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ABSTRACT: Seismic risk assessment of an infrastructure, intended as a system of systems including 
buildings, lifelines and critical facilities, is typically affected by several sources of uncertainty, 
classified as aleatory or epistemic. Momentum to this work came from the need not only to properly 
take into account all these uncertainties, but also to provide the confidence in the estimate and quantify 
the contribution of the employed models and parameters to the total uncertainty. After a brief overview 
about treatment of and sensitivity to epistemic uncertainty, this paper focuses on some critical issues, 
advocates the use of parallel models arranged in a so-called logic tree, and demonstrates the 
applicability of (modified) ANOVA to evaluate sensitivity of the total variance in the risk to each 
component of the input epistemic uncertainty, with reference to a “synthetic” city composed of 
buildings and a water network. Results show how the methodology can give the analyst a clear 
indication on which models or parameters are the most influential and thus deserve increased 
“knowledge” in order to reduce the total epistemic uncertainty in the problem. 

 

INTRODUCTION 
Modern societies heavily rely on their 
infrastructure to produce and distribute the 
continuous flow of essential goods and services 
they need (PCCIP, 1997). From a system-
theoretic point of view, the infrastructure is a 
system of systems (SOS), a super-system 
including a number of spatially distributed 
systems (i.e., buildings, lifelines and critical 
facilities). 

The best practice for the seismic risk 
assessment of an infrastructure should include 
not only taking into account all the relevant 
uncertainties affecting the problem, but also 
providing the confidence in the estimated output 
and quantifying the contribution of each input 
model to the total output uncertainty (i.e., 
sensitivity). 

Uncertainty affects seismic risk to an 
infrastructure in the following aspects: 

• Cause or hazard: Regional seismicity 
(event magnitude and location, local 
seismic intensities at vulnerable 
components’ sites). 

• Physical damage: Fragility of vulnerable 
components as a function of local seismic 
intensities (fragility functions). 

• Functional consequences: Network flow 
analysis. 

• Impact (e.g., estimation of injured, 
fatalities, displaced population, economic 
loss). 

The above uncertainties can be classified as 
aleatory or epistemic, and both characterize the 
seismic input as well as the physical system. For 
instance, the geometry of seismic sources, their 
activity rate, the maximum magnitude of 
earthquakes they can generate, are all examples 
of quantities affected by epistemic uncertainty 
and entering into the seismic hazard evaluation, 
while the damage state of a component given a 
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value of the intensity measure is an example of 
aleatory uncertainty affecting the system. 

This paper focuses on epistemic uncertainty, 
that is, uncertainty in the choice of a model 
among different candidate models, called Type I 
in the following, or uncertainty in the parameters 
of a chosen model, denoted as Type II, or both. 

Published literature to date features many 
works addressing the treatment of and the 
sensitivity to epistemic uncertainty (of the 
output) in seismic risk assessment (e.g., Helton 
and Oberkampf, 2004). However, most of these 
works give only a partial view of the problem, 
dealing with either the treatment of uncertainties 
(e.g., Celic and Ellingwood, 2010, and 
Rokneddin et al., 2015) or the computation of 
confidence bounds (e.g., Rubinstein and Kroese, 
2016), or the sensitivity (e.g., Celarec et al., 
2012). Further, the available works focus on 
seismic hazard only, or seismic risk assessment 
of structural systems. 

The goals of this paper are i) to summarize 
relevant approaches in the current literature, 
discussing some critical issues, and ii) to propose 
and demonstrate a methodology that overcomes 
those issues, with reference to the seismic risk 
assessment of an infrastructure. 

The next two sections include a brief 
overview about treatment of and sensitivity to 
epistemic uncertainty in seismic risk assessment, 
while Section 3 presents an application to a 
“synthetic” city, composed of buildings and a 
water network, derived from that in Franchin and 
Cavalieri (2015). Results are presented in terms 
of distribution of the mean annual frequency 
(MAF) of exceedance curves of displaced 
population due to epistemic uncertainty, and 
contribution of different components of 
epistemic uncertainty to total output uncertainty. 

