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ABSTRACT: Modal identification involves the determination of natural frequencies, damping ratios, 

and mode shapes of a mechanical system using measured vibration data. The vector autoregressive (VAR) 

method and its variants are popular techniques capable of quickly extracting the modal properties, whose 

parameters are entries in the system matrices and are estimated by linear regression. However, those 

methods originally provide only the best estimates of modal parameters. Given the identified parameters 

are often used as a basis for structural control and health monitoring, it is important to know the statistics 

of those estimates. Probability logic with Bayesian updating provides a rigorous framework to obtain 

VAR model coefficients, quantify their uncertainty and moreover, calculate the statistics of modal 

parameters derived from the VAR model. In this study, an approach based on the VAR and Bayesian 

inference is investigated to obtain the most probable value and statistical features of modal frequencies 

of a steel plate girder bridge. 

 

1. INTRODUCTION 

A variety of methods have been developed to 

perform modal identification on operational 

structure, in which the structure is usually 

considered as a linear-elastic structure subjected 

to white noise excitation. Among them, the vector 

autoregressive modeling (VAR), stochastic 

subspace identification (SSI) and its variants are 

popular techniques capable of quickly extracting 

the modal properties based on a time-invariant 

linear model whose parameters are entries in the 

system matrices and are estimated by linear 

regression based on least-square. They originally 

provide only the best estimates of modal 

parameters. Given the identified modal 

parameters are often used as a basis for structural 

control and health monitoring, it is important to 

know the accuracy of those estimates. 

Besides VAR and SSI methods, modal 

identification methods based on Bayesian logic 

has recently attracted considerable attention. 

However, the implementation of Bayesian 

methods usually comes with demanding 

prerequisite or high computational cost: a time-

domain formulation commonly gives rise to 

computational problems due to the large number 

of parameters involved; on the other hand, though 

methods such as the Bayesian Operational Modal 

Analysis works on the frequency domain and 

managed to obtain the most probable modal 

properties and assess their posterior uncertainties, 

it usually assumes that structural modes are well 
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separated, and the corresponding frequency bands 

are supposed to be known in advance. 

To explore a method of better practicability 

and applicability, an approach based on the VAR 

and Bayesian inference is proposed, and the 

Monte Carlo method is applied to approach the 

statistical features of identified modal frequencies. 

The proposed method is verified via a case study 

based on the data of a steel-plate girder bridge. To 

address the problem of computational cost in the 

Monte Carlo simulation, an investigation based on 

singular value decomposition is also discussed. 

2. METHODOLOGY 

The concept of the modal parameter identification 

by means of vector autoregressive-based 

Bayesian identification is summarized in Figure 1. 

In operational modal analysis, the structure is 

usually considered as a time-invariant linear 

system subjected to white noise (denoted by 𝒆𝑘 ∈
𝑅𝑚×1  in Eq. (1)), and its response can be 

modelled by the VAR of sufficient model order P 

(Goi and Kim 2017a): 

𝒚𝑘 = ∑ 𝐴𝑖𝒚𝑘−𝑖
𝑃
𝑖=1 + 𝒆𝑘                (1) 

where 𝒚𝑘 ∈ 𝑅
𝑚×1  is a column vector of the 

discrete time series of acceleration data from m 

measurements and  𝐴𝑖 ∈ 𝑅
𝑚×𝑚  is the i-th AR 

coefficient matrix. Through Bayesian inference, 

posterior distribution of the model parameters can 

be obtained through Bayesian updating: 

𝑝(𝜽|𝐷) = 𝑝(𝐷|𝜽)𝑝(𝜽)𝑝(𝐷)−1        (2) 

where regressive parameters 𝜽 = {𝐴1, 𝐴2,  … , 𝐴𝑃 

, 𝛽1,  … , 𝛽𝑚} , in which 𝛽𝑖  is the precision 

parameter of the regression, and D is observed 

data. Here, with a time window of length lw, n 

times of Bayesian updating are conducted within 

a sampling interval, a posterior of the regressive 

parameters is obtained and the most probable 

values of the posterior is considered as the 

estimates identified from the interval. Also, the 

derived distribution of natural frequencies 

(𝑓1, 𝑓2, … , 𝑓𝑛 ) of the structure can be obtained 

through Monte Carlo simulation, therefore: 

