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ABSTRACT: As structures and civil systems age, decision-making over structural lifetimes requires an 
understanding of the long-term degradation of these systems. Due to the extensive uncertainties in 
degradation processes, including the number of possible degradation modes acting on a structure, their 
effects, external factors, and the long time duration, estimating degradation is complex. Many previous 
studies investigate the impacts of individual degradation modes on reliability, providing insights into 
the forms of functions that can be used to estimate degradation due to these mechanisms. These have 
been used as a basis for more general structural degradation models through the use of, e.g., linear, 
polynomial, or exponential functions. These methods provide an estimate for degradation that can be 
used to estimate long-term reliability. However, these models can be limited in terms of the number of 
degradation mechanisms accounted for and often do not match known physical constraints of 
degradation. We propose a new stochastic model for long-term structural degradation. This model is 
based on the mechanical properties of individual degradation modes. The degradation at any instance is 
calculated as a random sum of a random number of degradation modes acting on the structure. The 
effect of a degradation mode is modeled as a stochastic function based on its mechanical effect. 
Individual degradation modes include those that start at time of initial construction and those beginning 
later in the lifetime of the structure. The effect of one degradation mode on the rate of another is also 
considered. We apply the proposed model to three years of field monitoring data and compare the 
resulting analyses with estimations from existing functions. How structural inspection data can be used 
to learn or update the parameters of the model is also described. The proposed model results in a more 
accurate estimation of long-term degradation, leading to improved predictions of system responses and 
supporting reliability-based decision-making over structural lifetimes. 

 
As structures and civil systems age, decision-
making over structural lifetimes requires an 
understanding of the long-term degradation of 
these systems. Due to the extensive uncertainties 
in degradation processes, including the number 
of possible degradation modes acting on a 
structure, their effects, external factors, and the 
long time duration, estimating degradation is 
complex. There have been many previous studies 
on the effect of individual degradation modes on 
civil structures. For example, Mu et al. (2002) 

and Park et al. (1999) study the effects of 
chloride attack and sulfate attack, respectively, 
on concrete structures. Swamy and Al-Asali 
(1988) study the effect of alkali-silica reaction, 
Roy et al. (2001) acid attack, and Ueda et al. 
(2004) freeze-thaw cycles. For steel structures, 
Koh and Stevens (1991) and Wang et al. (2013) 
study the effects of fatigue and increased 
temperatures, respectively. These studies provide 
insights into the forms of functions that can be 
used to estimate degradation in structures due to 
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these mechanisms. For the studies listed, the 
functional forms suggested are, in order, shifted 
exponential, linear, linear, exponential, linear, 
and polynomial form estimator functions, or as a 
pre-defined function of the modulus of elasticity. 

When considering structural reliability 
overall, these studies have been used as a basis 
for the form of degradation functions, e.g., 
through the use of linear or exponential functions 
as in Li et al. (2015). With only a few terms in 
these functions, they can fail to capture the 
multiple varying mechanisms and rates of 
degradation for the different modes of 
degradation acting on a structure at any given 
time. The functions can also not match physical 
constraints and bounds of degradation. To 
account for the effect of different degradation 
modes, Saini and Tien (2017a) separate out terms 
of different forms in a structural degradation 
model. However, the model does not yet match 
expected properties of the degradation function 
as the proposed model in this paper seeks to do. 
The objective is for the degradation function to 
account for the mechanisms of different 
degradation modes while matching known 
physical constraints and bounds of degradation.  

Here, the proposed new stochastic model for 
long-term structural degradation is constructed 
based on combining several terms representing 
the mechanical properties of individual 
degradation modes. The degradation at any 
instance is calculated as a random sum of a 
random number of degradation modes acting on 
the structure. The model provides an estimate for 
structural degradation at any point in time during 
the structure’s lifetime. Predictions of 
degradation can then be used to estimate long-
term system reliability to support maintenance 
and retrofit decisions over structural lifetimes. 