1. TREATMENT OF EPISTEMIC 
UNCERTAINTY 

1.1. Possible approaches 
As already said, uncertainty in the problem is 
partly aleatory and partly epistemic. It is useful 
to recall the possible approaches to the treatment 

of the epistemic component, which vary 
depending on its type: 

1. Epistemic uncertainty of Type I: parallel 
models Θ are considered in each step of the 
analysis, arranged in what is often called a 
logic tree, and distinct simulations are run for 
each different combination of branches, thus 
yielding multiple results (e.g., MAF of 
exceedance curves of a performance metric). 
Weights, summing up to 1, are attached to 
branches to reflect subjective degrees of 
belief of the analyst in each model. This is 
common practice in probabilistic seismic 
hazard analysis (PSHA). A typical 
uncertainty in model form considered in 
PSHA is represented by the ground motion 
prediction equation (GMPE). The outcome is 
usually expressed in terms of mean hazard 
curve over the logic tree, obtained as a 
weighted average of curves from each branch 
(Bommer and Scherbaum, 2008). Often, 
upper and lower fractile curves or, 
alternatively, a confidence interval around 
the mean curve are computed based on the 
same data (set of curves from the tree) to 
quantify the effect of epistemic uncertainty 
on the results. 

2. Epistemic uncertainty of Type II: each model 
parameter θ is modelled with a random 
variable, whose distribution describes its 
epistemic uncertainty. 

• a) These variables (e.g., the maximum 
magnitude 𝑀!"#) can be arranged in a 
hierarchical model, together with aleatory 
uncertainty (e.g., the magnitude 𝑀). In 
this case the risk analysis yields a single 
result, incorporating the effect of both 
aleatory and epistemic uncertainty (e.g., 
Franchin and Cavalieri, 2015). 

• b) Alternatively, and with a higher 
associated computational effort, the risk 
analysis can be repeated for discrete 
values of each parameter θ (e.g., 16th, 50th 
and 84th fractiles). This approach 
practically leads to arrange parameters in 
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a logic tree, as done for Type I 
uncertainty. 

3. Epistemic uncertainty of both Types I and II: 

• a) One possibility is to adopt approach 1 
for Type I and approach 2a for Type II 
uncertainties. This comparatively cheaper 
approach should be followed only as a 
way to carry out the expectation over all 
sources of uncertainty, presenting the 
results as the mean over the logic tree. It 
should not be used to compute 
confidence intervals or fractiles, because 
they would refer only to part of the total 
epistemic uncertainty. 

• b) The second approach, involving 
approach 1 for Type I and approach 2b 
for Type II uncertainties, consists in 
building an expanded logic tree 
combining both Type I and II 
uncertainties. Since they come from a 
probability distribution, both discrete 
values of the model parameters and their 
weights attached to tree branches could 
be assigned, for instance, according to 
Miller and Rice (1983). 

 
It should be clear from the above that the best 
practice for the treatment of Type II epistemic 
uncertainty would be to adopt approaches 2b or 
3b. The problem with these approaches, 
however, is that, in rigour, they can only be 
applied when all parameters are statistically 
independent, otherwise variation in one 
parameter changes the (conditional) distribution 
of the others and neglecting this makes the 
results dependent on the ordering of branches. 
This occurs in PSHA, for instance, with 
reference to the parameters of the Gutenberg-
Richter recurrence relationship (a and b values, 
and 𝑀!"# ), for which independent sequential 
branches are adopted, neglecting the correlation 
between a and b (Bommer and Scherbaum, 
2008). To the best knowledge of the authors, this 
issue remains unsolved, and possible solutions 
are proposed in Section 2.2. 

