods based on the linear
mixed model (LMM) [22, 117, 118] or polygenic score methods [119]
can be used for estimating the heritability of continuous traits. For
dichotomous traits, generalized linear mixed models or Liability
Threshold Models have been often utilized [21, 120]. The Liability
Threshold Model assumes there are unobserved continuous liability
scores, and subjects are affected if they exceed a certain threshold [16,

22,121, 122].
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In this study, | focus on heritability estimation of dichotomous
phenotypes. There are multiple factors which can bias variance
estimation of dichotomous traits. In particular, family-based samples
are typically analyzed using probands. The term proband refers to
instances when family members are brought into a study as a result of
other family members already enrolled in the study. Multiple reports
indicate that proband analysis can produce substantial bias in variance
estimates [22, 123, 124]. For example, if phenotypes are rare and
families are randomly selected, the number of affected individuals is
often very small. Therefore families are ascertained through the use of
affected probands. In such instances, the majority of the relatives may
be unaffected unless the size of the family is very large, and negative
correlation can be observed because probands are affected while their
relatives are unaffected. Several approaches have been proposed to
adjust for such bias. GCTA adjusts estimated heritabilities by assuming
that the level of ascertainment bias is same among individuals [22];
however, families are ascertained with probands and the effect of
ascertainment bias is heterogeneous according to familial relationship
[124]. For example, ascertainment bias for grandparents of the proband

is expected to be approximately half that of the parents.
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Here, | developed a new method to estimate heritability based
on the Liability Threshold Model for binary traits (LTMH) which can
be applied to the extended pedigree structure. Using the Expectation-
Maximization (EM) algorithm, the proposed method jointly estimates
maximum likelihood estimators (MLE) for heritability and coefficients
of covariates [14]. Furthermore, the proposed method maximizes the
conditional likelihood of disease statuses of probands via a conditional
EM (CEM) algorithm [125], and ascertainment bias can be adjusted. |
also developed a conditional expected score test (CEST) to determine if
heritability is equal to zero. Extensive simulation studies demonstrated
that heritability estimates obtained from the proposed methods are
generally unbiased even for the ascertained family-based samples.
Estimates from GCTA are unbiased for randomly selected families, but
the bias turns out to be substantial for ascertained families. Also | found
that the CEST for heritability was statistically conservative, but it could
achieve reasonable statistical power estimates. Finally, | used the
proposed method to estimate the heritability of type-2 diabetes (T2D)
using ascertained family-based samples from Korean families, and

those estimates confirmed the practical value of our proposed methods.
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4.2 Materials and Methods

4.2 1 Notations and Disease Model

We assume that there are n independent families and family i
has n; family members (i=1,..,n). | consider the Liability
Threshold Model, and assume dichotomous phenotypes are determined
by the unobserved continuous liability score. The liability score of

subject j in family i is denoted by L,;, and they are determined by

ij
summing the environmental/genetic effects, polygenic effects, and
random error. The covariates including environmental/genetic effects

for subject j in family i are denoted by X,;, and | assumed that

ijo
covariates are standardized. In this article, 1 assumed there are p
covariates. The random effects, including polygenic effect and random

error for subject j in family i, are denoted by U;;. The vector forms of

those components for family i are denoted by:

Lil Xil Uil
L= ¢ |L.X;={ ¢ and U, =|[ :

L X U

in; in; in;
Liability scores of family members are usually correlated, and |
assumed that those are normally distributed as follows:
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where U;~MVN(0,%;). | denote &; to be the kinship coefficient
matrix multiplied by two, and I, is the w x w dimensional identity
matrix. Under the polygenic model using additivity of genetic effects
across loci and linkage equilibrium among loci, I can get:
L= 07+ 07 Vg + 05 Vi + 04 Ve + 070,
where o2, o7 and o2 are the variances of additive, dominant, and
environmental effects in the population, and ¢ and o,, are the
dominant genetic variance and the covariance of additive and dominant
effects in the homozygous population, respectively [126-128]. V,;, Vy;
and V_,; are the functions of the condensed coefficients of identity
[128]. For simplicity, | assume that all variance components other than
o and o2 are zero, and the sum of g2 and 62 is equal to one. If I
denote heritability as h%* =02/(c2+ 0?), then the variance-
covariance matrix of X, is expressed by
I, = B2, + (1 - h?)I,.

The dichotomous phenotypes for subject j in family i are

denoted by Y;; and these values are coded as 1 for cases and O for

controls. Phenotype vector for family iis denoted by:

Y
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In a Liability Threshold Model, Y;; isdetermined by L;; and if L;; is

ij
larger than a certain threshold value ¢, Y;; becomes 1, and otherwise it
becomes 0. ¢ can be determined from the prevalence of the diseases as
c should be the inverse of the cumulative distribution function of the

prevalence. For each observed Y;

ij» | can infer the range of the

corresponding L;;, (ay;,b;;). For example, if Y;; =0, then L is

ij
bounded by (—o, ¢), and otherwise, L;; is bounded by (c,). The

lower and upper bounds of the liability for the family i are denoted by:

Qi1 b
aini bini

Based on above notations, all subjects can be expressed in the

following vector forms:

Ll Xl Ul Yl
()= ()= ()=
Ln n Un Yn
a, b,
a=(5> and bz(i).
a, b,

Under those notations, | assumed that L follows multivariate normal
distribution with mean XB and variance-covariance matrix ¥ which

exist in a block diagonal matrix consisting of X,,...,Z, .
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4.2.2 Heritability Estimation using the EM Algorithm

The EM (Expectation-Maximization) algorithm [14] was used
to estimate h® based on the complete data consisting of observed
phenotypes, Y, and unobserved liabilities, L. The joint probability
density function (pdf) of the complete data can be decomposed into the
marginal pdf of L and the conditional pdf of Y given that L has the
support of (a, b). This can be formulated as:

FOLL) = F(YIL)f(L) = f(L)I(a<L<Db).

If | define the parameters of interest as @ = (B%,h?)¢, then the log-
likelihood of the complete data will be the sum of the log-likelihoods

for each family as follows:
C 1
n:
1(6; Y,L) = 2[—?10{;271 —Eloglzil
i=1

1
- E(Li - X;B) (L - XiB)]-
In the E-step of the EM algorithm, the conditional expectation
of L given Y was taken to the [(0; Y, L), where the estimates for the

parameters of the previous iteration were used. If | assume that the kth

iteration has been performed and denote the estimates for the
parameters at the kth iteration as 8%, then the conditional expectation

Q(8|6%™)) will be
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0(0]0%M) = Eyy g [18; Y, 1) = > By 1y o [1,0; Y, 1)]
i=1

= ZQi (8]6™)
i=1

and
W) 1
Q;(6|6") = —?log27t - E1og|>: |
1
- E[tr(zi-lAE.")) — 2B'XE B + BXIEX B
where A(ik) = Ey v, (L;L;) and Bi(k) = Epy,000 (L) - Agk) and

Bi(k) are equal to the first moment and the second moment of the
multivariate truncated normal, respectively. R package tmvtnorm was
utilized for calculation [86].

In the M-step of the EM algorithm, | maximize Q(0|0%)
with respect to 8. Since Q(8]0)) s the concave function, I can find
the maximizer by solving for 9Q(0]|6%)/00=0. The partial

derivative with respect to B is

9Q(6]6™) N ) N
T E Xtx-1g® _ E X{E-1X. 1
aB L 14 14 i L L lB ( )

i=1

and, B (h?) which satisfies 9Q(8|6%))/ap = 0 becomes

B (h?) = (i Xz X, ) <Z th—lB(k)>
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To emphasize that the root is the function of h?, it was denoted by
B(") (h?). Unfortunately, there is no closed form of the root in which
0Q(8]6™)/an? =0, and generalized EM algorithms were applied.
0 was updated using a Newton-Raphson algorithm [129]. After |
obtained the maximizer of Q(8|@%)) during the maximization step, |
updated 0) to @+ and repeated the EM steps until convergence.
The detailed algorithm is provided in Appendix (A).

Note that f is the unbiased estimator of B and it can be easily

proven by
EYi(Bgm)) = Ey, (ELilYi,e(m)(Li)) =E, (L) =X;B

assuming | obtained B after m iterations [100].
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4.2.3 Lagrangian Multiplier and Karush-Kuhn-Tucker
Condition

Unlike B, the parameter space of h? is restricted to ©,2 =
{h?:0 < h? <1}, and the objective function should be maximized
under the restriction as follows:

max, Q (8]0 subject to 0 < h? < 1.
This objective function can be maximized using the method of
Lagrange multiplier [130] wunder Karush-Kuhn-Trucker (KKT)
conditions [131]. The constraint is equivalent to —h? <0 and
h? —1 <0, and by the Lagrangian multiplier, the object function
becomes
Q" (0,A/0%) = Q(8]6™) + A,h% — A,(h2 — 1)

where A = (1,,4,)". | can find the solution that maximizes Q (6|0
subject to 0 < h? <1 by finding @ and A satisfying the following
three conditions known as KKT conditions:

1) Stationarity : 9Q*(8,2|6) /a6 = 0,

2) Complementary slackness : A,h%* =0 and 1,(1 —h?) =0,

3) Dual feasibility : 4, >0 for i = 1,2.
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More specifically, for the Stationarity condition, 9Q*(8,1|0%))/aB is
identical to 3Q(0|0%))/aB, providing that g* = B (h?). Replacing
B with B (h?), | get

2Q"(8,2|6%)
00

[3=B(k)(h2*)'h2=h2*

_2d0(e6™)

=5 + 2, =2, =0,

B:B(k)(hz*),hzzhz*

and it is equivalent to

aQ(e|9(k))