𝑝(𝜽|𝐷)
               
→    𝑝(𝑓1, 𝑓2, … , 𝑓𝑛|𝐷)        (3) 

2.1. Bayesian Inference 

Focusing on j-th row in Eq. (1), the following 

regressive model is obtained: 

𝑦{𝑗}
𝑘
= ∑ 𝒂𝑖

{𝑗}𝒚𝑘−𝑖
𝑃
𝑖=1 + 𝑒{𝑗}𝑘         (4) 

Therein, 𝑦{𝑗}
𝑘
 and 𝑒{𝑗}𝑘 represent j-th element of 

𝒚𝑘  and 𝒆𝑘 , and 𝒂𝑖
{𝑗} ∈ 𝑅1×𝑚 represents j-th row 

of 𝐴𝑖 . Assuming elements of 𝒆𝑘  are statistically 

independent each other and following Gaussian 

distribution with expectation 0, then 𝑦{𝑗}
𝑘

 also 

follows Gaussian distribution with expectation 

∑ 𝒂𝑖
{𝑗}𝒚𝑘−𝑖

𝑃
𝑖=1 . Letting 𝑡𝑘 = 𝑦𝑘

{𝑗} ， 𝒘 =

[𝒂𝑖
{𝑗}, … , 𝒂𝑃

{𝑗}]𝑻 ∈ 𝑅𝑚𝑃×1  and 𝝓𝑘 =
[𝒚𝑘−1

𝑻, … , 𝒚𝑘−𝑃
𝑻]𝑇 ∈ 𝑅𝑚𝑃×1  for simplicity, 

probability distribution function (PDF) of t is: 

𝑝(𝑡𝑘|𝝓𝑘, 𝒘, 𝛽) = 𝑁(𝑡𝑘|𝒘
𝑻𝝓𝑘,  𝛽

−1)     (5) 

where, 𝑁(𝑥|𝜇, 𝜎2)  is PDF of x following 

Gaussian distribution with expectation 𝜇  and 

variance 𝜎2 , and 𝛽  represents the precision 

parameter of the regression, which is the inverse 

of the variance of the noise term 𝑒𝑘
{𝑗}. Assuming 

n samples of 𝑡𝑘 and 𝝓𝑘 are observed, and letting 

𝒕 = [𝑡1, … , 𝑡𝑛] ∈ 𝑅
𝑛×1  and 𝛷 = [𝝓1…𝝓𝑛]

𝑇 ∈
𝑅𝑛×𝑚𝑃 , then the likelihood function for the 

parameters 𝒘 and 𝛽 is as follows (Goi and Kim 

2017b): 

 
Figure 1: Flow of VAR-Bayesian Identification. 

IV. Post Processing 
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𝑝(𝒕|𝛷,𝒘, 𝛽) = ∏ 𝑁(𝑡𝑘|𝒘
𝑻𝝓𝑘 ,  𝛽

−1)𝑛
𝑘=1   (6) 

With the observed t, the updated posterior of the 

model, defined by the parametric vector and 

consequently the parametric matrix composed of 

VAR coefficients, can be obtained through Bayes’ 

Theorem as: 

𝑝(𝒘, 𝛽|𝒕) = 𝑝(𝒕|𝒘, 𝛽)𝑝(𝒘, 𝛽)𝑝(𝒕)−1    (7) 

where 𝑝(𝒘, 𝛽) is the prior for 𝒘 and 𝛽, 𝑝(𝒕|𝒘, 𝛽) 
as a function of 𝒘 is the likelihood, and 𝑝(𝒕) is 

the normalizing constant given observation 𝒕, of 

which the evaluation requires an intractable 

integration over the model parameter space. To 

address the problem, the prior PDF is formulated 

as a conjugate prior: 

𝑝(𝒘, 𝛽) = 𝑁(𝒘|𝒎0,  𝛽
−1𝐿0

−1)𝐺𝑎𝑚(𝛽|𝑎0, 𝑏0) (8) 

Here, 𝑁(𝒙|𝝁, 𝛴) is the joint PDF of a vector x 

following the multivariate Gaussian distribution 

with expectation 𝝁  and covariance matrix 𝛴 , 

which in this case, 𝒎0 and 𝛽−1𝐿0
−1 respectively. 

