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ABSTRACT: In order to better understand community resilience following a disaster, a multi-
disciplinary research team from the Center of Excellence (CoE) for Risk-Based Community Resilience 
Planning and the National Institute of Standards and Technology (NIST) jointly conducted a series of 
longitudinal field studies in the U.S. city of Lumberton, North Carolina following major flooding from 
Hurricane Matthew (2016). Damage surveys on structures and interviews with households were 
conducted during the first field study to explore physical, economic, and social impacts of major 
riverine flooding on this small, tri-racial community. This paper is focused on damage to housing and 
subsequent household dislocation.  Empirical damage fragilities were developed for residential 
buildings using a comprehensive set of engineering damage inspection data collected by the team.  
Multi-variate models were developed to assess the consequences of physical damage to housing units 
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for household dislocation, including socio-demographic factors. The goal was not to develop the 
definitive model of household dislocation, but rather to show how engineering and social science data 
can be combined to better understand the broader social impacts of disasters – in this case, household 
dislocation. This study may help inform assessments of flood damage and dislocation patterns for other 
U.S. communities as a function of construction, social, and economic makeup. 

 
Performance-based engineering (PBE), especially 
as it relates to recovery of buildings and 
infrastructure functions, is a promising tool for 
enhancing a community’s resilience following a 
disaster. Community-level resilience goals, such 
as no more than 5% of households dislocate 
following a specific hazard event with a specified 
probability of nonexceedance, can be used to 
define performance objectives in a PBE 
framework. However, in order to better achieve 
resilience goals, PBE frameworks need to capture 
the relationship between physical damage and 
social impacts during the response and recovery 
phases of a disaster (van de Lindt et al., 2018; 
Koliou et al., 2018).  

This paper summarizes research that is part 
of a longitudinal study documenting the impacts 
of Hurricane Matthew on Lumberton, North 
Carolina in an effort to better understand that 
relationship. Two sequential field studies for 
Lumberton were jointly conducted by 
interdisciplinary teams of researchers from the 
Center of Excellence for Risk-Based Community 
Resilience Planning (Center) and the National 
Institute of Standards and Technology (NIST). 
The field studies were performed approximately 
2 months (in 2017) and 15 months (in 2018) after 
the 2016 Hurricane Matthew caused catastrophic 
flooding in Lumberton. Engineering damage 
evaluations and structured household interviews 
were performed during the 2017 field study to 
collect data on physical damage, utility service 
disruption, household dislocation, work and 
school disruption, and household socio-economic 
and demographic characteristics.   

Multi-variate models were developed to link 
physical damage of housing units to household 
dislocation (i.e., a household vacating their 
housing unit), controlling for socio-demographic 
characteristics and tenure. In addition, household 

demographics were combined with damage 
assessments to better understand the 
distributional consequences of flood damage 
among Lumberton’s racial/ethnic groups. The 
outcomes from this study provide new insight in 
understanding and quantifying the consequences 
of housing damage for diverse racial/ethnic 
households in Lumberton, the impact of damage 
on the dislocation of households from their 
residences, and the effect of social factors such as 
race/ethnicity and tenure status on this 
dislocation. Findings are used to support 
recommendations on establishing community-
level performance goals grounded in stronger 
measurements that link physical damage to social 
impacts.  

1. HURRICANE MATTHEW’S IMPACT ON 
LUMBERTON 

Lumberton is a small, racially and ethnically 
diverse in-land community in Robeson County, 
North Carolina with a population size of 21,542 
residents (U.S. Census, 2010). Lumberton’s 
racial/ethnic composition consists of 39% non-
Hispanic White, 36.7% non-Hispanic Black, and 
12.7% American Indian, 4.8% Hispanic, and 
6.7% non-Hispanic other (U.S. Census, 2010). 
Lumberton also has a substantial portion of its 
community, 34.8%, living at or below poverty 
levels (U.S. Census, 2010). 

In October 2016, the Lumber River, which 
runs through the middle of Lumberton, 
experienced historic flooding due to Hurricane 
Matthew. Stream gage data show a large rain 
event in early October, prior to Hurricane 
Matthew, which led to increased flooding and 
extremely saturated soils. The Lumber River 
crested at nearly 6.7 m (22 ft) above the gage 
datum, which is 2.74 m (9 ft) higher than the 
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National Weather Service flood threshold  
(USGS, 2017).  

