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Abstract 

Assessing Uncertainties in Predicting 

the Changes in Forest Species Distributions  

caused by the Climate Change 

Sunyong Sung 

Interdisciplinary Doctoral Program in Landscape Architecture  

Graduate School, Seoul National University  

Supervised by Professor Dong Kun Lee 

 

The adverse impacts of climate change on forest ecosystems are 

expected to increase, and various measures are being proposed to reduce them. 

To mitigate the negative impacts of climate change with limited time and 

resources, and to respond effectively, it is necessary to make an accurate 

impact assessment based on climate change. To do so, it is necessary to 

understand and quantify the uncertainties that are inevitable in climate change 

impact assessment. 

The concept of uncertainty, which has been mentioned since the fourth 

report of the Intergovernmental Panel on Climate Change, is specified in the 

Fifth Impact Assessment Report and is used as a concept to aid decision 

making. In Korea, efforts are being made to quantify uncertainties in 
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assessing the impacts of climate change. However, these studies are still in 

the early stages, are limited in scope, and do not consider uncertainties in 

various aspects. 

Therefore, in this study, we analyzed the causes of uncertainties that may 

occur due to climate change by: 1) measuring the effectiveness of sampling 

methods and sample size, 2) evaluating the uncertainties in model 

performance and spatial distribution due to Species Distribution Model (SDM)  

algorithms, and 3) considering the uncertainties if involved in assuming 

competition among major species, applying four Representative 

Concentration Pathway (RCP) scenarios to potential distribution ranges.  

To measure the effectiveness of the sampling methods, three sampling 

methods and seven different sample sizes were considered for the one-way t-

test. As a result of the one-way t-test, stratified random sampling methods are 

shown to well represent the population. In addition, if the sample size exceeds 

a certain number, for this study, 200 samples, the performance of SDMs does 

not significantly increases.  

We applied eight SDMs that were either statistically based or machine 

learning based algorithms to model the potential distribution of major species 

in Korea; the performance of the models differed according to the algorithms. 
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To test the performance of SDMs, the area under the curve (AUC) value and 

True Skilled Statistics (TSS) value were applied. Machine learning models, 

especially the random forest (RF) model showed excellent performance while 

statistical based models (Generalized Linear Model (GLM), Generalized 

Additive Model (GAM)) showed average performance. When we verified 

uncertainties in spatial distribution, with thresholds matching the current area 

of the major species, the uncertainties in the spatial distribution was 

significant. Ensemble methods need to be applied to minimize uncertainties 

in the spatial distribution of SDMs. 

To consider uncertainties in the competition among major species, the 

random forest algorithm and Global Agro-Ecological Zones (GAEZ) 

classification were applied. Modeling results revealed that the multi-species 

model included higher uncertainties. However, single species models can not 

include the climate zone changes that we expect in RCP the scenarios. Thus, 

we need to include the potential introduction of forest species that are suitable 

in different climate zones.  

Through this study, when we establish management strategy for climate 

change mitigation and adaptation, uncertainties in each step if we predict 

potential distribution of forest species can be applied to prioritize 

management target. This can reduce uncertainties in management strategy as 
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well as find effective monitoring points for counteract adverse changes due 

to the climate change.  

Keywords: Uncertainty, Species Distribution Change, Sampling 

Methods, BIOMOD2, Random Forest, Forest Management 

Student Number: 2013-30714 
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I. Introduction 

The adverse impacts of climate change to human society have increased 

since the advent of industrialization. Extreme events, which has been caused 

by climate change damages, significantly damages not only the ecosystem but 

also human settlement (IPCC, 2014a). To minimize the adverse impact of 

climate change, various studies have been conducted to establish regional and 

national polices since the 1990s (IPCC, 2014b). In particular, studies that 

quantify the future impacts of climate change are being used effectively to 

mitigate these effects and develop countermeasures to adapt them.  

While establishing countermeasures on the adverse impact of climate 

change, forests are drawing attention since they can play a role as a stepping 

stone to achieve mitigation and adaptation simultaneously (Lal, 2005). Thus, 

research on changes in forests for climate change has been actively conducted 

(Bonan, 2008). It is important to promote the role of forests as carbon sinks 

because the forest contributes 25% of the carbon dioxide mitigation that is 

emitted by fossil fuels. In addition, forests contribute to adaptation by 

mitigating the risks associated with heavy rainfall due to climate change and 

promoting biodiversity by conservation of habitat. Therefore, discussions are 

underway to preserve the forest ecosystem and restore the areas expected to 

be degraded under climate change (IPCC, 2003). 
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To understand the role of the forest ecosystem in counteracting the 

adverse impact of climate change, it is important to understand the 

uncertainties within the impact assessment. The concept of uncertainty 

originated in the fourth report of Intergovernmental Panel on Climate Change 

(IPCC). In the fifth impact assessment report, uncertainty was used as a 

concept to support decision-making processes (IPCC, 2003). In Korea, efforts 

have been made to quantify the uncertainties in assessing the impact of 

climate change (Kim et al., 2018). However, these studies are still in the early 

stages, limited in scope, and do not take into account uncertainties in 

modeling processes (Kryazhimskiy et al., 2015).  

To quantitatively evaluate the impact of climate change on the forest 

ecosystem, it is necessary to comprehensively understand the various factors 

affecting these ecosystems as well as the expected changes due to changes in 

climate. The major impacts of climate change on forest ecosystems are largely 

divided into changes in productivity and forest growth, changes in forest 

species, species composition, and increases in disturbances (Lindner et al., 

2014). Among these researches on the distribution of forests species are 

important as their distribution can be considered a baseline for assessing the 

various effects of forests on future climate change, such as carbon 

sequestration, productivity of forest species, and biodiversity of ecosystems. 
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All impacts on forest ecosystems are closely linked to climate change 

management plan.  

To make an effective and reliable management plan for climate change, 

it is important to consider the uncertainties that may arise in predicting the 

distribution of forest species. When we are predicting changes in forest 

species, we need to consider uncertainties in various steps: first, in collecting 

input data for modeling the potential distribution of forest species. Because 

we cannot survey all forest species on a national scale. Next, the application 

of models could cause uncertainties, as differences in model algorithms 

derive different interpretations of the current distribution of forest species. 

Finally, the temperature and precipitation changes in different Representative 

Concentration Pathway (RCP) scenarios could cause different ranges of 

impacts on species distribution.  

However, most of the related studies on the changes in forest species and 

distribution have been conducted using single models and single sampling 

methods (Pearson and Dawson, 2003). In this case, using different models 

and different sampling methodologies makes the interpretation of the 

variation of in results  difficult (Beale and Lennon, 2012). Therefore, it is 

necessary to consider the uncertainties that are caused from the choice of 

models and sampling methods (Ananda and Herath, 2009; Hannemann et al., 
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2016). At the same time, it is necessary to recognize the uncertainties from 

different temperatures and amount of precipitations in RCP scenarios that 

could causes different interpretations of climate change impact. 

Therefore, this study aims to quantitatively assess the uncertainties in 

predicting the distribution of major forest species under climate change. To 

consider the uncertainties in modeling the distribution of future forest species, 

this study will consider 1) effective sampling methods 2) various algorithms 

of models and spatial distribution of species, and 3) multiple RCP scenarios 

used to comprehensively evaluate the impact of forests under climate change 

on a national scale. In addition, the level of uncertainties will be different in 

different factors of modeling changes of major forest species under climate 

change. This will the quantify impact of climate change and utilize our result 

as a reference data for decision making in planning future forest adaptation 

and management to encounter the adverse impact of climate change. 
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II. Literature Review 

1. Definition of Uncertainty 

Uncertainties are always involved in our understanding of the current 

status and modeling of future changes. Uncertainty is defined as a "state 

without adequate information", rather than as knowing or not-knowing 

(Walker et al., 2003). To systematically identify the source of uncertainty, it 

can be approached in terms of 1) the “location” where uncertainty occurs, 2) 

the “level” of uncertainty, and 3) the “source” of uncertainty (Walker et al., 

2003). First, the location of uncertainty includes the uncertainty in the context, 

model, input, and parameter.  

 

Figure 1 Uncertainties from context (left), and model structure and inputs (right) (Walker et 

al., 2003) 

 

The uncertainty in the context will depend on how the model's scope is 

set. In the model, it is difficult to analyze all phenomena; therefore, only a 

part of reality is reflected. The uncertainty in the model is caused by the 

diversity of the model structure, which explains the reality and uncertainty in 

the input data. 



 

- 6 - 

 

Next, the difference in the level of uncertainty starts from statistical 

uncertainty to scenario uncertainty, recognized ignorance, and total ignorance 

(Walker et al. 2008). From a deterministic point of view, uncertainties can be 

explained statistically, and scenario uncertainties can be solved through 

scenario design. Perceived uncertainties can also be reduced through research 

and experimentation. However, uncertainties beyond human perception are 

indeterminacies. 

Finally, the causes of uncertainty can be classified into two categories: 

variability and lack of knowledge (Van Asselt and Rotmans, 2002). 

Uncertainty due to variability implies uncertainty in human and natural 

systems inherent in society, economy, and technology. This includes 

uncensored human behavior, unpredictable social uncertainty and 

unpredictable effects of new technology. At the same time, uncertainties 

arising from lack of knowledge can be reduced by research or empirical 

observations.  
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2. Modeling Potential Impact of Forest Species 

Distribution under the Climate Change 

Climate change includes the increase in mean temperature, changes in 

precipitation patterns and changes in CO2 concentration. Climate change is 

linked with phenology, mortality, disturbances from invasive species, 

extreme events. Changes linked with productivity and the potential 

distribution of species are connected to the composition of species in the 

forest and the optimal ranges of species under future climate change. 

Productivity is related to carbon sequestration and the potential distribution 

of species is linked with biodiversity. Both are connected to the climate 

change adaptation plan.  

 

Figure 2 Impact of climate change to forest ecosystem and link with national plans  
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The distribution of climatic zones was first published in 1884, taking 

into account the distribution of forests using temperature and precipitation 

patterns (Belda et al., 2014). Choi et al. (2011) estimated the potential 

distribution of forests using the Warmth Index (WI), Minimum Temperature 

of the Coldest Month Index (MTCI) and Precipitation Effective Index (PEI). 

In addition, studies have been conducted to predict the impact of climate 

change on future distribution by using the Growing Degree Days (GDD) to 

separate the climate zones (Gang et al., 2015). In addition, related studies 

have been conducted to predict future distribution changes using BIOCLIM 

data and species distribution models (Beaumont et al., 2005; Kriticos et al., 

2012; Shin et al., 2012). 

A few studies applied the site index to model the future distribution of 

forest. The site index can be defined as the average height of a dominant tree 

or co-dominant tree in a given age (base age). Applying the site index has the 

advantage of providing a comprehensive approach to the effects of local 

environmental factors such as topography, soil characteristics, and climate, 

which are important environmental factors for forest growth (Carmean et al., 

1989). However, since the distribution of the site index differs for each 

species and region, it is necessary to derive an appropriate index function for 

the region and species. The potential distribution of future forests under 
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climate change is modeled by analyzing the site index of the area where the 

species are distributed and estimating the site index based on related climate 

and environmental variables. Thereafter, the ability of species to adapt to 

changes in status index can be analyzed (Korea Forest Research Institute, 

2014).  

In Korea, a study was conducted to predict the potential forest 

distribution through a multinomial logit model using topography, maximum 

monthly temperature, summer average precipitation, soil base saturation, and 

soil organic matter content (Shin et al., 2012). In these studies, the potential 

forest distribution was predicted based on the appropriate range of species, 

but uncertainties due to climate scenarios are inherent because of the 

consideration of only a single scenario. In addition, since the future forest 

distribution is predicted by using the present optimum distribution of the 

indices, succession of forest cannot be considered. 

In modeling the potential distribution of species due to climate change, 

some studies have used multiple indices to estimate the appropriate ranges 

(Véga and St-Onge, 2009), while other studies have modeled the potential 

distribution of species using environmental variables at occurrence point in 

the Species Distribution Model (SDM) (Guisan and Thuiller, 2005; Gutiérrez 

et al., 2016).  
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The most widely used methods for modeling the potential distribution of 

species are the ecological niche model and the habitat suitability model 

(Kwon, 2014). The ecological niche model predicts the future distribution of 

species, based on the idea that the current distribution is the most appropriate 

ecological niche for the species and predicts the potential distribution of the 

species through the assumption that this ecological niche will not change 

(Elith and Leathwick, 2009; Guisan and Zimmermann, 2000; Pearson and 

Dawson, 2003; Wang et al., 2015). Therefore, it is essential to accurately 

identify the niche species for modeling the potential distribution of species by 

SDMs. 

 

Figure 3 Basic flowchart of SDM (modified from Elith and Leathwick, 2009) 
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3. Cause of Uncertainties in Species Distribution Modeling  

The degree of uncertainty in estimating the impact of climate change 

increases with the steps of impact assessment (Jones 2000; Wilby and Dessai 

2010). Uncertainties arising from climate change impact assessment are 

subject to uncertainties in: 1) future societies, 2) greenhouse gas emissions, 3) 

climate models, both regional and global, and 4) impact assessment models. 

It is necessary to identify and quantify the main sources of uncertainty that 

can occur at each step to provide information at a reliable interval. In the 

quantitative assessment of the impact of climate change, uncertainties in 

climate change can be reduced if uncertainties are considered at each 

assessment step. 

Table 1 Different uncertainties from climate change impact assessment and description 

Source of uncertainties Description 

Emission Scenarios 

Climate change are based on the future carbon dioxide 

emission from human activity. Policy implication could cause 

uncertainties 

Global Climate Change 
Climate change scenario can exceed expected range of 

uncertainties 

Regional Climate Model 
From downscaling global climate to regional scenario, 

downscaling method and parameters can cause uncertainties 

Modeling Modeling framework can cause uncertainties  
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3.1. Uncertainties in Climate Change 

There are cause of uncertainties within climate scenarios. First, the 

climate scenario itself has uncertainties as their projections are based on 

socio-economic scenarios. The global community tries to reduce greenhouse 

gases, which can affect future climate scenario projections. These changes 

can alter future climate projections (Knutti and Sedláček, 2012). Next, the 

climate scenario has assumptions in how the greenhouse will change with 

different model algorithms and scenarios. Even if we apply all climate 

scenarios for assessing the potential impact of climate change, there are some 

changes that exceed the range of model projections (Jones, 2000). Therefore, 

we need to consider the potential climate change within quantifiable ranges 

of current climate scenarios. 

