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ABSTRACT  

 

Differences in heritability of the craniofacial 
skeletal and dental characteristics between 
hypo- and hyper-divergent patterns using 

Falconer’s method and principal 
components analysis 

 

Do-Keun Kim, DDS, MSD 

Department of Orthodontics, Graduate School, 

Seoul National University 

(Directed by Professor Seung-Hak Baek, DDS, MSD, PhD) 

 

Objectives: The purpose of this study was to investigate the difference in heritability of 

craniofacial skeletal and dental characteristics between hypo- and hyper-divergent patterns. 

 

Materials and Methods: 53 Korean adult monozygotic (MZ) and dizygotic (DZ) twins 

and their siblings were divided into a hypo-divergent group [Group 1, SN-MP<35°, 17 MZ 

pairs; 11 DZ and sibling (DS) pairs of the same gender] and hyper-divergent group (Group 

2, SN-MP>35°, 16 MZ pairs; 9 DS pairs of the same gender). A total of 56 cephalometric 

variables were measured using lateral cephalograms. Craniofacial structures were divided 

into anteroposterior, vertical, dental, mandible, and cranial base characteristics. Falconer’s 

method was used to calculate heritability (h2>0.8, high). After principal components 

analysis (PCA), mean h2 value of each component was calculated.  



 

 

Results: Group 1 exhibited high heritability values in shape and position of the mandible, 

vertical angular/ratio variables, cranial base shape, and maxillary incisor inclination. Group 

2 showed high heritability values in anteroposterior (AP) position of the maxilla, inter-

maxillary relationship, vertical angular variables, cranial base length, and mandibular 

incisor inclination. Occlusal plane inclination showed high heritability in both groups. 

Although vertical structure presented a high overall mean h2 value in Group 1, there were 

no structures that exhibited a high overall mean h2 value in Group 2. PCA derived 10 

components with 91.2% and 92.7% of cumulative explanation in Groups 1 and 2, 

respectively. In Group 1, three components, which depicts the vertical angular relationships 

and ratio, the shape of the mandible, inclination of the occlusal plane and upper incisor 

inclination, exhibited high mean h2 values (PCA1, 0.891; PCA2, 1.140; PCA6, 1.325). In 

Group 2, three components, which depicts the AP position of the maxilla, intermaxillary 

relationship, lower incisor inclination, inclination of the occlusal plane and anterior cranial 

base length, exhibited high mean h2 values (PCA3, 1.003; PCA9, 1.420; PCA10, 1.339).  

 

Conclusions: It is necessary to estimate or predict growth according to vertical pattern for 

providing differential diagnosis and orthodontic/orthopedic treatment planning. 
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I. INTRODUCTION 
 

Both genetic and environmental factors can contribute to variations in the size and 

shape of the craniofacial skeletal and dental structures. If these structures are mainly 

influenced by genetic factors, orthodontic and/or orthopedic treatment, performed even at 

an early age, would not significantly changes them. On the contrary, if these structures are 

under control of environmental factors, it would be advantageous to treat the patient from 

an early age. Therefore, it is necessary to verify the degree of genetic and environmental 

contributions to the characteristics of these structures for appropriate diagnosis and 

treatment planning. 

Cephalometric studies of twins and their families can evaluate the relative 

contributions of genetic and environment factors on the size and shape of the craniofacial 

skeletal and dental structures.1 However, whether vertical traits are more genetically 

determined than horizontal traits remains controversial. Several previous studies insisted 

that vertical measurements had greater heritability than horizontal measurements.2-6 On the 

contrary, other researchers reported that genetic factors might contribute more to horizontal 

traits compared to vertical traits.7, 8 However, heritability estimates should be interpreted 

with caution because there are possibilities for the several types of bias.9 

Since heritability of the craniofacial characteristics can be influenced by age, sex, 

ethnicity, and study design, it is necessary to adopt a study design with strict sample 

selection criteria. For examples, the samples should be adult subjects whose growth is 

completed and who have the same ethnicity and sex. In addition, the samples should be 

divided according to the vertical and/or horizontal pattern. 

Although there are some studies investigating the influences of genetic and 

environmental factors on the craniofacial phenotype in Korean adult twins and their 

siblings,8,10 there are no twin studies comparing the heritability of the craniofacial skeletal 
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and dental characteristics between skeletal hypo- and hyper-divergent subjects. Therefore, 

the purpose of this study was to investigate the differences in heritability of craniofacial 

skeletal and dental characteristics between hypo- and hyper-divergent patterns in 

monozygotic (MZ) adult twins, dizygotic (DZ) adult twins, and their adult siblings. The 

null hypothesis was that there was no significant difference in heritability of the 

craniofacial skeletal and dental characteristics between hypo- and hyper-divergent subjects. 
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II. REVIEW OF LITERATURE 
 

1. Heritability 

Heritability is generally defined as the proportion of phenotypic variation caused 

by genetic differences.6,7 The calculation of heritability provides a means of quantifying 

the extent of the genetic contribution to phenotypic variation.11 

Two types of heritability are usually considered: “broad-sense heritability” refers 

to additive and non-additive genetic contributions to the observed variation and “narrow-

sense heritability” refers to the contribution of additive genetic variance to expressed 

phenotypic variance.11 Additive genetic variance (A) denotes the variance resulting from 

the sum of allelic effects across multiple genes, whereas non-additive effects (D) include 

the effects of genetic dominance (allelic interactions within genes) and gene–gene 

interaction between multiple genes (epistasis).11,12 

 

