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ABSTRACT: Application of pure linear deterioration models for Water Distribution Networks (WDNs) 
is not effective in the representation of the physical degradation of water pipes because of the theoretical 
approach of water pipes deterioration or simply the uncertainty related to the specific form of effects that 
a covariate has on the response variable. Polynomial approaches are convenient to represent the 
complexity of the physical phenomena. However, even high degree polynomials wiggly estimate the 
relationships and are unsatisfactory in some regions where they fail to fit the observed data. Flexible 
regression techniques that enable automatic data-driven estimation of nonlinear relations between 
covariates and response constitute an alternative approach that is able to represent the physical 
deterioration process. In this study, a Geoadditive Bayesian regression model with smooth nonlinear 
splines functions for the continuous covariates and spatially distributed effects for the geospatial 
information of the pipes is applied to predict the failure rate of metallic water mains. The results highlight 
nonlinear dependency between continuous covariates and the response variable. A map representing the 
effect of the covariates and the geospatial location of the pipes on the response variable is produced. This 
map can be used as an early indicator to localize areas where the effect of covariates on the failure rate 
is high and prioritize them for inspections and maintenance. 
 

1. INTRODUCTION 
Water distribution network (WDN) is an 

essential part of buried urban water infrastructures 
and its failure has high economic, social and 
environmental costs (Wu and Liu 2017; Wilson et 
al. 2015). Individual pipe performance declines 
until failure occurs due to cumulative effects of 
pipes intrinsic characteristics, operational and 
environmental factors (Kakoudakis et al. 2017). 
Increased inspection activities of water pipes 
infrastructure due to the adoption of proactive 
management made available extensive pipes 
database. The availability of these database poses 
significant challenges in the development of 
deterioration models that are important for the 
continuity and quality of services provided 
(Scheidegger et al. 2015).  

Wilson et al. (2017) classified water mains 
deterioration models into two categories: (1) 
physical models that are more precise and do not 
require extensive historical data (e.g. Rajani and 

Tesfamariam 2004; Rajani and Kleiner 2001) and 
(2) statistical models that learn the failure causes 
in the historical record of failure of pipes (e.g. 
Kabir et al. 2015; Kleiner and Rajani 2001). The 
complexity and the lack of understanding of the 
physical mechanism leading to the failure of 
buried pipes coupled to the high cost of 
acquisition of the required data do not allow the 
use of physical models in large networked 
infrastructure (Kleiner and Rajani 2001). 
Statistical models are the most used models to 
predict water pipes failure because they can be 
applied with various levels of data and there is no 
need of understanding the physical mechanism 
that lead to the failure of pipes (Wilson et al. 
2017). Several drawbacks have been identified in 
statistical deterioration models for water mains 
(e.g. inaccurate prediction due to low data quality, 
applicable to specific region and limited number 
of available variables: lack of data). Recent 
development of statistical techniques can enhance 
existing deterioration models through the 
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inclusion of nonlinearity and capture the 
heterogeneities embedded in the geospatial 
location information. Geoadditive regression 
models overcome the above limitations. These 
models use Penalized splines (P-splines) with a 
reduced degree to capture the nonlinear effects of 
covariates and the unobserved covariates are 
represented by a surrogate geospatial variable. 
Balekelayi and Tesfamariam (under review) 
applied geoadditive regression model to study the 
deterioration of sewer pipes. Other applications 
are found in social sciences (März et al. 2016; 
Scheipl et al. 2013) and recently an application to 
tree falling during storms has been presented by 
Kabir et al. (2018). 

This study aims at improving existing 
statistical water pipe deterioration models through 
the inclusion of nonlinearity characterized by 
polynomial P-splines in the physical deterioration 
process and the geospatial information in terms of 
location variable as a surrogate for unobserved 
spatial variables not included in the data. A 
Gaussian Markov Random Field captures the 
spatial autocorrelation while random effects better 
represent observed local heterogeneities.  

