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ABSTRACT: In recent years, the number of infrastructures to be inspected or repaired has increased, 
because many of them are suffering from the degradation and deterioration.  However, it is difficult to 
acquire the sufficient number of experienced engineers due to their aging and retirement.  Usually, when 
judging the degree of damage of the infrastructure, a visual inspection is carried out by experienced 
engineers as a preliminary checking for non-destructive examination.  Recently, it is expected to 
introduce robots such as Unmanned Aerial Vehicles (UAV) for the inspection because it can reduce the 
burden on engineers and collect data from the spaces where people are difficult to approach. 

However, it is often difficult to secure sufficient accuracy for the data collected by robots. This 
problem can be solved by adjusting the photographing angle and distance if possible to confirm the 
detection accuracy of the crack contained in the photographed image on the spot. Then, robotic inspection 
is available as a useful tool that can realize the real-time detection.  

In this research, an attempt is made to develop an efficient crack detection system for concrete bridge 
structure, using You Only Look Once (YOLO) method that is a method possessing the possibility of real-
time processing. In order to demonstrate the applicability of the system with YOLO, an experiment was 
conducted by applying the system to the crack image of concrete wall. From the experiments, it was 
found that the detection time was highly small and further detection was possible even in real-time.  
Regarding the accuracy, although it is possible to identify the location where cracks occurred roughly, it 
is difficult to detect perfectly, and erroneous detection was also observed.  For these reasons, further 
improvement in accuracy is necessary for practical use. 

 

1. INTRODUCTIONS 

1.1. Current status of bridge inspection 
In recent years, the number of bridges requiring 
repair and rebuilding has increased because of 
their deterioration and degradation of existing. In 
Japan, many bridges were built during the period 
of high economic growth. The number of bridges 
built by 1970 is about 41,000. Accordingly, in the 

near future, the number of bridges over 50 years 
from construction will increase rapidly. In 
addition, the traffic volume nowadays is twice in 
the past twenty years. For these reasons, regular 
inspections of road bridges are obliged to conduct 
through visual inspection every five years 
(Ministry of Land, Infrastructure and Transport 
2015). However, most of the members of the 
bridges are located in high places and difficult to 
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approach. For the inspection such structural 
members, a lot of labors and cost are required. 
Namely, it is necessary for the inspection to install 
scaffolds and use special vehicles or equipment.  

Meanwhile, there is another problem that 
local governments cannot fully perform the 
maintenance work due to the lack of enough 
budget and skilled maintenance engineers by the 
economic slackening and retirement.  

1.2. Improvement of bridge inspection efficiency 
Various researches have attempted to improve the 
efficiency of bridge inspection. As an alternative 
for inspection work, a number of health 
monitoring technologies have been developed, 
which attach sensors to bridges to detect damage 
or abnormal phenomena. (Fujino 2013, Ogawa, et 
al. 2009). However, it is difficult to implement 
monitoring for all infrastructures because of the 
durability of the sensor and the secure power 
supply. 

In recent years, a bridge inspection robot 
such as Unmanned Aerial Vehicles (UAV) has 
attracted attention to reduce cost and improve the 
efficiency of inspection work (Okajima 2016). 
For example, using a UAV equipped with a 
camera, it is possible to obtain the photos of the 
surface condition of a bridge without scaffold for 
inspection. However, there remain several 
problems to be solved for practical use: the 
dropping of the robot, the insufficient quality of 
the photo images obtained from the motion 
pictures, and so on. This study aims to establish a 
system to detect damages such as cracks and 
corrosion with ease from the limited duration for 
the operation of the UAV. Furthermore, this study 
investigates the issues for practical application of 
the inspection robots, and examines the 
applicability of image recognition technology as a 
solution to those problems. 

1.3. Automatic detection of damage by image 
recognition 

Image recognition is a technique for automatically 
recognizing or identifying what is shown in an 
image. With the use of deep learning, drastic 
improvements in the accuracy of image 

recognition can be achieved in various fields 
including general object detection such as face 
authentication. It has also been developed in the 
field of infrastructure engineering (Yokoyama, 
Matsumoto 2016, 2017). In this research, a new 
system is proposed to detect cracks, using UAV 
and image recognition technology. 