A two-staged random, non-proportional 
stratified cluster sample was pulled for housing 
units in Lumberton, consisting of 568 housing 
units. Census blocks were selected to identify a 
set of  housing units through a two-stage process. 
During the first stage, a set of census blocks were 
randomly selected in flooded areas with a 
probability proportion to size based on the 
number of housing units per block. Census 
blocks were selected non-proportionally in high 
probability flooded areas at a ratio of 3:1 
compared to blocks located in low probability 
flooded areas. The second stage consisted of 
randomly selecting a fixed number of housing 
units in each block. 

Standardized engineering damage surveys 
were performed on the housing units, and 
standardized social science surveys were 
conducted with households occupying these 
housing units (or with neighbors, landlords, or 
managers in cases that the housing unit was not 
occupied) about potential household dislocation, 
utility disruption and socio-demographic 
characteristics. The damage surveys documented 
information regarding the building type, 
dimensions, structural system, and flood and 
damage information, such as the high-water mark 
location and evidence of damaged interior items 
(see Figure 1). The household dislocation survey 
documented information about the occupancy 
status of the housing unit, and when available, 
asked households about the duration and reason 
for their dislocation, as well as information on 
utility outage and household socio-demographics. 
Since the goal was to understand the 
consequences of direct damage and utility 
disruption for household dislocation along with 
other forms of social impacts, housing units in 
areas with a low probability of flooding were 
included in the sample. In total, 568 housing 
units were visited as part of our surveys; 402 
sampled units completed damage assessments 
(no assessments were made in areas clearly not 
suffering from flooding); complete household 

data was collected for approximately 300 
households, with additional data about 
households gathered from neighbors or apartment 
managers. The following sections describe the 
data and subsequent findings. The full report with 
a detailed summary of the city, the impact of 
Hurricane Matthew, the field study and findings 
is provided in van de Lindt et al. (2018). 

 

 
Figure 1:  Assessing damage to residential buildings 
in Lumberton: (a) measured high water mark and (b) 
gutted interior.  

2. EMPIRICAL FLOOD DAMAGE MODELS 
Using results from the damage surveys, this 
section presents a flood performance assessment 
of Lumberton homes using empirical damage 
fragility curves. Table 1 summarizes the key 
characteristics of the 402 buildings in the dataset. 
Most of these homes, single- and multi-family, 
were light-frame wood structures (many with 
brick veneer), of typical maintenance for their 
age, and typically one to two stories in height.  
Almost two-thirds had crawlspaces, while the 
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remaining homes were built with slab-on-grade 
foundations. The field data showed that flood 
levels reached up to around 122 cm [48 in] above 
the first floor elevation (i.e., the threshold of the 
front or back door of the home), corresponding to 
approximately 195 cm [77 in] and 127 cm [50 in] 
above the grade level for buildings with 
crawlspaces and for buildings with slabs on 
grade, respectively. The damaged structures were 
classified into five discrete damage states, 
ranging from DS0 (no damage) to DS4 (complete 
damage), to identify their overall damage level 
based on the physical condition of the building 
(see Table 2). Most homes were classified as DS0 
to DS2 (see Figure 2) indicating ‘slight’ to 
‘major’ damage, particularly to the contents of 
these structures, but no substantial internal or 
structural impacts to the residence.  The flood 
depths corresponding to the damage state for a 
given foundation type are highly variable (i.e. 
have a large value of standard deviation, ranging 
from 13 cm [5 in] to 43 cm [17 in]).  

Significant variability in flood depth was 
observed in flood damage state estimates for the 
residential buildings. Therefore, a fragility model 
was used to characterize the uncertainty in the 
damage evaluations. This approach estimates the 
probability of being in or exceeding a given 
damage state as a function of flood depth. In 
engineering applications, a lognormal 
distribution is often used to allow values to 
remain positive, eliminating the need for 
statistical manipulation (Ellingwood,  2001; Li 
and Ellingwood, 2006; Porter et al., 2007; Deniz 
et al., 2017a; Deniz et al. 2017b).  Lognormal 
distributions were considered to be appropriate 
for characterizing exceedance probabilities of 
damage of flooded homes in this study after 
performing goodness-of-fit tests for the empirical 
fragility curves. Several variables—including 
flood depth, flood source, occupancy-type, 
foundation type, and floor area—were considered 
in the development of these curves. However, 
foundation type and flood depth were found to be 
the most critical factors in the development of the 
damage fragilities.  