2. Study design for estimation of heritability using the twin and 

their family 

The vast majority of study has employed the twin and their family to estimate the 

relative genetic and environmental influences on the craniofacial morphology. MZ twins 

share the same genes, whereas DZ twins and their siblings share only half of their genes on 

average.13 MZ and DZ twins are considered to be sampled from the same gene pool and 

that the twins and their families are assumed to share common environmental effects.8,10 

Therefore, one can estimate the relative contributions of genetic and environmental 

influences to observed variation in the facial and occlusal morphology.11 

Twin and their family studies make it possible to differentiate the observed 

variation of a trait into genetic (additive and non-additive), shared environmental (C), and 
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residual variance (E).12,14 Shared environmental variance results from environmental 

influences shared by family members, such as prenatal environment, residential 

environment, and socioeconomic status. Residual variance results from environmental 

influences that are not shared by family members, such as idiosyncratic experiences (like 

illness and injury), stochastic biological effects, and also includes measurement error.12 

 The twin study design can be extended by including additional family members 

(siblings, parents, offspring, and spouses). Inclusion of extra-family members increases the 

statistical power and makes it possible to estimate more parameters and allow less 

restrictive assumptions regarding assortative mating and familial transmission. In addition, 

the data from siblings makes it possible to test for twin-specific environmental 

influences.12,15 

In the classical twin study, path analysis and Dahlberg’s analysis were employed 

to calculate the heritability.4 The path analysis allows a separation of genetic and 

environmental influences for a given trait using the path diagram and calculates the genetic 

heritability and cultural inheritance based on the intra-class correlation coefficient of MZ 

and DZ pairs.12 Dahlberg’s analysis utilizes the intra-pair variances for MZ and DZ twins 

to calculate the quotient between genetic and environmental standard deviations.4   

Recently, model-fitting methods have been used to determine the relative 

significance of the different component of the variance.5-7 The heritability analysis by 

model fitting employs maximum likelihood structural equation modeling to estimate the A, 

C, D, and E influences more precisely.12 Different combinations of A, C, D, and E models 

are tested in a univariate way and the goodness-of-fit is evaluated to determine the model 

that best explains the observed variance based on the Chi-square value and Akaike 

information criterion.6,7,12 
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3. Falconer's method 

In 1996, Falconer and Mckay16 proposed the classical twin study design and 

formula to estimate the relative contribution of genetics and environment to variation in a 

particular trait, which are based on the difference between twin correlations (Pearson’s 

correlation, r).  

Twin correlations represent the degree of association for selected traits between 

pairs of related individuals, with maximum genetic correlation values that are assumed to 

be 1.0 for MZ twins and 0.5 for DZ twins.11,12 Since the correlation between MZ twins (rmz) 

and DZ twins (rdz) were determined by sum of the genetic effects (A) and shared 

environmental effects (C), rmz can be summarized as A + C and rdz as  A + C.8,10,16 Solving 

for A and C, the genetic heritability (h2) can be calculated as h2 = 2 (rmz- rdz) and the cultural 

inheritance (c2) can be calculated as c2 = 2rdz-rmz.8,10,12,16,17 Since the classical twin design 

cannot differentiate the additive factors from other genetic factors, the heritability estimates 

refers to broad-sense heritability.12,18  

Although Falconer’s method is conceptually simple and does not require 

genotyping, heritability can be overestimated due to strict assumptions.18,19 In addition, 

Falconer’s method is not adequate for testing sex differences and multivariate data.12,18 

 The h2 values from Falconer’s method can be less than 0 or greater than 1.4,8,19 

Therefore, heritability estimates from Falconer’s method shows not the percentage of 

genetic influences to observed variation but rather the variance of parameter which could 

be explained by genetic factors.20 

 

4. Heritability of the vertical and horizontal craniofacial 

characteristics 
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Since the results of heritability in twin studies are difficult to compare because of 

the differences in zygosity determination, sample size, maturity stage, and statistical 

methods used, there has been inconsistency in heritability of the vertical and horizontal 

craniofacial traits among previous studies.7,8,19   

According to Hunter2 and Hunter et al.,3 the vertical variables were more 

influenced by heredity than the horizontal ones. Manfredi et al.4 studied the heritability of 

39 lateral cephalometric parameters using the path analysis and Dahlberg' quotients in MZ 

and DZ twins and their siblings and reported that genetic control is strong especially on the 

vertical parameters. Among the vertical skeletal parameters, high h2 values were found at 

the total anterior facial height (TAFH, 1.5) and the lower anterior facial height (LAFH, 

1.56). However, the upper anterior facial height exhibited low h2 values (UAFH, -0.36). In 

addition, the shape of the mandible was more genetically determined than the size of the 

mandible. 

Savoye et al.,5 in the twin study using the model fitting method, reported that high 

genetic determination was found for the vertical proportions and all the facial proportions 

were controlled by additive genes and specific environment. The genetic component was 

71% for the upper-to-lower facial height, 66% for the anterior-to-posterior facial height, 

62% for the total facial height, and 66% for the sella-A-point to sella-B-point and the sella-

upper incisal edge to sella-lower incisal edge. 

Carels et al.6 also investigated the relative genetic and environmental impact on 

the cephalometric variables in MZ and DZ twins using the model fitting and path analysis. 