And 𝑎0 and 𝑏0  are hyperparameters that govern 

the distribution of 𝛽 through Gamma distribution 

characterized by shape 𝑎0 and rate 𝑏0. Therefore 

the posterior can be obtained by: 

𝑝(𝒘, 𝛽|𝒕)

= 𝑁(𝒘|𝒎𝑁 ,  𝛽
−1𝐿𝑁

−1)𝐺𝑎𝑚(𝛽|𝑎𝑁 , 𝑏𝑁) 

(9) 

𝐿𝑁 = 𝐿0 +  𝝓𝑻𝝓                                           (10) 

𝒎𝑁 = 𝐿𝑁
−𝟏(𝐿0𝒎0 +𝝓

𝐓𝒕)                              (11) 

𝑎𝑁 = 𝑎0 +
𝒏

𝟐
                                                    (12) 

𝑏𝑁 = 𝑏0 +
𝟏

𝟐
(‖𝒕 − 𝝓𝒎𝑁‖

𝟐 + (𝒎0 −𝒎𝑁)
𝐓        

𝐿0(𝒎0 −𝒎𝑁))                                     (13) 

In practice, for a structure without prior 

information, it is usually recommended to utilize 

non-informative prior. Then, the posterior PDF of 

VAR coefficients can be updated iteratively with 

subsequent observations. 

2.2. Modal Parameters and Monte Carlo 

Simulation 

Using the z-transform, Eq. (1) is transformed into 

z-domain as: 

𝒀(𝑧) = 𝐻(𝑧)𝑬(𝑧)                          (14) 

𝐻(𝑧) = (𝐼𝑚 − ∑ 𝑧−𝑖𝐴𝑖
𝑃
𝑖=1 )

−1
        (15) 

where 𝒀(𝑧) and 𝑬(𝑧) are z-transforms of 𝒚𝑘  and 

𝒆𝑘, respectively, 𝐼𝑚 denotes the identity matrix of 

m-order. Matrix 𝐻(𝑧) in Eq. (14) and (15) is the 

transfer function of the linear system shown in Eq. 

(1). The conjugated pairs of the poles of 𝐻(𝑧) are 

related to the modal characteristics of the structure 

as shown in Eq. (16): 

𝜆𝑖𝜆𝑖
∗ = exp ((−𝜉𝑖 ± 𝑗(1 − 𝜉𝑖

2)
1

2)𝜔𝑖𝛥𝑡)    (16) 

where 𝜔𝑖 and 𝜉𝑖 are the natural angular frequency 

and damping ratio of the i-th mode, respectively, 

𝛥𝑡 is the sampling time of 𝒕 and j represents an 

imaginary unit. These poles are obtained by 

solving the eigenvalue problem with respect to z: 

|𝐼𝑙𝑧 − 𝑆| = 0                   (17) 

𝑆 =

[
 
 
 
 
𝐴1   
𝐼𝑚
0𝑀
⋮
0𝑀

𝐴2   
0𝑀
𝐼𝑚
⋮
0𝑀

 i ⋯ i 
i⋯ i
i⋯ i
i ⋱ i
i⋯ i

𝐴𝑃−1
0𝑀
0𝑀
⋮
𝐼𝑚

𝐴𝑃   
0𝑀
0𝑀
⋮
0𝑀 ]
 
 
 
 

          (18) 

where 𝑙 = 𝑚𝑃, |∙| denotes matrix determinant, and 

the updated coefficient matrix 𝐴𝑖  (𝑖 = 1,… , 𝑃) 
can be obtained through Bayesian inference (the 

entries in  𝐴𝑖 are random variables following the 

corresponding posterior distribution). 