Table 1: Summary of empirical dataset, including 
breakdown by foundation type, building type, number 
of stories, and construction type. 

 

Foundation Type (with 
Number of Buildings) 

Crawlspace 
(272) 

Slab  
(116) 

Distribution of 
Occupancy Type  

(Single or Multi Family) 

Single Multi Single Multi 

96.7% 1.8% 33.6% 64.7% 

Distribution of 
Number of 
Stories 

One 95.4% 80% 97.4% 80.0% 

Two 2.7% 0% 0% 20.0% 

Other 1.9% 20% 2.6% 0% 

Distribution of 
Construction 
Type  

Wood 64.6% 78.9% 46.1% 34.7% 

Masonry 22.0% 0% 28.3% 24.0% 

Wood/ 
Masonry 12.2% 21.0% 17.8% 41.3% 

Other 1.2% 0% 7.8% 0% 
 
 
Table 2: Overall damage description for homes. 

 

DS Description 
0 No damage: water may enter crawlspace or touch 

foundation (crawlspace or slab on grade) but water 
has no contact to electrical or plumbing, etc. in 
crawlspace, and no or limited contact with floor 

joists.  No sewer backup into living area. 
1 Minor water enters house; damage to carpets, pads, 

baseboards, flooring. Approximately 25.4 mm (1 
in), but no drywall damage. Touches joists. Could 

have some mold on subfloor above crawlspace.  
Could have minor sewer backup and/or minor mold 

issues. 
2 Drywall damage up to approximately 0.3 m (2 ft) 

and electrical damage, heater and furnace and other 
major equipment on floor damaged. Lower 

bathroom and kitchen cabinets damaged. Doors or 
windows need replacement. Could have major 

sewer backup and /or major mold issues. 
3 Substantial drywall damage, electrical panel 

destroyed, bathroom/kitchen cabinets and 
appliances damaged; lighting fixtures on walls 

destroyed; ceiling lighting may be ok. Studs 
reusable; some may be damaged.  Could have major 

sewer backup and/or major mold issues. 
4 Significant structural damage present; all drywall, 

appliances, cabinets etc. destroyed. Could be 
floated off foundation. Building must be 

demolished or potentially replaced. 
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Figure 2: Overall damage state classification for 
surveyed housing units (van de Lindt et al., 2018). 

 
 

 
Figure 3:  Fragility curves as a function of flood 
depth with respect to grade level for homes with: (a) 
crawlspace and (b) slab-on-grade (van de Lindt et al., 
2018). 

The empirical lognormal fragility curves, of 
each damage state (e.g., DS0, DS1, and DS2), 
conditioned on the uncertain flood depth (d) 
measured from the grade level next to the 
building. It should be noted that no DS4 
observations were reported for the inspected 
buildings with slabs, while only five cases of 
homes reaching damage state DS4 were reported 
for buildings with crawlspaces. Given the small 
sample and potential bias during data collection 
for buildings with crawlspaces, DS4 data were 
merged into the DS3+ damage state. For the 
curves shown in Figure 3, all damage state 
models passed the Kolmogorov-Smirnov (K-S) 
test for a  significance level of 5 %.  

The empirical distribution functions of the 
raw data, plotted as step functions in Figure 3, 
show that the underlying data used to develop the 
fitted fragility curves (solid lines in Figure 3) 
have significant variability in the damage 
evaluation, building properties, flood 
characteristics, and data collection variability 
(human error). This points to the importance of 
considering variability in predictive damage 
models for reliable damage assessments and 
subsequent applications to community resilience 
studies.  

