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ABSTRACT: This study is intended to verify validity of an efficient damage detection method by means 
of a Bayesian approach especially for noisy operational condition. A Bayesian inference was adopted to 
the regressive model representing bridge vibration. The posterior distribution for the regressive 
coefficients provides reasonable damage-sensitive features. Bayesian hypothesis testing is formulated 
using a Bayes factor, which is defined as a ratio of marginalized likelihoods to detect anomaly in the 
damage-sensitive features. Feasibility of the proposed method under noisy condition is examined via a 
field experiment on a continuous Gerber-truss bridge whose truss member was artificially severed. The 
proposed method robustly detected a damage considered in the experiment even under the varying traffic 
loadings. 

 

1. INTRODUCTION 
Management of aging infrastructure is a crucially 
important issue confronting civil engineering 
professionals. To reduce the potential risk of 
structural failure as well as life cycle costs, an 
efficient inspection method is desirable for 
preventive maintenance. Techniques of structural 
health monitoring (SHM) based on vibration 
measurements have been attracting bridge 
authorities. Changes in structural integrity of 
bridges engender changes in their modal 
properties that are identifiable from vibration data 
(Deramaeker et al. 2007, Zhang, 2007). 
Consequently, the vibration-based SHM is a 
useful technique if the modal properties of a 
bridge can be identified effectively. For bridge 
health monitoring, the output-only modal 
identification methods using traffic-induced 
vibration is an effective way to monitor the bridge 
since it requires no traffic control. 

In the output-only methods conducted on 
actual bridges, however, noises caused by 
unknown environmental influences often 
contaminate identified modal properties. To avoid 
influences of the noise to the identified modal 

properties, existing studies have developed 
damage indicator that is directly defined from a 
mechanical system model representing the bridge 
vibration. Nair et al. (2006) investigated damage 
sensitive-feature consisting of univariate 
autoregressive (AR) coefficients for a model 
building. To enable reliable decision-making for 
bridge maintenance, Goi and Kim (2017a) 
investigated a hypothesis-testing-based damage 
detection method using a vector AR (VAR) model 
through a field experiment on a truss bridge. 
Thereafter Goi and Kim (2017b) improved the 
hypothesis testing procedure by means of 
Bayesian statistics. For the proposed Bayesian 
damage detection, the AR model provides 
likelihood function for observed bridge 
acceleration, and thus the Bayesian inference for 
the AR model provides the posterior distribution 
of the regressive coefficients. Based on the 
posterior distribution, damage-sensitive features 
of the bridge are extracted. The proposed method 
adopts ratio of marginal likelihood called Bayes 
factor (Kass and Raftery, 1995), as a damage 
indicator for hypothesis testing.  
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The feasibility of the proposed methods has 
been verified through field experiments for a 
simply supported steel truss bridge (Goi and Kim 
2017b) and a simply supported steel plate girder 
bridge (Goi and Kim 2018). For those simple 
structures, the noise disturbance caused by 
operational traffic loading slightly affects to the 
result of the damage detection. The feasibility 
investigation under the noisy operational 
condition is accordingly desired as the next step. 
This study therefore investigates feasibility of the 
Bayesian damage detection under the noisy 
condition through a field experiment on a 
continuous Gerber-truss bridge. The feasibility of 
the proposed method is examined by means of a 
damage experiment which introduces artificial 
damage on a truss member of the bridge. A 
concise damage indicator that evaluates global 
changes in the damage sensitive features is also 
proposed for an easy decision-making. 

2. METHODOLOGY 
The proposed damage detection method 
comprises two steps: First, the posterior 
distribution for model parameters composing a 
VAR model from a data set of the intact bridge is 
determined by means of the Bayesian inference 
(Bishop, 2006). Second, Bayes factors calculated 
from newly observed data provide indicators for 
damage detection according to the Bayesian 
hypothesis testing. Figure 1 shows the flow of the 
proposed damage detection method. 

2.1. Bayesian inference 
Let 𝒚(𝑘) ∈ ℝ'×) denote a column vector of the 
discrete time series of the measured acceleration 
whose components correspond to m measurement 
locations. The following VAR model 
approximates the time series obtained from a 
linear structural system excited by white noise 
with sufficient model order p (He & De Roeck, 
1997). 

 𝒚(𝑘) = ∑ 𝐴-𝒚(𝑘 − 𝑖) + 𝒆(𝑘)
2
-3)  (1) 

where 𝐴- ∈ R'×'  denotes the i-th AR coefficient 
matrix and 𝒆(𝑘) ∈ R'×)  denotes a white noise 

vector. Focusing on j-th row in Eq. (1), the 
following regressive model is obtained. 

