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ABSTRACT: Reliability analysis of complex networks is often limited by increasing dimensionality of 
the problem as the number of nodes and possible paths in the network increases. This is true 
particularly for reliability analysis problems that exponentially increase in computational requirements 
with system size. In this paper, we present a new method for complex network reliability analysis. We 
call this the probability propagation method (PrPm). The idea originates from the concept of belief 
propagation for inference in network graphs. In PrPm, the message passed between nodes is a joint 
probability distribution. At each step, the distribution is updated and passed as the message to its direct 
neighbors. After the message passes to the terminal node, an estimation of the network reliability is 
found. The method results in an analytical solution for system reliability. We present the derived 
updating rules for message passing and apply the method to two test applications: a system distribution 
network and general grid network. In the message passing, some approximations are made. Results 
from the applications show high accuracy for the proposed method compared to exact solutions where 
possible for comparison. In addition, PrPm achieves orders of magnitude increases in computational 
efficiency compared to existing approaches. This includes reducing the computational cost for analyses 
from an exponential increase in computation time with the size of the system to a quartic increase. The 
method enables the accurate and computationally tractable calculation of failure probabilities of large, 
generally connected systems. 

 
Reliability analysis of complex networks is often 
limited by increasing dimensionality of the 
problem as the number of nodes and possible 
paths in the network increases. Analytical 
approaches typically result in exact calculations 
of network reliability. These include total 
enumeration, which lists all possible 
combinations of network components and their 
corresponding outcomes in the system. Other 
analytical methods include recursive 
decomposition algorithms (Dotson and Gobien 
1979, Lim and Song 2012, Kim and Kang 2013) 
and the use of Bayesian networks to model and 
analyze complex networks (Tien and Der 
Kiureghian 2017, Tong and Tien 2017). Recent 

studies have advanced methods to increase the 
efficiency of these approaches. However, in 
many cases, they continue to be characterized by 
exponentially increasing computational 
requirements as the size of the system increases. 

Alternatives to analytical approaches are 
simulation-based methods. These utilize a series 
of samples to compute system reliabilities 
(Bulteau and El Khadiri 1998, Shields et al. 
2015, Zuev et al. 2015). Challenges with these 
methods include selecting distributions from 
which to sample, enumerating states such as 
minimum link sets or minimum cut sets to 
compare samples against, and calculating 
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indicator functions to convert samples to network 
reliabilities. 

In this paper, we propose an analytical 
method to calculate the reliability of complex 
networks. The idea originates from the concept 
of belief propagation for inference in network 
graphs. The message that is passed between 
nodes in the network is a joint probability 
distribution. At each step, the distribution is 
updated and passed as the message to its direct 
neighbors. After the message passes to the 
terminal node, an estimation of the network 
reliability is found. The method results in an 
approximated analytical solution for system 
reliability. As a probability distribution is passed 
through the network, we call this method the 
probability propagation method (PrPm). The 
method is applicable for both general networks 
(Tong and Tien 2019a) and more specifically for 
directed acyclic networks as is characteristic of 
many infrastructure systems. We call the latter 
the directed probability propagation method 
(dPrPm) (Tong and Tien 2019b). PrPm for 
general complex networks is described here. 

The rest of this paper describes the process 
of PrPm. This includes selection of the 
propagation sequence and updating rules during 
message passing. In the message passing, some 
approximations are made. We present the 
derived updating rules for message passing. We 
then apply PrPm to two test networks: a system 
distribution network and general grid network to 
investigate its performance in terms of accuracy 
and computation time compared to existing 
methods. 

1. METHODOLOGY: PROPOSED 
PROBABILITY PROPAGATION 
METHOD (PrPm) 

1.1. Propagation sequence 
Proper selection of the sequence of nodes to 
propagate the probability distribution message 
ensures correctness of the final reliability 
assessment and informs the accuracy of the 
result. Correctness is ensured by guaranteeing 
that all nodes in the network are reached in the 

sequence. Prioritizing propagation to nodes with 
one direct neighbor (compared to multiple direct 
neighbors) improves accuracy of the reliability 
assessment because the approximations that exist 
in the general case become exact calculations in 
the one direct neighbor case. The rules for 
selecting the propagation sequence are as 
follows: 

First, newly defined propagated nodes must 
be the direct neighbors of propagated nodes. 
Second, newly defined propagated nodes should 
not separate any two non-propagated nodes. This 
guarantees that every node in the network is 
considered. Third, newly defined propagated 
nodes should not connect with each other. This 
guarantees that every link in the network is 
considered. For a given network, more than one 
propagation sequence may be identified 
satisfying these three rules. In that case, nodes 
with one direct neighbor should be prioritized for 
propagation as this yields no approximation in 
the calculation. 