0 =1, + 1,

B=B(k)(h2*),h2 —p2*

Note that to the left of this equation is a function of h?*, denoted by
g% (h?*). Applying Complementary slackness conditions to the above
equation, (4,,1,, h*) becomes (0,0,h?), (1,,0,0), or (0,1,,1). If I
assume h% =0 and 1, = 0, then g (0) = —1, and it will be non-
positive if the assumptions are met by the Dual feasibility condition.
Similarly, when h? = 1 and 1, = 0 are assumed, g (1) = 1, and it
will be non-negative if the assumptions are satisfied. If none of these
assumptions are met, A, and A, are automatically zero, and thus
optimization can be done without any restrictions on h2. This concept

is illustrated in Figure 4.1.
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Figure 4.1 lllustration of KKT condition using a toy example. The exemplary concave function Q(h?) was created to enable
determination of the optimal value that maximizes Q(h?) within the parameter space. The parameter h? can be between zero
and one, and the parameter space for this value is grayed out. (A) If the value that maximizes Q(h?) is negative, the tangent
slopes at both zero and one will be negative. A tangent slope that is negative at one violates the KKT conditions, however, a

negative tangent slop at zero satisfies the KKT conditions, so the maximizer within the parameter space is zero. (B) When the

value which maximizes Q(h?) is greater than 1, the optimal value is one since positive tangent slope at one meets the KKT
conditions. (C) When the maximizer is located in the parameter space, tangent slopes at both boundaries of the parameter space do

not satisfy the KKT conditions. Therefore, restrictions do not affect the result of optimization.
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424  Ascertainment  Bias-corrected Heritability
Estimation

Ascertainment of each family is conducted using probands, and
statistical inferences about heritability may be misleading unless
ascertainment is correctly adjusted. | assume the first family member in
each family is a proband, and the other n;, —1 family members are
non-probands. To distinguish probands and non-probands, | added
superscripts P and NP, respectively. Vectors for liabilities, covariates,

phenotypes, and bounds of liabilities for non-probands in family i are

denoted by:
NP NP NP NP
L3, X2 Y2 Q>
R R I DAl I el I I
L iTLi X ini Yini aini
NP
biz
NP __ :
bV = :
BI?

in;
Similarly, those variables pertaining to a proband in family i are
defined as L, XF, Y, af and b?, respectively. Liability vectors for
probands and non-probands across entire families are denoted by:

Lk LYP LP
LP=(: || L= : Jand L= :

Llr’l LIT\{P LNP

and vectors for other variables are also similarly defined.
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To adjust for the effects of ascertainment on heritability
estimates, | estimated parameters using the following conditional
likelihood:

f(Y;0)

fOYMY?;0) = S0 0

If I assume 1(0; Y) =logf(Y;0), the log of the conditional likelihood
is 1(8; Y)— 1(8; YP). The objective function of the EM algorithm is a
global lower bound for the log-likelihood [132], and if | assume the
lower bound F(0) for [(0®; Y) and the upper bound G(@) for
1(9; YP), then the global lower bound can be obtained by:
log f(YN?|Y?;0) > F(8)— G(8).
At 8 = 09 F(0) can be obtained by:
F(8) = Eyy o0 (1(8; Y,1)) + H (£(L]Y,0%4)),
where H(-) is the entropy. The upper bound G(0) for 1(0; Y?) canbe
defined as 1(@; Y?) + constant [125]. Therefore, the global lower
bound of the log-likelihood at @ = 0% becomes:
F(O)—G(e)= Eyjye® (l(e; Y, L)) — 1(8; YP) + constant.
We assume probands are independent of each other, and proband i was

randomly selected from the population with the probability u;. Then,

1(0; YP) is simply given by:
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n

B Y7 = ) UB¥) = ) [¥Fa; —log(1+ )]

i=1

Hi
1=y

where «a; = log . Here p; is formulated as a function of the

cumulative distribution function of the standard normal, ®(-), by:

i =EXYP)=Pr(Y =1)=Pr(Lf >¢c) = 1—o(c— XIPB).
The MLE values for @ are obtained by iteratively maximizing the
objective function until convergence, and the detailed algorithm for

maximization is provided in Appendix (B).
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4.2.5 Conditional Expected Score Tests
B and h? are required to parameterize the relationship between

covariates and Y at the unobserved liability scale, and | consider the

conditional expected score test (CEST) [14, 133, 134] because:

al(0; Y)_E al(e; Y,L)
00 LY 90 '

For simplicity, | assumed that the prevalence is correctly specified and
samples are randomly selected. The conditional expected score based
on the complete data for family i is:

[azi(e; Y,L)]
| o8 |
S = ELy
IR FTRCIABY
d h?
Xz "B, — X{Z;'X;P
=1 1 1 1
—5 (zi_l(q’i - Ini)) _Etr(CiAi) + B*XC,; (Bi - EXiB)
where A; = Eyy(L;LY), B; = Eyy(L) and C; = 07" /dh*. Note that
A; and B; are also a function of @. If I assume Sg; and S,2; denote
ELlY[ali((-); Y,L)/dB] and EL|Y[ali((-); Y,L)/0h?], respectively, then

the score statistics can be obtained by:

S = (Sg Shz)t where Sg = X7, S, and Sy = X7, Sz,
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The variance-covariance matrix of S is calculated using the
observed Fisher information matrix [135, 136]. The observed Fisher
information matrix is given by:

n n n
1(6) = Z(siSf) - %(Z Sl-) (Z Sf)
— ; .

and it is equivalent to:

i i
i(e):(. b .“’*):
thB lhz
< ?:1(531'5&) - SBSE/" ?=1(S[3ishzi) - SBShZ/n>
Z?=1(Sh2is|3i) — Sp? Sé/” ?=1(Sf32i) - Sifz /n
Therefore, if | assume p to be the dimension of B, and hZ and B are

MLEs, | can provide the following statistics [135, 136]:

St {ig — igmistimg}  Sp~x?(df =p) under Hy:=0.
To test if Hy: h? = 0, the likelihood is maximized at h* = 0 with 50%
probability and at the positive real number at 50% probability under H,.

