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ABSTRACT: Geotechnical materials (e.g., soils and rocks) are natural materials, and they are affected 
by many spatially varying factors during the geological process, such as properties of their parent 
materials, weathering and erosion processes, transportation agents, and sedimentation conditions. 
Geotechnical data therefore exhibit spatial variability, and to some extent, are unique in every site. In 
recent years, random field has been increasingly used to model spatial variability of geotechnical data. 
In conventional frequentist approach, measurement data at a specific site are used to estimate random 
field parameters, such as mean and standard deviation, as well as parameters (e.g., correlation length) of 
a pre-determined parametric form of correlation function (e.g., an exponential correlation function). 
Estimation of these random field parameters, particularly the correlation length, and selection of the 
suitable parametric form of correlation function generally require extensive measurements from a 
specific site, which are generally not available in geotechnical engineering practice. This paper presents 
a random field generator that is able to simulate random field samples directly from sparse measurements, 
bypassing the difficulty in the estimation of correlation function and its parameters. The proposed 
generator is based on Bayesian compressive sensing/sampling and Karhunen–Loève expansion. The 
proposed method is illustrated and validated using simulated geotechnical data. It is also compared with 
the conventional random field models. The results show that the proposed generator can rationally 
simulate the geotechnical spatial variability at a specific site from sparse measurements. 

Keywords: site characterization, Bayesian method, compressed sensing, random field 
 
Geo-materials (e.g., soils and rocks) are natural 
materials, and they are affected by many spatially 
varying factors during their complex geological 
formation process, such as the textures of their 
parent materials, weathering and erosion 
processes, transportation agents, and 
sedimentation conditions (e.g., Baecher and 
Christian 2003). These environmental factors are 
spatially varying and make the characteristics of 
soils and rocks different at different locations. 
Geotechnical properties therefore exhibit spatial 
variability, and to some extent, are unique in every 

site (e.g., Webster 2000) as a deterministic 
outcome of the previous geological processes. 
This means that the spatial variability of 
geotechnical properties is site-specific. In other 
words, for a specific site, geotechnical properties 
at different locations may have different but 
deterministic values. Although the site-specific 
spatial variability is not stochastic but 
deterministic, the inherent spatial variability of 
geotechnical properties has often been modeled 
using random field theory for mathematical 
convenience (e.g., Stuedlein et al. 2012). 
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The conventional random field models 
generally use a series of auto-correlated random 
variables to simulate the spatial variability of 
geotechnical properties when measurements from 
site are sparse and limited. It can provide a 
statistical inference at unmeasured locations in a 
site and facilitate associated probabilistic 
analysis. The key of the random field models is to 
properly determine the random field parameters 
(e.g., mean, standard deviation as well as 
correlation structure of spatially varying 
geotechnical properties) before random field 
simulation. To objectively determine those 
parameters, measurement data at a specific site 
are often adopted. It should be note that, however, 
estimation of these random field parameters, 
particularly the correlation length generally 
requires extensive data from the specific site, 
which are usually not available in geotechnical 
practice (e.g., Wang and Zhao 2017). Because the 
underlying correlation function form is often 
unknown for a specific site, it is also challenging 
to select the most suitable parametric form of the 
correlation function when only limited 
measurements are available. In addition, when the 
amount of site measurement data is sufficiently 
large, e.g., geotechnical properties are measured 
at all locations in a specific site and the spatial 
variability becomes deteriministic, the random 
field models do not converge to the measurement 
data but still produce random pattern using the 
estimated random field parameters. 

This paper presents a new random field 
generator that can address the above problems. 
The random field generator is based on Bayesian 
compressive sensing/sampling (BCS) and 
Karhunen–Loève expansion (KL). The BCS-KL 
generates random field samples (RFS) of spatially 
varying geotechnical properties directly from 
sparse measurements and bypasses the challenge 
in estimating the random field parameters, 
especially the correlation length (Wang et al. 
2018). Moreover, RFS generated by BCS-KL is 
convergent. When geotechnical data are available 
at all locations, the spatial variability is unique 
and deterministic. In this case, the RFS generated 

by BCS-KL also converge to the measurement 
data with negligible uncertainty. 