 𝑦6(𝑘) = ∑ 𝒂6-𝒚(𝑘 − 𝑖)
2
-3) + 𝑒6(𝑘) (2) 

where yj(k) and ej(k) respectively represent j-th 
element of 𝒚(𝑘)  and 	𝒆(𝑘) , and aji ∈ ℝ)×' 
represents j-th row of 	𝐴- . Assuming that the 
elements of 𝒆(𝑘)  are statistically independent 
from each other and follow Gaussian distribution 
with expectation 0, then yj(k) follows Gaussian 
distribution with expectation ∑ 𝒂6-𝒚(𝑘 − 𝑖)

2
-3) . 

For simplicity, letting 	𝑡; =  yj(k), w = [aj1, …, 
ajp]T ∈ R'<×)  and 𝝓; = [𝒚(𝑘 − 1)@,… , 𝒚(𝑘 −
𝑝)@]@ ∈ R'<×), probability distribution function 
(PDF) of 𝑡;  is given as  

 p(𝑡;|𝝓;, 𝒘, 𝛽) = N(𝑡;|𝒘J𝝓;, 𝛽K))  (3)  
where 	N(⋅ |𝜇,𝜎2)  denotes PDF of Gaussian 
distribution with expectation 𝜇 and variance 𝜎P . 
𝛽  represents the precision parameter of the 
regression, which is the inverse of the variance of 
the noise term ej(k). Assuming that n samples of 
𝑡;  and 𝝓;  are observed, and letting 𝒕 =
[𝑡), …	, 𝑡R] ∈ RR×)  and 	𝛷 = [𝝓) 	…𝝓R]@ ∈
RR×'<, the likelihood function for the parameters 
𝒘 and 𝛽 is given as  

p(𝒕|𝛷,𝒘, 𝛽) = ∏ N(𝑡;|𝒘J𝝓;, 𝛽K))R
;3) .  (4)  

 
Figure 1: Flow of the Bayesian damage detection. 
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With the observed	𝒕, Bayesian theorem provides a 
posterior joint PDF for 𝒘 and 𝛽 as the following 
conditional PDF. 

 p(𝒘, 𝛽|𝒕) = p(𝒕|𝒘, 𝛽)p(𝒘, 𝛽)p(𝒕)K)  (5)  

where 𝛷  is omitted from above equation for 
simplicity. p(𝐰, 𝛽) stands for a prior joint PDF 
for 𝒘  and 𝛽 , i.e., a PDF predefined before the 
observation of 𝒕. p(𝒕) is a constant in manner of 
the Bayesian inference, and therefore the posterior 
PDF	p(𝒘, 𝛽|𝒕) is obtained only from the observed 
data 𝒕 and the prior PDF p(𝒘, 𝛽). Adopting a non-
informative prior proposed by Jeffreys (1964), the 
posterior distribution is obtained as follows (Goi 
and Kim, 2017b). 

p(𝒘, 𝛽|𝒕) =  
N(𝒘|𝒎, 𝛽K)𝐿K))Gam(𝛽|𝑎, 𝑏)  (6) 

 𝒎 = 𝐿K)𝛷@𝒕  (7) 

 𝐿 = 𝛷@𝛷  (8)  

 𝑎 = 𝑛/2  (9) 

 𝑏 = )
P
‖𝒕 − 𝛷𝒎‖P  (10) 

where Gam(𝛽|𝑎, 𝑏) denotes PDF of 𝛽 following 
Gamma distribution. The parameters 
𝒎, 𝐿, 𝑎	and	𝑏  are hyperparameters of the 
posterior PDF, which determine the functional 
properties of the posterior PDF. 

2.2. Feature extraction and hypothesis testing 
Letting 𝐷c  denotes a reference dataset of 
acceleration that is observed from a bridge under 
healthy condition, the hyperparameters	𝒎c , 𝐿c , 
𝑎c and 𝑏c of the posterior distribution p(𝒘, 𝛽|𝐷c) 
are obtained by Eq. (7) to Eq. (10). Since Eq. (8) 
produces real, symmetric and positive definite 
matrix	𝐿c, the singular value decomposition of the 
hyperparameter 𝐿c is given as  