2.  POLYNOMIAL P-SPLINES 
Assume the observations (��, ��, ��), � =

1, … , �  are elements in the inspection database 
where ��  (continuous variables) represents the 

pipe breakage rate, �� =  ����, … , ���� and �� =

����, … , ����  are vectors of categorical (e.g. 

material, cathodic protection) and continuous 
covariates (e.g. age, length), respectively. Linear 
model is reasonable and simple to interpret 
approach of simulating the effect of covariates on 
an output response. However, in natural 
processes (e.g. water pipes deterioration), there 
is some continuous covariates whose effects 
cannot, at least, a priori be described with simple 
linear functions. Generalized Additive Models 
where the linear predictors of continuous 
variables are replaced by nonlinear smooth 
functions define semi parametric predictor ��  as 
represented in the following equation: 

�� =  �� + ����� + ⋯ + �����

+ ��(���)+ . . . + ������� 
(1) 

where �� = the predictor of the observed quantity 
��, f1, …, fp = nonlinear smooth functions of the 
continuous covariates and the regression 
coefficients  ��, ��, … , ��  are identical to linear 
regression coefficients. Eq.(1) is composed with 
two components the parametric linear part 
representing the categorical variables linear 
effects and the nonlinear part capturing the 
nonlinearity in the deterioration process. Eq.1 can 
be rewritten as follow: Eq.(2) 

�� =  ��
������ + ��(���)+ . . . + ������� (2) 

Uncertainty has become an integral part of 
modeling and data acquisition (Kabir et al. 2015). 
Piecewise polynomial fit of the univariate 
functions ��  defined in Eq.1-2 with additional 

smoothness restrictions at the boundaries adds 
flexibility in the model to capture these 
uncertainties. The smooth functions �� defined for 

continuous covariate ��  are approximated by 
polynomial splines of degree ��. Each continuous 

covariate ��  domain is divided into small ranges 
defined at the knots �� <  �� < ⋯  < ���

. In each 

range, truncated polynomials are defined to 
correct the first part of the function as shown in 
Eq.(3). This latter gives a combined 
representation of a polynomial of degree ��  and 

locals polynomials defined in interval determined 
by the knots that fulfill both requirements of 
global representation and smoothness 
characterized by the truncated functions ���,� −

��,� ��

��
.  

where ���,� − ��,� ��

�� =  ����,� − ��,� �
�� �� ��,� ≥ ��,� 

0  ��ℎ������
 

Basic splines (B-splines) constitute a better 
alternative to solve the collinearity of truncated 
polynomials (nearly linear dependent) when the 

�����,�� =  ��,� + ��,���,� + ⋯ + ��,�����
�,�

��

+ ��,�������,� − ��,� �
�

�� + ⋯

+ ��,������� ���,� − ��,���� �
�

��
 

(3) 
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knots are very close to each other. B-splines in Eq. 
(4) are constructed from piecewise polynomials 
that are fused smoothly at knots to fit the required 
smoothness constraints. 

The univariate function ��will be the integration 

of (l+1) polynomial pieces of degree �� joined in 

a (l-1) continuously differentiable way. Eq. (3) is 
rewritten as given in Eq. (5) giving the basic 
flexible form of the polynomial representation: 

where ��,�  = amplitude (regression coefficient) 

that accordingly scale the B-Splines ��,� to fit the 

observed data. Each univariate spline �� is a linear 

combination of �� =  ℎ� + �� − 1  B-Splines 

(basis functions)  ��,� evaluates at specified knots 

 ��,��� =  ��,� <  ��,� < ⋯ < ��,�� =   ��,���. 

Good fit of observed data requires a high number 
of equidistant knots ℎ�  and an imposing a 

roughness penalty �� ∑ �����,��
���

���  on adjacent 

B-Splines coefficients  ��,�  to smoothen the 

function  ��  at the knots. The roughness penalty 

term will reduce the occurrence of high 
coefficients ��,� associated with B-splines defined 

in Eq.(5). A trade-off between the polynomial 
degree ��  and the number of knots ℎ�  is sought. 

Generally, 20 to 40 equidistant knots are 
recommended to ensure enough flexibility for 
polynomials degrees varying between 1 and 3 
(März et al. 2016). The penalized least square 
criterion is etimated using the following equation:  

The d-th (Δ�) order operator represents the 
difference between two regression coefficients of 
consecutives B-splines, i.e. Δ� =  ��,� − ��,��� 

for d = 1.  

