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ABSTRACT: The impact of the storms may worsen in the coming decades due to the rapid development
of the coastal zone in conjunction with sea-level rise and possibly increased storm activity due to
climate change. Greater progress on coastal flood risk management is urgently needed. Previous studies
proposed designs of dynamic seawalls (i.e., seawalls that can be heightened overtime to cope with the
increasing effect of climate change), based on long-term climate model projections. However,
significant uncertainties exist in long-term climate projections. Noticing that the climate condition can
be observed over time, we develop a reinforcement-learning-based strategy of adaptive seawall design
(i.e., the design is planned to be regularly updated based on observations), to cope with the deep
uncertainty in climate change effects. We apply this method to New York City and estimate its optimal
adaptive seawall design, based on climate projections of sea-level rise and storm surge flooding,
building level exposure data, and estimated construction cost of the seawall. We show that the total
lifetime cost (including the investment of the seawall and potential damage of the protected area) is
significantly reduced (by 20% to 40%) when the dynamic, reinforced learning strategy is applied,
compared to traditional design methods.

1. INTRODUCTION
Coastal flood risk will likely increase in the fu-
ture due to urban development, sea-level rise, sub-
sidence and potential change of storm surge clima-
tology. Many coastal cities are proceeding to plan
for increasing flood risks, as are government agen-
cies and private firms with vulnerable facilities for
lower Manhattan. One of the most typical exam-
ples is the Big U plan– a $836-million 15-feet sea-
wall motivated by Hurricane Sandy(2012) above
the mean sea level – to protect the $500 billion
business sector that influences the world’s econ-

omy (NYCGovernment (2017)). Recent Hurricane
Harvey (2017),Irma (2017) and Maria (2017) also
arouse the risk awareness of the local governments
(Shultz and Galea (2017); Xian et al. (2018)).

Most local governments are considering a static
coastal protection plan, such as Big U (New York)
or Galveston Seawall (Texas) because of the tra-
dition of static infrastructure design. Aerts et al.
(2014) also discussed about vairous static plans for
NYC.The static method is rooted in the long his-
tory of flood-zoning and mapping. These maps de-
veloped for risk calculations — such as FEMA’s
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HAZUS system for estimating the potential losses
from disasters — are also used to guide the protec-
tion investments. Protection from events with a par-
ticular return period, such as the 100/500-year flood
(usually used for flood maps) under the current cli-
mate, may be augmented by judgmental safety fac-
tors to account for the effect of climate change.

However, the nature of climate change is time-
varying and deeply uncertain over time. The pro-
tection decisions made only based on current cli-
mate information cannot remain optimal under cli-
mate change, which brings increasing risks of ris-
ing sea level and destructive hurricane potential
(Emanuel (2013); Kopp et al. (2014)). Thus, the
adaptive seawall design - allowing seawall height
to vary both temporally and spatially - becomes
economically attractive. The flexible design can
be at least as good as static-optimal design be-
cause any static plan is a feasible solution for the
adaptive optimization problem (Adam and Smith
(2008)). Many efforts have been made on dynamic
seawall design based on life-cycle cost (Lickley
et al. (2014); van der Pol et al. (2017)).These two
studies can represent two views of adaptive sea-
wall design: Dynamic Programming and Bayesian
Learning, respectively Lickley et al. (2014) brought
forward a viewpoint that given the future risk esti-
mation, the adaptive design can improve the eco-
nomic performance of the seawall project. How-
ever, Lickley et al. (2014) didn’t directly address a
more significance advantage of the flexible design
that we can learn the climate evolution and improve
our decisions based on the possible future exoge-
nous information. van der Pol et al. (2017) shows
a framework of a multistage method to analysis the
Bayesian optimization problem coupled with learn-
ing. Every time step, they enumerate future sce-
narios for several steps and choose the best action
for this time step. This method successfully cou-
pled learning into the analysis. However, they did
not apply the method to a real example. Moreover,
their method can deal with only several time steps
because of the exponentially increasing complexity
of the forwarding optimization method. Finally, the
Bayesian learning is not the extreme of the stochas-
tic optimization for seawall design problem.

The value of information may be represented in
three parts:1) projected dynamic climate risk in-
forming a dynamic design,2) continuous observa-
tion/policy adjusting the design, and 3) a frame-
work of future learning and updating reducing un-
certainties for current decision making. The dy-
namic programming approach of Lickley et al.
(2014) reflects the first type of value of climate
information. The Bayesian learning approach of
van der Pol et al. (2017) also addressed the second
value. But they did not address the third type of
value.

