Estimation of Ground Motion Variability in the CEUS Using Simulations

Xiaodan Sun
Associate Professor, Southwest Jiaotong University, Chengdu, China

Sanaz Rezaeian,
Research Structural Engineer, U.S. Geological Survey (USGS), Golden, CO, USA

Brandon S. Clayton
Geophysicist, U.S. Geological Survey (USGS), Golden, CO, USA

Stephen Hartzell
Geophysicist, U.S. Geological Survey (USGS), Golden, CO, USA

ABSTRACT: We estimate earthquake ground-motion variability in the central and eastern U.S. (CEUS) by varying the model parameters of a deterministic physics-based and a stochastic site-based simulation method. Utilizing a moderate-magnitude database of recordings, we simulate ground motions for larger-magnitude scenarios M6.0, 6.5, 7.0, 7.5, and 8.0. For the physics-based method, we vary the faulting mechanism, slip, stress drop, rupture velocity, source depth, and 1D velocity structure. For the stochastic method, we simulate realizations using a set of six model parameters, each of which has a preassigned probability distribution. The median spectral accelerations over all synthetic realizations are compared with the NGA-East models. The synthetic standard deviation for deterministic simulations ranges from approximately 0.4 to 0.85 for various magnitudes and distances, whereas that for stochastic simulations is between 0.48 and 1.04. Based on the simulation results and comparisons with NGA-East variability models, a range for ground motion variability in the CEUS is discussed.

1. INTRODUCTION

Estimation of ground-motion variability is a fundamental step in probabilistic seismic hazard analysis (PSHA). However, compared to crustal earthquakes in tectonically active regions of the western U.S. (WUS), research on ground-motion variability in stable continental regions of the central and eastern U.S. (CEUS) is lagging due to the lack of ground motion recordings. Most of the variability studies in the CEUS are associated with the development of a new ground motion prediction equation, GMPE (Silva et al., 2002; Atkinson and Boore, 2006). Some variability models for this region have been developed from those based on WUS (Campbell, 2003; Tavakoli and Pezeshk, 2005; Pezeshk et al., 2011). More recently, simulations have been utilized together with the limited number of recordings to better investigate the ground-motion variability (Intiaz et al., 2015; Vyas et al., 2016; Crempien and Archuleta, 2017; D’Amico et al., 2017; Frankel et al., 2018). In our previous work (Sun et al., 2015; Rezaeian et al., 2017), we modeled the 2011 M5.8 Mineral, Virginia, earthquake and the 2001 M7.6 Bhuj, India, earthquake, the latter considered a tectonic analog for a large-magnitude CEUS event. We used two different ground-motion simulation methods: a deterministic physics-based (Hartzell et al., 2005) and a stochastic site-based method (Rezaeian and Der Kiureghian, 2010). Both models showed a good fit to the Mineral and Bhuj observations in terms of the median spectral accelerations for a wide range of frequencies (0.1 to 10 Hz). We also simulated ground motions for M5.8, 6.5, 7.0, and 7.6
scenarios in the CEUS, using the two models and made comparisons with existing GMPEs in the CEUS. Both models were shown to be plausible alternatives to predict large-magnitude ground motions in the CEUS. These two models are very different, but complementary to each other, yielding a broader perspective on epistemic ground-motion uncertainties. Therefore, in this work, we utilize the same two approaches to simulate ground motions and quantify their aleatory variabilities (i.e., sigma) for earthquake scenarios M6.0, 6.5, 7.0, 7.5, and 8.0. We will compare these variabilities to the sigma models from existing GMPEs and to the new developed model from NGA-East for U.S. Geological Survey (USGS).

2. CEUS SIMULATION METHODOLOGY

As previously mentioned, we use two different simulation methodologies. In general, physics-based models are known to produce realistic waveforms at long spectral periods (about >1 s), but they are computationally intensive and require a thorough knowledge of the seismic environment for their source and material models. Stochastic models, on the other hand, may be less accurate in representing the long-period character of actual recordings, but are computationally tractable and incorporate what is known about ground motion source, path, and site characteristics into simple functional forms.

2.1. Deterministic physics-based approach

The deterministic physics-based approach in this study (Hartzell et al., 2005) has a kinematic rupture model for the earthquake source. To quantify the ground motion variability, we vary the fault mechanism, slip, stress drop, rupture velocity, source depth, and the 1D velocity structure. The variation of the model parameters are listed in Tables 1 and 2 (see Sun et al., 2018, for parameter definitions).