They found that the genetic determination is significantly higher for the vertical variables 

(72%) than the horizontal variables (61%). In addition, the linear craniofacial and dental 

measurements showed the highest genetic determination (68.2–85.8%). However, most 

angular measurements showed no significant genetic determination. Only the gonial angle 

was explained by genes for 45.3%. 
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In contrast, Šidlauskas et al.7 reported higher heritability of the horizontal 

mandibular position than that of the vertical mandibular position using the model fitting 

analysis. The angular measurements representing the sagittal position of the mandible were 

under strong genetic influence and the shape of the mandible (gonial angle) showed a 

greater genetic determination than the size of the mandible (mandibular body length and 

ramus width). 

Kim et al.8 investigated the heritability of the skeletal and dental characteristics in 

Korean adult MZ and DZ twins using Falconer’s method. They reported that the horizontal 

angular relationships between the maxilla, mandible, and anterior cranial base had a strong 

genetic influence. In the variables of facial vertical structures, the vertical angular 

relationships among the cranial base, palatal plane and mandibular plane showed a strong 

genetic influence. In addition, overall mean h2 values of the facial horizontal structures 

were higher than that of the facial vertical structures (1.10 versus 0.71). 

However, Lundström and McWilliam21 reported no significant differences in the 

heritability between the horizontal and vertical measurements based on the path analysis. 

On average, the genetic heritability (h2) was 0.6 for both horizontal and vertical variables, 

while the cultural heritability (c2) was lower, 0.1 for the horizontal measurements and 0.2 

for the vertical measurements. On the other hand, the highest h2 values were obtained 

among the vertical variables and Dahlberg’s analysis showed a high genetic determination 

of the four vertical variables in terms of the quotient between the heredity and environment.  

 

5. Heritability of the dentoalveolar characteristics 

Lundström et al.22 investigated the relationship between genetic and non-genetic 

factors for six incisal position variables using the path analysis. The results were as follows: 

the anteroposterior apical base relationship (h2, 0.8), lower incisor inclination (h2, 0.7), 

overjet (h2, 0.5), and upper incisor inclination (h2, 0.4).  
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Kim et al.8 reported a low heritability for the most variables of the dental structures 

except for SN-occlusal plane angle (h2, 2.09) and L1-occlusal plane angle (h2, 1.38). Amini 

et al.19 also reported low-to-moderate heritability for the dental variables except for vertical 

dentoalveolar height of the upper molar (h2, 0.8) and lower incisor inclination (h2, 0.96).  

However, Carels et al.6 reported a high heritability of the vertical dento-alveolar 

height of the upper and lower first molars (upper first molar, 61.0%; lower first molar, 

75.1%). Šidlauskas et al.7 also reported high additive genetic determination for the sagittal 

position of lower incisors (84%) and chin protrusion (83%). 

 

6. The growth pattern of hypo- and hyper-divergent subjects 

 Bishara et al.23 compared longitudinal facial growth in long, average, and short 

facial subjects. They reported that there was a strong tendency to maintain the overall facial 

type as facial growth progresses with age and the differences between the three facial types 

in vertical relationships becomes more pronounced with age. Although the growth direction 

was not different among the three facial types, the overall growth amounts for the three 

facial types were significantly different. In addition, the subjects within each facial type 

expressed a relatively large variation in the size and relationships of the craniofacial 

skeletal and dental structures. 

Nanda24 also investigated the facial growth patterns of subjects with skeletal open 

bite and skeletal deep bite. Although the development of the hypo- and hyper-divergent 

pattern is established at an early age, these patterns seem to grow differently up to their 

attained mature size. The magnitude of the dimensional differences between the hypo- and 

hyper-divergent patterns becomes progressively accentuated during adolescence. 

Therefore, the relative effects of genetic and environmental factors during the craniofacial 

development could be different according to the vertical skeletal pattern. 



 

9 

 

Peng et al.1 reported that vertical craniofacial characteristics appear to be strongly 

genetically influenced during the later stage of development, while the horizontal 

development by genetic factors declines as age progresses towards 12 years. In addition, 

various parts of the craniofacial morphology respond differently to different environmental 

influences. 

 

7. Principal components analysis (PCA) 

If the original data is high dimensional and of a random nature, it is difficult to 

interpret the patterns.25 Therefore, it is necessary to extract the relevant information from a 

large dataset and to find the underlying trends with minimum loss of information.25-27 

With PCA, we can extract a reduced number of new variables that mostly describe 

the variation within the original data.25 These new variables, principal components, can be 

obtained from a linear combination of the original variables and they are independent of 

each other.25,27 The number of principal components is determined by solving Eigenvalue 

problem or using iterative algorithms to estimate the principal components.25,28 

To facilitate the interpretation of principal components, PCA often involves a 

rotation of the components. Varimax rotation, developed by Kaiser,29 is the most popular 

rotation method. This simplifies the interpretation because, after a varimax rotation, each 

original variable tends to be associated with a small number of the components, and each 

component represents only a small number of variables.27,29 

There have been several PCA studies to investigate the heritability of the 

craniofacial skeletal and dental characteristics in twins. Nakata et al.30 found at least nine 

significant genetic components and eleven significant components of the environmental 

variation. The first five components explained 66% of the total variance and high loadings 

were on the all horizontal linear measurements.   



