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ABSTRACT: This study presents a site-based parameterized stochastic model for simulation of far-field 
synthetic ground motions. The model employs a modulated and filtered white-noise process defined via 
spectral representation. The modulating function is a recently proposed non-parametric function based 
on a monotonic cubic spline interpolation. As for the time-frequency modulating function, two slightly 
different versions are explored. The two versions of the model are fitted to a catalog of recorded ground 
motions and synthetic catalogs are generated using the fitted model parameters. To validate the model, 
some characteristics of the synthetic catalogs, namely the median, logarithmic standard deviations, and 
correlations of the elastic response spectra, are compared with those of the recorded catalog. These 
comparisons show that both versions of the model are able to adequately capture the spectral amplitudes, 
variability and correlations of recorded ground motions. The addition of a parameter to describe the rate 
of change of bandwidth with time does not result in any noticeable improvement and is therefore not 
warranted. Moreover, comparison with synthetic motions generated from the model by Rezaeian and Der 
Kiureghian (2010) shows that the proposed model results in an improved estimation of the correlations. 
Further studies are required to identify which feature(s) of our model are behind this improvement. 

1. INTRODUCTION 
In recent years, there has been growing interest in 
modeling earthquake ground motions and in 
developing methods for generation of synthetic 
ground motions, which can be used in 
performance-based earthquake engineering in 
addition to or in place of recorded motions. 

One method to generate synthetic motions is 
using a site-based stochastic ground motion 
model, which directly describes the ground 
motion time-series recorded at a site. Recent 
examples of site-based stochastic ground motion 
models include the non-stationary filtered white-
noise model for far-field ground motions 
Rezaeian and Der Kiureghian (2008, 2010), a 
wavelet-based model Yamamoto and Baker 
(2013), and a multi-modal non-stationary spectral 
model Vlachos et al. (2016). Extensions for near-
fault ground motion includes Broccardo and Der 
Kiureghian (2014), and Dabaghi and Der 

Kiureghian (2017, 2018). All these models 
account for both temporal and spectral non-
stationarity, which is an important characteristic 
of earthquake ground motions. Moreover, 
predictive relations for the model parameters were 
developed in terms of parameters describing the 
earthquake source and site characteristics. The 
predictive relations and stochastic model can then 
be used together to generate synthetic ground 
motions for any set of earthquake source and site 
characteristics of interest. Site-based stochastic 
models are attractive to design engineers because 
they have a simple formulation, require generally 
available input parameters, and are 
computationally efficient. Nonetheless, the 
resulting synthetic motions should be realistic and 
have characteristics that are consistent with 
recorded ground motions.  

In this paper, we investigate a site-based 
parameterized stochastic model of broadband 
ground motion introduced by Broccardo and 
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Dabaghi (2017). Similar to the work of Rezaeian 
and Der Kiureghian (2008), our model employs a 
modulated and filtered white-noise process and 
has the key advantage of separating the temporal 
and spectral non-stationary characteristics of the 
process, thus simplifying the modeling and 
parameter estimation. However, our model differs 
from that of Rezaeian and Der Kiureghian. First, 
it is defined via spectral representation using by 
defining the Evolutionary Power Spectral Density 
(EPSD). Moreover, it uses a different time-
modulating function, namely a recently proposed 
non-parametric function based on a monotonic 
cubic spline interpolation. As for the time-
frequency modulating function, two slightly 
different versions are explored to describe the 
spectral non-stationarity. The first is the 
frequency domain counterpart of the function 
used in Rezaeian and Der Kiureghian (2007). It is 
defined by three parameters, namely the main 
frequency and bandwidth of the motion in the 
strong phase, and the rate of change of 
predominant frequency with time. The other 
version adds one parameter that describes the rate 
of change of the bandwidth with time. To ensure 
zero residual velocity and displacement, a high-
pass filter is applied according to the evolutionary 
theory of Priestley (1965). This in conjunction 
with an energy correction factor eliminates a bias 
on the cumulative energy of the post-processed 
simulated motions, which is implicitly present in 
stochastic models of ground motion.  