 𝐿c = 𝑈𝐿e𝑈@ = [𝑈)	𝑈P] f	
𝐿e) 𝑂
𝑂 𝐿eP

h f𝑈)
@

𝑈P@
h  (11)  

where 𝐿e ∈ ℝ'<×'<  is a diagonal matrix 
consisting of the singular values and 𝑈 ∈
ℝ'<×'< is an orthogonal matrix consisting of the 
singular vectors. 𝐿e) ∈ ℝi×i  and 	𝑈) ∈ ℝ'<×i  

respectively represent the q largest singular values 
and the corresponding singular vectors. 𝑂 
represents a null matrix with a proper size. Let 𝒘j  
denotes the orthogonal transformation of 𝒘 such 
that 𝒘j = 𝑈@𝒘 . Eq. (6) leads the posterior 
distribution for 𝒘j  and 𝛽 as  

p(𝒘j , 𝛽|𝐷c) = 	
Nk𝒘jl𝒎j , 𝛽K)𝐿eK)mGam(𝛽|𝑎c, 𝑏c) (12)  

where 𝒎j = 𝑈@𝒎c . This study presumes the first 
q elements in 𝒘j  are damage sensitive features 
related to modal properties of bridges and 
investigates hypothesis testing to detect changes 
in those features.  

Letting 𝐷n  denotes a newly observed test 
dataset for the hypothesis testing, the Bayes factor 
for a null hypothesis Hp  and an alternative 
hypothesis H)  is defined as a ratio of their 
marginal likelihoods as follows (Kass and 
Raftery, 1995). 

 𝐵 = ∬sk𝐷nl𝒘j, 𝛽msk𝒘j , 𝛽lH)mt𝒘jtu	
∬sk𝐷nl𝒘j, 𝛽msk𝒘j, 𝛽lHpmt𝒘jtu	

 (13)  

The null and alternative hypotheses respectively 
provide a stochastic model representing healthy 
and damaged condition of the bridge. The null 
hypothesis representing the healthy condition is 
merely modeled as the posterior distribution for 
the reference dataset 	𝐷c  as Eq. (12). That is, 
p(𝒘j, 𝛽|Hp) = p(𝒘j, 𝛽|𝐷c) . The alternative 
hypothesis represents that the damage sensitive 
features are altered due to damage on the bridge. 
This study adopts the following PDF presuming 
that the damage sensitive features are uncertain 
and that the other parameters follow the reference 
model.  

p(𝒘j , 𝛽|H)) = 	
Nk𝒘jl𝒎j , 𝛽K)𝐿evwnK) mGam(𝛽|𝑎c, 𝑏c) (14)  

where 𝐿evwn  is a hyperparameter defined as 
Eq. (15) for the alternative hypothesis 
representing that the damage sensitive features are 
uncertain. 

 𝐿evwn = x	
)
Ry
𝐿e) 𝑂

𝑂 𝐿eP
z (15)  
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where 𝑛c is the total data length of the reference 
dataset.  

Kass and Raftery (1995) suggested 
interpreting the Bayes factor on the logarithm 
scale. For example, if 2ln𝐵 is over 10, then the 
evidence of the alternative hypothesis H) against 
the null hypothesis Hp is interpreted to be ‘very 
strong’. This study thus investigates the 
logarithm-scaled Bayes factor 2ln𝐵 as a damage 
indicator. 

The marginal likelihoods for the whole 
observation is given as the product of the Bayes 
facotr obtained from all measurement locations. 
Accordingly, letting 𝐵(6) represent Bayes factors 
obtained from the j-th measurement location, the 
Bayes factor for whole observation 𝐵| is given as 

2 ln𝐵| = ∑ 2 ln𝐵(6)'
63) . (16) 

Hereafter 𝐵|  given in Eq. (16) is named as the 
“global Bayes factor”, and let 𝐵(6)  relevant to 
each of the measurement locations is named as the 
“local Bayes factor” to avoid confusion. 

3. FIELD EXPERIMENT 
The target bridge is a continuous steel 

Gerber-truss bridge, as shown in Figure 2. The 
bridge comprises 9 spans,  among which the 6th 
span is selected as the test span. The span was 
about 65.5 m in length and 8.5 m in width. The 
experiment was conducted during daytime over 
two days. The experiment truck remained the 
same, but its total weight varied slightly from 
253 kN on the first day to 258 kN on the second. 
The variation in the weight of the truck can be 
reasonably neglected herein. 12 accelerometers 
were installed on the bridge deck nearby the truss 
nodes. 9 of those accelerometers were at the 
damage side and the other three were at the 
opposite side, as shown in Figure 3. The sampling 
rate for all accelerometers was 200 Hz. 

A diagonal member was fully severed as the 
damage scenario. The artificial damage was 
applied at the fourth diagonal member which is 
marked in red in Figure 3. Figures 4a and 4b 

 
Figure 2: Photo of the target bridge. 

 

 
Figure 3: Sensor layout and damage location. 