 

10 

 

However, Carels et al.6 reported five components explaining 81% of the total 

variance after PCA on the craniofacial parameters. Factor 1, which explained 31% of the 

variance, consisted of all the horizontal variables and two of the five angular measurements. 

Factor 2 consisted of the vertical variables and explained 26% of the variance. Factor 3, 

explaining 11% of the variance, consisted of the linear measurements of the mandible and 

one angular measurement of the mandible. Factor 4 and factor 5 explained 8% and 5% of 

the variance, respectively. 

According to Šidlauskas et al.,7 PCA showed six components explaining 83% of 

variance. First component consisted of numerous linear variables. All angular and three 

linear variables were determined to components 2-5.  
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III. MATERIALS AND METHODS 
 

The initial samples consisted of 150 Korean adult twins and their families (36 

pairs of MZ twins, 13 pairs of DZ twins, and 26 pairs of their adult siblings), whose lateral 

cephalometric radiographs were taken in natural head position at Samsung Medical Center, 

Seoul, South Korea. This twin study protocol was reviewed and approved by the 

Institutional Review Board of the School of Public Health, Seoul National University, 

Seoul, South Korea (IRB 2005-08-113-027). Informed consent was obtained from all 

subjects. 

The inclusion criteria were as follows:8,10 (1) those who did not have an edentulous 

area of the anterior dental region that could affect the facial profile; (2) those who did not 

wear a removable prosthesis that could affect the vertical dimension of the face; (3) those 

who had not undergone orthodontic treatment or orthognathic surgery; (4) those whose 

growth was complete (over 19 years of age); and (5) those whose gender was the same in 

the DZ pairs and sibling pairs. 

According to the vertical pattern, a total of 53 Korean adult twins and their siblings 

were allocated into the two groups (criteria: mean value of SN-MP angle of Korean adult 

twins, 35°; Table 1):8 Hypo-divergent group [Group 1, SN-MP<35°; mean age, 39.0 years-

old; 17 MZ pairs; 11 DZ and sibling (DS) pairs (3 DZ pairs and 8 sibling pairs)] and hyper-

divergent group [Group 2, SN-MP>35°; mean age, 41.3 years-old; 16 MZ pairs; 9 DS pairs 

(4 DZ pairs and 5 sibling pairs)]. According to the Shapiro-Wilk normality test, the samples 

were normally distributed in both groups (P>0.05) and SN-MP angle was statistically 

different between the two groups (29.2 ± 3.2° vs. 41.0 ± 4.3°, P<0.001; Table 1). 

The landmarks and reference lines used for cephalometric measurement are 

illustrated in Figure 1. A total of 56 linear, angular, and ratio cephalometric variables were 

measured using lateral cephalograms (Figure 2). The craniofacial structures were divided 
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into five areas as follows: anteroposterior (AP), vertical, dental, mandible, and cranial base 

characteristics.8 All measurements were performed by a single operator (EK) using the V-

Ceph 6.0 program (Cybermed, Seoul, South Korea).  

All variables from 20 randomly selected subjects were remeasured by the same 

operator (EK) at 2-week intervals. The intra-operator measurement error was assessed 

using the intraclass correlation coefficient (ICC). Since there were no significant 

differences between the first and second measurements, the first set of measurements was 

used. 

Although the genetic effect (A) of the MZ pairs is equal, the DS pairs of the same 

gender share half of their genetics.13 On the assumption that the MZ and DS pairs have the 

same environmental effect (E),10,31 the Pearson’s correlation coefficient (rmz, rds) was 

calculated as rmz= A + E and rds=  A+ E, respectively (Table 2). 

Falconer's method has been used to calculate the genetic heritability (h2) based on 

the difference between the Pearson’s correlation coefficients of Groups 1 and 2.8,13,16,31,32 

Heritability was calculated as h2 = 2 (rmz- rds). 8,10,16,32 Cultural inheritance (c2), which shows 

the environmental effect, was calculated as c2 = 2rds-rmz.8,10,32 In the present study, an h2 

value below 0.2 was considered low heritability and that above 0.8 was, high heritability.8,10 

Since the degree of heritability of the variables can differ in the same craniofacial 

structures and the craniofacial variables are highly correlated with each other,6 it is 

necessary to find the factors that account for phenotypic variance and to estimate the 

underlying correlations from the set of measurements. Therefore, principal components 

analysis (PCA) with Kaiser normalization varimax rotation was used to extract the 

dominant components for 56 cephalometric variables in Groups 1 and 2.6-8,10,33,34 The 

components with an eigenvalue higher than 1 were selected. The mean ICC values of the 

cephalometric variables grouped by component were calculated. The heritability (h2) of 

components was also calculated in Groups 1 and 2.  
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All statistical analyses were performed with a significance level of 0.05 using a 

SPSS program (version 21, IBM Corp., Armonk, NY, USA). 
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IV. RESULTS 
 

1. Genetic Heritability (h2) in Group 1 (Table 3) 

In the AP variables, only 3 variables depicting the AP position of the mandible 

exhibited high h2 values (SNB, 1.13; SN-Pog, 0.90; facial angle, 0.91).  However, among 

the vertical variables, numerous angular variables (ODI, 1.49; SN-PP, 1.53; FH-PP, 1.29; 

PP-MP, 1.11) and ratio variables (N-ANS/ANS-Me, 1.09; ANS-Me/N-Me, 1.22) exhibited 

high h2 values. In the dental variables, high h2 values were observed in maxillary incisor 

inclination (U1-SN, 1.16; U1-FH, 1.58; U1-PP, 1.39; U1-OP, 1.04; U1-NA linear, 0.93) 

and occlusal plane-to-mandibular plane inclination (OP-MP, 1.29). Among the mandible 

and cranial base variables, high h2 values were shown in the shape of the mandible and 

cranial base (gonial angle, 1.48; lower gonial angle, 1.40; saddle angle, 0.85).  