1.2. Updating rules for message passing 
The probability distribution message is passed 
through the network according to the selected 
propagation sequence. The message is updated at 
each step according to the rules described in this 
subsection. We assume a binary network, i.e., the 
nodes in the network can be in one of two states 
such as 0 or 1 indicating failure or survival, 
respectively. We also assume that each node 
receives messages from at most two direct 
neighbors. The situation where a node has more 
than two direct neighbors is addressed through a 
nodal expansion procedure presented in the 
following subsection. 

We provide updating rules for two cases: 
one where a node receives a message from one 
direct neighbor as shown in Figure 1, or from 
two direct neighbors as shown in Figure 2. In 
these figures, empty circles represent non-
propagated nodes that have not yet received any 
message. Solid diamonds represent propagated 
nodes that will be involved in future propagation 
steps. We name these as boundary nodes. Solid 
circles represent propagated nodes that will not 
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be involved in any future massage passing. We 
name these as non-boundary nodes. In Figure 1 
and 2, we denote the node that receives a 
message as 𝑁, the direct neighbors that pass the 
message as 𝐴  and 𝐵 , and a general boundary 
node that is not a direct neighbor to 𝑁 as 𝐶. Let 
us consider the one direct neighbor propagation 
case first. 

 

 
Figure 1: Message passing from one direct neighbor  

 
In Figure 1, 𝑅! indicates the reliability of 

the link between 𝐴 and 𝑁. Let the probability 
distribution for nodes 𝐴 and 𝐶 be represented by 
the probability values as shown in Table 1. 

 
Table 1: Probability distribution for nodes 𝐴 and 𝐶 

𝐴 𝐶 Pr(∙) 
0 0 𝑃! 
0 1 𝑃! 
1 0 𝑃! 
1 1 𝑃! 

 
Let 𝑅  represent the reliability of node 𝑁 , 

i.e., 𝑅 = Pr(𝑁 = 1) . The updating rules to 
obtain the elements of the three-node joint 
distribution are then as shown in Table 2. Once 
the three-node joint distribution is calculated, we 
can easily define the new two-node joint 
distributions 𝑝(𝐴,𝑁) and 𝑝(𝐶,𝑁). 

 
Table 2: Updating rules when passing message from 
one direct neighbor 

𝐴 𝐶 𝑁 Update 
0 0 0 𝑃! 1− 𝑅!𝑅  
0 0 1 𝑃!𝑅!𝑅 
0 1 0 𝑃! 1− 𝑅!𝑅  

0 1 1 𝑃!𝑅!𝑅 
1 0 0 𝑃! 1− 𝑅!𝑅  
1 0 1 𝑃!𝑅!𝑅 
1 1 0 𝑃! 1− 𝑅!𝑅  
1 1 1 𝑃!𝑅!𝑅 

 
Figure 2 shows the case of message passing 

from two direct neighbors. 𝑅!  and 𝑅!  indicate 
the reliabilities of the links between 𝐴 and 𝑁, 
and between 𝐵  and 𝑁 , respectively. The 
probability distribution values for nodes 𝐴, 𝐵 , 
and 𝐶 are shown in Table 2. The updating rules 
for the two direct neighbors case are shown in 
Table 3. 

 

 
Figure 2: Message passing from two direct neighbors  

 
Table 3: Probability distribution for nodes 𝐴, 𝐵, and 
𝐶 

𝐴 𝐵 𝐶 Pr(∙) 
0 0 0 𝑃! 
0 0 1 𝑃! 
0 1 0 𝑃! 
0 1 1 𝑃! 
1 0 0 𝑃! 
1 0 1 𝑃! 
1 1 0 𝑃! 
1 1 1 𝑃! 

