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ABSTRACT: Evaluating the statistical moments of performance functions which aims at keeping the 

tradeoff of accuracy and efficiency is still a challenge in structure reliability analysis. This paper 

proposes several modified bivariate dimension reduction methods (BDRM), based on two-dimensional 

and one-dimensional Gauss-Hermite quadrature. Compared to the original BDRM, evaluating central 

moments by these modified BDRMs requires less computational effort. One numerical example is 

investigated, which demonstrate that two of the modified BDRMs can achieve good balance between 

accuracy and efficiency for statistical moment assessment. 

1. INTRODUCTION 

The statistical central moments estimation of 

structural performance functions with uncertain 

parameters is one of the main topics for 

analyzing random structures (Fan et al. 2016) 

and plays an important role in the moment 

methods based reliability assessment (Zhao and 

Ono 2001). This problem usually presents as the 

first few central moments with basic random 

variables involved. 

Generally, the interested response function 

is written as  Z G X , where  1 2, , ,
T

nx x xX …  

is the vector of basic random variables related to 

structural properties and loading conditions. In 

practice, such a response function is always a 

highly nonlinear implicit function with multiple 

random variables, thus the analytical solutions of 

the central moments are unavailable. This 

difficulty has drawn increasing attention on 

numerical solutions of central moments of 

response. Usually, these solutions are divided 

into two categories. The first category is the 

expansion based method such as the Taylor 

expansion method (Ibrahim 1987). Yet 

calculating derivatives is required in these 

methods, which is difficult to solve when highly 

nonlinear functions are involved. The second 

category is the point estimate method (PEM), 

which involves the calculation of a set of finite 

points and weights of the interested functions 

(Zhao and Ono 2000). It can be seen that the 

difficulty of calculation is reduced, because there 

is no need to solve the derivatives in PEM. In the 

early PEM, the number of points increases with 

dimension increasing (Rosenblueth 1975). Yet it 

is inadequate for solving nonlinear problems 

especially for the estimation of higher-order 

statistical moments because of the low accuracy 

of the early PEM. Furthermore, the tensor 

product method (Issacson and Keller 1994) and 

the sparse grid method (Gerstner and Griebel 

1998) can be employed to evaluate the central 

moments. However a huge amount of 

computation effort is still needed (Xu et al. 2012). 

The dimension reduction method (DRM), 

(Rahman and Xu 2004) also a type of PEM, 

transforms a multi-dimensional problem into low 

dimensions, and then sums up a series of low-

dimensional integrations. The univariate 

dimension reduction method (UDRM) (Rahman 

and Xu 2004) is highly efficient for central 

moment estimation, and thus it is widely used in 

practical applications. However, it is insufficient 
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in evaluating moments of multi-dimensional and 

highly-interacted performance functions, since 

only one-dimensional integrations are involved 

in UDRM (Xu and Rahman 2004). Alternatively, 

the bivariate dimension reduction method 

(BDRM) helps to improve the accuracy and 

theoretical adaptation (Xu and Rahman 2004). 

The BDRM including several evaluations of two-

dimensional and one-dimensional integrations, 

only requires the Gaussian points and related 

weights consistent with standard normal random 

variables since the Rosenblatt or Nataf 

transformation can be employed to transform the 

arbitrarily distributed random variables to be 

standard normal ones. Generally, tensor product 

rule for the two dimensional numerical 

integration will be widely applied, resulting in 

large computation effort. Therefore, numerical 

methods contributed to improving efficiency 

without losing accuracy for evaluating the central 

moments of response is of necessity to be found.  

Aiming at balancing the computation effort 

and accuracy, this paper develops modified 

BDRMs in order to evaluate first-four central 

moments of response. This paper is organized as 

follows. In Section 2, the BDRM applied in 

unbiased moment estimation of response is first 

introduced. Then the advantages and 

disadvantages of the original BDRM are 

discussed, and the proposed modified BDRMs 

for moment estimation of response are presented. 

In Section 3, one numerical example is presented 

to check the accuracy as well as the efficiency. 

Finally, conclusions are given in Section 4. 