 

Figure 4 Global temperature change and uncertainty (Knutti and Sedláček, 2012) 
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3.2. Uncertainties in Sampling Methods 

There is a limit to all the information that can be acquired for predicting 

a phenomenon, and it is important to extract an appropriate sample that can 

represent the phenomenon by effectively utilizing limited information and 

resources. There are four major problems to be considered in extracting the 

samples: size of the sample, design method of the sample, representative 

value that can characterize the sample and variation and the confidence 

interval of the sample that should be set (Hengl, 2009).  

There are two methods for extracting samples to be used in social science 

research: probability sampling and non-probability sampling. The probability 

sampling method uses a random method to extract sample components when 

the probability, that all the research subjects are extracted as a sample, is 

known; otherwise, a non-probabilistic method is used. The probability 

sampling method includes simple random sampling, systematic sampling, 

stratified sampling, and cluster sampling. Non-probability sampling is a non-

random sampling method, e.g. judgment sampling, and quota sampling.  
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Figure 5 Sampling methods in forest  

 

However, dealing with spatial data requires a different approach than the 

one dealt with in social sciences. Studies related to geography, such as 

vegetation and landscape, assume that everything is related but ‘closer is more 

relevant than far’1, so we can explain the phenomenon by extracting the 

appropriate sample. Basically, a method of extracting a spatial sample utilizes 

methodologies such as extracting a sample at intervals or randomly extracting 

a sample. For spatial analysis, it is necessary to use different sampling 

methods depending on the type and purpose of the data to be used. These 

sampling characteristics could cause uncertainties in modeling the potential 

distribution of forest (Sun–Yong Sung et al., 2018).  

                                           
1 “Everything is related to everything else, but near things are more related than distant 

things (Tobler, 1970)” 
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In forest modeling, generally four different sampling methods are 

applied: simple random sampling, systematic sampling, cluster sampling and 

stratified sampling (Food and Agriculture Organization, 2004; Figure 6). For 

effective understanding of forests, sampling design should consider spatial 

balance, uncertainties and the cost of survey in the sampled area. In addition, 

the size of the sample is important as a sample size is too small will increase 

uncertainty while a sample size that is too large will increase the cost of 

survey unnecessarily high. 

 

Figure 6 Basic sampling patterns in forest inventory (Food and Agriculture Organization, 2004) 

(a) simple random sampling design, (b)aligned systematic sampling design  

(c) unaligned systematic sampling design (d) unaligned, clustered, systematic design 
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3.3. Uncertainty in Species Distribution Model Algorithm 

Recently, a number of studies have been conducted to predict the 

distribution of forests using the SDMs, and these studies identify the strengths 

and weaknesses of the models according to their respective characteristics 

(Franklin, 2010a). The SDMs can be divided into a statistical based model 

and a machine learning model. The statistical models can be classified as 

Generalized Linear Models (GLM) and Bayesian model. Machine learning 

models include decision tree (DT), Artificial Neural Networks (ANN), 

Genetic Algorithms (GA), and MAXENT models. 

Table 2 Types of SDM and their performance (modified from Franklin and Miller, 2010) 

Classification Model Performances 

Statistical 

Generalized linear 

models (GLM) 

Effective global modeling methods;  

performs well with adequate data 

Generalized additive 

models (GAM) 
Performs well when not over-fit to data 

Multivariate adaptive 

regression splines 

(MARS) 

Performs similarly to and slightly better than 

GLM 

Bayesian Modeling Not widely compared with other SDM 

Spatial autoregressive 

models (SAR) 

Tend to perform better than non-spatial 

models, but limited spatial density of data 

Machine 

learning 

Decision Trees (DT) 
Single DT perform poorly compared to other 

methods 

Random forest (RF) 

Ensemble DTs tend to have good predictive 

performances. And provides importance of 

predictors and response functions 

Artificial neural 

networks (ANN) 

Good performances when used by skilled 

performers. 

Genetic algorithm (GA) 
Poor performance in comparison with other 

methods 

Maxent Performs well in data-poor situations. 

Support vector 

machines 
Only a few SDM applications to data 
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Previous applications of SDMs used single model or multi model 

approaches to quantify uncertainties from different model algorithms 

(Jarnevich et al., 2018; Sunyong Sung et al., 2018). Researchers have 

suggested several methods to minimize uncertainties (Kim et al., 2018; Wiens 

et al., 2009). However, it is very difficult to propose one optimum algorithms 

or method for modeling the potential distribution of species. Therefore, it is 

necessary to understand the uncertainties in the SDMs. 

 

4. Summary 

In considering the uncertainties involved in modeling the potential 

distribution of forest species according to future climate change, we reviewed 

the definition of uncertainty, the modeling of the potential distribution forests 

using different algorithms, causes of uncertainties within SDMs. However, 

the quantification of uncertainties in modeling potential distribution of forests 

species is limited (Beale and Lennon, 2012).  

There are uncertainties in modeling the potential distribution of forest with 

SDMs (Figure 7). To apply different SDMs for predicting the potential 

distribution of forest species, we need to collect the presence/absence point. 

In collecting the presence point, we cannot select all sampling points or 



 

- 18 - 

 

presence points as data is not available in some countries. In these cases, 

uncertainties can arise in selecting samples for SDMs. In addition, the climate 

change has uncertainties in projecting future temperature and precipitation 

changes, since there are significant changes in greenhouse gases, based on 

human activities, which have uncertainties.  

Similarly, there are uncertainties in selecting different SDMs, as each has 

different algorithms. When we interpret the result of SDMs, model 

performance and spatial distribution should be considered carefully. Modeled 

results do not include species composition in terms of competition among the 

major forest species. Thus, the uncertainties in modeling potential distribution 

should be carefully examined in managing the forest ecosystem effectively. 

Then, a management strategy should be proposed for effective response to the 

potential adverse impact of climate change.  

 

Figure 7 General framework of species distribution modeling and uncertainties 
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III.  Scope and Methods 

1. Study Scope 

1.1. Research Flow 

The research flow of this study is shown in Figure 8. First, the purpose of 

this study is contained in the introduction. In the literature review, the 

definition of uncertainty, related studies on modeling the potential 

distribution of major forest species and the causes of uncertainties are 

reviewed. Then, we set the study scope and describe materials and methods 

for quantifying uncertainties in the modeling of the potential distribution of 

major forest species.  

In the result and discussion section, the potential distribution of major 

forest species is presented for quantifying the different consequences in 

selecting RCP scenarios. Then, the uncertainties in selecting sampling 

methods and different SDMs are described. Based on the results for 

quantifying uncertainties, I suggested a forest management strategy to 

effectively counteract the forest ecosystem to minimize the negative effects 

that could be derived by climate change.  
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Figure 8 Research flow 

 

1.2. Spatial and Temporal Scope 

To predict the potential distribution of forest species under climate change, 

the scope of study was limited to the inland areas of South Korea (Figure 9). 

Because South Korea includes diverse vegetation zones as its terrain is 

complex, and the forests species are in various climatic zones, it is expected 

that the effects on forests species due to climate change will be significant. 
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At the same time, it is possible to obtain more accurate and meaningful impact 

assessment results because it is possible to obtain high-resolution data 

essential for predicting future climate change impact.  

We set the current climate conditions from 2001 to 2010. We set the target 

period for analyzing long-term changes in forests to the 2090 's from 2091 to 

2100 as the forest ecosystem changes in a relatively longer period. In this 

study, the effects on forests species due to future climate change should be 

predicted spatially. Thus, this study was conducted based on the resolution of 

1 km × 1 km, which is the highest resolution of climate data provided by the 

Korea Meteorological Administration.  

 

Figure 9 Study site 
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2. Materials and Methods 

2.1. Materials 

We used four categories of environmental variables—vegetation, climate, 

topography, and soil (Table 3)—in the SDMs. Vegetation data were based on 

a 1:5000 detailed forest map from the Korea Forest Service (KFS). Forest age, 

type, and density were collected for each forest stand. Climate data were 

derived from the Korea Metrological Administration (KMA), and all climate 

datasets were statistically downscaled to 1 km × 1 km resolution.  

Table 3 List of environmental variables 

Category Variables 
Data 

type 
Resolution Source 

Vegetation Forest Type 
Feature 

(SHP) 
1:5000 Korea Forest Service 

Topography 

Altitude 

Raster 

(TIFF) 
30m 

National Geography 

Information Institute Slope 

Radiation 

Ministry of Environment Distance from water 

Distance from sea 

Soil 

Soil Depth 
Feature 

(SHP) 
1:25000 Korea Forest Service Soil Organic Matter 

Content in Layer A 

Climate 

Warmth index 

Raster 

(TIFF) 

1 km  

× 1 km 

Korea Metrological 

Administration 

Isothermality 

Min temperature of coldest 

month 

Precipitation of wettest 

month 

Precipitation of driest 

month 

Climate Zone 30m Korea Forest Service 
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From the monthly temperature and precipitation data, we generated 19 

bioclimatic variables averaged over 10 years, from 2001 to 2010, to match 

the WorldClim database (Hijmans et al., 2005). The BioCLIM variable is 

used by Hijmans et al., (2005) to express ecologically meaningful variables 

(e.g., annual climate and seasonality, extreme climatic and limiting 

requirements) utilizing monthly precipitation and monthly temperatures, 

which are widely used in the analysis of biological species distribution (Ahn 

et al., 2015; Beale and Lennon, 2012; Beaumont et al., 2005). We calculated 

future (2091-2100) BIOCLIM data by using the Dismo Package of R. 

Table 4 List of BioClim variables (Kriticos et al., 2012) 

Variable Number Variable 

Bio01 Annual mean temperature (°C) 

Bio02 
Mean diurnal temperature range  

(mean (period max-min)) (°C) 

Bio03 Isothermality (Bio02 ÷ Bio07) 

Bio04 Temperature seasonality (C of V) 

Bio05 Max temperature of warmest week (°C) 

Bio06 Min temperature of coldest week (°C) 

Bio07 Temperature annual range (Bio05-Bio06) (°C) 

Bio08 Mean temperature of wettest quarter (°C) 

Bio09 Mean temperature of driest quarter (°C) 

Bio10 Mean temperature of warmest quarter (°C) 

Bio11 Mean temperature of coldest quarter (°C) 

Bio12 Annual precipitation (mm) 

Bio13 Precipitation of wettest week (mm) 

Bio14 Precipitation of driest week (mm) 

Bio15 Precipitation seasonality (C of V) 

Bio16 Precipitation of wettest quarter (mm) 

Bio17 Precipitation of driest quarter (mm) 

Bio18 Precipitation of warmest quarter (mm) 

Bio19 Precipitation of coldest quarter (mm) 
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We also constructed a WI and a coldness index (CI), which are considered 

efficient indicators for monitoring interactions between climate and species 

distribution (Kira, 1945; Yim, 1977) (Equations 1, 2). The WI was calculated 

for months in which the temperature (t) was greater than 5℃, and the CI was 

calculated for months in which the temperature was less than 5℃. We used 

climate zone data derived from the KFS for selecting strata for the stratified 

sampling method. 

Warmth index (WI) = ∑(𝑡 − 5) (1) 

For months in which t > 5℃  

  

Coldness index (CI) = − ∑(5 − 𝑡) (2) 

For months in which t < 5℃  

  

Topographical layers included altitude, slope, and aspect. These datasets 

were derived from digital elevation models (DEMs) from the National 

Geography Information Institute (NGII). A land cover map from the Ministry 

of Environment (ME) was used to extract land cover data. Distance from 

water and distance from the sea (Schulze, 2005) were calculated using 

Euclidian distance. Soil depth and soil organic matter content in the A-

horizon were extracted from a Korean soil forest map (Brady, 2008). All 

environmental data were resampled with 1km by 1km resolution for modeling 
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with the ArcGIS resampling tool. Environmental variables that have discrete 

characteristics are resampled with the nearest algorithm. On the other hand, 

environmental variables are resampled with bilinear resampling methods. 

We conducted a correlation analysis in R to identify auto-correlation 

among the environmental variables, and environmental variables were 

selected with respect to multi-collinearity. If Pearson correlation coefficients 

were larger than 0.7, we removed relevant variables from the list2 (Dormann 

et al., 2013). We also conducted a literature review to select variables 

potentially important for the species distribution (Nakao et al., 2014; Park et 

al., 2016; Takahashi and Okuhara, 2012). 

 

2.2. Measuring Uncertainties in Modeling Potential Species 

Distribution  

In modelling the potential distribution of major forest species, there are 

several factors that could cause uncertainty. First, when input data are 

prepared for modeling, three sources of uncertainty as can be categorized as 

environmental data, collecting presence/absence point data and climate data 

for projecting the future distribution of major forest species. Second, while 

                                           
2 Please refer appendix for correlation analysis result 
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applying the species distribution model, the different model algorithm could 

cause uncertainty. Finally, modeled results should be carefully considered as 

the spatial distribution can be different even though they have similar 

performance. In this study, the uncertainties in environmental data (e.g., 

topographic variables, soil parameters) were not considered because they 

included large uncertainties linked with socio-economic changes such as land 

use change and planning. 

 

Figure 10 General framework of species distribution modeling and uncertainties 

(Considered uncertainties in this study were shaded) 

 

2.2.1. Sampling Size and Methods 

We applied 1:5000 forest inventory map to collect sampling point for 

species distribution modeling. In 1:5000 forest inventory map, the natural 

forest and artificial forest were divided with combination of land registration 

map, afforestation and reforestation map, aerial photos and field survey data 
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by KFS (Korea Forest Research Institute, 2012). In this study, a sample was 

extracted, limited to the natural forest of 0.5 ha or more, which is designated 

as the minimum size of the forest in 1:5000 scale forest map. In addition, a 

natural niche of forests species can be selected by selecting samples in natural 

forest only. We randomly created one sample point in each forest stand from 

the forest inventory map.  

