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Abstract 

 

Statistical Method Development for  

Genetic Association Analyses of  

Dichotomous Phenotypes with 

Related Samples and  

its Application to Genetic Studies 

 

Wonji Kim 

Interdisciplinary Program in Bioinformatics 

The Graduate School 

Seoul National University 

 

Recent improvements in sequencing technology have enabled 

the investigation of so-called “missing heritability”, and a large number 

of affected subjects have been sequenced in order to detect significant 

associations between human diseases and genetic variants. However, 

the cost of genome sequencing is still high, and a statistically powerful 

strategy for selecting informative subjects would be useful.  

Numerous methods for estimating heritability of dichotomous 
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phenotypes have been proposed. However, unlike quantitative 

phenotypes, heritability estimation for dichotomous phenotypes is 

computationally and statistically complex, and the use of heritability is 

infrequent. In particular, heritability estimates often suffer from 

substantial bias due to sampling scheme of family-based study. In 

family-based study, family members are often brought into a study via 

affected proband and therefore a proportion of affected relatives is  

larger than population prevalence. This bias refers to the ascertainment 

bias but there have been no much studies in adjusting method of 

ascertainment bias for heritability of dichotomous trait. 

In this study, I propose a new statistical method for selecting 

cases and controls for sequencing studies based on disease family 

history in terms of improvement in statistical power of genetic 

association studies. I assume that disease status is determined by 

unobserved liability score. The liability threshold model assumes 

dichotomous phenotypes are determined by unobserved latent variables 

that are normally distributed, and our method consists of two steps: first, 

the conditional means of liability are estimated given the individual’s 

disease status and those of their relatives with the liability threshold 

model, and second, the informative subjects are selected with the 

estimated conditional means. Our simulation studies showed that 

statistical power is substantially affected by the subject selection 

strategy chosen, and power is maximized when affected (unaffected) 

subjects with high (low) risks are selected as cases (controls). The 
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proposed method was successfully applied to genome-wide association 

studies for type-2 diabetes, and our analysis results reveal the practical 

value of the proposed methods. 

In addition, I developed a statistical method to estimate 

heritability of dichotomous phenotypes using a liability threshold 

model in the context of ascertained family-based samples. This model 

can be applied to general pedigree data. The proposed methods were 

applied to simulated data and Korean type-2 diabetes family-based 

samples, and the accuracy of estimates provided by the experimental 

methods was compared with that of established methods. 

 

Key words : Genome-wide association studies (GWAS), Family history 

of disease, Risk Prediction, Heritability, Liability threshold model, 

Ascertainment bias 

 

Student number: 2015-30118  
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Chapter 1 

Introduction 

 

1.1 An Overview of Genetic Association Analyses 

of Dichotomous Phenotypes 

Genetic association studies test association between a complex 

disease and genetic diversity in order to identify candidate causal genes 

or genomic regions [1]. At the level of a single nucleotide 

polymorphism (SNP), a higher frequency of certain alleles in a subject 

with a disease can be considered to mean that the SNP increases the 

risk of the disease. In addition to SNP, insertion/deletions (indels) and 

copy-number variants can be used as genetic variants for association 

studies and results can be interpreted in a similar way. 

The Genome-wide association study (GWAS) was first proposed 

by Risch and Merikangas arguing that association studies are generally 
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more powerful than the linkage study in detecting genes of modest 

effect but requires much more markers to be tested [2]. They predicted 

that the complex diseases would require large-scale testing of 

association analysis. It also has been shown that genetic susceptibility 

to common complex disease includes many genes, most of which have 

small effects, leading to the importance of large-scale GWAS in a 

large-scale of sample sizes [3, 4]. Recently, several methods to improve 

statistical power of GWAS were proposed by accounting for sample 

structure in GWASs [5, 6]. They used linear mixed model and its 

extension to multi-loci was also developed [7]. 

As part of the effort for large-scale GWAS, several international 

projects have been undertaken. The international HapMap Project 

(http://hapmap.ncbi.nlm.nih.gov/) genotyped for 3.1 million SNPs in 

DNA samples of 269 subjects from several populations which have 

ancestry of Africa, Asia and Europe [8]. It aims to develop a haplotype 

map of the human genome and figure out common patterns of human 

genetic variation involved in human disease. The 1000 Genomes 

Project (http://www.internationalgenome.org/) has validated 

approximately 84.4 million variants in 2,504 subjects from 26 

populations consisting of African, American, Est Asian, European and 

South Asian [9]. It ran between 2008 and 2015, and aims to find most 
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genetic variants with frequencies of 1% or more in the studied 

populations. More recently, UK Biobank 

(https://www.ukbiobank.ac.uk/) was established and recruited 488,377 

subjects aged between 40-69 years from across the United Kingdom 

[10]. DNA samples for 488,377 participants were genotyped at 807,411 

variants containing SNPs and short indels. A web-based database, 

PheWeb (http://pheweb.sph.umich.edu:5000/), has provided thousands 

of GWAS results based on UK Biobank along with a fine display. 

By April 2018, the GWAS has successfully discovered more than 

69,000 SNP-trait associations (https://www.ebi.ac.uk/gwas/home/) [11-

13]. These studies were rapidly growing in size and complexity, and in 

5,152 studies, 3,378 publications were added to the GWAS catalog 

(Figure 1.1).  



４ 

 

Figure 1.1 GWAS catalog as of 2018. All SNP-trait association with P-value ≤ 5×10-8 were shown. 

  



5 

 

1.2 Heritability Estimation of Dichotomous 

Phenotypes 

In 1950, Dempster and Lerner developed an algorithm to 

estimate the heritability of a binary trait [14], and their derivation was 

extended to the polychotomous traits by Gianola [15]. Their models 

were involved in the liability threshold model, which assumes that there 

is an underlying liability whose value is the sum of normally and 

independently distributed genetic and environmental components. In 

liability threshold models, the person is affected to the disease if his/her 

liability exceeds certain threshold of the underlying disease. A 

simulation study using Depmster’s algorithm was performed by Van 

Vleck [16]. It was based on sib and parent-offspring family structure, 

and the estimated values of heritability were quite closed to the true 

values in a situation that a prevalence of a disease was ranged from 0.2 

to 0.8 and the true heritability was below 0.7. There are several 

methods to estimate heritability of a dichotomous phenotype based on 

generalized linear mixed model (GLMM) such as logit-based algorithm 

[17, 18] and beta-binomial model [19, 20]. However, some of GLMM-

based algorithm to estimate genetic variance components for multiple 

related relatives was developed but estimation of heritability is not 



6 

 

possible since environmental variance component is not included [21]. 

More recently, a method of estimating the proportion of phenotypic 

variance explained by a group of SNPs was proposed and it 

successively adjusted case-control ascertainment bias [22, 23].  
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1.3 The Purpose of This Study 

The main purpose of this thesis is to develop statistical methods 

for genetic association analyses of dichotomous phenotype with related 

samples. In order to achieve this aim, I proposed two methods. One is a 

method to improve statistical power of GWAS by selecting informative 

cases and controls for DNA sequencing based on their family history. 

The other is intended to estimate heritability of a dichotomous 

phenotype based on liability threshold model for ascertained samples.  

In the first study, I proposed a new statistical method for 

selecting informative cases and controls based on the disease status of 

their relatives. The proposed method is based on the conditional 

expectation of unobserved liability for subjects when the disease status 

of those subjects and their relatives are given. I assumed that the 

unobserved liability scores are normally distributed, and its conditional 

expectation will be the expectation of truncated normal distribution. In 

extensive simulation studies, I found that the statistical power is most 

increased when subjects with high and low risk are selected as cases 

and controls, respectively. Our methods were applied to GWAS of 

type-2 diabetes (T2D) and I compared the results for randomly selected 

samples and samples selected based on the proposed method. 
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In the second study, I proposed a method for heritability 

estimation of dichotomous phenotypes using liability threshold model.  

In particular, the proposed method can be applied to the ascertained 

samples by proband which refers to instances when family members 

are introduced to a study due to other family members already included 

in the study. Using the Expecteation-Maximization (EM) algorithm, the 

proposed method can estimate heritability and coefficients of covariates 

on the liability scale [14]. In addition, its statistical significance was 

assessed via a conditional expected score test (CEST) for the 

hypotheses if heritability is equal to zero or if coefficients of covariates 

are equal to zero. Using extensive simulation studies, I compared the 

proposed model to GCTA and I found that estimates of the proposed 

method are more generally unbiased for randomly selected families 

than that of GCTA. For ascertained samples, the proposed method 

works well similarly with that for randomly selected families, but 

GCTA produced substantial downward bias. I applied the proposed 

method to the T2D dataset to estimate the heritability of T2D in Korea 

population, and Lymphangioleiomyomatosis (LAM) dataset for GWAS.  
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1.4 Outline of the thesis 

This thesis is organized as follows: Chapter 1 introduces to this 

study with an overview of GWAS and heritability estimation of 

dichotomous trait. Chapter 2 contains an example of GWAS for case-

control study for LAM disease including a strategy for fine mapping. 

Chapter 3 is about a method to select informative subjects for DNA 

sequencing using family history to improve a statistical power. Chapter 

4 deals with a method to estimate heritability of dichotomous 

phenotype for ascertained samples. Both Chapter 3 and 4 are based on 

the liability threshold model and population prevalence of a disease is 

required. Their performances were evaluated using extensive 

simulation study and applied to the real datasets. Finally, the summary 

and conclusions are presented in Chapter 5.  
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Chapter 2 

Application of Genome-wide Association 

Study and Fine-mapping for Independent 

Samples 

 

2.1 Introduction 

Lymphangioleiomyomatosis (LAM) is a rare aggressive low-

grade neoplasm which affects almost exclusively women at 

reproductive age or older and causes progressive cystic lung destruction 

leading to fatal respiratory failure in subjects with severe disease [24-

29]. LAM is characterized by an abnormal proliferation of smooth 

muscle- like and epithelioid cells in innumerable tiny clusters in the 

lungs, in association with thin-walled cysts and lung parenchymal 
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destruction [30, 31]. Progressive cyst enlargement and inflammation 

contribute to decline in lung function measured as both decreased FEV1 

and DLCO. The diagnosis of LAM is based on clinical features, chest 

computed tomography findings of thin-walled cysts, and either 

pathology seen on lung biopsy or elevated serum vascular endothelial 

growth factor D (VEGF-D) levels. 

LAM occurs at high frequency (> 10%) in women with 

Tuberous Sclerosis Complex (TSC); and at much lower frequency in 

women (about 1 in 100,000) without that disorder, in which it is called 

sporadic (S-LAM). TSC is due to germline or somatic mutations in 

either TSC1 (25%) or TSC2 (75%) [32]. Tumor development in TSC 

follows the classic Knudson model of a germline mutation 

complemented by a somatic second hit mutation in the other 

corresponding allele in tumors [32, 33]. Limited data are available for 

S-LAM, but it appears that TSC2 mutations are seen in the vast 

majority of S-LAM lesions. About 50% S-LAM subjects have kidney 

angiomyolipoma, a tumor which is seen in 70-80% of adults with TSC. 

Angiomyolipoma share histologic, expression, and genetic features 

with LAM, though are not identical pathologic lesions. 

Genome-wide association studies (GWAS) are utilized to 

identify genetic variants and susceptibility loci associated with complex 
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traits and common diseases. Although there is no precedent for genetic 

influence on the development of S-LAM, I hypothesized that DNA 

sequence variants outside of TSC2/TSC1 might be associated with 

disease risk, and go unrecognized due to the low prevalence of this 

disorder. 
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2.2 Materials and Methods 

2.2.1 Discovery cohort  

Over 600 female S-LAM patients were identified and collected 

through international solicitation from 2010 to 2014 from 14 countries 

(Table 2.1). S-LAM was diagnosed using standard diagnostic criteria 

[1-5, 7] by their treating physicians. Genomic DNA was extracted from 

saliva using the QIAamp DNA mini kit (Qiagen, Germany), and 479 S-

LAM DNA samples were genotyped with the Infinium OmniExpress-

24 v1.2 BeadChip, which assesses 716,503 SNPs across the entire 

genome. 34 non-white S-LAM subjects were excluded from further 

analyses. 

Genotype data from the same genotyping chip were available 

for 1261 healthy female volunteers from the COPDGene Consortium, 

and were obtained from dbGaP (phs000951.v2.p2.c1). These 

COPDGene participants had smoked at least 10 pack years and were 45 

to 80 years old, and were without known COPD [34, 35]. 
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2.2.2 Quality control analyses of SNP genotype data 

I evaluated the quality of SNPs and subjects in the discovery 

data set using PLINK [36] and ONETOOL [37]. I excluded all SNPs 

for which: the Hardy-Weinberg equilibrium (HWE) test [38] gave P < 

1×10-5; minor allele frequency (MAF) was < 0.05; or genotype call 

rates were less than 95%. I also discarded any subjects whose missing 

genotype rates were > 5%, or showed identity-by-state > 80% with any 

other subject. These filtering procedures were first applied separately to 

cases and controls, and were repeated on the pooled dataset. In addition, 

any SNP showing a difference in missing data rate between cases and 

controls by Fisher’s exact test [39], with P < 1×10-5 was removed. Last, 

EIGENSTRAT [40] was applied to the pooled data and principal 

component (PC) scores were calculated. PC scores were used to detect 

subjects with an outlying genetic background, and such outliers were  

then removed. These filters led to retention of 426 S-LAM cases and 

852 female controls for analysis in the discovery phase with 549,599 

SNP genotypes (Figure 2.1). 
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Table 2.1 Distribution of LAM patients according to their 

nationality  

 

Discovery 

LAM 

Replication 

LAM 

USA 190 196 

France 54 0 

Spain 40 0 

Italy 35 0 

United Kingdom 32 0 

Germany 21 0 

Australia 20 0 

Poland 15 0 

Israel 7 0 

Canada 4 0 

Panama 1 0 

Puerto Rico 1 0 

Scotland 1 0 

Unknown 5 0 

Total 426 196 
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Figure 2.1 Workflow of quality control for the LAM GWAS 

discovery data set. Multiple standard quality controls were performed 

for both cases (female S-LAM subjects) and controls (healthy women 

without COPD from COPDGene consortium) to exclude outlier SNPs 

and subjects.  
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2.2.3 Replication data 

Replication analysis was done on an additional independent set 

of 196 non-Hispanic white (NHW) female S-LAM subjects, for the two 

SNPs identified in the discovery study, provided by one co-author (JM, 

Table 2.1). Careful scrutiny was performed by a third party to ensure 

that there was no overlap between the primary analysis population and 

the replication population. Genotyping was performed by TaqMan SNP 

genotyping assays C_832391_10 and C_27296040_10 for SNPs 

rs2006950 and rs4544201, respectively (ThermoFisher Scientific). 

Nine randomly selected S-LAM subjects from the discovery study were 

also genotyped by this method to confirm genotyping accuracy in the 

replication analysis. Their discovery study genotypes matched the 

TaqMan analysis genotypes perfectly, and these 9 subjects were not 

included in the replication analyses. 409 NHW healthy females from 

COPDGene Consortium who were not used for discovery analyses 

were used as controls for comparison in the replication study. 
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2.2.4 Statistical analyses with genetic data 

GWAS analyses with discovery data were conducted using 

conditional logistic regression (CLR).  

Principal Components (PC) Analysis scores were estimated 

with EIGENSTRAT [40], and used to adjust population substructure. 

CLR requires matching of cases and controls, and matching quality is 

affected by the number of PC scores matching. Each case was matched 

with two controls using the Matching R package [41]. Figure 2.2 shows 

that matching with age and two PC scores corresponding to the two 

greatest eigenvalues provide the variance inflation factor closest to 1. 

Thus CLR was conducted with cases and controls matched with age 

and 2 PC scores. CLR analyses were performed with the R package 

survival [42] and genome-wide significance was assessed by P-value < 

5×10-8. 

I also conducted gene-based analyses to identify genes with 

significant association with S-LAM using the SKAT-O statistic [43]. 

SNPs within each gene were used to provide a SNP set file, and age, 

squared age and 10 PC scores were included as covariates. 
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Figure 2.2 Variance inflation factors according to the number of 

PC scores used for the discovery data. Cases and controls were 

matched with different numbers of PC scores (2 – 10 PC scores) and 

age, and CLR was applied to matched cases and controls. Variance 

inflation factors were calculated for different numbers of PC scores, 

and plotted against the numbers of PC scores. 
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2.2.5 Genotype imputation and statistical analyses with 

imputed genotypes  

I imputed untyped SNPs located within 1 mega-base of the two 

genome-wide significant SNPs on chromosome 15 to do fine-mapping. 

Imputation was conducted using the Sanger Imputation Service 

(https://imputation.sanger.ac.uk). I used Haplotype Reference 

Consortium release v1.1 and considered predominantly European 

ancestry [44]. Pre-phasing and imputation was conducted with 

SHAPEIT [45] and the PBWT package [46], respectively, and 

imputation accuracy was evaluated with the INFO metric [47]. Imputed 

SNPs were filtered out if INFOs, MAFs or P-values for the HWE test 

were < 0.3, 0.05, or 1×10-5, respectively. Linkage disequilibrium (LD) 

blocks were chosen by using Haploview with default options [48] and I 

applied CLR to all SNPs in the LD block with the genome-wide 

significant SNPs from the initial genotyping. Furthermore, I applied 

PICS software to imputed and genotyped SNPs within the 34kb LD 

block containing the genome-wide significant SNPs to calculate the 

probability of each individual SNP being the causal SNP [49]. 
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2.2.6 Topologically associated domains (TADs) and 

chromatin interactions  

To identify chromatin interactions in the region of interest on 

chromosome 15q26.2, I used a 3D genome browser 

(www.3dgenome.org) to predict TADs [50]. I checked for TADs 

around the genome-wide significant SNPs and protein coding genes 

belonging to each TAD were investigated. I analyzed TADs from four 

cell lines/tissues judged closest to LAM: (i) human fetal lung fibroblast 

(IMR90), (ii) lung-related tissues (LUNG), (iii) H1 derived 

mesenchymal stem cells (H1-MSC), and (iv) Human Umbilical Vein 

Endothelial Cells (HUVEC). 

 

  

http://www.3dgenome.org/
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2.2.7 Statistical analyses with RNA sequencing data 

Whole transcriptome RNA-Seq analysis was performed on one 

abdominal LAM tumor and four kidney angiomyoliopomas at the 

Broad Institute of Harvard and MIT.  Briefly, mRNA-Seq was 

performed using polyA cDNA capture followed by cDNA library 

synthesis (Illumina Truseq RNA Library Prep Kit), and sequencing on 

Illumina machines, following the same methods and in the same facility 

in which the GTEx RNA-seq project occurred [24]. Read data was 

processed into FASTQ files with standard QC methods, and aligned to 

the genome (hg19, NCBI37) using Tophat v2.0.10 [51]. Fastq files 

were also converted into RSEM format [52]. RSEM values were 

compared to RNA-seq data from 2463 tumors of 27 different histologic 

types from the TCGA [53]. RPKM values for NR2F2 were compared to 

the GTEx data set of normal human tissues (~7,000 samples from 53 

normal tissue types, v6p release) [54]. 
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2.2.8 Immunohistochemistry analyses 

 Immunochistochemistry was performed as described elsewhere 

[55] using a primary mouse monoclonal antibody against NR2F2 

[Abcam Cat.Num # ab41859 Concentration 1:100 (10ug/ml) ].  Briefly, 

formalin-fixed, paraffin-embedded tumor sections were deparaffinized 

in xylene, rehydrated, and antigen retrieval was performed in EDTA 

(pH 8.0, Diagnostic BioSystems). Endogenous peroxidase activity was 

blocked with 3% H2O2, blocking was done with 5% goat serum, 

followed by incubation overnight with antibody at 4°C, washing in 

TBST, and incubation with anti-goat secondary antibody (Vector Labs, 

Burlingame, CA, dilution 1:300) The peroxidase reaction was 

developed using DAB substrate (DakoCytomation). Both LAM lung 

samples and kidney angiomyolipomas were stained by similar methods. 
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2.3 Results  

2.3.1 GWAS analysis of S-LAM identifies two intergenic 

SNPs on chromosome 15 

After multiple filtration steps and elimination of SNPs and 

samples as described in the Methods and shown in Figure 2.1, GWAS 

was performed on 426 S-LAM subjects and 852 control subjects from 

the COPDGene project, for 549,599 SNPs using CLR. Two non-coding 

SNPs rs4544201 and rs2006950 on chromosome 15 met genome-wide 

significance (rs4544201: P-value=8.51 × 10
-10

; rs2006950: P-

value=3.92×10
-10

). 

Quantile-quantile plots for CLRs and Manhattan plots 

demonstrated that the distribution of observed P-values met the 

expected distribution, with the exception of the two SNPs (Figure 2.3), 

indicating that the analyses were free of systematic P-value inflation. 