In this study, the BCS method and KL 
expansion are first introduced. Then the proposed 
method is illustrated using a simulated example 
with comparison to conventional random field 
models. 

1. BAYESIAN COMPRESSIVE SAMPLING 
AND KARHUNEN–LOÈVE EXPANSION 

1.1. Brief review of Bayesian compressive 
sampling 

Bayesian compressive sampling/sensing (BCS) is 
a probabilistic method for reconstructing a signal 
from partial measurements on that signal (e.g., Ji 
et al. 2008; Wang and Zhao 2017). A signal is 
defined as variation of a spatiotemporal quantity. 
It is denoted as a real-valued vector f with length 
N. Partial measurements on f is denoted as an M-
length column vector y (M<<N). In the context of 
BCS, f can be considered as a weighted 
summation of N orthonormal basis functions (e.g., 
wavelet functions), expressed as f = Bω (e.g., 
Candès and Wakin 2008; Wang and Zhao 2016). 
B is an N × N matrix, with columns being the 
prescribed basis functions in different 
frequencies. ω is an N-length column vector, 
representing the weights corresponding to B. Note 
that, given an appropriate basis function (e.g., 
wavelet function) for B, most elements of ω are 
very small or virtually zero except of several non-
trivial ones with significant magnitudes (e.g., 
Candès and Wakin 2008). Therefore, it is possible 
to reconstruct the signal f from y, if the non-trivial 
coefficients of ω are obtained from y using 

ωωfy AΨBΨ === , where A = ΨB  and Ψ  is 
measurement matrix that represents the locations 
of components of y in f. Herein, sω  is defined as 
approximation coefficients vector of ω estimated 
from y, with all components of sω  equal to zero 
except the S non-trivial components. When the 
limited measurement data y is used to estimate 

sω , the vector sω  might be inaccurate and 
contains significant statistical uncertainty (e.g., 
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Wang and Zhao 2017). In such a case, sω  may be 
considered as a random vector, whose probability 
distribution can be derived under a Bayesian 
framework. It has been shown that sω  follows a 
multivariate Students’ t distribution with degree 
of freedom 2cn, with a mean of 

sωμ  and 
covariance matrix of 

sωCOV , which are 
expressed as (e.g., Wang and Zhao 2017): 
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in which H = (ATA+D)-1; cn= M/2+c0; dn = 
d0+(yTy-

ss ω
-

ω μμ 1TH )/2; c0 and d0 are small non-
negative constants (e.g., c0 = d0 = 10-4); D = a 
diagonal matrix with diagonal elements being Di,i 
= αi (i = 1, 2, …, N); αi (i = 1, 2, …, N) are 
unknown non-negative hyper-parameters, which 
can be determined by iterative algorithm when the 
likelihood of y reaches its maximum (e.g., 
Tipping 2001; Ji et al. 2008; Wang and Zhao 
2017). Although the whole matrices A and D are 
involved in Eq. (1), only the first S columns of A 
and the first S diagonal elements αi (i.e., αi, i = 1, 
2, …, S, and S<<N) of matrix D are needed in 
applications. This is because the first S columns 
of A and αi (i = 1, 2, …, S) of matrix D correspond 
to the S non-trivial coefficients (i.e., the first S 
elements of ω) when discrete wavelet transform is 
used to construct B. Therefore, only the first S 
elements of 

sωμ  and the first S rows by the first S 
columns of 

sω
COV  need to be estimated, while 

the remaining elements are set to zero. Based on 
the definition of mean and covariance matrix, the 
mean fμ ˆ  and covariance f̂COV  of the 

reconstructed signal f̂  are derived as (e.g., Wang 
and Zhao 2017): 
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Given multivariate statistics of the estimated 
signal, it is possible to generate RFS of f̂  via 
Karhunen–Loève expansion. 