In this paper, we start by introducing the 
proposed stochastic model. Next, the two versions 
of the model are fitted to a catalog of recorded far-
field ground motions. The procedure used to fit 
the filter parameters differs from that used by 
Rezaeian and Der Kiureghian (2008, 2010). To 
validate the model, example synthetic motions are 
then generated using the fitted model parameters, 
and are compared with the corresponding 
recorded motions. The characteristics that are 
compared include the median and logarithmic 

                                                
1  𝜔" = 𝑘∆𝜔 , and 	𝛿[𝑥] = 1  for 𝑥 = 0  and 

𝛿[𝑥] =0 

standard deviation of the elastic response spectra 
and the correlations between spectral 
accelerations at different periods. Recent studies 
have highlighted that it is important for simulated 
ground motions used in PBEE applications to 
properly account for these correlations (Bayless 
and Abrahamson 2018). The results show that 
while the model of Rezaeian and Der Kiureghian 
(2007, 2010) overestimates correlations between 
spectral periods found in recorded ground 
motions, the proposed model is able to better 
capture them.  

2. PROPOSED STOCHASTIC MODEL 

2.1. Formulation and discretization in the 
frequency domain 

A discrete spectral representation of a zero-mean 
stationary stochastic process can be written as a 
Fourier Series with random coefficients 
(Shinozuka, M., & Deodatis, G. (1991)) 
𝑋 𝑡 = 𝜎" 𝑢"	𝑠𝑖𝑛 𝜔"𝑡 + 	𝑢56" cos 𝜔"𝑡5

":; ,  (1)  

where 𝑢"	and 𝑢56"  are statistically independent 
standard normal random variables, 𝜎" 	=

2𝑆>	> 𝜔" ∆𝜔 , and 𝑆>	> 𝜔" =

𝑆>	>(𝜔)𝛿[𝜔 − 𝜔"]" 1 is the discretized version 
of the continuous two-sided Power Spectral 
Density (PSD) 𝑆>	>(𝜔). This formulation can be 
extended to simulate weakly non-stationary 
excitations, 𝑋(𝑡) , (both in time and frequency 
domain) via Priestley’s evolutionary theory of 
oscillating processes (1965). Specifically, in Eq. 
(1)  𝜎"  is replaced with 𝜎" 𝑡 =
2𝑆>> 𝑡, 𝜔" ∆𝜔 , where 𝑆>> 𝑡, 𝜔" =
𝑆>>(𝑡, 𝜔)𝛿[𝜔 − 𝜔"]"  is the continuous-time 

discrete-frequency version of the continuous-
time-frequency EPSD 𝑆>>(𝑡, 𝜔). The EPSD can 
be written as 𝑆>> 𝑡, 𝜔 = 𝐴 𝑡, 𝜔 D𝑆>	>(𝜔) , 
where 𝐴(𝑡, 𝜔)  is a time-frequency-modulating 
function. Without losing generalization, and 
selecting for convenience 𝑆>	>(𝜔) = 1 ,  𝜎" 𝑡  
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can be written as 𝜎" 𝑡 = 2 𝐴 𝑡, 𝜔"
D∆𝜔 , 

where 𝐴 𝑡, 𝜔"
D = 𝐴 𝑡, 𝜔 D𝛿[𝜔 − 𝜔"]" . It 

is easy to show that 𝐸 𝑋D 𝑡 = 𝜎>D(𝑡) . A unit 
variance process (𝜎>D(𝑡) = 1) with spectral non-
stationarity is obtained by imposing 

 𝐴 𝑡, 𝜔 D = F G,H
I

D F G,HJ
I
∆HK

JLM
	, (2)  

where 𝜙(𝑡, 𝜔)  is a generic time-frequency 
modulating function, and 𝜙 𝑡, 𝜔 =

𝜙 𝑡, 𝜔 𝛿[𝜔 − 𝜔"]" . A fully non-stationary 
process with separable time and frequency non-
stationarity can be obtained by selecting  

𝐴 𝑡, 𝜔 D = 𝑞D(𝑡) F G,H
I

D F G,HJ
I
∆HK

JLM
	, (3)  

where 𝑞(𝑡) is a time-modulating function. It is a 
simple matter to show that the variance of the 
resulting process is 𝜎>D(𝑡) = 𝑞D(𝑡). 