 
Table 4: Updating rules when passing message from 
two direct neighbors 
𝐴 𝐵 𝐶 𝑁 Update 
0 0 0 0 𝑃! 
0 0 0 1 0 
0 0 1 0 𝑃! 
0 0 1 1 0 
0 1 0 0 𝑃! 1− 𝑅!𝑅  
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0 1 0 1 𝑃! 1− 𝑅! 𝑅!𝑅 
0 1 1 0 𝑃! 1− 𝑅!𝑅  
0 1 1 1 𝑃! 1− 𝑅! 𝑅!𝑅 
1 0 0 0 𝑃! 1− 𝑅!𝑅  
1 0 0 1 𝑃!𝑅𝑅! 1− 𝑅!  
1 0 1 0 𝑃! 1− 𝑅!𝑅  
1 0 1 1 𝑃! 1− 𝑅! 𝑅!𝑅 

1 1 0 0 𝑃! 1− 1− 1− 𝑅! 1
− 𝑅! 𝑅  

1 1 0 1 𝑃!𝑅!𝑅!𝑅 + 𝑃!𝑅𝑅!𝑅! + 
𝑃! 1− 1− 𝑅! 1− 𝑅! 𝑅 

1 1 1 0 𝑃! 1− 1− 1− 𝑅! 1
− 𝑅! 𝑅  

1 1 1 1 𝑃!𝑅!𝑅!𝑅 + 𝑃!𝑅𝑅!𝑅! + 
𝑃! 1− 1− 𝑅! 1− 𝑅! 𝑅 

 
 From the updated four-node joint 

distribution shown in Table 4, the new joint 
distributions 𝑝(𝐴,𝑁) , 𝑝(𝐵,𝑁) , and 𝑝(𝐶,𝑁)  for 
future propagation steps can be defined 
accordingly. 𝑝(𝐴,𝐵) , 𝑝(𝐴,𝐶) , and 𝑝(𝐵,𝐶)  are 
updated as well. 

One important result from the updating rules 
given in Table 2 and Table 4 is that we need the 
joint distributions of only two nodes rather than 
all nodes during the message-passing process. 
While this yields an approximated solution, 
PrPm reduces the computational cost from an 
exponential increase with the number of nodes in 
the network 𝑂 2!  if a general full distribution is 
considered to a quartic increase 𝑂 𝑛! . A 
detailed computational complexity analysis is 
presented in the following subsection. 

1.3. Nodal expansion 
In general, a node may have more than two direct 
neighbors. In these cases, we expand the nodes 
such that each node has at most two direct 
neighbors, and the previous updating rules apply. 
An example where a node 𝑖 that has four direct 
neighbors (a) is expanded to have at most two 
direct neighbors (b) is shown in Figure 3. 

 

  
(a) (b) 

Figure 3: Nodal expansion example from four direct 
neighbors (a) to two direct neighbors (b)  

 
For the nodal expansion case shown in 

Figure 3, instead of updating node 𝑖 directly, we 
update the node sequentially 𝑖! → 𝑖! → 𝑖! → 𝑖!. 
Nodal expansion is performed before beginning 
the message passing. Without affecting the 
connectivity of the original network, the 
additional links created by nodal expansion are 
set to be 100% reliable. PrPm then proceeds with 
the expanded network. 

The nodal expansion in combination with 
the updating rules governs the computational 
complexity of PrPm. For a network of 𝑛 nodes, 
as we need to expand the node to ensure that 
every node receives information from at most 
two direct neighbors, the newly defined 
propagated nodes connect to 𝑂(𝑛)  neighbors 
with the maximum number being 𝑛 for a fully 
connected network. Thus, there will be 𝑂(𝑛!) 
nodes in total. According to the updating rules, 
for each newly defined propagated node, the 
computational cost for that node is 𝑂(𝑛!). This 
is due to the number of 𝐶  nodes being 𝑂(𝑛!) 
with the maximum number being 𝑛! − 2 , 
excluding node 𝐴 and node 𝑁 as shown in Figure 
1. Therefore, the total computational cost is the 
combined individual computational costs, 
𝑂 𝑛! 𝑂 𝑛! = 𝑂(𝑛!). 