Before deep learning appeared, image 
feature quantities are extracted from differences 
in luminance values, images are recognized by 
comparing feature values of images to be judged 
by grouping points having feature values close to 
each other. In this method, there is a problem that 
the image feature amount changes depending on 
the appearance and the angle, where the positional 
relationship is ignored in the structure of the data 
to be handled, which is affected by the variations 
in density of image feature points (Takei 2016). 

In image recognition using deep learning, 
feature extraction is performed automatically, and 
since the image itself is used as input data, 
preliminary processing such as acquiring image 
feature points from the image is not necessary. In 
other words, features can be learned automatically 
without extracting and selecting characteristic 
features themselves. Due to the improvement of 
recognition accuracy, the application of image 
recognition has attracted a great deal of attention 
(Yokoyama, Matsumoto 2016, 2017). A method 
to learn images of cracks and rusts of 
infrastructures, especially for concrete structures, 
was developed to automatically detect damage 
and structural deformation from the images 
acquired at the time of inspection by the deep 
learning. The method is based on the general 
object detection technology of deep learning, 
however it takes a few seconds to detect the 
damage from an image when using conventional 
deep learning techniques. Then, it may take a lot 
of time to inspect a large structure. 

When performing inspection using a robot 
with the conventional system which takes time to 
detect damage as described above, the processes 
of taking pictures by the robot and detection 
processing are performed independently. Since 
bridge inspection is susceptible to environmental 
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influences such as backlighting and wind, it is 
difficult to secure the quality of images capturing 
damaged parts, and there is a possibility that the 
collected data cannot be used for the detection. 
Therefore, even if a system with high detection 
accuracy is constructed, the system is not 
available until the suitable data for detection is 
collected. 

In this research, it aims to develop a new 
system using a robot to detect damage in real-time. 
If the real-time damage detection is realized, the 
accuracy of the collected data is checked during 
the operation and examine the necessity of more 
detailed data collection of the detection site. This 
means that it is possible to enhance the usefulness 
of the data. Then, it is noted that there is a trade-
off relation between detection accuracy and 
calculation time. Therefore, it is attempted here to 
construct a new system that can detect damage in 
real-time from the viewpoints of calculation speed 
and detection accuracy. 

2. METHODOLOGY 
YOLO (Redmon and Farhadi 2016) is provided as 
a function of the framework “Darknet” coded in C 
(Fujita and Takahara 2016). YOLO can estimate 
the position, size, and type of an object in an 
image including plural different kinds of objects. 
A major feature of YOLO with regard to object 
detection is that extraction of a candidate region 
of a detection target object and calculation of class 
probability of the candidate region are performed 
with one estimate at the same time as shown in 
Figure 1.  
 

 

Figure 1: Object detection procedure of YOLO 
(Redmon et al. 2016). 

 
For this reason, this method makes it possible 

both to perform object detection at a very high 
speed, and to perform the processing at about 
1000 times faster than the conventional method. 
Therefore, it can be considered that the method is 
useful to achieve the real-time detection. 

3. CASE STUDY FOR CRACK DETECTION 
In this chapter, the deep learning described in 
Chapter 3 is applied to detect crack damage on 
concrete slabs to verify the usefulness of the 
system. 

3.1. System overview 
In the proposed system, an attempt is made to 
extract cracks from images of concrete wall taken 
with a digital video camera equipped on an UAV. 
Since our objective is to construct a system that 
can detect cracks in real-time, YOLOv2 (Redmon 
and Farhadi 2016), which is an improved system 
of YOLO is used, because it has higher accuracy 
and higher speed processing among general object 
detection algorithms using deep learning.    

For training data, various kinds of images of 
cracks (i.e. not limited to cracks in concrete) were 
used, and information on cracked areas and 
positions in each image was extracted as training 
data. Then, test images were applied to the system 
for crack detection. 

3.2. System construction 
In this research, three systems (Systems 1 to 3) 
were constructed while changing training data. 
For the training data, we used images captured 
using digital cameras and various image data 
collected from the Internet. From these images, a 
cracked region was cut out, and the positional 
information of the object, such as the coordinates 
and the size of the region, were created. BBox-
Label-Tool was used to obtain object position 
information from image data.  BBox-Label-Tool 
is a range selection tool for images implementing 
in Python (Fujita, Takahara 2016). This tool reads 
images and provides coordinate data in text data 
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by enclosing the object with a rectangular frame. 
This position information is read inside YOLOv2, 
and training data is generated. 