However, the derived distribution of modal 

parameters, which concerns eigenvalue spectrum 

of sparse random matrices, is analytically 

intractable. To address the problem, a Monte 

Carlo simulation is conducted as the following: 

(i). Sample the transformed system matrix S, in 

which 𝐴𝑖  ~ 𝑁(𝒎𝑁 ,  𝛽
−1𝐿𝑁)𝐺𝑎𝑚(𝛽|𝑎𝑁 , 𝑏𝑁); 

(ii). With the sampled matrix S, obtain the 

corresponding modal parameters by Eq. (16)-(18); 
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(iii). Obtain statistical features of the identified 

modal parameters through the samples obtained in 

last step, such as a simulated variance: 

𝜎2𝑠𝑖𝑚 =
1

𝑛−1
∑ (𝑓𝑠𝑎𝑚 − 𝜇)

2𝑛
𝑖=1         (19) 

where “sim” denotes simulated value, and “sam” 

denotes sampled value, and 𝜇 is the mean of the 

sampled modal frequencies. Thus, the modeling 

uncertainty can be exhibited by the statistical 

features of the sampled distribution. For example, 

a simulated variance 𝜎2𝑠𝑖𝑚 calculated from the 

distribution approached by the Monte Carlo 

simulation may serve as a good reference in 

structural assessment. 

3. CASE STUDY 

3.1. Observation Bridge 

The observation bridge is a steel plate-girder 

bridge with a span of 40.5 m long and a width of 

4.5m. A vibration series of 113 hours was 

analyzed in this study. The monitoring system 

includes 10 accelerometers installed separately on 

each side of the bridge as shown in Figure 2. The 

accelerations were sampled at 200 Hz. 

3.2. System Identification 

Based on the procedure presented in Figure 1, 113 

sets of the modal parameters are obtained hourly. 

Here, the time window lw is 15 minutes (therefore 

n = 4), and the model order of the VAR model P 

was set as 20 for the balance of necessary model 

complexity and identification efficiency. Due to 

low excitation (especially at nights of low traffic), 

it was difficult to identify all the modes of the 

 

 
Figure 2: Observation Bridge and Sensor Layout. 

A2 (Pin)A1 (Move)

A⑤,A⑩A④,A⑨A③,A⑧A②,A⑦A①,A⑥

（Unit : mm）

A⑤A④A③A②A①

A⑩A⑨A⑧A⑦A⑥

67506750 6750675067506750

2
6

0
0

　　     Static Loading              Vehicle testing         Protection Device　　　　Accelerometer (A)

West

East

North South

 
1st Bending Mode, 𝑓 = 3.0266, 𝜉 = 0.0170 

 
1st Torsional Mode, 𝑓 = 4.8919, 𝜉 = 0.0172 

 
2nd Bending Mode, 𝑓 = 9.3084, 𝜉 = 0.0066 

Figure 3: Identified Result (First Interval). 
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bridge at every time interval. This study focuses 

on the frequencies of the first three modes (first 

bending, first torsional and second bending), of 

which typical outcomes are shown in Figure 3. In 

Figure 4, the comparison between the results of 

the vector autoregressive-based Bayesian 

identification and the SSI (the maximum order of 

the SSI is set as 50), which is a widely considered 

reliable method, can serve as an intuitive 

representative of the performance of the method. 

It can be found that the results of both 

methods showed considerable agreement to each 

other in the most intervals, especially for the 

bending modes; meanwhile, the result of the 

torsional mode showed less agreement. Those 

observation can also be verified by the summary 

shown in Table 1. 

For all the modes, the natural frequencies of 

both methods varied throughout the monitoring 

with a period of approximately 24 hours, which is 

very likely caused by the environmental variation 

(mainly temperature). Meanwhile, some of the 

irregular variation might be due to the operational 

variations, such as the traffic volume. 

3.3. Uncertainty Analysis 

The posterior distribution in the context of 

Bayesian inference of the modal parameters can 

be approached through the Monte-Carlo 

simulation in sub-section 2.2, and a simulated 

variance of the frequencies can be found. In this 

case, 10,000 instances are sampled from the 

posterior distribution of the VAR coefficient 

matrices to obtain the posterior distribution 

statistics of the modal frequencies, the 

distributions for the frequencies are shown in 

Figure 5, along with a summary in Table 2. 

        From the diagram, it can be concluded that 

the frequencies of the torsional mode sampled 

from the posterior distribution varies more than 

the bending modes. This result indicates that the 

bending modes can be identified with better 

assurance. It is possibly because the observation 

bridge is a single lane bridge, and the bending 

modes are more easily excited than the torsional 

mode. 

