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ABSTRACT: Traditional engineering design seeks to maximize the value of infrastructure systems
under the assumption that they will remain unchangeable over time. However, this assumption does not
describe actual infrastructure’s performance over time; and leaves out decisions that stakeholders might
take during operation such as scaling, modifying or abandoning the system. Changeability is the
systems’ ability to change its parameters conveniently in response to unexpected and/or unplanned
demands. Including changeability in infrastructure systems valuation and design is important because it
increases the system’s value and is very efficient in managing risks. This paper presents a model based
on stochastic linear programming for the design and the definition of the optimum changeability policy
of infrastructure. The results show that considering changeability lead to more valuable systems than the
ones conceived through traditional design.

1. INTRODUCTION

In an uncertain future, the success (i.e., fulfillment
of cost and safety requirements) of long-lasting in-
frastructure systems can only be achieved through
a strategy that allows them to change and/or adapt
to new environments that were not envisaged or
known before. Thus, the evolution of infrastruc-
ture over time is the result of complex interactions
between the environment and the stakeholders; and
the result unravels over time and cannot be fully
predicted at the outset.

Traditionally, systems are over-designed assur-
ing an acceptable performance throughout the time
mission. This way, systems can respond to vari-

ations in demand but are not able to change their
structure, possibly missing out opportunities to add
value.

Recently, the term changeability has been intro-
duced in engineering design as a way to capture
a system’s property that helps infrastructure to re-
spond to variable environments generating value
within multiple and/or uncertain circumstances
(Ross et al., 2008). The inclusion of changeabil-
ity in design reduces risks associated with long-
term uncertainties in comparison with traditional
robust designs; and is a mechanism to add value
to engineering projects through time. Then, an
approach based on the system’s ability to change
differs unnecessary initial provisions, with the re-
spective costs, reduces uncertainty and can manage
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unknown scenarios more effectively. In the litera-
ture, changeability is found both explicitly (Fitzger-
ald, 2012), and implicitly included in works related
to other “abilities” such as flexibility (Nilchiani,
2009), robustness (Napel et al., 2011), adaptability
(Magnani et al., 2013), efficiency (Bordoloi et al.,
1999) and modularity (Cardin et al., 2015).

The objective of this paper is to present a linear
stochastic programming approach to find change-
able design alternatives that outperform traditional-
designed systems. In addition, the paper compares
the value generated by a traditionally conceived
system and a changeable design.

The paper is structured as follows: first, in sec-
tion 2 we present the concept of changeability and
in section 3 we discuss the components of a change-
able design. Afterwards, in section 4 we present
a general linear stochastic formulation for finding
an optimum changeable design. Section 5 presents
an illustrative example, and finally, in section 6 we
draw some conclusions.

2. CHANGEABILITY

Changeability is the system’s ability to modify
its structure or operational characteristics. For a
change to occur three main elements are needed:
i) agent; ii) mechanism; and, iii) effect (Ross et al.,
2008). The agent is the driving force that causes the
change - it could be external or internal to the sys-
tem. The mechanism refers to the process of change
(“how”); and the effect is the difference between
the system states before and after the change takes
place. The nature of change could be further char-
acterized, for instance, in terms of its agility -i.e.,
speed of change; the possibility of modifying the
structure by adding or removing components (mod-
ularity and modifiability); its scalability or capacity
for the system to increase or reduce its initial state;
and its efficiency measured in terms of the relation-
ship between utility and cost of change.

Change may lead to an increment or a loss in
the system’s value over time. Frequently, the lat-
ter is referred to as deterioration (Sánchez-silva and
Klutke, 2016); however, in this paper we are mostly
interested in changes that add value to the system
and changeability will be related to those types of
changes. These changes may be temporal or per-

manent. In the first case, the system’s state changes
for a relatively short time period and then returns to
its original state; in the second case, changes last for
long time periods. Note that the concepts of “short”
or “long” time periods depend on the nature of the
system.

Therefore, the change process could be described
by figure 1. In this figure, A denotes the agent
driven the change, X(t) describes the system prop-
erties at some time t and M is a mechanism of
change. Note that a system might have multiple
agents capable of driven change, diverse mecha-
nisms that could be instigated and multiple possible
end states at every time t.
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Figure 1: Change implementation and its components.