2. NETWORK TEST APPLICATIONS 
To assess performance of the proposed PrPm, we 
apply it to two test networks. We are interested 
in the accuracy of the method as well as its 
computational cost. Both networks have exact 
solutions for comparison of accuracy. All results 
for computation times are based on computations 
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run in MATLAB_R2016b on a 16 GB RAM 
computer. 

The first application is a system distribution 
network with multiple sources for a resource to 
flow to a single sink. The performance of PrPm 
is evaluated across a range of link reliabilities for 
this case. The second application is a highly 
connected general grid network to assess the 
performance of the proposed method in terms of 
both accuracy and efficiency for systems of 
increasing size. 

2.1. System distribution network 
Figure 4 shows the system distribution network 
test application, previously investigated in Der 
Kiureghian and Song (2008) and Tien (2017). 
Nodes 1, 7, and 18 are sources in the network 
and shown as solid diamonds in the first 
propagation step, i.e., they are propagated nodes 
that will be involved in future propagation steps. 
Node T is the terminal sink node. The reliability 
at node T, or the probability of providing the 
system resource at node T, is of interest. 

 

 
Figure 4: Configuration of system distribution 
network test application  

 
For this example, all components are 

assumed to be independent and no nodal failure 
is considered. Previous studies assess network 
reliability based on varying nodal failure 
probabilities. Here, we convert to link failure 
probabilities. Compared with the original 
network, links 1− 2 , 3− 10 , 5− 13 , 7− 8 , 

11− 19, 14− 21 and 16− 18 are assumed to 
be perfectly reliable as there are no additional 
elements on these links. All other links, which in 
the original power distribution system example 
have circuit breakers, switches, and transformers 
located on them, have a probability of failure 𝑝!. 

The results of PrPm to calculate the 
reliability at node T are shown in Table 5. 
Network reliability is indicated as “Rel” in the 
table. For this network, the existence of the 𝐶 
node as shown in Figure 2 during the message-
passing process introduces errors into the 
propagation. Therefore, the results obtained by 
PrPm are an approximation in this case. In Table 
5, the accuracy of PrPm is compared with the 
exact solution obtained by total enumeration and 
the sampling-based solution from Monte Carlo 
with 10000 realizations. The percent error, 
indicated “% err” in the table, is calculated 
relative to the network failure probability. 
Results are shown across a range of link 
reliabilities. 

 
Table 5: Accuracy of PrPm compared with exact 
solution and Monte Carlo across varying link 
reliabilities 

𝑝! Exact Monte Carlo PrPm 
Rel % err Rel % err 

0.01 0.9899 0.9912 12.8713 0.9899 0 
0.05 0.9476 0.9454 4.1985 0.9474 0.3817 
0.10 0.8900 0.8936 3.2727 0.8888 1.0909 
0.15 0.8264 0.8211 3.0530 0.8233 1.7857 
0.20 0.7551 0.7635 3.4300 0.7503 1.9600 

 
In addition to accuracy, computational 

efficiency is investigated. Results for the 
required computation time to calculate network 
reliability for the exact solution, Monte Carlo, 
and PrPm are shown in Table 6.  

 
Table 6: Computation time (s) for PrPm compared 
with exact solution and Monte Carlo 
Exact  Monte Carlo PrPm 
Time Time Ratio Time Ratio 

113.63 1.1013 103.18 0.0629 1806.52 
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From Table 5 and Table 6, PrPm 
outperforms Monte Carlo simulation in both 
accuracy and computation time. As expected for 
simulation-based methods, the percentage error 
for Monte Carlo increases as the failure 
probabilities decrease. In comparison, PrPm 
increases in accuracy as failure probabilities 
decrease. In terms of computation, as PrPm 
provides an analytical solution, the burden of the 
method remains constant across system failure 
probabilities. Therefore, for all cases, PrPm 
increases the efficiency of obtaining the solution 
by one order of magnitude compared to Monte 
Carlo and more than three orders of magnitude 
compared to the exact solution. 