For the material model, two different 1D velocity models, MIN15 and MIN16, are considered. These velocity models are modified from ones proposed by Saikia (1994) for the eastern United States such that they have a hard rock surface shear-wave velocity of 3000 m/s, consistent with the work of Pacific Earthquake Engineering Research Center (PEER) in the CEUS (Goulet et al., 2017). They represent two approximate end members: MIN16, with simple increasing velocities with depth, and MIN15, with alternating layers of high and low velocities to better simulate the propagation of Lg waves. The Q model, describing the anelastic attenuation, does not vary.

Table 1 Magnitude-independent Parameters Used in Physics-Based Models

<table>
<thead>
<tr>
<th>Strike (º)</th>
<th>Dip (º)</th>
<th>Rake (º)</th>
<th>Rupture Velocity (km/s)</th>
<th>Rupture Mode</th>
<th>Velocity Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>45</td>
<td>0</td>
<td>2.5</td>
<td>Unilateral</td>
<td>MIN15</td>
</tr>
<tr>
<td>—</td>
<td>90</td>
<td>45</td>
<td>2.8</td>
<td>Bilateral</td>
<td>MIN16</td>
</tr>
</tbody>
</table>

Table 2 Magnitude-dependent Parameters Used in Physics-Based Models

<table>
<thead>
<tr>
<th>M 6.0</th>
<th>M 6.5</th>
<th>M 7.0</th>
<th>M 7.5</th>
<th>M 8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>f0 (Hz)</td>
<td>γ</td>
<td>Ztop (km)</td>
<td>L (km)</td>
<td>W (km)</td>
</tr>
<tr>
<td>6.5</td>
<td>8.5</td>
<td>11</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>6.5</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>3.5</td>
<td>5</td>
<td>4.5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3.5</td>
<td>5</td>
<td>3.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1: Slip distributions used for the M7.0 source.

For each magnitude, four different random slip distributions are considered with wavenumber spectral falloff of k^{-2}, where k is the wavenumber. A range of slip correlation lengths is used that is consistent with slip distributions found from source inversions, which yield
different distributions of higher and lower stress drops over the rupture surface. Figure 1 shows the four slip distributions for the M7.0 scenario, with different correlation lengths along strike and dip.

2.2. Stochastic site-based approach

The site-based stochastic model (Rezaeian and Der Kiureghian, 2010) uses a stochastic process to describe the ground motion time-series; it implicitly accounts for the effects of source, path and site conditions through the model parameters. These model parameters are fitted to recorded motions with known earthquake and site characteristics and include the Arias intensity, I_a, duration of motion, D_{5-95}, and time at the middle of strong shaking phase, t_{mid} (which together control the evolving intensity of the motion), and the predominant frequency, ω_{mid}, its rate of change with time, ω', and the bandwidth, ζ (both of which control the frequency content of the motion). We assigned probability distributions to each parameter, using different databases of recorded motions; Figure 2 shows these distributions for the WUS, CEUS moderate-magnitude events, and Mineral M5.8 recordings.

3. SIMULATION RESULTS

3.1. Deterministic physics-based simulations

Using the parameters in Tables 1 and 2, we simulate ground motions for each magnitude scenario at several hundred stations around the fault. All the combinations of the model parameters lead to 6912 scenarios for M6.0, 6.5, 7.0, and 7.5, and 2304 scenarios for M8.0. For each simulation, the “average” horizontal motion, RotD50, is calculated for eight periods (0, 0.2, 1.0, 2.0, 3.0, 5.0, 7.5, and 10 s). These values are then compared with the 17 GMPEs of the NGA-East for the USGS model (Goulet et al., 2017), and the 2014 USGS-weighted combination of older GMPEs (Petersen et al., 2014). An example comparison for 0.2 and 1.0 s for M7.0 scenario is shown in Figure 3. Similar figures for other magnitudes and periods are not presented here.

From Figure 3 and the results for other magnitudes, we can see that the reference GMPEs are within the range of the realizations, indicating that the physics-based synthetics are capable of representing the ground motion intensities predicted by other GMPEs. In addition, the median over all realizations is relatively centered within the range of values predicted by the 17 GMPEs of the NGA-East for the USGS model. The median of the synthetics is also close to the 2014 USGS GMPE in terms of amplitude and attenuation at most periods and distances. For larger magnitudes (M7.5 and 8.0), the synthetic median is slightly higher than the 2014 USGS
GMPE at medium periods \((1 \text{ s} \leq T \leq 2 \text{ s})\). This may be attributed to the fact that most records used in calibrating the model parameters are from moderate magnitude events.

Figure 3: Synthetic RotD50 ground motions at 0.2 and 1.0s (light blue shaded area) for \(M\) 7.0 scenario, using deterministic physics-based approach. The median over all realizations is plotted in black line. The existing GMPEs are superimposed for reference.