To test the effects of sample size in species distribution modeling, we used 

the following sample sizes: 30, 50, 100, 200, 500, 1000, and 3000. Then, we 

compared three sampling methods for testing the performance of SDMs: 

simple random sampling, stratified random sampling, and area-weighted 

sampling. In simple random sampling we randomly selected samples among 

the created points in each forest stand. In stratified random sampling. we set 

strata by the climate zone in the forest soil inventory map. In area-weighted 

sampling, we selected points from the largest area stands in decreasing order 

up to the number of points selected. For example, if we collected 30 samples, 

we took one sample from each of the 30 largest forest stands. The sampling 

design tool and SQL query of ArcGIS were utilized. We conducted a one-

way t-test for each environmental variable used in species distribution 

modeling to validate which sampling methods well represented the 

population. 



 

- 28 - 

 

2.2.2. SDMs Algorithm 

The package Biomod2 (version 3.1.64) in R (version 3.1.2) was used to 

model the distribution of Korean red pine (R Core Team, 2014; Thuiller et al., 

2009), which enabled us to run 10 cutting-edge species distribution modeling 

techniques to describe and model the relationships between Korean red pine 

and its environment. Biomod2 uses the ecological niche of a particular species, 

based on environmental variables, such as temperature, precipitation, and 

altitude, to project a potential habitat based on current or future environmental 

variables (Thuiller et al., 2015). 

There are two categories of SDMs in BIOMOD2: statistically based 

models and machine learning based models (Table 5). Generalized linear 

models (GLMs), generalized additive models (GAMs), and multivariate 

adaptive regression splines (MARS) are all statistically based models. 

Machine learning based models include the generalized boosted regression 

model (GBM), classification tree analysis (CTA), artificial neural network 

(ANN), rectilinear envelope like BIOCLIM (SRE), flexible discriminant 

analysis (FDA), random forest (RF), and maximum entropy (MAXENT). Of 

these, eight models were used for analysis (the SRE and MARS models were 

excluded as they cannot handle categorical variables). 
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Table 5 Characteristics of eight species distribution models and their relative performance 

(revised from tables in (Franklin, 2010b; H. G. Kim et al., 2015; Thuiller et al., 2010)). 

Category Model Characteristics Performance 

Statistical 

Generalized linear 

model (GLM) 

Flexible modern regression 

models 

Effective global 

modeling methods 

Generalized additive 

model (GAM) 

Multiple regression but with 

curve fitting splines or other 

methods 

Performs slightly better 

than GLM 

Machine 

learning 

based 

Artifi1cial neural 

network (ANN) 

Nonlinear model  

Using concept of artificial 

neural network 

Performance sometimes 

worse than statistical 

model 

Maximum entropy 

algorithm (MAXENT) 

Nonlinear model Using 

concept of maximum entropy 

Validated by ROC curve 

Performs well in data-

poor situation 

Random forest (RF) 
Estimate many tree models 

based on subset of data and 

averaging result 

Ensemble of decision 

tree have good 

performance 

Generalized boosted 

regression model 

(GBM) 

Flexible Discriminant 

Analysis (FDA) 

Classification based on 

mixture models 
- 

Classification tree 

analysis (CTA) 
Divisive model 

Single decision trees 

perform poorly 

 

To analyze the performance of SDMs, we used the area under the receiver 

operating characteristic (ROC) curve. The ROC curve is an effective method 

to determine the relationship between the false positive fraction (1-specificity) 

and the sensitivity for a range of thresholds. A good model has a curve that 

maximizes sensitivity for low values of 1- specificity (Neovius et al., 2004). 

The area between the 1:1 line and the curve represents the model performance, 

and this value is called the area under the curve (AUC). Additionally, the 

AUC is an effective model evaluation index and is independent of 

prevalence(Franklin, 2010b). We considered AUC values 0.9–1.0, excellent; 
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0.8–0.9, very good; 0.7–0.8, good; 0.6–0.7, average; and 0.5–0.6, poor 

(Hansson et al., 2005). An analysis of variation (ANOVA) was conducted 

using SPSS 18.0 to test the differences in AUC among the sampling methods 

and SDMs(SPSS Inc, 2009). We also applied Ture Skill Statistics (TSS) to 

measure performance of species distribution model. TSS corrects the 

dependency on prevalence while maintaining the advantages of kappa. If TSS 

is lower than 0.4, it is considered poor accuracy, 0.4-0.6 is moderate, 0.6-0.8 

is good and above 0.8 is excellent (Kwon, 2014). 

 

2.2.3. Representative Concentration Pathway Scenarios 

To quantify the potential distribution of major species from different RCP 

scenarios, we applied the same sampling size and the same sets of SDMs. The 

only difference is the four RCP scenarios for modeling the potential 

distribution of major forest species. In this study, the RCPs provided by the 

Korea Meteorological Administration (KMA) were used to predict future 

climate change. The KMA provides climate data for the Korean Peninsula at 

12.5km × 12.5km resolution using the HadGEM3-RA model and then 

provides temperature and precipitation data at 1km × 1km resolution for the 

four RCP scenarios through statistical downscaling. By using the four RCP 

scenarios, we can quantify the different patterns of impact from RCP. 
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Table 6 Detailed information on Regional Climate Model (RCM) 

Classification Contents 

Base Model HadGEM3-RA 

RCP pathway RCP2.6/4.5/6.0/8.5 

Spatial scope South Korea 

Temporal scope 2001-2100 

Spatial resolution 1km 

Temporal resolution Daily, Monthly 

Climate variables 
Minimum temperature, Maximum temperature,  

Average temperature, Precipitation 

 

We applied ensemble methods to minimize uncertainties from selecting 

the species distribution algorithm (Thuiller et al., 2015). Each ensemble 

method uses different methods to integrate probabilities or binary values from 

SDM results. We utilized the ensemble methods including 1) mean of 

probabilities 2) confidence interval 3) median of probabilities 4) models 

committee averaging 5) weighted mean of probabilities with all five pseudo-

absence points and five repetitions in each model. To compare uncertainties 

from different SDM algorithms, we applied a threshold that matches the total 

area of the current forest area. Then we compared the differences in spatial 

distribution among the SDMs int the binary map. 

 

2.2.4. Competition among Major Forest Species 

To model competition among the major forest species, we applied the 

random forest algorithm. The random forest algorithm is one of the machine 
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learning models that ensembles decision tree (Breiman, 2001). Random forest 

selects a random subset from the input data for classification or prediction 

and then selects a random variable to select a decision tree. In this process, 

multiple decision trees are made, and then a collection of trees are called as 

forest (Mi et al., 2017).  

Random forest has the advantage of being able to handle large-scale data 

in the model and distinguish them by using various input variables (Wang et 

al., 2015). At the same time, many variables can be extracted and utilized 

without the user having to delete the variables. In addition, it is possible to 

classify other data through the constructed tree.  

Therefore, in this study, we constructed a prediction model that can 

model the competition among the major forest species using random forest 

algorithms. The random forest package in R was applied to construct the 

model, and the number of trees was set to 1000, with reference to the previous 

study (Jin et al., 2016). We limit the number of nodes, using 5 out of 12 

variables. This is to limit the variables with low impact and to shorten the 

computation time of the random forest module. For the prediction of multi-

species under climate change, we applied Global Argo-Ecological Zones 

(GAEZ) model (Food and Agriculture Organization, 2012) to limit prediction 

of the random forest model within current climate zones.  
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Figure 11 Random forest model framework for quantifying uncertainties 

 

1) Defining Forest Type 

In 1: 5000 scale forest maps, 43 different forest species are classified in 

Korea. To increase the accuracy of the model and minimize the uncertainty, 

we selected 11 species for modeling, consisting 99% of the total forest in 

Korea. To evaluate the uncertainty according to the sampling method, we 

selected the representing one forest species by forest type with the largest area 

and evaluated the uncertainty according to the model difference and sampling 

methods. 
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Table 7 Forest classification of 1:5000 scale forest map 

Forest Type 
Species Name 

(Korean) 
Scientific Name 

Selected 

Species 
CODE 

Needle-leaved 

Forest 

소나무 Pinus densiflora ○ PD 

잣나무 Pinus koraiensis   

낙엽송 Larix kaempferi (Lamb.)   

리기다소나무 Pinus rigida Mill.   

곰솔 Pinus thunbergii Parl. ○ PT 

전나무 Abies holophylla   

편백나무 Chamaecyparis obtusa   

삼나무 Cryptomeria japonica   

가문비나무 Picea jezoensis   

비자나무 Torreya nucifera (L.)   

은행나무 Ginkgo biloba L.   

기타침엽수 -   

DecidiousBroad-

leaved Forest 

상수리나무 Quercus acutissima Carruth ○ QQ 

신갈나무 Quercus mongolica Fisch. ○ QQ 

굴참나무 Quercus variabilis Blume ○ QQ 

기타 참나무류 - ○ QQ 

오리나무 Alnus japonica (Thunb.)   

고로쇠나무 Acer pictum subsp. mono   

자작나무 Betula platyphylla var. japonica   

박달나무 Betula schmidtii Regel   

밤나무 Castanea crenata   

물푸레나무 Fraxinus rhynchophylla Hance   

서어나무 Carpinus laxiflora Blume   

때죽나무 Styrax japonicus   

호두나무 Juglans regia L.   

백합나무 Liriodendron tulipifera L.   

포플러 Populus lasiocarpa Oliv.   

벚나무 Prunus serrulata var.   

느티나무 Zelkova serrata   

층층나무 Cornus controversa Hemsl.   

아까시나무 Robinia pseudoacacia L.   

기타활엽수 - ○ EB 

Evergreen-broad 

leaved forest 

가시나무 Quercus myrsinifolia Blume   

구실잣밤나무 Castanopsis sieboldii (Makino) Hatus.   

녹나무 Cinnamomum camphora (L.) J. Presl   

굴거리나무 Daphniphyllum macropodum Miq.   
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황칠나무 Dendropanax morbiferus H.Lév.   

사스레피나무 Eurya japonica Thunb.   

후박나무 Machilus thunbergii   

새덕이 Neolitsea aciculata (Blume) Koidz.   

기타상록활엽수 - ○ EG 

Mixed Forest 침활혼효림 - ○ MM 

Bamboo Forest 죽림 -   

 

2) Sampling Methods for random forest model 

Selecting the presence point for SDMs is essential to predicting the 

potential distribution of major forest species under climate change. In 

selecting the presence point for modeling the potential distribution of species, 

it is difficult to specify the presence point of unlike animals. This is because 

vegetation lives in a community, so it is necessary to extract representative 

points in one forest stand which, however, could increase uncertainty. 

The number of samples was selected according to the ratio of each forest 

type to total natural forest. To select the optimum number of samples, the 

sample was selected by setting the sample at a 95% confidence level and the 

confidence interval at ± 5%. 

 

𝜇̂ =  𝑦̅ = ∑ 𝑦𝑖/𝑛

𝑛

𝑖=1

 (1) 

Var(𝑦̅) =
𝜎2

𝑛
∙ (

𝑁 − 𝑛

𝑁 − 1
) (2) 
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1.96√𝑉𝑎𝑟(𝑦̅) ≅ 2√
𝜎2

𝑛
∙ (

𝑁 − 𝑛

𝑁 − 1
) = 𝐵 (3) 

n =
𝑁𝜎2

(𝑁 − 1)𝐷 + 𝜎2
, 𝐷 = 𝐵2/4 (4) 

N: number of parent population n: number of samples  

 

 

Oak tree species, such as Sawtooth oak, Mongolian oak and Oriental 

cork oak were 29.4% of the total forest area in Korea, followed by Korean 

red pine (26.4%), mixed deciduous forests (24.3%), and mixed forests 

(14.2%). As for other species, Black pine sin was 4.4% and evergreen broad-

leaved tree was 0.2%. As a result of selecting the number of sampling points 

according to the area ratio, 400 samples of oak species were estimated, 

followed by 312 samples in pine trees and 295 samples in other mixed forests. 

Table 8 Classification result and sample size 

Classification Scientific name Area(㎢) Percent (%) Sample size 

Evergreen needle 

leaved forest 

Pinus densiflora 12966.6 26.4 312 

Pinus thunbergii 2134.4 4.4 67 

Deciduous broad-

leaved forest 

Quercus acutissima 

Quercus mongolica 

Quercus variabilis 

14423.3 29.4 400 

Mixed species 11903.3 24.3 295 

Evergreen broad-

leaved forest 
Mixed species 87.2 0.2 3 

Mixed forest - 6943.73 14.2 195 
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As a result of examining the method of selecting the presence point for 

modeling, it was shown that the most accurate method is to run the species 

distribution model using the area-weighted stratified sampling method. As a 

result, large forests were extracted mainly in Gangwon and southern 

provinces, and evergreen broad- leaved forests were distributed in the Jeju-

do area. 

 

Figure 12 Sampling points for random forest modeling 
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IV. Result and Discussion 

1. Effect of Sampling Method and Sampling Size in SDMs 

1.1. Verify Effectiveness of Sampling Methods 

We selected Korean red pine as representative species for verifying 

effective sampling methods and sample sizes. In all sampling sizes, stratified 

random sampling well represents the population compared to simple random 

sampling and area-weighted sampling methods. Simple random sampling 

methods did not represent the population among the three sampling methods 

in min temperature of coldest month and precipitation of wettest month. Area-

weighted sampling methods showed average effectiveness among three 

sampling methods.  

Table 9 Environmental characteristics of population and each sampling method  

Environmental 

Variables* 
Population 

Simple Random  

Sampling 

Stratified Random 

Sampling 

Area-weighted  

Sampling 

Altitude 323.61 294.40 326.18 292.77 

Slope 20.34 16.58 20.25 21.03 

Radiation 4589.75 4569 4600.85 4697.57 

Distance from water 1358.78 1334.81 1346.92 1213.71 

Distance from sea 36156.01 36253.59 34910.71 39725.71 

Soil Depth 66.77 86.78 64.66 58.34 

Warmth Index 82.63 84.61 83.58 89.58 

Isothermality 29.75 37.76 29.69 30.67 

Min temperature of 

Coldest month 
-8.13 -2.56 -8.13 -7.24 

Precipitation of 

Wettest month 
458.20 387.53 457.54 479.15 

Precipitation of  

driest month 
7.74 7.58 7.65 8.53 
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In simple random sampling methods, when the sample size increases by 

more than 500, some environmental variables (e.g., altitude, slope, distance 

from water and sea, isothermality) showed different characteristics when 

compared with population. The reliability of sampling can be flexible if apply 

simple random sampling methods are applied. 