 

a)  b)  

Figure 4: Photos of the damaged member:  
a) before the damage; and b) after the damage. 

 

Table 1: Scenarios considered in the field experiment. 

 Description 
Vehicle 
Speed 
(km/h) 

Number of 
Sample 

INT10 Intact bridge 10 4 

INT20 Intact bridge 20 7 

INT40 Intact bridge 40 7 

DMG10 Full cut in a truss member 10 3 

DMG20 Full cut in a truss member 20 6 

DMG40 Full cut in a truss member 40 6 
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respectively show photos of the element before 
and after it was severed. The scenario before the 
artificial damage is referred as INT and the 
scenario after the damage is as DMG. The truck 
passed the bridge with three constant speeds: 10, 
20 and 40 km/h both for INT and DMG scenarios. 
According to the vehicle speed, the scenarios are 
referred as INT10, INT20, and so on as listed in 
Table 1. For further information of the 
experiment, see also (Kim et al. 2016). 

4. FEASIBILITY INVESTIGATION 

4.1. Preliminary analysis 
Figure 5 and Figure 6 respectively present the 
time series and PSD curves of the acquired 
acceleration at sensor A6 for the INT10, INT20 
and INT40. Here the PSD curve is estimated as 
the modified periodograms adopting the 
Hamming window. These figures describe the 

noisy condition. The noise in the time series is 
possibly because of the vibration induced on the 
adjoining spans. In the frequency domain, it is 
hard to distinguish the dominant modes merely 
from the PSD curves listed in Figure 6. This 
observation suggests that modal analysis on the 
target bridge is hard because of the noisy 
condition. In the previous study (Kim et al. 2016), 

a)   

b)  

c)  

Figure 5: Acquired time series: a) for INT10; b) for 
INT20; and c) for INT40. 

a)  

b)  

c)  

Figure 6: PSD curve estimators: a) for INT10; b) for 
INT20; and c) for INT40. 
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troublesome procedure was required to identify 
the modal properties of the target bridge.  

Figure 5 shows that the amplitudes of the 
dynamic response depend on the vehicle speed. 
Because the AR model in Eq. (1) assumes 
constant noise level, the amplitudes are also 
presumed to be steady. Since the external force is 
actually not steady, it is possible that the 
difference in the amplitudes affects the proposed 
Bayes factor. Therefore in this study, the 
amplitudes of the time series are roughly 
normalized beforehand the training and testing. 
Since this study aims screening of numerous 
bridges, the normalization procedure needs to be 
as simple as possible. Therefore, the normalized 
time series are merely given as follows: calculate 
the root mean square of the all data contained in 
the raw time series, and then divide the raw time 
series by the root mean square.  

4.2. Feature extraction 
In this study, the whole time series in INT10, 
INT20 and INT40 scenarios are regarded as the 
reference dataset for the hypothesis testing. In 
advance of the hypothesis testing, the number of 
the damage sensitive features q should be 
predefined. According to the reference dataset, 
this study adopts the stabilization diagram 
(Heylen et al. 1997) as follows to find q: first, 
reproduce the VAR model as a state space model 
consisting of the damage sensitive features for 
each of the singular value orders. Second, 
estimate modal properties from each of the 
reproduced state space models. Third, depict the 
stabilization diagram. And find the reasonable 
model representing actual modal response of the 
bridge. Aiming at practical use, the following 
stability criteria are adopted in this study to depict 
a stabilization diagram. 

 absk𝑓i − 𝑓iK)m < 𝑓n�   (17) 

 absk𝜉i − 𝜉iK)m < 𝜉n�   (18) 

 MACk𝝓i,𝝓iK)m > 𝑀𝐴𝐶n�  (19) 

where 𝑓i, 𝜉i,  and 𝝓i ∈ ℝ'×)  respectively 
represent any of modal frequencies, damping 

ratios, and modal vectors estimated from the 
feature extraction with q order. 𝑓n� , 𝜉n� , and 
𝑀𝐴𝐶n�  are predefined thresholds. MAC(⋅,⋅) 
stands for the modal assurance criterion (Heylen 
et al. 1997). 