 

2. Genetic Heritability (h2) in Group 2 (Table 3) 

Among the AP variables, the AP position of the maxilla and intermaxillary 

relationship exhibited high h2 values (SNA, 1.26; convexity of A point, 1.00; ANB, 0.82; 

facial convexity, 1.05). The ratio between mandibular body length and anterior cranial base 

length also exhibited a high h2 value (Go-Me/S-N, 0.97). However, in the vertical variables, 

only 4 angular variables had high h2 values (ODI, 0.95; SN-FH, 0.88; SN-PP, 1.53; PP-MP, 

1.41). Interestingly, there was no ratio variable with a high h2 value. In the dental variables, 

high h2 values were observed in mandibular incisor inclination (IMPA, 0.83; L1-NB 

angular, 1.18; L1-NB linear 1.14; L1-OP, 1.83), occlusal plane-to-cranial base inclination 

(FH-OP, 1.01) and OP-MP (0.88). Among the cranial base variables, cranial base length 

(Ar-N, 0.95; S-N, 1.34) exhibited a high h2 value. However, the size and shape of the 

mandible did not show high h2 values. 



 

15 

 

3. Comparison of the Overall Mean h2 Values for the Five 

Structures (Table 4) 

In Group 1, the overall mean h2 value was highest at the vertical structure (0.84), 

followed by the dental structure (0.67), cranial base structure (0.41), mandible structure 

(0.39), and AP structure (0.26).  

However, Group 2 did not include any structure with overall mean h2 value greater 

than 0.8. The AP structure exhibited the highest value (0.66), followed by the cranial base 

structure (0.64), vertical structure (0.41), mandibular structure (0.26) and dental structure 

(0.21).  

 

4. Principal Components Analysis (PCA) (Tables 5 to 8) 

In both Groups 1 and 2, the PCA derived 10 components (Tables 5 and 6) with 

91.2% and 92.7% of cumulative explanation, respectively (Tables 7 and 8).  

In Group 1, three PCA components showed high h2 values as follows: (1) PCA1 

(0.891), which consisted of 5 vertical variables (SN-MP, Bjork sum, facial height ratio, 

FMA, PP-MP), one mandibular variable (lower gonial angle), and one dental variable (OP-

MP); (2) PCA2 (1.140), which consisted of 6 dental variables (U1-NA angular, U1-FH, 

U1-PP, U1 to NA linear, U1-SN, U1-OP); and (3) PCA6 (1.325), which consisted of 5 

vertical variables (SN-PP, N-ANS/ANS-Me, ANS-Me//N-Me, FH-PP, ODI) (Tables 5 and 

7).  

In Group 2, three PCA components showed high h2 values as follows: (1) PCA3 

(1.003), which consisted of 3 AP variables (Convexity of A point, ANB, Facial convexity) 

and 3 dental variables (L1-NB angular, L1-NB linear, IMPA); (2) PCA9 (1.420), which 

consisted of 2 dental variables (L1-OP, FH-OP); and (3) PCA10 (1.339), which consisted 

of anterior cranial base length (S-N) (Tables 6 and 8). 
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V. DISCUSSION 
 

1. Comparison of the Heritability (h2) between Groups 1 and 2 

(Table 3) 

Among the vertical facial variables, the angular measurements between the 

maxilla, mandible, and cranial base exhibited higher heritability values than the linear 

measurements in both groups (ODI, SN-PP, FH-PP, PP-MP in Group 1; ODI, SN-FH, SN-

PP, PP-MP in Group 2). However, the vertical ratio of the anterior facial height had a strong 

genetic influence in Group 1 only (N-ANS/ANS-Me, ANS-Me/N-Me). These findings 

indicate that the relative ratio between the upper and lower anterior facial heights might be 

highly predictable in the hypo-divergent pattern, which was similar with the findings from 

Kim et al.8 In contrast, Šidlauskas et al.7 reported low-to-moderate genetic influence in the 

linear and angular vertical measurements. However, these studies7,8 did not divide their 

samples according to the vertical pattern.  

Interestingly, posterior facial height (S-Go) and ramus height (CD-Go, Ar-Go) 

did not show a high heritability in either group. These results suggested that the posterior 

face height demonstrated a lower genetic determination compared to the anterior face 

height.7,19  

Heritability of the AP position of the maxilla and intermaxillary relationship (SNA, 

convexity of A point, ANB, facial convexity, Go-Me/S-N) showed a strong genetic 

influence in Group 2. Amini et al.19 and Kim el al.8 demonstrated a high heritability of the 

AP position of the maxilla, but a low-to-moderate heritability of the intermaxillary 

relationships. This difference might be due to differences in the growth stage or ethnic 

background of the samples.  

The cranial base shape (saddle angle) showed a high heritability in Group 1, while 

the cranial base length (Ar-N, S-N) showed a high heritability in Group 2. Amini et al.19 
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reported a high genetic determination of anterior cranial base length and saddle angle. 