Table 10 The p-value of one-way t-test result for environmental variables (simple random 

sampling) 

Environmental 

Variables* 

Sample Size 

30 50 100 200 500 1000 3000 

Altitude 0.634 0.228 0.202 0.379 0.001 0.001 0.001 

Slope 0.039 0.012 0.089 0.013 0.001 0.001 0.001 

Radiation 0.050 0.873 0.198 0.763 0.198 0.694 0.313 

Distance from water 0.453 0.303 0.693 0.309 0.044 0.070 0.001 

Distance from sea 0.264 0.534 0.751 0.978 0.009 0.863 0.990 

Soil Depth 0.038 0.095 0.213 0.08 0.006 0.001 0.001 

Warmth Index 0.987 0.215 0.028 0.39 0.068 0.004 0.001 

Isothermality 0.825 0.605 0.548 0.888 0.046 0.136 0.057 

Min temperature of 

Coldest month 
0.739 0.702 0.405 0.482 0.004 0.023 0.001 

Precipitation of 

Wettest month 
0.191 0.781 0.459 0.573 0.006 0.001 0.155 

Precipitation of  

driest month 
0.474 0.301 0.520 0.005 0.786 0.112 0.442 

 

Stratified random sampling considered as well constructed sampling 

methods for collecting samples in population. Only a few sample size (30, 

200 samples) and environmental variables (radiation, isothermality, 

precipitation of direst month) have different average values when compared 

with population. Stratified random sampling methods can effectively 

represent the environmental characteristics of Korean red pine forest.  
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Table 11 The p-value of one-way t-test result for environmental variables (stratified random 

sampling) 

Environmental 

Variables* 

Sample Size 

30 50 100 200 500 1000 3000 

Altitude 0.565 0.481 0.977 0.615 0.23 0.825 0.913 

Slope 0.362 0.75 0.677 0.554 0.791 0.633 0.195 

Radiation 0.027 0.695 0.622 0.168 0.181 0.528 0.749 

Distance from water 0.267 0.794 0.902 0.445 0.349 0.474 0.782 

Distance from sea 0.557 0.328 0.925 0.741 0.283 0.354 0.762 

Soil Depth 0.099 0.851 0.123 0.867 0.42 0.95 0.333 

Warmth Index 0.992 0.177 0.523 0.335 0.5 0.898 0.787 

Isothermality 0.929 0.768 0.244 0.022 0.585 0.937 0.818 

Min temperature of 

Coldest month 
0.728 0.599 0.549 0.936 0.323 0.974 0.758 

Precipitation of 

Wettest month 
0.596 0.275 0.141 0.679 0.203 0.991 0.105 

Precipitation of  

driest month 
0.029 0.733 0.368 0.298 0.169 0.088 0.655 

 

On the other hand, area-weighted sampling provided limited 

representation of population. Radiation, warmth index and isothermality 

showed different average in all sampling sizes. In addition, precipitation of 

the wettest month and precipitation of the driest month differed in sampling 

areas. Forest patches that were selected by area-weighted sampling method 

have different characteristics in some environmental variables. Selected 

samples of Korean red pine by area-weighted samples appeared to have 

higher radiation which can explain higher warmth index and minimum 

temperature of the coldest month. In addition, the precipitation was larger 

than the entire population of Korean red pine.  
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Table 12 the p-value of one-way t-test result for environmental variables (area-weighted 

sampling) 

Environmental 

Variables* 

Sample Size 

30 50 100 200 500 1000 3000 

Altitude 0.913 0.136 0.075 0.005 0.001 0.001 0.001 

Slope 0.532 0.363 0.249 0.31 0.127 0.351 0.662 

Radiation 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Distance from water 0.817 0.406 0.087 0.001 0.001 0.001 0.001 

Distance from sea 0.127 0.221 0.037 0.011 0.022 0.001 0.001 

Soil Depth 0.365 0.549 0.216 0.039 0.035 0.089 0.128 

Warmth Index 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Isothermality 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Min temperature of 

Coldest month 
0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Precipitation of 

Wettest month 
0.016 0.001 0.001 0.001 0.001 0.001 0.001 

Precipitation of  

driest month 
0.041 0.076 0.018 0.002 0.001 0.002 0.011 

 

The distribution of samples exhibited different spatial patterns based on 

the sampling method. In the simple random sampling method, the samples 

were dispersed in an area distant from the primarily mountainous areas of 

South Korea. However, samples that were selected using area-weighted 

sampling were in the southern part of the Korean peninsula. Stratified random 

sampling was used to collect samples based on the climate zone proportion 

of the population. These results can reduce the bias when collecting samples 

for forest modeling. These differences showed the effectiveness of the 

sampling method. 
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(a) Random sampling (b) Stratified sampling (c) Area-weighted sampling 

Figure 13 Distribution of samples used in species distribution models by sampling method. 

Each method was used to select 500 samples. 

 

1.2. Verify Effectiveness of Sampling Methods in Species 

Distribution Modeling 

The sampling method caused differences in model performance. The area-

weighted sampling method performed better than the stratified random 

sampling and simple random sampling methods. The average AUC value for 

models based on area-weighted sampling was 0.777, which was considered 

good, while stratified random sampling and simple random sampling had 

AUC values of 0.663 and 0.622, respectively, and were thus considered 

average. Additionally, area-weighted sampling demonstrated stable 

performance, even across different sample sizes, as shown by the standard 

deviation of model performance.  
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Table 13 Average performance (AUC) of SDMs by sampling method for all sample sizes and 

SDM types as determined by the analysis of variance. 

Sampling 

methods 

Average 

AUC 

Standard 

deviation 
F-Value1 Post-Hoc Analysis2 

Simple 

random 

sampling 

0.622 0.050 

1436.904 

Simple random sampling 

< Stratified sampling, Area-weighted sampling 

Stratified 

random 

sampling 

0.663 0.070 

Stratified random sampling  

> Simple random sampling 

Stratified random sampling  

< Area-weighted sampling 

Area-

weighted 

Sampling 

0.777 0.087 

Area-weighted sampling > 

Simple random sampling,  

Stratified random sampling 

1 * P<0.0001, 2 Games-Howell tests. P<0.05 

 

We found that sample size is a significant factor in deciding the reliability 

of species distribution modeling. Generally, a larger sample size increases 

model performance (Moudrý and Šímová, 2012; Wisz et al., 2008). However, 

our results showed that as the sampling size increased, the AUC of a given 

model did not respond linearly; instead the correlation coefficient decreased 

logarithmically with increase in sample size. Thus, increases in sampling size 

after a certain number, 200 samples in this study, do not increase model 

performance significantly. Different ecological niches decrease model 

performance. 
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Table 14 Average performance of SDMs by sample size (AUC) and ANOVA results for all 

SDMs. 

Sampling 

methods 

Sample 

size 
Average 

Standard 

deviation 

F-

Value1 
Post-Hoc Analysis2 

Random 

sampling 

30s 0.610 0.121 

40.991 

30s < 200s, 500s, 1000s, 3000s ; 30s > 

100s 

50s 0.585 0.089 50s < 200s, 500s, 1000s, 3000s 

100s 0.570 0.066 
100s < 30s, 100s, 200s, 500s, 1000s, 

3000s 

200s 0.642 0.066 200s > 30s, 50s, 100s 

500s 0.643 0.052 500s> 30s, 50s, 100s 

1000s 0.648 0.046 1000s > 30s, 50s, 100s 

3000s 0.653 0.043 3000s > 30s, 50s, 100s 

Stratified 

sampling 

30s 0.624 0.104 

24.149 

30s < 100s, 200s, 500s, 1000s, 3000s 

50s 0.639 0.075 50s < 200s, 500s, 1000s, 3000s 

100s 0.660 0.071 100s > 30s; 100s <200s, 3000s 

200s 0.681 0.058 200s > 30s, 50s, 100s 

500s 0.669 0.051 500s > 30s, 50s; 500s < 3000s 

1000s 0.675 0.045 1000s> 30s, 50s; 1000s < 3000s 

3000s 0.693 0.043 3000s > 30s, 50s, 100s, 500s, 1000s 

Area-

weighted 

sampling 

30s 0.762 0.129 

4.633 

30s < 200s  

50s 0.779 0.116 - 

100s 0.786 0.083 100s > 3000s 

200s 0.798 0.077 200s > 30s, 1000s, 3000s 

500s 0.782 0.058 500s > 3000s 

1000s 0.775 0.060 1000s < 200s 

3000s 0.760 0.045 3000s < 200s, 500s 

1 * P<0.0001, 2 Games-Howell test. P<0.05 

 

When we analyzed the altitude of each collected sample by sampling 

method, we found that the area-weighted sampling method showed a different 

altitude distribution than the simple random sampling and stratified random 

sampling methods did. Anything from 0-500m altitude was a suitable habitat 



 

- 45 - 

 

for Korean red pine (Lee and Jo 2003). The area-weighted sampling method 

showed 88% of its samples within this 0-500m range, while the simple 

random sampling and stratified random sampling methods had 80% and 79% 

of their samples within this range, respectively.  

In addition, samples by area-weighted sampling method were collected in 

mostly age classes 4 and 5 (40-50 years). Area-weighted sampling selected 

more aged (90.80%) forests compared to the selection of other two sampling 

methods (simple random sampling: 85.23% and stratified random sampling 

85.32%). These differences led to the inclusion of the ecological preferences 

of Korean red pine, which can affect model performance. 

Sampling methods can change performance of SDMs. When we 

compared the three different sample selection methods, the area-weighted 

sampling methods showed better performance compared to the stratified 

sampling and random sampling methods. However, the characteristics of 

sample matched well with the population if we applied stratified sampling 

methods.  

Sample size partially influenced the performance of SDMs partially. If 

enough samples were acquired, the performance of the model did not change 

significantly. As a result of this study, if the sample size exceeds 200, the 

performance of SDMs did not increase in direct proportion to the sampling 
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size. Thus, for modeling changes of forest under future climate change, we 

can utilize sampling methods and sample size for effective monitoring in 

developed countries that have limited budget and human resources. 

 

2. Uncertainties in Applying Different SDMs 

2.1. Performance Changes by SDMs and Sampling Methods 

As a result of modeling the differences for the Korean red pine, which is 

a representative species of needle-leaved forest, according to the sampling 

methods of species, the AUC value was 0.727 the highest value for the results 

of extracting the occurrence point using the area-weighted method. When the 

simple random sampling method was applied, the AUC value was the lowest 

(0.615). Since the simple random sampling method extracts the sample 

without considering the ecological characteristics of the forest species, it is 

consistent with the existing results, which are known to have the lowest 

accuracy. The TSS values also showed a similar pattern as the AUC values. 

Higher accuracy was found machine learning models such as RF and GBM.  

Among the SDMs, the RF model showed the highest accuracy with an 

AUC value of 0.806. The performance of the RF model is higher than other 

models as the RF model applied bootstrapping for selecting the potential 
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distribution (Wang et al., 2015). The ANN model is consistent with the results 

of previous studies which tend to be overestimated potential distribution of 

forest and show poor results (AUC value 0.581) compared to GAM or GLM 

(Franklin, 2010b; Thuiller, 2003) 

Table 15 AUC values according to sampling methods (Korean red pine forest) 

 
Simple random 

sampling 

Stratified random 

sampling 

Area-weighted 

sampling 

MAXENT 0.583 0.574 0.669 

CTA 0.571 0.597 0.675 

FDA 0.637 0.623 0.773 

RF 0.651 0.648 0.806 

GLM 0.644 0.638 0.761 

GBM 0.649 0.645 0.794 

GAM 0.610 0.629 0.759 

ANN 0.577 0.585 0.581 

Average 0.615 0.617 0.727 

 

Table 16 TSS values according to sampling methods (Korean red pine forest) 

 
Simple random 

sampling 

Stratified random 

sampling 

Area-weighted 

sampling 

MAXENT 0.230 0.200 0.347 

CTA 0.189 0.202 0.355 

FDA 0.298 0.316 0.522 

RF 0.326 0.319 0.543 

GLM 0.325 0.322 0.476 

GBM 0.316 0.325 0.526 

GAM 0.275 0.292 0.519 

ANN 0.175 0.216 0.209 

Average 0.267 0.274 0.437 

 

When we compared the performance of SDMs which predicted the 

potential distribution of oak with different sampling methods, the AUC value 

was the lowest for stratified random sampling, while it was value the highest 

for area-weighted sampling (0.643). This is similar to the result of the 
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previous studies used to select habitat sites when the forest area is large (J. 

Kim et al., 2015). Among the different SDMs, the performance of machine 

learning models such as the GBM and RF model, was the highest. 

Table 17 AUC values according to sampling methods (Oak forest) 

 
Simple random 

sampling 

Stratified random 

sampling 

Area-weighted 

sampling 

MAXENT 0.659 0.619 0.783 

CTA 0.610 0.620 0.763 

FDA 0.674 0.660 0.838 

RF 0.682 0.667 0.876 

GLM 0.665 0.658 0.862 

GBM 0.694 0.672 0.877 

GAM 0.661 0.659 0.843 

ANN 0.595 0.586 0.779 

Average 0.655 0.643 0.828 

 

Table 18 TSS values according to sampling methods (Oak forest) 

 
Simple random 

sampling 

Stratified random 

sampling 

Area-weighted 

sampling 

MAXENT 0.328 0.270 0.557 

CTA 0.242 0.246 0.529 

FDA 0.349 0.329 0.606 

RF 0.372 0.342 0.651 

GLM 0.362 0.334 0.626 

GBM 0.382 0.358 0.657 

GAM 0.352 0.334 0.616 

ANN 0.212 0.186 0.522 

Average 0.325 0.300 0.595 

 

The AUC values of the mixed forest model showed the highest AUC 

values in area-weighted sampling (0.739). As with mixed forests and 

coniferous forests, the accuracy of SDMs that applied the simple random 

sampling method is lowest (0.597). The machine learning models such as the 
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RF model and GBM model showed the highest AUC values. The TSS value 

was also similar to the AUC value, because the accuracy of the machine 

learning model was higher than that of statistical based models. 