Since the damage states considered in this 
study are sequential (i.e., DS1 must be surpassed 
before reaching DS2), the total probability of 
reaching or exceeding all damage states, from 
DS0 to DS3 sum to 1. These probabilities of 
exceedance are shown in the shaded regions 
between the fragility curves in Figure 3. The 
median flood depths for exceeding the damage 
states are approximately 7.6 cm [3 in] to 38.1 cm 
[15 in] higher for homes with crawlspaces than 
for homes with slabs-on-grade. Homes with slabs 
on grade had higher flood depths inside the home 
because they do not have the advantage of the 
being slightly raised by the height of a crawl 
space, and as expected, are more vulnerable to 
flood events. As an example, buildings with 
crawlspace foundations that experience a flood 
depth of 127cm [50 in] with respect to the grade 
level have the 43%, 42%, 13%, and 2% 
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probability of being in or exceeding DS3, DS2, 
DS1, and DS0, respectively. At the same depth, 
buildings with slab-on-grade foundations have 
80%, 17%, 3%, and 0% of being in or exceeding 
DS3, DS2, DS1, and DS0, respectively. While 
there is a high likelihood for buildings with slabs 
to exceed DS3 when water reaches the mid-
height of first story (127cm [50 in] above the 
grade level), the homes with crawlspaces have 
damage limited to floor joists, flooring, and 
insulation materials at the same depth above the 
grade. The parameters of the fragility curves and 
details on the analyses procedures can be found 
in van de Lindt et al., 2018. 

3. INTEGRATED DAMAGE AND 
DISLOCATION MODELS 

One goal of the study was to develop integrated 
housing damage and dislocation models to better 
capture population dislocation patterns of a 
community after flooding events based on flood 
damage levels. This section presents preliminary 
findings (this data continues to be collected by 
our team and the the 2018 field data collection is 
presented in Sutley et al., 2018) on the data from 
the damage assessments with relevant social 
science data from the household surveys to better 
understand dislocation for Lumberton 
households. 

As noted above, Lumberton is a diverse 
community with relatively large proportions of 
its population classified as non-Hispanic White, 
non-Hispanic Black, and American Indian. Given 
the historical development patterns that result in 
higher proportions of minority populations (non-
Hispanic Black and American Indian) being 
located in areas more susceptible to flooding, it 
was not surprising to find statistically significant 
variations in housing damage across these 
racial/ethnic groups. Specifically, over 80% of 
non-Hispanic White housing units were classified 
as DS0, while only 52% of non-Hispanic Black 
and 34.5% of American Indian housing units 
were DS0. Conversely, only 20% of White 
households were located in housing units with 
damage ratings from DS1-DS3, while 48% of 
non-Hispanic Black and 65.5% of American 

Indian households were living in housing units 
rated DS1-DS3.  

Based on the data collected by the field 
survey teams, the total dislocation rate for the 
sample was 75.6% (±3.6%). In other words, the 
survey results suggest that just approximately 
75% of households dislocated from their homes 
for at least some period of time following the 
flooding due to damage to their housing unit, 
utility disruption, or some other factors. The 
length of dislocation ranged between 0 to 61 days 
as the interview team completed its survey work 
61 days after the flood;  the maximum dislocation 
time may be longer (this data continues to be 
collected by our team and the 2018 field data 
collection is presented in Sutley et al., 2018). 
Based on the survey from the 2017 data 
collection presented in this paper, the average 
number of days of dislocation is 34.4 (±2.4) days.  

The literature on household dislocation or 
displacement is still emerging in the broader 
disaster and hazards research community and 
ranges from qualitative observational research 
through more quantitative research (Esnard and 
Sapat, 2014). This literature has generally found 
that direct damage to the housing unit is a major 
determinant of dislocation, but that other factors 
can also shape dislocation as well. Similarly, 
other factors, such as tenure, can have 
consequences. Renters, for example, are 
generally found to dislocate at higher levels 
because the owners of damage properties are 
more likely to require residents to vacate due to 
safety and liability issues, while homeowners are 
more likely to stay (Girard and Peacock, 1997). 
The literature has also found other factors, such 
as race/ethnic, income, insurance, etc., can also 
have consequences for dislocation.  

