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ABSTRACT: The Guangdong-Hong Kong-Macao Bay Area, located in the southeast of China, suffers 

typhoon-related storms and floods. This paper presents a spatial-temporal rainfall generation model for 

regional flood response analysis, with its parameters easily obtainable from historical point 

observations. The model generates point rainfall event series at different rainfall stations with variables 

describing the external structure and a predefined internal profile within an alternating renewal model 

framework. Spatial correlation of rainfall process between different sites within the study area is 

considered, and the areal rainfall distribution of each time slot is obtained from multi-point rainfall 

amounts. The model performs well in the reproduction of regional rainfall statistical characteristics.  

 

1. INTRODUCTION 

Due to global warming, extreme rainstorms will 

increase in terms of both frequency and intensity 

in some areas. The occurrence of floods is 

closely related to intense rainfall. The 

Guangdong-Hong Kong-Macao Bay Area 

located in the southeast of China consists of 11 

cities including Hong Kong, Macao, Guangzhou, 

Shenzhen, etc. Figure 1 shows the range and 

elevation of the study area. It is one of China’s 

most developed regions. However, the bay area 

frequently suffers damage from typhoon related 

storms, and was ranked as the first by Swiss Re 

(2013) in terms of population affected by storm 

and river flood. 

The Guangdong-Hong Kong-Macao Bay 

Area has a humid subtropical monsoon climate 

characterized by clear rainy and dry seasons, and 

the average annual rainfall is over 1300mm/year.  

 

 

Figure 1: Topography of the study area and rainfall 

stations 
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Generally, the largest rainfall amounts occur in 

June, May and August. To study the risk related 

to rainfall-induced flood, spatially variable 

rainfall processes are needed as input for large-

scale flood analysis. A stochastic rainfall 

generator may be a good alternative. 

Stochastic rainfall simulation models can be 

used to identify continuous rainfall processes to 

provide input for flood routing modelling. Based 

on point rainfall observations, simple models for 

point synthetic rainfall sequence generation were 

developed, such as Markov renewal model (Haan 

et al., 1976; Foufoula-Georgiou and Lettenmaier, 

1987) and alternating renewal model (Acreman, 

1990; Haberlandt, 1998; Haberlandt et al., 2008).  

To capture the spatial and temporal 

characteristics of rainfall, multisite generation of 

time series is widely used when point 

observations are available. For example, Wilks 

(1998) established a chain dependent process 

model for simultaneous simulation of daily 

precipitation occurrences and amounts at 

multiple locations. Yang et al. (2005) made 

improvements in modelling spatial dependence 

for time series based on the spatial-temporal 

model using generalized linear models proposed 

by Chandler and Wheater (2002).  

The objective of this paper is to set up a 

model for spatial-temporal rainfall synthesis for 

regional flood response analysis, with parameters 

easily obtainable from historical point 

observations.  

2. METHODOLOGY 

The proposed model consists of three 

components: single-site rainfall event series 

generation, multisite rainfall event series 

generation and spatial-temporal varying rainfall 

synthesis. 

2.1. Temporal rainfall simulation for each single 

station 

An alternating renewal model developed by 

Haberlandt et al. (1998, 2008) is used to generate 

point rainfall time series of each station within 

the study area because the physical meaning of 

the model is easy to follow and the parameters 

can be obtained from historical observations.  

A sequence of rainfall events can be 

approximated as an alternating renewal process 

which models a system alternating between two 

states over time, i.e. raining or not raining here. 

Time of raining or not raining are recognized as 

wet spell duration (W) and dry spell duration (D) 

respectively, and the basic assumption is that 

pairs of W and D form an independent, 

identically distributed sequence. Furthermore, W 

and D of the same pair are considered 

independent here. For each rainfall event (one 

wet spell), the average intensity (I) defined as 

cumulated rainfall amount divided by the wet 

spell duration is not independent of the wet spell 

duration. The relation between W and I is 

described using a copula here. The three 

variables characterizing the occurrence and 

rainfall amount of rainfall events are regarded as 

the external structure of rainfall time series 

(Figure 2). Besides, temporal variation of rainfall 

intensity within one event is regarded as the 

internal structure.   

 

 
Figure 2. Illustration of precipitation event process 

 

Different probability distributions of the 

three variables can be fitted to the rainfall dataset 

of the study area, which together constitute the 

external structure of the rainfall event. In the 

case of this paper, the Weibull distribution, the 

Exponential distribution and the Lognormal 
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distribution are found to be suitable for 

modelling dry spell duration D, wet spell 

duration W and intensity I, respectively.  

A two dimensional copula is used to 

describe the dependence between wet spell 

duration and rainfall intensity (Sklar, 1973; 

Nelsen, 2007):  

 1 2( , ) [ ( ), ( )] ( , )W IF w i C F w F i C u u   (1) 

where F(w,i) is the joint cumulative distribution 

function (CDF) of W and I; FW(w) and FI(i) are 

the marginal CDFs of W and I, respectively; C is 

the copula function that relates F(w,i) and FW(w), 

FI(i); both u1 and u2 are uniformly distributed in 

the interval [0, 1]. According to previous 

research (Haberlandt et al., 2008), the Frank 

copula is used in this paper as the parameters for 

this model can be estimated easily.  

