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ABSTRACT: This paper focuses on the development of an efficient design optimization framework for
wind-excited systems that is capable of handling not only high-dimensional and complex probability
spaces, but also high-dimensional spaces of design parameters. Data-driven simulation models are
utilized in assessing the system-level probabilistic measures. To efficiently solve the performance-based
design optimization problem, a framework is proposed that is based on approximately decoupling the
stochastic simulation from the optimization process. Local approximation models, constructed from
results of a single stochastic simulation, are used to define a deterministic composite function that
relates the design parameters to the system-level performance metrics. The explicit nature of this
relationship is then exploited to define a sequence of deterministic optimization sub-problems that yield
solutions to the original stochastic optimization problem. To illustrate the applicability of the proposed
approach, a large-scale building system is optimized under stochastic wind tunnel-informed excitations
and subject to system-level loss constraints.

1. INTRODUCTION
The performance assessment of wind-excited sys-
tems is moving towards probabilistic system-level
settings in which both the stochastic nature of the
external excitation and the uncertainties in sys-
tem parameters are explicitly modeled. This in-
evitably leads to problems characterized by high-
dimensional spaces of random variables. Within
the context of modern wind performance-based
design (e.g. Chuang and Spence, 2017; Cui and
Caracoglia, 2018), the need to estimate system-
level metrics, such as expected repair cost and ex-
pected repair time, introduces additional complex-
ity in the form of discontinuous loss functions. If
optimal structural systems are to be defined in this
setting, optimization methods capable of handling
not only high-dimensional and complex probabil-
ity spaces but also the generally high-dimensional

space of design parameters are required. Indeed,
most design problems of practical interest are char-
acterized by hundreds of free design parameters.
This paper focuses on the development of an effi-
cient framework for solving this class of problems
in the case of stochastic wind excitation. Data-
driven simulation models are utilized in assessing
the system-level probabilistic measures. To effi-
ciently solve the performance-based design opti-
mization (PBDO) problem, a framework is pro-
posed that is based on approximately decoupling
the simulation from the optimization process. Local
approximation models are constructed from the re-
sults of a single simulation carried out exclusively
in the current design point. Through the approx-
imation scheme, a deterministic composite func-
tion is defined that relates the design parameters
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to the system-level performance metrics. The ex-
plicit nature of this relationship is then exploited
to define a sequence of deterministic optimization
sub-problems that yield solutions to the original
stochastic optimization problem.

2. PERFORMANCE OPTIMIZATION PROBLEM

To determine the optimal trade-off between ini-
tial cost and anticipated loss, this work proposes a
framework for obtaining designs that minimize the
upfront cost of the system, while ensuring intended
performances under a wind hazard of given inten-
sity. In particular, the performance measures are
defined in terms of the expected value of D system-
level decision variables DV . Hence, the PBDO
problem may be mathematically formulated as:

Find x = {x1, ...,xN}T

to minimize W = f (x)

s. t. µ
(d)
DV (x; im)≤ L(d)

0 d = 1, ...,D
xn ∈ Xn n = 1, ...,N

(1)

where x is a high-dimensional design variable vec-
tor containing the deterministic parameters used to
define the structural system (e.g., beam and column
sizes); W represents the initial cost function (e.g.,
structural weight); µ

(d)
DV (x; im) = E[DV (d)(x)|im] is

the expected value of the dth system-level loss mea-
sure DV (d) (e.g., expected repair cost or expected
repair time), conditional on the intensity im of the
windstorm; D is the total number of expected loss
constraints; L(d)

0 is the threshold value of the de-
cision variable DV (d); while Xn is the discrete set
to which the nth component of the design variable
vector must belong. In particular, the conditional
expected loss can be derived based on recent wind
PBD frameworks as (the superscript (d) is dropped
for clarity):

E[DV |im] =
∫∫∫

dv · p(dv|dm) · p(dm|ed p)

· p(ed p|im) ·ddv ·ddm ·ded p
(2)

where E[·|·] and p(·|·) denote the conditional ex-
pectation and the conditional probability density
function respectively; IM is the intensity measure

of the event (e.g., wind speed associated with the re-
turn period of interest); DM is the damage measure
identifying the level of damage of the components
of the system (e.g., gasket failure in the cladding);
while EDP is the engineering demand parameter
(e.g., peak inter-story drift ratios). Throughout this
paper, upper case letters will be adopted for indi-
cating the random variables while lower case letters
will be used for their realizations.

For practical uncertain systems subject to
stochastic wind loads, Eq. (2) involves high-
dimensional integrals which generally do not emit
a closed-form solution. Hence, it is proposed here
to use simulation-based methods for estimating so-
lutions to Eq. (2).

3. DATA-DRIVEN PERFORMANCE ASSESS-
MENT

This section outlines a simulation-based framework
for assessing the expected loss of the system. In
particular, this framework requires four sub-tasks
to be carried, models for which will be outlined in
the following sections.

