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ABSTRACT: Seismic fragility assessment of deteriorating highway bridges using analytical methods 

often rely on empirical, semi-empirical or numerical models to predict the rate and nature of degradation. 

Consequently, the predicted structural vulnerabilities of bridge components or overall bridge system 

during seismic shaking are only as good as the adopted deterioration models. For the sake of simplicity 

and ease of computational modeling, these deterioration models are often far removed from observed 

manifestations of time-dependent aging. One such example is the nature of corrosion in reinforced 

concrete bridge components under chloride attacks. While this deterioration mechanism leads to the 

formation of pits along the length of the rebar, past literature often adopts the simplified uniform area 

loss model. This study proposes a probabilistic framework that assists in improved deterioration 

modeling of highway bridges by explicitly modeling pit formation and also provides the opportunity of 

updating the analytical models with field measurement data using Bayesian techniques. The framework 

and case-study results presented in this study are believed to render realistic seismic fragilit ies for 

highway bridges when located in moderate to high seismic zones. 

Keywords: Seismic fragility, Highway bridges, Pitting, Chloride-induced deterioration, Bayesian 
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1. INTRODUCTION 

Pit formations due to chloride ingress is a well-

known, yet commonly ignored phenomena during 

deterioration modeling and seismic fragility 

assessment of highway bridges when located near 

marine sources. Until now a majority of literature 

on aging bridge fragility assessment tends to 

model corrosion deterioration of embedded steel 

using the uniform corrosion model (Choe et al. 

2008, Ghosh and Padgett 2010). While such 

modeling strategies may be acceptable for 

carbonation induced corrosion, neglecting pitting 

effects in severe chloride exposure zones such as 

marine splash or deicing condition may 

substantially under-predict the seismic 

vulnerability (Kashani et al. 2015). Primary 

challenges for modeling pitting corrosion is 

twofold. Firstly, it may be increasingly difficult to 

model pits within the finite element cross section 

of the pier. The second challenge stems from lack 

of sufficient experimental data to model pit 

formation probabilistically along the length of the 

reinforcing bar. Some limited literatures on 

experimental tests that report statistics on pit 

formation due to chloride induced corrosion 

includes Stewart and Al-Harthy (2008). 

Addressing the existing drawbacks, the 

purpose of this research is to provide a framework 

that rationally combines the information historical 

tests and data available from possible field 

instrumentation for realistic estimation of seismic 

fragility. The proposed methodology can benefit 

bridge engineers, infrastructure stakeholders, and 

decision makers to assess the seismic risk of 
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degrading highway bridge infrastructure when 

located in chloride exposure zones. The paper is 

arranged as follows. The immediate section 

provides discussions on chloride induced pit 

formation modeling. Next, a methodology is 

proposed that helps infer information from limited 

field-instrumentation data to arrive at posterior 

estimation of pit distributions along the length of 

the rebar using Bayesian updating. The proposed 

methodology is applied on a three-span 

continuous steel girder bridge located in Central 

and Southeastern US. The paper ends with 

conclusions and recommendations for future 

work. 

2. CHLORIDE INDUCED PITTING 

CORROSION MODELLING 

Corrosion of bridges is mainly found to occur at 

locations that are close to sea coast and in the 

regions where deicing salt is used to remove the 

snow. Hence, the study herein focusses on 

chloride induced corrosion for one of the two 

environments, i.e. marine splash. Corrosion 

typically starts after sometime called the 

corrosion initiation time. This is the time taken by 

chloride ions to reach the reinforcement after 

passing through the concrete cover. Once the 

corrosion has initiated, corrosion propagation 

takes place and it depends on the deterioration 

parameter corrosion rate. Corrosion rates can be 

time dependent or time independent. In the case 

of marine splash environment, the corrosion rates 

are considered to be time dependent. In addition 

to the uniform corrosion in marine splash due to 

chloride ions, formation of localized pits also 

takes place along the length of the reinforcement 

steel (Darmawan 2010; Ghosh and Sood 2016; 

Shekhar et al. 2018; Stewart 2004; Stewart and 

Al-Harthy 2008). Typically, small independent 

pits or cracks are formed in the initial stages of 

corrosion which as the time passes blend together 

leading to uniform corrosion along the length of 

the reinforcement steel. But in addition to the 

uniform corrosion loss of area, severe localized 

corrosion across multiple locations along the 

length of the reinforcement steel leads to deep pit 

or cavity formation. The section losses in this pits 

may be four to eight times higher than the 

generalized uniform corrosion which reduces the 

structural strength significantly (González et al. 