2.2. General grid network 
To assess performance of PrPm for general 
systems, a general grid network is analyzed and 
performance evaluated for grids of increasing 
size. An example 5x5 grid is shown in Figure 5. 
The corner-to-corner reliability from the source 
node (indicated as S) to the terminal node 
(indicated as T) is of interest. For the problem, 
link reliability is assumed to be 0.9 with node 
reliability 1. 

 

 
Figure 5: Example 5x5 grid network 

 
In PrPm, the increase in computational 

efficiency compared to the exact analytical 
solution is due to propagating only the two-node 
joint probability distribution during message 
passing compared to the full joint distribution. 
This results in an approximation error. To assess 
the effect of this approximation on the accuracy 
of the solution, Table 7 shows the estimated 
corner-to-corner network reliability obtained 

from PrPm compared to consideration of the full 
joint distribution. The obtained bounds from the 
full joint distribution are guaranteed to include 
the exact solution. Percentage error is calculated 
for the PrPm approximation result for network 
reliability compared to the median of the 
reliability bounds. Consideration of the full 
distribution is intractable for grids of sizes larger 
than 12x12. The computation time comparison is 
shown in Table 8. 

 
Table 7: Accuracy of PrPm compared with full 
distribution bounds for grids of increasing size to 
calculate corner-to-corner reliability 

Size PrPm Full distribution % 
error Upper Lower 

3×3 0.9833 0.9725 0.9724 1.1157 
4×4 0.9872 0.9751 0.9750 1.2461 
5×5 0.9877 0.9756 0.9755 1.2455 
6×6 0.9878 0.9756 0.9756 1.2505 
7×7 0.9878 0.9757 0.9757 1.2401 
8×8 0.9878 0.9757 0.9757 1.2401 
9×9 0.9878 0.9757 0.9757 1.2401 
10×10 0.9878 0.9757 0.9757 1.2401 
11×11 0.9878 0.9757 0.9757 1.2401 
12×12 0.9878 0.9757 0.9757 1.2401 
20×20 0.9878 / / / 
30×30 0.9878 / / / 
40×40 0.9878 / / / 
50×50 0.9878 / / / 
75×75 0.9878 / / / 
100×100 0.9878 / / / 
 
Table 8: Computation time (s) of PrPm compared 
with full distribution bounds for grids of increasing 
size 

Size PrPm Full Ratio 
3×3 0.1003 0.16 1.60 
4×4 0.1092 0.26 2.39 
5×5 0.1109 0.72 6.49 
6×6 0.1162 2.83 24.40 
7×7 0.1162 10.88 93.79 
8×8 0.1162 42.98 370.52 
9×9 0.1162 174.56 1504.83 
10×10 0.1162 723.55 6237.50 
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11×11 0.1174 2986.20 25523.08 
12×12 0.1287 12688.82 98362.95 
20×20 0.2188 / / 
30×30 0.6423 / / 
40×40 1.7913 / / 
50×50 4.6558 / / 
75×75 46.1766 / / 
100×100 196.0232 / / 

 
From Table 8, we see that when considering 

the full joint distribution, there is an exponential 
increase in computation time as the size of the 
grid increases. For a propagation step with 𝑛! 
boundary nodes, calculating the joint distribution 
requires the storage and updating of 2!! 
elements, resulting in an exponentially increasing 
computational complexity with 𝑛  at 𝑂 2!! . 
With the consideration of the two-node joint 
distribution, the time complexity of computation 
for the proposed PrPm is quartic at 𝑂 𝑛! . With 
this, the accuracy of the result is slightly lowered 
by 1.24% as shown in Table 7. However, this 
error remains stable as grid size increases, and 
the computational cost is reduced by several 
orders of magnitude compared to the exact 
solution, with computational savings increasing 
as the size of the network increases.  

3. CONCLUSIONS 
The proposed PrPm provides a method to 
conduct efficient and accurate analysis of the 
reliability of complex networks. While the 
method results in an approximation of the 
network reliability, strategic selection of the 
propagation sequence improves its accuracy. The 
analysis of networks comprising nodes with at 
most two direct neighbors results in exact 
solutions of reliability. Ongoing work is 
investigating the applicability of the method to 
networks of different types. 
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