In System 1, two classes were prepared 
according to the object to be detected: “crack” 
which is related to crack class and “chalk” related 
to crack traced with chalk. The training data was 
created from 60 images of “crack” and 104 images 
of “chalk” and run through the program 40,000 
times. After creating position information of 
cracks, System 1 enabled to identify cracks 
without fail (Figure 2).  

Inside YOLOv2, training images are 
randomly resized, inverted, rotated, HSV (Hue, 
Saturation, Value) model converted to increase is 
the number of different types of images. 

 

 
Figure 2: Example of training data of System1 

(crack class) 
 

System 2 is used to identify concrete joints 
with line forms as other than cracks, which is 
named “etc” class. Then, the training data for 
“crack” is set as that the frame of position 
information is larger than it in System 1 in order 
to learn the shape of the crack clearer. In addition, 
branch-crack class were set for the purpose of 
detecting crack shape and making feature 
extraction easier. Examples of the “etc”, “crack” 
and “branch-crack” classes are respectively 
shown in Firues 3, 4 and 5. 

The training data of each class was created 
from 31 images of “crack”, 23 image of “chalk”, 
33 images of “branch-crack”, 27 images of 
“branch-chalk”, and 52 images of “etc”, by 
running 40,000 times. When multiple classis are 

included in one image, the same image is used for 
learning each class. 

 

 
Figure 3: Example of the etc class in the 

training data for System2 
 

 
Figure 4: Example of the crack class in the 

training data for System2 
 

 
Figure 5: Example of the branch-crack class in 

the training data for System2 
 

In System 3, photographs of a wall at 
Kansai University, which are similar as the 
images used for the test, are added to the training 
data of System 2. However, the training data 
added System 3 are different from the test data. 
The settings for classes and training data were the 
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same as ones of System 2. For each class, learning 
was implemented 40,000 times using training data 
created from 54 images of “crack”, 51 images of 
“chalk”, 28 images of “branch-crack”, 68 images 
of “branch-chalk”, and 52 images of “etc”. 

In System 2 and System 3, it was 
confirmed that the training data on the “chalk 
class” is different, but the recognition rate of crack 
is not affected. Therefore, we will focus on the 
detection of cracks and will verify the 
applicability of the proposed system. 

In all of these systems, we used a GeForce 
GTX 1080 Ti Desktop computer with 64 GB of 
RAM and 4.20 GHz of CPU speed. 

3.3. Application results 
For the verification of the constructed Systems 1 
to 3, 21 images of concrete walls located at the 
campus of Kansai university were prepared as test 
images and applied to each system. 

An example of test data and its correct 
detection are shown in Figure 6. Detection results 
for test data of each system with the representative 
images are listed in Table1. 

 

 
Figure 6: Example of correct detection 

 
Table 1: Detection examples 
System Detection example 

System 1 

 

System 2 

 

System 3 

 

 
The computation time to detect cracks was 

about 0.1 seconds, which is considered to be able 
to detect cracks in real-time. 

Although System 1 generally detects cracks 
well, it misses partial cracks in many cases and 
moreover often cannot detected one crack 
completely. In addition, it showed some 
erroneous detection where straight lines such as 
concrete joints were detected as shown in Table1. 
That is because finer crack regions were 
employed in the training data so that a lot of 
concrete joint line data was learned as “crack”. 

In System 2, the incorrect detection of region 
different from crack region has been greatly 
reduced as shown in Figure 7. However, the 
ability of detection of cracks became remarkably 
worse as shown in Table1. In addition, erroneous 
detection such as detection of region with 
different from crack was also seen as shown in 
Figure 7. The reason for this is considered that the 
number of training data decreased due to re-
setting the frame larger to cut out so as to make it 
easier to extract the characteristics of cracks when 
preparing training data. 

 

Erroneous detection 
 

Correct detection 

Correct detection 

Correct detection  
 

concrete joint 

crack 
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Figure 7: Detection examples of System 2 
 
Although System 3 is able to detect cracks 

completely, it appears to be better to detect cracks 
than System 2 as shown in Table1. Even for the 
images where cracks could not be detected at all 
in System 2, System 3 was able to detect them, 
although the detection is not perfect. However, 
similar to System 2, it was confirmed that items 
other than cracks were judged as cracks. 

3.4. Comparison of accuracy between System 2 
and System 3 

Based on the application results for 21 test images, 
the precision ratio and the recall ratio in System 2 
and System 3 were calculated and compared.  