Thus | consider:

R 1 1
She {ine = inepip i} Spz ~ 50 04+5 x3(df = 1)

under H,: h* = 0.
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4.2.6 Simulation studies

Simulation studies were conducted under two different
scenarios where families were either randomly selected (scenario 1) or
ascertained with probands (scenario 2).

For scenario 1, 500 families were randomly generated. For
scenario 2, 50,000 families for each replicate were initially generated.
Then, 500 probands were selected from affected individuals, and their
family members were determined. For both scenarios, | considered
nuclear families and the number of siblings at 1, 2, 3 and 4 with
proportions of 0.2, 0.3, 0.3 and 0.2, respectively. Liabilities were
determined through summation of major genetic effects, polygenic
effects, and random errors. Sums of polygenic effects and random
errors were generated using multivariate normal distribution with
heritability values of 0.05, 0.2 and 0.4. The main genetic effects were
obtained using the product of g and the number of disease alleles.
Disease allele frequency was assumed to be 0.2, and genotype
frequencies were obtained under HWE. Founder genotypes for each
family were generated from B (2, 0.2), and non-founder genotypes
were obtained by examining Mendelian transmission. 8 was obtained

by hZ and disease allele frequency (p) using the following equation:
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, __2B°p(1—p)
“© 2pp(1-p)+1

h2 was assumed to be 0.005 and S was 0.1253. Once liabilities were
generated, they were considered affective if they were larger than the
threshold c. Otherwise, they were considered non-affective. ¢ was
chosen to maintain the assumed prevalences (q). The R code for
generating the simulation data can be downloaded from
httpz//healthstat.snu.ac.kr/software/LTMH.

The performance of our experimental method was evaluated
using 2,000 replicates exhibiting various combinations of heritabilities
(h?) and prevalences (q). For evaluation of statistical testing of f3, the g
were set at 0.1 or 0.2, and h* was assumed to be 0.2 or 0.4. For
evaluation of statistical testing for h%, | assumed q = 0.05, 0.1 or 0.2
and h? =0, 0.2 and 0.4. All results were compared to GCTA results

for each scenario.
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4.2.7 Application for Family-based Samples of Type-2
Diabetes

The proposed method was applied to the cross-sectional study
of T2D patients conducted by Seoul National University Hospital in
Korea. T2D patients were diagnosed according to the World Health
Organization criteria for T2D [137]. The study preferentially included
T2D patients with a positive family history of T2D in first-degree
relatives, and 681 probands were recruited. Family histories of T2D
were obtained based on the memory of probands, but the study
excluded relatives who were positive for the 75-g oral glucose
tolerance test. Subjects of unknown age were also excluded, and 4,149
non-probands, including 1,115 T2D patients and 648 affected probands,
remained. For our analyses, the effect of age was adjusted through use
as a covariate, and standardized age was incorporated into final
analyses. The prevalence of T2D was set at 10.9% [138], and the
heritability of T2D was estimated using our experimental method

adjusted for ascertainment bias.
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4.2.8 Application for GWAS of S-LAM

We applied CEST for GWAS of case-control study of S-LAM
disease. S-LAM patients were collected from 2010 to 2014 from 14
countries and DNA samples for 479 S-LAM patients were genotyped
with the Infinium OmniExpress-24 v1.2 BeadChip. | excluded 34 non-
white S-LAM patients, and finally 445 S-LAM patients were used to
GWAS as cases with 716,503 SNPs. For controls of GWAS, | used
1,261 healthy female from the COPDGene Consortium. | filtered out
all SNPs whose P-value of HWE test is less than 1x10°, MAF is less
than 0.05 or genotype call rates were less than 95%. | also excluded all
subjects whose genotype call rates were less than 95% or identity-by-
states were larger than 80% with any other subject. To compare
statistical power of CEST to the conditional logistic regression (CLR), |
matched each cases with two controls using age of enroll and two PC
scores. Each pair of one case and two controls was regarded as if a
family having relatedness structure of genetic relationship matrix.
Finally, 426 S-LAM cases and 852 cases were included for GWAS
with 549,599 SNPs. Detailed QC procedure is described in Chapter

2.2.2 (Figure 2.1).
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S-LAM is rare disease and prevalence was assumed to be
0.00001. I applied CEST on autosomal chromosomes and genomic

control was used to adjust small inflation of our results [139].
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4.3 Results