In matrix representation, the smooth function 
�� Eq. (5) will be:  

�� = ��� ���,�� … �� ���,���
�

=  ���� (6) 

Therefore, the semi-parametric representation in 
Eq.(2) becomes:  

� = ������� + ���� + ⋯ + ���� (7) 

where �� =  ��,����,��  is a �� ×  ���  design 

matrix and �� =  ���,� … ��,��
� �  is a vector of 

regression coefficients. The penalized least 
squared criterion (PLS) is given by the following 
Equation (März et al. 2016): 

���(�) =  (� −  �)�(� −  �) + � �� ��
�  �� ��

�

���

 
(8) 

where ��  = penalty matrix based on the d-th 
order differences. However, this approach does 
not consider the uncertainty related to the data and 
the model itself. Furthermore, the minimization of 
the PLS in Eq. (8), often fail in practice because 
no optimal solution for the �� exists or the 

computational effort become intractable as the 
number of smooth function in the model increases 
(Lang and Brezger 2004). The development of 
computers and MCMC simulations made the 
Bayesian inference, an attractive way to analyze 
complex statistical models (Fahrmeir et al. 2013) 

3. BAYESIAN STRUCTURED ADDITIVE 
MODEL 
The developed structured additive model in 

Eq. (7) is flexible enough to capture the 
uncertainty related to inspection data and 
modeling process. The Bayesian framework that 
is convenient to capture the stochastic nature of 
the deterioration process allows the vectors of 
regression coefficients �� and � in the developed 

model to be considered as random variables and 
appropriate prior distributions are assigned. Non-
informative priors are assumed for the parametric 
coefficients � , i.e., �(��) ∝ �����, � = 1 … � . 
The first or second order Gaussian random walks 

��,����,�� = 1 , ��,����,�� = ��,�, … , ��,�������,��

= �
�,�

�� , ��,�������,��

= ���,� − ��,� ��

��, . . . , ��,������

= ���,� − ��,���� �
�

��
 

(4) 

�����,�� = � ��,�

��

���

��,����,�� ,  

    � = 1, … , � ;  
� = 1, … , � 

(5) 
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priors for the semi parametric part �� are defined. 

Random walks RM priors are represented as:  

���: ��,� = ��,��� + ��,�  

 � = 2 … �� 

 

(9) 

���: ��,� = 2��,��� − ��,���

+  ��,�  

� = 3 … �� 

 

(10) 

where ��,�~ ��0, ��
�� = Gaussian error terms. 

The quadratic penalty �� ��
�  �� �� , see Eq. 

(8), is replaced by a joint multivariate Gaussian 
smoothing prior distribution for the regression 
coefficients ��: 

����|��
��

=
1

���
��

���� ����/�
��� �−

1

2��
� ��

� ����� ,

� = 1 … � 

(11) 

where �� = penalty matrix based on the d-th order 

difference and ��
�  = variance parameter that 

control the smoothness of ��  and corresponds to 

the inverse of the smoothing parameter �� defined 

in the penalty term in frequentist approach. 

4. GEOADDITIVE MODEL 
The geospatial information such as the region 

where the pipe is buried can be a potential source 
of information that embed unknown covariates 
affecting the pipes failure. This information in 
terms of geospatial location covariates acts as a 
surrogate of unobserved covariates. It captured 
the possible autocorrelation and local 
heterogeneities. The Geoadditive model resulting 
from the addition of this valuable information to 
the structured additive model in Eq. (7) is 
represented in Eq. (12). 

For water mains applications, the geospatial 
information represents unobserved data from 
various human and natural activities (e.g. load 
transfer, surface use, surface type, other urban 
water (wastewater, storm water) failure, ground 
disturbance, groundwater level, ground failures, 
soil backfill type, direct environment pH)  

�� =  ��
�� + ��(���)+ . . . + �������

+ ����(��) (12) 

The geospatial effect ���� in Eq. (12) on the 

pipe’s failure has two components: the structured 
correlated effect �������  and the unstructured 
���������,  specific location effect (local 
heterogeneities), i.e. ���� =  ������� +  ��������� . 

The correlated spatial effect ������� =
(�������(��). . . �������(��) )� =  ��������������  is 
represented as follows: for each district � ∈
{1, … , �} in the region of interest (e.g. in a city, 
different communities may represent districts), a 
separate regression coefficient is estimated. The 
vector of regression coefficients ������� =
(�������(1). . . �������(�) )�  collects all distinct 
spatial effects. The (� × �) designed matrix 
�������  connects an observation i with the 
corresponding spatial effects. Gaussian Markov 
Random Field (GMRF) priors as represented in 
Eq. (13) are assigned to the spatial regression 
coefficients   ������� . These priors allow the 
districts in the neighborhood to have similar 
effects. 