Table 19 AUC values according to sampling methods (Mixed forest) 

 
Simple random 

sampling 

Stratified random 

sampling 

Area-weighted 

sampling 

MAXENT 0.582 0.615 0.693 

CTA 0.558 0.595 0.690 

FDA 0.616 0.641 0.767 

RF 0.619 0.647 0.795 

GLM 0.607 0.647 0.758 

GBM 0.625 0.650 0.785 

GAM 0.616 0.650 0.771 

ANN 0.551 0.559 0.650 

Average 0.597 0.626 0.739 

  

Table 20 TSS values according to sampling methods (Mixed forest) 

 
Simple random 

sampling 

Stratified random 

sampling 

Area-weighted 

sampling 

MAXENT 0.203 0.265 0.393 

CTA 0.159 0.201 0.375 

FDA 0.274 0.293 0.494 

RF 0.292 0.312 0.520 

GLM 0.294 0.331 0.473 

GBM 0.300 0.312 0.511 

GAM 0.286 0.318 0.500 

ANN 0.142 0.158 0.299 

Average 0.244 0.274 0.446 

 

2.1.1. Importance of Environmental Variables in each SDMs3 

Altitude is the most important variable in modeling the Korean red pine 

forest, and precipitation of wettest month and precipitation of driest month 

                                           
3 Relative importance of all environmental variables is described in Appendix  
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are considered the second most important variables. Radiation, soil depth and 

organic matter in the A layer were important variables in the simple random 

sampling method. 

Table 21 Three relative important variables for each model (Korean red pine) 

 Area weighted sampling Random sampling Stratified sampling 

MAXENT ALT, BIO13, BIO14 RAD, Soil_depth, WI ALT, SLO, Soil_Depth 

CTA ALT, Dis_water, BIO13 RAD, Soil_OM, BIO13 ALT, SLO, BIO13 

FDA ALT, WI, BIO6 SLO, Soil_depth, WI ALT, WI, BIO14 

RF ALT, Dis_waterm BIO13 ALT, Soil_depth, BIO13 ALT, SLO, BIO14 

GLM ALT, Soil_OM, BIO13 Soil_depth, Soil_OM, WI Soil_depth, Soil_OM, WI 

GBM ALT, BIO13, BIO14 RAD, Soil_depth, BIO13 ALT, SLO, BIO13 

GAM ALT, Soil_OM, WI Soil_depth, Soil_OM, WI Soil_depth, Soil_OM, WI 

ANN ALT, Dis_water, Dist_sea Dis_water, Dist_sea , Soil_depth ALT, Dis_water, Dist_sea, 

ALT: Altitude, SLO: Slope, RAD: Radiation, Dis_water: Distance from water, Dis_sea: Distance from sea, Soil_depth: Soil 

depth, Soil_OM: Organic matters in soil layer A, WI: Warmth Index, BIO3: Isothemarlity, BIO6: Min temperature of 

coldest month, Bio13: Precipitation of wettest month, Bio14: Precipitation of driest month 

 

Altitude is the most important variable in modeling deciduous as well as 

coniferous forest. Among the climatic variables, precipitation of the wettest 

month plays an important role in predicting the distribution of oak forest. This 

is consistent with previous studies that analyzed the existing oak distribution 

area. Those studies, indicated that oak forests prefer dry places, and their cold 

tolerance is high (Kim and Kim, 2017). Maximum temperature in the random 

sampling method has the highest influence, while slope is an important 

variable in the stratified sampling methodology. 
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Table 22 Relative important variables in each model (Oak forest) 

 Area-weighted sampling Random sampling Stratified sampling 

MAXENT ALT, BIO13, BIO14 ALT, SLO, BIO6 Slope, Dis_water, WI 

CTA ALT, Dis_water, BIO13 ALT, SLO, BIO6 ALT, SLO, Dis_sea 

FDA ALT, WI, BIO6 ALT, SLO, BIO6 SLO, WI, BIO6 

RF ALT, Dis_water, BIO13 ALT, SLO, BIO6 ALT, SLO, BIO6  

GLM ALT, Soil_OM, BIO13 ALT, Soil_depth, BIO6 SLO, Soil_OM, BIO6 

GBM ALT, BIO13, BIO14 ALT, SLO, BIO6 ALT, SLO, Dis_sea 

GAM ALT, Soil_OM, WI Soil_depth, Soil_OM, BIO6 Soil_depth, Soil_OM, Bio6 

ANN ALT, Dis_water, Dis_sea ALT, Dis_water, Dis_sea ALT, Dis_water, Dis_sea 

ALT: Altitude, SLO: Slope, RAD: Radiation, Dis_water: Distance from water, Dis_sea: Distance from sea, Soil_depth: Soil 

depth, Soil_OM: Organic matters in soil layer A, WI: Warmth Index, BIO3: Isothemarlity, BIO6: Min temperature of 

coldest month, Bio13: Precipitation of wettest month, Bio14: Precipitation of driest month 

 

As a result of evaluating the importance of the variables in mixed forest 

projection, in all sampling methods, topographic variables such as altitude 

and slope area considered important variables for modeling the potential 

distribution of forest. Climatic variables are relatively less important for 

modeling the current distribution of mixed forest. 

Table 23 Relative important variables in each model (mixed forest) 

 Area-weighted sampling Random sampling Stratified sampling 

MAXENT ALT, SLO, Dis_sea SLO, Soil_depth, BIO6 SOL, RAD, Soil_depth 

CTA ALT, SLO, Dis_water SLO, Soil_depth, BIO13 ALT, SLO, Soil_depth 

FDA ALT, BIO6, BIO13 ALT, SLO, WI SLO, RAD, Soil_depth 

RF ALT, SLO, BIO14 ALT, SLO, BIO13 SLO, RAD, Soil_depth 

GLM ALT, Soil_depth, Soil_OM SLO, Soil_depth, BIO13 SLO, Dis_sea, Soil_depth 

GBM ALT, SLO, BIO13 ALT, SLO, Soil_depth SLO, RAD, Soil_depth 

GAM ALT, Soil_depth, Soil_OM Soil_depth, Soil_OM, WI Soil_depth, Soil_OM, WI 

ANN ALT, Dis_water, Dis_sea ALT, Dis_water, Dis_sea ALT, Dis_sea, Soil_depth 

ALT: Altitude, SLO: Slope, RAD: Radiation, Dis_water: Distance from water, Dis_sea: Distance from sea, Soil_depth: Soil 

depth, Soil_OM: Organic matters in soil layer A, WI: Warmth Index, BIO3: Isothemarlity, BIO6: Min temperature of 

coldest month, Bio13: Precipitation of wettest month, Bio14: Precipitation of driest month 
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2.1.2. Spatial Distribution Patterns from Different SDMs  

For Korea red pine forest, which represents needle leaved trees, the largest 

AUC change was the RF model, while the ANN model performed poorly. 

The difference in distribution exhibited by the model is influenced by the 

variables used in the model. For the RF model, the important variables varied 

according to the sampling method. However, for the ANN model, the selected 

important variables are the distance from the freshwater and the distance from 

the ocean, regardless of the sampling method.  

As shown in Figure 14, the spatial distribution of Korea red pine per the 

RF model was found to be clustered in the south-eastern region. On the 

contrary, the ANN model showed a tendency to overestimate the distribution 

of forests in the entire country which is largely different from the current 

distribution as the distance from sea was selected as an important variable for 

modeling the potential distribution of Korean red pine. According to the 

spatial distribution of SDMs, Korean red pine will be distributed mainly in 

the Gangwon province and mountainous areas. However, the western part of 

the Korean peninsula showed higher uncertainty regarding the potential 

distribution of Korean red pine. 
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(a) Current distribution (b) Simple random sampling 

  
(c) Stratified random sampling (d) Area based sampling 

Figure 14 Spatial distribution of RF model by sampling methods (Korean red pine) 
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(a) Current distribution (b) Simple random sampling 

  

(c) Stratified random sampling (d) Area based sampling 

Figure 15 Spatial distribution of ANN model by sampling methods (Korean red pine)  

 

In the case of oak forest, the model with the largest AUC changes was the 

RF model while the CTA model showed smallest changes. The RF model 

projected the potential distribution of the entire forest region in Korea. 

However, when the area-weighted sampling method was applied, it was 

analyzed that the broad-leaved forest was mainly distributed in the high-
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altitude mountainous area. For the CTA model, the projected result from the 

random sampling was overestimated in the forest areas. However, as a result 

of using the area-weighted sampling, the distribution range of the forest is 

relatively decreased, and the accuracy of the model is improved. Even though 

the performance of the RF model was higher than that of the CTA model, the 

spatial distribution patterns were close to the current distribution of oak forest.  

  
(a) Current distribution (b) Simple random sampling 

  
(c) Stratified random sampling (d) Area based sampling 

Figure 16 Spatial distribution of RF model by sampling methods (Oak forest) 
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(a) Current distribution (b) Simple random sampling 

  

(c) Stratified random sampling (d) Area based sampling 

Figure 17 Spatial distribution of CTA model by sampling methods (Oak forest)  

 

In case of mixed forests, the increased in AUC in the RF model was the 

highest as in the case of the deciduous forest, and the increase in AUC in the 

CTA model was the lowest. When we look at the present distribution of the 

mixed forest, it is considered difficult to categorize the distribution 

characteristics because the mixed forest is distributed all over the country, 

rather than being clustered characteristically in a certain area. When we 
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investigate the spatial distribution, the ANN model does not accurately 

predict the current forest distribution, while the RF model overestimates the 

distribution of the actual mixed forest. The spatial distribution of the mixed 

forest was different despite of the similarity of the model’s performance in 

the stratified sampling of the RF model and area-weighted sampling. The RF 

model estimated the potential distribution in the eastern part of Korea while 

ANN model modeled the potential distribution in high mountainous areas.  

  
(a) Current distribution (b) Simple random sampling 

  
(c) Stratified random sampling (d) Area based sampling 

Figure 18 Spatial distribution of RF model by sampling methods (Mixed forest) 
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(a) Current distribution (b) Simple random sampling 

  

(c) Stratified random sampling (d) Area based sampling 

Figure 19 Spatial distribution of ANN model by sampling methods (Mixed forest)  

 

As a result of modeling the potential distribution of forest using the multi 

species distribution model, machine learning algorithms such as RF and GBM 

show higher accuracy than statistical based algorithms do. This suggests that 

a machine learning model is appropriate when applying the species 

distribution model in South Korea. However, as the spatial resolution changes, 

the algorithm should be considered carefully. 
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The modeled accuracy of each SDM varies according to the sampling 

methods. The RF model showed the largest AUC change according to the 

sampling method. In the case of the RF model, a decision tree with a small 

correlation is created through a combination of various variables and nodes, 

and the RF, based on the majority rule, is presented through the voting of the 

decision tree, so that the accuracy of the model is higher than that of the CTA 

model. Conversely, the CTA model showed the least increase in accuracy. 

This can be attributed to the disadvantages of the algorithm of the CTA model. 

If the correlation between variables shows a linear or continuous response in 

predicting the distribution of forests, then it is difficult to extract the 

thresholds, which reduces the stability of the model (Hastie, 2009). 

When we measure the uncertainties of sampling methods about spatial 

distribution, the model with a higher accuracy (RF) prediction of the potential 

distribution of major forest species has lower uncertainties compared to lower 

accuracy (ANN and CTA) (Figure 20). In the case of Korean red pine, the RF 

modeled distribution area with lower uncertainty was 23.7%, while for the 

ANN model it was 13.6%. Meanwhile, for RF model projection the lower 

uncertainty area 11.4% while for the CTA model it was 4.3% for oak forest. 

On the other hand, for mixed forest, the ANN modeled lower uncertainty area 

was 10.4% while for the RF 9.4% of total area has lower uncertainty.  
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(a) ANN (Korean red pine) (b) RF (Korean red pine) 

  

(c) CTA (Oak forest) (d) RF (Oak forest) 

  

 

(e) ANN (Mixed forest) (f) RF (Mixed forest) 

Figure 20 Uncertainties of species distribution change by model  
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Even if the performance is higher in statistical measures, the differences 

in spatial distributions should be considered while we apply different SDMs. 

In the application of different SDMs, ensemble modeling can be a good option 

for minimizing uncertainties in modeling the potential distribution of forests. 

As ensemble methods were applied, the performance of SDMs increased 

regardless of ensemble method. Thus, the ensemble methods have been 

widely applied for modeling species distribution to reduce the uncertainties 

from the modeling (Ahn et al., 2015; H. G. Kim et al., 2015; Kim et al., 2018).  
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3. Uncertainty Considering Competition among Major 

Forest Species 

3.1. Ensemble Modeled Distribution of Single Forest species 

in Current Climate Condition 

As a result of application of species distribution models, there are several 

differences in the AUC and TSS value by modeling algorithms. Among the 

machine learning based models, the GBM and RF models which apply an 

ensemble of models within the model algorithm performs better than the CTA 

model, which is a single decision-tree-based model. Also, the statistical based 

models (GAM, GLM) performs well in modeling the potential distribution of 

Korean red pine.  

Table 24 Modeled performance (AUC and TSS) for single species (Korean red pine)  

 
AUC TSS 

Average STD Average STD 

MAXENT 0.805 0.035 0.518 0.062 

CTA 0.744 0.059 0.454 0.094 

FDA 0.823 0.029 0.538 0.058 

RF 0.855 0.030 0.606 0.058 

GLM 0.818 0.032 0.534 0.062 

GBM 0.847 0.028 0.596 0.064 

GAM 0.843 0.026 0.573 0.055 

ANN 0.654 0.077 0.277 0.125 

  

Among the five ensemble methods, weighted mean of probabilities 

was the most accurate. The other ensemble methods had high AUC values. 