4.3.1 Evaluations of simulated samples

We evaluated the accuracy of parameter estimates using
simulated data. For scenario 1, | assumed family-based samples were
randomly selected, and means and standard deviations (SD) of £ and
hZ from 2,000 replicates are given in Table 4.1. The true value of B is
assumed to be 0.1253, and estimates for § by LTMH always provide a
close approximation of true values. For hZ, estimates for LTMH and
GCTA are similar if the prevalence is 0.1 or 0.2, although standard
errors caused by estimates using LTMH are always smaller than those
produced by GCTA. Ifprevalence is 0.05 and heritability is 0.4, bias of
estimates by GCTA becomes much larger. Figure 4.2 indicates the
distribution of hZ, and both methods accurately estimate high
prevalence. Estimates generated by GCTA, however, are more widely
distributed than those generated by LTMH, and | can conclude that
LTMH provides generally superior performance.

Table 4.2 provides summaries of parameter estimates for
ascertained families. According to the results, the majority of GCTA
estimates are 0 and these estimates exhibit ascertainment bias.

Estimates of 8 and h? by LTMH, however, are always close to true
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values and these results show robustness against ascertainment bias
(Table 4.2). Interestingly, standard errors resulting from estimates
generated by LTMH analysis of ascertained families are small
compared to those observed in the absence of ascertainment. The
number of affected individuals is expected to be very small for rare
diseases, but ascertainment of affected probands and familial
correlations increase the number of affected individuals, which may
explain the smaller standard errors observed in heritability estimates of
ascertained families. Further investigation, however, is required. | also
evaluated the performance of CEST in the context of hypothesis testing
for scenario 1. | assumed H,: h* = 0, and results detailing empirical
sizes are given in Table 4.3. Our results indicate that LTMH analyses
were slightly conservative if ¢ = 0.05 or 0.2, but type-1 error estimates
generated by this method are very close to nominal significance levels
if g = 0.1. This conservative trend may indicate overestimation of
variance. Table 4.3 also details the statistical power estimates. |
assumed that the true h? is 0.2 or 0.4, and g is 0.05, 0.1 and 0.2. The
statistical power estimates increase as the true heritability, prevalence,
or both increase, and large empirical power estimates were obtained in
regard to the larger prevalence. | also evaluated the statistical

performance of the score tests for S (Table 4.4). Analyses indicate that
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the score tests for S are not conservative and always preserve the
nominal significance level under the null hypothesis, where H,:8 = 0.
Empirical power estimates for £ were assessed using 2,000 replicates
at several significance levels, and these estimates increase as the
prevalence, heritability, or both become larger. | also assessed
empirical size estimates assuming H,:h?* = 0 for scenario 2 (Table
4.5). It was more conservative but statistical powers were improved

when true h? is 0.2 or 0.4 than those for scenario 1.
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Table 4.1 Accuracy of B and hZ from randomly selected families
(scenario 1). Parameter estimates from 2,000 replicates were
summarized using mean (top) and standard error (bottom). The true

value of B is 0.1253. SD is standard deviation.

LTMH GCTA
h* h?
0.1226 0.0933 0.1105

Heritability Prevalence

005 (00223) (00971)  (0.1303)

0281 00660  0.0734
0.05 0.1 (0.0181)  (0.0716)  (0.0828)
0 01277 00584  0.0563
' (0.016)  (0.0538)  (0.0539)

008 0267 02184  0.2511
: (0.0223)  (0.1282)  (0.1852)

0 o1 01239 01950  0.2111
' ' (0.0190)  (0.0993)  (0.1219)
0 0285 02106  0.2115
' (0.0164)  (0.0725)  (0.0775)

0.0 0309 04324 05546
: (0.0229)  (0.1313)  (0.2437)

o4 01 01276 04230 04825
' ' (0.0225)  (0.1315)  (0.1377)
0 01286 04181  0.4486

(0.0189)  (0.0950)  (0.085)
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Figure 4.2 Boxplots for hZ for randomly selected families

(scenario 1). True heritability was 0.05 (top), 0.2 (middle), and 0.4

(bottom) and was indicated as a gray dashed line.
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Table 4.2 Accuracy of B and h? from ascertained families
(scenario 2). Parameter estimates from 2,000 replicates were

summarized using mean (top) and standard error (bottom). The true

value of g is 0.1253.

LTMH GCTA
h2 h?
01335 00474 1.72x10°

Heritability Prevalence

0.05 :
(0.0193)  (0.0376) (447x107)
-6
0233 00336  1.96X10
0.05 0.1 '
(0.0181)  (0.0339) (201x10")
0 0.1194 00304 183x10"
- (0.0144)  (0.0287) (378x107)
005 01234 02018 1.01x10°
| (0.0199)  (0.0437) (9.18x10")
0.1257  0.2086 0
0.2 0.1 (0.0135)  (0.0342) (0)
0" 01239 01692 1.01x10
' (0.0153)  (0.0407) (7.40x10")
005 0.1358  0.4004 0
: (0.0189)  (0.0449) ©)
0.1167  0.3868 0
0.4 0.1 (0.0144)  (0.0339) 0)
0 0.1186  0.4090 0

(0.0150)  (0.0444) (0)
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Table 4.3 Type-1 error and power estimates of the proposed test
for Hy:h* = 0 under scenario 1. The empirical sizes (h? = 0) and
powers (h? = 0.2 and 0.4) were estimated using 2,000 replicates at

three significance levels. | considered prevalence of 0.05, 0.1, and 0.2.