The following section describes the derived 
structural degradation model in detail. Individual 
degradation modes considered include those that 
start at time of initial construction and those 
beginning later in the lifetime of the structure. 
The effect of one degradation mode on the rate 
of another is also considered. We describe how 

structural inspection data can be used to learn or 
update the parameters of the model. We apply 
the proposed degradation model to three years of 
field monitoring data and compare the resulting 
analyses with estimations from existing 
functions. Finally, we discuss use of the model to 
support reliability-based decision-making, 
particularly for aging structures. 

1. METHODOLOGY: PROPOSED 
STOCHASTIC MODEL OF 
DEGRADATION 

1.1. Derivation of degradation function 
Let 𝜃(𝑡) be the degradation function such that 
the resistance of a structural component 
decreases with time and 𝑅(𝑡) = 𝑅'(1 − 𝜃(𝑡)), 
where 𝑅(𝑡) is the resistance at time 𝑡 and 𝑅' is 
the initial resistance. Based on this, the 
degradation function must have the following 
properties. The value of 𝜃(𝑡) must be between 0 
and 1, with 𝜃(0) = 0 and 𝜃(∞) = 1. In addition, 
𝜃(𝑡)  should be monotonically increasing over 
time except for external interventions such as 
repairs or retrofits.  

To capture the varying degradation modes, 
the function is formulated as a sum of various 
degradation modes, with weights indicating the 
respective contributions of each mode to overall 
degradation, as shown in Eq. (1). 

0 ≤ 𝜃(𝑡) = -𝑤/𝐹/(𝑡) ≤ 1
1(2)

/34

 

  (1) 

𝑁(𝑡) is the number of degradation modes acting 
at time 𝑡, and 𝐹/(𝑡) is the estimator model and 𝑤/ 
the corresponding weight for the 𝑖27 degradation 
mode. All weights sum to 1. Every individual 
degradation mode can be modeled as an 
estimator function of a particular form. However, 
each degradation mode may not act 
independently of all others. An individual 
degradation mode can be influenced by the 
impact of another mode. For example, in 
reinforced concrete structures, carbonation or 
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abrasion can increase the rate of corrosion. 
Therefore, to account for these effects, we model 
the estimator for the 𝑖27 mode as in Eq. (2). 

 𝐹/(𝑡) = 𝑓/(𝑡) + 𝑓:/(𝑡) (2) 

𝑓/(𝑡) is the estimator function for the individual 
𝑖27 mode and 𝑓:/(𝑡) is the effect of the 𝑗27  mode 
on the 𝑖27 mode. 𝑓:/(𝑡) is assumed to follow the 
same form as 𝑓/(𝑡), but its arrival is the same as 
the arrival of the 𝑗27  mode. Thus, we model the 
influence of one mode on the rate of another 
while not changing the way in which the original 
mode affects a structural component. 

Many degradation modes can be modeled 
with either exponential or constant rates and 
therefore as exponential or linear functions. 
Other potential functions are polynomial with 
degrees 0.5 or 2. Assuming that the numbers of 
degradation modes with these latter two forms 
are significantly lower compared to either linear 
or exponential modes, we estimate them with 
single terms modeling a smaller effect on the 
overall degradation. The degradation function 
then becomes 

𝜃(𝑡) = - 𝑤</𝐹</(𝑡)
1=(2)

/34

+ - 𝑤>/𝐹>/(𝑡)
1?(2)

/34

+ 𝑤@𝑎@𝑡B

+ 𝑤C𝑎C√𝑡 
  (3) 

where the subscript 𝑒  denotes exponential, 𝑙 
linear, 𝑠 square, and 𝑟 square-root. 𝑎@ and 𝑎C  are 
the coefficients for the square and square-root 
terms respectively. To include the effect of 
individual degradation modes that start at the 
time of initial construction and those beginning 
later in the lifetime of the structure, let us look 
more closely at the linear terms. The linear term 
is expanded as in Eq. (4) 