Thus, ensemble method achieved high reliability compared to single SDMs. 
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Table 25 Evaluation result of ensemble models 

Ensemble Methods AUC Cutoff Sensitivity Specificity 

Mean of Probabilities 0.924 437.5 90 78.831 

Confidence Interval 0.923 403.5 90 78.567 

Median of Probabilities 0.908 512.5 83.5 83.030 

Model committee average 0.914 632.5 85.0 80.329 

Weighted mean of probabilities 0.925 479.5 86.5 82.824 

  

When we utilized the weighted mean of probabilities ensemble method, 

the spatial patterns between the modeled distribution of Korean red pine and 

the current distribution of Korean red pine was different in the mid-part of the 

Korean peninsula and northern part of South Korea. On the other hand, the 

Korean red pine located in the southern part of Korea was well simulated, as 

the sampled Korean red pine forest stands are in mountainous and southern 

part of Korea.  

 

Figure 21 Comparison of Korean red pine between current and modeled distribution 
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3.2. Modeled Distribution of Considering Competition among 

Major Forest Species 

Evaluation of the accuracy of the constructed RF model revealed an 

accuracy of the model was 61%. In the case of Korean red pine forest, black 

pine forest, and oak forest, the accuracy was more than 60% higher than the 

average. However, deciduous broad forest, evergreen broadleaf and mixed 

forest exhibited accuracies lower than average. For Korean red pine forest, 

and black pine forest, the species classification is relatively accurate in the 

species distribution model, and the classification accuracy is relatively high, 

even in the case of the deciduous forest because the ecological characteristics 

are similar.  

However, other species such as broad-leaved trees, evergreen broad-

leaved trees, and mixed forests did not have representatives for each plant 

type, and various ecological characteristics within the forest type are present, 

which is why the model has a low accuracy in classifying forest type. 
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Table 26 Confusion matrix for forest type classification of South Korea  

 
Deciduous 

broad 

forest 

Ever  

broad  

forest 

Mixed 

forest 

Pinus 

densiflora 

Pinus 

thumbergii 

Quercus 

app. 
Total 

User’s 

Accura

cy (%) 

Deciduous 

broad  

forest 

751 25 109 189 32 717 1823 41.2% 

Ever  

broad forest 
30 35 14 0 4 10 93 37.6% 

Mixed forest 165 17 364 273 37 342 1198 30.4% 

Pinus 

densiflora 
101 1 96 1422 26 307 1953 72.8% 

Pinus 

thumbergii 
19 6 21 50 223 17 336 66.4% 

Quercus app. 543 10 125 243 34 1537 2492 61.7% 

Total 1609 94 729 2177 356 2930   

Producer’s 

Accuracy (%) 
46.7% 37.2% 49.9% 65.3% 62.6% 52.5%   

OOB estimate of error rate: 45.13% 

 

When we compared distribution of forest between the forest map and 

predicted results, the differences of the other deciduous broad-leaved forests 

are the largest, while the differences of the Korean red pine forests followed. 

It is considered that general deciduous broad-leaved trees have a higher 

difference than the other forest types because the ecological characteristics of 

various deciduous broad-leaved trees are considered as one forest type. 

Table 27 Total area and ratio of Korean forest by forest type (unit: km2) 

 Current 

(forest map) 
Ratio 

Project 

(RF model) 
Ratio Difference 

Pinus Densiflora 19,025 28.7% 24,604 37.1% 8.4% 

Pinus Thumbergii 2,696 4.1% 4,333 6.5% 2.5% 

Quercus app 20,108 30.3% 23,979 36.2% 5.8% 

Deciduous  

broadleaved forest 
16,139 24.4% 7,039 10.6% -13.7% 

Evergreen  

broadleaved forest 
102 0.2% 201 0.3% 0.1% 

Mixed forest 8,191 12.4% 6,106 9.2% -3.1% 

Total 66,262  66,262   



 

- 66 - 

 

As a result of modeling, Korean red pine tree forests were distributed in 

the southern part of Korea, and the modeled distribution of black pine forest 

were located around the coast. However, there were differences in predicting 

the distribution of mixed forests. This is because the mixed forest consisted 

of various species. In addition, the distribution of actual forests in Korea is 

heterogeneously distributed in mixed forests and deciduous forests.  

  

(a) Current forest distribution (b) Simulated forest distribution 

Figure 22 Comparison of forest distribution between forest map and simulation 

 

3.2.1. Importance of Environmental Variables in 

Constructing a Multi-Species Model  

The results of the RF model showed that the altitude value was the most 

important factor in classifying the forest species. Isothermality (BIO3), 
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minimum temperature of coldest month (BIO6) and radiation (RAD) were 

also important variables. The altitude plays a most important role in 

classifying the forest type, which is consistent with the altitude variables 

accounting for a large part of the vegetation growth conditions presented in 

the previous studies. In addition, isothermality (BIO3) is closely related to the 

appropriate temperature at which plants can survive in terms of temperature 

fluctuation at maximum and maximum monthly temperatures. The amount of 

radiation is closely related to the amount of energy that can be utilized for the 

growth of plants, so it is used to distinguish between a sun tree and tolerant 

tree. The distance to the sea is used to distinguish species with low salt 

tolerance. 

 

Figure 23 Mean decrease accuracy of over all classes from the RF classification4 

                                           
4 Please refer to appendix for mean decrease accuracy of variables by major species 
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In the classification tree in the RF model, altitude is selected as the first 

node for distinguishing forest type. In addition, minimum temperature of 

coldest month (BIO6), radiation, isothermality (Bio6) and WI, which are 

related to the temperature selected around the second node for forest type 

classification, and precipitation and location parameters such as distance from 

water and sea, and precipitation in wettest or driest month in considered as 

the third node for forest type classification. This is consistent with previous 

studies that show that temperature, precipitation, and topographic variables 

act as significant environmental variables at medium resolution with a spatial 

scale of about 1 km (Pearson and Dawson, 2003)  

 

Figure 24 Distribution of minimal depth of environmental variables and their means in RF  
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4. Potential Distribution of Forest Species in Different RCPs 

4.1. Potential Distribution of Korean Red Pine in SDMs 

When the potential distribution was modeled with different RCP 

scenarios, the potential distribution varied among the climate scenarios. As 

the temperature increased, the distribution of Korean red pine moved to the 

northern part of South Korea. However, the modeled distributed area of 

Korean red pine increased as this model only included climatic conditions for 

analyzing the potential distribution of Korean red pine. This result is 

consistent with previous studies.  

  

  
Figure 25 Potential distribution of Korean red pine under RCP scenarios in 2090s 

 (Top left: RCP 2.6, Top right: RCP 4.5; Bottom left: RCP 6.0, Bottom right: RCP 8.5) 
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However, the total area of Korean red pine increased in all RCP scenarios. 

This should be carefully interpreted, as climate change can introduce different 

forest species in different climate zones (Sung et al., 2016). As temperature 

and precipitation changes, climate zones in South Korea will change, 

especially in the southern part of Korea. On the other hand, mountainous areas 

can be considered, and refuges for forest species are vulnerable to climate 

change. Therefore, vulnerable areas with different types of biome that are 

expected should be considered in a forest management plan or climate change 

adaptation plan.  

 
Figure 26 The possibilities of species change from 2010s to 2090s (Sung et al., 2016) 

(top left: RCP 2.6, top right: RCP 4.5 bottom left: RCP 6.0, bottom right: RCP 8.5)  
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4.2. Potential Distribution of Korean Red Pine in RF model 

As a result of the distribution of major forest species and the proportion 

of temperate forests, which constitute the majority of Korea, decreased, and 

subtropical forests increased. In temperate forests, coniferous forests showed 

a gradual northward appearance. Deciduous forests showed an increase in 

total area in all scenarios except the RCP 8.5 scenario. Tropical forests 

showed the greatest increase in the RCP 8.5 scenario. 

Table 28 Forest areas by each forest type under different RCP scenarios (Unit: km2) 

 RCP26 RCP45 RCP60 RCP85 

Pinus Densiflora 21,076 22,385 24,961 14,004 

Pinus thumbergii 744 506 1,685 191 

Quercus app 14,729 8,262 9,364 6,448 

Deciduous broadleaved forest 4,467 5,941 4,623 3,734 

Evergreen broadleaved forest 36 6 33 0 

Mixed forest 10,688 2,752 8,788 466 

Sub-tropical forest 12,693 18,200 12,721 3,1209 

Tropical forest 1,325 7,704 3,581 9,705 

Total 65,756 65,756 65,756 65,756 

 

In the RCP 2.6 scenario, where Korean red pine forests are expected to 

be affected least due to climate change, these are mainly distributed in the 

southern regions, but in the RCP 8.5 scenarios they are distributed to 

Gangwon and central regions. This is consistent with previous studies that 

predicted that Korean red pine trees would be distributed northward to adapt 

to climate change (Chun and Lee, 2013). 
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Figure 27 Forest type distribution change under RCP scenarios in 2090s 

 (Top left: RCP 2.6, Top right: RCP 4.5; Bottom left: RCP 6.0, Bottom right: RCP 8.5) 
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4.3. Comparing Potential Distribution Range by RCP Scenarios 

In this study, response of forest species by RCP scenarios has been 

examined with four different RCP scenarios considering the competition 

between major forest species. In the single-species model, the uncertainties 

are high in the northern part of South Korea, as the single-species model 

calculated the potential distribution of Korean red pine without considering 

the suitability of other species. However, in the multi-species distribution 

model, changes in the species distribution are easier to find. However, the 

uncertainties increased as multi-species are modeled in one model. On the 

other hand, the core area for monitoring the trend of potential changes of 

species can be selected, considering the different ranges of temperature and 

precipitation by RCP scenarios.  

 
 

Figure 28 Distribution change ranges from different RCP scenarios  

(left: single species model. Right: multi species model) 
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As the future greenhouse gases concentrations in the atmosphere are not 

in a fixed state, a carbon sequestration strategy and climate adaptation plan 

should be based on state-of-art projection of greenhouse gases. The trajectory 

of greenhouse gases changes every year, and the global community tries to 

reduce greenhouse gases from industries (Le Quéré et al., 2018). Thus, the 

most persuadable climate change scenarios can be changed as greenhouse gas 

emissions change by global agreements.  

To reduce uncertainties from temperature and precipitation ranges due to 

the RCP scenarios, diverse climate scenarios and RCP should be considered 

in modeling the potential distribution of forest species. To apply a high-

resolution climate model, this study was applied on the climate model with 

four RCP scenarios. Despite of the limitations of this study, potential climate 

pattern changes under the four different RCPs are estimated to provide a basis 

for establishing a forest management plan or climate change mitigation and 

adaptation plan. 

  



 

- 75 - 

 

V. Conclusion 

The adverse impact of climate change on the forest ecosystem is expected 

to increase. Thus, various countermeasures are proposed to mitigate and adapt 

to them. To minimize the negative impact of climate change effectively 

within limited time and resources, it is necessary to make an accurate impact 

assessment with the consideration of uncertainties, as uncertainties in 

assessing the potential impact of climate change are inevitable. Thus, step-

by-step quantification of uncertainties in modeling the potential impact of 

climate change to forest species is necessary.  

In this study, different source of uncertainties, 1) sampling methods and 

sample size 2) application of different SDM algorithms and, 3) competition 

among the major forest species has been examined for modeling the potential 

distribution of major forest species.  

To understand uncertainties in sampling methods, different sampling 

methods and sizes were selected, and a one-way t-test was conducted to verify 

effectiveness of sampling methods. Also, the performance of SDMs was 

tested under the different sampling methods and sample sizes and ANOVA 

was applied to test the statistical significance of differences in model 

performance. The uncertainties in different SDM algorithms were analyzed 
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with model performance and spatial distribution of each model. Then, we 

compared spatial distribution of each model to test uncertainties. The random 

forest algorithm was applied to consider the statistical modeling of the 

competition among major forest species. Then, we compared the modeled 

distribution of Korean red pine in the single-species model. Finally, we 

applied RCP scenarios to measure different ranges of temperature and 

precipitation changes in establishing a forest management plan.  

As a result of this study, the uncertainties in sampling methods and 

sampling size affect model performance. The stratified random sampling 

method was effective as it well represents the population of forest species. In 

addition, this study found that selecting suitable sample sizes for SDMs can 

save time and resources in gathering presence data. In developing countries, 

a surveying presence dataset throughout the country requires an enormous 

amount of time and effort. If we can apply effective sampling methods and 

determine effective sample sizes as demonstrated by this study, we can 

estimate the potential species distribution under recent climate change in time 

to make adaptation plans to protect the ecosystem.  

In this study, even though the performance of SDMs are similar, the 

spatial interpretation of SDMs should be carefully conducted as the forest 

management plan. The performance of the model derived from statistical 
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approaches should be based on spatial regime. Also, as a result of modeling 

the potential distribution of major forest species by RCP scenarios, we found 

that the changes in temperature and precipitation range drives significant 

changes in the potential distribution of forest species regardless of applied 

SDMs. Thus, the ranges of different RCP scenarios should be carefully 

examined spatially for planning forest management strategies and national 

adaptation plans.  

Many kinds of SDMs are used for modeling species distributions. Due to 

the complexity of these models, it is important to understand the uncertainties 

inherent in each model. In this study, due to the characteristics of SDMs, 

feedback for modeling in the temporal scale was not included. Recent studies 

(Case and Lawler, 2016; Hill et al., 2017) have used two-stage modeling or 

hybrid modeling techniques to overcome these uncertainties. Species niches 

may affect model performance because the variations in climatic and 

environmental variables interact differently (Buisson et al., 2010).  

Additionally, most models, except MAXENT, use pseudo-absence data; 

this means true absence data should also be carefully examined. Using 

environmental factors in SDMs requires further study, as we do not 

comprehensively understand the interactions among these factors in the 

context of models, at present. These uncertainties can then translate into 
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uncertainties in policies and decision-making processes during planning and 

conservation. 

Despite these limitations, various aspects of uncertainty in predicting 

changes distribution of major forest species have been discussed in this study. 