Multi-dimensional scaling plots indicated genetic similarity between 

cases and controls in the discovery analyses (Figure 2.4). Since the 

control COPDGene cohort were smokers, this association analysis 

might have been confounded by SNP alleles associated with nicotine 

addiction. I checked p-values for SNPs associated with nicotine 

addiction from the GWAS catalog [13] and other SNPs correlated with 
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those (r2 >0.8) (Table 2.2). None of those SNPs showed a significant 

difference in allele frequency in the LAM and COPDGene cohorts, 

indicating that our findings are not confounded by nicotine addiction 

SNPs. Table 2.3 provides summaries for the two genome-wide 

significant SNPs. 

rs4544201 and rs2006950 are located on 15q26.2, 11,563 nt apart, in an 

intergenic gene desert between MCTP2 (1.1Mb away) and NR2F2 

(700kb away), that contains many lncRNAs (Figure 2.5). Both SNPs 

have minor and major alleles of A and G, and showed a lower minor 

allele frequency (MAF) in the S-LAM cohort than the control 

population. The odds ratios (ORs) of a single minor allele in the S-

LAM cohort were 0.49 and 0.47 respectively, in comparison to the 

control population (Table 2.3). To adjust for the possible effect of the 

‘Winner’s curse’, I used br2 [56], and found that the bias-adjusted OR 

for rs4544201 and rs2006950 were 0.57 and 0.53, respectively. 

Replication analysis was performed for the 2 SNPs with association 

with LAM using 196 additional non-Hispanic white (NHW) S-LAM 

patients and 409 NHW healthy females from COPDGene participants 

who were not used for discovery analyses. Similar ORs for association 

of the minor allele of these SNPs with S-LAM were seen in the 

replication data (Table 2.3, ORrs4544201=0.33, ORrs2006950 = 0.28). 
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Furthermore, I compared the MAFs of the 2 SNPs in LAM patients 

with those available from 7 other studies (composed of NHW European 

or USA populations), including the UKBiobank study of 337,199 

individuals. The MAFs of the 2 SNPs in LAM patients were 

significantly smaller than those reported in every other cohort (Table 

2.4). 

rs4544201 and rs2006950 belong to the same LD block on 

15q26.2 [48], and are strongly correlated (D’=0.977, r2=0.854; Figure 

2.6). To examine the potential association of other SNPs in this region 

with S-LAM, I used the genotyped SNP data to impute genotype data 

for all SNPs within 1 megabase of these two SNPs. Eighteen imputed 

SNPs in the 34kb LD block had P-values for association with LAM 

similar to rs4544201 and rs2006950 (Table 2.5). 

To attempt to identify the causal SNP(s) among these SNPs 

with low P-values, I performed PICS analysis for all SNPs in Table 2.5, 

and the original two SNPs showing association. rs41374846 had both 

significant association with LAM, and the largest PICS probability 

(PPICS=0.65, Table 2.6), making it the candidate causal SNP in this 

association [49].  
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Figure 2.3 Quantile-quantile plot and Manhattan plot for discovery 

LAM GWAS dataset. a) The observed distributions of P-values for 

549,591 genotyped SNPs are plotted relative to the expected (null) 

distribution for each of CLR analyses. b) Each dot represents the P-

value of a single SNP, plotted on the genome scale at bottom. The Y-

axis value is the negative logarithm of the P-value for association 

between each genotyped SNP and LAM. Two SNPs on 15q26.2 met 

genome-wide significance (P < 5 x 10-8) by CLR. 
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Figure 2.4 Multi-dimensional scaling plot. Multi-dimensional scaling plots were generated using a pool of our Discovery S-

LAM cohort, our COPDGene controls, and 1000 Genome project data. Red and blue circles indicate S-LAM and COPDGene 

samples used for our discovery analyses, respectively, and grey circles represent participants for 1000Genome projects. 
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Table 2.2 P-values for SNPs associated with nicotine addiction. P 

values are shown in comparison of allele frequencies for the S-LAM 

discovery cohort and the COPDGene controls. 

CHR SNP P-value 

1 rs1060061 0.4885 

6 rs9503551 0.0840 

7 rs4285401 0.3263 

8 rs804292 0.8145 

8 rs6470120 0.1152 

9 rs10491551 0.7217 

4 rs10517300 0.6066 

15 rs1051730 0.9759 

21 rs2836823 0.1560 
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Figure 2.5 Genomic region on chromosome 15 containing the SNPs 

associated with LAM. a) Ideogram of chromosome 15. b) Three Mb 

region containing the SNPs associated with LAM. Manhattan plot at 

top shows P-values for SNPs in this region, including the two SNPs 

meeting genome-wide significance (red dots). There are 3 protein-

coding genes NR2F2, MCTP2, and SPATA8 which were represented in 

yellow shaded boxs, and many lncRNAs in this region. c) Expanded 

Manhattan plot of the 250kb region containing the genotyped and 

imputed SNPs showing association with LAM. SNP rs41374846 is 

indicated by purple, and other SNPs are colored according to their r2 

value in relation to rs41374846.  
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Table 2.3 Genome-wide significant SNPs.  

 
rs4544201 rs2006950 

Chromosome 15q26.2 15q26.2 

SNP position (hg19) 96167827 96179390 

Minor / Major alleles A / G A / G 

Minor allele frequency 

S-LAM 0.1655 0.1420 

Control 0.2750 0.2529 

Genotype counts  

(AA / AG / GG / Missing) 

S-LAM 16 / 108 / 299 / 3 11 / 99 / 316 / 0 

Control 62 / 343 / 444 / 3 58 / 315 / 479 / 0 

Discovery data 
  

Odds ratio 
  

Original 0.4916 0.4732 

Bias adjusted 0.5677 0.5315 

P-value 8.51×10
-10

 3.92×10
-10

 

Replication data 

Odds ratio 0.3288 0.2731 

P-value 4.32×10
-5

 1.56×10
-5
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Table 2.4 Minor allele frequencies for SNPs rs4544201 and rs2006950 in multiple populations.   

SNP 

LAM patients Normal 

Data N 
MAF 

(95% CI) 
Data N 

MAF 

(95% CI) 

rs4544201 Discovery 

(USA/NHW/females) 
190 

0.1684 

(0.131, 0.206) 

COPDGene 

(USA/NHW/females) 
1,258 

0.2742 

(0.257, 0.292) 

Discovery 

(EUR/NHW/females) 
233 

0.1631 

(0.130, 0.197) 

COPDGene 

(USA/NHW/males) 
1,224 

0.2774 

(0.260, 0.295) 

Replication 

(USA/NHW/females) 186 
0.1429 

(0.107, 0178) 
MESA-Lung

*
 

(USA/NHW/females) 
1,153 

0.2563 

(0.238, 0.274) 

  
    1000GP

**
 

(USA/NHW/females) 
50 

0.2600 

(0.174, 0.346) 

 

  
1000GP

**
 

(EUR/NHW/females) 
213 

0.2300 

(0.190, 0.270) 

  
    ECLIPSE

***
 

(EUR/NHW/females) 
792 

0.2563 

(0.235, 0.278) 

  
    UKBiobank

†
 

(EUR/NHW/both) 
337,199 

0.2605 

(0.259, 0.262) 
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    GnomAD

‡
 

(EUR/NHW/both) 
7,482 

0.2601 

(0.253, 0.267) 

rs2006950 Discovery 

(USA/NHW/females) 
190 

0.1474 

(0.112, 0.183) 

COPDGene 

(USA/NHW/females) 
1,261 

0.2546 

(0.238, 0.272) 

Discovery 

(EUR/NHW/females) 
230 

0.1377 

(0.107, 0.169) 

COPDGene 

(EUR/NHW/males) 
1,226 

0.2557 

(0.238, 0.273) 

Replication 

(USA/NHW/females) 186 
0.1148 

(0.082, 0.147) 
MESA-Lung

*
 

(USA/NHW/females) 
1,128 

0.2283 

(0.211, 0.246) 

  
    

1000GP
**

 

(USA/NHW/females) 
50 

0.2300 

(0.148, 0.312) 

 

  
1000GP

**
 

(EUR/NHW/females) 
213 

0.2160 

(0.177, 0.255) 

      ECLIPSE
***

 

(EUR/NHW/females) 
792 

0.2431 

(0.222, 0.264) 

      UKBiobank
†
 

(EUR/NHW/both) 
337,199 

0.2432 

(0.242, 0.244) 

      GnomAD
‡
 

(EUR/NHW/both) 
7,496 

0.2421 

(0.235, 0.249) 
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* MESA = Multi-Ethnic Study of Atherosclerosis. Nonhispanic whites females were chosen and MAFs were calculated.  

** 1000GP = 1000 Genome Project 

*** ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points 

† http://pheweb.sph.umich.edu:5000/ 

‡ http://gnomad.broadinstitute.org 
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Figure 2.6 Linkage disequilibrium (LD) block around the two 

genome wide significant SNPs, rs4544201 and rs2006950. Graph 

represents all genotyped SNPs in the 34kb LD block on chromosome 

15q26.2. The color of each rectangle and number within indicates the 

level of LD between a pair of SNPs, with complete LD (𝐷′=100%, no 

number shown) indicated by red, and no LD indicated by white. 
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Table 2.5 Statistical analyses of imputed SNPs with CLR.  

CHR SNP POS Alleles
* MAF INFO

† 
P-value for  

CLR
‡ 

15 rs41374846 96143559 A/G 0.2605 0.9097 3.432×10
-9 

15 rs59125351 96144157 G/T 0.2510 0.9771 3.229×10
-10 

15 rs17581137 96146414 C/A 0.2336 0.9893 1.384×10
-10 

15 rs6496126 96148439 C/G 0.2330 0.9890 1.814×10
-10 

15 rs2397810 96148765 C/T 0.2330 0.9890 1.814×10
-10 

15 rs10520790 96151040 T/G 0.2478 0.9958 3.571×10
-10 

15 rs55804812 96151256 A/T 0.2475 0.9952 4.178×10
-10 

15 rs16975389 96153782 C/T 0.2463 0.9967 5.801×10
-10 

15 rs16975396 96158705 G/T 0.2466 0.9983 9.592×10
-10 

15 rs4628911 96167905 T/C 0.2472 1.0000 5.147×10
-10 

15 rs6496128 96168303 G/A 0.2472 1.0000 5.147×10
-10 

15 rs8029996 96168770 A/G 0.2472 0.9998 5.147×10
-10 

15 rs4551988 96169589 C/G 0.2472 0.9998 5.147×10
-10 

15 rs58878263 96171069 A/C 0.2493 0.9979 6.361×10
-10 

15 rs8040665 96175692 G/T 0.2487 0.9976 7.356×10
-10 

15 15:96175733 96175733 A/G 0.2466 0.9975 5.224×10
-10 

15 rs8040168 96176096 G/C 0.2466 0.9981 5.224×10
-10 

15 rs17504029 96177670 T/A 0.2478 0.9876 1.900×10
-10 

* Minor/Major alleles are listed. 

† INFO is the metric about imputation quality provided by IMPUTE2. 

‡ CLR was applied to imputed SNP genotype data to identify SNPs 

with significant association (P < 5×10-8) with S-LAM. 
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Table 2.6 PICS analysis to identify probable causal SNPs in the chr 

15q region. SNP rs41374846 (shown in bold) was identified as the 

probable causal SNP, with the highest PICS probability.  SNPs are 

sorted by PIC probability.  

CHR SNP
* POS P-value 𝐷′

† 𝑟2‡ PICS 

probability 

15 rs41374846 96143559 3.432×10
-9 1.0000 1.0000 0.6485 

15 rs59125351 96144157 3.229×10
-10 0.9703 0.7941 0.0352 

15 rs55804812 96151256 4.178×10
-10 0.9557 0.7758 0.0290 

15 rs16975389 96153782 5.801×10
-10 0.9555 0.7700 0.0272 

15 rs10520790 96151040 3.571×10
-10 0.9486 0.7698 0.0271 

15 rs16975396 96158705 9.592×10
-10 0.9480 0.7581 0.0239 

15 rs58878263 96171069 6.361×10
-10 0.9328 0.7287 0.0172 

15 rs8029996 96168770 5.147×10
-10 0.9325 0.7230 0.0161 

15 rs6496128 96168303 5.147×10
-10 0.9325 0.7230 0.0161 

15 rs4628911 96167905 5.147×10
-10 0.9325 0.7230 0.0161 

15 rs8040665 96175692 7.356×10
-10 0.9254 0.7171 0.0151 

15 rs17581137 96146414 1.384×10
-10 0.9529 0.7125 0.0143 

15 rs4544201 96167827 5.147×10
-10 0.9317 0.7116 0.0142 

15 rs4551988 96169589 5.147×10
-10 0.9183 0.7113 0.0141 

15 rs2397810 96148765 1.814×10
-10 0.9451 0.7008 0.0125 

15 rs6496126 96148439 1.814×10
-10 0.9380 0.7005 0.0124 

15 rs8040168 96176096 5.224×10
-10 0.9233 0.6887 0.0108 

† 𝐷′ = 𝐷𝐴𝐵/𝐷max  where 𝐷𝐴𝐵 : the frequency of the haplotype AB and 

𝐷max : theoretical maximum difference between the observed and 

expected haplotype frequencies. 

‡ 𝑟2 : squared correlation coefficient  
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2.3.2 Association of GWAS-significant SNPs with NR2F2 

The majority of SNPs associated with human disease or other 

phenotypes are thought to cause the association through effects on 

enhancer or other regulatory element function of a coding gene within 

the topologically associated domain (TAD) containing the SNP [57]. 

To identify the TAD containing these SNPs, I used TAD information 

available for four tissues: IMR90 cells, a fetal lung myofibroblast cell 

line; lung tissue; H1-MSC, a mesenchymal stem cell line; and HUVEC, 

human umbilical vein endothelial cells (Figures 2.7-10). In all four of 

these cells/tissues, NR2F2 was the only protein-coding gene within or 

near the boundary of the TAD containing the GWAS SNPs. This 

suggests that this SNP region may influence expression of NR2F2 as its 

mechanism of association with S-LAM. 

To examine this possibility in further detail, I conducted gene-

based analyses of association of SNPs within all three protein-coding 

genes in the 2 MB region of chromosome 15 surrounding the GWAS-

SNPs using SKAT-O. NR2F2 was the only one of the three genes 

located in this chromosomal region that showed a significant 

association (P-value=0.03, Table 2.7). 

NR2F2, also known as COUP-transcription factor II, encodes a 

member of the steroid/thyroid hormone superfamily of nuclear 
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receptors [58], and plays important roles in many developmental 

processes, including the neural crest [59], which is considered a 

potential candidate cell of origin of LAM [60], as well as in 

lymphangiogenesis and in angiogenesis [61]. Hence, I considered it a 

potential target of regulation by one of the SNPs showing a strong 

association with LAM (Table 2.6), and performed further studies. 
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Figure 2.7 Hi-C heatmap and TADs defined in IMR90 cells. The 

heatmap shows the degree of physical interaction defined by Hi-C 

analysis for genomic region pairs from a 3Mb region of chromosome 

15q. A deeper red color at the intersection point reflects a greater 

degree of interaction between the two genomic regions. The dotted 

lines indicate probable TAD structures in this region. The two blue 

shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction 

point between the SNP region and NR2F2. 
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Figure 2.8 Hi-C heatmap and TADs defined in lung tissue. The 

heatmap shows the degree of physical interaction defined by Hi-C 

analysis for genomic region pairs from a 3Mb region of chromosome 

15q. A deeper red color at the intersection point reflects a greater 

degree of interaction between the two genomic regions. The dotted 

lines indicate probable TAD structures in this region. The two blue 

shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction 

point between the SNP region and NR2F2. 
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Figure 2.9 Hi-C heatmap and TADs defined in H1 derived 

mesenchymal stem cells (h1-MSC) cells. The heatmap shows the 

degree of physical interaction defined by Hi-C analysis for genomic 

region pairs from a 3Mb region of chromosome 15q. A deeper red color 

at the intersection point reflects a greater degree of interaction between 

the two genomic regions. The dotted lines indicate probable TAD 

structures in this region. The two blue shaded regions at bottom 

indicate the genome wide significant SNP region (left) and NR2F2 

(right). The black circle reflects the interaction point between the SNP 

region and NR2F2. 
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Figure 2.10 Hi-C heatmap and TADs defined in HUVEC cells. The 

heatmap shows the degree of physical interaction defined by Hi-C 

analysis for genomic region pairs from a 3Mb region of chromosome 

15q. A deeper red color at the intersection point reflects a greater 

degree of interaction between the two genomic regions. The dotted 

lines indicate probable TAD structures in this region. The two blue 

shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction 

point between the SNP region and NR2F2. 
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Table 2.7 Gene-based analyses of SNP association with LAM. Three 

protein-coding genes were found on chromosome 15 from 94.2 Mb to 

98.2 Mb, the 2 Mb region surrounding the GWAS-SNPs, and gene-

based analysis for association with LAM was performed using SKAT-

O. 

Gene CHR Start* End† Number of SNPs P-value 

NR2F2 15 96869157 96883492 5 0.0307 

MCTP2 15 94774767 95027181 4 0.3579 

SPATA8 15 97326619 97328845 3 0.5250 

 

* Start position of the corresponding gene. 

† End position of the corresponding gene. 
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2.3.3 Analysis of NR2F2 in kidney angiomyolipoma and 

LAM 

Using RNA-seq data, I compared the gene expression of 4 four 

kidney angiomyolipomas and one abdominal LAM tumor with an 

extensive set of human cancers (from TCGA [53]), and normal tissues 

(from GTEX [54]) (Figure 2.11). NR2F2 expression was higher in the 

LAM-related tumors than any TCGA cancer (Figure 2.11a), and was 

also relatively highly expressed in LAM-related tumors in comparison 

to normal tissues (Figure 2.11b, P-value=6.38×10-6, Limma statistic) . 

In contrast, two other genes, SPATA8 and MCTP2, that were next 

closest to the SNP region showing association with LAM (1.1 and 

1.2Mb distant, Figure 2.4b) had no expression in the LAM-related 

tumors (data not shown). 

Immunohistochemistry (IHC) analysis also demonstrated strong 

nuclear expression of NR2F2 in both LAM lung and kidney 

angiomyolipoma sections (Figure 2.12). 
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Figure 2.11 Comparison of NR2F2 expression in kidney angiomyolipoma/LAM with cancer (TCGA) and normal tissues 

(GTEx). 

Boxplot figures are shown to compare expression of NR2F2 in 4 angiomyolipoma and one abdominal LAM lesion with 2463 

cancers of 27 types (from TCGA, brackets on x-axis include the number of samples analyzed per tumor type; abbreviations are 

explained in Table 2.8) in RSEM units (a); and with ~7,000 samples of 47 normal tissues (from GTEx) in RPKM units (b). 

Remarkably, NR2F2 gene expression is the highest compared to all TCGA tumors and higher compared to most GTEx normal 

tissues; similar to cervix, fallopian tubes, uterus and ovaries. The median value, interquartile range, and 95% ranges are shown, 

with outliers indicated by circles. In the X axis, the each number in brackets is the number of samples corresponding each tissue. 

Full terms for TCGA tumor abbreviations are explained in Table 2.8. 

 



48 

 

 



49 

 

 



50 

 

Table 2.8 TCGA tumor abbreviations 

Abbreviation Cancer type 

KIRP Kidney renal papillary cell carcinoma 

KIRC Kidney Renal Clear Cell Carcinoma 

SARC Sarcoma 

PAAD Pancreatic Adenocarcinoma 

OV Ovarian Serous Cystadenocarcinoma 

BRCA Breast Invasive Carcinoma 

UCS Uterine Carcinosarcoma 

KICH Kidney Chromophobe 

UCEC Uterine Corpus Endometrial Carcinoma 

LIHC Liver Hepatocellular Carcinoma 

SKCM Skin Cutaneous Melanoma 

ACC Adrenocortical Carcinoma 

BLCA Bladder Urothelial Carcinoma 

MESO Mesothelioma 

COAD Colon Adenocarcinoma 

LUAD Lung Adenocarcinoma 

THCA Thyroid Carcinoma 

READ Rectum Adenocarcinoma 

PCPG Pheochromocytoma and Paraganglioma 

LUSC Lung Squamous Cell Carcinoma 

GBM Glioblastoma Multiforme 

CESC Cervical Squamous Cell Carcinoma and Endocer
vical Adenocarcinoma 

HNSC Head and Neck Squamous Cell Carcinoma 

LGG Low Grade Glioma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymp
homa 

LAML Acute Myeloid Leukemia 
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Figure 2.12 Immunohistochemistry for NR2F2 in LAM and kidney 

angiomyolipoma. Strong nuclear staining is seen in lung LAM cells (a) 

and angiomyolipoma cells (b) (brown stain). Some other cells also have 

nuclear staining for NR2F2 but most do not.  
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2.4 Discussion 

LAM occurs almost exclusively in women of childbearing age. 

Most LAM patients who come to medical attention are sporadic cases 

without TSC, and the origins of LAM in S-LAM patients are 

completely unknown. In the present study, I conducted a GWAS in a 

large cohort of S-LAM subjects. Two intergenic SNPs, rs4544201 and 

rs2006950, were identified in a 34kb LD block on chromosome 15, that 

met genome-wide significance for association with LAM (Table 2.3). 