Additionally, agents are motivated to drive
change by the presence of a changeability trig-
ger. Changeability triggers fall in three categories:
i) Safety Requirements, ii) Operational Require-
ments, and iii) Utility Requirements. What’s more,
a trigger motivates an agent to drive change by
the observation of a determined interesting value
for the stakeholders (i.e. Demand of the system),
so, changeability triggers are present whenever sys-
tems are controlled.

Moreover, the concept of changeability may be
divided in two components: Potential Changeabil-
ity Cpi , and Effective Changeability Cei . The po-
tential part describes the possibility of change that
a determined property i of the system have, while
the effective part relates to the implementation of
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changes in property i trough the service life of the
system. Numerically, for properties measured in or-
dered spaces, the potential changeability of prop-
erty i is proportional to the extend of the possibil-
ity of change si(t) and inversely proportional to the
cost of change implementation ci(∆xi(t)); i.e.,

Cpi(t) ∝ ζ
si(t)

ci(∆xi(t))
(1)

3. DESIGNING FOR CHANGEABILITY AND

CHANGEABILITY POLICIES

According to the definition of changeability, a
changeable design is composed by two primary
components: i) the initial values for the system
properties, and ii) the potential or optioned values
that the system’s properties could take if a change-
ability trigger is reached at any time through the
service life.

On the other hand, a changeability policy deter-
mines how the modification of the system’s prop-
erties take place. It should specify the changeabil-
ity triggers and the specific actions required once
they are reached (i.e the modification by x units of
property y). Moreover, changeability policies re-
lated to property i determine the way of harnessing
the potential changeability Cpi of i and, thus, af-
fect directly the effective changeability Cei of such
property, described as Cei(t) =Cpi(t = 0)−Cpi(t).

In figure 2 illustrates how changeability policies
work related to an specific changeable design. It
shows the demand and the the evolution of a sys-
tem’s property xi. The changeability policy is spec-
ified by a changeability trigger dt related to the de-
mand d(t) and the amount ∆Xi on which the prop-
erty Xi is modified.

To sum up, a changeable design is determined
by the initial design (properties of the parameters
at time t = 0), which in turn define the potential
changeability; and by a changeability policy, which
is a pair consisting of a changeability trigger (i.e
the driver a change) and the desired effect of the
change.

ti t

d

dt

t

xi

 xi

ti

Figure 2: Changeability trigger based upon the system
demand d, and its effect ∆Xi upon the system’s property
Xi.

4. LINEAR STOCHASTIC PROGRAM FORMULA-
TION

Lets consider a system conceived to operate
through large time windows T over which it is sub-
ject to multiple sources of uncertainty; then, future
demands and operation requirements are not known
to stakeholders. However, it is important to notice
that there are certain future times t when the realiza-
tions of uncertain variables are observed. Let’s fur-
ther assume that that uncertain variables are charac-
terized by stochastic processes modeled as Markov
Processes. Therefore, at every time t there are ex-
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pected values for the uncertain variables at time
t +1.

Infrastructure systems are defined by a set of pa-
rameters Y = [Y1,Y2, ...,Yn] that may change over
time due to, for example, variations in their phys-
ical properties or as a result of stakeholders’ de-
cisions such as scaling. A change on the sys-
tems properties is denoted by a decision vector
x = [x1,x2, ...,xn]. Let’s further define the vector
xt = [x1t ,x2t , ...,xnt ] as the decisions on the system
state yt = [y1t ,y2t , ...,ynt ] at time t. The state Yt and
decision Xt vectors have the same size, and a deci-
sion of not changing the system’s properties at time
t is given by Xt = Yt .

The state evolution and the relationship between
Xt and Yt is illustrated in Figure 3. Circles are used
to illustrate the state of the system due to its un-
controlled evolution, while squares denote changes
on the system’s state due to decisions made by the
stakeholders. The uncontrolled evolution of the
system state might follow a stochastic process; for
that reason, in figure 3 possible state (dotted lines)
and actual state (solid lines) paths are shown.

Every change on the system’s structure have a
cost C(xt ,yt) that depends on the magnitude of the
change (xt − yt). In this paper it is going to be
considered a case where systems’ properties are de-
scribed by continuous variables and decisions could
only enlarge them (Xt ≥ Yt ,∀t). That assumption
is only taken to simplify the model but it does
not mean that other types of variables or decisions
could not be considered.