1995). Hence it is important to consider the effect 

of pitting corrosion in addition to uniform 

corrosion while assessing the lateral load carrying 

capacity of the bridge components such as piers. 

The time dependent residual cross-sectional 

area of steel following a deep pit formation at each 

pit location can be expresses as (Stewart 2004): 

𝐴𝑟
𝐷𝑃(𝑡) = 𝐴0 − (𝐴1 − 𝐴2)     𝑓𝑜𝑟 𝑝(𝑡) ≤

𝐷0

√2
  (1) 

𝐴𝑟
𝐷𝑃(𝑡) = 𝐴1 − 𝐴2           𝑓𝑜𝑟 𝐷0 > 𝑝(𝑡) ≥

𝐷0

√2
  (2) 

where the details of areas 𝐴0, 𝐴1, 𝐴2 can be found 

in Stewart, 2004 and the pit depth 𝑝(𝑡) is given 

by: 

𝑝(𝑡) = 𝑅 ∫ 𝑟𝑐𝑜𝑟𝑟𝑑𝑡𝑝

𝑡

𝑇𝑖

 (3) 

where 𝑅  is called the pitting factor and it is 

defined as the ratio of maximum pit depth to the 

average pit depth, 𝑇𝑖  is the corrosion initiation 

time, 𝑡  is the time when we are looking for 

corrosion and 𝑟𝑐𝑜𝑟𝑟 is the corrosion rate. 

 

 
Figure 1: Reinforcement steel with pitting corrosion 

 

Extreme value statistics have been used in the 

past researches to characterize the distribution of 

pitting factor 𝑅 (Darmawan 2010; Stewart 2004). 

For a series of accelerated corrosion tests carried 

out on different rebar sizes by Stewart and Al-

Harthy 2008, it was found that a Gumbel 

distribution of Type I extreme value distribution 
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best represents the distribution of 𝑅. In another 

study carried out by González et al. 1995 where 

concrete specimens were exposed to natural 

environments, the pitting factor came out to be 

varying from 4 to 8. At any particular deep pit 

location, the residual area 𝐴𝑟
𝑃(𝑡)  of rebar for 

pitting corrosion is a function of pristine rebar 

area 𝐴0, uniform rebar area 𝐴𝑟
𝑈(𝑡) and 𝐴𝑟

𝐷𝑃(𝑡) as 

shown in Eq. (4). The equation for this residual 

area is given by: 

𝐴𝑟
𝑃(𝑡) = (𝐴𝑟

𝑈 − 𝐴0) (1 −
𝑎

2𝐷0
) + 𝐴𝑟

𝐷𝑃(𝑡) (4) 

3. SPATIAL INTERPOLATION 

For accurate estimation of aging highway bridges 

fragilities, up to date information on deterioration 

parameters at all locations within a bridge is 

required. Since it is difficult to monitor each and 

every bridge component, spatial interpolation 

techniques are employed to estimate the values of 

deterioration parameters at unknown locations 

from the values measured at known locations. In 

calculation of pitting corrosion, pitting factor 𝑅 is 

needed. To find pitting factor 𝑅 , maximum pit 

depths are required. These pit depths in the 

reinforcement need to be obtained along the 

whole length of the column. They can be obtained 

by performing non-destructive testing along the 

length of the column at different locations. But it 

is not feasible to do testing along the whole length 

of the column due to reasons like inaccessibility 

to some locations, expensive and labour intensive 

tasks, etc. Thus, the pit depths at other locations 

can be achieved using spatial interpolation 

techniques like kriging.   