The association was replicated in a validation population.  

The SNPs with association to S-LAM lie in a gene desert on 

distal chromosome 15q26.2. The nearest protein-coding gene is NR2F2, 

700kb away, and consideration of chromatin TADs in this region 

indicates that only NR2F2 is in/on the border of the TAD region 

containing the SNPs showing association with S-LAM in four relevant 

cells/tissues, suggesting that these SNP alleles may influence NR2F2 

expression as the potential mechanism of their association with S-LAM 

development.  

NR2F2 is an orphan nuclear receptor known to play important 

roles in both normal tissue development and in tumorigenesis [62], 

making it a promising candidate driver gene in LAM pathogenesis. 

LAM occurs nearly exclusively in women, and estrogen levels 
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influence LAM development and progression [63, 64]. siRNA 

knockdown of ERα (Estrogen Receptor) in MCF-7 breast cancer cells 

decreased NR2F2 expression, while treatment with estradiol increased 

its expression [65]. This interaction between ERα and NR2F2 may also 

play a role in LAM development. 

NR2F2 is highly expressed in LAM and angiomyolipoma by 

RNA-Seq analysis in comparison to large cancer and normal tissue data 

sets, and NR2F2 shows high expression with nuclear localization in 

both LAM and angiomyolipoma by IHC. Although I did not identify an 

eQTL relationship for any of the 20 SNPs associated with S-LAM for 

any gene in any normal tissue or cancer type [54], it is possible that 

such an eQTL relationship exists for LAM cells.  I also note that the 

region of these SNPs contains several non-coding long RNAs, some 

antisense transcripts, and microRNA miR1469 (Figure 2.11a). It is 

possible that expression of one or more of these noncoding genes are 

affected by these SNP alleles, and have a role in LAM development, a 

possibility which requires further investigation. 

Lymphatic involvement in LAM is a hallmark pathologic 

feature with LAM cell clusters in the lung showing marked enrichment 

for lymphatic vessels [66, 67]. VEGF-D is a probable driver of 

lymphatic vessel growth in LAM, as serum VEGF-D levels are 
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increased in the majority of LAM patients, and serves as a diagnostic 

biomarker of LAM [68]. In mice, NR2F2 has been shown to be 

required, with SOX18, for the polarized expression of PROX1 in a 

subset of endothelial cells within the cardinal vein at embryonic day 9.5, 

an event that leads to development of the lymphatic endothelium [69]. 

Hence there is also a potential connection between NR2F2, VEGF-D, 

lymphatic development, and LAM pathogenesis. 

There are potential limitations to our study. Although our cohort 

of samples was large for a rare disease like S-LAM, it was of only 

moderate size for GWAS. Second, to collect sufficient LAM subjects, I 

employed a worldwide recruitment strategy for S-LAM patients of 

European origin. Although our controls were all from the USA, they 

were selected for European ancestry. In addition, I employed 

EIGENSTRAT to identify genetic outliers from both our S-LAM and 

control cohorts to further reduce genetic heterogeneity. Further 

functional analyses to confirm our hypothesis that NR2F2 is the gene 

affected by this SNP is limited by the absense of a reliable LAM tumor 

cell line, the low abundance of LAM cells in LAM lung specimens, and 

lack of a LAM animal model. 

In conclusion, our GWAS has identified non-coding SNPs on 

chr15q26.2 whose alleles are associated with S-LAM, that are located 
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in a TAD containing the orphan nuclear receptor NR2F2, suggesting a 

model in which these SNP alleles influence NR2F2 expression and 

thereby LAM pathogenesis. NR2F2 is relatively highly expressed in 

LAM and LAM-related tumors. NR2F2 has not previously been 

implicated in LAM, and these novel and unexpected findings will 

hopefully lead to better understanding of the pathogenesis of this often 

progressive and lethal lung disorder. 
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This chapter was published in Statistics in Medicine  

as a partial fulfillment of Wonji Kim’s Ph.D program. 

 

 

Chapter 3 

Selecting Cases and Controls for  

Genome-wide Association Studies Using 

Family Histories of Disease 

 

3.1 Introduction 

Over the last several decades, DNA sequencing technologies 

have greatly improved, and the rate of decline in sequencing costs has 

even outpaced Moore’s law [70-73]. This progress has enabled well-

powered investigations into the associations between human diseases 

and rare variants. Clues to the so-called “missing heritability” problem 

are also expected to emerge, as rare causal variants have been 



57 

 

suggested as a possible cause [74, 75]. However, large-scale genetic 

association analyses often suffer from extreme multiple testing 

problems, and the cost of whole-genome sequencing is still expensive. 

Furthermore, the common disease-rare variant hypothesis [76] assumes 

multiple rare disease susceptibility loci, suggesting that causal variants 

for each affected subject may be substantially different, and this genetic 

heterogeneity among affected subjects has also complicated genetic 

association analyses. Therefore, in spite of remarkable improvement in 

sequencing technology, development of efficient strategies for selecting 

informative subjects is still necessary, and various statistical methods 

have been investigated for use in genetic association studies. 

Subjects with many affected relatives tend to contain more 

disease genotypes for heritable diseases, and it has been empirically 

shown that their ascertainment for genetic studies have often led to 

additional improvements in statistical power [77-80]. In particular, the 

probability of being affected depends on both the number of 

affected/unaffected relatives and familial relationships. For instance, 

subjects with affected siblings have a greater chance of being affected 

than those with unaffected siblings, and the former rather than the latter 

are often selected for association analyses [77-80]. Between subjects 

with three affected and one unaffected grandparent and those with a 
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single affected parent, it is unclear which would be more efficient for 

genetic association studies. However, such complicated scenarios have 

rarely been considered due to the absence of appropriate statistical 

approaches, and many genetic association studies use only the number 

of affected first-degree relatives [77-80]. 

In this report, I propose a new statistical method for selecting 

informative subjects based on the disease status of their relatives  [81] . 

In our method, quantifying the how informative subjects are for 

association analyses requires knowing the prevalence and heritability of 

diseases a priori. In particular, prevalence is defined by the proportion 

of affected individuals in a population, and it is often available for 

many diseases. However, heritability for dichotomous phenotypes, 

which is defined by the proportion of the total phenotypic variance 

attributable to genetic components and estimated by familial correlation 

for quantitative phenotypes, can have different interpretations 

according to considered statistical models. For instance, heritability can 

be estimated from twin studies [82] or Falconer’s liability threshold 

model [83]. The former estimates heritability through correlation of the 

disease status of monozygotic vs. dizygotic twins. The latter assumes 

that there are unobserved liability scores, and heritability is defined by 

correlation of liability scores, which can be understood as a correlation 
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at the model scale [84], and some literature shows their asymptotic 

relationship [23]. Heritability estimation at the observed data scale [84] 

is intuitively easier to understand, but its application to general family 

structures is not straightforward. Therefore, I consider heritability 

estimates from the liability threshold model in the remainder of this 

report. 

Our model is based on the expectation of unobserved liability 

scores for subjects when the disease status of those subjects and their 

relatives are conditioned. The liability threshold model assumes that the 

disease status of each subject is affected if the unobserved liability 

score exceeds a threshold that is determined by prevalence; otherwise, 

the status is unaffected. It should be noted that this liability threshold 

model is equivalent to the probit model for independent samples [85]. 

The unobserved liability scores are assumed to follow the normal 

distribution, and I calculate the conditional expectation with moment-

based methods [86]. The proposed method can utilize the disease status 

of any type of relative, and using extensive simulation studies, I show 

that the statistical power is maximized when subjects with high and low 

risk are selected as cases and controls, respectively. The proposed 

methods were applied to genome-wide association studies (GWAS) for 

type-2 diabetes (T2D) with data collected from the Korea Association 
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REsource (KARE) project and Seoul National University Hospital in 

Korea (SNUH). The discovery of promising disease susceptibility loci 

illustrates the practical value of the proposed method.  
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3.2 Methods 

3.2.1 Notations and the disease model 

We assume that there are n independent subjects and that 

subject i has ni relatives (i=1, …, n). I assume that the disease locus is 

biallelic, and denote normal and disease alleles by d and D, respectively. 

Their allele frequencies are assumed to be pd and pD, respectively. The 

genotypes are coded as the number of disease alleles, and genotype 

frequencies are assumed to follow HWE in a population. I denote the 

genotypes of subject i and his/her relative j by Gi and Gij
r respectively, 

and the genotype vectors are defined by 

𝐆𝑖
𝑟 = (

𝐺𝑖1
𝑟

⋮
𝐺𝑖𝑛𝑖

𝑟
) and 𝐆𝑖 = (

𝐆𝑖
𝑟

𝐺𝑖

). 

We consider the liability threshold model [83], and dichotomous 

phenotypes are determined by the unobserved continuous liability score. 

The liability scores of subject i and his/her relative j are denoted by Li  

and Lij
r, respectively. The liability vector for relatives of subject i is 

denoted by 

𝐋𝑖
𝑟 = (

𝐿 𝑖1
𝑟

⋮
𝐿𝑖𝑛𝑖

𝑟
), 

and that of both Li and 𝐋𝑖
𝑟 is 
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𝐋𝑖 = (
𝐋𝑖

𝑟

𝐿 𝑖

). 

We assume that liabilities are determined by summing the 

environmental effect, main genetic effect, polygenic effect, and random 

error. The environmental effects for subject i and his/her relatives are 

denoted by Zi and Zij
r, and their vectors are defined by 

𝐙𝑖
𝑟 = (

𝑍𝑖1
𝑟

⋮
𝑍𝑖𝑛𝑖

𝑟
) and 𝐙𝑖 = (

𝐙𝑖
𝑟

𝑍𝑖

). 

Liability scores tend to be similar between family members, and I 

consider the simple additive polygenic effect model.  I denote a w×w 

dimensional identity matrix by Iw and a w dimensional column vector, 

of which all elements are 0 and 1 by 0w and 1w, respectively. Then, if I 

let 𝜎𝑔
2 and 𝜎𝑒

2

 
be variances of polygenic effects and random residual 

effects, respectively, and let Zi include the intercept, I can assume that 

𝐋𝑖 = 𝐙𝑖𝛽0 + 𝐆𝑖𝛽 + 𝐏𝑖 + 𝐄𝑖 , 

𝐏𝑖 ∼ 𝑀𝑉𝑁(𝟎𝑛𝑖+1, 𝜎𝑔
2𝚿𝑖), 𝐄𝑖 ∼ 𝑀𝑉𝑁(𝟎𝑛𝑖+1, 𝜎𝑒

2𝐈𝑛𝑖+1).   (1) 

Here, 𝚿𝑖 indicates the kinship coefficient matrix for both subject i and 

his/her relatives. I denote the kinship coefficient between subject i and 

his/her relative j by πij and that between two relatives j and j' by 𝜋𝑖𝑗𝑗′
𝑟 . 

Similarly, 𝑑𝑖 and 𝑑𝑖𝑗
𝑟  denote the inbreeding coefficients for subject i 
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and his/her relative j, respectively. The inbreeding coefficient, which 

ranges from 0 to 1, quantifies the departure from HWE and can be 

easily estimated using known pedigree by currently available R 

packages, e.g. pedigreemm [87, 88]. Then, 𝚿𝑖
𝑟 and 𝚿𝑖 are defined by 

𝚿𝑖
𝑟 =

(

 
 

1 + 𝑑𝑖1
𝑟 2𝜋𝑖12

𝑟 … 2𝜋𝑖1𝑛𝑖

𝑟

2𝜋𝑖12
𝑟 1 + 𝑑𝑖2

𝑟 ⋱ ⋮

⋮ ⋱ ⋱ 2𝜋𝑖(𝑛𝑖−1)𝑛𝑖

𝑟

2𝜋𝑖1𝑛𝑖

𝑟 … 2𝜋𝑖(𝑛𝑖−1)𝑛𝑖

𝑟 1 + 𝑑𝑖𝑛𝑖

𝑟
)

 
 

 

and  

𝚿𝑖 =

(

 
 

1 + 𝑑𝑖1
𝑟 … 2𝜋𝑖1𝑛𝑖

𝑟 2𝜋𝑖1

⋮ ⋱ ⋮ ⋮
2𝜋𝑖1𝑛𝑖

𝑟 … 1 + 𝑑𝑖𝑛𝑖

𝑟 2𝜋𝑖𝑛𝑖

2𝜋𝑖1 … 2𝜋𝑖𝑛𝑖
1 + 𝑑𝑖)

 
 

. 

Genomic relationships may have more information to better infer 

individual liability than the kinship coefficients. However, the genomic 

relationship matrix can be obtained only when the genotypes are known, 

which may not be the case in our study design. 

 The dichotomous phenotypes for subject i and his/her relative j 

are denoted by 𝑌𝑖 and 𝑌𝑖𝑗
𝑟, respectively, and they are coded as 1 for 

cases and 0 for controls. In a liability threshold model, 𝑌𝑖 and 𝑌𝑖𝑗
𝑟 are 

determined by 𝐿 𝑖  and 𝐿𝑖𝑗
𝑟 , respectively; if 𝐿 𝑖  and 𝐿𝑖𝑗

𝑟  are above a 

certain threshold value c, 𝑌𝑖  and 𝑌𝑖𝑗
𝑟  become 1, and otherwise they 
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become 0. c can be determined from the prevalence of the diseases, and 

the phenotype vector for relatives of the subject i is denoted by 

𝐘𝑖
𝑟 = (

𝑌𝑖1
𝑟

⋮
𝑌𝑖𝑛𝑖

𝑟
) = (

𝐼(𝐿𝑖1
𝑟 > 𝑐)
⋮

𝐼(𝐿 𝑖𝑛𝑖

𝑟 > 𝑐)
). 

and that for the subject i and his/her relatives is denoted by 

𝐘𝑖 = (
𝐘𝑖

𝑟

𝑌𝑖

). 

Several algorithms have been suggested to estimate c with prevalence, 

q, and heritability, h2, known a priori. For instance, if I denote the 

cumulative function of a standard normal distribution by Φ and there 

are no covariate effects other than the intercept, I can set β0 to be 0 

without the loss of generality, and c can be obtained by the following 

equation: 

Φ(−
𝑐

√𝜎𝑔
2 + 1

) = 1 − 𝑞. 

If the environmental effect, Z, follows the normal distribution, and I 

denote its variance by𝜎𝑧
2, c can be obtained by 

Φ(−
𝑐

√𝜎𝑧
2 + 𝜎𝑔

2 + 1
) = 1 − 𝑞. 
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3.2.2 Selection of samples with extreme phenotypes 

Subjects with extreme phenotypes lead to improvement of 

statistical power in genetic association studies [89-93], and association 

analyses have often been conducted with such subjects. At the sample 

selection stage, genotypes of subjects are not known, and I assume β = 

0 in equation (1). In particular, environmental factors can affect the 

dichotomous phenotypes and if their effects are known, I can then 

define the adjusted extreme phenotypes for dichotomous phenotypes by 

the following conditional expectation (CE) of liability scores: 

CE = 𝐸(𝐿𝑖 − 𝑍𝑖𝛽0|𝐘𝑖 , 𝐙𝑖) 

CEs were calculated with a moment-based method [86] and the detailed 

algorithm is provided in the Appendix. Once I calculated these for all 

subjects, na affected subjects with the largest CEs and nu unaffected 

subjects with the smallest CEs were selected for genetic association 

studies. 

Computation of CEs assumes that h2 (heritability), q 

(prevalence), Z, and β0 are known. While h2, q, and Z are often 

available a priori, the regression coefficients of environment effects are 

usually estimated from logistic regression, and they cannot be used as 

estimates of β0 in equation (1). For independent subjects, liability 

threshold models are equivalent to the generalized linear model with an 
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inverse of a cumulative normal distribution as a link function, and if I 

assume that mean and variance for the cumulative normal distribution 

are 0 and 1.6, respectively, it is approximately equal to the logistic 

regression [94]. Therefore, if I let 

𝜎𝑔
2 = 1.6ℎ2 and 𝜎𝑒

2 = 1.6(1 − ℎ2), 

regression coefficients from logistic regressions can be directly used as 

β0. 
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3.2.3 Statistical power when the family history of disease 

is controlled 

The statistical power for genetic association analysis with a 

case-control study design can be calculated when the relatives’ 

phenotypes are conditioned. I consider the liability model in equation 

(1) and assume a major disease gene model. If I let q be the prevalence 

of the disease and I denote the genotype relative risks by 

𝑓1 =
𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝐷𝑑)

𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝑑𝑑)
 and 𝑓2 =

𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝐷𝐷)

𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝑑𝑑)
. 

under HWE, penetrances can be parameterized by 

𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝑑𝑑) =
𝑞

𝑝𝐷
2𝑓2 + 2𝑝𝐷𝑝𝑑𝑓1 + 𝑝𝑑

2 

𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝐷𝑑) = 𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝑑𝑑)𝑓1 

and 

𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝐷𝐷) = 𝑃(𝑌𝑖 = 1|𝐺𝑖 = 𝑑𝑑)𝑓2. 

The expected disease allele frequencies (DAFs) for the affected subject 

i and the unaffected subject i' are 

𝑃(𝐺𝑖|𝑌𝑖 = 1, 𝐘𝑖
𝑟) = ∑𝑃(𝐺𝑖 , 𝐆𝑖

𝑟|𝑌𝑖 = 1, 𝐘𝑖
𝑟)

𝐆𝑖
𝑟

= ∑
𝑃(𝑌𝑖 = 1, 𝐘𝑖

𝑟|𝐺𝑖 ,𝐆𝑖
𝑟)𝑃(𝐺𝑖 ,𝐆𝑖

𝑟)

𝑃(𝑌𝑖 = 1, 𝐘𝑖
𝑟)

𝐆𝑖
𝑟

  

and  
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𝑃(𝐺𝑖′|𝑌𝑖′ = 1,𝐘𝑖′
𝑟) = ∑𝑃(𝐺𝑖′ ,𝐆𝑖′

𝑟 |𝑌𝑖′ = 1, 𝐘𝑖′
𝑟)

𝐆𝑖′
𝑟

= ∑
𝑃(𝑌𝑖′ = 1,𝐘𝑖′

𝑟|𝐺𝑖′ ,𝐆𝑖′
𝑟 )𝑃(𝐺𝑖′,𝐆𝑖′

𝑟 )

𝑃(𝑌𝑖′ = 1, 𝐘𝑖′
𝑟)

𝐆𝑖′
𝑟

. 

If 𝜎𝑔
2 = 0, both conditional probabilities can be simplified to 

𝑃(𝐺𝑖|𝑌𝑖 = 1, 𝐘𝑖
𝑟)

=
𝑃(𝐺𝑖)𝑃(𝑌𝑖 = 1|𝐺𝑖)

𝑃(𝑌𝑖′ = 1, 𝐘𝑖′
𝑟)

∑{(∏𝑃(𝑌𝑖𝑗
𝑟|𝐺𝑖𝑗

𝑟 )

𝑛𝑖

𝑗=1

)𝑃(𝐆𝑖
𝑟|𝐺𝑖)}

𝐆𝑖
𝑟

,  

and otherwise, 𝑃(𝐺𝑖|𝑌𝑖 = 1, 𝐘𝑖
𝑟) can be numerically calculated. DAFs 

for case i and control i' can be obtained by 

P(𝐺𝑖 = 𝐷𝐷|𝑌𝑖 = 1, 𝐘𝑖
𝑟) + 0.5P(𝐺𝑖 = 𝐷𝑑|𝑌𝑖 = 1, 𝐘𝑖

𝑟) 

and 

P(𝐺𝑖′ = 𝐷𝐷|𝑌𝑖′ = 1, 𝐘𝑖′
𝑟) + 0.5P(𝐺𝑖′ = 𝐷𝑑|𝑌𝑖′ = 1, 𝐘𝑖′

𝑟). 

Therefore, if I assume that there are na cases and nu controls and let 

𝑝𝐷
𝑎 =

1

𝑛𝑎

∑{P(𝐺𝑖 = 𝐷𝐷|𝑌𝑖 = 1, 𝐘𝑖
𝑟) + 0.5P(𝐺𝑖 = 𝐷𝑑|𝑌𝑖 = 1, 𝐘𝑖

𝑟)}

𝑛𝑎

𝑖=1

 

and 

𝑝𝐷
𝑢 =

1

𝑛𝑢

∑{P(𝐺𝑖′ = 𝐷𝐷|𝑌𝑖′ = 1, 𝐘𝑖′
𝑟) + 0.5P(𝐺𝑖′ = 𝐷𝑑|𝑌𝑖′ = 1, 𝐘𝑖′

𝑟)}

𝑛𝑢

𝑖′=1

, 

the statistical power for a Cochran Armitage test [95, 96] under the 

alternative hypothesis can be obtained from 
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𝜒2 (𝑑𝑓 = 1, NCP =
(𝑝𝐷

𝑎 − 𝑝𝐷
𝑢)2

𝑝𝐷
𝑎(1 − 𝑝𝐷

𝑎) 𝑛𝑎⁄ + 𝑝𝐷
𝑢(1 − 𝑝𝐷

𝑢) 𝑛𝑢⁄
). 