 𝐹>/(𝑡) = 𝑎/(𝑡 − 𝑡/) + 𝑎:/I𝑡 − 𝑡:J		 (4) 

where 𝑡/ and 𝑡:  are the arrival times for modes 
𝑖	and 𝑗, respectively. 𝑎/  is the linear coefficient 
for mode 𝑖	and 𝑎:/ is the linear coefficient for the 
effect of mode 𝑗  on mode 𝑖 . We assume that 

some degradation modes start acting on the 
structure at time 𝑡 = 0, while the others have a 
later time of arrival. In Eq. (4), this indicates that 
the effect of mode 𝑗  on mode 𝑖  begins after 
initiation of mode 𝑖 and 𝑡: > 𝑡/. Without loss of 
generality, we can assume that arrival times 𝑡4 <
𝑡B < ⋯. The linear functions term then becomes 

- 𝑤>/𝐹>/(𝑡)
1?(2)

/34

= 𝑤P𝑎P𝑡 + 𝑤Q𝑎Q𝑡 + 𝑤R𝑎R𝑡 + ⋯

+ S
0							𝑡 < 𝑡4

𝑤T𝑎T(𝑡 − 𝑡4)					𝑡 > 𝑡4
+ S

0							𝑡 < 𝑡B
𝑤<𝑎<(𝑡 − 𝑡B)					𝑡 > 𝑡B

+⋯		 

  (5) 

where terms 𝑎, 𝑏, 𝑐, …  denote modes acting 
starting at time 𝑡 = 0, and terms 𝑑, 𝑒,… denote 
modes starting at a later time. Assuming the 
arrival times of the later modes to be Poisson 
with a fixed rate, Eq. (6) represents the sum of 
linear terms in a compact form. 

- 𝑤>/𝐹>/(𝑡)
1?(2)

/34

 

=-𝑃(𝑛 = 𝑘) ]𝑡-𝑎/ −-𝑎/𝑡/
^

/34

^

/34

_
`

/34

+ 𝐴𝑡 

  (6) 

𝐴  is the coefficient for all the linear terms 
starting at 𝑡 = 0 and 𝑛 is the number of linear 
terms with a non-zero arrival time. In a similar 
way, we expand the exponential terms beginning 
with the exponential estimator function as shown 
in Eq. (7). 

𝐹</(𝑡) = I1 − 𝑒bcd(2b2d)J + e1 − 𝑒bcdI2b2fJg		 (7) 

𝜆/  indicates the exponential rate of the 𝑖27 
exponential mode. The exponential estimator 
function is then expanded as shown in Eq. (8). 
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- 𝑤</𝐹</(𝑡)
1=(2)

/34

= - 𝑤/

1=(2)

/34

+-𝑃(𝑛 = 𝑘)
`

/34

-𝑤/
^

/34
+ 𝑤P𝑒bci2 + 𝑤Q𝑒bcj2
+ 𝑤R𝑒bck2 …

+ S
0							𝑡 < 𝑡4

𝑤T𝑒bcl(2b2m)					𝑡 > 𝑡4
+ S

0							𝑡 < 𝑡B
𝑤<𝑒bc=(2b2n)					𝑡 > 𝑡B

+ ⋯		 

  (8) 

In Eq. (8), 𝑛 is the number of exponential terms 
with a non-zero arrival time and the counter 𝑘 in 
the summation is 𝑘 ∈ [1, 𝑛]  such that every 
possible number of terms is considered. The sum 
of the exponential terms from Eq. (8) can then be 
written as Eq. (9) 

- 𝑤</𝐹</(𝑡)
1=(2)

/34

= 𝑐 + - 𝑤/

1=(2)b`

/34

𝑒bcd2

+-𝑃(𝑛 = 𝑘)-𝑤/
`

/34

𝑒bcd2𝑒cd2d
`

/34

 

  (9) 

where 𝑐 < 1. To simplify Eq. (9), we consider 
the terms on the right-hand side of Eq. (9) as the 
probability density of a convolution of 
exponentially distributed random variables with 
varying parameters as in Akkouchi (2008). For 
each term, we multiply and divide by its 
respective 𝜆/, then use the expression as shown 
in Eq. (10) for the probability density of an 
exponential distribution convolution with 
varying parameters. 
 