As part of this research, logistic regression 
analysis was used to develop a series of models 
utilizing the damage assessment data and 
household data to develop a more comprehensive 
model predicting household dislocation (see van 
de Lindt et al. (2018) for the details on the model 
parameters). The goal was not to develop the 
definitive model of household dislocation, but 
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rather to show how engineering and social 
science data can be combined to better 
understand the broader social impacts of disasters 
– in this case, household dislocation. This 
analysis employed logistic regression to predict 
the logged odds of household dislocation based 
on damage state, tenure, and race/ethnicity. 
Damage was entered into the model using three 
damage states, DS0, DS1 and DS2+. The damage 
states DS2, DS3 and DS4 were combined into 
DS2+ because there were so few observations in 
the DS3 and DS4 categories. Race/ethnicity was 
based on the self-identification of the 
household’s key respondent, and classified as 
non-Hispanic White, non-Hispanic Black, and 
American Indian for the purposes of this analysis. 
Finally, since data on a household’s tenure status 
was not available for all households, the 
percentage of renter occupied housing units in 
the census block was utilized as a surrogate 
measure for proportion tenure. 

Three models were developed, with the first 
one only including damage state data, the second 
one adding household race/ethnic categories, and 
the final model also including proportion tenure. 
All models were statistically significant with 
25.3%, 28.8%, and 31.1% of the variance 
respectively. Not surprisingly, the results 
suggested that higher levels of damage resulted 
in higher probabilities for dislocation. However, 
even after controlling for damage, dislocation 
was significantly higher for non-Hispanic Black 
and American Indian households, when 
compared to non-Hispanic White households. 
Furthermore, after controlling for both damage 
and race/ethnicity, the probabilities of dislocation 
were higher for housing located in blocks with 
higher proportion of renter households.  

The finding for the final model are presented 
in Figure 4, which displays the predicted 
dislocation probabilities for each ethnic category 
(blue lines for non-Hispanic Whites, red lines for 
non-Hispanic Blacks, and green lines for 
American Indian households), at each damage 
state (circles are for DS0, triangles for DS1, and 
crosses for DS2+), for housing units located in 

blocks varying in the proportion of rental units, 
from 0 to 100%, on the block (see x-axis). As 
Figure 4 shows, White households (blue lines) 
always have lower dislocation rates than Black 
(red lines) and American Indian (green lines) 
within each damage state DS0, DS1, and DS2+ 
(circles, triangles, and crosses respectively). 
Furthermore, all lines reflect higher dislocation 
probabilities as the percentage of renter 
households increase across blocks.  

 

Figure 4: Probability of household dislocation by 
damage state, race/ethnicity, and tenure (van de Lindt 
et al., 2018). 
 

The relative importance of damage is also 
reflected in Figure 4. Specifically, as damage 
state increases, higher probabilities of dislocation 
across race and tenure are observed. Indeed, there 
is a general convergence in dislocation 
probabilities at the highest damage state in those 
blocks with a higher proportion of renters, 
regardless of racial/ethnic status. Nevertheless, 
combining both engineering data on housing 
damage with social science data on race/ethnicity 
and tenure status improves the ability for models 
to capture complex social impacts, such as 
dislocation.  

4. CONCLUSIONS, RECOMMENDATIONS, 
AND NEXT STEPS 

The flood performance and dislocation models 
present a methodology for predicting damage and 
dislocation probabilities for residential homes 
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subject to flood events. They can also be 
integrated with flood hazard models to perform 
life-cycle performance and dislocation 
assessments for residential structures. Moreover, 
they can be used as predictive tools for other U.S. 
communities, which show similar residential 
construction practice across the country for 
implementation in community resilience studies. 

When adopting performance-based 
engineering for community resilience as a design 
goal, design teams will need to think outside of a 
typical structural engineer’s scope to include 
considerations of dislocation and the reasons 
occupants dislocate. Dislocation has important 
implications for community resilience and 
recovery due to socio-technical 
interdependencies. If residents leave the 
community because their home is damaged, then 
communities lose their tax base; businesses lack 
employees and customers to resume their normal 
operation; similarly, schools and hospitals have 
lose their employees as well.  

Next steps for the Lumberton longitudinal 
study include evaluating community 
interdependencies to understand whether the 
closure of schools and businesses played a role in 
household dislocation time. This information 
becomes critical for prioritizing the distribution 
of resources across critical infrastructure sectors 
in a community during times of crisis, and can be 
used to develop new community-level 
performance goals for performance based 
engineering. 
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