In this paper, we develop a reinforcement-
learning-based strategy of adaptive seawall design
(i.e., the design is planned to be regularly updated
based on observations), to cope with the deep un-
certainty in climate change effects. Mathemati-
cally speaking, dynamic programming regards the
future climate change independent of previous ob-
servations; Bayesian learning regards the future
climate change dependent on what has happened;
Reinforcement learning regards the future climate
change conditioning on all the information before
that specific time point. This method strictly im-
proves both dynamic programming method and
Bayesian learning method. We apply this method
to New York City and estimate its optimal adap-
tive seawall design, based on climate projections
of sea-level rise and storm surge flooding, build-
ing level exposure data, and estimated construc-
tion cost of the seawall. We show that the total
lifetime cost (including the investment of the sea-
wall and potential damage of the protected area) is
significantly reduced when the reinforced learning
strategy is applied, compared to traditional design
methods. Meanwhile, this method also shows bet-
ter performance in controlling the risk. Thus, there
is a great potential of applying reinforcement learn-
ing to tune the large global climate risk by human
action. Also, since the risk is well controlled un-
der reinforcement learning framework, people can
take more aggressive climate adaptation. These re-
sults may stimulate the local governments to design
policy against climate change because the risk of a
governmental project is more clearly estimated un-
der reinforcement learning and the method can help
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the local government to save resources.
Although this article is going to discuss the ad-

vantages and disadvantages for different optimiza-
tion methods, based on probability measure and
risk-neutral setting. The fuzzy math based robust
decision making (e.g. minimax regret, informa-
tion gap) and the risk-attitude behavior are not dis-
cussed here (Haasnoot et al. (2013); Ranger et al.
(2013)).These approaches may be compared with
the optimization discussed here in a future study.

2. METHODOLOGY
The objective function (expected life-cycle cost
for T years with discounting rate r) for seawall
height management can be separated into two
parts:expected damage (D(~A,st , pt)) for the pro-
tected area under given seawall height time series
(~A) and climatology change of sea level and storm
(sea-level change over time, st and annual surge ex-
ceedance probability distribution, pt(X > x)); The
construction cost (C(~A)) is also a function of ~A.
Considering seawall cannot be upgraded at every
arbitrary time point (which is a continuous time op-
timization problem) in reality, here we assume we
upgrade the seawall at the end of every δ years and
solve this problem as a discrete time optimization.
When δ approaches 0, the problem degenerates to
a continuous time problem and thus this discretion
treatment does not affect the generality of this prob-
lem. Here we assume T is divisible by δ and ~A is a
1× k vector (k = T/δ , regarding the initial seawall
height as A0 and note A−1 = 0) . Here we assume
the expected damage for the considered area for a
specific time (i) is related to current seawall height
A[i/δ ]+1. The cost of the construction is a function
of both A[i/δ ]+1 and A[i/δ ]. Under these settings,
the objective function can mathematically be writ-
ten as:

L(~At) =
∫ T

0
[D(~A,st , pt)+C(~A)]e−rtdt

=
T

∑
t=1

[Dt(~A,st , pt)+C(~A)]e−rt

≈
k

∑
i=0

δ

∑
m=1

[D(Ai,siδ+m, piδ+m)

+C(Ai,Ai−1,m)]e−r(iδ+m)

(1)

The seawall height should never be decreased:

Ai+1 ≥ Ai,∀i≥−1 (2)

And the construction cost is calculated as a linear
function of the seawall increment and only hap-
pens at the beginning of each period(Cb is the unit
price for seawall ($/mile/ft) and l(h) is the length of
coastline below seawall height h):

C(Ai,Ai−1,m) =

{∫ Ai
Ai−1

Cbl(h)dh if m = 1
0 else

(3)

Under these setting, we build up the framework
for dynamic programming, Bayesian learning and
reinforcement learning to solve the adaptive seawall
height problem.

2.1. Dynamic Programming
Assuming the future is uncertain, the dynamic pro-
gramming method employs the surge risk model-
ing under future climate (Lin et al. (2012)) and per-
forms the optimization for the objective function.
In this model, Lickley et al. (2014) backwardly
solved the problem because the seawall built before
one specific time point will not affect the future ac-
tion. However, the possible future action may af-
fect the seawall height now. Thus, by solving the
problem backwardly, we can reach the optimal of
seawall design, because the decision we calculate
out in former step will not conflict with the deci-
sion later. This logic holds for all three methods.