1.2. Karhunen–Loève expansion 
Karhunen – Loève (KL) expansion is a 
representation of stochastic process via linear 
combination of a series of deterministic and 
orthogonal eigenfunctions. It has been widely 
used to simulate various random processes in 
engineering. In essence, KL expansion 
decomposes the covariance function of the 
stochastic process of interest into a series of 
eigenfunctions. In discrete case, it is equivalent to 
eigenvalue decomposition of a covariance matrix 
of a discrete random process. Using the mean 
value vector and associated covariance matrix in 
Eq. (2), BCS-based RFS of f̂  can be generated 
under KL expansion framework (e.g., Phoon et al. 
2002; Au and Wang 2014; Wang et al. 2018): 

 ˆ ˆ
ˆ

f f,d
f μ Z= + V COV  (3) 

where V is the eigenvector matrix of 
f̂COV ; 

f̂,d
COV  is a diagonal matrix that records the 

eigenvalues of 
f̂

COV ; Z is a set of uncorrelated 

standard random variables, with zero-mean and 
unit-variance. For convenience, Z is often taken 
as a random vector with uncorrelated standard 
Gaussian numbers. According to Eq. (3), RFS of 
f̂  can be obtained readily by realization of 

uncorrelated random vector Z. 
A schematic of the proposed BCS-KL 

method is shown in the Figure 1. A soil 
mechanical property (e.g., the X) along depth is 
adopted as an illustration. When limited 
measurements versus depth are taken (i.e., the 
open circles) at a specific site, BCS provides the 
best estimate of the property X (e.g., the grey scale 
column) along depth including those unsampled 
locations, and a covariance matrix (e.g., the grey 
scale map). Thereafter, RFS (e.g., three grey 
lines) can be readily generated through KL 
expansion using fμ ˆ  and f̂COV . It is seen that 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 4 

the multivariate statistics of the spatial variability 
is estimated directly from sparse measurements 
without using a parametric form of correlation 
functions. It bypasses the difficulty of selecting 
appropriate parametric form of correlation 
function. The RFS generated via BCS-KL reflect 
prediction of the spatial variability from the sparse 
measurements objectively. 

 

 
Figure 1: Schematic of the proposed BCS-KL method 

 
In the next section, the proposed BCS-KL 

method is illustrated using a simulated example. 
The performance of conventional random field is 
also compared. 

2. NUMERICAL EXAMPLE 
In this section, a set of simulated data is adopted 
to illustrate the performances of the BCS-KL and 
conventional random field. In this example, a soil 
property X profile within a 20.44m-thick soil layer 
in a specific site is simulated with a resolution of 
0.04m, as shown in Figure 2 by a black solid line. 
This profile has 512 data points, and it represents 
spatial variability of soil property X at this specific 
site. 

 
Figure 2: Results of BCS-KL generator 

 
Note that the original X profile (i.e., the black 

solid line in Figure 2) is only used for illustration 
and validation, and it is unknown in real 
geotechnical engineering practice. In this 
example, the X profile is simulated from a 
stationary Gaussian random field with a mean of 
30 and a standard deviation (SD) of 2. In addition, 
a cosine exponential auto-correlation function 
(CSX) is adopted in this case, expressed as:  

 ( ) exp( )cos( )τ τρ τ
λ λ

= − −  (4) 

in which the ρ(τ) is the auto-correlation function 
at lag distance “τ”; λ is the correlation length and 
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it is taken as 4m for generation of the X profile. 
To investigate the performances of the BCS-KL 
generator, as well as the conventional random 
field models, limited points (e.g., M=12 points 
shown in Figure 2) are sampled as measurements 
or input to generate RFS in this site. The results 
are demonstrated in the following subsections. 

 

2.1. Results of BCS-KL generator 
Following the procedure illustrated in Figure 1, 
RFS of X can be generated using KL expansion 
based on the BCS results from measurement data. 
An example of RFS of X is shown in Figure 2 by 
a gray line. Although only 12 measurement points 
versus their locations are used as input, the RFS 
properly reflects the general spatial variation of 
the underlying site-specific data. In this 
subsection, 1000 sets of RFS are generated using 
the proposed BCS-KL method. Pointwise 
statistics (e.g., mean and SD) at each depth are 
calculated and shown in the Figure 2. The dashed 
line indicates the averaged profile of 1000 RFS. 
The two dotted lines indicates the 95% confidence 
interval (CI) of 1000 RFS, which correspond to 
the 2.5th and 97.5th percentiles of 1000 RFS values 
at each depth. It can be noted that the averaged 
profile follows a trend consistent with the 
measurement data, and almost all local variations 
of the black solid line fall within the 95% CI. This 
implies that the spatial variation of X is rationally 
characterized by RFS from limited measurements. 