 

Figure 1: First order neighborhood on regular grid 

�������(�)|�������(−�)

∼ � �
1

|�(�)|
� �������(�)

� ∈ �(�)

,

�������
�

|�(�)|
� ;   � = 1 … � 

(13) 

where �������(−�)  = vector containing all the 
spatial effects except the one for district s, and 
|�(�)| denotes the total number of neighbors that 
share a common boundary with district s. In 
Figure 1, the district S1 has 4 neighbors that will 
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be give |�(�)|= 4. For irregular regional data, the 
number of neighbors may vary. 

 
Figure 2: nonlinear partial effect of the Age 

covariate to the pipe breakage rate 

5. GEOADDITIVE PIPE FAILURE MODEL 
FOR WATER MAINS 
The above mathematical framework is 

applied to water main failure. Several covariates 
affect water main failure. In this study 13 
covariates have been considered and the way they 
affect the pipe failure is examined (see Table 1). 
The geospatial location of pipes (here the district 
in which the pipe is buried is considered as 
surrogate covariate representing the unobserved 
and unknown covariates that impact the failure of 
pipes.  

5.1. Methodology 

5.1.1. Build-up 
The availability of data from pipes 

inspections led to the search of more reliable 
models to predict the failure of pipes. Recent 
advances in statistical models such as the 
geoadditive approaches addressed two important 
issues in water pipes failure models’ 
development. First, it allows the inclusion of 
nonlinearity of covariates and next, they allow the 
analysis of the effects of unobserved covariates in 
terms of geospatial location variables that are 
included in models. 

5.1.2. Developments 
All the continuous covariates in the database 

are assumed to have a nonlinear effect to the Pipes 

Breakage Rate (PBR). Categorical covariates are 
modeled linearly, and their coefficients estimated 
following the least squared error techniques. 
Continuous covariates are modeled nonlinearly, 
and the coefficients are estimated as described in 
section 3.  

Table 1: Factors affecting the pipes breakage rate 
Covariates  Description 

Material Designed material of pipes (categorical: 1= cast 
iron, 2= ductile iron) 

Age The difference between the reported failure date 
and the installation date (continuous) 

Length The manhole to manhole distance (continuous) 

Diameter size of the pipes (continuous) 

NOPF Number of previous failures 

Rservs  Number of residential connections to the pipe 
(continuous) 

Cservs  Number of commercial buildings connected to 
the pipe (continuous) 

Soil 
corrosivity 
index 

The nature of soil representing its 
aggressiveness to metallic pipes (continuous) 

Cathodic 
Protection 
(CP) 

Is the cathodic protection in place(categorical) 

Thawing 
index 

Magnitude of Thawing season (continuous) 

Freezing 
index 

Severity of freezing period (continuous) 

Rain Deficit Difference between received and evaporated 
precipitation (continuous) 

Geospatial 
location 

The geographic location of the water pipe.  

PBR Pipe breakage rate is the number of breakage 
per year/100km (continuous) 

The proposed model is as follow: 

PBR~ 
�� (Material)+  �� (CP)+f(Age)+f(Rservs)+f(Cservs)
+f(Length)+f(Diameter)+f(NOPF)+f(FI)+f(TI)+f(
RD)+f(Vintage)+f(SCI)+f(TI,RD)+map(id,bnd 
=clgr)+ rd(id, bnd = clgr) 

(14) 

5.1.3. Advantages 
The proposed model is a realistic approach to 
mimic a physical deterioration process that is not 
well understood and some factors that may have 
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effects on the output response (PBR) are unknown 
or missing in the database. 

5.1.4. Contrast 
The detailed geospatial location of pipes is 
important but not necessarily required to run the 
simulation. The membership of a pipe to a given 
region is enough to develop the model. Different 
models have been developed to predict the PBR 
and estimate the remaining useful life. All these 
models highlighted the complexity of the 
phenomena. The expensive parameters turning to 
adjust the data driven techniques internal 
architectures are not required.  

5.1.5. Disadvantages 
The approach presented here is “supervised” since 
the developer decide to model the continuous 
covariates with the single nonlinear smooth 
functions. However, continuous covariates may 
have both types of effects leading to an aggregated 
effect on the output covariates.  

5.2. Application 

5.2.1. Case selection 
The proposed methodology is applied on the 
water distribution network of the City of Calgary 
in Alberta, Canada. The City has 1.2 million 
population and is situated at approximately 
1,048m above the mean sea level. A humid 
continental climate with mean daytime 
temperature ranging from 26°C in July to -3°C in 
mid-January is observed in the city.  