3.2. Stochastic site-based simulations

The simulated spectral accelerations—using the stochastic Mineral-Bhuj model with the example of the \(M\) 7.0 scenario—are shown in Figure 4 for 0.2 and 1.0 s spectral periods. The envelope of the spectral values is plotted as a yellow shaded region, the median over all realizations is a black line. The blue curves represent the 17 GMPEs of the NGA-East for the USGS model, and the red curve represents the 2014 USGS GMPE.

Figure 4 and other similar figures for different magnitudes and periods show the capability of the stochastic synthetics to represent the possible ground motions predicted by GMPEs (i.e., GMPEs are generally within the range of the simulations except at large distances). Similar to the results from the deterministic approach, the median over all realizations is relatively centered within the range of values predicted by the NGA-East for USGS GMPEs for most periods at distance shorter than 100 km and is close to the 2014 USGS GMPE in terms of amplitude and drop off with distance. As period increases, the attenuation of the synthetics with distance becomes faster than that of the GMPEs. This results in a lower estimation at distances greater than 200 km. This faster attenuation is also reported in Rezaeian et al. (2017) when simulating magnitude scenarios between \(M\) 5.8 and 7.6. Recall that the stochastic approach is record based; therefore, the behavior of the synthetics reflects the behavior of the observed data. In this study, the data used to calibrate the parameters of the stochastic model are from the Mineral and Bhuj earthquakes, both of which also suggest a faster attenuation with distance than existing GMPEs (Figures 15 and 16 in Rezaeian et al., 2017).

Figure 4: Synthetic RotD50 ground motions at 0.2 and 1.0s (yellow shaded area) for \(M\) 7.0 scenario, using stochastic approach based on the Mineral-Bhuj model. The median over all realizations is plotted in black line. The existing GMPEs are superimposed for reference.

4. VARIABILITY OF SYNTHETICS

Sigma of the synthetics (i.e., standard deviation of natural logarithm of the RotD50 spectral values) is calculated. For the deterministic simulation, the sigma ranges from approximately 0.4 to 0.85 natural log units for various magnitudes and distances, whereas that of the stochastic Mineral-Bhuj simulation is between 0.48 and 1.04 natural log units. Synthetic sigma is plotted versus distance for all magnitudes and
periods. Due to space limitation, only sigma plots for M6.0 and 7.0 scenarios are shown below in Figures 5 (for deterministic simulations) and 6 (for stochastic simulations).

Figure 5: Synthetic sigma versus rupture distance for different periods for M6.0 and 7.0 scenarios obtained by using the deterministic physics-based approach.

Figure 6: Synthetic sigma versus rupture distance for different periods for M6.0 and 7.0 scenarios obtained by using the stochastic site-based approach.

Figure 6 indicates that, in the stochastic simulations, there is no systematic dependence of sigma on distance and no trend of sigma, increasing or decreasing, with period. The difference among sigmas for different periods is not large. By contrast, in the deterministic simulations (Figure 5), a slight increase of sigma with distance for short periods ($T<2$ s) can be observed. A trend can be observed from both Figures 5 and 6 that, at distances shorter than 100 km, the sigma for long periods ($T>3$ s) are always larger than that for short periods. This trend is obvious in the deterministic simulations within 30 km. This is consistent with the findings of Moschetti et al. (2017) and Frankel et al. (2018) that longer-period variability is more sensitive to variations in near-field rupture directivity than short-period ground motion. However, for M7.5 and 8.0 deterministic scenarios (not shown), the higher sigma values for longer periods at closer sites are not observed. Particularly, for M8.0 at long periods ($T=7.5$ and 10 s), sigma shows an increase (about 0.1) within the distance range of about 15-150 km. The different behavior at larger magnitudes may indicate the need of deterministic simulations for more stations to properly sample rupture directivity effects.

Sigmas for all magnitudes are shown together in Figures 7 (deterministic approach) and 8 (stochastic approach) for 0.2 and 1.0 s. It is difficult to see any obvious variation in sigma with magnitude. Increasing sigma with decreasing magnitude reported by D’Amico et al. (2017) is not clearly seen. For the deterministic results, the difference among the sigmas for different magnitudes slightly increases as the period changes from 0.2 to 1.0 s, which is not clearly shown in the stochastic results. Note that, the synthetic sigma of the stochastic modeling comes from three sources: the sigma of the white-noise process, the sigma of the PDF of the model parameters, and the sigma of the predictive equations from regression on each parameter—none of which are dependent on magnitude or distance. Therefore, the total sigma of the synthetics is magnitude- and distance-
independent in this model. If more data become available in the future and support a strong dependence of sigma on these parameters, the stochastic model could be adjusted.