However, other previous studies6, 8 reported low-to-moderate heritability values for saddle 

angle and cranial base length. Differences in the results might be due to the inclusion of 

younger twin samples before completion of growth in previous studies.6, 19  

In the mandible characteristics, although the mandibular body length (Go-Me, Go-

Pog), ramus height (CD-Go, Ar-Go) and effective mandibular length (Ar-Gn, CD-Gn) 

showed low-to-moderate heritability values in both Groups 1 and 2, the shape and position 

of the mandible (gonial angle, SNB, SN-Pog, facial angle) exhibited high h2 values only in 

Group 1. These results were consistent with Amini et al.19 and Šidlauskas et al.,7 which 

reported a higher heritability of the shape and position of the mandible than its size. 

However, Carels et al.6 reported a greater genetic determination for the linear 

measurements of the mandible compared to the angular measurements of the mandible 

(gonial angle, SNB). Since the influence of the environmental factors on linear mandibular 

measurements increases with age,35 differences in the results might be derived from the 

growth stage of the samples.  

The results from this study showed high heritability values of maxillary incisor 

inclination (U1-SN, U1-FH, U1-PP, U1-OP, U1-NA linear) in Group 1, and of mandibular 

incisor inclination (IMPA, L1-NB angular, L1-NB linear, L1-OP) in Group 2. Since Carels 

et al.6 and Amini et al.19 reported a high heritability of the dentoalveolar variables including 

mandibular incisor inclination and vertical position of the molars, the degree of 

dentoalveolar compensation including dentoalveolar height and incisor inclination might 

be significantly correlated with genetically determined skeletal parameters. 

 

2. Comparison of the Overall Mean h2 Values for the Five 

Characteristics (Table 4) 
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The hypo-divergent pattern had a strong genetic influence on the vertical structure, 

while the hyper-divergent pattern did not have strong genetic control over the vertical 

structures. These findings indicate that the genetic control on the vertical structure is more 

influential in Group 1 than in Group 2. Although, Kim et al.8 reported highest overall mean 

h2 value at the facial horizontal structures (1.10) followed by facial vertical (0.71), 

mandible (0.59), cranial base (0.37), and dental structures (-0.11), they did not divide their 

samples according to the vertical pattern.  

 

3. Principal Components Analysis (PCA) (Tables 5 to 8) 

Component number and cumulative explanation in Groups 1 and 2 were 10 

components with 91.2% and 92.7%, respectively. These results were relatively higher than 

previous twin studies using PCA, which reported five to nine components with 81.0% to 

83.0% cumulative explanation.6, 7, 30 Differences among these studies might be derived 

from different study designs and different statistical criteria (i.e. eigenvalue) for 

determining principal components. Furthermore, those studies6, 7, 30 did not compare the 

heritability values of each component between the hypo- and hyper-divergent groups. 

In Group 1, the components exhibited high mean h2 values were PCA1 (0.891), 

which depicts the vertical angular relationships, facial height ratio, the shape of the 

mandible, and inclination of the occlusal plane; PCA2 (1.140), which depicts upper incisor 

inclination; and PCA6 (1.325), which depicts the vertical angular relationships and anterior 

facial height ratio.  

In Group 2, the components exhibited high mean h2 values were PCA3 (1.003), 

which depicts the AP position of the maxilla, intermaxillary relationship, and lower incisor 

inclination; PCA9 (1.420), which depicts the inclination of the lower incisors and occlusal 

plane; and PCA10 (1.339), which depicts the anterior cranial base length.  
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These findings were similar with the result of Falconer’s method and consistent 

with Carels et al.,6 which reported a high additive genetic determination for the principal 

components depicting the vertical measurements and the shape of the mandible. However, 

Šidlauskas et al.7 reported a high additive genetic determination for the components 

consisted of numerous linear measurements and angular relationships.   

 

In summary, the results of the present study showed clear differences in the 

heritability of the craniofacial skeletal and dental characteristics between the hypo- and 

hyper-divergent patterns as follows (Tables 3 to 8): (1) In the vertical jaw position, the 

hypo-divergent pattern had strong genetic influences on both the angular and ratio 

measurements; while the hyper-divergent pattern, only on the angular measurements; (2) 

In the AP jaw position, the hypo-divergent pattern exhibited strong genetic influences only 

on the AP position of the mandible; while the hyper-divergent pattern, on the AP position 

of the maxilla and intermaxillary relationships; (3) In the size and shape of the cranial base 

and mandible, the hypo-divergent pattern had a strong genetic influence on the shape of 

both the cranial base and mandible; while the hyper-divergent pattern, only on the cranial 

base length; (4) In terms of incisor inclination, the hypo-divergent patterns exhibited strong 

genetic influences on maxillary incisor inclination; while hyper-divergent pattern, on 

mandibular incisor inclination; and (5) The occlusal plane inclination exhibited a high 

heritability in both groups. 

The results of this study might reveal some clinical implications in growth 

modification treatment for adolescent patients. In the hypo-divergent pattern, growth 

modification treatment is favorable in terms of changes in mandibular length and/or AP 

position of the maxilla. In the hyper-divergent pattern, changing the shape and/or size of 

the mandible is easier compared to changing the AP position of the maxilla. However, 

individual responses to growth modification treatment could vary even though the 

structures exhibited low heritability values.  
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Although heritability estimates of this study might be irrelevant to a different 

population, the study design and results of this study might be a useful guideline to compare 

the heritability in different populations. This retrospective study had some limitations of 

study design including a relatively small sample size and two-dimensional cephalometric 

analysis. Therefore, three-dimensional analysis with a large sample size is necessary to 

investigate the heritability of transverse characteristics in future studies. In addition, further 

studies should be conducted to investigate the heritability of skeletal and dental 

characteristics according to the horizontal skeletal pattern including skeletal Cl I, Cl II, and 

Cl III subjects.  
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VI. CONCLUSIONS 
 

 The null hypothesis was rejected. 

