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Abstract

Objective Assessments of the Transcranial 
Stimulations for Treatments of 

Tinnitus and Hyperacusis

Bae, Eun Bit
Interdisciplimentary program in Brainscience

The Graduate school
Seoul National University

Tinnitus and hyperacusis are neuro-otological disorders, and both main symptoms 

are subjective. For example, tinnitus is a symptom of continuous hearing a sound 

without external sounds. Hyperacusis is a symptom of discomfort when people 

hear a loud sound, and sometimes hyperacusis accompanies headache or other 

physical symptoms. In addition, both disorders are not cured by medication and 

the severity of the symptoms can not be measured objectively so it is not 

diagnosed by objective examination method. From the 1950s onwards, the central 

mechanism of  tinnitus has been mentioned by numerous studies, and the 

common brain state of tinnitus and hyperacusis has been revealed by various 

animal studies, such as recent central gain enhancement mechanisms. 

The aim of this dissertation is to treat central hyperactivity of tinnitus and 

hyperacusis using transcranial electrical stimulation and transcranial magnetic 

stimulation, and to assess pathological status with an electro-physiological 
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method. In the previous tinnitus studies, the transcranial direct current stimulation 

and magnetic stimulation were used for the study of tinnitus treatment, and in 

this study, the transcranial random noise stimulation was used to treat 

hyperacusis. Questionnaire format is the most important measurement to assess 

the subjective symptoms of tinnitus, but the pathophysiologic status of the central 

mechanism of tinnitus can not be determined by questionnaires or audiometry. 

Therefore, in order to effectively evaluate the pathophysiological condition of 

tinnitus and hyperacusis and the therapeutic effects of the transcranial 

stimulations, we used an electroencephalography (EEG) as a neuroimaging 

technique. For objectively measuring pathologic status, verifiable standards of the 

EEG had to be established.

In the course of my doctoral degree, we conducted several studies to develop a 

treatment methods specific to tinnitus and hyperacusis using transcranial 

stimulations. As a result, we increased the therapeutic effect and the number of 

responders compared to the previous researches, and we also devised a specific 

treatment for hyperacusis. In addition, we focused on establishing the test 

methods that can confirm the therapeutic effects objectively through the EEG, 

questionnaires and a psychoacoustic measurement. In this doctoral dissertation, we 

used these three tests to complement each other’s strengths and weaknesses to 

accurately evaluate the patho-physiologic status and therapeutic effects of tinnitus 

and hyperacusis.

Keywords : Tinnitus, Hyperacusis, Transcranial direct current stimulation, 

Transcranial magnetic stimulation, Transcranial random noise stimulation, Pure 

tone audiometry, Electroencephalography, Auditory cortex

Student Number : 2015-22680
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1. Introduction

1.1. Background of the study

Tinnitus and hyperacusis are not lethal to human life, but these are 

the auditory disorders with a high prevalence and high levels of 

depressive symptoms and suffering. Regardless of age and gender, 

tinnitus and hyperacusis can develop in anyone from children to 

adults to seniors (Kleinjung et al. 2011). With the development of 

technology, portable and electronic devices are becoming more 

popular, and the prevalence of the auditory and hearing disorders is 

rapidly increasing year by year. Furthermore, the number of teenage 

patients is increasing; thus, tinnitus and hyperacusis are becoming 

more critical in both social and clinical.

Tinnitus, except pulsatile tinnitus, and hyperacusis are primarily based 

on the subjective complaints of patients. Still, there are no test 

methods that can objectively measure the severity of tinnitus and 

hyperacusis or a specific treatment with a high therapeutic effect. 

Although drugs have been used primarily to treat symptoms of 

tinnitus and hyperacusis, most drugs are ineffective or have side 

effects. And to assess subjective symptoms of tinnitus, questionnaires 

are usually used. i.e. tinnitus questionnaire, tinnitus handicap 

inventory, visual analogue scale, etc. The only measurement for the 
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assessment of the pathophysiologic condition of tinnitus is the pitch 

matching test using pure-tone audiometry (PTA), which entirely 

depends on the subject’s answer; therefore, the results usually vary 

depending on the health conditions of the patient. The measurements 

that objectively evaluate the neuronal hyperactivity resulting from 

central gain enhancement, the major cause of tinnitus and hyperacusis, 

are highly needed in these days.

1.2. Pathophysiological view of tinnitus and hyperacusis

Some people temporarily hear tinnitus depending on their health 

condition and body position in normal hearing while other hear 

tinnitus all the time after they lose their hearing (Shore, Zhou, and 

Koehler 2007). Hyperacusis is one of the symptoms accompany with 

tinnitus, and it also occurs when a person is exposed to repetitive or 

chronic high frequency noises. Hearing loss can cause hyperactivity in 

the middle of the bottom-up hearing pathway from the peripheral 

nerve of the cochlea to the cortex (Auerbach et al. 2014) in tinnitus 

and hyperacusis. Maladapted signals feed back to the cortex from the 

damaged hair cells or cochlea nerves, and this process causes central 

gain enhancement which can be detected as hyperactivity outside of 

the brain via neuroimaging techniques (Vanneste et al. 2014). 

Previous studies have identified cortical circuits related to tinnitus and 
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hyperacusis associated with cognition, memory, and emotion (Vanneste 

et al. 2014, 2015, 2018). Sevral studies also discovered it via 

functional connectivity and neuroimaging showing that tinnitus and 

hyperacusis can develop these circuits into a strong maladapted 

connection (Chen et al. 2015; Chen et al. 2017; De Ridder et al. 

2014). Symptoms of the central tinnitus and hyperacusis have been 

described in clinic from a century ago (Ear. 1893), and recent studies 

have more specifically identified these symptoms in central gain 

enhancement theory via animal experiments or human neuroimaging 

(Mantini et al. 2007). However, there are no specific and standardized 

measurements or therapies for tinnitus and hyperacusis in clinic.

The purpose of this doctoral dissertation is to maximize therapeutic 

effects of tinnitus and hyperacusis using the transcranial stimulations 

and evaluate pathologic status and therapeutic effects objectively 

through EEG with the studies described in the chapter 2 to the 

chapter 4.

1.3. Overview

This doctoral dissertation is consists of four parts: 

The chapter 1 is introduction of the research background of the 

dissertation for social significances, necessity of the study and 

patho-physiological views about tinnitus and hyperacusis. 

The details of the main studies were described in the chapter 2 to 
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chapter 4, and the contents were include as follows:

The studies evaluating effects of the single session of dual 

neuromodulation for the tinnitus treatments were presented in the 

chapter 2. We evaluated the therapeutic effects of transcranial direct 

current stimulation (tDCS) and transcranial magnetic stimulation (TMS) 

via questionnares and pure-tone audiometry.

The study on treatment specialized for hyperacusis using transcranial 

random noise stimulation (tRNS) was described in the chapter 3. The 

therapeutic effects of tRNS on hyperacusis were evaluated through 

visual analogue scale of the hyperacusis symptoms, uncomfortable 

hearing levels and electro-encephalography (EEG) of pre/ post 

treatment.

The research focusing on the comparison of the characteristics of 

EEG between workers who long-term exposed to occupational noise 

and other tinnitus/hyperacusis is described in the chapter 4. Through 

this study, occupational noise induced tinnitus/hyperacusis would be 

separated to other tinnitus/hyperacusis with/without hearing loss.

Finally, we gave the perspectives of the future works for transcranial 

stimulations and EEG validation on tinnitus and hyperacusis and 

suggested treatment and EEG methods for clinics in the chapter 5.
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2. Stimulations for tinnitus treatment

2.1. Abstract

To treat motor disorders and psychiatric disorders, transcranial direct 

current stimulation (tDCS) and transcranial magnetic stimulations 

(TMS) are world-widely in use in clinics. For subjective tinnitus, we 

combined these two type of neuromodulation in this study, to evaluate 

how the effectiveness of single session of tDCS and TMS combined 

treatment is different to single treatment groups.

Eighty tinnitus subjects completed the clinical trial. Experimental 

groups were divided into four groups according to the combination of 

two types of stimulations, which are the tDCS group, tDCS with 

sham TMS group (tDCS-shTMS), tDCS with TMS combined group 

(tDCS-TMS) and TMS group. We used four types of questionnaires 

for self-assessments of subjective symptoms of tinnitus and audiometry 

results for evaluating auditory characteristics of respondents on the 

transcranial stimulations. To verify the correlation between hearing and 

responses of neuromodulation, each group was divided into 

respondents and non-respondents according to the pre-post treatment 

differences between VAS intensity and VAS distress and total eight 

groups were performed statistical analysis.

Using the paired t-test, we analyzed the differences of each group 
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between pre- and post-treatment score. In the tDCS-TMS group, THI, 

VAS intensity and distress were significantly decreased. The results of 

the four questionnaires of each of the four groups showed that VAS 

perception and intensity of tDCS-TMS group had made a significantly 

largest difference (tDCS-TMS group, p=0.018) while no significant 

difference in the group comparisons (Table 2-2, P>0.05). The p-value 

of VAS intensity between the tDCS-TMS and TMS groups was the 

lowest (p=0.056) compared to the other groups (Mann-Whitney U test, 

Table 2-2). Respondents of the tDCS-TMS group were the highest for 

VAS intensity, 70% of twenty subjects.

From the frequency based results of pure-tone audiometry (PTA), 

differences of the hearing thresholds of the right side for the 

respondents and non-respondents in tDCS-TMS group were decreased 

than other tDCS performed groups. The frequency range with 

statistically significant differences in hearing thresholds between 

responders and non-responders is wider in the tDCS-TMS group than 

in the other groups (ANOVA, post hoc, Fisher's, P<0.05). Also we 

confirmed tendency of the response following neuromoulation 

treatments via linear regression. Four group were clustered to single 

tDCS performed groups (TDCS group and TDCS-shTMS group) and 

TMS included groups (TDCS-TMS group and TMS group). In case of 

non-responders, single tDCS performed groups present more close to 

linear tendency than TMS included groups. It suggests that tDCS 



2. Stimulations for tinnitus treatment

7

respondents can be directly correlated to hearing frequencies and 

thresholds, and TMS does not related to hearing. 

From the above results, we derived the following conclusions: The 

dual-neuromodulation could be consisted of the responders of frontal 

electric stimulation and the temporal magnetic stimulation. And the 

responders of the dual-neuromodulation were assumed that whose 

frontal area or temporal area were more abnormally activated than 

other brain areas (This assumption would be verified by assessing 

neuroimaging through EEG analysis in a subsequent study). 

TMS could be helpful to make larger effect when using it with 

tDCS, but 200 pulses of TMS were not enough to statistically 

effective in group comparisons. From PTA results, we discovered that 

tDCS responders were depended on hearing loss and mainly related to 

4kH frequency hearing thresholds while TMS does not correlated with 

hearing (frequency and thresholds).

2.2. Introduction

The usual treatment for tinnitus in clinics is medication. From the 

meta-analysis research, the clonazepam drug has been known to be 

effective for the treatment of tinnitus clinically, but in fact, more than 

half of the recipients of the drug have mild side effects. These drugs 
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are effective in tinnitus but cause side effects in more than half of 

the recipients. Drugs for blood circulation and depression have not 

been shown to be effective in tinnitus. Considering the development 

mechanism of tinnitus, recently, transcranial stimulations were used 

worldwide for tinnitus treatment in clinical trials. 

Transcranial magnetic stimulation (TMS) was approved in depression 

and stroke by US Food and Drug Administration (FDA), and 

transcranial direct current stimulation (tDCS) was also approved for 

depression and peripheral motor disorders by Conformittee Europienne 

(CE) (Fregni et al. 2015). For non-invasive treatment, TMS and tDCS 

have been used worldwide for the treatment of psychiatric and 

neurological disorders via stimulation outside of the skull and 

modulating neuronal activity, and this neuronal modulation causes 

therapeutic effects (Lefebvre et al. 2015). Expecting similar therapeutic 

effects, TMS has begun to be used in clinical trials for tinnitus 

treatment (De ridder et al. 2004). 