2.2. Time-modulating function 
As was done in Broccardo and Dabaghi (2017), a 
non-parametric time-modulating function, 
𝑞(𝑡; 𝜽R) is used in this study.  Specifically, the 
time-modulating function is directly defined by 
preselected physically meaningful time-
parameters that describe the buildup of the 
expected cumulative Arias intensity of the ground 
motion time series. The expected cumulative 
Arias intensity of the process 𝑋(𝑡) is expressed as 
𝐼T,R 𝑡; 𝜽R = 𝐸 U

DV
𝑋D 𝜏 𝑑𝜏G

; =
U
DV

𝑞D 𝜏; 𝜽R 𝑑𝜏,
G
;  while the empirical Arias 

intensity of a ground motion is defined as 𝐼T,YZ =
U
DV

𝑢VD 𝑡; 𝜽R 𝑑𝑡
G
; .  The empirical Arias intensity 

of a ground motion is a continuous and 
monotonically increasing function. Then, 𝑞 𝑡  
completely defines the expected cumulative Arias 
intensity of 𝑋(𝑡) and is modeled with a smooth, 
continuous and monotone piecewise cubic 
interpolator (Fritsch, F. N., & Carlson, R. E., 
1980). This function can easily be fitted to pass 
through any number of discrete points on the 
empirical cumulative Arias intensity of a recorded 

ground motion. The first derivative of the function 
is continuous and equal to U

DV
𝑞D 𝑡; 𝜽R . In this 

study, seven points are selected (𝑛 = 7), namely 
𝑡\ = [𝑡;, 𝑡]%,R , 𝑡_;%,R , 𝑡`]%,R , 𝑡a]%,R , 𝑡b]%,R , 𝑡c], 
where 𝑡d%,R is the time at which 𝑧% of the total 
Arias intensity of the time-modulating function is 
reached. At these points, the monotone piecewise 
cubic interpolator is constrained to take the values 
𝑝\ = [0 , 0.05𝐼T,YZ , 0.30𝐼T,YZ , 0.45𝐼T,YZ , 
0.75𝐼T,YZ , 0.95𝐼T,YZ , 𝐼T,YZ] . The parameters 𝜽R 
consist of the selected points in time (except 𝑡;, 
which is  arbitrary) and the total Arias intensity. 
Thus they are physically meaningful parameters 
that directly describe the buildup of cumulative 
energy of the ground motion. 

2.3. Time-frequency-modulating function 
The spectral non-stationarity of the process is 
defined by filter functions 𝜙(𝜔)  with time-
varying filter parameters 𝜽F(𝑡) . It follows that 
𝜙 𝑡, 𝜔; 𝜽F = 𝜙 𝜔; 𝜽F(𝑡) . Following Rezaeian 
and Der Kiureghian (2010), this study uses a 
second order filter that represents the pseudo-
acceleration frequency response function of an 
underdamped linear-elastic single-degree-of-
freedom oscillator, that is  

𝜙 	𝜔; 𝜽F(𝑡)
D = HZl(G)

HZI G mHI
I
6`nZI G HZI G HI

	, (4)  

where 𝜽F 𝑡 = [𝜔V(𝑡) , 𝜁V(𝑡)] , 𝜔V(𝑡)  is the 
predominant frequency of the filter, and 𝜁V(𝑡) is 
its bandwidth. 

2.4. Parameterization of the time-varying filter 
parameters 𝜽F 𝑡  

2.4.1. Version 1 (v1): linear variation of main 
frequency and bandwidth 

In this study, we implement a simple linear model 
to describe the evolution of the filter parameters 
with time, namely, 

𝜽F(𝑡) = 𝜽V,p\q + 𝜽Vr 𝑡 − 𝑡p\q ,	 (5) 

where 𝑡p\q is taken here as 𝑡`]%. The set of four 
parameters 𝜽F,st = [𝜽V,p\q, 𝜽Vr ], where 𝜽V,p\q =
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𝜔V,p\q, 𝜁V,p\q
u

, 𝜽V,p\q = 𝜔Vr , 𝜁Vr
u

 completely 
defines the time variation of the filter parameters 
𝜽F(𝑡). Moreover, for the selected filter function, 
𝜽F,st also completely define the time-frequency-
modulating function 𝜙(𝜔; 𝜽F(𝑡)).  

2.4.2. Version 2 (v2): linear variation of main 
frequency and constant bandwidth 

To compare with Rezaeian and Der Kiureghian 
(2010), we explore a slightly different version of 
the filter functions whereby the damping is 
assumed constant with time (i.e., 𝜁Vr = 0  and 
𝜁V 𝑡 = 𝜁V,p\q). In this version, time-frequency-
modulating function is completely defined by the 
three parameters 𝜽F,sD = [𝜔V,p\q,𝜔Vr ,𝜁V,p\q]. 