3.1. System-Level Loss
To estimate the total loss to the system, it is ob-
served that the total loss can be seen as the summa-
tion of losses over all sub-systems. In this work,
each sub-system is termed a performance group
(PG) and consists of components that are suscepti-
ble to the same structural demand. Hence, the total
expected loss may be written in terms of the ex-
pected group-level losses as:

E[DV |im] =
NG

∑
k=1

µDVk(im) (3)

where NG is a total number of PGs in the system
while µDVk(im) represents the expected loss of the
kth PG conditioned on the wind event intensity im.

A Monte Carlo simulation is adopted in estimat-
ing the expected loss of Eq. (2) in terms of the
group-level losses as described in Eq. (3). Within
this context, the expected loss may be calculated as:

E[DV |im]≈
NG

∑
k=1

(
1

NS

NS

∑
i=1

dv(i)k (u(i), im)

)
(4)
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where NS is the total number of samples in the sim-
ulation; dv(i)k represents the ith realization of the
loss associated with the kth PG; and u(i) is the ith
realization of an uncertain vector collecting all the
uncertain parameters used in all the models neces-
sary for the performance assessment.

To determine a realization of DVk, losses from all
components in the kth PG are summed together as:

dvk(κ) =
Nc

∑
a=1

c(a)k (κ
(a)
k ) =

Nc

∑
a=1

F−1
Ck| j

(κ
(a)
k |dm(a)

k = j)

(5)
where κ = {κ(1)

k , ...,κ
(a)
k , ...,κ

(Nc)
k }T , subvector of

u, collects independent and uniform random vari-
ables in [0,1] used in the loss model; Nc is the total
number of components in the kth PG; c(a)k is the loss
associated with the ath component in the kth PG
that can be estimated from the conditional inverse
cumulative distribution function of the component-
level loss given that damage state j has occurred,
i.e. F−1

Ck| j
.

3.2. Component-Level Damage
To estimate the damage state for each damage-
able component, a suite of fragility functions cor-
responding to each PG may be used. For a compo-
nent in the kth PG having m possible damage states,
the damage measure can be determined through:

dm(a)
k (θ) =



0 if Frk(1|ed pk)< θ
(a)
k

1 if Frk(2|ed pk)< θ
(a)
k

≤ Frk(1|ed pk)

...

m if θ
(a)
k ≤ Frk(m|ed pk)

(6)

where θ = {θ (1)
k , ...,θ

(a)
k , ...,θ

(Nc)
k }T , subvector

of u, collects independent and uniform random
variables in [0,1] used in the damage model;
Frk(m|ed pk) = p(dmk = m|ed pk) represents a
fragility function defined as the conditional prob-
ability that the damage state DMk = m occurs given
the engineering demand parameter assumes the
value ed pk. In this work, the damage levels are as-
sumed to be sequential and uncorrelated.

3.3. Wind Demands
In this work, the engineering demand parameter,
ed pk, is taken as the absolute maximum response
to occur over Nα wind directions and windstorm of
duration T :

ed pk(υ) = max
β=0,...,Nβ

[
max

t∈[0,T ]
|yk(t;β ,υ)|

]
(7)

where υ is a subvector of u collecting random vari-
ables used in the structural analysis model; β de-
notes the wind directions; while yk(t) represents the
kth wind-induced response process in [0,T ]. In par-
ticular, yk(t) can be efficiently calculated through
the load-effect model (Spence and Kareem, 2014):

yk(t;β ,υ) = υ1Γ
T
yk

[
KΨ

T
n qRn

(t;β ,υ)+ f(t;β )
]
(8)

where υ1 is a random variable (component of υ)
accounting for the epistemic uncertainty in using
the load-effect model; Γyk is a vector of influence
functions giving the response in yk due to a unit
load acting at each degree of freedom of the sys-
tem; K is the stiffness matrix of the system; Ψn =
[ψ1, ...,ψn] is the mode shape matrix of order n;
qRn

(t) = {qR1(t), ...,qRn(t)}T is a vector collecting
the resonant modal responses; while f(t) is a real-
ization of the external aerodynamic loads.

3.4. Wind Tunnel-Informed Stochastic Wind
Loads

With respect to the wind hazard, the intensity mea-
sure is taken in this work as the mean wind speed,
v̄w, of averaging time τ and mean recurrence inter-
val (MRI) w years. In partcicular, v̄w can be esti-
mated from an appropriate meteorological dataset.
From this dataset, the site-specific wind speed,
v̄H , averaged over a time interval T can be ob-
tained through transformation models (e.g. Mincia-
relli et al., 2001).