If I denote the α quantile of the central chi-square distribution with a 

single degree of freedom by 𝜒𝛼
2(𝑑𝑓 = 1) , the statistical power at 

significance level α becomes 

P{𝜒2 (𝑑𝑓 = 1, NCP =
(𝑝𝐷

𝑎 − 𝑝𝐷
𝑢)2

𝑝𝐷
𝑎(1− 𝑝𝐷

𝑎) 𝑛𝑎⁄ + 𝑝𝐷
𝑢(1− 𝑝𝐷

𝑢) 𝑛𝑢⁄
)

> 𝜒𝛼
2(𝑑𝑓 = 1)}. 
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3.3 Simulation study 

3.3.1 The simulation model 

We assume that there are n subjects with known phenotypes 

and that na cases and nu controls are selected among these for 

genotyping (n ≥ na + nu). I also assume that phenotypes for each 

subject’s relatives are available, and  I consider three different scenarios: 

(1) phenotypes of two parents and four siblings are known; (2) 

phenotypes of four grandparents, two parents, and four siblings are 

known; and (3) phenotypes of two parents and four siblings are known 

for half of the subjects, and phenotypes of four grandparents, two 

parents, and four siblings are known for the other half. Pedigrees for 

scenarios 1 and 2 are provided in Figure 3.1. The pD was assumed to be 

0.2, and genotype frequencies were obtained under HWE. Founders’ 

genotypes in each family were generated from B(2, pD), and the non-

founders’ genotypes were obtained by randomly generated Mendelian 

transmissions. To generate phenotypes, I considered the disease model 

in equation (1). I assumed no environmental effect, and β0 was assumed 

to be 0. The polygenic effect and random errors for relatives of subject 

i were independently generated from the multivariate normal 

distribution with variances 𝜎𝑔
2 and 𝜎𝑒

2, respectively. The main genetic 
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effect was obtained by the product of β and the number of disease 

alleles. If I let 

ℎ2 =
2𝛽2𝑝𝐷𝑝𝑑 + 𝜎𝑔

2

2𝛽2𝑝𝐷𝑝𝑑 + 𝜎𝑔
2 + 𝜎𝑒

2
 and ℎ𝑎

2 =
2𝛽2𝑝𝐷𝑝𝑑

2𝛽2𝑝𝐷𝑝𝑑 + 𝜎𝑔
2 + 𝜎𝑒

2
, 

𝜎𝑔
2

 
and β are obtained by the assumed h2 and ℎ𝑎

2 . Here, h2 and ℎ𝑎
2  

indicate the heritability and the relative proportion of variance 

explained by the disease genes. Once liabilities were generated, they 

were transformed into affected if larger than the threshold c, and 

otherwise were considered unaffected. The value of c was chosen to 

preserve the assumed prevalences of q = 0.1 or q = 0.2. For the 

evaluation of type-I errors and power, I assumed ℎ𝑎
2  to be 0 and 0.005, 

respectively, and h2 was assumed to be 0.2 and 0.4, respectively. If ℎ𝑎
2  

was set to 0, β became 0, which indicates the null hypothesis (no 

association between genetic variants and phenotypes). Empirical size 

and power estimates were calculated with 2,000 replicates at several 

significance levels. In each replicate, I assumed that n = 10,000, and 

both na and nu were assumed to be 500. Genetic association analyses 

were conducted under the assumption that genotypes were available 

only for na cases and nu controls. 

We considered five different strategies for selecting cases and 

controls: (S1) cases and controls were randomly selected from affected 
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and unaffected subjects, respectively; (S2) affected subjects with the 

highest CEs were selected as cases, and controls were randomly 

selected; (S3) affected subjects with the highest CEs and unaffected 

subjects with the lowest CEs were selected as cases and controls, 

respectively; (S4) cases were randomly selected, and unaffected 

subjects with the lowest CEs were selected as controls; and (S5) 

affected subjects with the lowest CEs and unaffected subjects with the 

highest CEs were selected as cases and controls, respectively. 

Moreover, for comparing the proposed method to a simple heuristic 

rule, I additionally considered another strategy (S6), where the largest 

(smallest) number of affected first-degree relatives was selected as 

cases (controls). And then, I compared empirical sizes and powers 

using logistic regression. 
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Figure 3.1 Family history of disease. The person indicated by an 

arrow is a proband. 
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3.3.2 Evaluation of selection strategy with simulated data 

We investigated the effect of the selection strategy with 

simulated data. Six strategies, S1 to S6, which I described in the 

Method section, were used for genetic association analyses and were 

performed with the logistic regression. For each strategy, I selected 500 

cases and 500 controls from 10,000 individuals, and empirical type-I 

errors and power were evaluated for each scenario with 2,000 replicates. 

Quantile-quantile (QQ) plots (Figure 3.2)  

show that the nominal significance level was generally well preserved 

for scenario 1, and the empirical type-I error rates generally preserved 

the nominal significance level (Table 3.1). Figures 3.3-4 and Tables 

3.2–3 show that the nominal significance levels were generally well 

preserved for scenarios 2 and 3 as well. Therefore, I can conclude that 

selection of cases and controls using CEs does not affect statistical 

validity. 

Empirical power levels were calculated at 0.005, 0.05, and 0.01 

significance levels. I assumed that ℎ𝑎
2  = 0.005, h2 = 0.2 or 0.4, and q = 

0.1 or 0.2. Table 3.4 (scenario 1) shows that S3 was always the most 

efficient strategy among S1-S5, followed by S2 and S4. Interestingly, 

the statistical power estimates for S3 tended to be larger when the 

prevalence was larger and heritability was smaller, which indicates that 
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the proposed method would be useful for common diseases. S5 always 

gave the highest rates of false-negative findings, as this strategy 

minimizes differences in DAFs between cases and controls. Table 3.5 

(scenario 2) and Table 3.6 (scenario 3) showed very similar patterns to 

scenario 1. Therefore, I concluded that cases and controls ascertained 

with S3 leads to substantial improvement in power. 

S6, the simple heuristic rule, showed an empirical power almost similar 

to that of S3 in scenario 1 (Table 3.4), i.e., S3 and S6 show no 

significant difference in performance when pedigrees are composed of 

only nuclear families with the same structure. However, since the 

proposed method considers not only the affected relatives, but also the 

unaffected relatives, S3 will be superior to S6 if many nuclear families 

of different structures are available. Moreover, S3 showed a better 

performance than S6 when pedigree structures were complex, as shown 

in Table 3.5 and Table 3.6, because S3 utilizes the disease status of all 

relatives, and not just first-degree ones. Therefore, as the degree of the 

known relatives increases, the proposed method gains strength because 

it uses all information, rather than being a simple heuristic rule. 
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Figure 3.2 Quantile-quantile (QQ) plots of simulated data for 

scenario 1. I assume that ℎ2 = 0.2 and 𝑞 = 0.1, and scenario 1 was 

assumed for relatives’ family structure. QQ plots were generated from 

2,000 replicates 
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Table 3.1 Empirical type-I error estimates for scenario 1. Scenario 

1 was considered for family structures of subjects’ relatives. The 

empirical type-I errors were estimated with 2,000 replicates, and 

heritabilities were set to be 0.2 and 0.4. 

 

h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e S6

f 

0.2 

0.1 
0.005 0.0055 0.0065 0.0040 0.0070 0.0050 0.0050 
0.01 0.0070 0.0135 0.0090 0.0100 0.0105 0.0085 
0.05 0.0515 0.0605 0.0510 0.0525 0.0555 0.0430 

0.2 
0.005 0.0020 0.0050 0.0040 0.0070 0.0070 0.0050 
0.01 0.0050 0.0090 0.0100 0.0110 0.0115 0.0100 
0.05 0.0395 0.0430 0.0550 0.0540 0.0520 0.0505 

0.4 

0.1 
0.005 0.0045 0.0045 0.0050 0.0040 0.0060 0.0030 
0.01 0.0090 0.0120 0.0115 0.0085 0.0145 0.0115 
0.05 0.0440 0.0475 0.0450 0.0445 0.0495 0.0600 

0.2 
0.005 0.0050 0.0050 0.0045 0.0035 0.0070 0.0045 
0.01 0.0110 0.0095 0.0085 0.0085 0.0105 0.0095 
0.05 0.0555 0.0490 0.0460 0.0470 0.0510 0.0450 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly 

selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls) 

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected 

as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls) 

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first-degree 

relatives were selected as cases(controls) 
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Figure 3.3 Quantile-quantile (QQ) plots of simulated data for 

scenario 2. I assume that ℎ2 = 0.2 and 𝑞 = 0.1, and scenario 2 was 

assumed for relatives’ family structure. QQ plots were generated from 

2,000 replicates 
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Figure 3.4 Quantile-quantile (QQ) plots of simulated data for 

scenario 3. I assume that ℎ2 = 0.2 and 𝑞 = 0.1, and scenario 3 was 

assumed for relatives’ family structure. QQ plots were generated from 

2,000 replicates 
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Table 3.2 Empirical type-I error estimates for scenario 2. Scenario 

2 was considered for family structures of subjects’ relatives. The 

empirical type-I errors were estimated with 2,000 replicates, and 

heritabilities were set to be 0.2 and 0.4. 

 

h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e S6

f 

0.2 

0.1 
0.005 0.0035 0.0035 0.0040 0.0040 0.0040 0.0045 
0.01 0.0075 0.0095 0.0090 0.0095 0.0105 0.0095 
0.05 0.0500 0.0560 0.0500 0.0500 0.0500 0.0420 

0.2 
0.005 0.0070 0.0030 0.0050 0.0065 0.0065 0.0045 
0.01 0.0145 0.0095 0.0080 0.0095 0.0090 0.0110 
0.05 0.0545 0.0415 0.0455 0.0460 0.0535 0.0540 

0.4 

0.1 
0.005 0.0055 0.0090 0.0075 0.0045 0.0035 0.0055 
0.01 0.0100 0.0155 0.0120 0.0090 0.0095 0.0100 
0.05 0.0455 0.0555 0.0520 0.0420 0.0440 0.0375 

0.2 
0.005 0.0070 0.0050 0.0030 0.0035 0.0055 0.0065 
0.01 0.0130 0.0100 0.0075 0.0065 0.0110 0.0110 
0.05 0.0530 0.0570 0.0535 0.0500 0.0475 0.0550 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly 

selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls) 

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected 

as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls) 

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first-degree 

relatives were selected as cases(controls) 
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Table 3.3 Empirical type-I error estimates for scenario 3. Scenario 

3 was considered for family structures of subjects’ relatives. The 

empirical type-I errors were estimated with 2,000 replicates, and 

heritabilities were set to be 0.2 and 0.4. 

 

h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e S6

f 

0.2 

0.1 
0.005 0.0050 0.0045 0.0030 0.0025 0.0035 0.0045 
0.01 0.0070 0.0090 0.0080 0.0085 0.0085 0.0095 
0.05 0.0470 0.0450 0.0580 0.0525 0.0515 0.0520 

0.2 
0.005 0.0040 0.0055 0.0060 0.0070 0.0065 0.0060 
0.01 0.0075 0.0090 0.0105 0.0120 0.0135 0.0130 
0.05 0.0420 0.0440 0.0570 0.0570 0.0495 0.0650 

0.4 

0.1 
0.005 0.0060 0.0075 0.0055 0.0025 0.0050 0.0055 
0.01 0.0095 0.0135 0.0105 0.0095 0.0115 0.0130 
0.05 0.0450 0.0560 0.0480 0.0500 0.0515 0.0540 

0.2 
0.005 0.0055 0.0040 0.0060 0.0040 0.0045 0.0045 
0.01 0.0085 0.0075 0.0120 0.0080 0.0085 0.0100 
0.05 0.0475 0.0450 0.0460 0.0480 0.0455 0.0490 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly 

selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls) 

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected 

as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls) 

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first-degree 

relatives were selected as cases(controls) 
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Table 3.4 Empirical power estimates for scenario 1. The empirical 

power levels were estimated with 2,000 replicates at different levels of 

significance. I assumed that ha
2=0.005, h2 = 0.2 and 0.4, and q = 0.1 

and 0.2. 

 

h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e S6

f 

0.2 

0.1 
0.005 0.2675 0.4820 0.6635 0.4255 0.0030 0.6645 
0.01 0.3505 0.5795 0.7450 0.5245 0.0085 0.7450 
0.05 0.5880 0.8070 0.8980 0.7545 0.0520 0.8980 

0.2 
0.005 0.2210 0.5520 0.8220 0.4825 0.0095 0.8265 
0.01 0.2840 0.6515 0.8815 0.5745 0.0195 0.8810 
0.05 0.5260 0.8480 0.9645 0.7790 0.0930 0.9670 

0.4 

0.1 
0.005 0.2700 0.4445 0.6090 0.4325 0.0085 0.6090 
0.01 0.3525 0.5285 0.6925 0.5130 0.0155 0.6915 
0.05 0.5950 0.7640 0.8670 0.7530 0.0675 0.8660 

0.2 
0.005 0.1825 0.4730 0.7010 0.4210 0.0055 0.6935 
0.01 0.2425 0.5625 0.7825 0.5005 0.0135 0.7780 
0.05 0.4725 0.7855 0.9215 0.7210 0.0530 0.9225 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly 

selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls) 

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected 

as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls) 

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first -degree 

relatives were selected as cases(controls) 
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Table 3.5 Empirical power estimates for scenario 2. The empirical 

power levels were estimated with 2,000 replicates at different levels of 

significance. I assumed that ha
2=0.005, h2 = 0.2 and 0.4, and q = 0.1 

and 0.2. 

 

h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e S6

f 

0.2 

0.1 
0.005 0.2715 0.4960 0.7275 0.5165 0.0070 0.6730 
0.01 0.3555 0.5855 0.7970 0.6160 0.0110 0.7565 
0.05 0.6115 0.8010 0.9320 0.8240 0.0415 0.9030 

0.2 
0.005 0.1930 0.5940 0.9000 0.5485 0.0165 0.8115 
0.01 0.2750 0.6840 0.9310 0.6530 0.0270 0.8685 
0.05 0.5030 0.8595 0.9775 0.8415 0.0960 0.9565 

0.4 

0.1 
0.005 0.2630 0.4355 0.6425 0.4625 0.0060 0.5850 
0.01 0.3540 0.5285 0.7320 0.5585 0.0120 0.6795 
0.05 0.5955 0.7495 0.8930 0.7875 0.0555 0.8720 

0.2 
0.005 0.1910 0.5080 0.7940 0.4870 0.0050 0.7185 
0.01 0.2695 0.5975 0.8520 0.5800 0.0080 0.7855 
0.05 0.4985 0.8030 0.9525 0.7885 0.0480 0.9185 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly 

selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls) 

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected 

as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls) 

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first -degree 

relatives were selected as cases(controls) 
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Table 3.6 Empirical power estimates for scenario 3. The empirical 

power levels were estimated with 2,000 replicates at different levels of 

significance. I assumed that ha
2=0.005, h2 = 0.2 and 0.4, and q = 0.1 

and 0.2. 

 

h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e S6

f 

0.2 

0.1 
0.005 0.2700 0.4970 0.7475 0.5180 0.0045 0.6645 
0.01 0.3490 0.5825 0.8065 0.6075 0.0095 0.7495 
0.05 0.5980 0.7950 0.9245 0.8120 0.0405 0.9065 

0.2 
0.005 0.2135 0.5635 0.8860 0.5770 0.0185 0.8030 
0.01 0.2850 0.6505 0.9215 0.6595 0.0340 0.8605 
0.05 0.5380 0.8385 0.9825 0.8565 0.1130 0.9600 

0.4 

0.1 
0.005 0.2615 0.4455 0.6375 0.4470 0.0090 0.5935 
0.01 0.3485 0.5330 0.7205 0.5390 0.0185 0.6810 
0.05 0.5855 0.7570 0.8795 0.7710 0.0655 0.8450 

0.2 
0.005 0.2130 0.4695 0.7860 0.5025 0.0090 0.7125 
0.01 0.2890 0.5775 0.8475 0.6005 0.0175 0.7905 
0.05 0.5020 0.7890 0.9515 0.7990 0.0570 0.9225 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were randomly 

selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were selected as cases(controls) 

d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were selected 

as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as cases(controls) 

f
S6 : affected(unaffected) subjects with the largest(smallest) number of affected first -degree 

relatives were selected as cases(controls) 
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3.3.3 Robustness of CE to choices of prevalence and 

heritability 

The proposed selection strategy requires heritability and 

prevalence estimates, and the efficiency of the selection strategy can 

depend on the accuracy of these estimates. Therefore, I evaluated the 

sensitivity of the proposed method to misspecification of h2 and q 

values using simulated data. I considered the family structures in 

scenario 3, and the DAF in the population was assumed to be 0.2. 

Phenotypes for 10,000 subjects were generated with ha
2 = 0.005, h2= 

0.3, and q = 0.3. To evaluate the effect of misspecified values for (h2, q), 

these values were set to (0.1, 0.1), (0.2, 0.2), (0.4, 0.4), and (0.5, 0.5) 

for calculating CEs. Table 3.7 shows the relative ratio of power 

estimates for misspecified h2 and q compared to the results when h2 and 

q are correctly specified, with a value of 100 indicating that the power 

estimates are not affected. Results showed that the effect of 

misspecification of h2 and q seems to be almost negligible, at least for 

the considered simulation models. 

Furthermore, ascertained cases and controls remain unchanged 

as long as the ranks of calculated CEs among cases (and controls) stay 

the same. I calculated the correlations between orders of true CEs and 

those with misspecified h2 and q. Figure 3.5 gives the contour plot of 
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these correlations. It shows that correlations were always greater than 

0.998, even when there were substantial differences between the true 

and misspecified h2 and q. Therefore, I can conclude that the rank of 

CEs remains largely the same, regardless of the values of h2 and q used. 
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Table 3.7 Empirical relative power estimates for misspecified 

heritabilities and prevalences for scenario 3. The empirical power 

levels were estimated with 2,000 replicates at different levels of 

significance and the ratios of the power estimates from misspecified (h2, 

q) to those from the correctly defined (h2, q) were calculated as 

percentage. I assumed that ha
2=0.005 and (h2, q) = (0.3, 0.3) for 

generating phenotypes. Four misspecified pairs of (h2, q) were 

considered. 
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h
2 q Significance 

levels S1
a S2

b S3
c S4

d S5
e 

0.1 0.1 
0.005 102.899 100.705 99.888 100.657 88.235 
0.01 103.586 99.774 99.946 99.841 92.857 
0.05 100.106 98.425 100.154 100.540 100.000 

0.2 0.2 
0.005 104.348 98.325 100.503 101.221 97.059 
0.01 102.110 98.417 100.270 101.351 98.214 
0.05 98.301 98.308 99.897 101.439 97.222 

0.4 0.1 
0.005 106.087 97.884 100.447 101.972 91.176 
0.01 106.118 97.513 100.486 101.510 91.071 
0.05 96.603 99.650 100.410 98.741 103.333 

0.5 0.2 
0.005 95.072 101.146 100.280 102.723 88.235 
0.01 99.367 99.925 100.054 103.021 94.643 
0.05 102.866 99.242 100.513 100.540 104.444 

a
S1 : cases and controls were randomly selected from affected and unaffected subjects, 

respectively 
b
S2 : affected subjects with the highest CEs were selected as cases, and controls were 

randomly selected 
c
S3 : affected(unaffected) subjects with the highest(lowest) CEs were select ed as 

cases(controls) 
d
S4 : cases were randomly selected, and unaffected subjects with the lowest CEs were 

selected as controls 
e
S5 : affected(unaffected) subjects with the lowest(highest) CEs were selected as 

cases(controls) 
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Figure 3.5 Contour plot for the correlation between orders of 

conditional expectations (CEs) calculated from true and 

misspecified (𝒉𝟐 ,𝒒). Orders of CEs were obtained for the various 

choices of heritability and prevalence, and their correlations with true 

orders were calculated. Data were generated from (ℎ2, 𝑞) = (0.3,0.3) 

and ‘×’ is a point where correlation is exactly 1. 
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3.4 Application to genome-wide association of 

type-2 diabetes 

3.4.1 The KARE cohort 

The KARE cohort was collected to construct an indicator of 

disease with genetic influences in an attempt to predict the occurrence 

of various diseases. There are 8,842 participants consisting of 4,183 

males and 4,659 females, and they were recruited from two Korean 

community cohorts, Ansung and Ansan, both in the Gyeonggi Province 

of South Korea. Participants are 40 to 69 years old. In total, 1,179 

subjects were diagnosed as having T2D by a standard guideline 

(glucose at baseline ≥ 126 mg/dL, glucose 120 minutes after the insulin 

challenge ≥ 200 mg/dL, or HbA1c ≥ 6.5%). The disease status of their 

relatives was collected by a survey from all participants, and 1,037 

subjects (125 cases and 912 controls) answered that they have affected 

relatives. In total, there were 1,230 affected relatives available. 