Previous studies on tDCS and TMS for the treatment of tinnitus have 

shown that the responders who reported positive outcomes were a 

maximum of around 50% of the total number of the subjects. There 

are no precedent studies in which all participants have experienced a 

treatment effect because of the variety of causes and types of tinnitus, 

and the standard method of neuromodulation of tinnitus has not yet 
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been established. Additionally, no previous studies have used two 

neuromodulation techniques in tinnitus patients.

We applied the frontal tDCS method, which has been reported to 

have statistically significant effects on depression (Brunoni, Ferrucci, 

et al. 2013, 2014), and the TMS method for the treatment of the 

temporal area (Fig.2-1). We combined these two prospective 

transcranial stimulations for the purpose of increasing the number of 

responders with positive outcomes and decreasing tinnitus symptoms. 

Another expected result from this study is to confirm that dual 

neuromodulation can dramatically change the cortical activity and 

significantly reduce tinnitus symptoms when compared to single 

treatment.

Fig.2-1 The procedure of the tDCS and TMS combined study for 
tinnitus treatment. 
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2.3. Methods and Materials

2.3.1. Randomize controlled trial.

Eighty-four subjects who had subjective tinnitus were enrolled and 

participated in the clinical trial, aged from 25 to 73 years. Four 

subjects who replied to the questionnaire on the other day of 

treatment were excluded. Patients who had serious neurological 

disorders, severe psychiatric disorders, or schizophrenia and patients 

whose main complication was not subjective tinnitus, such as pulsatile 

tinnitus and Meniere's disease, were excluded from the study. 

 The aim of the study was to evaluate that the effectiveness of a 

single session of tDCS and TMS combined treatment on subjective 

tinnitus compared to single treatment groups. The clinical trial and 

research were approved by the Institutional Review Board of the 

Seoul National University Bundang Hospital on August 29, 2016 (IRB 

No.: B-1607-355-004), and the clinical trial followed the guidelines of 

the Declaration of Helsinki. The tinnitus patients were primarily 

informed of the details of the clinical trial by the medical doctor, and 

an additional consultation was done with the researcher. All included 

patients gave their written informed consent. Research volunteers who 

agreed to participate in the clinical trial were gathered from the 

tinnitus clinic of the Department of Otorhinolaryngology -Head and 

Neck Surgery, Seoul National University Bun-dang Hospital.
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2.3.2. Dual stimulation for tinnitus treatment

Subjects were randomly allocated to one of four types of treatments 

to participate a clinical trial, except for two subjects who underwent 

cardiovascular stenting surgical operation were excluded from the TMS 

group and TMS and tDCS group, and assigned to just only the tDCS 

group. Subjects in both the tDCS and TMS combined treatment group 

and tDCS with sham TMS treatment group were given the same 

information about the treatment stimulation procedures. The total 

number of subjects was eighty with four groups of twenty each, and 

the male and female ratio was nearly equal in all the experimental 

groups (Table 2-1). Each group and subject clinical characteristics 

correlations were not statistically significant (ANOVA, previous 

treatment questionnaire scores in THI (p=0.838), VAS intensity 

(p=0.613), VAS distress (p=0.517), VAS perception (p=0.853), age 

(p=0.478), tinnitus durations (p=0.213), and Cross tab, gender ratio 

(p=0.849)). Experimental groups consisted of four different 

combinations of dual modality of transcranial stimulations which were 

the tDCS group, tDCS with sham TMS group (tDCS-shTMS), 

tDCS-TMS group (tDCS-TMS), and TMS group. As shown in the 

previous research, bi-frontal tDCS decreased tinnitus annoyance, but 

the effects of temporal tDCS were reported to be less than that for 
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frontal tDCS(Joos et al. 2014). Using TMS, we stimulated the single 

side of temporal area where is contralateral side of the tinnitus. The 

tDCS device that was used is approved for depression and 

rehabilitation of motor disorders by the Korea Food and Drug 

Administration (Neuroconn, DC-stimulator Plus).

Table 2-1.  Clinical and demographic data of the tinnitus subjects. 
Tinnitus intensity, distress and perception were measured by Visual 
Analogue Scale and there were no significant differences among the 
groups. 

Based on previous depression studies that published statistically 

significant results, we set the stimulation threshold at 1.5 mA. 

Subjects who were assigned to the tDCS group were given a 1.5 mA 

direct current stimulation on both frontal areas; the anode was placed 

on the left frontal area (F3), and the cathode was placed on the right 
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frontal area (F4) (Brunoni et al. 2013a, 2013b, 2014). The treatment 

time was 20 minutes of a simple single session on the treatment day. 

The first 3 to 5 minutes of tingling or stinging sensation is a 

common response, and none of the subjects complained of pain 

during the trial or requested to stop the stimulation.

Subjects who were assigned to the TMS groups (tDCS-TMS group 

and TMS group) had their resting motor thresholds (RMT) measured 

by the MagPro X100 (Tonica Elecktronik A/S, Denmark). The RMT 

is defined as the minimum stimulation intensity required to produce a 

motor response (Fizgerald & Daskalakis 2013). The response is 

defined as the minimum stimulus intensity, which is reproducible by 

about 3 times at about 50 μV. The subjects were given a stimulation 

at 80% intensity of the measured RMT, which ranged from 5% to a 

maximum 30% stimulator output(Schecklmann et al. 2015, Vanneste et 

al. 2012). Following the 10-20 EEG system, a single session of TMS 

applied to the contra-lateral single side of the temporoparietal cortex 

of the subject's tinnitus, between T3 or T4 and the P3 or P4, for 3 

min. 20 sec. with 200 pulses at a low frequency of 1 Hz 

(Schecklmann et al. 2015, De Ridder et al. 2013,  Vanneste et al. 

2012, Langguth et al. 2006). The recording electrode was placed on 

the skin over the Abdoctor Pollicis Brevis muscle, and the reference 

electrodes were positioned to the interphalangeal joint. A ground 

electrode was applied around the flexor carpi radialis muscle. 
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Considering the placebo effects of the tDCS-TMS group, we informed 

the tDCS-shTMS group and combined group the same way. The 

subjects included in the tDCS-shTMS group had their RMT measured, 

and a figure-eight-coil was placed on the temporal area of the 

contralateral side of tinnitus. The coil was erectly set up on the 

temporal area with the stimulus facing outward. The clinical trial was 

performed following the overall procedure (Fig. 2-2). 

Figure 2-2. Procedures for the tDCS andTMS combined research. It is 
a maximum two hours in one-day protocol from filling in pre-treatment 
questionnaires to completing treatments and post-questionnaire. Two 
type of the single treatments are tDCS and TMS, Dual treatment is 
tDCS with TMS treatment and additional control group is tDCS with 
sham TMS for confirming placebo effects of the dual treatment.
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On the second visit day, after the first day of treatment, two subjects 

complained of headache lasting 2 to 3 hours, one of the subjects had 

received tDCS, and the other had received tDCS with TMS. In the 

TMS group, two subjects temporarily perceived their tinnitus as being 

louder.

2.3.3. Measurements

The therapeutic effect of neuromodulation in tinnitus was assessed via 

four questionnaires. Tinnitus handicap inventory (THI) and Visual 

analogue scale (VAS) of tinnitus intensity (loudness), distress 

(annoyance) and perception (awareness) were used. 

For the VAS intensity and distress, subjects checked the number or 

line with a number between 0 (not important or annoying) and 10 

(very noisy or annoying) points. The numbered interval was one. THI 

questionnaire consisted of 25 questions, and the minimum interval was 

2 points, and scores were measured between 0 and 100. The score 

range of the VAS perception was between 0% and 100%. Before and 

after the treatments, subjects completed the four questionnaires on the 

first trial day. We used the same questionnaires for the pre-treatment 

(pre-tx) and post treatment (post-tx) evaluations. Immediately before 

the start of the stimulation and shortly after the subjects were 

stimulated, subjects listened to their own tinnitus for about 5 minutes 

in the noise shielded room and filled in the questionnaire.
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2.3.4. Analysis: Questionnaire

Each pre and post treatment score was analyzed within a treatment 

group via Wilcoxon signed ranks test analysis. The mean values of 

the pre-tx and post-tx scores of each group were obtained to confirm 

the difference, as shown in the box in Figure 2-4. Pre and post score 

differences were derived from each subject, and comparisons of the 

four questionnaire scores and treatment groups were performed via 

non-parametric, Kruskal-Wallis H test after multiplying the VAS 

intensity and distress by ten (Fig. 2-5). The criterion for defining 

whether a subject is a respondent of a questionnaire is set by the 

minimum response scores. We set a responder criterion at 5 or more 

in the THI and VAS perception, and the criterion for the VAS 

intensity and distress was set to 0.5. If a score is higher than the 

criterion, we categorized the subject as a responder. The percentage 

ratio of the responders were represented in a bar, and the ratio was 

not analyzed for statistical significance. Between and within group 

comparisons were also done for neuromodulation responders. Pre and 

post treatment scores were analyzed by two-related test for comparing 

within groups, and median test was done for between group 

comparisons. All the statistic results presented in the study were 

obtained by SPSS v.23, IBM.
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2.3.5. Analysis: Pure-tone audiometry

We used pure-tone audiometry (PTA) to confirm hearing thresholds at 

250Hz up to 8 kHz. The analysis group of PTA were divided into 

total 8 groups, divided into responders and non-responders in each of 

the four treatment groups. We analyzed the hearing thresholds of 

responders and non-responders in each group to identify correlations 

between response (therapeutic effects) of the treatments and hearing. 

ANOVA and post-hoc fishers were done for statistical analysis of 

hearing thresholds between responders and non-responders at each 

frequency. We obtained the difference of the thresholds between 

responders and non-responders, and performed the frequency analysis. 

And then, we performed linear regressions among four treatment 

groups. (Only tDCS-received groups: tDCS, tDCS-sham, TMS-received 

groups: tDCS-TMS, TMS). In the general case of hearing loss, 

conventional pure-tone audiometry showed a tendency to decrease 

from high-frequency hearing at 8 kHz. When the graph is plotted on 

the 8kHz hearing thresholds of y-axis and the average of hearing 

thresholds at 250Hz to 4kHz on the x-axis, the distribution of overall 

hearing loss subjects showed linear correlation (Fig. 2-3).
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Figure 2-3. The hearing distribution of the overall subjects. 
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2.4. Results: Questionnaire

2.4.1. Questionnaire: Pre-post treatment score comparisons

Figure 2-4 shows the results of the pre and post treatment differences 

within each group. Only the tDCS treated groups showed statistically 

significant effects in the THI score (tDCS, p=0.030*; tDCS-shTMS, 

p=0.047* and tDCS-TMS, p=0.052). VAS intensity and distress were 

the most significantly decreased compared to the other questionnaires 

in all four treatment groups (p<0.05*). For the tinnitus perception, the 

tDCS, tDCS-shTMS and TMS groups showed significant results 

(p=0.004**, p=0.025*, p=0.026*) but not the tDCS-TMS combined 

group (p=0.186). In terms of each group, the tDCS and tDCS-shTMS 

groups had the most statistically significant results for all four 

questionnaires, and the tDCS-TMS group had significantly decreased 

scores for the THI, VAS intensity and distress except for the VAS 

perception. The TMS group results were significant for the VAS 

intensity, distress and perception (p=0.049*, p=0.022*, p=0.026*) and 

not significant for the THI (p=0.138). In the view of the pre and 

post score gap, the tDCS-TMS group had the highest differences 

when compared to the other groups for the intensity and distress (Fig. 