The impact assessment on forest species under the climate change included 

different kinds of uncertainties in to spatial distribution due to different 

modeling techniques. Understanding these uncertainties will help to establish 

effective forest management plan and climate change adaptation strategies on 

a national scale. 
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Appendix 1. Correlation Analysis of All Environmental variables 

 Aspect bio1 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 bio2 bio3 

Aspect 1 0.05 0.05 0.05 -0.02 -0.05 0.03 -0.06 -0.04 0.03 -0.04 0.04 0.03 0.06 

bio1 0.05 1 0.93 0.95 -0.22 -0.45 0.12 -0.39 -0.41 0.17 -0.39 0.29 -0.36 -0.08 

bio10 0.05 0.93 1 0.77 -0.38 -0.44 0.01 -0.11 -0.44 -0.05 -0.41 0.05 -0.12 0.03 

bio11 0.05 0.95 0.77 1 -0.08 -0.43 0.24 -0.61 -0.36 0.35 -0.35 0.48 -0.49 -0.12 

bio12 -0.02 -0.22 -0.38 -0.08 1 0.78 0.56 -0.22 0.89 0.71 0.87 0.64 -0.17 -0.07 

bio13 -0.05 -0.45 -0.44 -0.43 0.78 1 0.18 0.4 0.96 0.23 0.95 0.12 0.16 0.05 

bio14 0.03 0.12 0.01 0.24 0.56 0.18 1 -0.54 0.32 0.89 0.34 0.85 -0.28 -0.12 

bio15 -0.06 -0.39 -0.11 -0.61 -0.22 0.4 -0.54 1 0.23 -0.69 0.24 -0.77 0.49 0.13 

bio16 -0.04 -0.41 -0.44 -0.36 0.89 0.96 0.32 0.23 1 0.38 0.99 0.27 0.06 0 

bio17 0.03 0.17 -0.05 0.35 0.71 0.23 0.89 -0.69 0.38 1 0.38 0.97 -0.37 -0.12 

bio18 -0.04 -0.39 -0.41 -0.35 0.87 0.95 0.34 0.24 0.99 0.38 1 0.28 0.1 0.05 

bio19 0.04 0.29 0.05 0.48 0.64 0.12 0.85 -0.77 0.27 0.97 0.28 1 -0.39 -0.07 

bio2 0.03 -0.36 -0.12 -0.49 -0.17 0.16 -0.28 0.49 0.06 -0.37 0.1 -0.39 1 0.88 

bio3 0.06 -0.08 0.03 -0.12 -0.07 0.05 -0.12 0.13 0 -0.12 0.05 -0.07 0.88 1 

bio4 -0.04 -0.58 -0.23 -0.79 -0.24 0.25 -0.35 0.82 0.14 -0.58 0.16 -0.68 0.63 0.21 

bio5 0.06 0.82 0.95 0.64 -0.44 -0.42 -0.08 -0.01 -0.46 -0.15 -0.41 -0.05 0.16 0.29 

bio6 0.04 0.9 0.68 0.97 -0.02 -0.41 0.3 -0.65 -0.33 0.41 -0.33 0.52 -0.66 -0.3 

bio7 -0.02 -0.56 -0.23 -0.75 -0.23 0.23 -0.39 0.75 0.11 -0.56 0.14 -0.64 0.86 0.52 

bio8 0.05 0.87 0.98 0.7 -0.42 -0.43 -0.01 -0.04 -0.45 -0.1 -0.4 -0.01 -0.04 0.07 

bio9 0.06 0.91 0.75 0.95 -0.11 -0.46 0.25 -0.61 -0.39 0.34 -0.38 0.49 -0.4 -0.03 

CI -0.05 -0.97 -0.81 -0.99 0.13 0.44 -0.2 0.54 0.39 -0.29 0.37 -0.42 0.46 0.11 

dis_river -0.03 -0.01 -0.06 0.04 0 -0.08 0.11 -0.15 -0.06 0.13 -0.07 0.13 -0.23 -0.24 

dis_sea 0.07 -0.2 -0.07 -0.28 -0.15 0.08 -0.13 0.34 -0.01 -0.2 0.03 -0.2 0.56 0.51 

dem 0.07 -0.75 -0.83 -0.6 0.42 0.42 0.12 0.01 0.44 0.18 0.42 0.11 0.16 0.1 

orm -0.03 -0.51 -0.56 -0.41 0.23 0.3 -0.04 0.05 0.28 0.01 0.27 -0.02 0.2 0.18 

radiation 0.08 0.47 0.44 0.46 -0.31 -0.34 -0.28 -0.15 -0.37 -0.2 -0.34 -0.07 0.15 0.37 

slope 0.1 -0.4 -0.45 -0.32 0.23 0.26 0.01 0 0.25 0.06 0.24 0.04 0.19 0.19 

soil_depth 0.02 0.51 0.55 0.43 -0.24 -0.33 0.05 -0.08 -0.31 0.01 -0.31 0.03 -0.27 -0.25 

WI 0.04 1 0.93 0.94 -0.24 -0.45 0.11 -0.37 -0.42 0.14 -0.4 0.26 -0.38 -0.11 
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 bio4 bio5 bio6 bio7 bio8 bio9 CI dis_river dis_sea dem orm radiation slope soil_depth WI 

Aspect -0.04 0.06 0.04 -0.02 0.05 0.06 -0.05 -0.03 0.07 0.07 -0.03 0.08 0.1 0.02 0.04 

bio1 -0.58 0.82 0.9 -0.56 0.87 0.91 -0.97 -0.01 -0.2 -0.75 -0.51 0.47 -0.4 0.51 1 

bio10 -0.23 0.95 0.68 -0.23 0.98 0.75 -0.81 -0.06 -0.07 -0.83 -0.56 0.44 -0.45 0.55 0.93 

bio11 -0.79 0.64 0.97 -0.75 0.7 0.95 -0.99 0.04 -0.28 -0.6 -0.41 0.46 -0.32 0.43 0.94 

bio12 -0.24 -0.44 -0.02 -0.23 -0.42 -0.11 0.13 0 -0.15 0.42 0.23 -0.31 0.23 -0.24 -0.24 

bio13 0.25 -0.42 -0.41 0.23 -0.43 -0.46 0.44 -0.08 0.08 0.42 0.3 -0.34 0.26 -0.33 -0.45 

bio14 -0.35 -0.08 0.3 -0.39 -0.01 0.25 -0.2 0.11 -0.13 0.12 -0.04 -0.28 0.01 0.05 0.11 

bio15 0.82 -0.01 -0.65 0.75 -0.04 -0.61 0.54 -0.15 0.34 0.01 0.05 -0.15 0 -0.08 -0.37 

bio16 0.14 -0.46 -0.33 0.11 -0.45 -0.39 0.39 -0.06 -0.01 0.44 0.28 -0.37 0.25 -0.31 -0.42 

bio17 -0.58 -0.15 0.41 -0.56 -0.1 0.34 -0.29 0.13 -0.2 0.18 0.01 -0.2 0.06 0.01 0.14 

bio18 0.16 -0.41 -0.33 0.14 -0.4 -0.38 0.37 -0.07 0.03 0.42 0.27 -0.34 0.24 -0.31 -0.4 

bio19 -0.68 -0.05 0.52 -0.64 -0.01 0.49 -0.42 0.13 -0.2 0.11 -0.02 -0.07 0.04 0.03 0.26 

bio2 0.63 0.16 -0.66 0.86 -0.04 -0.4 0.46 -0.23 0.56 0.16 0.2 0.15 0.19 -0.27 -0.38 

bio3 0.21 0.29 -0.3 0.52 0.07 -0.03 0.11 -0.24 0.51 0.1 0.18 0.37 0.19 -0.25 -0.11 

bio4 1 -0.08 -0.84 0.93 -0.14 -0.74 0.74 -0.12 0.35 0.13 0.1 -0.29 0.06 -0.14 -0.55 

bio5 -0.08 1 0.51 -0.01 0.95 0.65 -0.69 -0.11 0.08 -0.76 -0.48 0.5 -0.37 0.45 0.82 

bio6 -0.84 0.51 1 -0.86 0.6 0.91 -0.96 0.09 -0.35 -0.53 -0.39 0.35 -0.31 0.42 0.89 

bio7 0.93 -0.01 -0.86 1 -0.14 -0.68 0.71 -0.17 0.45 0.18 0.17 -0.12 0.13 -0.23 -0.55 

bio8 -0.14 0.95 0.6 -0.14 1 0.69 -0.75 -0.1 -0.01 -0.8 -0.53 0.42 -0.44 0.52 0.88 

bio9 -0.74 0.65 0.91 -0.68 0.69 1 -0.94 0.03 -0.18 -0.56 -0.39 0.47 -0.29 0.4 0.9 

CI 0.74 -0.69 -0.96 0.71 -0.75 -0.94 1 -0.02 0.25 0.64 0.42 -0.47 0.34 -0.44 -0.96 

dis_river -0.12 -0.11 0.09 -0.17 -0.1 0.03 -0.02 1 -0.11 0.05 -0.01 -0.08 0.03 0.02 0 

dis_sea 0.35 0.08 -0.35 0.45 -0.01 -0.18 0.25 -0.11 1 0.21 0.14 0.15 0.16 -0.2 -0.21 

dem 0.13 -0.76 -0.53 0.18 -0.8 -0.56 0.64 0.05 0.21 1 0.56 -0.27 0.6 -0.57 -0.76 

orm 0.1 -0.48 -0.39 0.17 -0.53 -0.39 0.42 -0.01 0.14 0.56 1 -0.1 0.57 -0.9 -0.53 

radiation -0.29 0.5 0.35 -0.12 0.42 0.47 -0.47 -0.08 0.15 -0.27 -0.1 1 -0.05 0.05 0.46 

slope 0.06 -0.37 -0.31 0.13 -0.44 -0.29 0.34 0.03 0.16 0.6 0.57 -0.05 1 -0.63 -0.42 

soil_depth -0.14 0.45 0.42 -0.23 0.52 0.4 -0.44 0.02 -0.2 -0.57 -0.9 0.05 -0.63 1 0.53 

WI -0.55 0.82 0.89 -0.55 0.88 0.9 -0.96 0 -0.21 -0.76 -0.53 0.46 -0.42 0.53 1 

Without mark all variables are significant p<0.001
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Appendix 2. Relative Importance of all environmental variables by sampling 

methods in all sampling methods  

Relative importance of variables in area sampling method (Needle leaved forest) 

 
MAX- 

ENT 
CTA FDA RF GLM GBM GAM ANN 

Altitude 0.188 0.095 0.114 0.056 0.134 0.056 0.117 0.257 

Slope 0.132 0.118 0.064 0.062 0.089 0.055 0.077 0.048 

Radiation 0.182 0.160 0.059 0.063 0.030 0.062 0.040 0.044 

Distance from water 0.121 0.033 0.013 0.015 0.024 0.014 0.024 0.287 

Distance from sea 0.137 0.098 0.087 0.039 0.076 0.035 0.076 0.532 

Soil Depth 0.126 0.094 0.068 0.021 0.127 0.022 0.284 0.280 

Soil Organic Matter 

Content in Layer A 
0.030 0.074 0.000 0.017 0.162 0.023 0.416 0.001 

Warmth Index 0.201 0.085 0.131 0.018 0.055 0.011 0.067 0.078 

Isothemality 0.237 0.435 0.192 0.098 0.222 0.179 0.145 0.026 

Min Temperature of 

Coldest Month 
0.226 0.201 0.343 0.071 0.321 0.142 0.366 0.043 

Precipitation of wettest 
month 

0.098 0.072 0.040 0.025 0.046 0.025 0.054 0.130 

Precipitation of driest 

month 
0.138 0.053 0.034 0.017 0.002 0.024 0.044 0.006 

 

Relative importance of variables in random sampling method (Needle leaved forest)  

 
MAX- 

ENT 
CTA FDA RF GLM GBM GAM ANN 

Altitude 0.107 0.136 0.163 0.061 0.106 0.079 0.159 0.174 

Slope 0.113 0.160 0.179 0.043 0.054 0.051 0.088 0.042 

Radiation 0.155 0.185 0.140 0.046 0.127 0.110 0.120 0.064 

Distance from water 0.090 0.084 0.009 0.026 0.028 0.028 0.037 0.401 

Distance from sea 0.077 0.041 0.030 0.031 0.015 0.019 0.040 0.684 

Soil Depth 0.191 0.157 0.208 0.057 0.342 0.099 0.718 0.254 

Soil Organic Matter 

Content in Layer A 
0.011 0.198 0.000 0.023 0.161 0.048 0.520 0.001 

Warmth Index 0.123 0.129 0.186 0.031 0.192 0.051 0.354 0.065 

Isothemality 0.112 0.146 0.024 0.046 0.064 0.058 0.070 0.008 

Min Temperature of 
Coldest Month 

0.064 0.051 0.036 0.023 0.036 0.010 0.118 0.013 

Precipitation of wettest 

month 
0.096 0.184 0.109 0.051 0.141 0.102 0.138 0.135 

Precipitation of driest 
month 

0.092 0.049 0.017 0.032 0.028 0.028 0.061 0.015 
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Relative importance of variables in stratified sampling method (Needle leaved forest) 

 
MAX- 
ENT 

CTA FDA RF GLM GBM GAM ANN 

Altitude 0.275 0.479 0.509 0.101 0.213 0.198 0.182 0.391 

Slope 0.208 0.162 0.059 0.064 0.069 0.087 0.155 0.072 

Radiation 0.116 0.097 0.035 0.034 0.069 0.061 0.075 0.050 

Distance from water 0.172 0.045 0.010 0.033 0.035 0.044 0.052 0.318 

Distance from sea 0.081 0.023 0.035 0.028 0.020 0.022 0.049 0.521 

Soil Depth 0.180 0.127 0.121 0.058 0.456 0.057 0.623 0.239 

Soil Organic Matter 
Content in Layer A 

0.023 0.035 0.006 0.024 0.282 0.042 0.470 0.005 

Warmth Index 0.173 0.057 0.121 0.028 0.316 0.051 0.446 0.068 

Isothemality 0.101 0.033 0.012 0.025 0.078 0.027 0.070 0.005 

Min Temperature of 

Coldest Month 
0.092 0.018 0.063 0.018 0.185 0.013 0.254 0.026 

Precipitation of wettest 
month 

0.135 0.144 0.056 0.032 0.057 0.075 0.048 0.162 

Precipitation of driest 

month 
0.128 0.069 0.121 0.061 0.097 0.037 0.072 0.018 

 