Table 1: Discrepancy between SSI and VAR-

Bayesian. 

 
𝑓𝑆𝑆𝐼 − 𝑓𝑉𝐴𝑅−𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 

Min. Avg. of Abs. Max. 

1st bending -0.2843 0.0347 -0.0049 

1st torsional -0.6173 0.0348 0.0649 

2nd bending -0.0811 0.0192 0.1710 

 

 

 

Figure 4: Results of Two Methods: a) 1st Bending 

Mode; b) 1st Torsional Mode; c) 2nd Bending Mode. 

f 
(H
z)

 
f 
(H
z)

 
f 
(H
z)

 

Time (hour) 

Time (hour) 

Time (hour) a） 

b） 

c） 
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More intuitively, the convergence of the 

simulated variance is shown in the Figure 6. Here, 

the sampling of an interval of busy traffic (so that 

the first six modes can be identified) is shown to 

make the comparison more straightforward. 

Generally, the first three modes come to converge 

(though with little fluctuation) just after around 

2000 times of sampling. On the other hand, there 

is no clear sign of convergence for the other 

modes, especially the second torsional mode that 

fluctuate intensively to the end of the sampling. 

 

a)  

b)  

c)  
Figure 5: Gaussian Fitted Histogram of Sampled 

Frequencies of First Three Modes: a) 1st Bending 

Mode; b) 1st Torsional Mode; c) 2nd Bending Mode. 

 

Table 2: Statistics of Identified Frequencies. 

 1st bending 1st torsional 2nd 

bending 

μ 3.03 4.90 9.31 

𝜎𝑠𝑖𝑚 2.1 × 10−6 4.4 × 10−6 3.1
× 10−6 

𝜎𝑠𝑖𝑚
/𝜇 

6.9 × 10−7 9.0 × 10−7 3.3
× 10−7 

 
Figure 6: Convergence of Simulated Variance. 

 

A noticeable issue is that, in the process of 

uncertainty quantification through Monte Carlo 

simulation, the sampling of large matrix can be 

very time-consuming: in this case, it would take 

more than 25 hours to process the vibration data. 

To address that problem, a further investigation is 

presented in next section. 

4. FURTHER INVESTIGATION 

One route to deal with the problem of 

computational cost would be a feature extraction 

procedure based on SVD. Through the SVD, the 

principle components of the posterior distribution 

are extracted. 

In Eq. (8)-(9), the covariance matrix 𝐿 

contains the information of observed time series 

of the bridge. The SVD of it is shown as following: 

𝐿 = 𝑈𝛬𝑈𝑇 = [𝑈1𝑈2] [
𝛬1 0
0 𝛬2

] [
𝑈1
𝑇

𝑈2
𝑇]     (20) 
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where Λ ∈ 𝑅𝑚𝑃×𝑚𝑃 is the diagonal matrix 

consisting of the singular values and 𝑈 ∈
𝑅𝑚𝑃×𝑚𝑃 is the orthogonal matrix consisting of the 

singular vector. Λ1 ∈ 𝑅
𝑞×𝑞  and 𝑈1 ∈ 𝑅

𝑚𝑃×𝑞 

represent the q largest singular values and the 

corresponding singular vectors; Λ2  and 𝑈2 
represent the other singular values and singular 

vectors. Let 𝒘̃  denote the orthogonal 

transformation of the parameter vector 𝒘 , 𝒘̃ =
𝑈𝑇𝒘 ; 𝒘̃1  and 𝒘̃2  denote components of 𝒘̃ , 

therefore 𝒘̃𝟏 = 𝑈1
𝑇𝒘 and 𝒘̃𝟐 = 𝑈2

𝑇𝒘. Then Eq. 