3.1. Kriging 

Kriging is essentially a method of estimation by 

local weighted averaging: 

𝑍̂(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)

𝑁

𝑖=1

 (5)  

where 𝑍(𝑠𝑖) = the measured value at 𝑖𝑡ℎ location, 

𝜆𝑖 = an unknown weight for the measured value at 

the 𝑖𝑡ℎ  location, 𝑠0 = the prediction location and 

𝑁 = the number of measured values. The weight 

𝜆𝑖 depends not only on the distance the measured 

points and prediction location but also on the 

overall spatial arrangement of the measured 

points. Uncover the dependency rule and make 

the prediction surface map are the two tasks 

necessary to make prediction with kriging 

interpolation technique. Kriging goes through two 

step process to perform the above mentioned 

tasks. First, it creates the variograms and 

covariance functions to estimate the statistical 

dependence called spatial auto-correlation values 

that depend on the model of auto-correlation, i.e. 

fitting a model and second, it predicts the 

unknown values. 

3.2. Application of kriging to aging bridge pier 

Kriging is a very useful interpolation technique, 

employed in this study to predict the pit depth 

throughout the rebar length using the 

experimental data at few locations. The process 

outlined in this section minimizes the error due to 

kriging and also obtains a big set of pitting factor 

𝑅 values which properly represents the corrosion 

situation at that location.  

The bridge pier is modelled by discretizing it 

into fragments of length 100mm and the 

experimental pit depth values are known for only 

few of these intermittent sections. This study 

considers that experimental data is extracted of 

every fourth section leaving a gap of three 

sections (each of length 100mm) in between them. 

Therefore, with the data available at every 400mm 

is used to interpolate the corrosion data of the 

intermediate three fragments. Furthermore, it is 

assumed that the experimental data is available for 

20 points located throughout the circumference 

for each of the section at the gap of 400mm (as 

depicted by red dots in Figure 2).  The pit depth 

values at these 20 points are simulated using the 

experimental data given by González et al. 1995. 

A structure in marine region is divided into 

different zones namely, submerged zone, splash 

zone and atmospheric zone. The impact of 

corrosion is maximum in the splash zone because 

of cyclic wetting and drying which causes 

accumulation of chloride and hence pit depth is 

highest compared to other zones (Bertolini et al. 

2004). Therefore, higher pit depths are simulated 
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for splash zone. Subsequently, from these 20 

values of pit depth, a random value is picked from 

every section at which the experimental data are 

available. All these random values are then 

interpolated using kriging technique to obtain the 

pit depth values throughout the pier length. This 

process is repeated 50 times so that sufficient 

number of combinations of possible pit depth 

along the length of reinforcement gets considered. 

The maximum value of pit depth is chosen from 

amongst 50 interpolated values to obtain a single 

value of the pitting factor R at each sections. 

Lastly, this process is repeated 1000 times to get 

1000 such values of pitting factor 𝑅 values at each 

sections of 100mm length throughout the pier 

length. The next section outlines the process to 

update the interpolated data using Bayesian 

inference as and when new experimental data are 

made available. 

4. BAYESIAN INFERENCE 

The prediction of bridge fragilities from the prior 

knowledge of the deterioration parameters leads 

to under estimation or over estimation of the 

strength of the bridges. With the new technologies 

available the bridges can be monitored and 

present-day information of the deterioration 

parameters of the bridges can be obtained. To 

know the future situation of the bridges some 

method is required for combining the old and new 

information on the deterioration parameters. This 

can be achieved using Bayesian updating. 

The prior and the likelihood are the pillars of 

any Bayesian inference (Faroz 2016). Priors 

constitute historical data of deterioration 

parameters while likelihood is the data obtained 

through non-destructive field testing or 

instrumentation. The corrosion deterioration 

parameter, i.e. pitting factor 𝑅 used for the study 

is the informative prior taken from Stewart, 2004 

with an extreme value distribution (Gumbel) 

having location parameter (µ) as 6.36 and scale 

parameter (σ) as 1.13. 1000 pitting factor 𝑅 values 

are obtained by performing kriging at each 

100mm section which is the likelihood and it is 

assumed to range from 8 to 20. Posterior obtained 

after updating is the improved knowledge of prior 

and likelihood. Hence it can be seen that the main 

aim of Bayesian Updating is to compute the 

posterior distribution. 