1.2. Quantification of output uncertainty due to 
the epistemic component 

In a probabilistic framework where a logic tree is 
used to deal with epistemic uncertainty 
(approaches 1, 2b and 3b), risk is estimated 
through a chain of modules, intended as groups 
of parallel choices (i.e., alternative models or 
model parameter values). The logic tree results in 
a number N of MAF of exceedance (λ) curves, 
denoted λ-curves in the following, for a 
performance metric of interest. Each λ-curve is 
related to one out of N simulations (e.g., Monte 
Carlo), each encompassing multiple runs. 

Propagation of epistemic uncertainty 
through the logic tree results in a distribution 
𝑓!(𝑥)  of the output 𝑋  (either λ for a fixed 
performance metric value or performance metric 
values for a fixed value of λ). As a minimum, 
𝑓!(𝑥) can be summarized through its mean 𝜇! 
and variance 𝜎!! . Computing the mean is 
normally termed harvesting the logic tree in 
PSHA practice. Finally, variability in 𝑋 is also 
often expressed through weighted fractiles, as an 
alternative to 𝜎!! , and the confidence interval 
around the mean curve is also used (but of course 
this is related to 𝜎!! but not alternative to it). 

For a tree with NΘ models and Nθ 
parameters, 𝜇! can be estimated as the weighted 
average of 𝑋:  
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 (1) 

In (1) Nbi and Nbk are the numbers of choices for 
the i-th model and the k-th parameter, 
respectively, xn is the MAF or performance 
metric value corresponding to the n-th branch of 
the tree, formed from the sequence j(1), …, j(NΘ) 
of models and m(1), … ,m(Nθ) of parameter 
values, while wn is the associated weight. It is 
noted that the final weights wn, as well as all 
other weights within each module, are 
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“reliability weights”, as opposed to “frequency 
weights”, i.e. they sum up to unity:  

 
  

wn
n=1

N

∑ = 1; wj i( )
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Nbi
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Nbk

∑ = 1  (2) 

The variance 𝜎!!  can be estimated through the 
weighted sample variance: 

 ( )22 2

1 1
1

= =
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∑ ∑
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X n n n
n n

s w x X w   (3) 

which is the unbiased estimator when weights 
sum up to unity as in (2). 

The weighted p-th fractile (with p being a 
percentage) is defined as the element xp of 𝑋 
satisfying the condition 

  
I ⋅wnn=1

N∑ = p 100 , 
where I is equal to 1 if xn is lower than or equal 
to xp, and 0 otherwise. Finally, the confidence 
interval around the estimate 𝑋 of 𝜇!, following, 
e.g., Rubinstein and Kroese (2016), can be 
obtained recalling that the estimator 𝑋  has 
approximately a normal distribution, 
N(𝜇!,𝜎!!/N), where N is the samples size. When 
𝜎!! is estimated as in (3), the confidence interval 
at the confidence level (1-α)100% (e.g., α = 0.05 
yields a confidence level of 95%), is: 

 
  

X − tN−1,1−α /2

sX

N
, X + tN−1,1−α /2

sX

N
⎡

⎣
⎢

⎤

⎦
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where tN-1,1-α/2 is the critical value for the 
Student t distribution with (N-1) degrees of 
freedom. 

2. SENSITIVITY OF OUTPUT 
UNCERTAINTY TO INPUT EPISTEMIC 
UNCERTAINTY 

2.1. Sensitivity to modules 
In order to assess which component of (input) 
epistemic uncertainty contributes more to the 
uncertainty in the output, sensitivity analysis 
should be carried out. Some authors, e.g., Celic 
and Ellingwood (2010) and Celarec et al. (2012), 
with reference to seismic risk assessment of 
structures, rather than infrastructures, perform 

sensitivity of selected seismic response 
parameters (drifts, forces, etc.) to the input 
random variables, which include also Type II 
epistemic uncertainty. In these works output is 
commonly computed first with all input variables 
set to their medians, then, setting one input 
variable at a time to a lower or upper fractile 
(typically the 16th and 84th), to represent the 
resulting variations with tornado diagrams. This 
procedure can be extended to frameworks 
including a logic tree. For each choice, the 
weighted average 𝑋  is computed considering 
only the logic tree branches involving that 
choice. The sensitivity of epistemic uncertainty 
to logic tree choices can be still presented 
through tornado diagrams (see Figure 3b). 