Relative importance of variables in area sampling method (Broad leaved forest)  

 
MAX- 

ENT 
CTA FDA RF GLM GBM GAM ANN 

Altitude 0.369 0.686 0.313 0.134 0.275 0.247 0.327 0.590 

Slope 0.144 0.036 0.026 0.044 0.065 0.054 0.060 0.040 

Radiation 0.089 0.065 0.013 0.011 0.020 0.014 0.049 0.041 

Distance from water 0.136 0.113 0.054 0.054 0.066 0.047 0.096 0.268 

Distance from sea 0.076 0.030 0.022 0.027 0.034 0.022 0.076 0.252 

Soil Depth 0.061 0.011 0.021 0.014 0.093 0.006 0.145 0.072 

Soil Organic Matter 

Content in Layer A 
0.016 0.038 0.024 0.015 0.171 0.018 0.350 0.001 

Warmth Index 0.071 0.053 0.162 0.030 0.129 0.012 0.215 0.045 

Isothemality 0.054 0.020 0.016 0.013 0.028 0.006 0.037 0.007 

Min Temperature of 
Coldest Month 

0.104 0.056 0.073 0.013 0.120 0.014 0.137 0.014 

Precipitation of wettest 

month 
0.357 0.148 0.053 0.075 0.174 0.100 0.158 0.160 

Precipitation of driest 
month 

0.197 0.103 0.039 0.037 0.096 0.076 0.106 0.020 
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Relative importance of variables in random sampling method (Broad leaved forest)  

 
MAX- 
ENT 

CTA FDA RF GLM GBM GAM ANN 

Altitude 0.204 0.209 0.228 0.087 0.090 0.077 0.153 0.341 

Slope 0.279 0.424 0.341 0.099 0.355 0.223 0.257 0.073 

Radiation 0.044 0.021 0.009 0.020 0.042 0.012 0.049 0.052 

Distance from water 0.073 0.072 0.022 0.049 0.029 0.038 0.035 0.381 

Distance from sea 0.068 0.047 0.023 0.029 0.062 0.026 0.083 0.571 

Soil Depth 0.073 0.116 0.019 0.053 0.259 0.058 0.594 0.164 

Soil Organic Matter 
Content in Layer A 

0.005 0.004 0.006 0.010 0.107 0.008 0.302 0.002 

Warmth Index 0.099 0.012 0.066 0.036 0.070 0.014 0.153 0.068 

Isothemality 0.065 0.038 0.054 0.035 0.115 0.030 0.117 0.004 

Min Temperature of 

Coldest Month 
0.117 0.190 0.185 0.059 0.238 0.075 0.343 0.013 

Precipitation of wettest 
month 

0.075 0.041 0.021 0.019 0.037 0.022 0.077 0.117 

Precipitation of driest 

month 
0.073 0.029 0.006 0.030 0.030 0.027 0.071 0.014 

 

Relative importance of variables in stratified sampling method (Broad leaved forest) 

 
MAX- 

ENT 
CTA FDA RF GLM GBM GAM ANN 

Altitude 0.096 0.330 0.087 0.071 0.074 0.068 0.062 0.282 

Slope 0.261 0.379 0.302 0.086 0.238 0.180 0.159 0.070 

Radiation 0.095 0.052 0.018 0.026 0.024 0.017 0.061 0.039 

Distance from water 0.068 0.035 0.012 0.037 0.042 0.033 0.051 0.364 

Distance from sea 0.224 0.094 0.030 0.031 0.121 0.062 0.108 0.622 

Soil Depth 0.096 0.078 0.086 0.028 0.124 0.028 0.346 0.142 

Soil Organic Matter 

Content in Layer A 
0.009 0.039 0.004 0.016 0.390 0.031 0.491 0.000 

Warmth Index 0.103 0.054 0.179 0.047 0.071 0.022 0.233 0.061 

Isothemality 0.053 0.052 0.019 0.033 0.048 0.027 0.069 0.007 

Min Temperature of 
Coldest Month 

0.090 0.079 0.135 0.058 0.156 0.061 0.247 0.010 

Precipitation of wettest 

month 
0.078 0.090 0.023 0.023 0.043 0.026 0.069 0.105 

Precipitation of driest 
month 

0.052 0.047 0.004 0.036 0.013 0.030 0.055 0.014 
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Relative importance of variables in area sampling method (Mixed forest)  

 
MAX- 
ENT 

CTA FDA RF GLM GBM GAM ANN 

Altitude 0.342 0.771 0.519 0.160 0.615 0.326 0.630 0.567 

Slope 0.163 0.077 0.035 0.067 0.139 0.052 0.052 0.036 

Radiation 0.031 0.035 0.041 0.017 0.099 0.024 0.063 0.038 

Distance from water 0.059 0.031 0.052 0.034 0.011 0.044 0.026 0.247 

Distance from sea 0.044 0.062 0.094 0.043 0.015 0.060 0.041 0.353 

Soil Depth 0.047 0.032 0.010 0.018 0.361 0.019 0.565 0.120 

Soil Organic Matter 
Content in Layer A 

0.015 0.002 0.031 0.011 0.141 0.011 0.354 0.000 

Warmth Index 0.029 0.007 0.101 0.010 0.134 0.004 0.134 0.060 

Isothemality 0.025 0.034 0.039 0.015 0.026 0.017 0.031 0.005 

Min Temperature of 

Coldest Month 
0.074 0.054 0.141 0.039 0.106 0.064 0.074 0.009 

Precipitation of wettest 
month 

0.050 0.048 0.109 0.038 0.027 0.057 0.110 0.072 

Precipitation of driest 

month 
0.060 0.054 0.043 0.017 0.003 0.021 0.039 0.010 

 

Relative importance of variables in random sampling method (Mixed forest)  

 
MAX- 

ENT 
CTA FDA RF GLM GBM GAM ANN 

Altitude 0.137 0.089 0.210 0.044 0.131 0.078 0.157 0.291 

Slope 0.306 0.282 0.180 0.054 0.159 0.131 0.092 0.062 

Radiation 0.078 0.070 0.011 0.026 0.033 0.047 0.040 0.053 

Distance from water 0.076 0.036 0.000 0.021 0.056 0.026 0.044 0.468 

Distance from sea 0.128 0.102 0.052 0.037 0.071 0.056 0.097 0.631 

Soil Depth 0.162 0.281 0.121 0.035 0.283 0.086 0.665 0.218 

Soil Organic Matter 

Content in Layer A 
0.020 0.068 0.014 0.015 0.072 0.031 0.465 0.000 

Warmth Index 0.127 0.099 0.336 0.036 0.101 0.051 0.385 0.077 

Isothemality 0.129 0.084 0.059 0.021 0.033 0.031 0.067 0.006 

Min Temperature of 
Coldest Month 

0.159 0.068 0.165 0.025 0.112 0.030 0.245 0.008 

Precipitation of wettest 

month 
0.096 0.159 0.096 0.040 0.145 0.052 0.099 0.097 

Precipitation of driest 
month 

0.152 0.060 0.080 0.030 0.031 0.044 0.111 0.005 
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Relative importance of variables in stratified sampling method (Mixed forest) 

 
MAX- 
ENT 

CTA FDA RF GLM GBM GAM ANN 

Altitude 0.078 0.176 0.090 0.034 0.000 0.059 0.083 0.297 

Slope 0.183 0.178 0.201 0.059 0.254 0.147 0.147 0.034 

Radiation 0.124 0.115 0.095 0.039 0.056 0.065 0.079 0.047 

Distance from water 0.071 0.093 0.006 0.033 0.000 0.047 0.024 0.284 

Distance from sea 0.102 0.049 0.034 0.024 0.062 0.027 0.052 0.607 

Soil Depth 0.197 0.354 0.380 0.055 0.498 0.115 0.834 0.301 

Soil Organic Matter 
Content in Layer A 

0.023 0.090 0.017 0.029 0.037 0.054 0.355 0.001 

Warmth Index 0.069 0.059 0.023 0.014 0.000 0.011 0.167 0.050 

Isothemality 0.080 0.059 0.016 0.023 0.000 0.022 0.012 0.002 

Min Temperature of 

Coldest Month 
0.040 0.025 0.046 0.016 0.007 0.026 0.095 0.003 

Precipitation of wettest 
month 

0.079 0.034 0.021 0.018 0.013 0.016 0.021 0.109 

Precipitation of driest 

month 
0.051 0.074 0.013 0.023 0.055 0.031 0.046 0.010 
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Appendix 3. Importance of Environmental Variables by Major Forest Species in 

Random Forest Model 

  
(a) Pinus densiflora (b) Pinus thumbagii 

  

(c) Quercus app. (d) Deciduous broadleaved forest  

  

(e) Evergreen broadleaved forest (f) Mixed forest 
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Appendix 4. The performance of SDMs by sampling size (random sampling; x-

axis: AUC, y-axis: sample size) 
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Appendix 5. The performance of SDMs by sampling size (stratified sampling; x-

axis: AUC, y-axis: sample size) 
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Appendix 6. The performance of SDMs by sampling size (area-weighted sampling; 

x-axis: AUC, y-axis: sample size) 
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국문 초록 

 

기후변화를 고려한 산림 수종 

분포변화 예측의 불확실성 평가 

 

성 선 용 

 

서울대학교 대학원 

협동과정 조경학 

 지도교수: 이 동 근 
 

기후변화에 따른 산림분야의 부정적인 영향이 증대할 것으로 예

상되고 있으며 이를 저감하기 위한 다양한 대책들이 제시되고 있다. 

제한된 시간과 자원을 가지고 기후변화에 의한 부정적인 영향을 저감

하고 효과적으로 대응하기 위해서는 무엇보다도 기후변화에 따른 정

확한 영향평가가 필요하다. 기후변화에 정확한 영향평가를 위해서는 

영향평가에서 수반될 수 있는 불확실성에 대해서 이해하고 이를 반드

시 정량화 하는 것이 필요하다.  

IPCC 제4차 보고서에서부터 언급되기 시작한 불확실성에 대한 

개념은 제5차 영향평가 보고서에서도 명기되어 있으며 의사결정에 도

움을 주는 개념으로서 사용되고 있다. 우리나라에서도 기후변화의 영
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향을 평가함에 있어서 불확실성을 고려하기 위하여 이를 정량화 하기 

위한 노력을 기울이고 있다. 그러나 이들 연구는 아직 초기단계로서 

제한적인 범위 내에서 진행되고 있으며 다양한 측면에서의 불확실성

을 고려하지 못하고 있다. 

따라서, 본 연구에서는 기후변화에 따라서 발생할 수 있는 불확실

성의 원인을 검증하기 위하여 산림의 표본 추출 방법에 대한 효과성

을 검증하고 1) 표본 추출 방법 및 표본 개수에 따른 불확실성 2) 모

형 알고리즘 종류에 따른 통계적 유의성의 차이와 공간분포의 불확실

성 3) 단일 종분포모형과 통계 다중 종 분포모형에서의 주요 수종간 

경쟁에 따른 불확실성으로 나누어서 분석을 진행하였으며, 4) RCP시

나리오의 기온과 강수량 변화에 따른 종 분포 범위의 변화를 살펴보

았다.  

표본 추출 방법에 따른 효과 분석을 위하여 3가지의 샘플링 방법

과 7개의 샘플 개수를 활용하여 모수와 근접한지 one-way t-test를 

활용하여 분석하였다. 그 결과 층화-무작위추출 표본 추출 방법이 가

장 잘 모수를 재현하는 것으로 나타났으며, 표본 개수는 200개 이상

이 된다면 종 분포모형을 활용하여 산림의 잠재적 분포를 예측하는데 

있어 정확도에 유의미한 변화가 없는 것으로 나타났다.   

모형의 알고리즘에 따른 불확실성을 분석하기 위하여 널리 사용

되고 있는 종 분포 모형 중 통계기반모형과 기계학습기반모형 8개를 
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활용하여 현재의 식생분포를 모의한 결과, 모형의 알고리즘에 따라서 

정확도에 차이가 있는 것으로 나타났으며, 대체적으로 기계학습모형 

중 RF모형의 정확도가 높게 나타났으며, GLM 및 GAM과 같은 통계

기반의 모형은 경우 양호한 정확도를 나타냈다. 공간적 불확실성을 평

가하기 위하여 현재의 산림면적과 면적이 가장 유사하도록 모형의 확

률 임계치를 조정하여 공간적 분포를 비교한 결과 모형에 따른 차이

가 크게 나타났으며 이를 해결하기 위하여 앙상블 모형과 같은 공간

적 불확실성을 고려할 수 있는 방법이 필요성을 확인할 수 있었다.  

단일종을 고려한 종분포모형과 달리 다중 종 분포모형에서는 단

일 수종에서 확인할 수 없었던 여러 수종의 적합도를 평가 Random 

Forest 알고리즘과 GAEZ 분류를 활용하여 수행하였다. 그 결과 단일 

수종만 고려한 경우보다 다중 종을 고려한 경우의 RCP 시나리오의 

범위에 따라 불확실성이 더 광범위하게 나타났다. 하지만 단일종만을 

고려한 종 분포 모형에서는 불확실성은 낮지만 기후대에 변화에 따른 

수종을 고려하고 있지 못하기 때문에, 향후 기후변화의 범위에 따른 

다른 기후대의 수종도입을 고려할 수 있는 방안에 대한 추가적인 고

찰이 필요하다.  

본 연구를 통하여 향후 기후변화에 따른 산림의 관리전략을 수립

함에 있어서 산림의 수종변화를 예측할 때 단계별로 발생할 수 있는 

불확실성의 원인을 분석하고 이를 고려한 환경계획을 세우는데 기여
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할 수 있을 것으로 판단된다. 이는 불확실성의 큰 요소의 반영 우선순

위와 불확실성을 줄이고 효과적인 산림의 관리를 위한 모니터링 및 

조사시점을 선정하는데 활용될 것으로 기대할 수 있다.  

주요어: 불확실성, 수종분포변화, 산림 표본추출 방법, BIOMOD2, Random 

Forest, 산림관리  

학번: 2013-30714 
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