2-4). Among the group comparison, there were no significant 

differences but the difference between tDCS-TMS group and TMS 

group was the largest than other group comparisons in the VAS 
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intensity (p=0.056†)

Figure 2-4. The effects of the treatments evaluated with the statistical 
analysis between pre and post treatment scores. Each group of the 
average of pre-tx represented filled circle, post-tx is filled triangle, and 
the difference range between pre- and post- treatment score was 
displayed as a box, median of the difference is represented as a 
hyphen inside the box. Presented error bar is standard deviations of 
the difference between pre-tx score and post-tx score. *p < 0.05, **p 
< 0.01
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Table 2-2. The statistical results of the questionnaire comparison 
among the four groups.
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2.4.2. Questionnaire: Multivariate comparisons

By classifying the variables into two types in this study, there were 

the four treatment groups and the four questionnaires for which eight 

variables were represented on the x-axis in the Fig 2-5. From the 

comparison results shown in the Fig 2-5 for the four questionnaires 

and the four groups, VAS perception and intensity had significantly 

the largest difference (in tDCS-TMS group, p=0.018) while no 

significant difference was observed among the group comparisons. 

In the comparison among the groups, the p-value of the VAS 

intensity was the lowest between the tDCS-TMS group and TMS 

group compared to the other groups (Kruskal-Wallis H tests, p=0.152). 

In particular, THI and VAS perception in the tDCS-shTMS, 

tDCS-TMS and TMS groups had a higher standard deviation than that 

of the VAS intensity and distress. Considering that the THI and VAS 

perception had the highest variances as well as the results of the 

questionnaire comparisons, the THI and VAS perception do not seem 

to reflect the effect immediately after treatment.
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Figure 2-5. The multivariate comparison results. Four questionnaire 
scores were normalized to a score range of 0-100 and each of the 
comparison analysis among four questionnaires/ four treatment groups 
was done via Kruskal-Wallis H test. (p = 0.018*).

2.4.3. Questionnaire: Percentage ratio by responders

In order to accurately determine responders to the transcranial 

neuromodulation, we excluded the THI and VAS perception 

questionnaires, and we used the VAS intensity and distress which can 

reflect the immediate effect of a single session of neuromodulation.
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For the VAS intensity, figure 2-6 shows that the TMS responders 

were 35% of the 20 subjects, the lowest among the four groups, and 

70% of the highest responders were observed in the combined group. 

The highest ratio of responders to VAS distress, 60%, were in the 

tDCS group, and the other 45% were in the other three treatment 

groups (tDCS-shTMS, combined and TMS group).

The criteria for responders who have experienced immediate tinnitus 

changes was set as neuromodulation responders who showed effective 

change in either of two questionnaires, the VAS intensity and distress. 

Figure 2-6 shows that the combined group had the highest responders 

in response to the VAS intensity and one of the two questionnaires. 

Figure 2-6. The percentage ratio of neuromodulation responders and 
non-responders. A number of participants in each group is twenty. 
Following the criteria as we set for responders of each questionnaire, 
each group of subjects was divided into responders and 
non-responders, and both were represented in a bar. The responders 
were presented in a bottom of a bar filled with a dot and 
non-responders were colored with grey.
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A. The responders in one of the VAS intensity or VAS distress. B. Th
e responders of each of the VAS intensity and the VAS distress

2.4.4. Questionnaire: Comparisons of responders

As a final step, to determine if there was a difference in the 

treatment effect between the groups in the responders, statistical 

analysis was performed only on the responders and not the 

non-responders. Because the VAS intensity and distress were more 

reliable to evaluate immediate tinnitus effects, we used those two 

questionnaires as a baseline for the neuromodulation responders. We 

compared the pre and post treatment scores through two-related tests 

and compared them among the four groups with median tests in the 

responders. Before the group comparison, difference values were 

obtained by subtracting the post-tx score from the pre-tx scores and 

then performed the median test. The results show all four 

questionnaires scores were significantly reduced in the tDCS and 

tDCS-shTMS groups (Fig 2-7). 
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Figure 2-7. Between and within group comparisons in responders. We 
analyzed for only responders of the neuromodulation. Pre-tx score and 
post-tx score were analyzed by two-related test for comparison within 
groups. Median test was done between group comparisons (p < 0.05*, 
p < 0.01**).

The tDCS group was the most statistically significant for all 

questionnaires followed by the tDCS with sham TMS group, the 

combined group and then the TMS group who were significant in 

responders (Table 2-3). The TMS group showed no statistical 

significance in THI, and the tDCS-TMS group had no effects on VAS 
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perception (Table 2-3). The tDCS, tDCS-shTMS and combined groups 

had a highly significant effect in the VAS intensity and distress 

(P<0.01**). However, still, there was no significant result shown in 

the comparison between the treatment groups

Table 2-3. The statistical results of the responders in one of the VAS 
intensity or the VAS distress. P-values are represented on the left 
side and numbers of the responder and non-responder are on the 
right side.
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2.5. Results: Pure-tone audiometry

2.5.1. Frequency analysis

Figure 2-8. The results of the seven frequency analysis using ANOVA.

The results of the tDCS group showed the statistically significant 
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differences between 250Hz and 4kHz and between 250Hz and 8kHz 

(Fig. 2-8, Left, upside). Given that the white bars are relatively high 

compared to black, the hearing of the responders is relatively poor at 

all frequencies than non-responders. In the tDCS-TMS group, the 

frequency band showed significant differences were from 3kHz to 8 

kHz (Fig. 2-8, Left, Down side). The frequency domain, which is 

statistically different, is wider than that of the single trial groups. 

TMS showed no difference in thresholds between responders and 

non-responders, and no significant difference was found in the 

frequency analysis (Fig. 2-8, Right, Down side).

2.5.2. Hearing thresholds analysis

To statistically determine whether thresholds differ between responder 

and non-responder, three groups of non-responders were grouped 

together (total 17 of non-responders in the three groups) and 

compared to the responders (tDCS;15, tDCS-TMS;12, tDCS-TMS;16, 

see fig.2-9). In the combined group, the difference between the 

non-responders of gray and the responders of light blue was found to 

be very significant at 3, 4 kHz (Fig. 2-9, P<0.01). In all three groups 

of tDCS received groups (tDCS, tDCS-shTMS, tDCS-TMS), 

responders (light blue coloured region) have higher hearing thresholds 

than non-responders (grey coloured region) overall. In the TMS group, 
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There is little difference in hearing between responders (light blue 

line) and non-responders (black dotted line), and the results show that 

the p-value is close to 1 at most frequencies. 

Figure 2-9. Thresholds comparison between responders and 
non-responders. Mann-whitney U test.
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2.5.3. Group analysis

The comparison of each frequency of hearing thresholds between the 

8 groups (four groups of responders/ non-responders) showed a 

significant difference in the tDCS group at 3 and 4 kHz (Fig. 2-10). 

The average values of the tDCS, tDCS-shTMS, tDCS-TMS groups 

were different between responders and non-responders, but does not 

statistically significant in the tDCS-shTMS and tDCS-TMS groups. 

The average values of the TMS group were no differences between 

the responders and non-responders. 

Figure 2-10. Eight group comparisons. ANOVA, Fisher test (post-hoc).

Two groups of tDCS-only performed groups (tDCS, tDCS-shTMS) 

were grouped according to origin of the stimulusand the two groups 
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with TMS were grouped together (tDCS-TMS, TMS) and compared 

by tDCS versus TMS groups. There was a significant difference in 

hearing thresholds between non-responders and responders in the 

tDCS-only group (p <0.01). At the 8 kHz, the hearing of the tDCS 

responders was greater and statistically significant with all 

non-responders including TMS performed groups (Fig. 2-11). 

Figure 2-11. Comparison between direct current stimulation and 
magnetic stimulation. Mann-Whitney U test. 

We compared the hearing thresholds of responders and non-responders 

according to treatment modalities and clinical differences between 

transcranial direct current stimulation and transcranial magnetic 

stimulation were confirmed. The hearing distribution of the total 

tinnitus subjects is linearly correlated with average thresholds at low 
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frequency to 4kHz of x-axis and hearing thresholds at 8kHz of y-axis.  

Non-responders were also relatively linear in the tDCS group, but 

non-responders of the TMS group had no linear correlation with 

hearing. (Fig. 2-12)

Figure 2-12. The linear correlations represented between tDCS 
respondents and hearing thresholds and between TMS respondents 
and hearing thresholds.

 Left: only tDCS performed group. Right: TMS performed group.

Circle: responders Filled triangle: non-responders

2.6. Discussion

2.6.1. Discussion of the questionnaire results 

In this study, differences in the pre and post treatment scores were 
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significantly decreased generally in all groups; thus, the four 

treatments, frontal tDCS, ipsi-temporal 200 pulses TMS, tDCS with 

sham TMS and combined dual treatments were considered to be 

statistically effective on tinnitus. Because there are some extremely 

high responders in each group, including the 200 pulses TMS group, 

the pre-post treatment scores of all four groups were significantly 

decreased statistically, and we suggest that this is the reason why 

there is no significant difference among the groups, even though the 

largest difference is in the combined group (Fig. 2-5).

  Twenty-five of the THI questions were mostly about daily social 

lives, for example, ‘Does your tinnitus make it difficult for you to 

enjoy life?’ and the question on VAS perception asked for the 

average percentage of time while hearing tinnitus during waking hours 

on a routine day. Because it was a single session and the review 

time was as short as 5 minutes, it was difficult to reflect the 

immediate treatment effect. As such, the THI question reflects the 

therapeutic effects of long-term daily life after treatment. Subjects 

answered that their tinnitus was not gone and was still heard. It 

means that the tinnitus decreased but did not disappear, so the 

perception was also inadequate to effectively reflect the treatment 

effect. Plus, in the comparison among the questionnaires, the 

tDCS-TMS combined group showed statistically significant results 

between intensity and perceptions. Especially, the VAS perception in 
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the tDCS-TMS group had the largest standard deviation among the 16 

variables (Fig 2-5. variables were equal to the multiplied four 

treatments groups and four questionnaires).

Considering that the tDCS-TMS group and TMS group were not 

significant in THI and VAS perception, we indirectly deduce that the 

THI and perception questions were not exactly suitable for assessing 

tinnitus changes just before and after treatments in this study.

Although there wereno significant differences among the treatment 

groups, the ratio of responders was the largest; 70% were responders 

in the tDCS and TMS combined group, who answered lower scores 

to the post questionnaire than the pre questionnaire for VAS intensity. 

This means that subjects who experienced the effects of 

neuromodulations were more than the other groups. To summarize the 

responders’ feelings of changes in tinnitus sounds, they generally 

expressed one of three common opinions: ‘decreased tinnitus 

loudness’, ‘it was moved far behind the head’ and ‘sharp sounds 

changed to softened ones’. 

For the reasons already mentioned, we had defined the VAS intensity 

and distress as a questionnaire that best reflects the immediate effects 

of neuromodulation evaluating responders. We analyzed multivariate 

comparisons in the neuromodulation responders, but there were still no 

differences compared the among groups in statistics (Fig. 2-7). The 
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results from the 80 subjects and the results of the responder 

comparison showed almost the same pattern (Fig. 2-4, Fig. 2-7).

The common areas reported in most tinnitus imaging studies are the 

dorsal lateral prefrontal cortex, tempo-parietal areas and amygdala (Sh

ore et al. 2007, 2016, Vanneste et al. 2018, Dehmel et al. 2012). The 

relative activity of tinnitus was higher than that of the control group, 

which was confirmed by the various imaging techniques such as 

fMRI, PET, and EEGv.(Vanneste et al. 2014, 2015, Chen et al. 2015, 

2017, 2018).