In Figures 9 and 10, the resulting synthetic sigmas (i.e., aleatory variability of ground motions) are compared with GMPE estimates from the NGA-East for the USGS model, and the GMPEs used in the 2014 USGS model, for 0.2 and 1.0 s examples, and the two magnitude scenarios \(M_{6.0} \) and 7.0.

In these figures, the light blue curves give estimates of sigma from the nine GMPEs used in the 2014 USGS model (Petersen et al., 2014), which range from 0.41 to 1.01 in natural log units for various magnitudes, distances, and periods. The black curves are the estimates of sigma from the NGA-East for the USGS model (Goulet et al., 2017), which were based mainly on WUS data because of the difficulties that exist in obtaining an independent sigma estimate for the CEUS due to lack of sufficient data for large-magnitude events. The blue and red curves represent the synthetic sigma from using our stochastic site-based approach and our deterministic physics-based approach, respectively.

Figures 9 and 10 indicate that the range of sigmas from the nine GMPEs used in the 2014 USGS model contains the sigma estimates from our simulations for all magnitudes and for most distances. A commonly occurring dip towards
lower values is seen in the sigma of the deterministic physics-based simulations at short periods close to the fault (less than 30 km, and $T \leq 1$ s). This lower sigma may be due to the limited number of slip realizations used in the deterministic simulations. Greater variability in slip will produce greater variability in ground motion primarily for stations close to the fault, with a reduced effect at greater distances.

![Figure 10: Synthetic sigma over all realizations, compared to the estimates of sigma from the NGA-East for the USGS model (black line), and from the GMPEs used in the 2014 USGS model (light blue lines) for the M7.0 scenario.](image)

Figure 10: Synthetic sigma over all realizations, compared to the estimates of sigma from the NGA-East for the USGS model (black line), and from the GMPEs used in the 2014 USGS model (light blue lines) for the M7.0 scenario.

The sigmas of the stochastic simulations are in general comparable to the estimates of the NGA-East for the USGS model for most periods (not all periods are shown here), and for all magnitudes and distances. The same is true for the sigmas of the deterministic simulations for 0.2 s. For 1.0 s spectral period, the sigma of deterministic simulations is systematically lower. This agrees with the findings of Al Atik (2015) that the global σ model for the CEUS is lower than the WUS models in this period range.

5. PROPOSED SIGMA RANGE FOR CEUS

Based on our estimates of the aleatory variability (i.e., sigmas) from the two simulation approaches, we propose a range of sigma for the CEUS. We first calculate the range of sigma for each simulation approach based on the fluctuation with distance. According to Keefer and Bodily (1983), we assume the uncertainty of the ground-motion variability follows a χ-square distribution. Then, we calculate the median, high, and low estimates for sigmas of $T \leq 1$ s and $T > 1$ s by the 5th, 50th, and 95th percentiles of the continuous scaled χ-square distribution, respectively, as listed in Table 3. Based on Table 3, we propose a range of sigma for the CEUS which uses the lower estimate of sigma from the physics-based approach as the lower bound, and the higher estimate of sigma from the stochastic approach as the upper bound. This gives a sigma range of 0.45 to 0.83 natural log units for $T \leq 1$ s, and 0.46 to 0.91 natural log units for $T > 1$ s.

<table>
<thead>
<tr>
<th></th>
<th>Central</th>
<th>High</th>
<th>Low</th>
<th>Central</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T \leq 1$ s</td>
<td>0.59</td>
<td>0.74</td>
<td>0.45</td>
<td>0.69</td>
<td>0.83</td>
<td>0.56</td>
</tr>
<tr>
<td>$T > 1$ s</td>
<td>0.62</td>
<td>0.78</td>
<td>0.46</td>
<td>0.73</td>
<td>0.91</td>
<td>0.57</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS

We used two different simulation approaches, a deterministic physics-based approach and a stochastic site-based approach, to model earthquake ground motions for large magnitude events in the CEUS. In general, the simulated ground motions are in agreement with the available CEUS GMPEs. At most periods and distances, the medians of the simulated ground motions are centered within the range of values predicted by the 17 GMPEs of the NGA-East for the USGS model and are close to the 2014 USGS GMPE combination in terms of amplitude and attenuation with distance. The variability of the simulated ground motions are evaluated, and the variation of sigma with distance, period, and magnitude are discussed. The synthetic sigmas are comparable to the estimates from the GMPEs used in the 2014 USGS model and from the NGA-East for the USGS model. Based on our simulations and comparisons with available
GMPEs, we recommend a sigma range for the CEUS, which is 0.45-0.83 natural log units for $T<1$ s, and 0.46-0.91 natural log units for $T>1$ s.

7. REFERENCES