𝑆`(𝑡) =-
𝜆4…𝜆`

∏ (𝜆: − 𝜆/)`
:34
:t/

`

/34

𝑒bcd2		 

      (10) 
 
In using Eq. (10), we assume that a subset of the 
degradation modes are more dominant than 

others in affecting the structure such that, in most 
cases, (𝜆: − 𝜆/)~𝜆: . Thus, the rate of total 
degradation of the structure is governed by a 
smaller number of dominant modes while a 
larger number of other modes have a relatively 
smaller effect. Correspondingly, the rate 𝜆: for 
the subset of dominant exponential modes 𝑗 is 
higher than that of other modes. In this way, we 
use the convolutions for each term to obtain the 
exponential terms. We then add the estimations 
for the linear, square, and square-root terms to 
form the full function. Once all terms are 
expanded and simplified, we use the Taylor 
expansion of each term to obtain the full 
degradation function as shown in Eq. (11).  

 𝜃(𝑡) = 1 − 𝑒bc2 − vwx	(4y(c2)
m
z)

`!
<|

}
z~

г`
			 (11) 

In the final form of the degradation model as 
shown in Eq. (11), the function has two unknown 
parameters: 𝑛  and 𝜆 . 𝑛  can be viewed as the 
number of degradation modes and 𝜆 the Poisson 
rate of arrival of modes. In the derivation of this 
function, we have ignored the higher order terms 
for the square and square-root terms because of 
the assumption that their relative impact on the 
extent of degradation is lower. The final form 
arrives from separating the Taylor expansion into 
two groups, with the first group directly 
converging into an exponential function and the 
convergence for the other group estimated as in 
Portnoy (1988) and Cherrualt and Adomian 
(1993). Looking at the values of the model at 𝑡 =
0  and 𝑡 = ∞ , this model fits the expected 
physical properties of a degradation function in 
terms of bounds and limits. It is adaptable to 
changes in structural properties over structural 
lifetimes by changing the two parameters. As 
there are only two parameters that need to be 
estimated, the function provides a way to 
estimate long-term structural degradation with 
limited data. 

1.2. Parameter estimation from data 
To estimate the parameters of the degradation 
model, we need at least two different 
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observations of structural monitoring data at 
different times. An example for a system that is 
instrumented with strain gauges is shown in Eq. 
(12)-(14). The strain gauges measure the strain at 
a particular instance of time. Assuming that the 
geometric properties are constant, the mechanical 
strains will be directly proportional to the 
modulus of elasticity of the system. Assuming 
degradation to be the fractional decrease in the 
modulus of elasticity of the structure over time, 
we estimate the parameters of the model by 

 𝜀�(𝑡) =
^

�(2)
		 (12) 

where 𝜀�  represents mechanical strains, 𝐸(𝑡) 
represents modulus of elasticity at time 𝑡, and 𝑘 
is a constant assuming the geometric properties 
of the structural component do not change during 
the time of data collection. The degradation can 
then be expressed as 

 𝜃(𝑡) = �(')b�(2)
�(')

		 (13) 

which is simplified to 

 𝜃(𝑡) =
m

��(�)b
m

��(~)
m

��(�)
		 (14) 

It is assumed that different data points are 
collected under similar loading scenarios. 
However, as any measured strains are a function 
of the loading applied on the structure, using data 
from multiple strain measurements increases the 
confidence in our estimates of the parameters of 
the model. A more detailed example of the 
calculations used to estimate the parameters 𝑛 
and 𝜆  are given in the presentation of the 
application. 

2. APPLICATION 
We apply the proposed degradation function to a 
set of bridge monitoring field data to assess its 
performance. The data is from the Streicker 
Bridge located on the Princeton University 
campus. The available data are measurements of 
strain, prestress losses, and temperature collected 
continuously over three years. The data is 
collected at the mid-span of the bridge. The 

strain and temperature data is collected every 
five minutes, while the prestress data is collected 
at varying times over the three-year period. 