 Since the hypo- and hyper-divergent subjects exhibited different degree of genetic 

influences on the AP/vertical position of the maxilla and mandible, shape of the 

mandible, incisor inclination, and shape and length of the cranial base, it is necessary 

to estimate or predict growth according to the vertical pattern for providing differential 

diagnosis and orthodontic/orthopedic treatment planning. 
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FIGURE LEGENDS 

 

Figure 1. Landmarks and reference lines. Landmarks: S, sella; N, nasion; Po, porion; 

Or, orbitale; CD, condylion; Ar, articulare; Ba, basion; PNS, posterior nasal spine; ANS, 

anterior nasal spine; A, A point; B, B point; Pog, pogonion; Gn, gnathion; Me, menton; Go, 

gonion; Reference lines: SN plane; FH (Frankfort Horizontal) plane; Palatal plane (PP); 

Occlusal plane (OP); Mandibular plane (MP); N perpendicular line; U1, long axis of the 

upper incisor; L1, long axis of the lower incisor.  
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Figure 2. Cephalometric variables. A. Anteroposterior structure. 1, SNA(°), 2, SNB(°), 

3, ANB(°); 4, SN-Pog(°); 5, NA-Pog(°); 6, FH-NPog(°); 7, A-N perpendicular(mm); 8, 

Pog-N perpendicular(mm); 9, NPog-A(mm); 10, mandibular body length/anterior cranial 

base(Go-Me/S-N); B. Vertical structure. 1, ODI(°) ; 2, SN-FH(°); 3, SN-PP(°); 4, SN-

MP(°); 5, FH-PP(°); 6, FMA(°); 7, PP-MP(°); 8, Bjork Sum(°); 9, N-Me(mm); 10, S-

Go(mm); 11, S-Go/N-Me; 12, N-ANS/ANS-Me; 13, Posterior cranial base/Ramus 

height(S-Ar/Ar-Go); 14, ANS-Me/N-Me; C. Dental structure. 1, U1-SN(°); 2, U1-FH(°); 

3, U1-PP(°); 4, U1-NA(angular, °); 5, U1-OP(°); 6, IMPA(°); 7, L1-NB(angular, °); 8, L1-

OP(°); 9, Interincisal angle(U1-L1, °); 10, SN-OP(°); 11, FH-OP(°);12, OP-MP(°); 13, U1-

NA(linear, mm); 14, L1-NB(linear, mm);15, U1-APog(mm);16, L1-APog(mm); D. 

Mandible structure. 1, Gonial angle(Ar-Go-Gn, °); 2, Upper gonial angle(Ar-Go-N, °); 3, 

Lower gonial angle(N-Go-Gn, °); 4, CD-Go(mm); 5, Ar-Gn(mm); 6, CD-Gn(mm); 7, Go-

Me(mm); 8, Ar-Go(mm); 9, Go-Pog(mm); E. Cranial base structure. 1, Saddle angle (N-

S-Ar, °); 2, Cranial base angle(N-S-Ba, °); 3, S-N(mm); 4, S-Ba(mm); 5, S-Ar(mm); 6, N-

Ba(mm); 7, Ar-N(mm). 
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Table 4. Comparison of the overall mean values of genetic heritability (h2) and cultural 

inheritance (c2) for the facial horizontal, facial vertical, dental, mandible, and cranial base 

structures in Groups 1 and 2 

Structures 

Group 1  
(Hypo-divergent group,  

SN-MP<35°) 

Group 2  
(Hyper-divergent group, 

 SN-MP>35°) 
h² c² h² c² 

Anteroposterior 0.2561 0.4592 0.6610 -0.0014 
Vertical 0.8403 -0.0458 0.4072 0.1776 
Dental 0.6713 0.0737 0.2084 0.3148 

Mandible 0.3866 0.2456 0.2562 0.4695 
Cranial base 0.4127 0.4489 0.6394 0.1922 
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Table 7. The Pearson’s correlation coefficients (r) and heritability (h2) for each principal 

component in Group 1  

Principal 
components 

Variance 
explained (%)

Cumulative 
percentage (%) rmz rds h2

(Group 1) 

PCA1 14.355 14.355 0.700 0.255 0.891 
PCA2 13.906 28.261 0.802 0.232 1.140 
PCA3 12.635 40.896 0.699 0.729 -0.060 
PCA4 10.983 51.879 0.787 0.499 0.576 
PCA5 10.437 62.316 0.615 0.607 0.016 
PCA6 7.782 70.099 0.879 0.217 1.325 
PCA7 5.827 75.926 0.785 0.592 0.385 
PCA8 5.612 81.537 0.761 0.391 0.740 
PCA9 5.103 86.641 0.901 0.619 0.564 

PCA10 4.526 91.167 0.620 0.344 0.550 
 

h2
(Group 1) = 2 (rmz- rds). 

rmz, Pearson’s correlation coefficients of the MZ group; rds, Pearson’s correlation 

coefficients of the DS group. 