The 8,842 subjects were genotyped for 352,228 SNPs with the 

Affymetrix Genome-Wide Human SNP Array 6.0. In our genome-wide 

association studies, I discarded SNPs for which the HWE p-values were 

less than 10-5, the genotype call rates were less than 95%, and the minor 

allele frequencies (MAF) were less than 0.05. I also eliminated subjects 



91 

 

with gender inconsistencies, whose identity by state (IBS) was more 

than 0.8, or whose call rates were less than 95%. As a result, 310,515 

SNPs for 8,842 subjects were utilized for GWAS. 
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3.4.2 The SNUH data 

T2D patients were diagnosed by World Health Organization 

criteria from Seoul National University Hospital (SNUH), and 681 

subjects with positive family history of diabetes in first-degree relatives 

were preferentially included. The disease status of their relatives was 

obtained based on the recall of the proband. However, family members 

were encouraged to perform a 75 g oral glucose tolerance test, and 

subjects positive for a glutamic acid decarboxylase autoantibody test 

were excluded. In total, the disease statuses of 7,825 relatives were 

available, among which 2,875 subjects had T2D. 

T2D patients were genotyped with the Affymetrix Genome-

Wide Human SNP Array 5.0, and 480,589 SNP genotypes were 

obtained. The same quality control conditions were applied as for the 

KARE samples, and 189,610 SNPs and two subjects were excluded. In 

total, 679 subjects with 290,979 SNP genotypes were used for the 

association analyses. 
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3.4.3 Association analyses using the pooled data 

We used the proposed method to select cases and controls from 

KARE and SNUH samples for genetic association analyses of T2D. 

There were a total of 9,523 subjects (8,842 subjects from KARE and 

681 subjects from SNUH). I excluded variants for which HWE p-

values were less than 10-5, missing rates were greater than 5%, or 

MAFs were less than 0.05 and subjects whose call rates were less than 

95% or IBS was more than 0.8. The remaining 9,521 subjects with 

272,795 SNP genotypes were used for the analyses, and phenotypes of 

7,804 relatives were available. 

In the Korean population, about 9.9% of adults over 30 years of 

age were expected to have T2D in 2009 [97], and the heritability of 

T2D has been reported to be approximately 26% [98]. Therefore, I set 

the prevalence and heritability values at 0.099 and 0.26, respectively, 

and calculated CEs for the 9,521 subjects using the T2D status of their 

relatives. Based on these CEs, I selected 1,000 cases and 4,000 controls 

with S1 and S3. To adjust for population substructure, I calculated a 

genetic relationship matrix and applied the EIGENSTRAT approach 

[99]. I obtained the top ten principal component (PC) scores with the 

largest eigenvalues, and they were included as covariates. I also 

included sex, age, and squared age as covariates.  
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3.4.4 Results 

We performed genome-wide association study for T2D using 

the pooled data to compare the performance between selection 

strategies which I considered in simulation study. The QQ-plots in 

Figure 3.6 show that GWAS using all subjects and using only the  cases 

and controls ascertained with S1 and S3 preserve the nominal 

significance levels. Several studies showed that estimates from 

association analyses with cases and controls selected with family 

histories of diseases can be inflated [77, 78, 80, 100], and I conducted 

the other GWAS with permuted phenotypes. Figure 3.7 shows QQ-

plots from GWAS with permuted phenotypes and I can conclude that 

statistical testing is robust against such problems.  Figure 3.8 shows 

Manhattan plots for the analyses, with the genome-wide significance 

level adjusted by Bonferroni correction (P-value=1.872×10-7) indicated 

by dashed horizontal lines. The Manhattan plots reveal that the most 

significant results were obtained from GWAS using all subjects, 

followed by GWAS using cases and controls ascertained with S3. Table 

3.8 shows results for SNPs that were significant in at least one of the 

GWAS analyses, and it has been reported in some researches that 

rs10946398, rs7754840, rs9465871, rs7747752, rs9348440, and 

rs10811661 are associated with T2D. Results showed that GWAS using 
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cases and controls ascertained with S3 produced more significant SNPs 

than GWAS using cases and controls ascertained with S1. With the 

exception of rs10811661, p-values of all SNPs from the S3 GWAS 

were smaller than those from the S1 GWAS, and the genome-wide 

significance of SNPs from the S3 GWAS was much larger (Figure 3.9). 

Therefore, I can conclude that cases and controls ascertained with S3 

leads to substantial improvement of power for GWAS. 
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Figure 3.6 Quantile-quantile (QQ) plots for the results from 

genome-wide association study (GWAS) of type 2 diabetes.  
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Figure 3.7 Quantile-quantile (QQ) plots for the GWAS with 

permuted phenotypes. 

 

  



98 

 

Figure 3.8 Manhattan plots for the results from GWAS of type 2 

diabetes.  
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Table 3.8 Results from GWAS. The significance level adjusted by 

Bonferroni correction is 1.872×10-7 and significant SNPs are indicated 

in bold type. 

SNP CHR POS Gene 

GWAS 

using all 

subjects 

GWAS 

using S1 

GWAS 

using S3 

rs10946398 6 20661034 CDKAL1 8.25×10
-19

 2.03×10
-9

 3.35×10
-15

 

rs7754840 6 20661250 CDKAL1 7.03×10
-17

 1.82×10
-8

 1.88×10
-12

 

rs9460546 6 20663632 CDKAL1 5.10×10
-16

 6.53×10
-8

 3.91×10
-12

 

rs9465871 6 20717255 CDKAL1 8.91×10
-16

 2.40×10
-7

 1.61×10
-11

 

rs7747752 6 20725423 CDKAL1 1.31×10
-15

 1.69×10
-7

 5.39×10
-12

 

rs7767391 6 20725240 CDKAL1 1.84×10
-15

 1.78×10
-7

 7.21×10
-12

 

rs9348440 6 20641336 CDKAL1 1.20×10
-14

 5.90×10
-7

 3.35×10
-11

 

rs2328549 6 20718240 CDKAL1 3.53×10
-14

 2.48×10
-6

 5.02×10
-11

 

rs2328529 6 20631953 CDKAL1 5.52×10
-10

 3.35×10
-6

 4.34×10
-7

 

rs10811661 9 22134094 CDKN2B-AS1 2.84×10
-9

 1.51×10
-8

 1.04×10
-6

 

rs7741604 6 20731524 CDKAL1 4.74×10
-9

 1.16×10
-5

 2.23×10
-6

 

rs1526959 12 79753790 SYT1 1.16×10
-8

 3.00×10
-3

 2.89×10
-6

 

rs4291090 6 20570039 CDKAL1 1.81×10
-8

 3.20×10
-4

 6.40×10
-7

 

rs2820001 6 20758943 CDKAL1 3.23×10
-8

 9.19×10
-5

 2.05×10
-5

 

rs10946406 6 20758760 CDKAL1 4.01×10
-8

 1.61×10
-2

 5.02×10
-7

 

rs2294809 6 20599888 CDKAL1 4.52×10
-8

 4.90×10
-4

 2.41×10
-6

 

rs9366357 6 20599628 CDKAL1 6.09×10
-8

 4.34×10
-4

 4.22×10
-6

 

rs12679402 8 41958980 AP3M2 8.45×10
-5

 2.53×10
-3

 1.26×10
-8
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Figure 3.9 Scatter plot for P-values of GWAS of type 2 diabetes 

using S1 and S3. Red dots indicate significance SNPs when all 

subjects are used for GWAS. 
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3.5 Discussion 

Many studies have reported that family history of a disease is 

related to statistical power [77, 78, 80, 100]. However, the effect of 

family history on genetic association analyses has not been carefully 

investigated, and its use for these analyses has been limited. For 

instance, subjects may be selected for genetic association analyses only 

if they have a certain number of affected relatives [101]. The effect of 

family history on genetic association analyses depends on the familial 

distance between relatives and the number of affected and unaffected 

relatives. In this report, I proposed a new statistical method for 

selecting the most informative cases and controls based on the family 

history of disease. The proposed method simultaneously takes into 

account both familial distance and number of relatives, and I show that 

selecting cases and controls using this method leads to a substantial 

improvement in statistical power. Our simulation results show that the 

improvement in statistical power tends to be larger for common and 

less heritable diseases. The proposed method was implemented using 

the R code, and it can accept various input file formats such as vcf, 

PLINK, and gen files. It can be downloaded free of cost from 

http://healthstat.snu.ac.kr/software/selSAMPLE. 
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Multiple studies have shown that subjects with extreme 

phenotypes lead to substantial improvement in statistical power [102-

106], and our proposed method can be considered as a statistical 

method to select such subjects with extreme phenotypes for 

dichotomous phenotypes. Association studies with extreme phenotypes 

were often utilized for continuous phenotypes [89-93], but it is not 

straightforward to define extreme phenotypes for dichotomous 

phenotypes. However, subjects with many affected relatives are 

expected to have higher liability scores, and thus, the presence of a 

higher number of affected relatives can be used to define extreme 

phenotypes. Alternatively, if there are continuous phenotypes 

correlated with the dichotomous phenotypes of interest, they can be 

utilized to define the extreme phenotypes. Extreme phenotypes can be 

defined in relation to those continuous phenotypes, and they can be 

utilized to select subjects. For instance, fasting glucose levels can be 

used to define extreme phenotypes for type-2 diabetes. Moreover, the 

use of subjects with extreme phenotypes in GWAS is not the case for 

selection bias because the choice of subjects is based on phenotype, not 

on genotype. These approaches can be used with existing software such 

as MTG2 [107].  
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However, despite its flexibility, the proposed method has some 

limitations. First, our method involves the assumption that the liability 

scores follow a multivariate normal distribution; however, the 

estimated CEs may be biased if multivariate normality is violated [108]. 

The generalized linear model can be understood as a latent variable 

model if its link function is an inverse function of some cumulative 

distribution [85]. For instance, link functions for logistic and probit 

regressions are inverse functions of the cumulative logistic and 

standard normal distribution functions, respectively. Therefore, our 

liability threshold model can be considered as an extended probit model 

[85], and the distribution of unknown liability scores can be chosen by 

comparing several candidate link functions based on the Akaike 

information criteria [109]. Second, there may be a recall bias for the 

family history of disease, and this bias could be substantial if accuracy 

is heterogeneous between cases and controls. Third, the proposed 

method requires that heritability and prevalence of the disease are 

known a priori. However, even if these values were unknown or 

incorrect, cases and controls selected with the proposed method would 

remain the same as long as the order of CEs among the affected and 

unaffected subjects was preserved. Alternatively, other approaches such 

as a generalized linear mixed model (GLMM) can be utilized to 
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estimate the heritability and prevalence. For instance, GLMM can be 

applied with the family histories of diseases considered as responses. 

However, this method requires numerical integration, and its 

maximization becomes very complicated [110]. Alternatively, I can 

consider the use of generalized estimating equations [111]. However, 

family histories of diseases have a highly unbalanced structure, which 

often leads to slow or non-convergence of maximum likelihood 

estimations or to inflated statistical inferences [112]. Therefore, further 

investigation is necessary. Fourth, estimates from a logistic regression 

would be unbiased if cases and controls were randomly selected from 

affected and unaffected subjects, respectively; however, if cases and 

controls are selected based on the family histories of the disease, it 

could lead to bias [113]. Fortunately, homogeneity tests between cases 

and controls are statistically valid as long as the estimates of odds ratio 

are carefully interpreted [113]. 

Since the introduction of high throughput sequencing 

technology, substantial reductions in the cost for large-scale genetic 

association analyses have occurred, and many analyses have been 

launched to identify loci that show susceptibility. However, large-scale 

genetic analyses suffer from serious multiple-testing problems, and 

sequencing remains more expensive than phenotyping. Therefore, 
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various statistical methods have been investigated to improve the power 

of testing. Our results reveal that additional statistical power can be 

achieved in association analyses with careful selection of cases and 

controls, and that the family history of disease is very useful for this 

purpose. Furthermore, the family history of disease is often obtained at 

relatively low costs, and therefore, the proposed method may be a 

useful strategy for improving the success of genome-wide association 

analyses. 
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3.6 Appendix 

3.6.1 Calculation of the conditional expectation (CE) 

Conditional expectation (CE) is derived with the moment-

based approach with minor modifications [86]. If I let IA(·) be an 

indicator function and define that 

𝐴𝑖 = {
(𝑐,∞) if 𝑌𝑖 = 1

(−∞,𝑐) if 𝑌𝑖 = 0
 and 𝐴𝑖𝑗

𝑟 = {
(𝑐,∞) if 𝑌𝑖𝑗

𝑟 = 1

(−∞,𝑐) if 𝑌𝑖𝑗
𝑟 = 0

, 

and 𝐈𝐀𝑖
(𝐋𝑖) = (𝐼𝐴𝑖1

𝑟 (𝐿𝑖1
𝑟 ),… , 𝐼𝐴𝑖𝑛𝑖

𝑟 (𝐿 𝑖𝑛𝑖

𝑟 ), 𝐼𝐴𝑖
(𝐿𝑖))

𝑡

, the CE for subject i 

is defined by 

𝐸(𝐿 𝑖|𝐈𝐀𝑖
(𝐋𝑖) = 𝟏𝑛𝒊+1). 

We use the moment-generating function (mgf) of the truncated 

multivariate normal distribution to calculate the conditional distribution. 

By definition, I can define the joint probability density function (pdf) of 

Li by 

𝑓(𝐋𝑖) = |2𝜋𝚺𝑖|
−

1
2 exp(−

1

2
𝐋𝑖

𝑡𝚺𝑖
−1𝐋𝑖) 

where 𝚺i = ℎ2𝚿𝑖 + (1 − ℎ2)𝐈𝑛𝑖
. The conditional pdf of Li given 

𝐈𝐀𝑖
(𝐋𝑖) = 𝟏𝑛𝒊+1 becomes 

𝑓𝛼𝑖
(𝐋𝑖) = 𝑓(𝐋𝑖|𝐈𝐀𝑖

(𝐋𝑖) = 𝟏𝑛𝒊+1) = {

1

𝛼𝑖

𝑓(𝐋𝑖) , for 𝐋𝑖 ∈ 𝐀𝑖

0 , otherwise
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where 𝛼𝑖 = 𝑃(𝐈𝐀𝑖
(𝐋𝑖) = 𝟏𝑛𝒊+1). I can then find the mgf by 

𝑚(𝐭𝑖) = 𝐸 (𝑒𝐭𝑖
𝑡𝐋𝑖 |𝐈𝐀𝑖

(𝐋𝑖) = 𝟏𝑛𝒊+1)

=
1

𝛼𝑖|2𝜋𝚺𝑖|
1 2⁄ ∫ exp{−

1

2
(𝐋𝑖

𝑡𝚺𝑖
−1𝐋𝑖 − 2𝐭𝑖

𝑡𝐋𝑖)}𝑑𝐋𝑖
𝐀𝑖

 

where 𝐭𝑖 = (𝑡𝑖1
𝑟 ,… , 𝑡𝑖𝑛𝑖

𝑟 , 𝑡𝑖)
𝑡
. I let 𝛏𝑖 = 𝚺𝑖𝐭𝑖, and then the exponential 

term of mgf can be simplified to  

exp(
1

2
𝐭𝑖
𝑡𝚺𝑖𝐭𝑖) exp{−

1

2
(𝐋𝑖 − 𝛏𝑖)

𝑡𝚺𝑖
−1(𝐋𝑖 − 𝛏𝑖)}, 

and mgf becomes 

𝑚(𝐭𝑖) =
exp(𝐭𝑖

𝑡𝚺𝑖𝐭𝑖 2⁄ )

𝛼𝑖|2𝜋𝚺𝑖|
1 2⁄ ∫ exp{−

1

2
𝐋𝑖

𝑡𝚺𝑖
−1𝐋𝑖} 𝑑𝐋𝑖

𝐀𝑖

. 

We let σijk indicate the (j,k)th element of Σi and 𝐹𝑖𝑘(𝑥)  indicate a 

marginal pdf for the kth element of Li of the conditional pdf,  𝑓𝛼𝑖
(𝐋𝑖), 

i.e., 

𝐹𝑖𝑘(𝑥) = ∫ 𝛼𝑖
−1𝑓((𝐋𝑖)−𝑘 ,𝐿𝑘 = 𝑥)𝑑(𝐋𝑖)−𝑘

(𝐀𝑖)−𝑘

, 𝑘 = 1,… , 𝑛𝑖 + 1, 

where subscript –k means that the kth element is removed from the 

corresponding vector. 𝐹𝑖𝑘(𝑥)will be derived in the next section. If I 

further denote  

𝐹𝑖𝑘
∗

= {
𝐹𝑖𝑘(𝑐)− 𝐹𝑖𝑘(∞) , if 𝑦𝑖𝑘

𝑟 = 1 for 𝑘 = 1,… , 𝑛𝑖  or 𝑦𝑖 = 1 for 𝑘 = 𝑛𝑖 + 1

𝐹𝑖𝑘(−∞)− 𝐹𝑖𝑘(𝑐) , otherwise
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then the CE for subject i can be calculated by  

𝜇𝑖
∗ =

𝜕𝑚(𝐭𝑖)

𝜕𝑡𝑖
|
𝐭𝑖=𝟎𝑛𝑖+1

= ∑ 𝜎𝑖(𝑛𝑖+1)𝑘𝐹𝑖𝑘
∗

𝑛𝑖+1

𝑘=1

. 
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3.6.2 Derivation of 𝑭𝒊𝒋(𝒙) 

The (ni+1)-dimensional liability vector, Li, can be partitioned 

into (Li)-j and Lij
r for j = 1,…,ni or Li

r and Li for j = ni+1. For notational 

convenience, I only considered j = ni+1, which can be readily extended 

to the other subjects. The partitioned liability vector has the following 

distribution: 

𝐋𝑖 = (
𝐋𝑖

𝑟

𝐿𝑖

) ∼ 𝑀𝑉𝑁((
𝟎𝑛𝑖

0
) , (

𝚺𝑖
𝑟 𝚺𝑖

𝑟𝐼

(𝚺𝑖
𝑟𝐼)𝑡 1

)). 

If I denote the lower and upper truncated points of Li as ai and bi  

respectively, the truncated points for Li are defined as 

𝐚𝑖 = (
𝐚𝑖

𝑟

𝑎𝑖
) and 𝐛𝑖 = (

𝐛𝑖
𝑟

𝑏𝑖

). 

When ai < Li < bi, the truncated normal distribution function is 

𝑓𝛼(𝐋𝑖
𝑟 ,𝐿 𝑖 = 𝑥) = 𝛼−1𝑓(𝐋𝑖

𝑟 , 𝐿𝑖 = 𝑥)𝐼(𝐚𝑖 < 𝐋𝑖 < 𝐛𝑖)

= 𝛼−1𝑓(𝐿 𝑖 = 𝑥)𝑓(𝐋𝑖
𝑟|𝐿𝑖 = 𝑥)𝐼(𝐚𝑖 < 𝐋𝑖 < 𝐛𝑖). 

By the property of multivariate normal distribution, the marginal pdf of 

Li at Li = x is given by 

𝑓(𝐿𝑖 = 𝑥) =
1

√2𝜋
𝑒−𝑥2 2⁄ . 

Because a conditional distribution of a normal distribution is also 

normally distributed, I know that 𝐋𝑖
𝑟|𝐿 𝑖 = 𝑥  is normally distributed 

with  
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𝐸(𝐋𝑖
𝑟|𝐿𝑖 = 𝑥) = 𝚺𝑖

𝑟𝐼𝑥 and var(𝐋𝑖
𝑟|𝐿𝑖 = 𝑥) = 𝚺𝑖

𝑟 − 𝚺𝑖
𝑟𝐼(𝚺𝑖

𝑟𝐼)𝑡. 

Therefore, the multivariate marginal pdf of Li becomes 

𝐹𝑖(𝑛𝑖+1)(𝑥) = 𝛼−1𝑓(𝐿𝑖 = 𝑥)∫ 𝑓(𝐋𝑖
𝑟|𝐿𝑖 = 𝑥)𝑑𝐋𝑖

𝑟
𝐛𝑖

𝑟

𝐚𝑖
𝑟

. 

Here, ∫ 𝑓(𝐋𝑖
𝑟|𝐿𝑖 = 𝑥)𝑑𝐋𝑖

𝑟𝐛𝑖
𝑟

𝐚𝑖
𝑟  can be computed using statistical software, 

such as the function pmvnorm() in the R package mvtnorm [114]. 
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Chapter 4 

Heritability Estimation of Dichotomous 

Phenotypes Using a Liability Threshold 

Model on Ascertained Family-based 

Samples 

 

4.1 Introduction 

Phenotypes are affected both by environmental factors and 

genes, and family members are expected to possess similar phenotypes 

due to their genetic similarity. Heritability was defined to quantify 

phenotypic similarity attributable to heritable components, and this 

concept has been widely used to understand the genetic architecture of 

phenotypes [115]. For example, heritability can be used to compare the 
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importance of genetic components among different phenotypes. 

Additionally, if large-scale genetic data are available, genetic 

correlation matrices can be estimated [116]. These data can then be 

incorporated into a linear mixed model to provide SNP heritability 

estimation. SNP heritability provides information regarding the relative 

proportion of variance attributable to the genotyped SNPs, and this 

technique can be used to identify the degree of missing heritability. 