Herein it is proposed to perform sensitivity 
analysis by means of the analysis of variance 
(ANOVA). ANOVA allows to test the 
assumption that a sample is divided into groups, 
by expressing the total variance in the sample, 
2
Xs , as the sum of a variance “within” each 

group, 2
,X Ws , and a variance “between” groups, 

2
,X Bs . If the ratio 2 2

,X B Xs s  is large, it means that 
the difference between groups is large. If each 
module in the tree is taken in turn as a criterion 
for grouping, and the set of results xn is divided 
into NG sub-groups each corresponding to a 
different choice in the module, the ratio   

sX ,B
2 sX

2

 
can be used to rank modules. The classical 
ANOVA expression is derived for a sample 
where all realizations have the same weight and 
reflect the underlying distribution, which is 
assumed to be normal. It can be shown that, if 
the sample is a weighted one as in the case at 
hand, the following relation holds: 
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where xgj and wgj are the output value and the 
associated weight corresponding to the j-th 
branch within the ng branches in the g-th group 
(g-th option in the considered module), and  

X g  
is the weighted average within the g-th group. 
Note that weights within a group do not sum up 
to unity. 

2.2. Case of correlated parameter values 
As pointed out above, in the presence of 
correlation between parameters in logic trees 
(approaches 2b and 3b), sequential modules can 
still be used, but care should be taken in 
conditioning the values of the subsequent 
parameter to those of the preceding one, in order 
for the results to be independent on the ordering 
of modules. One possibility is to change the 
weights, obtaining them from the distribution of 
each parameter conditional on the value of the 
correlated parameter that precedes it. This 
approach may not work in cases where there are 
other constraints involved. One such case that 
arises in the context of seismic risk analysis is 
related to the use of fragility functions, which are 
commonly postulated as lognormal and are thus 
defined by two parameters, the log-mean and the 
log-standard deviation. Epistemic uncertainty on 
these parameters is sometimes available. The two 
parameters are obviously correlated. As long as 
the component state is defined as binary, i.e. a 
single fragility function is employed, to 
determine whether the component is intact or 
damaged, the modification of the weights can be 
used. The problem arises when the component is 
not treated as binary but multiple states of 
damage are considered. In this case two or more 
fragilities are used. These fragility functions 
must be such that they never intersect. 

To overcome this issue, herein it is proposed 
to avoid the use of sequential modules 
corresponding to correlated parameters, but 
instead to lump them all together into the same 
module, accounting for their dependence within 
the module itself. Needed input data are the 
marginal distributions (e.g., normal with mean µ 
and standard deviation σ) of the fragility curve 

parameters and their correlation matrix. One 
parameter is fixed to a certain fractile and the 
same fractile of the remaining parameters is 
obtained using the conditional mean and standard 
deviation. For the formulation to be exhaustive, 
all combinations of conditioning and conditioned 
parameters are included. Indicating with ρ the 
correlation coefficient, with x1 the conditioning 
parameter (fixed at a fractile) and with x2 the 
vector of the conditioned parameters, it is 
possible to write: 
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  (6) 

The conditional mean vector and covariance 
matrix are obtained as:  

 

   

µx2 |x1
= µx2

+Cx2x1
x1 − µx1
( ) σ x1

2

Cx2x2 |x1
= Cx2x2

− Cx2x1
Cx1x2

( ) σ x1

2
  (7) 

The conditional standard deviations are simply 
the square root of the diagonal elements of 

   
Cx2x2 |x1

. Starting from the conditional means and 

standard deviations one can retrieve any fractile 
of the conditioned parameters. 