2.5. High-pass filtering and energy correction 
The process 𝑋(𝑡)  is not integrable because 
𝜙 0; 𝜽F(𝑡v)	

D ≠ 0 . Moreover its realizations 
do not have zero residual velocity and 
displacement. Usually, to overcome the first 
problem a high pass filter is used to modify the 
low frequency content and impose zero spectral 
values at 𝜔 = 0. This modification was suggested 
by Clough and Penzien for stationary processes. 
The second problem is solved either by baseline 
correction or by applying a second high-pass filter 
to each simulation 𝑥(𝑡) . Alternatively, as 
introduced in Broccardo and Dabaghi (2017), a 
single high-pass filter can be directly applied to 
the EPSD 𝑆>>(𝑡, 𝜔)  of the acceleration process 
𝑋(𝑡) using the Priestley evolutionary theory. For 
example, a critically damped single-degree of 
freedom oscillator can be used as filter. Given its 
displacement impulse response function ℎ(𝑡; 𝜔c), 
where 𝜔c  is the filter cutoff frequency,  the 
ground displacement time series 𝑢V(𝑡)  in 
response to acceleration 𝑥(𝑡)  is obtained as 
𝑢V 𝑡 = ℎ(𝑡; 𝜔c) ∗ 𝑥(𝑡) , where ∗  denotes 
convolution for 𝑡 ∈ [0, +∞). It is easy to show 
that the EPSD of the high-pass filtered 
displacement process  𝑈V 𝑡  is given by  

𝑆}Z}Z 𝑡, 𝜔 = 𝐴 𝑡 − 𝜏, 𝜔G
; ℎ 𝜏; 𝜔c 𝑒\HG𝑑𝜏

D
,  (6)  

which can be directly used to simulate 𝑢V(𝑡) by 

using 𝜎" 𝑡 = 2𝑆}Z}Z(𝑡, 𝜔")∆𝜔 . Then, the 

velocity, 𝑢V(𝑡), and the acceleration, 𝑢V(𝑡), are 
obtained by differentiation. Note that this 
procedure yields velocity and acceleration 
processes that are integrable and with zero 
residual velocity and displacement. It is a simple 
matter to show that the EPSDs of the velocity and 
acceleration processes are given by 
𝑆}Z}Z 𝑡, 𝜔 = 𝑀 𝑡,𝜔 + 𝑖𝜔𝑀 𝑡, 𝜔 D

, and 
𝑆}Z}Z 𝑡, 𝜔 = 𝑀 𝑡,𝜔 + 2𝑖𝜔𝑀 𝑡, 𝜔 −

𝜔D𝑀 𝑡, 𝜔 D
.  

Applying the high-pass filter eliminates part 
of the low frequency content of the process and 
decreases its total energy. To account for this 
effect, an energy correction factor K is introduced 
(Broccardo and Dabaghi, 2017),  

𝐾 =
YZI G qG�

M

D��Z�Z G,HJ ∆HK
JLM

��
M

.            (7)  

Then, we can define the EPSDs of the energy 
consistent ground motion processes as 
𝑆}Z}Z
� 𝑡, 𝜔 = 𝐾𝑆}Z}Z(𝑡, 𝜔) , 𝑆}Z}Z

� 𝑡, 𝜔 =
𝐾𝑆}Z}Z(𝑡, 𝜔), and 𝑆}Z}Z

� 𝑡, 𝜔 = 𝐾𝑆}Z}Z(𝑡, 𝜔). 

3. FITTING TO RECORDED CATALOG 

3.1. Recorded Catalog 
The two versions of the model investigated in this 
study are fitted to a dataset of recorded motions 
taken from the PEER NGA-West2 database. In 
particular, 71 ground motions recorded at a range 
of distances (10-90 km) and site conditions from 
reverse earthquakes with magnitude between 6 
and 7.6 are used. Similar to Rezaeian and Der 
Kiureghian (2012), the two horizontal 
components of each record are rotated into the 
major and intermediate principal directions. Only 
the major component is fitted in this study. 