Estimation of broad-sense heritability requires the study of 

bilinear relatives such as sibling or monozygotic twins, and in practice, 

narrow-sense heritability has often been utilized. Narrow-sense 

heritability is defined as the proportion of the total phenotypic variation 

explained by additive genetic effects [115]. Various methods have been 

developed for estimating the heritability of continuous traits. For 

example, restricted maximum likelihood methods based on the linear 

mixed model (LMM) [22, 117, 118] or polygenic score methods [119] 

can be used for estimating the heritability of continuous traits. For 

dichotomous traits, generalized linear mixed models or Liability 

Threshold Models have been often utilized [21, 120]. The Liability 

Threshold Model assumes there are unobserved continuous liability 

scores, and subjects are affected if they exceed a certain threshold [16, 

22, 121, 122].  
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In this study, I focus on heritability estimation of dichotomous 

phenotypes. There are multiple factors which can bias variance 

estimation of dichotomous traits. In particular, family-based samples 

are typically analyzed using probands. The term proband refers to 

instances when family members are brought into a study as a result of 

other family members already enrolled in the study. Multiple reports 

indicate that proband analysis can produce substantial bias in variance 

estimates [22, 123, 124]. For example, if phenotypes are rare and 

families are randomly selected, the number of affected individuals is 

often very small. Therefore families are ascertained through the use of 

affected probands. In such instances, the majority of the relatives may 

be unaffected unless the size of the family is very large, and negative 

correlation can be observed because probands are affected while their 

relatives are unaffected. Several approaches have been proposed to 

adjust for such bias. GCTA adjusts estimated heritabilities by assuming 

that the level of ascertainment bias is same among individuals [22]; 

however, families are ascertained with probands and the effect of 

ascertainment bias is heterogeneous according to familial relationship 

[124]. For example, ascertainment bias for grandparents of the proband 

is expected to be approximately half that of the parents. 
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Here, I developed a new method to estimate heritability based 

on the Liability Threshold Model for binary traits (LTMH) which can 

be applied to the extended pedigree structure. Using the Expectation-

Maximization (EM) algorithm, the proposed method jointly estimates 

maximum likelihood estimators (MLE) for heritability and coefficients 

of covariates [14]. Furthermore, the proposed method maximizes the 

conditional likelihood of disease statuses of probands via a conditional 

EM (CEM) algorithm [125], and ascertainment bias can be adjusted. I 

also developed a conditional expected score test (CEST) to determine if 

heritability is equal to zero. Extensive simulation studies demonstrated 

that heritability estimates obtained from the proposed methods are 

generally unbiased even for the ascertained family-based samples. 

Estimates from GCTA are unbiased for randomly selected families, but 

the bias turns out to be substantial for ascertained families. Also I found 

that the CEST for heritability was statistically conservative, but it could 

achieve reasonable statistical power estimates. Finally, I used the 

proposed method to estimate the heritability of type-2 diabetes (T2D) 

using ascertained family-based samples from Korean families, and 

those estimates confirmed the practical value of our proposed methods. 
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4.2 Materials and Methods 

4.2 1 Notations and Disease Model 

We assume that there are n independent families and family i 

has 𝑛𝑖  family members ( 𝑖 = 1, … , 𝑛 ). I consider the Liability 

Threshold Model, and assume dichotomous phenotypes are determined 

by the unobserved continuous liability score. The liability score of 

subject j in family i is denoted by 𝐿𝑖𝑗, and they are determined by 

summing the environmental/genetic effects, polygenic effects, and 

random error. The covariates including environmental/genetic effects 

for subject j in family i are denoted by 𝐗𝑖𝑗 , and I assumed that 

covariates are standardized. In this article, I assumed there are p 

covariates. The random effects, including polygenic effect and random 

error for subject j in family i, are denoted by 𝑈𝑖𝑗. The vector forms of 

those components for family i are denoted by: 

𝐋𝒊 = (

𝐿 𝑖1

⋮
𝐿𝑖𝑛𝑖

), 𝐗𝒊 = (

𝐗𝑖1

⋮
𝐗𝑖𝑛𝑖

) and 𝐔𝒊 = (

𝑈𝑖1

⋮
𝑈𝑖𝑛𝑖

). 

Liability scores of family members are usually correlated, and I 

assumed that those are normally distributed as follows: 

𝐋𝑖 = 𝐗𝑖𝛃 + 𝐔𝑖 , 𝐋𝑖~𝑀𝑉𝑁(𝐗𝑖𝛃,𝚺𝑖) 
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where  𝐔𝑖~𝑀𝑉𝑁(𝟎,𝚺𝑖) . I denote 𝚽𝑖  to be the kinship coefficient 

matrix multiplied by two, and 𝐈𝑤 is the 𝑤 × 𝑤 dimensional identity 

matrix. Under the polygenic model using additivity of genetic effects 

across loci and linkage equilibrium among loci, I can get:  

𝚺𝑖 = 𝜎𝑎
2𝚽𝑖 + 𝜎𝑑

2𝐕𝑑𝑖 + 𝜎ℎ
2𝐕ℎ𝑖 + 𝜎𝑎,𝑑𝐕𝑎𝑑𝑖 + 𝜎𝑒

2𝐈𝑛𝑖
 

where 𝜎𝑎
2, 𝜎𝑑

2 and 𝜎𝑒
2 are the variances of additive, dominant, and 

environmental effects in the population, and 𝜎ℎ
2  and 𝜎𝑎,𝑑  are the 

dominant genetic variance and the covariance of additive and dominant 

effects in the homozygous population, respectively [126-128]. 𝐕𝑑𝑖, 𝐕ℎ𝑖 

and 𝐕𝑎𝑑𝑖 are the functions of the condensed coefficients of identity 

[128]. For simplicity, I assume that all variance components other than 

𝜎𝑎
2 and 𝜎𝑒

2 are zero, and the sum of 𝜎𝑎
2 and 𝜎𝑒

2 is equal to one. If I 

denote heritability as ℎ2 = 𝜎𝑎
2 (𝜎𝑎

2 + 𝜎𝑒
2)⁄ , then the variance-

covariance matrix of 𝚺𝑖 is expressed by 

𝚺𝑖 = ℎ2𝚽𝑖 + (1 − ℎ2)𝐈𝑛𝒊
. 

The dichotomous phenotypes for subject j in family i are 

denoted by 𝑌𝑖𝑗 and these values are coded as 1 for cases and 0 for 

controls. Phenotype vector for family i is denoted by:  

𝐘𝒊 = (

𝑌𝑖1

⋮
𝑌𝑖𝑛𝑖

). 
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In a Liability Threshold Model, 𝑌𝑖𝑗 is determined by 𝐿 𝑖𝑗, and if 𝐿𝑖𝑗 is 

larger than a certain threshold value c, 𝑌𝑖𝑗 becomes 1, and otherwise it 

becomes 0. c can be determined from the prevalence of the diseases as 

c should be the inverse of the cumulative distribution function of the 

prevalence. For each observed 𝑌𝑖𝑗 , I can infer the range of the 

corresponding 𝐿𝑖𝑗 , (𝑎𝑖𝑗, 𝑏𝑖𝑗). For example, if 𝑌𝑖𝑗 = 0, then 𝐿 𝑖𝑗  is 

bounded by (−∞, 𝑐), and otherwise, 𝐿 𝑖𝑗 is bounded by (𝑐,∞). The 

lower and upper bounds of the liability for the family i are denoted by:  

𝐚𝒊 = (

𝑎𝑖1

⋮
𝑎𝑖𝑛𝑖

) and 𝐛𝒊 = (

𝑏𝑖1

⋮
𝑏𝑖𝑛𝑖

). 

Based on above notations, all subjects can be expressed in the 

following vector forms: 

𝐋 = (
𝐋1

⋮
𝐋𝑛

) , 𝐗 = (
𝐗1

⋮
𝐗𝑛

) , 𝐔 = (
𝐔1

⋮
𝐔𝑛

) , 𝐘 = (
𝐘1

⋮
𝐘𝑛

),  

𝐚 = (

𝐚1

⋮
𝐚n

) and 𝐛 = (
𝐛1

⋮
𝐛𝑛

). 

Under those notations, I assumed that L follows multivariate normal 

distribution with mean 𝐗𝛃 and variance-covariance matrix 𝚺 which 

exist in a block diagonal matrix consisting of 𝚺1 ,… , 𝚺𝑛. 
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4.2.2 Heritability Estimation using the EM Algorithm 

The EM (Expectation-Maximization) algorithm [14] was used 

to estimate ℎ2  based on the complete data consisting of observed 

phenotypes, Y, and unobserved liabilities, L. The joint probability 

density function (pdf) of the complete data can be decomposed into the 

marginal pdf of L and the conditional pdf of Y given that L has the 

support of (a, b). This can be formulated as: 

𝑓(𝐘, 𝐋) = 𝑓(𝐘|𝐋)𝑓(𝐋) = 𝑓(𝐋)𝐼(𝐚 < 𝐋 < 𝐛). 

If I define the parameters of interest as 𝛉 = (𝛃𝑡 ,ℎ2)𝑡, then the log-

likelihood of the complete data will be the sum of the log- likelihoods 

for each family as follows: 

𝑙(𝛉;  𝐘,𝐋) = ∑[−
𝑛𝑖

2
log2𝜋 −

1

2
log|𝚺𝑖 |

𝑛

𝑖=1

−
1

2
(𝐋𝑖 − 𝐗𝑖𝛃)𝑡𝚺𝑖

−1(𝐋𝑖 − 𝐗𝑖𝛃)]. 

In the E-step of the EM algorithm, the conditional expectation 

of L given Y was taken to the 𝑙(𝛉;  𝐘, 𝐋), where the estimates for the 

parameters of the previous iteration were used. If I assume that the kth 

iteration has been performed and denote the estimates for the 

parameters at the kth iteration as 𝛉(𝑘), then the conditional expectation 

𝑄(𝛉|𝛉(𝑘)) will be  
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𝑄(𝛉|𝛉(𝑘)) = 𝐸𝐋|𝐘,𝛉
(𝑘)[𝑙(𝛉;  𝐘, 𝐋)] = ∑𝐸𝐋𝑖|𝐘𝑖,𝛉

(𝑘)[𝑙𝑖(𝛉; 𝐘𝑖 , 𝐋𝑖)]

𝑛

𝑖=1

= ∑𝑄𝑖 (𝛉|𝛉(𝑘))

𝑛

𝑖=1

 

and 

𝑄𝑖(𝛉|𝛉(𝑘)) = −
𝑛𝑖

2
log2𝜋 −

1

2
log|𝚺𝑖|

−
1

2
[tr(𝚺𝑖

−1𝐀𝑖

(𝑘)
) − 2𝛃𝑡𝐗𝑖

𝑡𝚺𝑖
−1𝐁𝑖

(𝑘)
+ 𝛃𝑡𝐗𝑖

𝑡𝚺𝑖
−1𝐗𝑖𝛃] 

where  𝐀
𝑖

(𝑘)
= 𝐸𝐋𝑖|𝐘𝑖,𝛉

(𝑘)(𝐋𝑖𝐋𝑖
𝑡)  and 𝐁

𝑖

(𝑘)
= 𝐸𝐋𝑖|𝐘𝑖,𝛉

(𝑘)(𝐋𝑖) . 𝐀
𝑖

(𝑘)
 and 

𝐁
𝑖

(𝑘)
 are equal to the first moment and the second moment of the 

multivariate truncated normal, respectively. R package tmvtnorm was 

utilized for calculation [86]. 

In the M-step of the EM algorithm, I maximize 𝑄(𝛉|𝛉(𝑘)) 

with respect to  𝛉. Since 𝑄(𝛉|𝛉(𝑘)) is the concave function, I can find 

the maximizer by solving for 𝜕𝑄(𝛉|𝛉(𝑘))/𝜕𝛉 = 0 . The partial 

derivative with respect to 𝛃 is 

𝜕𝑄(𝛉|𝛉(𝑘))

𝜕𝛃
= ∑𝐗𝑖

𝑡𝚺𝑖
−1𝐁𝒊

(𝑘)

𝑛

𝑖=1

− ∑𝐗𝑖
𝑡𝚺𝑖

−1𝐗𝑖𝛃

𝑛

𝑖=1

              (1) 

and, 𝛃(𝑘)(ℎ2) which satisfies 𝜕𝑄(𝛉|𝛉(𝑘)) 𝜕𝛃⁄ = 0 becomes 

𝛃(𝑘)(ℎ2) = (∑𝐗𝑖
𝑡𝚺𝑖

−1𝐗𝑖

𝑛

𝑖=1

)

−𝟏

(∑𝐗𝑖
𝑡𝚺𝑖

−1𝐁𝒊

(𝑘)

𝑛

𝑖=1

). 
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To emphasize that the root is the function of ℎ2, it was denoted by 

𝛃(𝑘)(ℎ2). Unfortunately, there is no closed form of the root in which 

𝜕𝑄(𝛉|𝛉(𝑘)) 𝜕ℎ2⁄ = 0, and generalized EM algorithms were applied. 

𝛉(𝑘) was updated using a Newton-Raphson algorithm [129]. After I 

obtained the maximizer of 𝑄(𝛉|𝛉(𝑘)) during the maximization step, I 

updated 𝛉(𝑘) to 𝛉(𝑘+1)  and repeated the EM steps until convergence. 

The detailed algorithm is provided in Appendix (A).  

Note that 𝛃 is the unbiased estimator of 𝛃 and it can be easily 

proven by 

𝐸𝐘𝑖
(𝐁

𝑖

(𝑚)
) = 𝐸𝐘𝑖

(𝐸𝐋𝑖|𝐘𝑖 ,𝛉
(𝑚)(𝐋𝑖)) = 𝐸𝐋𝑖

(𝐋𝑖) = 𝐗𝑖𝛃 

assuming I obtained 𝛃 after m iterations [100]. 
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4.2.3 Lagrangian Multiplier and Karush-Kuhn-Tucker 

Condition 

Unlike 𝛃 , the parameter space of ℎ2  is restricted to Θℎ2 =

{ℎ2 :0 ≤ ℎ2 ≤ 1} , and the objective function should be maximized 

under the restriction as follows: 

max𝛉 𝑄(𝛉|𝛉(𝑘)) subject to 0 ≤ ℎ2 ≤ 1. 

This objective function can be maximized using the method of 

Lagrange multiplier [130] under Karush-Kuhn-Trucker (KKT) 

conditions [131]. The constraint is equivalent to −ℎ2 ≤ 0  and 

ℎ2 − 1 ≤ 0 , and by the Lagrangian multiplier, the object function 

becomes 

𝑄∗(𝛉,𝛌|𝛉(𝑘)) = 𝑄(𝛉|𝛉(𝑘)) + 𝜆1ℎ
2 − 𝜆2(ℎ

2 − 1) 

where 𝛌 = (𝜆1,𝜆2)
𝑡. I can find the solution that maximizes 𝑄(𝛉|𝛉(𝑘)) 

subject to 0 ≤ ℎ2 ≤ 1 by finding 𝛉  and 𝛌  satisfying the following 

three conditions known as KKT conditions:  

1) Stationarity : 𝜕𝑄∗(𝛉,𝛌|𝛉(𝑘)) 𝜕𝛉⁄ = 𝟎, 

2) Complementary slackness : 𝜆1ℎ
2 = 0 and 𝜆2(1 − ℎ2) = 0,  

3) Dual feasibility : 𝜆𝑖 ≥ 0 for 𝑖 = 1,2.  
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More specifically, for the Stationarity condition, 𝜕𝑄∗(𝛉,𝛌|𝛉(𝑘)) 𝜕𝛃⁄  is 

identical to 𝜕𝑄(𝛉|𝛉(𝑘)) 𝜕𝛃⁄ , providing that 𝛃∗ = 𝛃(𝑘)(ℎ2). Replacing 

𝛃 with 𝛃(𝑘)(ℎ2), I get  

𝜕𝑄∗(𝛉,𝛌|𝛉(𝑘))

𝜕𝛉
|
𝛃=𝛃

(𝒌)
(ℎ2∗),ℎ2=ℎ2∗

=
𝜕𝑄(𝛉|𝛉(𝑘))

𝜕𝛉
|
𝛃=𝛃

(𝒌)
(ℎ2∗),ℎ2=ℎ2∗

+ 𝜆1 − 𝜆2 = 0, 

and it is equivalent to  

𝜕𝑄(𝛉|𝛉(𝑘))

𝜕𝛉
|
𝛃=𝛃

(𝒌)
(ℎ2∗),ℎ2=ℎ2∗

= −𝜆1 + 𝜆2. 

Note that to the left of this equation is a function of ℎ2∗ , denoted by 

𝑔(𝑘)(ℎ2∗). Applying Complementary slackness conditions to the above 

equation, (𝜆1,𝜆2, ℎ
2)  becomes (0,0,ℎ2) , (𝜆1,0,0) , or (0,𝜆2, 1). If I 

assume ℎ2 = 0 and 𝜆2 = 0, then 𝑔(𝑘)(0) = −𝜆1 and it will be non-

positive if the assumptions are met by the Dual feasibility condition. 

Similarly, when ℎ2 = 1 and 𝜆1 = 0 are assumed, 𝑔(𝑘)(1) = 𝜆2 and it 

will be non-negative if the assumptions are satisfied. If none of these 

assumptions are met, 𝜆1  and 𝜆2  are automatically zero, and thus 

optimization can be done without any restrictions on ℎ2. This concept 

is illustrated in Figure 4.1. 

  



123 

 

Figure 4.1 Illustration of KKT condition using a toy example. The exemplary concave function 𝑄(ℎ2) was created to enable 

determination of the optimal value that maximizes 𝑄(ℎ2) within the parameter space. The parameter ℎ2 can be between zero 

and one, and the parameter space for this value is grayed out. (A) If the value that maximizes 𝑄(ℎ2) is negative, the tangent 

slopes at both zero and one will be negative. A tangent slope that is negative at one violates the KKT conditions, however, a 

negative tangent slop at zero satisfies the KKT conditions, so the maximizer within the parameter space is zero. (B) When the 

value which maximizes 𝑄(ℎ2) is greater than 1, the optimal value is one since positive tangent slope at one meets the KKT 

conditions. (C) When the maximizer is located in the parameter space, tangent slopes at both boundaries of the parameter space do 

not satisfy the KKT conditions. Therefore, restrictions do not affect the result of optimization. 
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4.2.4 Ascertainment Bias-corrected Heritability 

Estimation 

Ascertainment of each family is conducted using probands, and 

statistical inferences about heritability may be misleading unless 

ascertainment is correctly adjusted. I assume the first family member in 

each family is a proband, and the other 𝑛𝑖 − 1 family members are 

non-probands. To distinguish probands and non-probands, I added 

superscripts P and NP, respectively. Vectors for liabilities, covariates, 

phenotypes, and bounds of liabilities for non-probands in family i are 

denoted by: 

𝐋𝑖
𝑁𝑃 = (

𝐿𝑖2
𝑁𝑃

⋮
𝐿 𝑖𝑛𝑖

𝑁𝑃
), 𝐗𝑖

𝑁𝑃 = (
𝐗𝑖2

𝑁𝑃

⋮
𝐗𝑖𝑛𝑖

𝑁𝑃
) , 𝐘𝑖

𝑁𝑃 = (
𝑌𝑖2

𝑁𝑃

⋮
𝑌𝑖𝑛𝑖

𝑁𝑃
) , 𝐚𝑖

𝑁𝑃 = (
𝑎𝑖2

𝑁𝑃

⋮
𝑎𝑖𝑛𝑖

𝑁𝑃
)  and 

𝐛𝑖
𝑁𝑃 = (

𝑏𝑖2
𝑁𝑃

⋮
𝑏𝑖𝑛𝑖

𝑁𝑃
). 

Similarly, those variables pertaining to a proband in family i are 

defined as 𝐿𝑖
𝑃, 𝐗𝑖

𝑃, 𝑌𝑖
𝑃, 𝑎𝑖

𝑃  and 𝑏𝑖
𝑃, respectively. Liability vectors for 

probands and non-probands across entire families are denoted by: 

𝐋𝑃 = (
𝐿1

𝑃

⋮
𝐿𝑛

𝑃
), 𝐋𝑁𝑃 = (

𝐋𝟏
𝑁𝑃

⋮
𝐋𝑛

𝑁𝑃
) and 𝐋 = (

𝐋𝑃

𝐋𝑁𝑃

), 

and vectors for other variables are also similarly defined. 
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To adjust for the effects of ascertainment on heritability 

estimates, I estimated parameters using the following conditional 

likelihood: 

𝑓(𝐘𝑁𝑃|𝐘𝑃;𝛉) =
𝑓(𝐘; 𝛉)

𝑓(𝐘𝑃; 𝛉)
. 

If I assume 𝑙(𝛉;  𝐘) = log𝑓(𝐘;𝛉), the log of the conditional likelihood 

is 𝑙(𝛉;  𝐘)− 𝑙(𝛉; 𝐘𝑃). The objective function of the EM algorithm is a 

global lower bound for the log- likelihood [132], and if I assume the 

lower bound ℱ(𝛉)  for 𝑙(𝛉;  𝐘)  and the upper bound 𝒢(𝛉)  for 

𝑙(𝛉; 𝐘𝑃), then the global lower bound can be obtained by: 

log𝑓(𝐘𝑁𝑃|𝐘𝑃;𝛉) ≥  ℱ(𝛉)− 𝒢(𝛉). 