PCA1 depicts the vertical angular relationships, facial height ratio, the shape of the 

mandible, and inclination of the occlusal plane; PCA2 depicts upper incisor inclination; 

and PCA6 depicts the vertical angular relationships and anterior facial height ratio.  
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Table 8. The Pearson’s correlation coefficients (r) and heritability (h2) for each principal 

component in Group 2  

Principal 
components 

Variance 
explained (%) 

Cumulative 
percentage (%) rmz rds h2

(Group 2) 

PCA1 15.679 15.679 0.469 0.645 -0.353 
PCA2 13.939 29.618 0.875 0.639 0.471 
PCA3 13.407 43.025 0.713 0.212 1.003 
PCA4 12.369 55.394 0.802 0.451 0.701 
PCA5 12.191 67.585 0.318 0.319 -0.002 
PCA6 7.030 74.615 0.691 0.499 0.383 
PCA7 6.198 80.814 0.691 0.342 0.698 
PCA8 6.122 86.936 0.423 0.322 0.203 
PCA9 2.999 89.935 0.610 -0.100 1.420 

PCA10 2.747 92.681 0.815 0.145 1.339 
 
h2

(Group 2) = 2 (rmz- rds). 

rmz, Pearson’s correlation coefficients of the MZ group; rds, Pearson’s correlation 

coefficients of the DS group. 

PCA3 depicts the anteroposterior position of the maxilla, intermaxillary relationship, and 

lower incisor inclination; PCA9 depicts the inclination of the lower incisors and occlusal 

plane; and PCA10 depicts the anterior cranial base length. 

 

 
 
 
 
 
 
 



 

 

국문초록 
 

Falconer’s method 와 주성분 분석을 
이용한 수직적 골격 양상에 따른 

두개안면골격과 치열의 유전율 차이에 
관한 연구 

 
김 도 근 

서울대학교 대학원 치의과학과 치과교정학 전공 

(지도교수: 백 승 학) 
 

목적: 본 연구의 목적은 수직적 골격 양상에 따른 두개안면골격과 치열의 

유전율 차이를 파악하는 것이었다.  

 
방법: 연구대상은 한국인 성인 일란성 쌍둥이 (monozygotic twin, MZ) 와 성별이 

동일한 이란성 쌍둥이 및 이들의 형제자매 (dizygotic twin and sibling, DS) 

이었으며, 이들을 수직적 골격 양상에 따라 단안모 군 (hypo-divergent group, 1 군, 

SN-MP<35°, MZ 17 쌍; DS 11 쌍) 과 장안모 군 (hyper-divergent group, 2 군, SN-

MP>35°, MZ 16 쌍; DS 9 쌍)으로 분류하였다. 측모두부계측 방사선 사진상에서 총 

56개의 변수들을 계측하였고, 두개안면구조물 (craniofacial structures)을 전후방적, 

수직적, 치열, 하악골, 두개저로 나누었다. Falconer's method 를 사용하여 각 변수 

및 두개안면구조물의 유전율을 계산하였고, 유전율 값이 0.8 을 초과하는 경우 

높은 유전율을 갖는 것으로 판단하였다. 변수들에 대한 주성분 분석 (principal 

components analysis)을 통해 각 군의 특성을 나타내는 주성분들을 추출하였고, 이 

주성분들의 유전율을 계산하였다.  



 

 

1. 1 군에서는 하악골의 형태와 위치, 수직적인 각도 및 비율, 두개저의 형태, 

상악전치 각도가 유전율이 높은 것으로 나타났다.  

2. 2 군에서는 상악골의 전후방적인 위치, 상악골과 하악골의 악간 관계, 

수직적인 각도, 두개저의 길이, 하악 전치 각도가 유전율이 높은 것으로 

나타났다.  

3. 교합평면의 기울기는 두 군 모두에서 유전율이 높은 것으로 나타났다.  

4. 1 군에서는 두개안면구조의 수직적 계측치들에서 평균적으로 유전율이 높게 

나타났지만, 2 군에서는 평균적으로 높은 유전율을 나타내는 두개안면구조가 

없었다.  

5. 주성분 분석에서 각 군당 10 개의 주성분들이 추출되었고, 이 주성분들이 1 군 

특성의 91.2%, 2 군 특성의 92.7%를 설명하는 것으로 나타났다.  

6. 1 군에서는 수직적인 각도 및 비율, 하악골의 형태, 교합평면의 기울기, 상악 

전치 각도를 나타내는 3 개의 주성분들이 평균적으로 높은 유전율을 

나타내었고, 2 군에서는 상악골의 전후방적인 위치, 상악골과 하악골의 악간 

관계, 하악 전치 각도, 교합평면의 기울기, 전두개저의 길이를 

표현하는 3 개의 주성분들이 평균적으로 높은 유전율을 나타내었다.  

 

결론: 장안모 군과 단안모 군에서 두개안면골격 및 치열의 유전율이 서로 

다르게 나타났으므로, 교정 진단과 치료 계획 수립시 수직적 골격 양상을 

고려하여 성장을 평가하고 예측하는 것이 필요하다.  
  

                                                                                           

주요어: 유전율, 쌍둥이, Falconer's method, 주성분 분석, 수직적 골격 양상 

학번: 2011-30648 

결과: 이로부터 다음과 같은 결과를 얻었다.  
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