 Figure 2: Flowchart for the seismic fragility updating with field instrumentation data 
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4.1. Markov Chain Monte Carlo simulation 

There are several computational challenges 

involved in computing the posterior distribution 

from Bayes' Theorem (Faroz 2016). In such cases 

a Markov Chain Monte Carlo (MCMC) method is 

usually employed for sampling from posterior 

distribution. The basic idea of Markov chain is 

performing “random walk” through the 

probability distribution and repeat the iteration 

enough number of times to get frequency 

proportional to probability. Markov chain is a 

sequence of random variable whose next state 

value is dependent only on the previous state. 

Hence, this process is a memory-less process 

which depends only on the current state and not 

on the sequence of events that precedes it. This 

makes the calculation of conditional probability 

easy and enables the algorithm to be applied to a 

number of scenarios. Markov chain has the 

important property as far as MCMC is concerned, 

it is ergodic. Meaning that it visits every point in 

the domain and it visits them in a proportionate 

amount of probability. There are many algorithms 

available for MCMC like Metropolis algorithm, 

Gibbs Sampler, Independence Sampling, 

Metropolis Hasting algorithm, Cascaded 

Metropolis Hasting algorithm, etc. For this study, 

Cascaded Metropolis Hasting algorithm is used. It 

is a very efficient process where the parameters 

are not correlated and individual updating of each 

parameter is to be done which is the case in this 

study.  

4.1.1. Cascaded Metropolis Hastings algorithm 

This is an iterative sampling method which 

generates a Markov chain where the transition 

between 𝑥𝑖  and 𝑥𝑖+1  is achieved using the 

acceptance – rejection sampling (Rastogi et al. 

2017): 

𝑥𝑖+1 = {
𝑥∗~ 𝑞(𝑥|𝑥𝑖)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼(𝑥𝑖 , 𝑥∗)

𝑥𝑖                                 𝑒𝑙𝑠𝑒
 (6) 

where 𝑥∗  is a random sample generated using 

proposal density, 𝑞(𝑥|𝑥𝑖) is the transition density 

or the proposal density and 𝛼(𝑥𝑖, 𝑥∗)  is the 

acceptance probability. 

𝛼(𝑥𝑖 , 𝑥∗) = min {1,
𝑓𝑋(𝑥∗)

𝑓𝑋(𝑥𝑖)

𝑞(𝑥𝑖|𝑥∗)

𝑞(𝑥∗|𝑥𝑖)
}  (7)  

Zero mean Gaussian or uniform density 

function is the commonly used transition or 

proposal density. In such a case, the transition 

density is 𝑞(𝑥∗|𝑥𝑖) = 𝑞(𝑥∗ − 𝑥𝑖) and a result of 

symmetry 𝑞(𝑥∗ − 𝑥𝑖) = 𝑞(𝑥𝑖 − 𝑥∗) .The 

acceptance probability then is given by Eq. (8). 

𝛼(𝑥𝑖 , 𝑥∗) = min {1,
𝑓𝑋(𝑥∗)

𝑓𝑋(𝑥𝑖)
} (8) 

The steps for Cascaded Metropolis Hasting 

algorithm are as follows: 

1. Initiate the chain 𝑖 = 0, 𝑥0. 

2. Generate a random sample 𝑥∗  using the 

proposal density 𝑞(𝑥|𝑥𝑖). 

3. Evaluate the ‘prior’ acceptance 

probability 𝛼𝑃(𝑥𝑖, 𝑥∗) = min {1,
𝑃𝑋(𝑥∗)

𝑃𝑋(𝑥𝑖)
}. 

4. Compute 𝑢𝑃  ~ Uniform [0,1]. 
a) If 𝑢𝑃 < 𝛼𝑃(𝑥𝑖, 𝑥∗), accept and go to 

step 5. 

b) Else go to step 2. 

5. Evaluate the ‘likelihood’ acceptance 

probability 𝛼𝐿(𝑥𝑖, 𝑥∗) = min {1,
𝐿𝑋(𝑥∗)

𝐿𝑋(𝑥𝑖)
}. 