 

2.  PROPOSED MODIFIED BIVARIATE 

REDUCTION METHODS 

2.1. Problem formulation 

The first four central moments of a performance 

function  Z G Χ  usually relate to the moment 

methods based reliability analysis, which can be 

expressed as follows: 

 

     Z zz p z dz G p d
 

    
X X

Xx x x
    (1) 

   
k

kZ Z zM z p z dz


  
X

 

    
k

ZG p d


  
X

Xx x x             (2) 

where  1 2, , ,
T

nx x xX … are input basic random 

variables, Χ  is the distribution space of Χ ; 

 pΧ x is the joint probability density function of 

random vector Χ ; Z  is the mean of Z; kZM  is 

the k-order central moment of Z. 

As a matter of fact, the integrations in Eq. 

(1) and (2) can be transformed to be  

   1

Z G T p d 


   

U
UU u x

 

   H p d


 
U

UU u x
                         (3) 

    1
k

kZ ZM G T p d


    

U
UU u x

 

    
k

ZH p d


  
U

UU u x
            (4) 

where    1H G T    U U ;  1T   denotes the 

inverse of the Rosenblatt transformation or Nataf 

transformation which transforms the non-normal 

random vector Χ into the independent standard 

normal vector  1 2, , ,
T

nu u uU … . 

The bivariate dimension method BDRM for 

decomposing the response function gives 

 
1 2

1 2
1 2

2

2

, , ( )
k j jjk k

Z k k U k k
U U

k k j

H u u p u du
 

    0

 

   
1 1 11

1
1 1

2 , ( )
k

k

n

k U k k
U

k

n H u p u du


   0

 

  
 

1 2

2

n n
H

 
 0

                               (5) 
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 
1 2

1 2
1 2

2

2

, , ( )
k j jjk k

k

kZ k k Z U k k
U U

k k j

M H u u p u du
 

  
    0

 

   
1 1 11

1
1 1

2 , ( )
k

k

n k

k Z U k k
U

k

n H u p u du


    
  0

       

  
 

1 2

2

k

Z

n n
H 

 
   0

                  (6) 

where 0  is the zero vector. Usually, to evaluate 

the s-dimensional numerical integration  2s 

the tensor product method (Xu et al. 2012) is 

adopted. In this regard, the number of function 

evaluation  in BDRM is 

 
 

 
21

1 1 1
2

n n
N n d d


      

         (7) 

where n denotes the degree of the input random 

variables and 2 n  ; d is the number of 

Gaussian quadrature points. 

In the original BDRM, the five-point 

Gaussian-Hermite rule is always used to evaluate 

the integration in Eq. (5) and (6). However, the 

computational effort of the original BDRM will 

be quite large. For example, if n=10, the total 

number of required evaluation function will be 

761, where the number of points for calculating 

the two dimensional integrations is large as 720. 

Although the high accuracy of central moments 

can be yielded in the original BDRM for 

practical problems, massive computational effort 

may prohibit its application. Therefore, to 

achieve higher efficiency without losing 

accuracy, some modified BDRMs will be 

developed as follows. 

2.2. Sparse grid based modified BDRM 

It is noted that the sparse grid method (Smolyak 

1963) can assure the same level of accuracy 

while utilizing fewer Gaussian points to evaluate 

the two-dimensional integration.   

Let  1 ,
ji

j mU u , 1,2,m d …, and 

 1 ,
j ji i

j m  , 1,2,m d …, (Xiu 2009) denote the 

one-dimensional quadrature points and weights 

given by Gaussian-Hermite rule, where the 

subscript 
ji is the quadrature’s level of accuracy 

in the j-th dimension and the corresponding 

algebraic accuracy is 2 1ji  (Heiss  and Winschel 

2008). 

Then, through applying the Smolyak 

algorithm, the sparse grid in two dimension, say 

 1 2,

r

k k
U with r -level  0r   accuracy, can be 

defined as (Xiong et al. 2010)  

 
1 2

1 2
1 1,

1

k ki ir

k k

r q

U U U
  

 
i

              (8) 

where 2q r  , and 
1 2k ki i i . 

The corresponding weight for the l -th point 

 1 2,

r

l k k
Uu  reads 

 1 2

1 2
2,

1
( 1) k k

i ik k

i iq

l j j

d

q
  


 

   
 

i

i
         (9) 

Thereby, the tensor product can reduce points 

from the full grid, improving the required 

algebraic accuracy. Namely, the integration 

accuracy of the sparse grid method is nearly 

identical with that of tensor product method. It 

has been proven that the sparse gird method can 

achieve 2 1r  -order of algebraic accuracy. 