Mathematically, dynamic programming is cal-
culating the following problem in order for t =
k,k-1,...,0(when calculating At , we are assuming
At−1=0. This is reasonable because of the linearity
and time-invariance of seawall cost over height.):

At = argminAt

k

∑
i=t

δ

∑
m=1

[D(Ai,siδ+m, piδ+m)

+C(Ai,Ai−1,m)]e−r(iδ+m)

(4)
For the i th increment of seawall, it covers the

city for δ years and for a specific year y in that pe-
riod, the damage function can be calculated as (here
we are using static mapping method for the inunda-
tion process to keep the mathematical model sim-
ple):
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D(At ,sy, py) =
∫ +∞

At

e(t) ·d(x)∫ +∞

−∞

Pt(x− sy) f (sy)dsydx
(5)

In which x is the potential surge height; e(t) is the
development projection (future exposure divided by
the initial exposure of city); d(x) is the damage es-
timation for the protected urban area under a given
surge height x(which integrates the local building
distribution and digital elevation model); Pt is the
projected annual surge distribution under future cli-
mate; f (sy) is the distribution of sea level at year
y. Here a convolution method is applied to esti-
mate the total risk of storm surge(Lin and Shullman
(2017)).

This approach successfully changes the sequen-
tial decision-making problem on multi-dimension
to several 1-dimension problems at one time. For
each 1-dimension problem, a 1-dimension search
method can be applied to solve the problem.

2.2. Bayesian Learning
Bayesian learning approach here partially followed
van der Pol et al. (2017). The Bayesian learning
algorithm required a future "observation," for the
current stage we can assume our probability pro-
jection for future is accurate and apply Monte Carlo
sampling to simulate possible future circumstances.
Whenever we observe a sea level at specific time y,
we refresh our understanding of the climate condi-
tion (we assume hurricane condition under climate
change is not observable because of the limited data
size). Moreover, based on the refreshed informa-
tion, new dynamic programming is down for the pe-
riod for y to the end to instead of the biased original
dynamic programming.

The first algorithmic difference between dy-
namic programming is the time window we are
solving the dynamic programming: if we have al-
ready observed the sea level condition for year y,
we need to do the dynamic programming for years
post y.

The second difference is we need to use condi-
tional probability to estimate the future sea level

change under current condition. This will just af-
fect function D(At ,sy, py). Assuming we have ob-
served the sea level s1:y0 before year y0, for any year
y later than y0, we have:

D(At ,sy, py) =
∫ +∞

At

e(t) ·d(x)∫ +∞

−∞

Pt(x− sy) f (sy|s1:y0)dsydx

(6)
The full solution follows the procedure in Algo-

rithm 1.

Algorithm 1 Solving Bayesian Learning Optimiza-
tion for Sea Wall

1: for i1 = 0→ k−1 do
2: y0 = i ·δ , Observe sy0

3: for i2 = k→ i1 do
4: Âi2 = argminÂi2

∑
k
i=i2 ∑

δ
m=1

5: [D(Âi2)+C(Âi2, Âi2−1,m)]e−r(iδ+m)

6: end for
7: Make decision Ai1 = Âi1
8: end for

2.3. Reinforcement Learning
Noticing that actually for any time point y we are
going to make a decision, we can assume that we
have an observation of sea level sy. However, this
effect is not modeled in Bayesian Learning. In real-
ity, if we know that we can obtain new observations
in future when we are making decisions, the esti-
mated risk for future becomes much lower and thus
can help us better understand the real risk and give
out more economic policy - if the real risk is lower
than estimated, we tend to be conservative; now we
can make risk-neutral decision.

The reinforcement learning process usually
can be separated into two parts:1) optimization
schema and 2)value function approximation (Pow-
ell (2007)). Optimization schema is the method-
ology people use to search for the optimal solu-
tion, such as Monte Carlo Tree search, dynamic
programming, etc. Value function approximation
is usually used to estimate the outcome (revenue)
of every decision we made. Because of the dimen-
sion of decision variables (n steps and m choices at
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each step make the total possible decision size mn)
and possible observations (all the possible scenarios
in future), to calculate out the outcome (revenue)
of every decision by the exact optimization schema
seems not possible, so people need techniques such
as neural network or decision space downscaling to
approximate the outcome (revenue) of every deci-
sion they made at this time point.