Figure 7 shows the stabilization diagrams 
derived from the AR model with order p=120. In 
this case study, 𝑓n� = 0.005	Hz , 𝜉n� = 0.005 , 
and 𝑀𝐴𝐶n� = 0.99  are respectively adopted. 
Figure 7 shows that the noisy condition also 
affects the estimated modal properties. The 
stabilization diagrams in time domain analysis 
actually likely to be affected by the spurious 
estimators under the noisy condition (Kim et al. 
2016). In spite of the spurious estimators, the 
proposed feature extraction still indicates several 
stable modes in the stabilization diagram: for 
instance the frequencies 2.6, 7.9, and 9.0 Hz are 
stably estimated around q=20. For damage 
detection based on the existing OMA, the modal 
properties need to be identified both for the 
reference and test datasets to compare them with 
each other. The damage detection under noisy 
condition therefore requires considerable effort 
for engineers to detect changes in the modal 
properties estimated from the stabilization 
diagrams, PSD curves, and so on. The proposed 
method provides an advantage in the feature 
extraction since the features are not needed to be 
carefully selected. For instance, q=20, for which 

 

Figure 7: Stabilization diagrams with respect to the q 
order. 

 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 7 

the relevant state space model includes the stable 
frequencies, is adopted for the following damage 
detection. 

4.3. Damage detection 
For the hypothesis testing, this study adopts a pre-
defined threshold as 2ln𝐵 = 0, where the model 
evidences for the null and alternative hypotheses 
are equivalent. Let the threshold be referred as 
‘critical value’ for the hypothesis testing. Leave-
one-out cross validation (CV) technique is applied 
to assess the validity of the Bayes factors. For 
example, letting a set containing 𝑙 samples of time 
series of target variables {𝒕), 𝒕P,… , 𝒕w}  and the 
corresponding input variables are obtained from a 
bridge without damage, take one of the time series 
(e.g.,	𝒕)) out from this set as a test data, and then 
refer the remaining samples {𝒕P, … , 𝒕w}  as the 
reference dataset. The 𝑙  Bayes factors are thus 
obtained from the 𝑙 samples of time series. The 
Bayes factors calculated by the CV technique are 
referred as “CV samples” in this study. The 
validity of the Bayes factors is confirmed when 
the CV samples support the null hypothesis.  

The global Bayes factors provide general 
view to grasp feasibility of the proposed method. 
Figure 8 shows the global Bayes factors obtained 
from the normalized time series. Here, the blue 
numbers depicted in Figure 8 denote the vehicle 
speeds. Figure 8 demonstrates that the damage is 
effectively identified by the proposed method 
even under the noisy condition. Figure 9 shows 
the local Bayes factors. The plots depicted in 
Figure 9 are relevant to the measurement 
locations provided in Figure 3. Figure 9 shows 
that the local Bayes factors have significant values 
that are considerably higher than the Bayes factors 
at the other measurement locations. The 
significant values, which appear at A3 and A4, 
likely to indicate the damage location (see 
Figure 3). That is, the damage locally produces 
evidence against the healthy condition through the 
proposed method. This observation suggests that 
the local Bayes factors indicates the damage 
locations if the damage is considerably serious 
such that a member thoroughly ruptures. 
Therefore, the proposed local Bayes factor can be 

one of feasible indicators to localize damage for a 
severe damage. 

5. CONCLUSIONS 
This study investigates a damage detection 
method for bridges using traffic-induced vibration 
to cope with difficulties in decision-making for 
bridge maintenance. The Bayesian hypothesis 
testing is adopted to detect subtle changes in 
modal properties caused by the damage. 

A time series of actually observed 
accelerations of a bridge provides a likelihood 
function of a vector autoregressive (VAR) model. 
The likelihood function and a non-informative 
prior produce the posterior distribution of the 
regressive parameters consisting of the VAR 
model. Using accelerations measured from a 

 
Figure 8: Global Bayes factors. 

 

 
Figure 9: Local Bayes factors. 
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bridge under healthy condition, the posterior 
distribution provides a stochastic reference model 
representing healthy bridge vibrations. Based on 
the posterior distribution, damage sensitive 
features are extracted by the singular value 
decomposition. Bayesian hypothesis test for 
damage detection is conducted utilizing a Bayes 
factor, which evaluates anomaly on the damage 
sensitive features. 

The efficacy of the feature extraction are 
experimentally investigated. A stabilization 
diagram composed from the state space models 
reproduced by the extracted features helps 
reasonable choice of the features. For the noisy 
case considered in this study, the stabilization 
diagram likely to produce spuriously estimated 
frequencies. Although the existing modal 
identification under such noisy condition requires 
considerable effort for engineers, the proposed 
feature extraction enable to choose reasonable 
damage sensitive features without troublesome 
procedures. 

The proposed Bayes factor stably indicates 
the damage even under the noisy condition. For 
unsteady loading condition in which acceleration 
amplitudes varies, data normalization can be a 
suitable pre-processing to enable concise decision 
making. The localized Bayes factors showed 
significant values at the measurement locations 
that are closest to the damaged member. This 
result suggests possibility of damage localization 
for severely damaged members. 
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