3.2. Fitting time-modulating function parameters  
As mentioned earlier, the parameters 𝜽R  of the 
time modulating function are fitted by matching 
points on the cumulative Arias intensity function 
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of 𝑞(𝑡) , 𝐼T,R(𝑡) , with points on the cumulative 
Arias intensity function of a target recorded 
ground motion 𝑢V(𝑡), 𝐼T,YZ(𝑡). Given 𝑡;,YZ , the 
physically meaningful parameters are 𝜽𝒒 		=
[𝐼T,YZ , 𝑡]%,YZ , 𝑡_;%,YZ , 𝑡`]%,YZ , 𝑡a]%,YZ , 𝑡b]%,YZ , 
𝑡c,YZ] . For more details about the fitting 
procedure, see Broccardo and Dabaghi (2017). 

3.3. Fitting filter function parameters 
Given a target recorded ground motion, the set of 
parameters 𝜽F  is estimated such that 
𝜙(𝜔; 𝜃F(𝑡))  “best fits” an empirical discrete 
EPSD 𝑆>>(𝑡v, 𝜔)  of the recorded motion, with 
𝑛 ∈ 	 [0, . . . 𝑁] and 𝑡v = 𝑛𝛥𝑡 . First, 𝑆>>(𝑡v, 𝜔) is 
computed with the short-time Thomson's 
multiple-window (STTMW) spectrum estimation 
technique (Conte and Peng, 1997). The main 
advantage of STTMW is that it is not limited by 
the usual trade-off between variance and spectral 
leakage. Then, at each instant of time 𝑡v, the set 
of parameters 	𝜽F(𝑡v) is estimated by minimizing 
the square difference between the normalized 
empirical EPSD, 𝜙 𝑡v, 𝜔 = 𝑆>> 𝑡v, 𝜔 /
𝑍���(𝑡v), and 𝜙 𝜔; 𝜽F(𝑡v)	

D
, where 𝑍���(𝑡v) 

is a normalizing constant. It follows that 

𝜽F 𝑡v = argmin
𝜽� G� ,FM G�

𝜙 𝑡v, 𝜔"; 𝜽F 𝑡v 𝜙; 𝑡v −5
":;

𝜋 𝑚 𝜙 𝑡v6p, 𝜔"
�
I

p:m�I

D	

, (8) 

Finally, the parameters 𝜽F,st  or 𝜽F,sD  are fitted 
using weighted least squares minimization of the 
difference between 𝜽F(𝑡)  from Eq. (5) and 
𝜽F 𝑡v  from Eq. (6) (for more details, see 
Broccardo and Dabaghi, 2017). 

4. COMPARISON OF SYNTHETIC AND 
RECORDED CATALOGS 

To validate a ground motion simulation model, 
the characteristics of the resulting synthetic 
ground motions should be compared with those of 
recorded ground motions [e.g., (Burks and Baker 
2014)]. In this study, we compare the statistics of 
the response spectra of the three catalogs, namely 

the mean and median levels, the variability 
(standard deviations), and the correlations 
between spectral ordinates. 

4.1. Elastic response spectra 
For each ground motion in the recorded catalog, 
the parameters of the two stochastic models (v1 
and v2) are fitted. Then, each model is used with 
its corresponding fitted model parameters to 
generate one synthetic motion for each recorded 
motion. Note that for each recorded motion, a 
single white noise process is generated and used 
in both simulation models. Therefore, the 
resulting two simulated motions only differ in the 
definition of their EPSD. This simulation 
procedure results in two synthetic catalogs each 
consisting of 71 ground motion time series.  

Figure 1 shows the 5% damped elastic 
pseudo-acceleration, pseudo-velocity, and 
displacement response spectra of the simulated 
motions. The mean, median and 95th percentile 
levels of the recorded motions are compared with 
those of the synthetic catalogs generated using 
models v1 (light red) and v2 (dark red). The 
comparison shows that both models result in 
response spectra that are almost identical and are 
both able to adequately represent the ground 
motion levels of the recorded motions. 

Figure 2 shows the lognormal standard 
deviation of the 5% damped elastic response 
spectral ordinates of the recorded and simulated 
catalogs. The figures show that both models v1 
and v2 able to adequately represent the ground 
motion variability of the recorded motions up to 
periods around 4-5s. At longer periods, the 
synthetic catalogs tend to underestimate the 
variability found in the recorded catalog. This 
could be caused by the high-pass filtering 
procedure used; modifications will be later 
explored to check if they can correct this 
underestimation of variability at the longer 
periods.  