3. APPLICATION 
For demonstration purposes, a seismic risk 
assessment was carried out on the “synthetic” 
city shown in Figure 1, simplified from that in 
Franchin and Cavalieri (2015). The OOFIMS 
software for quantitative probabilistic seismic 
risk analysis, namely Object-Oriented 
Framework for Infrastructure Modeling and 
Simulation, developed (Franchin and Cavalieri, 
n.d.) within SYNER-G (2012), was used for the 
computations. 

Figure 1 shows that the city (infrastructure) 
is composed of two layers: buildings (BDG) with 
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15 by 15 km square footprint, and a water supply 
system (WSS), whose size, properties, and 
topology mimic those of real systems. Five 
seismogenic areas affect the city. 

 

 
Figure 1: The synthetic city and seismic environment. 
Black dots and empty circles in the WSS layer denote 
demand nodes and sources, respectively. 

 
For simplicity, only reinforced concrete 

(RC) buildings are present. A set of two 
lognormal fragility curves is provided, whose 
parameters are themselves characterized as joint 
normal variables (epistemic uncertainty of Type 
II), with a 4x4 correlation matrix. Further details 
can be found in Franchin and Cavalieri (2015). 

3.1. Modules, models and parameters 
A logic tree according to approach 3b in Section 
1.1 is used to estimate the effect of epistemic 
uncertainty on the seismic risk analysis results, 
and its sensitivity to models and parameters. The 
four employed modules, containing different 
choices of models or parameter values, concern 
(weights are indicated in brackets): 

1. 𝑀!"# for all the seismic sources 
a) 6.5 [0.4]; b) 7.0 [0.6] 

2. GMPE 
a) Akkar and Bommer (2010) [0.7] 
b) Boore and Atkinson (2008) [0.3] 

3. Fractiles of  εRR  in WSS fragility function 

a) 8.5th [0.25]; b) 50th [0.5]; c) 91.5th [0.25] 

4. Fractiles of parameters of lognormal fragility 
curves for RC buildings 

a) 8.5th [0.25]; b) 50th [0.5]; c) 91.5th [0.25] 
 

The fractile values and corresponding weights in 
modules #3 and #4 were set according to the 
work by Miller and Rice (1983). A Gaussian 
quadrature procedure and a selected weighting 
function are employed to approximate a 
continuous cumulative distribution with a user-
defined number of pairs of random variable 
values and cumulative probability. Each value is 
paired with a probability, so to obtain the 
probability mass function of the discretized 
random variable. Such probabilities are used as 
branch weights in a logic tree module containing 
several parameter values. For the case at hand, 
the parameter distributions in modules #3 and #4 
were discretized with three points, namely the 
8.5th, 50th and 91.5th fractiles with weights 0.25, 
0.5 and 0.25, respectively. 

As already pointed out, the four parameters 
of the two lognormal fragility curves for RC 
buildings are correlated. Following the approach 
proposed in Section 2.2 to take into account 
parameter correlation, the RC fragility module 
(#4 above) in the logic tree includes four 
branches for each fractile value. When the 50th 
fractile is considered, all branches provide the 
same set of fragility curves (i.e., the mean 
curves), so that only one branch has to be 
considered in this case. To summarize, the 
proposed formulation requires four combinations 
for both 8.5th and 91.5th fractiles and one 
combination for the 50th fractile, for a total of 
nine branches to include in module #4, thus 
resulting to be computationally affordable. 

3.2. Results 
The performance metrics of interest are the 
System Serviceability Index (SSI) of the water 
network and the displaced population (Pd). SSI is 
defined as the ratio of the sum of delivered flows 
in the post-earthquake damaged conditions to the 
sum of the water demands. In the implemented 
model, population can be displaced from their 

20 3 5
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2

110
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1510 0  5 0

BDG

HAZ

WSS



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 7 

homes either because of direct physical damage 
(building usability) or because of lack of basic 
services/utilities (building habitability, function 
of utility loss and hence SSI) resulting from 
damage to interdependent utility systems (only 
water system in this case). Details can be found 
in Franchin and Cavalieri (2015). 