Because of the above reason, most of the frontal tDCS studies on 

tinnitus were conducted and stimulated on theright anodal and left 

cathodal. One of the previous studies reported no therapeutic effect 

was found for tDCS with the left anode and right cathode unless the 

right anodal and left cathodal tDCS suppressed tinnitus in perception 

(Vanneste et al. 2010). Considering the 29% VAS perception in 

tinnitus in the right anodal group, the number of subjects in the left 

anodal group was 16 times lower than that in the right cathodal 

group, suggesting that there was no statistically significant difference 

(Vanneste et al. 2010).

Our results have shown that left anodal stimulation, which is effective 

for depression, has the effect of reducing the size of tinnitus and 

suffering from tinnitus (Brunoni et al. 2013a, 2013b, 2014). Based on 
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several previous studies of tDCS fortinnitus, it seems more important 

to stimulate the abnormal tinnitus circuit more effectively than in the 

left and right directions of the positive and negative electrodes in the 

same area (Lefaucheur et al. 2017).

If the subject responds to temporal magnetic stimulation or frontal 

electric stimulation, it may also be effective in combined treatment. 

Despite single-session stimulation, the pre-post mean difference was 

the largest in the combined treatment. The mean value of the 

combined group tended to be the highest overall, but the difference 

between the groups was not large enough to be statistically 

significant, because there was a high number of responders in each 

group. Even though the differences were not significant among 

thetreatment groups, it seems that a large number of tDCS-TMS 

responders were included as much as the total number of the frontal 

tDCS responders and the temporal TMS responders. 

The cause for the differences between the tDCS and tDCS-shTMS 

groups could not be revealed by the questionnaire analysis and will 

be confirmed in subsequent analyses of audiometry and neuroimaging. 

In fact, neuroimaging studies can confirm whether subjects with 

abnormal hyperactivity in the frontal or temporal lobe are effective in 

the combined treatment group. We have also found that tDCS-TMS 

has the potential to have a greater effect on the reduction of tinnitus, 
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and TMS is considered to be performed over 200 pulses for 

statistically significant effects.

2.6.2. Discussion of the Pure-tone audiometry results

Through analysis for hearing thresholds of respondents and 

non-respondents in the four treatment groups, we newly observed the 

several scientific facts regarding the clinical characteristics of the 

tDCS and TMS. 

Statistical analysis of the non-responders in the three groups receiving 

tDCS and the responders of each group showed statistically significant 

differences between the responders and non-responders at 500 Hz and 

3, 4 kHz in all three groups (Fig. 2-9). In the tDCS-received groups, 

the hearing of the responders were poor than non-responders overall, 

which is interpreted as a better recognition of tDCS effects when 

hearing loss is greater. This suggests that tDCS in patients with good 

hearing may make it difficult to know whether the tinnitus has 

improved. And hearing may be irrelevant in recognizing the TMS 

modulation effects through the results.

Comparison of hearing thresholds between responders and 

non-responders were analyzed with raw data of the PTA and the 

frequency analysis was done with difference values between hearing 
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thresholds of the responders and non-responders. Through frequency 

analysis, we could observed the change in frequency domain which 

was statistically significant following treatments groups. The gap of 

the significant differences in combined group between responders and 

non-responders were observed at 3, 4 and 8kHz, and this can be 

interpreted as more regions of the frequency that can distinguish 

between responders and non-responders in a combined treatment group 

than in a single treatment group (Fig. 2-8). 

Additional analysis was performed to observe the correlation between 

hearing and therapeutic effectiveness. There were statistically 

significant differences between responders and non-responders in the 

tDCS group at 3, 4kHz. The tDCS group showed statistically 

significant difference between the responders and non-responders over 

the frequency range of 250- 4kHz and 8kHz, and there was no 

statistically significant difference in the TMS group.

Overall hearing distribution of the subjects was following general 

hearing distribution which is higher hearing loss at high frequency 

(Fig. 2-3). According to the results of the linear regressions, we 

clarified that the worse the hearing, the more greater the therapeutic 

effect in tDCS. However, also we re-confirmed that the effectiveness 

of the TMS is totally independent of hearing thresholds from the 

results of the distribution of the non-responders. 
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In sum, our findings can be interpreted as follows: For the tDCS, the 

greater the loss of hearing, the higher the probability of recognizing 

the effect. The response of the tDCS can be determined by 4kHz 

hearing threshold, but TMS is assumed as not being affected by 

hearing thresholds and frequency. The combination of 

hearing-dependent tDCS and hearing-independent TMS tended to lower 

the mean hearing of responders and increase the number of 

responders. 

Because the hearing differences between the responders and the 

non-responders are statistically quite certain, we though that perhaps a 

little more effort here would be able to establish a baseline for 

distinguishing the responders in further works.



3. Stimulation on hyperacusis

41

3. Stimulation on hyperacusis

3.1. Abstract

Hyperacusis is assumed to be caused by hyperactivity of the central 

pathway by noise. To evaluate and develop specific treatment 

modality in hyperacusis, we used transcranial random noise stimulation 

(tRNS), a recently introduced non-invasive neuromodulation method in 

research fields.

Ten subjects (5 males and 5 females, mean age 31.5±11.4 years) with 

hyperacusis symptoms were enrolled for the clinical trial of this study. 

Nine subjects had normal hearing thresholds and the other one subject 

had severe hearing loss in the left ear. Median of the uncomfortable 

loudness level (UCL) of nine subjects are 69.8 (±8.24) dB on the 

right side and 84 (±6.92) dB on the left side. Total 8 sessions of 

tRNS were applied to each patient on the bi-temporal area, during 4 

weeks. Subjective symptoms such as loudness and distress of 

hyperacusis subjectively assessed by visual analogue scale (VAS) befor

e and after treatment, and the resting-state of cortical activity changes 

were evaluated by 31-channel of the electroencephalography (EEG). 

All ten patients reported significant improvement with regard to VAS 

intensity and distress after treatment. After 8 sessions of the tRNS, 

median VAS intensity decreased from 6.9(±1.58) to 3.4(±2.07) (P 
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=0.017, by Wilcoxon signed rank test), and median VAS distress 

improved from 7.2(±1.10) to 4.0 (±2.70) (P = 0.017, by Wilcoxon 

signed rank test). Also, UCL of the sound was evaluated by PTA, 

improved about 21.5(±11.0)dB on the right side at 250 and 8000Hz 

(p<0.05), and 20(±9.11)dB on left side at 250, 500, 1000, 2000 and 

8000Hz after 8 sessions of tRNS. On the other hand, when we 

performed twice of sham stimulations on the same patients, VAS 

scores had no differences between the sham treatment score and the 

prior session of the sham treatments (p=0.317). Moreoever, qEEG 

revealed that resting-state of cortical activity decreased at alpha and 

beta frequency after 8 sessions of tRNS and we performed follow-up 

qEEG after 4weeks from last the 8th session.

Taken together, our preliminary results corroborated that tRNS may be 

a good treatment option in hyperacusis patients. Future studies with a 

larger number of subjects should be performed to further validate 

treatment effects of tRNS in hyperacusis patients.
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3.2. Methods: Procedure, stimulation

3.2.1. Subjects

This study was designed as a sham-controlled study and approved by 

both the Institute of Research Board of the Seoul National University 

Bundang Hospital (April 14th, 2017, No. B1612-373-001) and the 

Korea Ministry of Food and Drug Safety (November 6th, 2017, No. 

807). We followed the regulations of the good clinical practice (GCP) 

and conducted the clinical trial of medical device in accordance with 

the Declaration of Helsinki. After consultation with the physician and 

the researcher, all the subjects gave informed written consent. Total 

ten diagnosed hyperacusis patients (mean age 31.5±11.4, M:F=5.5) 

were enrolled in the Tinnitus clinic at the Otorhinolaryngology 

department (Table 3-1). 

Patients who had the hyperacusis symptoms for minimum 3 months 

were applied to the inclusion criteria; subjective symptoms were 

discomforts that can be felt when exposed to noise and the noise 

intensity which provoked hyperacusis symptoms were vary; residential 

noise to loud noise. Physical symptoms including pain and migraine 

are physical reactions to muscle contraction after exposed to 

uncomfortable sounds.  We did not set a baseline for hearing in our 

subject inclusion criteria, nine out of ten were within standard 

(normal) hearing and one subject has severe hearing loss on his left 
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side (Table 3-1). The exclusion criteria was applied to the following 

cases: 1) Having a history of prescription for a psychiatric disorders 

or a seizure. 2) Implantation of an in vivo stent or artificial organ. 3) 

A woman who is pregnant or scheduled to be pregnant. All of the 

participants in this study did not have any of the exclusion criteria. 

Unlike tDCS, subjects receiving tRNS did not experience side effects 

such as stinging and stabbing sense or headache during 8 real 

sessions.

 

Table 3-1. The clinical characteristics of the hyperacusis subjects
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3.2.2. Procedure

All ten subjects were received 8 sessions of tRNS and seven of ten 

were given additional two times of sham stimulation. Sham stimula- 

tion was treated with built-in sham protocol of the DC-stimulator 

made by the Neuroconn. The real stimulations were performed 

consecutively from the first session to the eighth session of tRNS 

twice in a week, and the sham treatments were performed two 

consecutive times after the pre-treatment EEG or after the 4 weeks 

post-treatment EEG. There were no previously reported adverse 

reaction of tRNS and no adverse effect occurred in this study.

Figure 3-1. The clinical trial procedure for hyperacusis treatment. 

3.2.3. Measurements

We assessed the subjective effectiveness by the visual analogue scale 

for hyperacusis intensity and distress. The degree of symptom was 

rated from 0 to 10 points. If the hyperacusis symptoms are too small 

to be felt the score is set to 0, and 10 points that are too large to 
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withstand symptoms. Total ten subjects were checked the VAS 

questionnaires from pre-treatment scores to 8th post-treatment scores, 

nine subjects for post-4wks scores and seven subjects for the sham 

treatments.

The hearing thresholds and uncomfortable level of sounds of the 

subjects were measured by the pure-tone audiometry. The hearing test 

was measured at seven frequencies from 250Hz to 8kHz.

To investigate changes of neuronal activity, 31 electrodes were 

performed on the day of pre-treatment, 8th session and 4weeks of 

post-treatment. EEG data were deriven using Mitsar EEG device and 

EEG were conducted in eye-closed states and recorded for 5 minutes 

in an electrical noise and sound shielding booth.

 

3.2.4. Data analysis

The VAS scores were statistically analyzed between pre and each of 

the session score via paired sample test. e.g. pre and 8th session 

treatment, pre and sham treatment, pre and post- 4 weeks scores.

Each left and right side of the uncomfortable level was analyzed 

between pre and 8th session of the post-treatment via paired sample 

test. The percentage improvement of the frequency analysis was done 

with differences of the pre and 8th post-treatment via non-parametric, 

Kruskal-wallis test.
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The changes of brain activity caused by stimulations were analyzed 

via comparing EEG data of pre, 8th and 4wks post treatment. Brain 

activity were assessed with amplitude and frequency rate of the EEG 

data, and preparation of the raw EEG data was done using the Mitsar 

software. Seven spectrum (delta, theta, alpha 1, 2, beta 1~3, gamma) 

analysis and connectivity were performed via sLORETA. The 

brodmann areas were represented with sLoreta density and statistically 

analyzed via Kruskal-Wallis test. All the statistical results presented in 

this study were obtained by SPSS v.23, IBM.

3.3. Results

3.3.1. Questionnaire score comparisons

The average score of the hyperacusis severity (intensity) was 7.4(±1.6) 

and distress was 7.65(±1.4) before tRNS treatment. After 8th session 

of the treatment, the average scores were decreased to 4.4(±2.2) in 

the intensity and 4.8(±2.4) in the distress. However, after the sham 

treatments, there was no difference from the pre-treatment score. (Fig. 