To evaluate performance of the model, we 
divide the data into two sets. The first two years 
of data is used as a training set to estimate the 
parameters of the model. The data from the third 
year is used as the testing set. From the training 
data, we estimate the model parameters using the 
value of degradation at each time step with each 
time step representing a single day. We then 
calculate the average of the values from all 
estimates at each time step to obtain the value for 
each parameter. 

For the calculations for this application, 
given the structure as a pedestrian bridge with 
data collected over three years, we assume that 
the loading remains on average constant. The 
total strain measured from the strain gauges will 
be a sum of the thermal strain, mechanical strain, 
and strain from prestress loss. We assume that 
the mechanical strain directly relates to the 
degradation. The total strain 𝜀 is given as 

 𝜀 = 𝜀27<C�P> + 𝜀� + 𝜀�C<@2C<@@	 (15) 

The thermal strain is calculated as 

 𝜀27<C�P> = 𝛼I𝑇 − 𝑇C<�J		 (16) 

where 𝛼 is the coefficient of thermal expansion, 
taken to be 10 × 10b�, 𝑇 is the temperature at 
the time of data collection, and 𝑇C<�  is the 
reference temperature, taken to be 20℃, around 
the average of the temperature measurements in 
the training set. With these definitions, the total 
strain at a given time 𝑡 becomes  

𝜀(𝑡) = 𝛼∆𝑇 + ^
�(2)

+ ∆�
�(2)

	 (17) 

where ∆𝑃 is the prestress loss until time 𝑡. For 
Eq. (14), we use the temperature data along with 
prestress data to subtract the thermal strains and 
strains due to prestress loss to obtain the values 
of mechanical strains. Eq. (13) is then used to 
estimate 𝜃(𝑡). Adjacent pairwise values of 𝜃(𝑡) 
are used to calculate 𝑛  and 𝜆 , with the final 
values of the two parameters taken as the average 
values across the training dataset. 
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Figure 1 shows the strain and temperature 
data collected over the first three years from the 
example application. Figure 2 gives the 
prestressing force over the three years. 

 
Figure 1: Strain (left axis) and temperature (right 
axis) data for first three years  

 
Figure 2: Prestressing force for first three years  

3. RESULTS 
The first two years of the data shown in 

Figure 1 and Figure 2 are used to estimate the 
parameters. From this data, the final estimated 
degradation model parameters are 𝑛 = 3.4 and 
𝜆 = 0.07. Using the estimated parameters, we 
test the proposed degradation model on the data 
in year three to evaluate the accuracy of the 
function to predict the structural degradation. 
The separation of the data into the training and 
testing sets enables us to test the generalizability 

of the model and assess the accuracy of the 
model on previously unseen data.  

To evaluate performance of the proposed 
model, we compare the results with results from 
widely used exponential, gamma, and linear 
regression models. For the comparison models, 
the corresponding model parameter values for 
the exponential, gamma, and linear regression 
models are also calculated based on the training 
set data. The parameters for each model are 
estimated pairwise for adjacent dataset values 
and the overall average is used as the 
corresponding model parameter. All models are 
then applied to the third year testing data. Figure 
3 shows the results of applying the obtained 
values of the parameters for the different models 
to the testing data to evaluate performance. The 
open circles represent the degradation as 
calculated from the collected field data at every 
time step, computed as the average degradation 
for that day. 

 
Figure 3: Fitting of varying models to testing data  

 
In Figure 3, the proposed model 

outperforms the other models in terms of root 
mean square error (RMSE) between the 
estimated and field-measured values. The RMSE 
for the proposed model is 5.17%, while it is 
10.98% for linear regression, 9.16% for 
exponential, and 7.44% for gamma models. In 
addition to the improved accuracy on the testing 
dataset, advantages of the proposed model 
include the fact that it is based on accounting for 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 7 

the physical mechanisms of multiple degradation 
modes and satisfies theoretical constraints on the 
degradation values. 