As a result of the system’s operation, stakehold-
ers get a utility U(Y,d), which is a function of the
state of the system and some demand d, i.e number
of cars passing through a highway. Furthermore,
there is a cost of failure Cx(Y,Ylim) that materializes
if the system’s state falls below a threshold Ylim, a
cost Cv(V (Y ),Vlim) when the system performance
V (Y ) violates a limit Vlim, a cost for operating the
system Cp(Yt) given by the system’s properties; and
finally a cost Cd(K(Yt),dt) when the system’s ca-
pacity K(Yt) doesn’t meet the demand dt .

It is reasonable to assume that stakeholders want
to maximize the value of their decisions. Then, ev-
ery decision is made based upon the observation

t

Decision Xt

State Yt

Figure 3: State yt of the system over time and decisions
xt made upon it.

of the system’s demand and its expected state at
the following time observation. Then the objective
function can be defined as

z = max
1
N

N

∑
n=1

T−1

∑
t=0

E(Ut+1(Yt+1,Dt+1)

−Cx(Yt+1,Ylim)

−Cv(V (Yt+1),Vlim)−Cd(K(Yt+1),Dt+1)

−Cp(Yt)|Xt = xt ,Dt = dt) · e−λ ·(t+1)

−C(xt ,yt) · e−λ ·t

(2)

subject to:
yn0 = 0,∀n (3)

δn0 = 0,∀n (4)

ynt = xnt−1−δnt ,∀t ≥ 1,∀n (5)

xnt ≥ ynt ,∀t,∀n (6)

Note that in this case, the time horizon of the sys-
tem T is dived in a set of discrete system observa-
tion times. Also, the analysis considers a set of N
demand scenarios. Finally, all future costs are dis-
counted at a rate of λ .

The restrictions to the linear stochastic program
are shown through equations 3 to 6. Restrictions
in equations 3 and 4 declare that at the beginning
the system’s properties state is zero and unwanted

4



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

changes δt at that time have not take place. In Equa-
tion 5 it is assured that the system’s state is updated
due to unwanted changes δt and decisions xt . Fi-
nally, equation 6 guarantees that decisions made
upon any system property should imply a system
state improvement.

As could be noted from equation 2, this formu-
lation does not follow a nested structure as the one
typically found in multi-stage linear programming
(Shapiro et al., 2009). Instead, is an extension of a
two-stage linear stochastic programming (Shapiro
et al., 2009), and it is based upon the assumption
that stakeholders seek optimum value trough each
decision looking forward in time just one period.
However, taking into account that the size of a time
period could be arbitrarily selected, this formula-
tion should fit most cases.

For the sake of simplicity, in this paper we
limit our example to the consideration of utility U ,
change implementation costs C and costs for not
meeting the demand of the system Cd . Also, we
don’t include unwanted changes δ on the system’s
properties X . Nevertheless, a complete model could
be derived from the formulation presented in this
section.

5. DESIGN ALTERNATIVES FOR AN OFFICE

BUILDING

Consider the design of an hypothetical office build-
ing upon which stakeholders will derive their utility
U(t) from the rent of each floor, as follows:

U(t) = 480000 ·d(t),∀t > 0 (7)

where d(t) denotes a realization of the demand pro-
cess D at time t; which is defined as follows:

D(t) = Di +
t

∑
k=1

εk,∀t > 0 (8)

with Di−N(µ = 20,σ = 2); and ek follows a nor-
mal distribution with N(µ = 1,σ = 3).

Stakeholders expect the building to operate
trough a time window of T = 50 years. The sys-
tem state and the demand is measured every year
and a decision is made upon the expectation of the
next period demand E(D(t +1)).

The construction of the building has an initial
cost Ci = 90000 · xp + 4000000 · xi proportional to
the potential xp and initial xi number of floors. In
other words, the cost Ci consists of the cost of the
foundation (i.e. the maximum size of the build-
ing/its potential changeability) and the cost of con-
struction.

Every intervention made after t = 0 have a cost
C(xt ,yt) proportional to the size of the intervention
xt− yt ; i.e.:

C(xt ,yt) = 4000000 · (xt− yt),∀t > 0 (9)

Moreover, stakeholders desire that the office
building completely cover the demand d(t) at ev-
ery time t. So, there is a high cost for not being
able to fulfill the demand d(t), which is given by:

Cd(dt ,yt) = kd · (dt− yt),∀t > 0 (10)

where kd is a penalization cost. There is going to be
considered a discount rate of 2% for bringing future
monetary values to the present. Additionally, due to
the nature of the problem, interventions should be
at least 5 years apart and their size of a minimum of
5 floors.