At 𝛉 = 𝛉(𝑘), ℱ(𝛉) can be obtained by: 

ℱ(𝛉) = 𝐸𝐋|𝐘,𝛉
(𝑘)(𝑙(𝛉;  𝐘,𝐋)) + 𝐻 (𝑓(𝐋|𝐘, 𝛉(𝑘))), 

where 𝐻(∙) is the entropy. The upper bound 𝒢(𝛉) for 𝑙(𝛉; 𝐘𝑃) can be 

defined as 𝑙(𝛉; 𝐘𝑃)+ constant  [125]. Therefore, the global lower 

bound of the log-likelihood at 𝛉 = 𝛉(𝑘) becomes: 

 ℱ(𝛉)− 𝒢(𝛉) = 𝐸𝐋|𝐘,𝛉
(𝑘)(𝑙(𝛉;  𝐘,𝐋)) − 𝑙(𝛉; 𝐘𝑃)+ constant. 

We assume probands are independent of each other, and proband 𝑖 was 

randomly selected from the population with the probability 𝜇𝑖. Then, 

𝑙(𝛉; 𝐘𝑃) is simply given by:  
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𝑙(𝛃; 𝐘𝑃) = ∑𝑙(𝛃;𝑌𝑖
𝑃)

𝑛

𝑖=1

= ∑[𝑌𝑖
𝑃𝛼𝑖 − log(1 + 𝑒𝛼𝑖  )]

𝑛

𝑖=1

 

where 𝛼𝑖 = log
𝜇𝑖

1−𝜇𝑖
. Here 𝜇𝑖  is formulated as a function of the 

cumulative distribution function of the standard normal, Φ(∙), by: 

𝜇𝑖 = 𝐸(𝑌𝑖
𝑃) = Pr(𝑌𝑖

𝑃 = 1) = Pr(𝐿𝑖
𝑃 > 𝑐) = 1 − Φ(𝑐 − 𝐗𝑖

𝑃𝛃). 

The MLE values for 𝛉  are obtained by iteratively maximizing the 

objective function until convergence, and the detailed algorithm for 

maximization is provided in Appendix (B). 
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4.2.5 Conditional Expected Score Tests 

𝛃 and ℎ2 are required to parameterize the relationship between 

covariates and Y at the unobserved liability scale, and I consider the 

conditional expected score test (CEST) [14, 133, 134] because: 

𝜕𝑙(𝛉;  𝐘)

𝜕𝛉
= 𝐸𝐋|𝐘 [

𝜕𝑙(𝛉;  𝐘,𝐋)

𝜕𝛉
]. 

For simplicity, I assumed that the prevalence is correctly specified and 

samples are randomly selected. The conditional expected score based 

on the complete data for family i is: 

𝐒𝑖 = 𝐸𝐋|𝐘

[
 
 
 
𝜕𝑙𝑖(𝛉;  𝐘,𝐋)

𝜕𝛃

𝜕𝑙𝑖(𝛉;  𝐘,𝐋)

𝜕ℎ2 ]
 
 
 

= [
𝐗𝑖

𝑡𝚺𝑖
−1𝐁𝑖 − 𝐗𝑖

𝑡𝚺𝑖
−1𝐗𝑖𝛃

−
1

2
tr (𝚺𝑖

−1(𝚽𝑖 − 𝐈𝑛𝑖
)) −

1

2
tr(𝐂𝑖𝐀𝑖) + 𝛃𝑡𝐗𝑖

𝑡𝐂𝑖 (𝐁𝑖 −
1

2
𝐗𝑖𝛃)

] 

where 𝐀𝑖 = 𝐸𝐋|𝐘(𝐋𝑖𝐋𝑖
𝑡), 𝐁𝑖 = 𝐸𝐋|𝐘(𝐋𝑖) and 𝐂𝑖 = 𝜕𝚺𝑖

−1 𝜕ℎ2⁄ . Note that 

𝐀𝑖 and 𝐁𝑖 are also a function of 𝛉. If I assume 𝐒𝛃𝑖 and 𝑆ℎ2𝑖 denote 

𝐸𝐋|𝐘[𝜕𝑙𝑖(𝛉;  𝐘,𝐋) 𝜕𝛃⁄ ] and 𝐸𝐋|𝐘[𝜕𝑙𝑖(𝛉;  𝐘, 𝐋) 𝜕ℎ2⁄ ], respectively, then 

the score statistics can be obtained by: 

𝐒 = (𝐒𝛃
𝑡 𝑆ℎ2)

𝑡
 where 𝐒𝛃 = ∑ 𝐒𝛃𝑖

𝑛
𝑖=1 , and 𝑆ℎ2 = ∑ 𝑆ℎ2𝑖

𝑛
𝑖=1 . 
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The variance-covariance matrix of 𝐒 is calculated using the 

observed Fisher information matrix [135, 136]. The observed Fisher 

information matrix is given by: 

𝐼(𝛉) = ∑(𝐒𝑖𝐒𝑖
𝑡)

𝑛

𝑖=1

−
1

𝑛
(∑𝐒𝑖

𝑛

𝑖=1

)(∑𝐒𝑖
𝑡

𝑛

𝑖=1

) 

and it is equivalent to: 

𝐼(𝛉) = (
𝒊𝛃 𝒊𝛃ℎ2

𝒊ℎ2𝛃 𝑖ℎ2
) =

(
∑ (𝐒𝛃𝑖𝐒𝛃𝑖

𝑡 )𝑛
𝑖=1 − 𝐒𝛃𝐒𝛃

𝑡 𝑛⁄ ∑ (𝐒𝛃𝑖𝑆ℎ2𝑖)
𝑛
𝑖=1 − 𝐒𝛃𝑆ℎ2 𝑛⁄

∑ (𝑆ℎ2 𝑖𝐒𝛃𝑖)
𝑛
𝑖=1 − 𝑆ℎ2𝐒𝛃

𝑡 𝑛⁄ ∑ (𝑆ℎ2𝑖
2 )𝑛

𝑖=1 − 𝑆ℎ2
2 𝑛⁄

). 

Therefore, if I assume 𝑝 to be the dimension of 𝛃, and ℎ2̂ and 𝛃 are 

MLEs, I can provide the following statistics [135, 136]: 

𝐒𝛃
𝒕 {𝒊𝛃 − 𝒊𝛃ℎ2̂ 𝑖ℎ2̂

−1𝒊ℎ2̂𝛃}
−𝟏

𝐒𝛃  ~ 𝜒2(𝑑𝑓 = 𝑝) under 𝐻0: 𝛃 = 𝟎. 

To test if 𝐻0: ℎ
2 = 0, the likelihood is maximized at ℎ2 = 0 with 50% 

probability and at the positive real number at 50% probability under 𝐻0. 

Thus I consider: 

𝐒ℎ2
𝒕 {𝑖ℎ2 − 𝒊ℎ2 �̂�𝒊�̂�

−1𝒊�̂�ℎ2}
−𝟏

𝐒ℎ2  ~ 
𝟏

𝟐
∙ 𝟎 +

𝟏

𝟐
∙ 𝜒2(𝑑𝑓 = 1) 

under 𝐻0: ℎ
2 = 0. 
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4.2.6 Simulation studies 

Simulation studies were conducted under two different 

scenarios where families were either randomly selected (scenario 1) or 

ascertained with probands (scenario 2). 

For scenario 1, 500 families were randomly generated. For 

scenario 2, 50,000 families for each replicate were initially generated. 

Then, 500 probands were selected from affected individuals, and their 

family members were determined. For both scenarios,  I considered 

nuclear families and the number of siblings at 1, 2, 3 and 4 with 

proportions of 0.2, 0.3, 0.3 and 0.2, respectively. Liabilities were 

determined through summation of major genetic effects, polygenic 

effects, and random errors. Sums of polygenic effects and random 

errors were generated using multivariate normal distribution with 

heritability values of 0.05, 0.2 and 0.4. The main genetic effects were 

obtained using the product of 𝛽  and the number of disease alleles. 

Disease allele frequency was assumed to be 0.2, and genotype 

frequencies were obtained under HWE. Founder genotypes for each 

family were generated from B (2, 0.2), and non-founder genotypes 

were obtained by examining Mendelian transmission. 𝛽 was obtained 

by ℎ𝑎
2  and disease allele frequency (𝑝)  using the following equation: 
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ℎ𝑎
2 =

2𝛽2𝑝(1 − 𝑝)

2𝛽2𝑝(1 − 𝑝) + 1
. 

ℎ𝑎
2  was assumed to be 0.005 and 𝛽 was 0.1253. Once liabilities were 

generated, they were considered affective if they were larger than the 

threshold c. Otherwise, they were considered non-affective. c was 

chosen to maintain the assumed prevalences (q). The R code for 

generating the simulation data can be downloaded from 

http://healthstat.snu.ac.kr/software/LTMH. 

The performance of our experimental method was evaluated 

using 2,000 replicates  exhibiting various combinations of heritabilities 

(ℎ2) and prevalences (q). For evaluation of statistical testing of 𝛽, the q 

were set at 0.1 or 0.2, and ℎ2  was assumed to be 0.2 or 0.4. For 

evaluation of statistical testing for ℎ2, I assumed q = 0.05, 0.1 or 0.2 

and ℎ2 = 0, 0.2 and 0.4. All results were compared to GCTA results 

for each scenario. 
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4.2.7 Application for Family-based Samples of Type-2 

Diabetes 

The proposed method was applied to the cross-sectional study 

of T2D patients conducted by Seoul National University Hospital in 

Korea. T2D patients were diagnosed according to the World Health 

Organization criteria for T2D [137]. The study preferentially included 

T2D patients with a positive family history of T2D in first-degree 

relatives, and 681 probands were recruited. Family histories of T2D 

were obtained based on the memory of probands, but the study 

excluded relatives who were positive for the 75-g oral glucose 

tolerance test. Subjects of unknown age were also excluded, and 4,149 

non-probands, including 1,115 T2D patients and 648 affected probands, 

remained. For our analyses, the effect of age was adjusted through use 

as a covariate, and standardized age was incorporated into final 

analyses. The prevalence of T2D was set at 10.9% [138], and the 

heritability of T2D was estimated using our experimental method 

adjusted for ascertainment bias.   
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4.2.8 Application for GWAS of S-LAM 

We applied CEST for GWAS of case-control study of S-LAM 

disease. S-LAM patients were collected from 2010 to 2014 from 14 

countries and DNA samples for 479 S-LAM patients were genotyped 

with the Infinium OmniExpress-24 v1.2 BeadChip. I excluded 34 non-

white S-LAM patients, and finally 445 S-LAM patients were used to 

GWAS as cases with 716,503 SNPs. For controls of GWAS, I used 

1,261 healthy female from the COPDGene Consortium. I filtered out 

all SNPs whose P-value of HWE test is less than 1×10-5, MAF is less 

than 0.05 or genotype call rates were less than 95%. I also excluded all 

subjects whose genotype call rates were less than 95% or identity-by-

states were larger than 80% with any other subject. To compare 

statistical power of CEST to the conditional logistic regression (CLR), I 

matched each cases with two controls using age of enroll and two PC 

scores. Each pair of one case and two controls was regarded as if a 

family having relatedness structure of genetic relationship matrix.  

Finally, 426 S-LAM cases and 852 cases were included for GWAS 

with 549,599 SNPs. Detailed QC procedure is described in Chapter 

2.2.2 (Figure 2.1). 
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S-LAM is rare disease and prevalence was assumed to be 

0.00001. I applied CEST on autosomal chromosomes and genomic 

control was used to adjust small inflation of our results [139]. 
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4.3 Results 

4.3.1 Evaluations of simulated samples 

We evaluated the accuracy of parameter estimates using 

simulated data. For scenario 1, I assumed family-based samples were 

randomly selected, and means and standard deviations (SD) of �̂� and 

ℎ2̂ from 2,000 replicates are given in Table 4.1. The true value of 𝛽 is 

assumed to be 0.1253, and estimates for 𝛽 by LTMH always provide a 

close approximation of true values. For ℎ2̂, estimates for LTMH and 

GCTA are similar if the prevalence is 0.1 or 0.2, although standard 

errors caused by estimates using LTMH are always smaller than those 

produced by GCTA. If prevalence is 0.05 and heritability is 0.4, bias of 

estimates by GCTA becomes much larger. Figure 4.2 indicates the 

distribution of ℎ2̂ , and both methods accurately estimate high 

prevalence. Estimates generated by GCTA, however, are more widely 

distributed than those generated by LTMH, and I can conclude that 

LTMH provides generally superior performance.  

Table 4.2 provides summaries of parameter estimates for 

ascertained families. According to the results, the majority of GCTA 

estimates are 0 and these estimates exhibit ascertainment bias. 

Estimates of 𝛽 and ℎ2 by LTMH, however, are always close to true  
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values and these results show robustness against ascertainment bias 

(Table 4.2). Interestingly, standard errors resulting from estimates 

generated by LTMH analysis of ascertained families are small 

compared to those observed in the absence of ascertainment. The 

number of affected individuals is expected to be very small for rare 

diseases, but ascertainment of affected probands and familia l 

correlations increase the number of affected individuals, which may 

explain the smaller standard errors observed in heritability estimates of 

ascertained families. Further investigation, however, is required.  I also 

evaluated the performance of CEST in the context of hypothesis testing 

for scenario 1. I assumed 𝐻0: ℎ
2 = 0, and results detailing empirical 

sizes are given in Table 4.3. Our results indicate that LTMH analyses 

were slightly conservative if q = 0.05 or 0.2, but type-1 error estimates 

generated by this method are very close to nominal significance levels 

if q = 0.1. This conservative trend may indicate overestimation of 

variance. Table 4.3 also details the statistical power estimates. I 

assumed that the true ℎ2 is 0.2 or 0.4, and q is 0.05, 0.1 and 0.2. The 

statistical power estimates increase as the true heritability, prevalence, 

or both increase, and large empirical power estimates were obtained in 

regard to the larger prevalence. I also evaluated the statistical 

performance of the score tests for 𝛽 (Table 4.4). Analyses indicate that 
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the score tests for 𝛽  are not conservative and always preserve the 

nominal significance level under the null hypothesis, where 𝐻0:𝛽 = 0. 

Empirical power estimates for 𝛽 were assessed using 2,000 replicates 

at several significance levels, and these estimates increase as the 

prevalence, heritability, or both become larger. I also assessed 

empirical size estimates assuming 𝐻0: ℎ
2 = 0 for scenario 2 (Table 

4.5). It was more conservative but statistical powers were improved 

when true ℎ2 is 0.2 or 0.4 than those for scenario 1. 
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Table 4.1 Accuracy of 𝜷 ̂ and 𝒉�̂�  from randomly selected families 

(scenario 1). Parameter estimates from 2,000 replicates were 

summarized using mean (top) and standard error (bottom). The true 

value of 𝛽 is 0.1253. SD is standard deviation. 

Heritability Prevalence 
LTMH GCTA 

𝛽 ℎ2 ℎ2 

0.05 

0.05 0.1226 
(0.0223) 

0.0933 
(0.0971) 

0.1105 
(0.1303) 

0.1 0.1281 
(0.0181) 

0.0660 
(0.0716) 

0.0734 
(0.0828) 

0.2 0.1277 
(0.016) 

0.0584 
(0.0538) 

0.0563 
(0.0539) 

0.2 

0.05 0.1267 
(0.0223) 

0.2184 
(0.1282) 

0.2511 
(0.1852) 

0.1 0.1239 
(0.0190) 

0.1950 
(0.0993) 

0.2111 
(0.1219) 

0.2 0.1285 
(0.0164) 

0.2106 
(0.0725) 

0.2115 
(0.0775) 

0.4 

0.05 0.1309 
(0.0229) 

0.4324 
(0.1313) 

0.5546 
(0.2437) 

0.1 0.1276 

(0.0225) 
0.4230 

(0.1315) 
0.4825 

(0.1377) 

0.2 0.1286 
(0.0189) 

0.4181 
(0.0950) 

0.4486 
(0.085) 
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Figure 4.2 Boxplots for 𝒉�̂�  for randomly selected families 

(scenario 1). True heritability was 0.05 (top), 0.2 (middle), and 0.4 

(bottom) and was indicated as a gray dashed line. 
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Table 4.2 Accuracy of 𝜷 ̂  and 𝒉�̂�  from ascertained families 

(scenario 2). Parameter estimates from 2,000 replicates were 

summarized using mean (top) and standard error (bottom). The true 

value of 𝛽 is 0.1253. 

Heritability Prevalence 
LTMH GCTA 

𝛽 ℎ2 ℎ2 

0.05 

0.05 0.1335 
(0.0193) 

0.0474 
(0.0376) 

1.72×10
-6

 
(4.47×10

-7
) 

0.1 
0.1233 

(0.0181) 
0.0336 

(0.0339) 
1.96×10

-6

 
(2.01×10

-7
) 

0.2 0.1194 
(0.0144) 

0.0304 
(0.0287) 

1.83×10
-6

 
(3.78×10

-7
) 

0.2 

0.05 
0.1234 

(0.0199) 
0.2018 

(0.0437) 
1.01×10

-6

 
(9.18×10

-8
) 

0.1 0.1257 
(0.0135) 

0.2086 
(0.0342) 

0 
(0) 

0.2 
0.1239 

(0.0153) 
0.1692 

(0.0407) 
1.01×10

-6

 
(7.40×10

-8
) 

0.4 

0.05 0.1358 
(0.0189) 

0.4004 
(0.0449) 

0 
(0) 

0.1 
0.1167 

(0.0144) 
0.3868 

(0.0339) 
0 

(0) 

0.2 0.1186 
(0.0150) 

0.4090 
(0.0444) 

0 
(0) 
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Table 4.3 Type-1 error and power estimates of the proposed test 

for 𝑯𝟎 :𝒉𝟐 = 𝟎 under scenario 1. The empirical sizes (ℎ2 = 0) and 

powers (ℎ2 = 0.2 and 0.4) were estimated using 2,000 replicates at 

three significance levels. I considered prevalence of 0.05, 0.1, and 0.2.   

Heritability Prevalence 
Significance level 

0.01 0.05 0.1 

0 
0.05 0.0015 0.0115 0.0285 
0.1 0.0050 0.0480 0.1020 
0.2 0.0015 0.0200 0.0505 

0.2 
0.05 0.0485 0.2260 0.3990 
0.1 0.3420 0.6730 0.8055 
0.2 0.6210 0.8675 0.9405 

0.4 
0.05 0.4575 0.8190 0.9050 
0.1 0.9395 0.9930 0.9960 
0.2 1.0000 1.0000 1.0000 
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Table 4.4 Type-1 error and power estimates of the proposed test 

for 𝑯𝟎 :𝜷 = 𝟎 under scenario 1. The empirical sizes (ℎ𝑎
2 = 0) and 

powers (ℎ𝑎
2 = 0.005) were estimated using 2,000 replicates at three 

significance levels. I considered heritability of 0.2 and 0.4, and 

prevalence of 0.1 and 0.2.  

ℎ𝑎
2 Heritability Prevalence 

Significance level 
0.01 0.05 0.1 

0 
0.2 

0.1 0.0155 0.0661 0.1023 
0.2 0.0120 0.0560 0.0900 

0.4 
0.1 0.0060 0.0480 0.0940 
0.2 0.0130 0.0580 0.1020 

0.005 
0.2 

0.1 0.1303 0.3372 0.4713 
0.2 0.4460 0.6800 0.7980 

0.4 
0.1 0.2740 0.5340 0.6640 
0.2 0.3540 0.6000 0.7180 
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Table 4.5 Type-1 error and power estimates of the proposed test 

for 𝑯𝟎 :𝒉𝟐 = 𝟎 under scenario 2. The empirical sizes (ℎ2 = 0) and 

powers (ℎ2 = 0.2 and 0.4) were estimated using 2,000 replicates at 

three significance levels. I considered prevalence of 0.05, 0.1, and 0.2.   

Heritability Prevalence 
Significance level 

0.01 0.05 0.1 

0 
0.05 0.0000 0.0025 0.0100 
0.1 0.0005 0.0045 0.0095 
0.2 0.0000 0.0075 0.0215 

0.2 
0.05 0.4735 0.8110 0.9185 
0.1 0.8520 0.9660 0.9850 
0.2 0.8155 0.9540 0.9855 

0.4 
0.05 1.0000 1.0000 1.0000 
0.1 1.0000 1.0000 1.0000 
0.2 1.0000 1.0000 1.0000 
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4.3.2 Applications of LTMH and CEST to Type-2 

Diabetes 

To evaluate the performance of LTMH using real data, I 

examined the family-based samples from the T2D dataset. Table 4.6 

shows the descriptive statistics [37]. There were 1,736 T2D patients 

(36.75%), and average age for entire samples was 48.63 years old with 

SD of 15.7 . The proportions of males and females are similar. All non-

probands are the first-degree relatives of probands, and the familial 

relationships observed most often are siblings (59.22%) and offspring 

(32.85%). 