3-2)
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Figure 3-2. This is the graph showing the changes of the hyperacusis 
symptoms on the visual analogue scale according to the number of 
tRNS treatment.
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3.3.2. Psychoacoustic level comparisons

The uncomfortable level of pre-treatment was 73.43(±20.12) dB on the 

right side and 79.13(±18.02) dB on the left side, and UCL of the 8th 

session of treatment was 86.51(±57.88) dB on the right side and 92.5 

(±17.32) dB on the left side. 

The tRNS effectiveness had no correlation with hearing side and the 

hearing thresholds of the pre and post treatment have been no 

differences founded.

Figure 3-3. The audiogram presented the hearing threshold of pre and 
post treatment and UCL. Post audiogram was examined within a 
month after 8th treatment.
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The results of the percentage improvement of UCL showed that the 

8th session of tRNS was highly effective on the left side at 1kHz. 

However, there was no significant difference observed in the hearing 

thresholds. Because there was no difference between left and right 

side in the statistical results, tRNS seems to affect the hearing side 

irrelevantly.

Fig 3-4. The improvement of UCL displayed as decreased UCL 
decibel and improvement percentage. The frequency comparison 
analysis was done by Kruskal Wallis Test.

3.3.3. Neuroimaging

The brain topography with power ratios of beta2+gamma/ delta+theta 
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is normalized to a maximum of 50 (Fig. 3-5, upper) and the gamma 

power is normalized to a maximum 2% (Fig. 3-5, down). In the 

pre-treatment scalp map, The gamma-beta/ theta-delta ratio of the 

bilateral central to parietal cortices and the right temporal cortex were 

highly activated than the post-treatment brain states. The gamma-beta/ 

theta-delta ratio was decreased after the 8th treatment and decreased 

brain activity was maintained until after 4weeks of the 8th treatment. 

Gamma frequency was still high in right after the 8th session of 

treatment but the gamma power of the bilateral auditory cortices was 

decreased after 4weeks of the 8th treatment. 

Figure 3-5. The scalp map was colored following the amplitude of the 
brain activity. Three states of the subject’s brain were on the 
Pre-treatment, post 8th session and post 4weeks 



3. Stimulation on hyperacusis

52

The spectrum analysis results were also similar to scalp map results. 

Spectrum analysis was performed a paired group analysis with 8th 

treatment and pre-treatment using sLORETA. The brain activities after 

the 8th session of tRNS of the bilateral temporal cortices were slightly 

higher in all frequencies, the delta to gamma, and the central to 

parietal cortices were lower than the pre-treatment status (Fig. 3-6).

The brain connectivity results showed that the brodmann area 46 and 

temporal area (BA 37) was simulateously decreased right after 8th 

session of tRNS compared than pre-treatment states in the alpha 2 

(post-8th < pre, p = 0.0108) (Fig. 3-7). The theta activity of the right 

side of temporo-parietal area was decreased but correlated or 

synchronized areas was not found in the results.



3. Stimulation on hyperacusis

53

Figure 3-6. The result of spectrum analysis between 8th treatment and 
pre treatment via sLORETA. Above: delta Below: delta, beta1, gamma
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t (0.01) t (0.05) Extreme P

post-8th > preTx 9.140 6.742 0.60040

post-8th < preTx -8.287 -6.742 0.01080

Two-tailed 9.656 7.853 0.02320

Figure 3-7. The connectivities between post 8th session of treatment 
and pre-treatment.

Table 3-2. The statistical significances of the LORETA connectivity.
t (p-value); scalp or wire thresholds, Wire thresholds=8.287
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3.4. Discussion

In the results of the VAS questionnaires, tRNS was statistically 

effective from the 2nd treatment, and gradually reduced the severity of 

the symptoms (Fig. 3-2). When we checked the hearing test results 

within one month after the 8th tRNS, both right and left UCL were 

increased, which enabled tRNS to withstand noise in hyperacusis 

patients (Fig. 3-3, 3-4).

Analysis of the EEG revealed that the brain state of the subjects 

before treatment had a decreased inhibitory function of delta and theta 

(Fig. 3-5). Considering the questionnaires, the hyperacusis symptoms 

were gradually improved during eight sessions of the treatment, and 

the activity of auditory cortex, the stimulation site of tRNS, was 

similar to that before the treatment. However, the inhibitory function 

of delta and theta band was enhanced and the hyperactivity of the 

central-parietal cortices (C3, C4, CP3, CP4, P4) were significantly 

reduced. These central and parietal regions were represented by 

brodmann area (BA) 1~4, BA 21 and BA 40 which are 

sensory-motor cortices. After the 8th session of treatment, the temporal 

activity of the auditory cortices seem to higher but it was not 

statistically significant (Fig. 3-6, p=0.1204).

The connectivity between the two domains can be explained by 

coherence and phase synchronization. The lagged phase coherence of 
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sLORETA confirmed by brain connectivity. As a result, we found that 

the strong brain connectivity between the right brodmann area 37 and 

the right brodmanna rea 46, which are the temporal area and the 

dorsal lateral prefrontal cortex, was simultaneously decreased by the 

eighth tRNS (p = 0.0108). In the VAS questionnaire, the hyperacusis 

symptom was increased 4 weeks later after the 8th treatment, and the 

brain activity increased in the temporal area on the 4th weeks of the 

post-treatments. The temporal tRNS reduced the abnormality and 

activity of the central to parietal cortices in the sensory-motor cortices 

and increased both inhibition function and hyperactivity in the 

temporal areas.

The results of applying 8 times of tRNS to hyperacusis patients are 

summarized as follows. Throughout the questionnaire, 10 out of 10 

patients had symptomatic improvement, with an average improvement 

of 68% from pre-treatment score. EEG was performed to confirm the 

objective therapeutic effect. As a result, the sites were directly 

stimulated by tRNS, and it did not lower activity but augmented both 

inhibition function and hyperactivity, therefore, decreased abnormal 

hyper-activity in the central to parietal and temporal to parietal 

cortices. This makes it possible to maintain normal activity by being 

able to withstand or uncomfortable sound and not be abnormally 

activated by environmental noise.

Limitation
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When the EEG is performed immediately after the 8th session, the 

activity of the right side of anode attached region is increased due to 

the influence of the temporal stimulation. In order to obtain more 

accurate validation of the efficacy after the 8th treatment, EEG should 

be performed one or two days later after the 8th treatment.
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4. Tinnitus and Hyperacusis Caused by Occupational Noise 

Exposure

4.1. Abstract

Noise pollution has been called an invisible killer. It has been a 

critical issue for the people working in the noisy environments 

especially in industry and education. This study was conducted to 

evaluate the differences in neuronal activity between groups who are 

professions in occupational noise environments and a control group 

who did not, all of whom had either tinnitus or hyperacusis. We used 

the electroencephalography data of 17 patients. The two experimental 

subjects (one tinnitus case and one hyperacusis case) had normal 

hearing. The fifteen control subjects had normal hearing with either 

tinnitus (N=7) or hyperacusis (N=8). We compared the brain activity 

for three states among the groups: after noise-induced state, no sound 

exposure state for the two experimental subjects and no sound 

exposure state for the control group. The neuronal output and 

frequency rates of the auditory cortex in the experimental group after 

noise exposure were significantly increased in the gamma band (p = 

0.002) and decreased in the delta and theta band. In other brain 

areas, the rates of the delta, theta, beta 1~3 and gamma bands for the 

control group were higher than the experimental subjects for both 

with or without noise exposure states. Through this study, it was 
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suggested that the professions of tinnitus and hyperacusis with normal 

hearing in occupational noise environment could be maintain their 

pathological states by abnormal hyper-activation of the primary and 

secondary auditory cortex alone.

Keywords: Noise, Occupational noise exposure, Tinnitus, Hyperacusis, 

Auditory cortex, Electroencephalography
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4.2. Introduction

Tinnitus, perception of hearing ringing, buzzing or hissing sound 

without external sounds, is a typical chronic symptom of permanent 

hearing loss (Baguley, McFerran, and Hall 2013; Levine 2013). 

Sometimes when people are exposed to a loud noise like noise from 

public transportation, transient threshold shift (TTS) of hearing can 

occur in normal condition of healthy people and subjective tinnitus 

may also possible to develop temporarily (Ryan et al. 2016; Clark 

and Bohne 1999). Loud noise and chronic noise exposure such as 

occupational noise exposure are develop to permanent threshold shift 

(PTS) which is belong to causative factors of permanent hearing loss 

and it is classified and so called as noise-induced hearing loss which 

can develop chronic subjective tinnitus (Ryan et al. 2016; Ryan and 

Bone 1978; Lonsbury-Martin, Martin, and Bohne 1987). In these 

unexpected and unpreventable situations from noise, transient or 

permanent tinnitus is well-known as a major symptom of noise 

exposure.

In the symptoms of hyperacusis, when hyperacusis patients are 

exposed to general living noise whose intensity is lower than that of 

healthy adults, they suffered from an uncomfortable feeling and 

physical symptoms such as migraine and pain and these sensations are 

the main symptoms of hyperacusis (Klein et al. 1990; Baguley 2003; 
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Møller et al. 2010; Vernon 1987). Because noise is an invisible, 

unpredictable and so powerful energy source, these subjective hearing 

disorders, tinnitus and hyperacusis, are becoming worse and a crucial 

issue in an occupational noise environment (Basner et al. 2014). 

Also, there have recently been studied with a large number of 

subjects, of hundreds to thousands, regarding effects of the 

occupational noise exposure, e.g., construction workers (Leensen, van 

Duivenbooden, and Dreschler 2011; Seixas et al. 2005; Seixas et al. 

2012), industry (Frederiksen et al. 2017), comparisons of the four 

occupations (cf. education, music, industry and other occupational 

noise environment (Lindblad et al. 2014), staffs working in obstetric 

wards (Fredriksson et al. 2015). In usual circumstances of these 

working environments, occupational noise exposure is usually 

long-term and higher than 80dB of noise intensity, continuously 

generated from the working environments in every day and whole 

time of the working hours (Leensen, van Duivenbooden, and Dreschler 

2011). Consequently, chronic noise exposure in the occupational noise 

environment physically affects hearing of the workers and critically 

affects their susceptibility of the noise-induced stress and their quality 

of life (Chiovenda et al. 2007; Corso 1952). Audiometry results, 

especially in the industry and education, were represented that the 

workers who suffered from inner ear disorders were significantly 

higher than other occupational groups (Lindblad et al. 2014).
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Since 1970’s, several research group have attempted to study 

evaluating the hearing and clinical pathology status of the central 

nervous system via audiometry and electro-encephalography (EEG) of 

the professions of the certain occupations in chronic noise 

environments, e.g., tractor operator (Kozlov and Kiseleva 1971), 

industry professions (Brattico et al. 2005; Strel'nikova 1991; 

Chkannikov 1993; Khaimovich and Sokolova 1978; Angeleri, Granati, 

and Lenzi 1972), traffic police officer (Chiovenda et al. 2007), 

veteran (Bressler, Goldberg, and Shinn-Cunningham 2017), aviation 

pilot (Kuleshova et al. 2017), and other occupational noise 

environments (Shidlovskaia et al. 1988; Sagalovich et al. 1987; 

Novotny et al. 1984). 

The subjects participated above the studies had been undergoing low 

ability performing attention task (Chiovenda et al. 2007; Bressler, 

Goldberg, and Shinn-Cunningham 2017), enhancement of (auditory) 

sensory processing in silent condition (Chiovenda et al. 2007), and a 

disorder of central auditory processing in non-speech condition of the 

noise-exposed and normal hearing subjects (Brattico et al. 2005).

Central pathologic status of tinnitus and hyperacusis has been studied 

via neuroimaging. Among of them, research related to auditory resting 

state of tinnitus represented pathological brain states of the patients 

and resting state of EEG was assessed through spectrum analysis and 

connectivity (Maudoux et al. 2012b; Song et al. 2014; Song, 
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Vanneste, and De Ridder 2015; Maudoux et al. 2012a; Neff et al. 