The internal structure of the rainfall events 

is simplified to a predefined profile. It is 

assumed that the instantaneous rainfall intensity 

within a certain rainfall event first increases 

exponentially to the peak and then decreases 

exponentially: 

 ( ) mt t

mi t i e
 

   (2) 

where im is the peak value during the event, tm is 

peak time, and γ is an event specific parameter. 

The peak time is assumed to evenly occur during 

the event: 

 
mt w   (3) 

where α is a random number uniformly 

distributed on [0, 1]. The peak rainfall intensity 

is assumed to be related to the average rainfall 

intensity, and parameters a and b are obtained 

through a simple regression: 

 , 1, 1b

mi a i a b     (4) 

For each specific rainfall event, γ can be 

estimated using the Newton-Raphson method 

after the determination of values of all the other 

variables: 

 
( ) ( )

0

m
m m

m

t w
t t t t

m m
t

i e dt i e dt wi
  

      (5) 

With the external structure and the internal 

structure, single point rainfall event series can be 

generated by assembling sequences of W, D and 

I sampled from their corresponding probability 

distributions. 

2.2. Generation of time series for multiple 

stations and areal rainfall distribution 

After obtaining the single point rainfall event 

series, the next step is to generate multi-point 

series within the study area considering the 

spatial dependence of rainfall processes between 

different points. A Gaussian spatial correlation 

structure is used, assuming the spatial 

dependences of the three variables are the same: 

 

2

2
exp( )

pq

pq





   (6) 

where ρpq is the correlation coefficient between 

variable values at two stations p and q; τpq is the 

separation distances between stations p and q; δ 

is a model parameter. 

For a specific value of δ, any number of 

rainfall events at multi-points can be generated. 

One rainfall event at ns stations is considered as 

an example. First, a ns×ns auto-correlation matrix 

R = [ρpq] is formed according to Eq. (6). Then, a 

ns×1 correlated standard normal random vector N 

can be obtained by: 

 N = LU  (7) 

where L is a lower triangular matrix satisfying 

Cholesky decomposition R = LLT; U is a ns×1 

independent standard normal random vector. N 

can then be transformed into other types of 

random field according to variable distribution 

types (Low and Tang, 2007).  

Note that D is independent of W and I, while 

W and I are cross-correlated, as mentioned in 

Section 2.1. For one rainfall event, the ns×1 

vectors of D, W and I can be obtained as follows: 

1. Randomly generate ns×3 potential 

samples of a standard uniformly 

distributed variable at ns stations, with no 

dependence between all the samples. 
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2. Transform the first column of the 

potential samples into an independent 

standard normally distributed vector UD 

firstly; then transform it into a standard 

normally distributed vector ND with 

spatial correlation between stations 

according to Eq. (7). The ns×1 vector of 

D for ns stations that follows Weibull 

distribution can be obtained by: 

 1/{ ln[1 ( )]} k

D  D N  (8) 

where k and λ are the shape parameter 

and scale parameter for the Weibull 

distribution, respectively; Φ(∙) is the CDF 

of a standard normal distribution. 

3. Transform the last two columns of the 

potential samples into a pair of standard 

uniformly distributed variables obeying a 

given copula function (e.g., Frank copula) 

with independence between stations. 

4. Similar to Step 2, transform the two 

vectors firstly into two standard normally 

distributed vectors UW and UI with 

independence between stations, and then 

into two standard normally distributed 

vectors NW and NI with spatial correlation 

between stations using Eq. (7). The wet 

spell duration series W and average 

rainfall intensity series I that follow 

Exponential distribution and Lognormal 

distribution, respectively, can be obtained 

by: 

 ln[1 ( )]W  W N  (9) 

 exp( )I  I N  (10) 

where β is the scale parameter of 

exponential distribution; μ and σ are the 

mean and standard deviation of 

logarithmized samples for the lognormal 

distribution, respectively. 

Repeatedly performing the above steps, the 

matrices D, W and I for ns stations with several 

rainfall events can be obtained eventually. 

To evaluate the rationality of the generated 

rainfall process, the correlation coefficients of 

instantaneous rainfall intensity ρI when 

simultaneous rainfall occurs at stations p and q 

are calculated, and the instantaneous rainfall 

intensity is approximated with rainfall depth 

within very short time slots (0.1 hours here): 

 
,

cov( , )

var( ) var( )

p q

I pq

p q

z z

z z
 


 (11) 

where zp and zq are the cumulative rainfall depth 

in 0.1 hours. A correlation function between ρI 

and separation distance τ of stations then can be 

obtained by regression: 

 
0

exp( )I





   (12) 

where τ0 is a regression coefficient for the 

simultaneous rainfall intensity correlation 

function. 