LTMH was used to examine the family-based samples derived 

from the T2D dataset, and heritability of T2D was estimated. Estimated 

heritability of T2D was 29.44%, and it was statistically significant 

under the significance level of 0.05 (P-value = 1.20×10-5). This finding 

is slightly overestimated in comparison to other determinations of 

heritability estimates for T2D (26%) using the ACE model based on 

twin data [98]. This difference may be attributable to racial differences. 

The coefficient estimate for non-standardized age was 0.051 (0.8 for 

standardized age), which means that the threshold for disease is 

reduced by 0.051 at the liability scale if age increases by 1. The 

function of age is well described in Figure 4.3A, which illustrates the 
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probability of being affected by T2D as a function of age. Results 

demonstrate that the risk increases monotonically by age, reflecting the 

reduction effect on disease threshold. Individuals with a higher number 

of T2D affected relatives exhibit greater risk. In comparison to random 

samples, the influence of family history is greater at a young age, and 

determining familial risk for early-onset T2D is highly important 

(Figure 4.3B). 
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Table 4.6 Demographic characteristics of study participants. For 

categorical variables, the number of subjects and their proportions are 

provided. For continuous variables, means and standard deviations are 

provided. † T2D : Type 2 Diabetes. 

 
Proband Non-proband 

Disease status 
  

     T2D† 648 (100%) 1,115 (26.87%) 
     Normal 0 (0%) 3,034 (73.13%) 
Sex 

  
     Male 308 (47.53%) 2,058 (49.6%) 
     Female 340 (52.47%)  2,091 (50.4%) 
Age 55.44 (10.7) 47.56 (16.09) 
Relationship of  

relatives with proband  
     Parents 

 
329 (7.93%) 

     Sibling 
 

2,457 (59.22%) 
     Offspring 

 
1,363 (32.85%) 
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Figure 4.3 Estimation of risks for T2D according to age. For a 

certain individual, I assume that he/she has two parents and one 

younger sibling, and the risk of T2D development was calculated as a 

function of his/her age and the number of affected family members. 

The X-axis indicates age of individual, and the age of his/her father and 

mother were assumed to be 29 years old. The younger sibling was 

assumed to be 3 years younger than the participant. ℎ2  and the 

coefficient of unstandardized age were set to be 0.2944 and 0.051, 

respectively. (A) Probability of the participant being affected according 

to the number of affected family members, and (B) relative risks of 

being affected according to the number of affected family members. 
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4.3.2 Applications of CEST to S-LAM disease 

GWAS using CEST was performed for 549,599 SNPs. Figure 

4.4 shows quantile-quantile plot and Manhattan plot of GWAS after 

applying genomic control. Genomic inflation factor before genomic 

control was 1.076. The distribution of the observed P-values met the 

expected P-values except two significant SNPs under the genome-wide 

significance level of 5×10-8. CEST yielded smaller P-value for two 

significant SNPs rather than the result of GWAS using CLR, providing 

CEST is applicable to the independent samples with various strategies 

(Table 4.7).  

  



149 

 

Figure 4.4 Quantile-quantile (QQ) and Manhattan plots for the 

LAM GWAS using CEST.  

a) The observed distributions of P-values for 549,599 genotyped SNPs 

are plotted relative to the expected (null) distribution for the CEST. b) 

Manhattan plot. Each dot represents the P-value of a single SNP, 

plotted on the genome scale at bottom. The Y-axis value is the negative 

logarithm of the P-value for association between each genotyped SNP 

and S-LAM. Two SNPs on 15q met genome-wide significance. 
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Table 4.7 Comparison results of CLR and CEST. Two significant 

SNPs whose P-value is less than genome-wide significance level of 

5×10-8.   

CHR SNP Position 
P-value 

CLR CEST 
15 rs4544201 96167827 8.51×10

-10

 1.581×10
-11

 
15 rs2006950 96179390 3.92×10

-10

 3.139×10
-12
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4.4 Discussion 

In this article, I proposed a new method to estimate the 

heritability of a dichotomous trait based on the Liability Threshold 

Model for ascertained family-based samples. A simulation study 

demonstrated that LTMH generally provides more accurate estimates 

of heritabilities than does GCTA, and the differences between these 

methods are substantial in the context of ascertained families. To our 

knowledge, there is no method to effectively approach ascertained 

samples to estimate heritability of dichotomous traits. Additionally, I 

assessed the statistical performance of CEST analysis. Statistical power 

estimates were evaluated under various experimental conditions, and 

substantial power improvement was observed in the context of common 

diseases as opposed to that seen for rare diseases. 

Despite the power improvement provided by the proposed 

methods, there are limitations. First, the CEST for ℎ2 was conservative. 

I found that the likelihood for ℎ2  is not symmetric under the null 

hypothesis, and this may be attributable to the misspecified weights for 

0  and 𝜒2(𝑑𝑓 = 1)  for the distribution of the CEST under 𝐻0 . 

Fortunately, I found that such inflation does not affect the statistical 

power of our analysis, but certain modifications such as bootstrapping 

are necessary. Second, the proposed method is the computationally 
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intensive when the family size, 𝑛𝑖 , is large, and the expected 

computational time is proportional to O(max𝑖 𝑛𝑖
3) . The most 

significant computational burden arises from the calculation of 

conditional expectation in the E-step of the EM algorithm. The 

computational burden can be reduced by reducing the number of 

iterations for the EM algorithm or by approximating the moment of the 

multivariate truncated normal. The former can be achieved by using 

EM acceleration methods which can make EM dramatically faster. 

These include Aitken acceleration, conjugate gradient acceleration, 

quasi-Newtonian acceleration, and parameter expansion acceleration 

[140-144]. For the latter, conditional expectation may be approximated 

using certain numerical algorithms such as Laplace approximation. 

Investigation of these techniques will be the focus of future research. 

Heritability shows important utility for genetic epidemiology; 

however, heritability estimation of dichotomous phenotypes can be 

extremely complicated due to ascertainment bias. Despite several 

limitations, our proposed method successfully enabled heritability 

estimation of dichotomous traits in ascertained families, and this 

method may provide a promising strategy to estimate the narrow-sense 

heritability of various diseases. LTMH is implemented in R language, 
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and source codes are freely available at 

http://healthstat.snu.ac.kr/software/LTMH. 
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4.5 Appendix 

4.5.1 Numerical analysis for optimization of the 

heritability in M-step of EM algorithm 

The first derivative of 𝑄𝑖(𝛉|𝛉(𝑘)) with respect to ℎ2 is given 

by 

𝜕𝑄𝑖(𝛉|𝛉(𝑘))

𝜕ℎ2
= −

1

2
tr (𝚺𝑖

−1(𝚽𝑖 − 𝐈𝑛𝒊
)) −

1

2
tr(𝐂𝑖𝐀𝑖

(𝑘)
)

+ 𝛃𝑡𝐗𝑖
𝑡𝐂𝑖 (𝐁𝑖

(𝑘)
−

1

2
𝐗𝑖𝛃)     (𝟐) 

where 𝐂𝑖 = 𝜕𝚺𝑖
−1 𝜕ℎ2⁄ = −𝚺𝑖

−1(𝚽𝑖 − 𝐈𝑛𝒊
)𝚺𝑖

−1 . Then, the objective 

function becomes 

ℳ(ℎ2) = ∑
𝜕𝑄𝑖(𝛉|𝛉(𝑘))

𝜕ℎ2

𝑛

𝑖=1

|

𝛃=𝛃
(𝑘)

(ℎ2 )

= 0. 

Similarly, I can get the first derivative of ℳ(ℎ2) with respect to ℎ2 

as follows, 
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ℳ′(ℎ2) 

= ∑[−
1

2
tr (𝐂𝑖 (𝚽𝑖 − 𝐈𝑛𝒊

)) −
1

2
tr(𝐇𝑖𝐀𝑖

(𝑘)
)

𝑛

𝑖=1

+ (𝐗𝑖𝐅
(𝑘))

𝑡
𝐂𝑖 (𝐁𝑖

(𝑘)
−

1

2
𝐗𝑖𝛃

(𝑘)(ℎ2))

+ (𝐗𝑖𝛃
(𝑘)(ℎ2))

𝑡

𝐇𝑖 (𝐁𝑖

(𝑘)
−

1

2
𝐗𝑖𝛃

(𝑘)(ℎ2))

−
1

2
(𝐗𝑖𝛃

(𝑘)(ℎ2))
𝑡

𝐂𝑖𝐗𝑖𝐅
(𝑘)] 

where 𝐇𝑖 = 𝜕𝐂𝑖 𝜕ℎ2⁄ = −2𝚺𝑖
−1(𝚽𝑖 − 𝐈𝑛𝒊

)𝐂𝑖  and 

𝐅(𝑘) 

= 𝜕𝛃(𝑘)(ℎ2) 𝜕ℎ2⁄  

= − (∑𝐗𝑖
𝑡𝚺𝑖

−1𝐗𝑖

𝑛

𝑖=1

)

−𝟏

(∑𝐗𝑖
𝑡𝐂𝑖𝐗𝑖

𝑛

𝑖=1

)(∑𝐗𝑖
𝑡𝚺𝑖

−1𝐗𝑖

𝑛

𝑖=1

)

−𝟏

(∑𝐗𝑖
𝑡𝚺𝑖

−1𝐁𝒊

(𝑘)

𝑛

𝑖=1

)

+ (∑𝐗𝑖
𝑡𝚺𝑖

−1𝐗𝑖

𝑛

𝑖=1

)

−𝟏

(∑𝐗𝑖
𝑡𝐂𝑖𝐁𝒊

(𝑘)

𝑛

𝑖=1

). 

Finally, ℎ2 is updated according to the following iterative steps using 

𝐀𝑖

(𝑘)
 and 𝐁𝑖

(𝑘)
 which were calculated at the previous E-step, 

ℎnew
2 = ℎold

2 −
ℳ(ℎold

2 )

ℳ ′(ℎold
2 )

. 
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4.5.2 Numerical analysis for maximizing the global lower 

bound 

If I denote the global lower bound for the conditional log-

likelihood as ℚ(𝛉|𝛉(𝑘)), then the first derivative of ℚ(𝛉|𝛉(𝑘)) with 

respect to 𝛉, ℋ(𝛉|𝛉(𝑘)), is given by  

ℋ(𝛉|𝛉(𝑘))=

(

 
 

𝜕Q(𝛉|𝛉(𝑘))

𝜕𝛃
+

𝜕𝑙(𝛃; 𝐘𝑃)

𝜕𝛃

𝜕Q(𝛉|𝛉(𝑘))

𝜕ℎ2 )

 
 

. 

Here, it should be noted that 𝜕Q(𝛉|𝛉(𝑘)) 𝜕𝛉⁄  is equivalent to the 

equations (1) and (2) in the Method and Appendix (A). Using the chain 

rule, I can easily obtain the first derivative of 𝑙(𝛃; 𝐘𝑃) with respect to 

𝛃 as follows, 

𝜕𝑙(𝛃; 𝐘𝑃)

𝜕𝛃
= ∑[

𝜕𝑙(𝛃; 𝑌𝑖
𝑃)

𝜕𝛼𝑖

𝜕𝛼𝑖

𝜕𝜇𝑖

𝜕𝜇𝑖

𝜕𝛃
]

𝑛

𝑖=1

= ∑[
(𝑌𝑖

𝑃 − 𝜇𝑖)

𝜇𝑖(1 − 𝜇𝑖)
𝜙(𝑐 − 𝐗𝑖

𝑃𝛃)(𝐗𝑖
𝑃)𝑡]

𝑛

𝑖=1

  

where 𝜙(∙) is the probability density function for the standard normal. 

To apply Newton-Raphson algorithm for the objective function 

ℋ(𝛉|𝛉(𝑘)), I derive the first derivative of ℋ(𝛉|𝛉(𝑘)) with respect to 

𝛉𝑡, 𝐉(𝛉|𝛉(𝑘)), as follows, 
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𝐉(𝛉|𝛉(𝑘)) =

(

 
 

𝜕2Q(𝛉|𝛉(𝑘))

𝜕𝛃𝑡𝜕𝛃
+

𝜕2 𝑙(𝛃; 𝐘𝑃)

𝜕𝛃𝑡𝜕𝛃

𝜕2Q(𝛉|𝛉(𝑘))

𝜕ℎ2𝜕𝛃

𝜕2Q(𝛉|𝛉(𝑘))

𝜕𝛃𝑡𝜕ℎ2

𝜕2Q(𝛉|𝛉(𝑘))

𝜕(ℎ2)2 )

 
 

 

and each term is given by 

𝜕2Q(𝛉|𝛉(𝑘))

𝜕𝛃𝑡𝜕𝛃
= ∑(𝐗𝑖

𝑡𝚺𝑖
−1𝐗𝑖)

𝑛

𝑖=1

,
𝜕2𝑙(𝛃; 𝐘𝑃)

𝜕𝛃𝑡𝜕𝛃

= ∑[
𝜙(𝑐 − 𝐗𝑖

𝑃𝛃)

𝜇𝑖(1 − 𝜇𝑖)
𝐗𝑖

𝑃 {
(𝑌𝑖

𝑃 − 𝜇𝑖)(2𝜇𝑖 − 1)

𝜇𝑖(1 − 𝜇𝑖)
𝜙(𝑐

𝑛

𝑖=1

− 𝐗𝑖
𝑃𝛃) + (𝑌𝑖

𝑃 − 𝜇𝑖)(𝑐 − 𝐗𝑖
𝑃𝛃) − 𝜙(𝑐 − 𝐗𝑖

𝑃𝛃)}(𝐗𝑖
𝑃)𝑡], 

𝜕2Q(𝛉|𝛉(𝑘))

𝜕ℎ2𝜕𝛃
= ∑(𝐗𝑖

𝑡𝐂𝑖𝐁𝒊

(𝑘)
)

𝑛

𝑖=1

− ∑(𝐗𝑖
𝑡𝐂𝑖𝐗𝑖𝛃)

𝑛

𝑖=1

, 

and 

𝜕2Q(𝛉|𝛉(𝑘))

𝜕(ℎ2)2 
= −

1

2
tr (𝐂𝑖(𝚽𝑖 − 𝐈𝑛𝒊

)) −
1

2
tr(𝐇𝑖𝐀𝑖

(𝑘)
)

+ 𝛃𝑡𝐗𝑖
𝑡𝐇𝑖(𝐁𝑖

(𝑘)
−

1

2
𝐗𝑖𝛃). 

With these terms, I iteratively update 𝛉 using the following equation 

until convergence, 

𝛉new = 𝛉old − 𝐉−1(𝛉old|𝛉(𝑘)) ℋ(𝛉old|𝛉(𝑘)). 
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Chapter 5 

Summary and Conclusions 

Over the last few decades, genome-wide association studies 

(GWAS) have identified more than 69,000 variants associated with 

human complex traits. Rapid improvement in next-generation 

sequencing technology enabled us to obtain more genetic information 

with limited cost, but sequencing cost is still expensive. Thus, effective 

selection of subjects for DNA sequencing is required in order to 

increase statistical power of GWAS. In this thesis, I focused on 

incorporating family history into GWAS. 

In chapter 3, I proposed a new statistical method for selecting 

cases and controls to improve statistical power of GWAS in sequencing 

DNA samples. Assuming a disease model is based on the liability 

threshold model, I calculated measure for selecting subjects by taking 

the expectation to the proband’s liability conditioning his/her disease 
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statuses and proband’s own disease status. Based on the assumption 

that the liabilities of related samples follow a multivariate normal 

distribution with variance-covariance matrix of genetic relationship 

matrix, I yielded the scores using moments of truncated normal 

distribution. Then the person who have more affected relatives might 

have relatively larger score than the person who have less affected 

relatives. In our simulation study, I considered several strategies of 

selecting subjects and GWAS produces largest empirical power 

estimates when affected subjects with large score and unaffected 

subjects with small score are utilized to GWAS as cases and controls, 

respectively. On the other hand, when affected subjects with small 

score and unaffected subjects with large score are used as cases and 

controls, GWAS worked poorly even rather than randomly selected 

samples. The proposed method was successively applied to T2D 

dataset and I found that GWAS of the proposed sample selection 

strategy produced lower P-value for candidate SNPs than GWAS of the 

randomly selected samples. 

Family history has been considered as important risk factor for 

various complex diseases and it is relatively easy to obtain with low 

costs. Family history can be usually obtained via an affected families 

member, referring to a proband, and therefore, tends to include more 
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affected subjects rather than random population. Various methods to 

estimate heritability of binary trait have been suggested but no suitable 

method dealing with ascertained samples has been developed. In 

chapter 4, I proposed a new method to estimate heritability of binary 

trait on ascertained samples using conditional expectation-

maximization (CEM) algorithm. In extensive simulation study, our 

proposed method provided accurate estimates for heritability and 

coefficients of covariates for both randomly selected families and 

ascertained families. I successfully applied the proposed model to T2D 

datasets consisting of ascertained families. In LAM dataset, I matched 

one cases with two controls based on age and top two PC scores, and 

performed GWAS using CEST as if matched samples are a family. In 

comparison to conditional logistic regression, the proposed method 

showed smaller P-values for two significant SNPs. 

In summary, I found that a strategy of selecting cases and 

controls for GWAS can affect statistical power, and substantial 

improvement in statistical power of GWAS can be achieved by 

incorporating family history to selection strategy of subjects. Therefore, 

the proposed selection strategy seems to be cost-effective and efficient 

method in that I choose study participants who can most effectively 

detect GWAS signals based on the family history. I also proposed a 
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new method to estimate heritability of dichotomous phenotype for 

ascertained samples. Although there are some limitations, the proposed 

method successfully performed in both simulation study and real data 

analysis. Both methods in chapter 3 and 4 were implemented in R 

language, and source codes and manuals are freely available at websites.  
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국  문  초  록 

 

최근 유전자 시퀀싱 기술의 발전은 질병을 가진 인간의 

유전정보를 대량으로 얻어내는 것을 가능하게 하였으며 이를 

통하여 인간의 질병과 유전적 변이 사이의 연관성을 밝혀낼 

수 있었다. 그러나 시퀀싱 기술의 발전으로 비용이 현저히 

낮아졌다고 할지라도 유전정보를 얻는데 필요한 비용은 결코 

저렴하지 않으며, 제한된 비용에서 최대의 효율을 끌어낼 수 

있는 분석 대상을 선별하는 과정은 매우 중요하다. 한편, 

이분형 표현형의 유전율을 추정하는 수많은 방법이 

제안되었지만 연속형 표현형의 유전율 추정과는 달리 

계산적으로 또 통계적으로 매우 복잡하여 제한적으로 

이용되곤 하였다.  

이에 본 논문에서는, 전장유전체연관성분석의 통계적 

검정력을 향상시키기 위하여 유전자 시퀀싱을 함에 있어 

가족력을 바탕으로 사례군과 대조군을 선별하는 새로운 

통계적 방법을 개발하였다. 질병 모형은 관측되지 않은 연속형 

변수에 의해 결정된다고 가정하는데, 이 연속형 변수가 질병 



185 

 

고유의 한계점보다 큰 사람은 질병을 얻게 된다. 이 연속형 

변수는 책임점수(Liability) 라고 일컫고 이 질병 모형을 

책임한계모형(Liability threshold model)이라고 부른다. 이 

질병 모형을 바탕으로 본 연구의 방법은 다음의 두 단계로 

이루어져 있다. 첫째로, 각 가족 별로 가족들의 질병력이 

주어졌을 때의 책임점수의 조건부평균을 계산한다. 그 

다음으로 이렇게 구해진 조건부평균을 바탕으로 사례군과 

대조군을 선별한다. 모의실험을 통하여 

전장유전체연관성분석의 통계적 검정력은 어떻게 사례군과 

대조군을 선별하는지에 따라서 중대한 영향을 받고, 

조건부평균이 큰 질병군을 사례군으로, 작은 정상군을 

대조군으로 선별하였을 때 가장 높은 것을 확인하였다. 이 

방법은 제 2 형 당뇨의 유전체 연관성 분석에 적용되었고, 

무작위로 분석대상을 추출하였을 때와 결과와 비교하였을 때, 

훨씬 더 향상된 것을 확인할 수 있었다.  

이 방법과 더불어, 나는 이분형 표현형의 유전율 

추정방법을 개발하였다. 이 방법은 가족력을 바탕으로 추정이 

되고, 가계도의 구조에 구애 받지 않는다. 특히 이 방법은 

무작위로 선별된 가족에 대한 추정 뿐 아니라, proband 의 
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질병력으로 인하여 가족이 분석에 참여하게 된 경우에 대한 

추정도 가능하다는 장점을 가지고 있다. 다양한 모의실험을 

통하여 이 방법의 정확성을 평가하였으며, 기 개발된 연구의 

결과와 비교를 통하여 추정치의 정확성의 향상을 확인할 수 

있었다. 또한 제 2 형 당뇨의 한국인 가계도 데이터에 본 

방법을 적용하여 유전율을 평가하였다. 
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