6. Compute 𝑢𝐿 ~ Uniform [0,1]. 
a) If 𝑢𝐿 < 𝛼𝐿(𝑥𝑖, 𝑥∗) , accept and set 

𝑥𝑖+1 = 𝑥∗, 𝑖 = 𝑖 + 1 and go to step 2. 

b) Else go to step 2. 

4.2. Formulation 

Each of the 100 mm sections of reinforcement 

where experimental pitting factor 𝑅 values are not 

there, Bayesian updating is done using Cascaded 

Metropolis Hastings algorithm to obtain the 

posterior distribution of pitting factor 𝑅.  

The cumulative density function (CDF) with 

the empirical CDF of posterior along with the 

likelihood and prior of pitting factor 𝑅  for a 

particular pit in splash zone is shown in Figure 3. 

The prior, likelihood and the posterior 

distributions of the pitting factor 𝑅 for a particular 

pit in each zone is shown in Table 1. 
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Figure 3: CDF of a pit in splash zone 

 
Table 1: Prior, likelihood and posterior for R 

Pit Distribution P-1 P-2 P-3 

Above 

splash 

zone 

Prior Gumbel 6.36 1.13  

Likelihood GEV 0.04 1.14 5.55 

Posterior GEV -0.05 0.96 5.30 

Below 

splash 

zone 

Prior Gumbel 6.36 1.13  

Likelihood GEV 0.10 0.92 4.71 

Posterior GEV 0.03 0.77 4.55 

In splash 

zone 

Prior Gumbel 6.36 1.13  

Likelihood GEV 0.06 2.72 13.63 

Posterior GEV -0.20 1.23 1.06 
Distribution(Parameter 1, Parameter 2, Parameter 3); 
GEV-Generalized Extreme Value; Gumbel (location 
parameter, scale parameter); GEV (location 
parameter, scale parameter, shape parameter) 

5. SEISIMIC FRAGILITY ANALYSIS OF 

HIGHWAY BRIDGE PIER 

In this study seismic fragility curves for aging 

bridge columns are developed while considering 

corrosion due to marine splash exposure with the 

updated deterioration parameters using Bayesian 

updating with the help of Cascaded Metropolis 

Hastings algorithm. Spatial interpolation 

technique like Kriging are used to predict the 

deterioration parameters of corrosion at unknown 

location from the values at known locations in the 

column. The modelling and analysis of the pier is 

done in the OpenSees software and post 

processing of fragility curves development is 

done using MATLAB. 

5.1. Analytical modelling of the bridge pier 

The bridge pier is a 914.4 mm diameter circular 

column with 12nos. of 29 mm diameter rebars. 

The height of the bridge pier is 4300 mm. For the 

analytical modelling of the bridge pier in 

OpenSees, fiber section is used to generate the 

section and element is modelled using the 

displacement beam-column element which 

considers the spread of plasticity along the 

element length and is based on displacement 

formulation. Concrete04 material is used to 

construct a uniaxial concrete material with 

degraded linear unloading/reloading stiffness and 

tensile strength with exponential decay. The 

confined core is modelled by Concrete04 material 

as it takes into account the confinement provided 

by the stirrups. It is beneficial to use this material 

as it allows modelling loss of confinement due to 

corrosion of stirrups. The cover concrete is also 

modelled with this material. uniaxialMaterial 

Hysteretic material is used to model the 

longitudinal reinforcement that is capable of 

capturing pinching of force and deformation, 

damage due to ductility and energy and degraded 

unloading stiffness based on ductility. 

Uniform corrosion of the reinforcing bars is 

implemented in the model by evenly reducing the 

cross sectional area of steel along the rebar length. 

Pitting corrosion results in the formation of deep-

pits along with uniform area reduction along the 

length of the reinforcement (Ghosh and Sood 

2016). The spatial variability of the pit is 

modelled in the study after dividing the rebar into 

100mm sections. In this 100mm sections, the pit 

is assign at a random location. This type 

modelling was given by Stewart and Al-Harthy 

2008 which they obtained from the experimental 

test done by them. The depth of the pit is 

dependent on the pitting factor 𝑅. In addition to 

this, the secondary effects of deterioration such as 

potential reduction in steel yield strength, 

likelihood of cracking or spalling of concrete 

cover and loss of confinement due to corrosion of 

stirrups is also considered. Also the cross 

sectional area loss of stirrups is considered along 

with the subsequent reduction in the confinement 
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of the core concrete. The maximum compressive 

strength of the confined concrete and the 

corresponding strain are calculated using 

theoretical stress-strain model proposed by 

Mander et al. 1989. 