Heritability

Prevalence

Significance level

0.01 0.05 0.1
0.05 0.0015 0.0115  0.0285
0 0.1 0.0050  0.0480  0.1020
0.2 0.0015  0.0200  0.0505
0.05 0.0485 0.2260  0.3990
0.2 0.1 0.3420 0.6730  0.8055
0.2 0.6210 0.8675  0.9405
0.05 0.4575  0.8190  0.9050
0.4 0.1 0.9395 0.9930  0.9960
0.2 1.0000  1.0000  1.0000
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Table 4.4 Type-1 error and power estimates of the proposed test
for Hy: B = 0 under scenario 1. The empirical sizes (h? = 0) and
powers (h2 = 0.005) were estimated using 2,000 replicates at three
significance levels. | considered heritability of 0.2 and 0.4, and

prevalence of 0.1 and 0.2.

Significance level

h? Heritability ~ Prevalence
0.01 0.05 0.1
0.2 0.1 0.0155 0.0661  0.1023
0 ' 0.2 0.0120  0.0560  0.0900
04 0.1 0.0060  0.0480  0.0940
' 0.2 0.0130 0.0580  0.1020
0.2 0.1 0.1303 0.3372 0.4713
' 0.2 0.4460 0.6800 0.7980
0.005

04 0.1 0.2740 0.5340 0.6640

0.2 0.3540  0.6000  0.7180
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Table 4.5 Type-1 error and power estimates of the proposed test
for Hy:h* = 0 under scenario 2. The empirical sizes (h? = 0) and
powers (h? = 0.2 and 0.4) were estimated using 2,000 replicates at

three significance levels. | considered prevalence of 0.05, 0.1, and 0.2.

Heritability

Prevalence

Significance level

0.01 0.05 0.1
0.05 0.0000  0.0025  0.0100
0 0.1 0.0005  0.0045  0.0095
0.2 0.0000  0.0075  0.0215
0.05 04735 0.8110 0.9185
0.2 0.1 0.8520  0.9660  0.9850
0.2 0.8155  0.9540  0.9855
0.05 1.0000 1.0000  1.0000
0.4 0.1 1.0000 1.0000  1.0000
0.2 1.0000  1.0000  1.0000
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43.2 Applications of LTMH and CEST to Type-2
Diabetes

To evaluate the performance of LTMH using real data, |
examined the family-based samples from the T2D dataset. Table 4.6
shows the descriptive statistics [37]. There were 1,736 T2D patients
(36.75%), and average age for entire samples was 48.63 years old with
SD of15.7 . The proportions of males and females are similar. All non-
probands are the first-degree relatives of probands, and the familial
relationships observed most often are siblings (59.22%) and offspring
(32.85%).

LTMH was used to examine the family-based samples derived
from the T2D dataset, and heritability of T2D was estimated. Estimated
heritability of T2D was 29.44%, and it was statistically significant
under the significance level of 0.05 (P-value = 1.20x107°). This finding
is slightly overestimated in comparison to other determinations of
heritability estimates for T2D (26%) using the ACE model based on
twin data [98]. This difference may be attributable to racial differences.
The coefficient estimate for non-standardized age was 0.051 (0.8 for
standardized age), which means that the threshold for disease is
reduced by 0.051 at the liability scale if age increases by 1. The

function of age is well described in Figure 4.3A, which illustrates the
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probability of being affected by T2D as a function of age. Results
demonstrate that the risk increases monotonically by age, reflecting the
reduction effect on disease threshold. Individuals with a higher number
of T2D affected relatives exhibit greater risk. In comparison to random
samples, the influence of family history is greater at a young age, and
determining familial risk for early-onset T2D is highly important

(Figure 4.3B).
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Table 4.6 Demographic characteristics of study participants. For
categorical variables, the number of subjects and their proportions are
provided. For continuous variables, means and standard deviations are

provided. T T2D : Type 2 Diabetes.

Proband Non-proband

Disease status

T2D' 648 (100%) 1,115 (26.87%)

Normal 0 (0%) 3,034 (73.13%)
Sex

Male 308 (47.53%) 2,058 (49.6%)

Female 340 (52.47%) 2,091 (50.4%)
Age 55.44 (10.7)  47.56 (16.09)

Relationship of
relatives with proband

Parents 329 (7.93%)
Sibling 2,457 (59.22%)
Offspring 1,363 (32.85%)
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Figure 4.3 Estimation of risks for T2D according to age. For a
certain individual, 1 assume that he/she has two parents and one
younger sibling, and the risk of T2D development was calculated as a
function of his/her age and the number of affected family members.
The X-axis indicates age of individual, and the age of his/her father and
mother were assumed to be 29 years old. The younger sibling was
assumed to be 3 years younger than the participant. h? and the
coefficient of unstandardized age were set to be 0.2944 and 0.051,
respectively. (A) Probability of the participant being affected according
to the number of affected family members, and (B) relative risks of

being affected according to the number of affected family members.
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4.3.2 Applications of CEST to S-LAM disease