4.2. Correlations between spectral periods 
Figure 3 shows the correlations between the 5% 
damped elastic pseudo-acceleration response 
spectra at different periods for the recorded 
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Figure 1: Statistics of 5% damped elastic response 
spectra of recorded  motions (blue) and corresponding 
motions simulated using fitted model parameters with 
models v1 (light red) and v2 (dark red): (a) pseudo-
acceleration; (b) pseudo-velocity; and (c) 
displacement spectra 
 

 
Figure 2: Lognormal standard deviation of 5% 
damped elastic response spectral ordinates of 
recorded ground motions (blue) and corresponding 
motions simulated using fitted model parameters with 
models v1 (light red) and v2 (dark red) 

motions and the motions in the synthetic catalogs 
generated using v1 and v2. 
Figure 4 shows the correlation map between 
response spectral ordinates for the two model and 
the original ground motions.  The figures show 
that the correlations of the simulated motions 
from both models are almost identical. Moreover, 
the simulations tend to overestimate the 
correlations between spectral ordinates compared 
to recorded ground motions. These comparisons 
show that both versions v1 and v2 of the model 
are able to adequately capture the spectral 
amplitudes, variability and correlations of 
recorded ground motions. The addition of a 
parameter 𝜁r  to describe the rate of change of 
bandwidth with time does not result in any 
noticeable improvement and is therefore not 
warranted. 

 

 
Figure 3: Correlations between response spectral 
ordinates for recorded ground motions (dashed lines) 
and corresponding motions simulated using fitted 
model parameters (solid lines)with models v1 (a) and 
v2 (b) 
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Figure 4 Correlations map between response spectral 
ordinates for the ground motion catalogs: (a) 
simulations using model v1; (b) simulations using 
model v2; and (c) recorded motions  

 
These results are also compared with 

synthetic catalogs generated using the stochastic 
ground motion model proposed by Rezaeian and 
Der Kiureghian (2010), which is formulated in the 
time domain. Figure 5 shows the correlations 
between the 5% damped elastic pseudo-
acceleration response spectra at different periods 
for a synthetic catalog generated using the 
Rezaeian and Der Kiureghian (2010) model and 
for the recorded catalog to which the model was 
fitted. As illustrated in Figure 5, their model 
produces synthetic ground motions that exhibit 

correlations between spectral periods that are a lot 
higher than those of recorded ground motions.  

Comparing Figure 3 and Figure 5 shows that 
our model results in an improved estimation of the 
correlations compared with that of Rezaeian and 
Der Kiureghian (2010). This improvement should 
then be explained by one (or more) of the 
differences between the two models. The 
differences include: (1) a formulation in the 
frequency domain; (2) a more flexible time-
modulating function; (3) post-processing applied 
directly in the frequency domain; (4) energy 
correction similar to Dabaghi and Der Kiureghian 
(2017, 2018). Further investigation is required to 
identify the main cause of the improvement. 

 

 
Figure 5: Correlations between response spectral 
ordinates for recorded motions (solid lines) and 
corresponding motions simulated using the model by 
Rezaeian and Der Kiureghian (2010) (dashed lines) 

5. SUMMARY AND CONCLUSIONS 
In summary, a recently proposed site-based 
parameterized stochastic ground motion model is 
described and validated in this paper. The model 
is defined via spectral representation and uses a 
recently proposed non-parametric function based 
on a monotonic cubic spline interpolation. As for 
the time-frequency modulating function, two 
slightly different versions are explored. The first 
is defined by three parameters, namely the main 
frequency and bandwidth of the motion in the 
strong phase, and the rate of change of 
predominant frequency with time. The other 
version adds one parameter that describes the rate 
of change of the bandwidth with time. The two 
versions of the model are fitted to a catalog of 
recorded far-field ground motions and synthetic 
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catalogs are generated using the fitted model 
parameters. Some characteristics of the synthetic 
catalogs, namely the median, logarithmic standard 
deviations, and correlations of the elastic response 
spectra, are compared with those of the recorded 
catalog. These comparisons show that both 
versions of the model are able to adequately 
capture the spectral amplitudes, variability and 
correlations of recorded ground motions. The 
addition of a parameter 𝜁r to describe the rate of 
change of bandwidth with time does not result in 
any noticeable improvement and is therefore not 
warranted. Moreover, comparison with synthetic 
motions generated from the model by Rezaeian 
and Der Kiureghian (2010) shows that the 
proposed model results in an improved estimation 
of the correlations. Further studies are required to 
asses which feature(s) are behind this 
improvement. 
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