5.1. Traditional design
As discussed before, traditional design conceives
unchangeable systems. In this case, this approach
allows the office building to have only one invest-
ment at the beginning of the service life (t = 0). For
this design, we consider the distribution of the de-
mand at the end of the service life and select a num-
ber of floors with 5% of exceedance at that time.
The distribution of the demand D(T ) is shown in
figure 4. Thus, the building should be designed for
106 floors.
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Figure 4: Distribution of the demand D(T )

5.2. Changeable design
The first objective of changeable design is to de-
fine the initial design parameters. For that purpose,
we consider a thousand possible demand scenar-
ios; i.e., N = 1000. Then, for different values of
kd (Equation 10) there are different optimum initial
designs. In figure 5 the black line corresponds to
kd of one million dollars and the green line to zero.
The solid red line corresponds to the expected value
for the demand, while the dashed red lines are the
lower and upper bounds after thousand Montecarlo
Simulations.
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Figure 5: Optimum changeable designs for different
values of kd

The values for xi and xp for each value of kd

are shown in table 1. It is important to note that
the generic behavior delivered by the solution to
the linear stochastic program should not be taken
as a change policy because it does not depend on
any changeability trigger, on the contrary it relies
blindly on the expected values for the demand given
by all scenarios considered.

Table 1: Optimum changeable designs for different
values of kd

kd [106 USD] xi xp
1 30 80
0 30 60

Figure 6 shows the generic behavior of the so-
lution for kd = 1 million USD, a particular sce-
nario and the systems response with a change pol-
icy. As it is shown, the response with a change
policy avoids the implementation of unnecessary
changes based upon the realization of the uncertain
demand.
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Figure 6: Generic behavior of the solution against a
changeability policy for kd = 1 million USD.

5.3. The value of changeable vs traditional design
The comparison of the different designs is carried
out using a policy such as the one implemented in
figure 6. The trigger of that policy is an expected
value at t + 1 greater than the present number of
floors at t. The updating of the number of floors is
done to meet the expected demand at t+1 in groups
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of 5 floors and the changes are limited to occur at
least 5 year apart.

For both values of kd , a better economic perfor-
mance is expected for the changeable designs. Fig-
ures 7 and 8 show the histograms for the difference
of the NPV between the changeable (NPVc) and
the traditional (NPVt) designs. Additionally, table
2 presents the expected value of such difference.
Note that for kd = 1 ·106 USD, the expected NPV of
the changeable design E(NPVc) is 2.15 times big-
ger than the expected NPV of the traditional de-
sign E(NPVt); for kd = 0 the relationship of the
expected NPV E(NPVc)/E(NPVt) is 2.10.

Figure 7: Histogram of the difference between the NPV
for changeable and traditional designs, kd = 1 million
USD.

Table 2: Expected value of the difference between the
NPV for changeable and traditional designs.

kd [106 USD] E(NPVc−NPVt) [106 USD]
1 163.74
0 194.09

6. CONCLUSIONS AND RECOMMENDATIONS

This paper presents a model based on stochastic lin-
ear programming for the changeable design selec-
tion and the definition of the optimum changeability
policy of infrastructure systems. The results show
that by considering changeability it is possible to

Figure 8: Histogram of the difference between the NPV
for changeable and traditional designs, kd = 0.

add value to infrastructure systems when compared
with traditional design.

Changeability is implemented using a linear
stochastic formulation of the decisions made
through time. The approach presented is general
and could be adapted to the design of any infras-
tructure system depending on the problem restric-
tions. The formulation is based upon the assump-
tion that stakeholders would seek optimality trough
each decision looking forward one period in time.

The solution to the linear stochastic program pro-
vides the optimal design; which consists of the
value of the parameters at t = 0, and the extend to
which those parameters should be able to change.
The optimality of a policy as such is difficult to de-
fine and is against the basic principle of changeabil-
ity; the central point is to guarantee the existence
of the policy within the context of the interests of
stakeholders.

As shown, changeable designs are expected to
deliver more value than traditional designs. In the
example presented in this paper changeable designs
deliver more than twice the value of a traditional de-
sign. Future works should focus on the application
of this approach for finding the optimal changeable
design of systems with multiple properties, with
more than one changeability trigger and subject to
unwanted changes.
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