The spatial auto-correlation embedded in the 
X profiles can be quantified by the auto-
covariance function (AF), which is calculated 
using Eq. (5): 

 
N

1

1 ˆ ˆ( ) [( )( )]
N i i

i
C f f

δ

δδ µ µ
δ

−

+
=

= − −
− ∑  (5) 

where C(δ) represents the estimator of AF at δ; δ 
is the lag distance (in terms of integer in this 
example) between the i-th and the (i + δ)-th 
element, i.e., îf  and îf δ+ ; and μ represents the 

mean of f̂ . Using Eq. (5), the AF of the 
underlying X profile is calculated and shown in 
Figure 3 by a solid line. Note that the black solid 

line reflects the auto-correlation of the original X 
profile. The AF for each of the simulated 1000 
RFS can also be calculated using Eq. (5). This 
leads to 1000 AF. Then the average and 95% CI 
of 1000 AF can be obtained at each lag distance, 
as shown in Figure 3 by a dashed line and a pair 
of dotted lines, respectively. AF of the RFS 
example in Figure 2 is also plotted as grey line in 
Figure 3. 

Figure 3 shows that both the gray and dashed 
lines decreases as the lag distance increases, 
following a pattern similar to the black solid line. 
Moreover, noted that all local variations of the 
solid lines fall within the 95% CI depicted by the 
two dotted lines. These agreements indicate that 
the spatial auto-correlation embedded in the 
original X profile is properly captured by 1000 
RFS generated using the proposed BCS-KL 
generator. Also, the uncertainty of the estimated 
AF is properly quantified. Note that the above 
RFS generation does not involve estimation of a 
parametric form of correlation function. The 
discussion on the conventional random field is 
provided in the following subsection. 

 

 
Figure 3: AF of original X profile and RFS generated 
by BCS-KL 

2.2. Results of random field with assumed 
correlation function form 

The frequently used random field model requires 
the random field parameters (e.g., mean, variance, 
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correlation length) to be determined before RFS 
generation. The determination of auto-correlation 
function is a tricky issue because both the function 
form and correlation parameters are unknown for 
a given site, not to mention that the real data might 
contain trend and are non-stationary (e.g., Wang 
et al. 2019). Usually, experimental auto-
correlation is estimated based on measurements. 
For example, using the measurement data (i.e., 
open circles) in Figure 2, the experimental AF at 
several lag distances are obtained from Eq. (5) and 
shown in Figure 4 by open circles. Then, a pre-
specified correlation function form, e.g., 
frequently used single exponential correlation 
structure (SNX), is used to best fit experimental 
AF. The SNX is expressed as: 

 2 2( ) exp( )τρ τ σ
λ

= −  (6) 

 

 
Figure 4: AF estimation from measurements in 
conventional random field models 

 
The parameters of the SNX can be obtained 

from the best fitting. Figure 4 shows the fitted 
SNX by a blue dotted line, together with summary 
of the estimated parameters, i.e., 1.73 for the 
correlation length and 2.83 for variance in this 
example. After that, covariance structure can be 
constructed based on those parameters. 
Subsequently, RFS can be generated based on KL 
expansion or Cholesky decomposition (e.g., Au 

and Wang 2014) to characterize the spatial 
variability of X in the specific site. To be 
consistent with the previous subsection and make 
fair comparison, 1000 RFS are simulated, using 
which the average of RFS and 95% CI at each 
depth are calculated and shown in Figure 5a by a 
dashed line and two dotted lines, respectively. 
 

 
Figure 5: Results of conventional random field 
modeling: (a) single exponential AF; (b) cosine 
exponential AF 
 

Figure 5a shows that the dashed line (i.e., the 
average of RFS) is almost a constant, which is 
obvious different with the spatial variation of the 
original X profile in this site (i.e., the black solid 
line). The discrepancy indicates that the RFS 
obtained from conventional random field 
modeling might not be representative of the 
spatial variability of X in this site, even when the 
parameters used in the simulation are estimated 
from the site-specific measurements (e.g., the 
open circles in Figure 2 and 5a). 