2018; Ahn, Hong, and Min 2017; Chen et al. 2015; Eggermont and 

Tass 2015). Along with above the EEG study and results, resting 

state of quantitative EEG was used and evaluated activity of the 

auditory/ non-auditory brain area which location were designated based 

on 10-20 montage and anatomical location (see, Fig.1). 

Figure 4-1. The anatomical and functional location around the temporal 
cortex. Left: The location of the electrodes on the auditory cortex and 
the brodman areas in the temporal cortex. Right: The anatomical 
location of the primary and secondary auditory cortex with EEG 
electrodes. 
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Because most of these central problems of tinnitus and hyperacusis 

patients were developed by peripheral hearing loss, hearing researches 

also have been conducted in certain environments in which otologic 

disorders frequently occurs.

According to previous reports, in over twenty different construction 

industry professions, hearing was statistically significantly worse 

(Leensen, van Duivenbooden, and Dreschler 2011), and condition of 

chronic occupational noise exposure and that of duration were also 

significantly associated with subject hearing (Seixas et al. 2005; 

Seixas et al. 2012). Also, in the study of normal hearing workers, the 

occupational noise index of the workers in obstetric wards was 

significantly related to tinnitus and auditory fatigue induced by sound 

(Fredriksson et al. 2015). 

In the previous reports regarding cellular level of noise-induced 

condition, neuronal activity was showed the fast gamma pattern with 

spiky in the temporal and auditory cortex in animal models 

(Eggermont and Tass 2015; Kaltenbach and McCaslin 1996; 

Vianney-Rodrigues, Iancu, and Welsh 2011; Hickox and Liberman 

2014; Jenison et al. 2015). 

Comprehensively, above the cohort and/or clinical trials in human and 

the in-vivo researches in the animal models, we carried out this study 

with hope that the study could evaluate the pathophysiologic 

differences previously reported (e.g. high gamma pattern), and the 
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relation of these differences of neuronal activity and the clinical 

pathology symptoms (e.g. tinnitus and hyperacusis) caused by 

occupational noise exposure in normal hearing workers. Also, we 

intended to suggest that how their default mode is different from 

those who do not expose occupational noise to tinnitus and 

hyperacusis. 
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4.3. Materials and methods

4.3.1. Participants

The EEG data from two experimental subjects from a previous study 

were included in this study. We compared the EEG data between the 

experimental group (N=2) and the control group (N=15). Of the two 

experimental subjects, one had tinnitus and the other hyperacusis; thus, 

we selected patients with the same disorders as a control group from 

a previous research database. EEG data from 17 subjects in total were 

used who completed a clinical trial in previous studies. The tinnitus 

research was approved by the Institutional Review Board of the Seoul 

National University Bundang Hospital on August 29, 2016 (IRB No.: 

B-1607-355-004), and the hyperacusis research was approved in April 

2017 (IRB No.: B-1612-373-001). 

Because the two subjects had normal hearing, we selected EEG data 

from patients who had the same normal hearing from these approved 

research databases. In the first study, 7 out of 80 subjects had normal 

hearing; the mean score for right ear hearing was 8 (±4) dB and 8.9 

(±4.9) dB for left ear hearing. In the second study, the control EEG 

data were from 8 out of 9 subjects who had normal hearing; the 

mean score for right ear hearing was 5 (±3.6) dB and 6.1 (±3.9) dB 

for left ear hearing (Table S1). Thus, the EEG data from a total of 

17 subjects, 2 in the test group and 15 in the control group, all with 
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Patients
Initial Age Age Side Duration 

(yr)
VAS
intensit
y

VAS 
distress

Noise exposure 
environments

Noise induced 
symptoms

JK M 54 B 4.5 6 10 Laboring at 
construction sites

Louder tinnitus

JS F 26 R 10 7 7 High school teacher Hearing sounds 
of ear muscle 
contraction
Hearing noises 
in the ear

C o ntro l 
N= M:F Age Duration VAS intensity VAS distress C.C

7 6:1 45.7±15 4.96± 7.91 7.3± 0.8 7.1± 1.3 Tinnitus
8 4:4 31.5± 11.4 2.9± 2.8 7.4± 1.6 7.7± 1.4 Hyperacusis

Total control
15 10:5 Otologic disorder

an otologic disorder, were used in this study. In total, the EEG data 

from eight tinnitus cases were used. One case was for the test group 

and seven cases were for the control group. From the hyperacusis 

database, one case was used for the test group, and eight cases were 

used for the disorder control group (Table 1).

Table 4-1.  Demographic data of the subjects and 15 control of the 
two otologic disorders.
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4.3.2. Experimental subjects

The experimental subject with tinnitus has been working at a noisy 

construction site with an extremely loud booming sound that could 

cause hearing loss in healthy people, such as a metal banging sound 

or sound from heavy equipment. Even if his bilateral hearing 

thresholds were within normal range, see Table 1, tinnitus can 

develop because of chronic exposure to an extremely noisy working 

environment during working hours for a long duration (Dobie and 

Clark 2014; Lindblad et al. 2014). 

Although the noise level of the working environment was not enough 

to cause hearing loss in the subject, it is thought that tinnitus, which 

is commonly found in hearing loss patients, is caused by chronic 

exposure to loud noises (Leensen, van Duivenbooden, and Dreschler 

2011). The tinnitus got louder on the days he worked, and he also 

complained that his tinnitus remained even on his off days. During 

much of his working hours, he was exposed to high random 

frequencies and high intensity noise; thus, he was defenseless to the 

sound and could not help but hear the noise. As a result, he 

experienced auditory trauma from the noise in his working 

environment (Minen et al. 2014; Buchler, Kompis, and Hotz 2012; 

Bressler, Goldberg, and Shinn-Cunningham 2017; Chen et al. 2007; 

Ryan et al. 2016). 
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Another otologic disorder is chronic hyperacusis. Hyperacusis has 

different symptoms than those of tinnitus in that the condition cannot 

be recognized without an external noise (Baguley 2003). Tinnitus is a 

ringing sound in the ear that occurs all the time without any external 

noise regardless of hearing loss (Schecklmann et al. 2014; Møller et 

al. 2010; Baguley, McFerran, and Hall 2013). However, hyperacusis 

symptoms in normal hearing usually occur only when patient heard a 

sound in a noisy environment. Sound or noise is a necessary 

condition to provoke hyperacusis with normal hearing. In the second 

experimental case, the female patient was aware of her physical 

symptoms herself when she was exposed to only a noise louder than 

her uncomfortable level (UCL). 

She was an art teacher in a girl’s high school. Most of her 

unpleasant sounds came from the working environment. The sounds 

that provoked her symptoms were piano, food plate scraping, stereo 

sound, and speaker sound in the (school) playground, and she also 

got symptoms when high school girls would suddenly shout loudly. 

These sounds that were unpredicted, high frequency and loud noises 

caused physical symptoms. The UCL was measured by pure-tone 

audiometry, and the mean threshold was 84.3 (±5.0) dB, and she had 

the same UCL on the right and left ear. This UCL was a higher 

intensity than that of the other hyperacusis controls whose average 

thresholds were 76.3 (±19.5) dB (detailed values in Table S1.). 



4. Tinnitus&Hyperacusis Caused by Occupational Noise Exposure

70

4.3.3. Noise condition

Tinnitus is the perception of noise or ringing in the ears which is 

heard all the time, and tinnitus is louder after exposure to loud noise. 

For the experimental tinnitus subject, we used two pre-treatment EEG 

datasets for different conditions. One dataset was recorded on his 

working day when his condition was in severe temporal 

hyper-activated tinnitus state (STHS) and the other dataset was for his 

mild temporal hyper-activated tinnitus state (MTHS) recorded on his 

day-off. 

For the experimental hyperacusis subject, a speech sound was given. 

The procedure for the speech stimulation was the same as described 

in a previous study (EBB&JHL JAO). Two or three seconds of a 

speech sound under 20 dB of a female voice evoked temporal 

hyper-activated states which is similar with the tinnitus EEG. 

4.3.4. Electroencephalography test

The same procedure was used as in a previous study (prev. ref). EEG 

data were recorded from the two experimental subjects and 15 

controls. Two reference electrodes were located each on the right and 

left ear, and we used the average reference montage. EEG was 

recorded in a sound- and electrically-shielded booth. While recording 

the EEG for 5 minutes, no sound was induced except for case 2 with 

hyperacusis. Post-processing of the EEG data included baseline 
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correction, eye movement and other artifact rejection, interpolation of 

bad channels, and averaging using Independent Component Analysis 

methods. The recorded EEG data of the 15 controls were analyzed 

from a minimum epoch of 192.4 seconds to an epoch of 595.6 

seconds.

4.3.5. Analysis

Comparisons were done among the two noise conditions in the 

experimental subjects and the control group. A total of three groups 

were used: the no sound exposed state (NS) group, the after Noise 

Induced condition (aNI) group, and the tinnitus and hyperacusis 

control group (see Fig.2).

Figure 4-2. The diagram for analyzing procedure.
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The neuronal power density of each group was represented by brain 

topography. The color scale bar of the gamma band was normalized 

to 20% of the maximum thresholds, and the gamma-theta ratio was 

normalized to 300%.

Neuronal activity was evaluated by the amplitude and frequency rates. 

Brain areas were grouped by bilateral auditory and non-auditory 

cortex; statistically, a minimum of four channels were used for 

auditory cortex (see, Fig1, 2). Non-parametric analysis was done by 

two-independent test. Moreover, Kruskal Wallis test was done among 

the three groups. All the statistically results presented in this study 

were obtained by SPSS v.23, IBM. 

Using LORETA, we compared the activity of the whole brain area 

among the noise induced states of the two experimental subjects, the 

no sound exposed state, and the tinnitus and hyperacusis control 

group.
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4.4. Results

4.4.1. Brain Topography

Figure 3-A, B shows the neuronal power density results of the 

experimental subjects. Figure 3-A shows the neuronal power density 

for the mild temporal hyper-activated states (MTHS) for the no sound 

exposed state (NS). Figure 3-B shows the neuronal power density for 

the severe temporal hyper-activated state (STHS) for the after noise 

induced condition (aNI). In Figure 3-A, the bilateral auditory cortices 

had a weaker hyperactivity evident by the absence of pointed 

waveforms when there was no speech stimulation and noise exposure. 