Calgary’s WDN is composed of 21.2% 
ductile iron (DI), 15.2% CI, 3.7% asbestos cement 
concrete (AC) and concrete (CON), 2.9% steel 
(ST), 0.8% copper (CU), and 56.3% plastic pipes 
(PVC, PE, and FPVC). The record database 
shows that CI and DI pipes experienced around 
95% of the total breaks, whereas 5% of the breaks 
are attributed to AC, CON, CU, ST, and plastic 
pipes. After a period of high deterioration 
observed between 1956 to 1980, the municipality 
implemented the cathodic protection coupled with 
an extensive replacement of corroded pipes. In 
this study, the deterioration of CI (cast iron) and 
DI (ductile iron) pipes is analyzed because they 

present a high percentage of breaks and they are 
more susceptibility to corrosion. 

5.2.2. Results 
The result in Figure 2 represents the partial 
nonlinear effect of the “Age” covariate on the 
PBR. The literature presents the “Age” having a 
bathtub shape. That shape is captured by the 
proposed modeling approach. In Figure 2, young 
pipes are the most prone to failure. This is due to 
the installation techniques and transportation and 
conservation of new pipes. Once installed the 
pipes mature and do not have significant effect to 
the failure. However, old pipes are more 
susceptible to failure and the “Age” effect should 
increase. The increase is not visible on the figure 
because the gaussian prediction of the expected 
mean do not capture the large uncertain area. It is 
required to beyond the mean and explore extremes 
effects to see the real patterns of the effects and 
reduce uncertainty. All the other continuous 

 
Figure 3:nonlinear partial effect of the length 

covariate to the pipe breakage rate 

Short pipes (see Figure 3) have high 
nonlinear effect on the PBR because, no particular 
treatment is required to install them compared to 
long pipes that are installed by highly qualified 
workers.  
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Figure 4:nonlinear partial effect of the diameter 

covariate to the pipe breakage rate 
The number of previous failure (see Figure 4)  

on the same pipe is a particular covariate. Once a 
pipe fails, it is repaired (mostly welded) and its 
physical characteristics are changed due to the hot 
processing. Thus, it will be more prone to failure 
as it ages 

 
Figure 5: nonlinear partial effect of the number of 

previous failure covariate to the pipe breakage rate 
Large diameter (Figure 4) has high effects on 

the pipes breakage rate. The large surface of 
metallic pipes exposed to the environment is the 
most probable reason for this observation. 

Climatic parameters (Freezing Index, 
Thawing Index, Rain Deficit) are shown to have 
effects on the output. These parameters should be 
analyzed in spatiotemporal framework to 
highlight their contributions to the failure of 
pipes. 

The map visualization (Figure 6) of areas 
where the structured geospatial effects are 
elevated is an important tool to orient future 

inspections for identification of new factors that 
are responsible of fast or low deterioration rate of 
water pipes.  

 
Figure 6: Structured geospatial effect of the location 

of pipes  

5.2.3. Discussions 
The application of geoadditive models to predict 
the failure rate of water pipes confirms the 
nonlinear effects of continuous covariates on the 
pipes breakage rate. The errors RMSE (1.74) and 
MAE (0.74) and the coefficient of determination 
(0.66) between predicted values and observed 
show a good agreement between observation and 
predictions. The range of the PBR is between 
0.018-167.64). Figure 7 shows a linear correlation 
between the predictions and observations. 
Metallic pipes are installed in the interior city of 
Calgary. The replacement work undertaken led to 
the installation of PVC pipes on the border.  

The challenge in the application of 
geoadditive models is the optimal definition of the 
number of knots to avoid overfitting (see Eq.(8)) 
and the degree of splines to reduce the 
computational burden. Furthermore, data 
spreading around the mean is an issue that should 
be addressed. The analysis of different univariates 
functions obtained show no particular pattern of a 
single factor to explain the variation of PBR. 
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Figure 7: linear correlation between the observed 

and predicted PBR 

6. CONCLUSION 
The application of geoadditive regression 
approach to pipe failure models demonstrated the 
existence of nonlinear relationships between 
regressors and response value. Moreover, the 
geospatial information incorporated in the model 
enhances the regression model (R2 = 0.66) and 
also gives visual effect on the areas where the 
unobserved covariates have high impact on the 
failure rate. This visual information will serve for 
further investigations(inspections) to understand 
and highlight the unknown factors that affect the 
pipes failure at each location. The predicted 
failure rate is spatially dependent. Future work 
will consist in the estimation of risk based critical 
pipes to assist in the prioritization of maintenance 
and or inspection.  
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