The discrepancy observed above might be 
partly explained by the improper correlation 
function form (i.e., SNX) adopted in the 
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simulation. For further exploration, the correct 
correlation function form (i.e., CSX) for the 
original X profile is assumed to be known, and the 
parameter estimation and RFS simulation 
procedure described above for SNX are repeated. 
In this case, the correlation length and variances 
are estimated as 1.68 and 2.87, respectively. The 
estimated parameters and best-fitted CSX 
function are also shown in Figure 4. Then, 1000 
RFS are generated using the CSX correlation 
function and the above parameters. One RFS 
example and statistics of those 1000 RFS are 
shown in the Figure 5b. Note that the average of 
RFS (i.e., the dashed line Figure 5b) is also a 
constant, similar to that in Figure 5a. In other 
words, even if the correct correlation function 
form is known, the RFS simulated under the 
conventional random field model still cannot 
properly reflect the site-specific spatial variation 
of X. 

3. EFFECT OF NUMBER OF 
MEASUREMENT POINTS 

To further explore the effect of number of 
measurement points M on the performances of the 
BCS-KL generator and conventional random field 
model, three more measurement scenarios, i.e., M 
= 25, M = 64, M = 512 are investigated. 

3.1. Convergence behavior of BCS-KL 
This subsection provides the results of BCS-KL 
RFS simulation under three more different M 
scenarios, i.e., M = 25, 64 and 512. For each 
scenario, M measurements with an equal interval 
are extracted from the black solid line in Figure 
2&5 as input to BCS-KL to characterize the 
spatial variability of X. Following the same 
procedures, 1000 RFS of X are generated for each 
M scenario. Figure 6a to 6d summarize the results 
for M = 12, M = 25, M = 64, M = 512, 
respectively. 

Figure 6 shows that as M increases, the RFS 
generated reflect an increasing amount of site-
specific information. The average of 1000 sets of 
RFS (i.e., red dash lines) becomes increasingly 
similar to the original X profile (i.e., the black 
solid line). In addition, the 95% CI gradually 

reduces and approaches to zero effectively. When 
M=512, the generated RFS converge to the 
original X profile with negligible uncertainty. 

 

 
Figure 6: Effect of number of measurement points on 
the BCS-KL generator 

3.2. Non-convergence behavior of conventional 
random field 

The effect of number of measurement points M is 
also explored for the conventional random field 
models. The same measurement scenarios in the 
previous subsection are applied, with the 
assumption that the correct correlation structure, 
i.e., CSX correlation model, is known already. 
Following the same procedure as stated in the 
previous section, 1000 RFS are simulated for each 
M scenario using conventional random field 
model. The results are plotted in Figure 7a to 7d. 
Figure 7 shows that as the number of 
measurement data increases, the RFS simulated 
exhibit similar auto-correlation. In other words, 
the RFS obtained from conventional random field 
model does not seem to be affected by the 
measurement data quantity obtained within this 
specific site. The averaged profile (i.e., the dashed 
line) remains more or less constant, despite of the 
increase of measurement points number. When 
data at all locations are available, the conventional 
random field models still produce stochastic RFS 
rather than deterministic spatial variability. This 
result indicates that the conventional random field 
models cannot converge to the underlying spatial 
variability of geotechnical data even if 
measurements are sufficient. 
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Figure 7: Effect of number of measurement points on 
conventional random field model 

 

4. CONCLUSIONS 
This study presents a new random field generator 
for simulating the spatial variability of 
geotechnical properties in a specific site. The 
proposed method is based on Bayesian 
compressive sampling (BCS) and Karhunen–
Loève (KL) expansion, and abbreviated as BCS-
KL generator. The proposed generator does not 
require estimation of parametric form of 
correlation function which is prerequisite in the 
conventional random field models. The BCS 
method and KL expansion are introduced first. 
Then the implementation of the method is 
demonstrated concisely through a schematic 
figure. A numerical example is presented to 
illustrate the effectiveness of the proposed 
method. Performance of conventional random 
field models is also compared in the study. The 
results show that the proposed method can 
generate RFS that objectively reflect the spatial 
variability of geotechnical properties. Moreover, 
as the number of measurements points increases, 
the RFS generated by BCS-KL converge the 
underlying true variability gradually. 