The gamma wave intensity of the neurons was dramatically increased 

after noise exposure. In the tinnitus and hyperacusis control group, 

abnormally high oscillations were observed in general, while in the 

two experimental subjects, the gamma band was observed only in the 

auditory cortices before and after noise exposure.
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Figure 4-3. The brain activity of the two subjects and the control 
represented on the brain topography. A: resting state, no sound 
exposed condition in the two subjects. B: resting state after speech 
sound induced, (no listening) condition. C: Otologic disorder control 
(tinnitus and hyperacusis, n=16).
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4.4.2. Neuronal activity comparisons

Neuronal activity was evaluated comparing the neuronal power density 

and the rates of the neuronal frequency between the three groups. In 

Figure 4-A, in the bilateral auditory cortex, the neuronal power of 

alpha 2, beta3 and gamma bands for the aNI group was significantly 

higher than the tinnitus and hyperacusis control group. The percentage 

of delta and theta bands was significantly different between the 

tinnitus and hyperacusis control group and the aNI group. In Figure 

4-B, in other brain areas, the neuronal power was significantly 

reduced between the NS group and the tinnitus and hyperacusis 

control group in the delta, theta, alpha, beta2, and beta3 bands. In 

contrast to the power, the percentage rates for seven frequency bands 

except for the alpha2 band were significantly higher in the control 

group than in the experimental groups. 
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Figure 4. Neuronal activity was presented by the power and frequency 
rate. NS: no sound exposed condition, aNI: after noise induced state, 
Disorders control: normal hearing tinnitus and hyperacusis (n=16). A: 
auditory cortex (T3, T4, TP7, TP8) B: Other brain areas (27 
channels). Significance: p<0.05*,p<0.01**,p<0.001***
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4.4.3. LORETA analysis

Frequency analysis was done between the aNI group and the control 

group and between the aNI group and the NS group. As a result of 

subtracting the NS from the aNI using sLORETA in the Figure 5, the 

left auditory cortex had a positive score (red to yellow), and all other 

areas were minus (skyblue to blue). When the control was subtracted 

from the aNI, the result was positive on the left side and little 

difference on the right side.
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Figure 4-5. LORETA power density. A: Left side of the cortex. B: Right side 

of the cortex. C: Threshold of the right side of the cortex modulated focusing 

on BA22, 41 in the beta 3 band.

aNI-NS: (after noise-induced condition) – (No sound exposed state), p<0.000

aNI-Control: (after noise induced condition) – (Disorder control), p=0.00020 
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4.5. Discussion

Considering that neuronal power dramatically changed in only the 

bilateral auditory cortex, after noise-exposed in silent state, and did 

not change in other brain areas (see, Fig.3-A and B), the auditory 

cortex of the experimental subjects seems to be separate from the 

surrounding areas and acts differently in the subjects. Abnormal spiky 

signals were only observed in the primary and secondary auditory 

cortex areas (see, Fig.1, EBB&JHL JAO), and the original signals 

were assumed to come from cochlear nerve (Schaette and McAlpine 

2011; Auerbach, Rodrigues, and Salvi 2014). 

In Fig.4-A, the percentage rates of delta and theta band in the aNI 

condition of these noise industry professions were significantly 

decreased compared to the NS and control groups. It means that the 

inhibitor function of delta and theta were not properly working when 

exposed to noise. Gamma, beta3 and the phase coupling ratio of delta 

and theta also increase at the same time due to noise. This suggests 

that the main and original functions of the auditory brain area might 

be sensitized to chronic and occupational noise exposure, and that 

auditory cortex separately and hysterically act by auditory stimulation 

and eventually could be develop into physical symptoms and 

disorders, see Fig.1, e.g. tinnitus and hyperacusis. If auditory stimulus 

causes abnormal neuronal activity, this physical condition may be 
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classified as a wide range of auditory trauma and in this respect, this 

results are similar with (Chen, Sheppard, and Salvi 2016) that minor 

damage could developed hyperactivity of the auditory cortex in 

tinnitus and/or hyperacusis. According to calculation of recovery time 

curve, if someone exposed to 100dB of noise to 17minutes, more 

than 8 hours of recovery time was expected and in case of 

occupational chronic exposure, 2 hours of 105dB of noise exposure 

may lead to 40-50dB of TTS, it would need about one and a half 

day (33.3 hours) of recovery time (Ward 1960, 1970) it is known 

that the recovery time needs to be more than 15 minutes after noise 

exposure, and the recovery time can be different based on the noise 

intensity and exposure time (Chen et al. 2007; Ward 1960, 1970). For 

long-term auditory fatigue by noise trauma, auditory recovery was 

thought to take a long time (Miller 1974). 

Comparing the intensity of the overall brain area activation, the firing 

strength of the inhibition band in the noise industry professions tends 

to decrease (Fig. 4-B, NS-NI), and the alpha2, beta, and gamma 

bands show a statistically significant increase (Fig. 4-A). It is 

interpreted that the theta and delta bands that inhibit the gamma and 

beta3 activity are decreased and that the spiky abnormal beta and 

gamma activity due to sound stimulation persist for a long time 

(Hickox and Liberman 2014; Jenison et al. 2015; Kaltenbach and 

McCaslin 1996; Vianney-Rodrigues, Iancu, and Welsh 2011). However, 
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power strength of the gamma band has not changed, whether noise 

exposed or not. Contrary to other brain areas, the gamma band in the 

auditory cortex was significantly increased between the aNI status and 

the NS condition and between the aNI status and the control of 

disorders.

In contrast to the experimental subjects, the intensity of the brain 

activity in the control group was generally weak overall brain area 

(Fig. 4-A left, B left), and the inhibition activity of the delta and 

theta bands were significantly higher proportion in the control auditory 

cortex while gamma band was lowered than noise induced state of 

the experiment subjects. It suggests that the results of our control 

group, tinnitus and hyperacusis patients who are non-occupational 

noise exposed, supported previously reported results. The results is 

that the auditory cortex of hyperacusis patients with tinnitus did not 

show hyperactivity in auditory resting state (Song et al. 2014). Unlike 

other tinnitus and hyperacusis subjects (control group), occupational 

chronic noise exposed subjects showed highly activated solely auditory 

cortex (see, Fig3,5). Applying neural plasticity theory to our results, 

auditory hyperactivity (temporal hyperactivity) could increase the 

hyperactivity of other brain areas if the subject is exposed to work 

environment noise from months to decades during working hours 

every day (Chen, Sheppard, and Salvi 2016; Chen et al. 2015; Kraus 

and Canlon 2012).
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Our results also provide following clinical view same with previous 

reported in (Chiovenda et al. 2007; Brattico et al. 2005; Fredriksson 

et al. 2015); 1. The results showed that still strong and enhanced gain 

in the auditory cortex even in the silent condition. 2. Our subjects 

who have been long-term exposed to occupational noise with normal 

hearing has persisted symptoms of tinnitus and hyperacusis in 

no-sound condition. 3. The workers, our subjects, in the occupational 

noise environments had tinnitus and hyperacusis caused by chronic 

sound exposure. 

From above the results, it is recommended that treatment may be 

approached differently in general cases of tinnitus and hyperacusis and 

in noise industry professions because central neural processing and 

clinical neuro-pathologic symptoms might be different. Previously 

reported studies, (Norena and Eggermont 2005) showed that sound 

enriched environments reduced effects of hearing loss in the case of 

noise-induced hearing loss. However, in the case of the normal 

hearing experimental subjects in this study, sound using therapy may 

temporarily worsen the symptoms. Considering recovery time of TTS, 

recovery time is related to noise exposure duration and noise 

intensity, however it is determined directly by TTS thresholds rather 

than exposure time or noise intensity (Ward 1970). To sum it all up, 

we suggest routine check-up for hearing through hearing conservation 

program during working period in noise environments, and we 
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recommend that noise industry professions work as far away from 

noise sources as possible, or minimize the period they are exposed to 

noise. By further minimizing noise exposure, it is thought that there 

will be improvement (Ryan et al. 2016; Clark and Bohne 1999; 

Department of Labor 2018).

4.5.1. Limitation and Future work

This study, which analyzed resting EEG, shows that the EEG changes 

at the time of sound stimulation are unknown. This is a study on 

abnormal and active states in the absence of sound stimuli after noise 

exposure. Despite the differences in sex, age, noise working 

environment, and symptoms, these common pattern identified in this 

study by tinnitus and hyperacusis seem to be an impact of clinical 

significance and should not be underestimated. According to the 

results of this study, even though the noise environment causing the 

tinnitus is different from the noise environment in which hyperacusis 

occurs, it is difficult to confirm the common mechanism of these two 

disease groups when the same conditions are applied to one noise 

environment.

Furthermore, it is difficult to confirm this common mechanism in 

separate clinical trials in an occupation group. In order to identify the 

implications of this study as a prospective study, it is recommended 

that patients be screened as a group of workers in several different 
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noise work environment or occupations and be selected who has 

tinnitus and hyperacusis symptoms with normal hearing. 

4.5.2. Conclusion

The results of this study are clinically meaningful in the following 

two perspectives: The first is the finding of the first affected area in 

the central region of the tinnitus and hyperacusis caused by noise 

through simple EEG. Second, for noise environmental professionals, it 

is important that they differ from normal neural activity patterns seen 

in normal hearing tinnitus and hyperacusis. In general, for tinnitus and 

hyperacusis patients, the activity of various parts of the brain 

including the auditory cortex is high, whereas in the two subjects 

who worked in noise environment professions, abnormal cortical beta3 

and gamma bands occurred in only the auditory cortex and lasted for 

a long time. This is interpreted to be due to the fact that the delta 

and theta bands are rapidly reduced at the same time with noise 

exposure, and inhibition of the beta and gamma bands is not 

achieved. This is the first attempt to distinguish subtypes of tinnitus 

and/or hyperacusis according to an onset mechanism using EEG. And 

also our results may help to prevent permanent hearing loss or 

chronic tinnitus and hyperacusis (Ahlf et al. 2012) for the professions 

in the occupational noise environment by a regular inspection of 

simple EEG. If a more research with large number of subjects is 
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done in the future, the results that we reported may be useful for 

establishing a marker that distinguish the tinnitus and hyperacusis of 

occupational noise exposure in normal hearing from general tinnitus 

and hyperacusis.
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5. Conclusion and Perspective

5.1. How do we treat tinnitus and hyperacusis using the 

transcranial stimulation? 

A review paper has reported that frontal tDCS was observed 

statistically effective for tinnitus, but temporal tDCS has not been 

statistically revealed to be effective. Although transcranial random 

noise stimulation has recently been studied and confirmed effects of 

the pain related disorders, and lots of TMS studies for tinnitus 

treatment have been continuously published, there is still no evidence 

for a detail mechanism of tinnitus and hyperacusis on the effect or 

response criteria.

Important findings to maximize the effectiveness of tinnitus treatment 

include the following scientific results:

- The scientific facts confirmed through previous studies:

➀ Frontal tDCS has an effect on tinnitus

➁ Temporal tDCS has not been revealed an effect of tinnitus

- The scientific facts confirmed through this study (Chapter 2, 3):

➀ Single session of frontal (DLPFC) tDCS has an effect on tinnitus

➁ The lower the hearing level of tDCS group, the greater the degree 

of improvement than non-responders in tinnitus.

➂ TMS is expected to have a great effect when the number of 

stimulation is increased more than 200 pulses.
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④ TMS would be effective regardless of hearing, but duration of 

disorder could be the factor affecting TMS response (P=0.092).

According to source of stimulations, the in vivo mechanism of the 

treatment effect in humans differs, therefore, in order to see the 

therapeutic effect of tinnitus using transcranial stimulation, the 

treatment efficiency can be improved by differentiating the screening 

criteria according to the stimulation method. According to the above 

results, in order to see the effects of DC stimulation applied to the 

tinnitus, it is necessary to select the treatment subjects considering 

hearing. TMS is considered to be effective when the stimulation of 

200 pulses or more should be conducted and the subjects are selected 

considering the duration of tinnitus.

In hyperacusis patients, tRNS could be a strong and specific treatment 

because 8 times of tRNS have a big effect on all subjects. If other 

neurological symptoms are combined, we actively encourage a shorter 

interval between treatment sessions or increase session of the 

treatment.

5.2. What can we do via EEG on tinnitus and hyperacusis?

Questionnaires and audiometry are commonly used methods in the 

otorhinolaryngology department and these measurements can not be 

use to assess the central nervous system and cerebral activity. 
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Quantitative EEG can be used easily and accurately to confirm the 

reproducibility by using recent various analysis programs. (Ch 3, 

Methods). Considering results of the Ch 4, EEG also can be used to 

identify patients before the onset of tinnitus and hyperacusis, and to 

use it to prevent tinnitus and hyperacusis.

EEG has been used in various fields (Brain-computer interface, 

biofeedback, cognitive science, medical research, diagnosis, etc.) and 

in various disciplines (social science, psychology, language, 

information and communications engineering, etc.). Nevertheless, in 

clinics, it is only used for epilepsy diagnosis, and for depression in 

mental health department as supplementary test, or it is used mostly 

for research purpose. Since the device is very sensitive due to the 

amplifier for detecting small brain waves electronic noise 

contamination is common, and the spatial resolution is lower than that 

of imaging tests because it confirms the brain area as many as the 

number of electrodes. Currently, epilepsy is the only disease diagnosed 

by EEG. EEG can be diagnosed not only by the presence of epilepsy 

but also by the detailed type of epilepsy.