The formation of sparse grid in two- 

dimension with 2r   is shown in Figure 1 

(Xiong et al. 2010). It is clear that compared to 

the tensor product method, much fewer 

integration points are utilized in the sparse grid 

method. In other words, the sparse grid method 

is able to fit in the bivariate dimensional 

reduction method to evaluate the two 

dimensional integration parts, and thus formulate 

a new modified BDRM. This method is named 

as the sparse grid based modified BDRM, and is 

referred to BDRM-SG for short.   

2.3. Cubature based modified BDRM 

Similarly, the cubature formulas with fixed 

algebraic accuracy may satisfy both the 

efficiency and accuracy for evaluating the 

involved two dimensional integrations in BDRM. 

Commonly, the fifth-order algebraic accuracy is  
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Figure 1:the distribution of the sparse grid 

 

employed. In this subsection, three typical 

cubature formulas reappear and are incorporated 

into BDRM to raise the computational 

efficiency.These cubature formulas are called as 

Cubature I – III. 

2.3.1. Cubature I  

Such two dimensional cubature formula uses 8 

integration points (Stroud 1971), and is defined 

as 

     2 , 2 2 , 2I f A f f       
   

   

   

2 , 2 2 , 2

2 , 2 2 , 2

f f
B

f f

   

   

 
 
 
                  

   2 , 2 2 , 2C f f       
   

(10) 

where the parameters are listed in Table 1. This 

formula reduces the Gaussian points so that the 

efficiency of evaluating the two dimensional 

numerical integration will be pretty improved. 

Hence, this formula is denoted as BDRM-C-1. 

2.3.2. Cubature II 

This formula considers only 9 integration points 

(Stroud and Secrest 1963), which is expressed as  

           
1 1

0,0 2,0 0,2 2,0 0, 2
2 16

I f f f f f f        
 

       1
2, 2 2, 2 2, 2 2, 2

16
f f f f        

 

(11) 

Table 1: Parameters in Cubature I 

Parameter Value 

  0.446103183094540  

  1.366025403784440  

  -0.366025403784439  

  1.981678829458710  

A 0.328774019778636  

B 0.083333333333333  

C 0.004559313554697  

 

When combining this formula and BDRM, the 

consequent modified BDRM is defined as 

BDRM-C-2. 

2.3.3. Cubature III 

Similarly, merely 9 integration points are needed 

in this two-dimensional cubature formula 

(McNamee and Stenger 1967). The formula is 

written as  

           4 1
0,0 3,0 0, 3 3,0 0, 3

9 9
I f f f f f f       

   

       1
3, 3 3, 3 3, 3 3, 3

36
f f f f        

 

(12) 

Also, the resulting modified BDRM is called as 

BDRM-C-3. 

2.3.4. Advantages  

Obviously, the amount of required Gaussian 

integration points which are involved in the 

cubature based modified BDRMs are much 

fewer than that of the original BDRM, 

contributing much higher efficiency. Moreover, 

the computation effort will be further alleviated 

if recurring points exist in the modified BDRMs. 

For instance, let 3n  , Z  can be calculated as 

     
1 1 1

2, 1, 2, 2, 1, 3, 2, 2, 3,

1 1 1

, ,0 ,0, 0, ,
d d d

Z l l l l l l l l l

l l l

H u u H u u H u u   
  

    
 

       1, 1, 1, 2, 1, 3,

1 1 1

2 ,0,0 0, ,0 0,0,
d d d

l s l s l s

s s s

n H u H u H u  
  

 
     

 
  

     
  

 
1 2

0,0,0
2

n n
H

 


                                         (13) 
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Furthermore, if applying the BDRM-C-2 we 

can find that  0,0,0H  is repeatedly evaluated 

in each summation. In this regard, the efficiency 

may be further improved through performing 

reoccurred deterministic analysis once.  

2.4. High-order unscented transformation based 

modified BDRM 

The high-order unscented transformation (HUT) 

can evaluate the first-four moments of input 

random variables with accuracy and efficiency. 

The basic idea of HUT is to capture a series of 

points (named sigma points) and corresponding 

weights which fit the high-order moments of 

input variables, and then evaluate the moments 

of output variables by weights and nonlinear 

transformation of the sigma points (Julier and 

Uhlmann 1997).  