(9) leads to the posterior distribution of 𝒘̃𝟏, 𝒘̃𝟐 

and 𝛽 as follows: 

𝑝(𝒘̃, 𝛽|𝒕) 

= 𝑁(𝒘̃|𝒎̃,  𝛽−𝟏Λ−𝟏)𝐺𝑎𝑚(𝛽|𝑎𝑁 , 𝑏𝑁)  

= 𝑁(𝒘̃𝟏|𝒎̃𝟏,  𝛽
−𝟏Λ1

−𝟏)𝑁(𝒘̃𝟐|𝒎̃𝟐,  𝛽
−𝟏Λ2

−𝟏) 

    𝐺𝑎𝑚(𝛽|𝑎𝑁 , 𝑏𝑁) 
(21) 

Therein, 𝒎̃ = 𝑈𝑇𝒎𝑁 , 𝒎̃1 = 𝑈1
𝑇𝒎𝑁  and 𝒎̃2 =

𝑈2
𝑇𝒎𝑁. In the context of Bayesian inference, the 

observed structure response 𝒕  includes the 

uncertainty (measurement error, operational 

effect, etc.) consequently expressed through the 

posterior distribution in Eq. (21). In Eq. (21), the 

parameter 𝒘̃𝟏  would have less variances 

compared to the 𝒘̃𝟐. Therefore, the 𝒘̃𝟏 represents 

the parametric subspace derived from the 

observation that is more inferable. The parametric 

subspace for 𝒘̃𝟏  gives a reduced form of the 

transformed system matrix 𝑆: 

𝑆̃𝟏 = 𝑈1
𝑇𝑆𝑈1                           (22) 

With the reduced and transformed system 

matrix  𝑆̃1 , the modal parameters and the 

associated statistical features are expected to be 

efficiently obtained: the size of transformed 

system matrix 𝑺  is reduced from 𝑚𝑃 ×𝑚𝑃  to 

𝑞 × 𝑞. In this case, when setting q =14, it needs 

only 12% of the original computational time. A 

comparison of the identified modal frequency 

before and after the model reduction is shown in 

Figure 7. Also, after the reduction, similar 

patterns of posterior distribution of modal 

frequencies and associated statistics can be found 

in Table 3 and Figure 8. 
Table 3: Statistics of Identified Frequencies. 

 1st bending 1st torsional 2nd bending 

μ 3.00 4.89 9.33 

𝜎𝑠𝑖𝑚 6.3 × 10−8 4.1 × 10−7 3.8 × 10−7 

𝜎𝑠𝑖𝑚/𝜇 2.1 × 10−8 8.4 × 10−8 4.0 × 10−8 

 

 

 

 
Figure 7: Comparison of Three Methods: a) 1st 

Bending Mode; b) 1st Torsional Mode; c) 2nd Bending 

Mode.  
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a)  

b)  

c)  

Figure 8: Gaussian Fitted Histogram of Sampled 

Frequencies Based on Reduced Matrix: a) 1st Bending 

Mode; b) 1st Torsional Mode; c) 2nd Bending Mode.  

 
Table 4: Consequence of Parametric Matrix 

Reduction. 

 Identification 

Rate 
Average MAC  

Original Reduced Original Reduced 

1st bending 100% 100% 0.9999 0.9998 

1st torsional 100% 69% 0.9883 0.9444 

2nd bending 100% 95% 0.9917 0.9866 

        However, the improvement of efficiency 

comes with a cost on the identification. In the 

Table 4, a successful identification indicates that 

it presents structural mode identified with 

promising value of Modal Assurance Criterion 

(MAC, here the critical value is set as 0.95). It 

shows that the identification may not always be 

successful, even for the most excited modes of the 

bridge. The main reason is that the reduction of 

the parametric matrix leads to the distortion of 

identified mode shape, which is revealed as the 

decrease of MAC value. How to improve the 

algorithm efficiency without losing important 

information is a problem remained to be solved. 

5. CONCLUSIONS 

In this study, an autoregressive-based structural 

identification method by means of Bayesian 

Inference was performed to obtain the modal 

frequency. Although some discrepancy and 

instability are remained, its result showed high 

agreement with those obtained from the existed 

method.  

However, to assess the posterior uncertainty, 

the method based on Monte-Carlo simulation 

would be time-consuming. Though an attempt 

based on SVD and principle components analysis 

(PCA) was conducted, the improvement in 

efficiency actually comes with a sacrifice of 

identification quality. How to improve the 

algorithm efficiency without losing important 

information is a problem remained to be solved. 
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