To evaluate the proposed degradation model 
over longer time periods of interest for decision-
making over structural lifetimes, Figure 4 shows 
the predicted structural degradation for the 
varying models over 100 years.  

 
Figure 4: Predicted degradation for the varying 
models over 100 years  
 

While the performance of the four models 
appears close in Figure 3, we see divergence in 
their predictions over longer time periods as seen 
in Figure 4. This is particularly true for the linear 
regression model. As the linear regression model 
is unbounded, it is not a realistic representation 
of degradation. The proposed degradation 
function enables an improved understanding of 
the long-term reliability of a structure or civil 
system. While the proposed model’s prediction is 
close to that of the exponential and gamma 
models in Figure 4, we expect improvements in 
performance for the proposed model compared to 
previous models similar to the increases in 
accuracy seen for the testing data. This could be 
validated with additional field data as it is 
collected over the lifetime of a structure. 

In this application example, the model is 
trained on a relatively short time duration dataset 
and the results extended to a longer time duration 
as shown in Figure 4. With any long-term 

predictions of performance, there will be 
potential errors and uncertainty. As the amount 
of training data and data available for model 
calibration increases, the accuracy of the 
predicted degradation is expected to increase. 
This data can be from structural health 
monitoring information. For example, if a 
structure is instrumented using accelerometers 
and LVDTs measuring accelerations and 
displacement histories over time, this 
information can be used to estimate the structural 
parameters, including mass, damping, and 
stiffness, e.g., as in Saini and Tien (2017b).	
Assuming that the geometric properties of the 
structure remain the same over time, the 
degradation can be estimated based on the 
fractional change in stiffness. In this scenario, 
the stiffness matrix would be used to estimate the 
parameters of the degradation function. For a 
system instrumented with strain gauges as in the 
example application, increased measurement 
data will update and improve the estimates of the 
degradation function parameters over time. This 
will tune the degradation function to match the 
measurement data, and lead to increased 
accuracy of the prediction of degradation when 
extending over longer structural lifetimes. 

In evaluating the use of the proposed 
degradation model to support decision-making 
over structural lifetimes, firstly, the proposed 
model is computationally efficient, with a 
computation time of 0.8s for the full calculation 
over 100 years on a personal computer. This 
efficiency enables analyses to be easily 
conducted and facilitates continuous updating of 
predicted degradation using the model based on 
field data that is continuously collected for 
monitored structures of interest. More broadly, as 
civil engineering structures age, and the 
resources available to perform repair or retrofit 
activities for these structures struggle to keep 
pace with the increasing inventory of aging 
structures, particularly in the United States, the 
proposed degradation function provides a way to 
assess long-term structural reliability. While 
precise values for probabilities of failure can be 
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difficult to predict, comparisons of projected 
degradation provide a way to prioritize structures 
based on predicted performance. With varying 
predicted reliabilities over extended time periods, 
this can inform the prioritization of resources to 
repair or retrofit the most vulnerable structures. 
The result will be decisions that minimize the 
expected probabilities of failure over time 
periods of interest. 

4. CONCLUSIONS 
The main contribution of this work is to propose 
a new stochastic model for structural degradation 
that is based on the physical mechanisms of 
varying degradation modes and matches 
theoretical constraints and bounds on the 
degradation function. The model includes 
varying degradation rates, the ability to account 
for the effect of one degradation mode on the 
rate of another, and modes that both begin at the 
time of construction and start later in the 
structural lifetime. The proposed degradation 
function includes two parameters that can be 
learned from collected field or structural 
monitoring data. Use of the function provides 
more accurate assessments of long-term 
reliability, supporting reliability-based decision-
making in terms of maintenance, repair, or 
retrofit decisions over structural lifetimes. 
Comparing degradation predictions over longer 
time periods enables prioritization of structures 
for such repair or retrofit activities based on the 
predicted reliabilities. 
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