Consider the standard independent normal 

vector  ~ NΘ 0,1 , three types of sigma points 

and relative weights which match the first-four 

moments are utilized in HUT, and is defined as 

(Zhang et al. 2014) 

Type I: 

0 θ 0
,  

   

   

2 2

0 2

2 4 2 4 4

4

n n n

n n

 



    


 
ω   

(14) 

Type II:

   

1 1

1 1 1

2

1 2

(4 )( )

( 2 )

(4 )( )
, 1,2, ,

( 2 )

( 2 )

2 4

j j

j n j

n n

n

n n
j n

n

n

n n















  
 

 


 
  

 
  
 
  

θ e

θ e

ω

…

  (15) 

where  
1

0, ,0,1,0, ,0 , 1,2, ,
T

j i n e … … … . 

 

 

 

 

Type III: 

 

   

     

   

 

2 2

22

22

22

0.5 1

21

1.5 1

2 2

, 1, 2, ,0.5 1

1

j j

jj n n

jj n n

jj n n

n

n

n j n n

n

n















 



 



 


   

   



    


  

 
 

θ s

θ s

θ s

θ s

ω

…  

(16) 

where  is a free parameter; 

 

 

2

2

1
: , , 1,2, , ,

2

1
: , , 1,2, ,

2

j k l

j k l

k l k l n

k l k l n





  
    
  

  
    
  

s e e

s e e

…

…

     

(17) 

Then, we can see that when 2n   (means 

two-dimension) the HUT contains 9 points 

which are different from those of the original 

BDRM, resulting in improving the computation 

efforts. When evaluating the two-dimensional 

HUT, the free parameter   is recommended to 

be 7.2 according to massive computational 

experiences. In this regard, the sigma points and 

their weights for the two-dimensional integration 

are as follows (Xu and Dang 2019) 

Type I:  

 0 0

180
0,0 ,

529
  

                  (18) 

Type II: 

 

1 2

1 4

1 2 3 4

23 23
,0 , 0, ,

3 3

23 23
,0 , 0,

3 3

81

529

 

 

   

    
        

    


   
          
   


    

        (19) 
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Type III: 

5 6

7 8

5 6 7 8

115 115 115 115
, , , ,

5 5 5 5

115 115 115 115
, , ,

5 5 5 5

25

2116

 

 

   

    
         

    


   
          
   


    

   

(20) 

Since the two-dimensional HUT well 

assures the accuracy and efficiency of evaluating 

the first-four moments, this method could be 

introduced to the modified BDRM, which is 

called as high-order unscented transformation 

based modified BDRM, and is denoted simply as 

BDRM-HUT. 

Similarly, employing the BDRM-HUT to 

calculate the two-dimensional integration also 

analyzes repeatedly on the original point  0,0 . 

Therefore, the computation effort will be further 

enhanced by performing deterministic analysis 

on each reoccurred point only one time.  

3. NUMERICAL EXAMPLE 

This section presents one numerical 

example in order to compare the accuracy and 

efficiency of the proposed modified BDRMs. 

The results provided from the proposed modified 

BDRMs are compared with those of Monte Carlo 

Simulations (MCS) and the original BDRM. 

Besides, to evaluate the one-dimensional 

integration related to the modified BDRMs, the 

three-point Gaussian quadrature is applied. 

Moreover, concerning the involved two-

dimensional integrations in the modified BDRMs, 

the fifth-order algebraic accuracy is set for 

BDRM-SG, BDRM-C-1, BDRM-C-2 and 

BDRM-C-3. 

3.1. Example 1 

This example considers a nonlinear 

undamped single-degree-of-freedom oscillator 

problem illustrated in Figure 2. 

1c
( )X t

1t

2c

1F

( )F t

( )F t

 

Figure 2:a nonlinear undamped single-degree-of-

freedom oscillator 

 

The performance function can be written as 

2

0 11

2

0

( ) 3 2 sin
2

tF
Z G X r

m





 
    

       (21) 

where  0 1 2c c m    and r is the 

displacement at which one of the spring yields. 

The descriptions and statistical information of six 

involved random variables are listed in Table 2. 
 

Table 2: Parameters of  variables in Example 1. 