To more accurately and objectively evaluate therapeutic effects of our 

multimodal neuromodulation, we suggest using more than three 

measurements: One is for subjective symptoms, hearing test for 

clinical pathological states and objective measurement (EEG or other 

neuroimaging exam). It is the final step and the final goal of chapter 
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2 to identify the subjective symptom improvement of the tinnitus 

patients through the objective measurement (neuroimaging) via three 

measurement methods that can explain the causal relationship of each 

other.

Figure 5-1. Diagram of further study process for treatment effects of 
dual-neuromodulation in tinnitus and hyperacusis.

Through multimodal measurements, we optimistically anticipate that 

the scientific key questions, figure 5-2, will be reveal soon.

If above the study is successfully conducted, we assume that tinnitus 

and hyperacusis can also be diagnosed or prevented by applying EEG 

to the disorders if the neuropathologic mechanism, such as epilepsy 

was, is known precisely according to the mechanism of onset and 

cause. In order to do this, the ongoing EEG studies in tinnitus and 

hyperacusis should be confirmed, and the common neuropathic 



5. Conclusion

90

mechanisms of various types of the tinnitus and hyperacusis also 

should be confirmed. 

Figure 5-2. The researches diagram of this thesis.  

Q1. Can the greater the tinnitus intensity (the greater the hearing 

loss), the greater the degree of perception of tinnitus modulation?

Q2. If the tinnitus intensity is high, is the abnormal oscillation 

relatively modulated to the effect?

Q3. If the hearing threholds are large in the PTA that indirectly 

represents the tinnitus intensity, it is likely to be the same as or 

similar to the result of Q2.

→ Correlation between Hearing and Brain oscillation (assuming that 
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hearing reflects tinnitus intensity)

Q4. Does it recognize the effect of changes in oscillation due to 

neuromodulation?

According to the Figure 5-2, EEG can be used to improve treatment 

efficiency by identifying the hearing loss affected region for intensive 

treatment of lesion in further study. The correlation between brain 

activity in hearing loss and tinnitus and/or hyperacusis also can be 

assess via multimodal neuroimaging including EEG.

In this regard, EEG and neuroimaging play an important role to 

evaluate certain status of brain activity. Besides, to determining the 

criteria for the detailed type of brain activity of tinnitus and 

hyperacusis patients, depending on the location of the cerebral lesion 

or on the cause of development of the disorders, hearing test and 

survey of the subjective symptoms are also should be considered 

altogether, and then, it will help to fully understand physiological 

mechanism of the disorders.
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국문 초록

이명과 청각과민증은 신경이과 질환이며 두 질환 모두 주관적인

증상 (예. 울리는 소리, 고주파 소음을 들었을 때 불편한 느낌) 을

주호소로 합니다. 또한 두 질환은 모두 약물 치료가 불가능하며

아직은 ​​검사로 진단 할 수 없어, 객관적으로 증상의 심각성을 측

정 할 수가 없습니다. 1950 년대 이후부터 여러 연구들에 의해, 이

명의 중추 기전이 지속적으로 언급되어 왔으며, 최근 중추 기능

항진 기전과 같이, 이명과 청각과민증의 공통된 뇌신경 상태가 다

양한 동물 연구에 의해 밝혀진바 있습니다.

본 박사학위 논문에서 우리는 경두개 전기 자극과 경두개 자기

자극을 사용하여 이명과 청각과민증의 중추 기능 항진을 치료하는

것과 병리적 상태를 전기생리학적 방법으로 평가하는 것을 목표로

삼았습니다. 본 연구에서는 이명 치료를 위해 경두개 직류 자극술

과 경두개 자기장 자극술을 사용하였고, 청각과민증 치료를 위해

경두개의 무작위 잡음 자극술을 사용 했습니다.

설문지 형식은 이명의 주관적 증상을 평가하는 가장 중요한 측

정이지만, 이명의 대뇌 관련 기전의 병태 생리학적 상태는 설문지

및 청력 검사로 확인할 수 없습니다. 따라서 경두개 자극의 치료

효과를 효과적으로 평가하기 위해, 뇌파를 이용한 뇌영상 기술을

사용하였고 객관적 측정을 위해서는 검증 가능한 기준을 수립해야

했습니다.
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박사 학위 과정에서 저는 경두개 자극술을 사용하여 이명과 청

각과민증에 특이적인 치료방법을 개발하기 위해 몇 가지 연구를

시행한 결과, 기존 선행 연구들에 비해 치료효과, 반응자 수를 증

가시켰으며 청각과민증에 특이적 치료법을 고안 해냈습니다. 또한

뇌파, 설문지 및 순음청력검사를 통해 치료 효과를 객관적으로 확

인할 수 있는 검사방법을 수립하는 데 중점을 두었습니다. 이 세

가지 검사를 이용해 서로 장단점을 보완하여 이명 및 청각과민증

의 병태생리적 상태와 치료효과를 객관적이고 정확하게 평가 하고

자 몇가지 연구를 진행하면서 학위를 했습니다.  

주요어 : 이명, 청각과민증, 경두개 직류자극술, 경두개 자기자극

술, 경두개 무작위 소리 자극술, 순음청력검사, 뇌파, 청각 피질 

학  번 : 2015-22680
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짧지 않은 학위 기간 중에 크고 작은 어려움과 힘든 일에 부닥

칠 때 마다 외면하지 않고 들어주시고, 아무것도 없는 저를 믿어

주시고, 또 힘써 해결해 주신 이준호 교수님과 여러 심포지움, 학

회, 세미나, 연구회 등에 참가하여 이비인후과, 이과, 청각 연구를

배우며, 또 연구를 지속 할 수 있도록 도와주시고 크고 작은 조언

을 아끼지 않고 해주신 오승하 교수님께 감사의 말씀 올립니다.

청각관련 질환군을 대상으로 뇌파 검사와 직류 자극술, 자기장

자극술을 이용하여 연구 할 수 있도록 지원해 주시고 사랑으로 지

도해 주시며 이끌어 주신 송재진 교수님, 늦은 시간에도 이비인후

과 외래를 개방하여 청각검사실, 진료실에서 임상시험을 할 수 있

도록 배려해주신 구자원 교수님께 깊은 감사의 말씀 드립니다.

또한 힘든 시기에도 외면하지 않으시고 도와주신 최병윤 교수님

의 배려 가득한 긍정적인 말 한마디, 한마디가 보이지 않는 곳에
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서 제게 매우 크게 작용함을 항상 체감하며 항상 감사한 마음입니

다. 보다 양질의 학위논문이 되기까지 꼼꼼하고 자상하게 조언을

아끼지 않으셨던 이승환 교수님, 박무균 교수님께 진심으로 깊은

감사의 말씀 드립니다. 5년 이라는 짧지 않은 기간 동안 이비인후

과에서 연구를 진행하면서 서명환 교수님을 비롯하여 긍정 어린,

따뜻한 시선으로 지켜봐주신 여러 교수님들께 큰 은혜를 입어 학

문적으로 바르게 성장할 수 있었습니다. 긍정적인 시선이 없었다

면 분명 석달도 버티지 못했을 저인데, 아무것도 없는 저를 믿어

주시고 긍정적으로 지켜봐 주시며 배려해 주신 은혜, 다시 한번

더 고개 숙여 깊은 감사의 말씀 드립니다.

륜숙 언니, 학위기간 동안 언니의 도움이 없었으면 행정서류 하

나 인쇄할 수 없었을 터인데 진심으로 감사드립니다. 완료한 임상

시험은 모두 륜숙 언니의 배려가 아니었으면 이룰 수 없었을 것

입니다. 또한 학위 마무리에 도움을 주신 정희 박사님, 륜숙 언니,

나희, 그리고 이비인후과에서 함께 생활했던 혜지. 우리의 연이 짧

지 않아 이렇게 새해도 함께 맞이하게 되어 너무 기쁘고, 앞으로

도 좋은 인연 이어가길 바랍니다. 또 선후배 없는 학위기간, 랩 생

활 끝에 얻은 후배 같은 승관이, 동규, 기현이, 승호, 이쁜 예령이

까지. 좋은 연이 닿아 생각지 못한 멋진 후배들이 생긴 것 같아

내심 자랑스럽고 또 함께 해주어 고맙습니다.

학부 시절부터 힘든 일도 웃어 넘길 수 있도록 항상 나와 놀아

주고 희노애락을 함께 나눈 성희, 같은 동기이자 동네친구인 민석
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오빠, 크고 작은일 숨김없이 나누고 좋아하는 일 함께 동고동락

하며 오랜 시간 의지해 온 재은이, 부산에서도 열심히 응원해주고

함께 해준 10년 지기 근하, 동기없는 기간을 웃음꽃 피우며 행복

하게 보낼 수 있도록 함께 해주어 진심 어린 감사의 말씀드립니

다. 마지막으로 사랑하는 엄마, 아빠, 은총이. 경제적으로 도움이

되어드리지 못해 죄송한 마음이 더 큰 것 같습니다. 앞으로는 제

게 조금씩 더 기댈 수 있도록 튼튼한 버팀목이 되도록 노력하겠습

니다. 여러 고난과 역경이 있었지만 이 모든 일 하나하나가 하나

님께서 뜻을 이루시는데 부족한 저를 쓰임받기에 합당하도록 다듬

어가는 과정이라고 생각하며, 좀 더 마음을 굳게 먹고 지혜를 가

지고, 정직하고 올곧은 학자로서 단련해 나아가도록 노력하겠습니

다.


	1. Introduction 
	1.1. Background of the study 
	1.2. Pathophysiological view of tinnitus and hyperacusis 
	1.3. Overview 

	2. Stimulations for tinnitus treatment 
	2.1. Abstract 
	2.2. Introduction 
	2.3. Methods and Materials 
	2.4. Results: Questionnaire 
	2.5. Results: Pure-tone audiometry 
	2.6. Discussion 

	3. Stimulation on hyperacusis 
	3.1. Abstract 
	3.2. Methods: Procedure, stimulation 
	3.3. Results 
	3.4. Discussion 

	4. Tinnitus and Hyperacusis Caused by Occupational Noise Exposure 
	4.1. Abstract 
	4.2. Introduction 
	4.3. Materials and methods 
	4.4. Results 
	4.5. Discussion 

	5. Conclusion and Perspective 
	5.1. How do we use transcranial stimulation to treat tinnitus and hyperacusis 
	5.2. What can we do with EEG for tinnitus and hyperacusis 

	Reference 
	국문초록 
	Acknowledgement (감사의 글) 


<startpage>14
1. Introduction  1
 1.1. Background of the study  1
 1.2. Pathophysiological view of tinnitus and hyperacusis  2
 1.3. Overview  3
2. Stimulations for tinnitus treatment  5
 2.1. Abstract  5
 2.2. Introduction  7
 2.3. Methods and Materials  10
 2.4. Results: Questionnaire  19
 2.5. Results: Pure-tone audiometry  28
 2.6. Discussion  33
3. Stimulation on hyperacusis  41
 3.1. Abstract  41
 3.2. Methods: Procedure, stimulation  43
 3.3. Results  47
 3.4. Discussion  55
4. Tinnitus and Hyperacusis Caused by Occupational Noise Exposure  58
 4.1. Abstract  58
 4.2. Introduction  60
 4.3. Materials and methods  66
 4.4. Results  73
 4.5. Discussion  79
5. Conclusion and Perspective  86
 5.1. How do we use transcranial stimulation to treat tinnitus and hyperacusis  86
 5.2. What can we do with EEG for tinnitus and hyperacusis  87
Reference  92
국문초록  107
Acknowledgement (감사의 글)  109
</body>