GWAS using CEST was performed for 549,599 SNPs. Figure
4.4 shows quantile-quantile plot and Manhattan plot of GWAS after
applying genomic control. Genomic inflation factor before genomic
control was 1.076. The distribution of the observed P-values met the
expected P-values except two significant SNPs under the genome-wide
significance level of 5x10®. CEST yielded smaller P-value for two
significant SNPs rather than the result of GWAS using CLR, providing
CEST is applicable to the independent samples with various strategies

(Table 4.7).
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Figure 4.4 Quantile-quantile (QQ) and Manhattan plots for the
LAM GWAS using CEST.

a) The observed distributions of P-values for 549,599 genotyped SNPs
are plotted relative to the expected (null) distribution for the CEST. b)
Manhattan plot. Each dot represents the P-value of a single SNP,
plotted on the genome scale at bottom. The Y-axis value is the negative
logarithm of the P-value for association between each genotyped SNP

and S-LAM. Two SNPs on 15¢g met genome-wide significance.
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Table 4.7 Comparison results of CLR and CEST. Two significant
SNPs whose P-value is less than genome-wide significance level of

5x10°8.

P-value
CLR CEST
15  rsA544201 96167827 851x10  1.581X10
15  rs2006950 96179390  3.92x10 3.139x10

CHR SNP Position
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4.4 Discussion

In this article, | proposed a new method to estimate the
heritability of a dichotomous trait based on the Liability Threshold
Model for ascertained family-based samples. A simulation study
demonstrated that LTMH generally provides more accurate estimates
of heritabilities than does GCTA, and the differences between these
methods are substantial in the context of ascertained families. To our
knowledge, there is no method to effectively approach ascertained
samples to estimate heritability of dichotomous traits. Additionally, I
assessed the statistical performance of CEST analysis. Statistical power
estimates were evaluated under various experimental conditions, and
substantial power improvement was observed in the context of common
diseases as opposed to that seen for rare diseases.

Despite the power improvement provided by the proposed
methods, there are limitations. First, the CEST for h? was conservative.
| found that the likelihood for h? is not symmetric under the null
hypothesis, and this may be attributable to the misspecified weights for
0 and x?(df =1) for the distribution of the CEST under H, .
Fortunately, | found that such inflation does not affect the statistical
power of our analysis, but certain modifications such as bootstrapping

are necessary. Second, the proposed method is the computationally
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intensive when the family size, n;, is large, and the expected
computational time is proportional to O(max;n}) . The most
significant computational burden arises from the calculation of
conditional expectation in the E-step of the EM algorithm. The
computational burden can be reduced by reducing the number of
iterations for the EM algorithm or by approximating the moment of the
multivariate truncated normal. The former can be achieved by using
EM acceleration methods which can make EM dramatically faster.
These include Aitken acceleration, conjugate gradient acceleration,
quasi-Newtonian acceleration, and parameter expansion acceleration
[140-144]. For the latter, conditional expectation may be approximated
using certain numerical algorithms such as Laplace approximation.
Investigation of these techniques will be the focus of future research.
Heritability shows important utility for genetic epidemiology;
however, heritability estimation of dichotomous phenotypes can be
extremely complicated due to ascertainment bias. Despite several
limitations, our proposed method successfully enabled heritability
estimation of dichotomous traits in ascertained families, and this
method may provide a promising strategy to estimate the narrow-sense

heritability of various diseases. LTMH is implemented in R language,
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and source codes are

httpz//healthstat.snu.ac.kr/software/LTMH.
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freely

available

at



4.5 Appendix

451 Numerical analysis for optimization of the
heritability in M-step of EM algorithm
The first derivative of Q;(0|0%) with respect to A2 is given

by
2007 L (5@ -1,)) - sur(c.A®)

1
+ B*XC,; (Bi(k) _EXiB) (2)
where C; = 0%;'/0h* = —%;'(®;— 1, )E7". Then, the objective

function becomes

n

(k)
M) = z 9Q;(6/6%)

dh? =0

B=p"(n?)

i=1
Similarly, 1 can get the first derivative of M (h?) with respect to h?

as follows,
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M'(h?)

S

i=1

r(c (@, - 1,)) - %tr(HiA(ik))

N =

+ (X,F®)'c <B(k) XiB(k)(h2)>
+ (Xiﬁ(k)(hz))tHi (Bi(k) _%XiB(k)(hz)>

1 t
— (k) (h2 (k)
~(XBPD) CXF ]

where H; = 9C;/0h* = —2%;"(®; — 1, )C; and

F

= ap") (h?)/an?

n -1, n n -1 , n
- <Z xfz;lxi) (Z xfcixi) (z xgzi—lxi> (Z xfz;lBi(”)
i=1 i=1 i=1 i=1
-1 n
(Z X{EX, ) (Z XfCiBi(k))
i=1

Finally, h? is updated according to the following iterative steps using

A(i") and Bl.(k) which were calculated at the previous E-step,

M (h3ia)
h2,. = h?
ne old — M’ (h 1d)
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4.5.2 Numerical analysis for maximizing the global lower
bound

If | denote the global lower bound for the conditional log-
likelihood as Q(0]60)), then the first derivative of Q(08]0() with
respectto @, #£(0]0%)), is given by

0Q(e10®)  al(B; ¥")

3{(9|e<k))=k aBaQ(ele(:a)aB )

0h?