The value of parameter δ is estimated to find 

the optimal simulated results by minimizing the 

gap Δτ0 between repeated simulations and long-

term observations: 

After the point rainfall event series at 

multiple stations have been obtained, rainfall 

amounts within each time slot at several stations 

are known. The areal rainfall distribution in each 

time slot then can be obtained by interpolation 

using kriging (Oliver and Webster, 1990). To 

avoid negative values in interpolation, rainfall 

value is assumed to be lognormally distributed 

spatially. Repeated realizations of rainfall 

process generation can be carried out to obtain 

sufficient inputs for the probabilistic flood 

response analysis. 

3. RAINFALL GENERATION CASE STUDY 

The model is applied to the Guangdong-Hong 

Kong-Macau bay area. The distribution of 11 

rainfall stations within this region is shown in 

Figure 1. Hourly rainfall data are recorded by 

these rainfall stations and daily rainfall data are 

accessible. At the same time, high time 

resolution rainfall data is obtained from dataset 

of NASA Tropical Rainfall Measuring Mission 

(TRMM) Rainfall Estimate (Huffman et al., 

2007). The temporal and spatial resolution of 
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rainfall data are 3 hour and 0.25º×0.25º, 

respectively. The observation period is 4 months 

(May to August) of each year from 1998 to 2017. 

3.1. Determination of model parameters 

The parameters of probability distribution of W, 

D and I, as well as the copula parameter are 

estimated from historical rainfall data at the 

locations of the 11 stations using maximum 

likelihood estimation (DeGroot and Baecher, 

1993; Fenton, 1999a, b) (Table 1), and parameter 

differences between stations are ignored. To 

determine the value of δ, simultaneous rainfall 

intensity correlation function obtained from 

simulated results with a large scale of δ are 

compared with that from historical rainfall data, 

and a value of 350 is chosen to minimize Δτ0 

(Figure 3). The simultaneous rainfall intensity 

correlation functions obtained from observation 

and simulation are shown in Figure 4. It is shown 

that the simulated results capture well the 

characteristics of the spatial correlation of 

simultaneous rainfall intensity. 

 
Table 1: Parameters used in the rainfall generator 

Vari

able 
Description 

Para

meter 
Value 

D ( / )( ) 1
kd

DF d e    k 0.836 

λ 28.786 

W ( ) 1

w

WF w e 


   β 5.507 

I 
1 1 ln

( ) [ ]
2 2 2

I

i
F i erf






   μ 0.405 

σ 0.920 

C 

1 2

1 2

1 ( 1)( 1)
( , ; ) ln[1 ] 

1

u u
e e

C u u
e

 






 



 
  



 
ϴ 2.205 

im 
b

mi a i   
a 1.224 

b 1.119 

 

 
Figure 3: Identification of parameter δ 

 

(a)  

(b)  

Figure 4: Correlation functions of simultaneous 

rainfall intensity: (a) from observation data; (b) from 

simulated data) 
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3.2. Results 

The rainfall process of any duration can be 

generated within the study area. A realization of 

4-month rainfall process at one station, as well as 

the spatial rainfall distribution at one time slot, 

are shown in Figure 5 as examples.  

Ten realizations of 20-year rainfall 

generation (4-month for each year) are carried 

out and the characteristics of generated rainfall 

are compared with the observations. The results 

are shown in Table 2. It can be seen that the 

model captures the characteristics of the 

observed rainfall well. The simulated number of 

events and the total 4-month rainfall amount are 

slightly smaller than the observations, and the 

standard deviation of the simulated single event 

rainfall amounts is larger than the observed one. 

Moreover, 3-hour maximum rainfall and daily 

maximum rainfall are calculated.  

 

(a)  

(b)  

Figure 5: Example of a generated 4-month rainfall 

process: (a) hourly rainfall time series at one station; 

(b) areal rainfall distribution at peak hour of the 

above station 

Table 2: Comparison of characteristics of generated 

rainfall time series and observations 

 
Obser

vation 

Simulation 

Range 
Avera

ge 

Average number of 

events 
78.0 

73.0-

78.0 
75.6 

Average single event 

rainfall amount (mm) 
15.8 

14.6-

16.7 
15.9 

Standard deviation of 

single event rainfall 

amount (mm) 

23.9 
26.2-

32.8 
29.5 

Total rainfall amount 

within 4 months (mm) 

1230.

5 

1087.4-

1264.3 

1196.

8 

4. CONCLUSIONS 

A model for spatial-temporal rainfall synthesis 

reflecting regional rainfall characteristics is 

proposed for flood analysis. The model generates 

point rainfall time series based on an alternating 

renewal model, and considers spatial correlation 

of the multi-point rainfall time series and the 

areal rainfall distribution. Statistical 

characteristics of the regional rainfall process are 

captured. However, more extreme values exist in 

the generated rainfall than in the observations. So 

the model needs further improvement in terms of 

extreme value control. 
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