Here we apply backward approximate dynamic
programming (BADP) to solve this seawall design
problem because the strict optimality of the back-
ward dynamic programming approach has been
proved in section 2.1 & 2.2. Moreover, also, the
approximated decision and observation space com-
pact the variable space considerably then the direct
way. Finally, although the feasible space for the
stochastic optimization problem in our original ver-
sion is continuous, by densification of our variable
space, our solution can finally approach the exact
solution.

The main goal of BADP is to design a look-up ta-
ble to tell the policymaker what to do when they ob-
served new information. For every possible obser-
vation in future, there is an action mapping to that
given the table produced by BADP. In this problem,
if we know the decision and sea level record for the
first T − δ years (~̃sT−δ ;here we use x̃ to present a
variable is predicted by model to distinguish with
the real observation x̂), then we can simply solve
the final year action Ak:

Ãk(~̃sT−δ , Ãk−1) =

arg min
Ãk≥Ãk−1

δ

∑
m=1

D(Ãk|~̃s, Ãk−1)+C(Ãk, Ãk−1,m)

(7)
And here we define a look up table

H(~s(i−1)δ ,Ai−1, i) to check the action to take
based on observed information ~s(i−1)δ and the i
th action. Here for the k th action, we enumerate
all the possible ~s(k−1)δ and made this table by
recording the Ak calculated out in eq.7.

Similarly, for other action time steps, we use Al-
gorithm 2 to record them and make the table back-
wardly.

When we take this algorithm into practice, the
probability density function f (~̃si1+1|~̃s′) is very diffi-

Algorithm 2 Solving Reinforcement Learning Op-
timization for Sea Wall

1: H(~s(i−1)δ ,Ai−1, i) = [ ] // look-up table
2: R(~s(i−1)δ ,Ai−1) = [ ] // Cumulative damage

from step i to k.
3: for i1 = k→ 1 do
4: for ~̃s′ in ~s(i1−1)δ
5: for Ãi1−1 in All Seawall Height do
6: Ãi1 = argminÃi1≥Ãi1−1

∑
δ
m=1

7: [D(Ãi1|s̃i2, Ãi1−1)+C(Ãi1, Ãi1−1,m)]+

8: e−rδ
∫+∞

−∞
f (~̃si1+1|~̃s′)R(~̃si1+1, Ãi1)ds̃i1+1

9: end for
10: Store H(~s(i−1)δ ,Ai−1, i) = Ai
11: Store R(~s(i−1)δ ,Ai−1)
12: end for
13: end for

cult to estimate because~̃s′ is very high-dimensional.
So we applied a cluster every ~̃s′ into 3 types: Up,
Down and Linear. Then we can use the information
of s̃i−1 and the curvature property to project s̃i.

3. EXPERIMENT SETTING
We applied the mentioned methodology to the NYC
"Big U" area as shown in Fig. 1.The BIG U calls
for a protective system around the low-lying topog-
raphy of Manhattan beginning at West 57th Street,
going down to The Battery, and then back up to East
42nd Street. United States Department of Hous-
ing and Urban Development(HUD) has dedicated
a total of $511 million, including Rebuild by De-
sign and National Disaster Resilience Competition
funding, toward the implementation of The BIG U,
and New York City has committed an additional
$305 million in capital funding to start the first
phases of the East Side Coastal Resiliency (ESCR),
and Lower Manhattan Coastal Resiliency (LMCR)
projects. This project is elegantly designed and
considering various functions and areas the city has.
However, the height design for the seawall (15 ft
above sea level on average) of the "Big U" arouses
our interest. This number is taken mainly based
on FEMA flood map add 100-year projected sea
level with the maximum likelihood. Here we con-
cern whether this simple method can capture the
real risk and optimal life-cycle cost of this mega-
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project. Our design covers 100 years from 2000
to 2100 for the seawall project. The seawall is as-
sumed to be elevated every 10 years.

Figure 1: The Big U: a protective system that encircles
Manhattan

To estimate the future loss, our sea level scenar-
ios are built on the data set built by Kopp et al.
(2014) and Rasmussen et al. (2016). Our annual
exceedance probability distribution for storm surge
is simulated by Lin et al. (2016). Our building dam-
age setting and seawall construction cost are from
Aerts et al. (2014). The discounting rate for seawall
construction cost is chosen as 5%.

The total construction cost we estimated for the
seawall part of "big U" is about $ 750 million which
is quite near the planned budget $ 836 million, as
they still have other non-structural systems that also
use the money. This allows us to believe the reason-
ability of our estimation for the construction cost.