5. ACKNOWLEDGEMENTS 
The work described in this paper was supported 
by grants from the Research Grants Council of the 
Hong Kong Special Administrative Region, 
China (Project No. 9042331 (CityU 11225216) 
and Project No. 9042516 (CityU 11213117)). The 

financial support is gratefully acknowledged. 

6. REFERENCES 
Au, S.-K., and Wang, Y. (2014). Engineering risk 

assessment with subset simulation. John Wiley 
& Sons, Singapore (pp. 78-83). 

Baecher, G.B., and Christian, J.T. (2003). Reliability 
and statistics in geotechnical engineering. John 
Wiley & Sons, Hoboken, New Jersey (pp. 228-
239). 

Candès, E.J., and Wakin, M.B. (2008). “An 
introduction to compressive sampling.” IEEE 
Signal Proc. Mag., 25(2), 21-30.  

Ji, S., Xue, Y., and Carin, L. (2008). “Bayesian 
compressive sensing.” IEEE Trans. Signal 
Process., 56(6), 2346-2356.  

Phoon, K.K., Huang, S.P., and Quek, S.T. (2002). 
“Simulation of second-order processes using 
Karhunen–Loeve expansion.” Comput. Struct., 
80(12), 1049-1060. 

Stuedlein, A.W., Kramer, S.L., Arduino, P., and Holtz, 
R.D. (2012). “Geotechnical characterization 
and random field modeling of desiccated clay.” 
J. Geotech. Geoenviron. Eng., 138(11), 1301-
1313. 

Tipping, M.E. (2001). “Sparse bayesian learning and 
the relevance vector machine.” J. Mach. Learn. 
Res., 1, 211-244. 

Wang, Y. and Zhao, T. (2016). “Interpretation of soil 
property profile from limited measurement data: 
a compressive sampling perspective.” Can. 
Geotech. J., 53(9), 1547-1559. 

Wang, Y., and Zhao, T. (2017). “Statistical 
interpretation of soil property profiles from 
sparse data using Bayesian compressive 
sampling.” Géotechnique, 67(6), 523-536. 

Wang, Y., Zhao, T., and Phoon, K.K. (2018). “Direct 
simulation of random field samples from 
sparsely measured geotechnical data with 
consideration of uncertainty in interpretation.” 
Can. Geotech. J., 55(6), 862-880. 

Wang, Y., Zhao, T., Hu, Y., and Phoon, K. K. (2019). 
“Simulation of random fields with trend from 
sparse measurements without de-trending.” J. 
Eng. Mech., ASCE, 145(2), 04018130. 

Webster, R., and Oliver, M.A. (2007). Geostatistics for 
environmental scientists. 2nd edition. John 
Wiley & Sons, Hoboken, New York (pp. 50-
53). 

20

16

12

8

4

0

25 30 35

20

16

12

8

4

0

25 30 35

20

16

12

8

4

0

25 30 35

20

16

12

8

4

0

25 30 35

 Original X profile                                                 Measurement data
 Example of RFSs       Average of RFSs     95% confidence interval

(d) M=512(c) M=64(b) M=25

 

 D
ep

th
(m

)

 

 

 
Soil property X Soil property X Soil property X Soil property X

 

 

 

 

 
(a) M=12


	1. Bayesian compressive sampling and Karhunen–Loève expansion
	1.1. Brief review of Bayesian compressive sampling
	1.2. Karhunen–Loève expansion

	2. Numerical example
	2.1. Results of BCS-KL generator
	2.2. Results of random field with assumed correlation function form

	3. Effect of number of measurement points
	3.1. Convergence behavior of BCS-KL
	3.2. Non-convergence behavior of conventional random field

	4. Conclusions
	5. Acknowledgements
	6. References