For the calculation method, frames of the 
correct answers were determined for test images 
in the same way as the training data. Examples of 
the frames of the correct answer are shown in 
Figure 8. Then, the correct answers are compared 
to the detected results for 21 images respectively. 
Figure 9 shows an example of the detection result. 
This study evaluates precision ratio and recall 
ratio to compare the correct answer and the 
detection results. 

The precision ratio indicates how often 
correctly classified answers are obtained, and the 
recall ratio indicates how many correct answers 
are detected. The precision ratio and the recall 
ratio were respectively assessed by the following 
equations. 

 𝑝𝑟𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝)  (1) 

 𝑟𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑖𝑜 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛)  (2) 

where tp, fp and fn respectively stand for the 
sample number of the true positive, false positive 
and false negative samples. That is,  tp stands for 
the correctly detected samples, fp stands for the 
incorrectly detected samples, and fn stands for the 
correct answers that were not detected. The 
average values of the precision ratio and recall 
ratio calculated from the 21 images are compared 
in Table 2. It is noted that calculation is performed 
only for cracked regions, and the accuracy of 
detection for the “etc class” is not calculated.  

The results summarized in Table 2 show 
that both of the precision and recall ratios are 
improved in System 3. In particular, recall ratio 
has greatly increased. The distribution of recall 
ratios is shown in Figure 10, which also 
demonstrates that System 3 detects cracks more 
accurately than System 2. From this result, it is 
conceivable that the detection accuracy increases 
as the number of training data increases, and as 
the training data includes samples similar to the 
test data. However, the detection accuracy of 
some images was not improved. No feature 
common to these images was found, nor could 
found any relation to learning data. In the future, 
it is also necessary to verify whether 
improvements can be achieved by increasing the 
number of training data, or by changing the 
method of taking pictures (i.e. angle, brightness 
etc). Although System 3 improves the accuracy of 
crack detection, it is still a challenging task to 
obtain a perfect trace of cracks, thus there is a 
room for improvement. 
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Figure 8: Example of correct answer marks 

 

 
Figure 9: Example of the detection result 

 
Table 2: Comparison of accuracy 

System 
Precision 

ratio 
Recall ratio 

System 2 27.95 % 27.96 % 

System 3 41.63 % 60.75 % 

 

 
Figure 10: The distribution of recall ratios  

 

4. CONCLUSIONS 
In this study, for the purpose of improving the 
efficiency of bridge inspection, the applicability 
of an UAV equipped with a camera for practical 
inspection use was investigated. Real-time 
detection of damaged parts in collected image 
data plays an important role in use of UAV. 
Learning Systems were constructed by using 
YOLO, which is one of deep learning methods 
capable of efficient object detection. The 
proposed system can detect cracks in real-time 
from images taken by the UAV. 
  Conclusions derived from this study are as 
follows. 

 The computation time to detect cracks was 
extremely short. It can be said that this method 
is practically effective. It was observed that 
the calculation time was comparable to 
existing methods. It is noted that accuracy 
cannot be ensured unless the image is of 
sufficient resolution required to detect cracks. 

 Concerning detection accuracy, it was 
possible to identify locations of cracks. 
However, the detection accuracy of cracks 
was about 60%. This means that further 
consideration is required for the improvement 
of detection accuracy. 

 Comparative studies on the influence of 
number of training data showed that detection 
accuracy might be improved as the number of 
learned data increases. Therefore, in order to 
improve accuracy, it is required to acquire 
sufficient high-quality training data. 

 The proposed approach is possibly applicable 
as a method of detection for other forms of 
damage such as corrosion, cracks, exposed 
steel bars and so on.  
Further improvement of accuracy is necessary 

for practical use of the system, and for that 
purpose it is necessary to obtain many data. 
However, it is currently difficult to obtain data 
from actual structures. In the future, there is a 
possibility that accuracy can be improved by 
using automatic image generation technology 
(Saito 2016) using deep learning and 
supplementing/securing less training data. Then, 
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it is necessary to verify not only the accuracy of 
the system, but also crack that improvements can 
be made with regard to the image data acquisition. 

Furthermore, if accuracy improves, it is 
expected that the proposed system will contribute 
to ensure the safety of a wide range of social 
infrastructures through faster, safer, and more 
efficient infrastructural damage detection for 
practice. 
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