4. RESULTS
Different methods suggest different seawall height
series as shown in Fig.2. The Big U original de-
sign is shown as the green line, which is static at 15
ft. We also based on life-cycle cost and searched
one static optimal level for the seawall around Big
U area which should be ∼17 ft. The bold red line
here shows the results of Dynamic Programming.

It starts at ∼ 14.5 ft, which is lower than static op-
timal and afterward it increases quickly to ∼ 18 ft
and at the end, it becomes ∼ 22 ft. The pale red
background color block shows the density of rein-
forcement learning strategy. This strategy is ran-
dom because we have to look at the simulated (in
reality, observed) sea level to decide each time step
(as well as Bayesian learning which is not shown in
the figure). We can find that reinforcement learning
strategy start from a lower level than dynamic pro-
gramming, which means this method is more "con-
fident" about future risk control than traditional dy-
namic methods. The average final seawall height
of the reinforcement learning result is on average
∼ 19.5 ft, which is between static optimal and dy-
namic programming result.

Figure 2: The Simulated Different Paths under different
strategies

We can find the risk differences between differ-
ent sea wall design strategies from Fig 3. The five
curves presents the total cost of damage and con-
struction of "Big U" design, reinforcement learn-
ing, Bayesian learning, dynamic programming and
static optimal in legend order. The chance for New
York City to suffer a 1 billion dollar damage (the
orange vertical line) in the future is ∼ 10% for
static and dynamic programming methods while
the Bayesian learning and reinforcement learning
methods show only about 10−3 probability. There
are still chance for static and dynamic programming
methods to exceed the 20 billion total cost thresh-
old while almost no chance for that to happen un-
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der Bayesian learning and reinforcement learning
method. Given the same survival level , for example
10−4, we can find the quantile damage for Big U/
static optimal/dynamic programming are 12/4/2.5
times over reinforcement learning, which shows the
excellent risk control ability of reinforcement learn-
ing.
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Figure 3: The Tail Part Risk Distribution for Life-cycle
Economic Damage simulated under different Strategies

The expected total costs for the twenty-first cen-
tury also different from each other. NYC will suf-
fer 1.75 billion dollar damage under Big U design,
while 1.37 for static optimal, 1.12 for dynamic pro-
gramming, 1.05 for Bayesian learning and 1.01 for
reinforcement learning. From this, we know that
under the deep uncertain climate changing the en-
vironment, a slight change in our coastal protection
design will lead to a 30% progress (from 15 ft Big
U to 17 ft Static Optimal). Moreover,we quanti-
fied that economic-based adaptive design can earn
20% (comparing dynamic programming with static
optimal) to 40%(comparing reinforcement learning
to static optimal) for the NYC coastal protection
problem. If the adaptive concept can be applied
to all the climate change threatened infrastructure
systems (even roughly), it can help people to save a
lot.

These results show significant improvements
from the current design. However, the improvement
will be more considerable after coupling of current
hurricane information. In this paper, the sizeable

nonlinear hurricane transition is not included be-
cause for current technique the hurricane transition
is hard to observe. In future condition, maybe we
can observe that and thus will improve the ability
of our reinforcement model.

5. CONCLUSIONS

In this article, we carefully analyzed the optimiza-
tion model for adaptive seawall design and applied
that to NYC. Based on the expected life-cycle cost,
it shows a strict rank between reinforcement learn-
ing method, Bayesian learning, dynamic program-
ming and static optimal. It is because of different
information and different probability measure dif-
ferent methods have and also because different ex-
tents for them to use the observed available infor-
mation. And also, we show that adaptive meth-
ods have several qualitative advantages. First, the
cost distribution for learning based adaptive meth-
ods are usually lower than other methods; this is be-
cause the adaptive methods can respond to the ob-
served climate information and adjust their strate-
gies, which helps them to control the global risk.
Secondly, we can find that the initial seawall height
suggestions for adaptive methods are lower than
static methods. This is because for static methods,
once their strategies are determined, they have to
cover the deep risk for a century or more, which
leads them to a conservative position. However, an
adaptive method can adjust themselves in the fu-
ture, so they are more "aggressive". As both the
deep uncertainty and the high cost are two main
concerns for the government to start climate risk
mitigation projects, the adaptive design seems to
point out a new way for the government to tune the
risk. For a government, they may be more will-
ing to organize a policy or project under the lower
risk sponsored by adaptive design. And also, with
a lower initial cost, governments may be more will-
ing and easier to gather resources and have a try on
the projects. This also may simulate inter-country
cooperation on climate agreements, because it can
lower the climate protection requirements for mem-
ber countries than the requirements under a static
evaluation of policy nowadays.
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