The employed logic tree required a total of 
2×2×3×9=108 Monte Carlo simulations with 
1,000 runs each, which yield stable estimates of 
the considered performance metrics. 

 

 
Figure 2: MAF curves of Pd/P, with weighted average 
curve, 95% confidence bounds and lower and upper 
fractile curves. 

 
Figure 2 shows the MAF curves of the 

displaced population normalized to the total 
population, Pd/P, as obtained from the sequence 
of 108 simulations. A single curve, 
corresponding to an individual branch of the 
logic tree, quantifies the aleatory uncertainty 
contained in the employed models and 
parameters, while the spread of the curves 
around the average gives a clear indication of the 
epistemic uncertainty. Therefore, the distribution 
of Pd/P corresponding to the full suite of curves 
captures both aleatory and epistemic 
uncertainties (Bommer and Scherbaum, 2008). 
Together with the weighted average curve of 
Pd/P (for fixed MAF values), both the 95% 

confidence bounds and 16th and 84th weighted 
fractile curves are also reported, since they 
represent two different aspects, as already said. 
In particular, the confidence in the estimate 
increases (and thus the confidence interval is 
reduced) with the number of simulations, N, 
while the weighted fractiles are only function of 
the sampled values. 

Figure 3(a) presents the module importance 
ranking obtained from ANOVA, for return 
periods of 100 and 500 years. The two displayed 
bars for each module indicate the total variance 
for the two return periods, while the hatched 
portion inside the bars indicates the variance 
between groups and thus the importance of the 
module in terms of contribution to total 
epistemic uncertainty. The building fragility 
model has the highest importance, while the 
contribution of 𝑀!"#  is negligible. This plot 
gives the analyst a clear indication of which 
modules are the most influential and thus deserve 
increased “knowledge” (enhanced modelling, 
more data for calibration, etc.), in order to reduce 
the total epistemic uncertainty in the problem. 

Through the tornado diagram displayed in 
Figure 3(b), the sensitivity of the weighted 
average of Pd/P to the different choices in the 
considered modules is presented, for the same 
return periods used for ANOVA. The plot partly 
reflects the information gained from Figure 3(a), 
namely the importance ranking of modules, since 
the ones characterized by larger bounds between 
the extreme choices clearly give higher 
contribution to uncertainty. Further insight from 
Figure 3(b) concerns the only module containing 
models (i.e., #2 above): to yield higher Pd/P 
weighted average, the Akkar and Bommer 
(2010) GMPE must provide higher shaking 
intensities, compared to the Boore and Atkinson 
(2008) model. Finally, for all three modules 
containing parameter values, the sensitivity 
results are consistent with the input settings, in 
the sense that higher magnitude, upper fractile 
for  εRR  and lower fractile for building fragility 
parameters yield higher values of displaced 
population, and vice versa, as expected. 
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Figure 3: Ranking of modules (importance in 
contributing to the total output epistemic uncertainty) 
according to the proposed ANOVA method (a) and 
based on tornado diagrams (b). 

4. CONCLUSIONS 
The paper discusses treatment of and sensitivity 
to epistemic uncertainty within the context of 
seismic risk assessment of infrastructures. The 
latter include a number of spatially distributed 
systems, namely buildings, lifelines and critical 
facilities. The use of a logic tree approach is 
advocated. Such a methodology includes the 
treatment of the relevant uncertainties (both 
aleatory and epistemic) in the problem, as well as 
the sensitivity of uncertainty in the output to the 
components of epistemic uncertainty in the input. 
The latter is carried out by means of ANOVA. 
The formulation is general, and thanks to the 
proposed solution for handling parameter 
correlation, it can be applied to a range of risk 
assessment problems for structural and 
infrastructural systems. 
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