Here, it should be noted that 9Q(0|0()/8@ is equivalent to the
equations (1) and (2) in the Method and Appendix (A). Using the chain
rule, | can easily obtain the first derivative of 1(B; Y*) with respect to

B as follows,

al((s YP) z L(B; Y1) da; Oy
da, 0w, Op

N " — ) P Pyt
Zlm- (c—xisxxi)]

1=

where ¢(-) is the probability density function for the standard normal.
To apply Newton-Raphson algorithm for the objective function

7£(0|0%), 1 derive the first derivative of 7 (0]0™) with respect to

¢, J(016™), as follows,
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62Q(9|9(k)) azl(B, YP) aZQ(9|9(k))\
l(ele(k)):\ oB‘ap oprop  0h*op )

02Q(0]0™) 02Q(0]16™)
dBtoh? d(h?)2

and each term is given by

2*Q(e(6™) gy LB YP)
2B°op Z(X XD —5piap

_Z ¢(c —X] B) i{(Yi _“")(2“"_1)¢(c

w (1= ) w (1 —py)

_XPB) + (¥ — 1) (c — XPB) — e — xfs)}(xﬁt],

92Q(816%" o
3512'63 ) Z (xécB{) Z(xtcxlﬁ)
and

% = —%tr (Ci(q’i n )) ( A(k))

+ B'X{H, (B(k) - —xlﬁ)
With these terms, | iteratively update @ using the following equation

until convergence,

onew — Bold _ ]—1(eold|9(k)) }[(eoldle(k))_
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Chapter 5

Summary and Conclusions

Over the last few decades, genome-wide association studies
(GWAS) have identified more than 69,000 variants associated with
human complex traits. Rapid improvement in next-generation
sequencing technology enabled us to obtain more genetic information
with limited cost, but sequencing cost is still expensive. Thus, effective
selection of subjects for DNA sequencing is required in order to
increase statistical power of GWAS. In this thesis, | focused on

incorporating family history into GWAS.

In chapter 3, | proposed a new statistical method for selecting
cases and controls to improve statistical power of GWAS in sequencing
DNA samples. Assuming a disease model is based on the liability
threshold model, | calculated measure for selecting subjects by taking
the expectation to the proband’s liability conditioning his/her disease
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statuses and proband’s own disease status. Based on the assumption
that the liabilities of related samples follow a multivariate normal
distribution with variance-covariance matrix of genetic relationship
matrix, | yielded the scores using moments of truncated normal
distribution. Then the person who have more affected relatives might
have relatively larger score than the person who have less affected
relatives. In our simulation study, | considered several strategies of
selecting subjects and GWAS produces largest empirical power
estimates when affected subjects with large score and unaffected
subjects with small score are utilized to GWAS as cases and controls,
respectively. On the other hand, when affected subjects with small
score and unaffected subjects with large score are used as cases and
controls, GWAS worked poorly even rather than randomly selected
samples. The proposed method was successively applied to T2D
dataset and | found that GWAS of the proposed sample selection
strategy produced lower P-value for candidate SNPs than GWAS of the

randomly selected samples.

Family history has been considered as important risk factor for
various complex diseases and it is relatively easy to obtain with low
costs. Family history can be usually obtained via an affected families
member, referring to a proband, and therefore, tends to include more
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affected subjects rather than random population. Various methods to
estimate heritability of binary trait have been suggested but no suitable
method dealing with ascertained samples has been developed. In
chapter 4, | proposed a new method to estimate heritability of binary
trait on ascertained samples using conditional expectation-
maximization (CEM) algorithm. In extensive simulation study, our
proposed method provided accurate estimates for heritability and
coefficients of covariates for both randomly selected families and
ascertained families. | successfully applied the proposed model to T2D
datasets consisting of ascertained families. In LAM dataset, | matched
one cases with two controls based on age and top two PC scores, and
performed GWAS using CEST as if matched samples are a family. In
comparison to conditional logistic regression, the proposed method

showed smaller P-values for two significant SNPs.

In summary, | found that a strategy of selecting cases and
controls for GWAS can affect statistical power, and substantial
improvement in statistical power of GWAS can be achieved by
incorporating family history to selection strategy of subjects. Therefore,
the proposed selection strategy seems to be cost-effective and efficient
method in that | choose study participants who can most effectively
detect GWAS signals based on the family history. | also proposed a
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new method to estimate heritability of dichotomous phenotype for
ascertained samples. Although there are some limitations, the proposed
method successfully performed in both simulation study and real data
analysis. Both methods in chapter 3 and 4 were implemented in R

language, and source codes and manuals are freely available at websites.
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