5.2. Formulation of time dependent seismic 

fragility assessment 

Fragility curves represent conditional probability 

to determine the likelihood of meeting or 

exceeding a particular damage state given the 

intensity of seismic shaking. It can be represented 

as: 

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦(𝑡) = 𝑃[𝐷(𝑡) > 𝐶(𝑡)|𝐼𝑀] (9) 

where 𝐷(𝑡)  denotes the time dependent seismic 

demand imposed on the bridge pier due to an 

earthquake intensity 𝐼𝑀  and 𝐶(𝑡)  denotes the 

time varying structural capacity or resistance of 

the bridge pier (Nielson 2005). Time evolving 

fragility curves are developed using logistic 

regression method for bridge pier at 40 years of 

service life after accounting for uncertainties in 

deterioration parameters, bridge pier modelling 

parameters and ground motion characteristics. 

Effect of pitting corrosion is accounted in the 

seismic fragility assessment. Flowchart in Table 

2 elaborates more on the fragility assessment 

framework. 

5.3. Fragility curves 

The corrosion initiation time obtained was 10 

years. Here, Bayesian updating is done for 

deterioration parameter pitting factor 𝑅  in 

calculations of the pitting corrosion in the 

corrosion propagation phase. Each reinforcement 

of 4300mm is divided into 100mm sections while 

modelling of column, i.e. 43 sections in total. At 

measured location (10 locations) of 100mm, 

pitting factor 𝑅  is taken from field 

instrumentation done while for unmeasured 

location (33 locations) of 100 mm, pitting factor 

𝑅  is taken from the distribution obtained after 

doing the Bayesian updating. The limit states for 

the column obtained after doing pushover analysis 

following a Monte Carlo approach. Nonlinear 

time history analysis of the bridge is done to 

record the responses of the different bridge 

components. Then, the probabilistic seismic 

demand model (PSDM) for the bridge pier are 

developed which after comparing with the limit 

state capacities help derive fragility curves as 

shown in Figure 4. 

 

 
Figure 4: Bridge pier fragility curve 

6. CONCLUSION 

This study proposes a framework that enables 

rational combination of field instrumentation data 

and historical evidence for realistic seismic 

vulnerability assessment of aging bridge piers. 

Additionally, for chloride induced corrosion 

deterioration, this study considers the formation 

of pits along the length of the reinforcing bars. 

The proposed methodology is demonstrated on a 

multispan continuous steel girder bridge located 

in Central and Southeastern US located in marine 

splash zone is chosen. While the corrosion 

deterioration data for uniform loss and pit 

formation is assumed to be known at certain 

locations, the estimates at non-monitored 

locations are interpreted using Kriging. The 

interpolated distributions of the corrosion mass 

loss at different locations are then statistically 

combined with historical data to arrive at updated 

posterior distributions. This procedure is 

implemented using Bayesian updating via the 

Cascaded Metropolis Hastings Algorithm.  

With the present day information of 

deteriorated bridge condition, seismic fragility 
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curves are developed next. Development of such 

curves requires probabilistic consideration of 

material parameters, deterioration parameters, 

and ground motion record-to-record variability. 

Subsequent to consideration of these sources of 

uncertainties in statistically similar but nominally 

different bridge samples, nonlinear time-history 

analysis of finite element bridge models are 

conducted to establish relationship between the 

ground motion intensity and peak deteriorated 

bridge performance. Consequently, a comparison 

between the demand and capacity estimates helps 

establish seismic fragility curves that are most 

representative of bridge vulnerability given the in-

situ bridge condition. Future work will look into 

spatial correlation of deterioration across different 

components as well deterioration of other bridge 

components such as bearings and bridge decks.  
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