Variable Distribution Mean C.O.V 

m  Normal 1 0.15 

1c
 

Normal 1 0.2 

2c
 

Normal 0.1 0.2 

r  Normal 0.5 0.2 

1F
 

Normal 1 0.2 

1t  
Normal 1 0.1 

Note: C.O.V means Coefficient of variation. 

 
The first-four central moments calculated by different 

methods are presented in Table 3. Moreover, the 

results computed by MCS (107 runs) are provided for 

comparisons. It is seen that the original BDRM 

provides the most exact results whereas the 

computational effort is the largest. In comparison, all 

the proposed modified BDRMs concern on both the 

accuracy and efficiency. However, for BDRM-SG, 

the relative error of skewness ( Z ) is 9.6548%, 

which is considerably deviated from the exact result. 

It can be seen that other modified BDRMs need the 

same number of deterministic calculations, which is 

133, and  nearly 1/2  of  that  of  the  original  BDRM.  
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Table 3: Comparisons of results in Example 1

Note: N means the number of required deterministic evaluation. 

R.E. means relative error 

          

It is noted that they yield quite accurate 

results of statistical moments. The relative error 

of Z by BDRM-C-1 is 6.4961%, while the 

smallest relative errors for higher-order moments 

are given by BDRM-C-3, for example, the 

largest relative errors of Z and Z  are less than 

3%. It is found that the relative errors produced 

by BDRM-C-2 as well as BDRM-HUT are 

comparably larger than that of BDRM-C-3 in 

this case, however, these small relative errors can 

be also accepted in most of engineering cases. 

Therefore, the BDRM-C-2, BDRM-C-3 and 

BDRM-HUT can provide quite accurate results 

with low computation efforts for central moment 

assessment in this example. 

4. CONCLUSIONS 

The statistical moment estimation of response is 

an important topic in structural reliability 

analysis, and assuring the balance between the 

accuracy and efficiency is of great concern. In 

this regard, this paper gives several modified 

bivariate dimension reduction methods (BDRMs) 

to evaluate the central moments of response. 

Since the evaluation of two-dimensional 

integrations in BDRM greatly affects the tradeoff 

between accuracy and computation effort, the 

efficient methods for two-dimensional numerical 

integration are introduced and incorporated into 

BDRM to form some new modified BDRMs. 

Some of these new methods, compared with the 

original BDRM, largely improve the 

computation effort without losing accuracy. One 

numerical example is presented to verify the 

evaluation efforts. The following conclusions can 

be achieved: 

(1). Although utilizing the original BDRM will 

get very accurate central moments of response, 

the computation effort is always quite large 

which badly influence its practical applications. 

(2). The BDRM-SG requires much fewer 

integration points to evaluate the central 

moments. However, relatively lower accuracy of 

higher-order moments will be also obtained. 

(3). The BDRM-C-1 as well as the BDRM-C-3, 

which are highly efficient, could not always 

assure the accuracy of the interested central 

moments. 

(4). The BDRM-C-2 and BDRM-HUT can 

achieve both high accuracy and high efficiency 

when evaluating the required central moments. 

Therefore, these two methods are highly 

Methods N Z  (R.E.) Z  (R.E.) Z  (R.E.) Z (R.E.) 

BDRM-SG 193 0.5367 0.3922 -0.1346 2.9034 

  
(0.0118%) (0.0086%) (9.6548%) (6.9227%) 

BDRM-C-1 133 0.5368 0.3926 -0.1587 3.1179 

  
(0.0032%) (0.0884%) (6.4961%) (0.0461%) 

BDRM-C-2 133 0.5367 0.3923 -0.1428 2.9729 

  
(0.0033%) (0.0012%) (4.1459%) (4.6937%) 

BDRM-C-3 133 0.5367 0.3923 -0.1451 3.0259 

  
(0.0050%) (0.0033%) (2.6153%) (2.9932%) 

BDRM-HUT 133 0.5368 0.3923 -0.1557 3.1423 

  
(0.0050%) (0.0035%) (4.5377%) (0.7383%) 

Original BDRM 265 0.5368 0.3923 -0.1487 3.0481 

  
(0.0040%) (0.0014%) (0.1992%) (2.2828%) 

MCS 107 0.5367 0.3923 -0.1490 3.1193 
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recommended to use for computing the statistical 

central moments. 
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