To generate a realization of the vector-valued
stochastic external aerodynamic loads f(t), a spec-
tral representation model is adopted in this work
that is based on proper orthogonal decomposition
(POD) (Chen and Kareem, 2005). In particular,
the POD modes and vectors are directly estimated
from experimental wind tunnel data therefore en-
suring the inclusion of complex phenomena such
as acrosswind vortex-induced excitation.
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Within this setting, each component of f(t) is
given by:

fk(t; v̄H ,β ,ε) =
Nl

∑
l=1

Nn1−1

∑
n1=1

{
|Φ jl(ωn1 ;β )|√

2Λl(ωn1; v̄H ,β )∆ω

· cos(ωn1t +ϑ jl(ωn1;β )+ εn1l)

}
(9)

where v̄H is the wind speed at the top of the build-
ing; Nl denotes the number of loading modes con-
sidered; ∆ω is the frequency increment (accord-
ingly, the Nyquist frequency is Nn1∆ω/2, with Nn1

the total number of discrete frequencies consid-
ered); ωn1 = n1∆ω; εn1l is an independent uni-
formly distributed in [0,2π] random variable char-
acterizing the stochastic nature of the wind; ε is a
subvector of u collecting all the random variables
εn1l; ϑ jl = tan−1(Im(Φ jl)/Re(Φ jl)); while Φ jl(ω)
and Λl(ω) are components of Φ(ω) and Λ(ω) ob-
tained from solving the following eigenvalue prob-
lem:

[S f (ω; v̄H ,β )−Λ(ω; v̄H ,β )I]Φ(ω;β ) = 0 (10)

where S f is the smoothed cross power spectral den-
sity matrix of the wind tunnel estimated full-scale
loading processes.

4. PROPOSED OPTIMIZATION STRATEGY
This section outlines a strategy based on approx-
imately decoupling the simulation-based perfor-
mance assessment from the optimization process.
This allows the definition of a high quality deter-
ministic optimization sub-problem that can be used
to identify solutions to the original stochastic opti-
mization problem.

4.1. Loss Approximation
As the design x moves away from the point xMC in
which the simulation is carried out, µDV j may be
estimated through an appropriate local approxima-
tion model, µ̃DV j . Within this setting, the expected
system loss of Eq. (3) can be approximated as:

E[DV (x)|v̄w]≈
NG

∑
k=1

µ̃DVk(x; v̄w) (11)

It can be observe that any change in the expected
group-level loss µDVk is directly related to the
change in the associated demand parameter, EDPk.
Based on this observation, it is here proposed to use
as a measure of this change, the second order statis-
tics of the group-level demands. In particular, the
following Taylor series expansion, centered in xMC,
is used to explicitly model this dependency (where
the explicit dependency on v̄w is dropped in the fol-
lowing for clarity):

µ̃DVk(x) = µDVk(xMC)

+

{
[µEDPk(x)−µEDPk(xMC)] ·

∂ µDVk

∂ µEDPk

∣∣∣∣∣
xMC

+[σEDPk(x)−σEDPk(xMC)] ·
∂ µDVk

∂σEDPk

∣∣∣∣∣
xMC

}
(12)

where µEDPk and σEDPk are the mean and standard

deviation of EDPk respectively; while
∂ µDVk

∂ µEDPk

∣∣∣∣∣
xMC

and
∂ µDVk

∂σEDPk

∣∣∣∣∣
xMC

are the partial derivatives of the

group-level losses with respect to µEDPk and σEDPk

and evaluated in xMC.

4.1.1. Partial Derivatives
The partial derivatives of µDVk with respect to
µEDPk and σEDPk can be efficiently estimated as by-
products of the simulation in xMC. Indeed, from the
NS samples, ed p(i)k for i = 1, . . . ,NS, generated in
xMC, two sets of manipulated samples can be gen-
erated through the transformations:

ˆed p
(i)
k = (1+ δ̂ )ed p(i)k

(13)

ˇed p
(i)
k = (1+ δ̌ )(ed p(i)k −µEDPk)+µEDPk

(14)

Due to the above transformations, the mean
and standard deviation of the manipulated sets
are µ̂EDPk = µEDPk(xMC)(1 + δ̂ ) and σ̌EDPk =

σEDPk(xMC)(1+ δ̌ ). By carrying out the damage
and loss analysis of Sec. 3.1-3.2 using these ma-
nipulated sets of demand samples, the correspond-
ing group-level expected losses, µ̂DVk , can be esti-
mated, therefore enabling the direct estimation of
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the change in µDVk given a change in µEDPk and
σEDPk . A classic central difference scheme can then
be implemented for estimating the partial deriva-
tives.

4.1.2. Demand Statistics

To estimate the terms µEDPk and σEDPk in x nec-
essary for solving Eq. (12) without invoking the
simulation, the concept of Auxiliary Variable Vec-
tor (AVV) is adopted in this work (Spence et al.,
2016; Bobby et al., 2016). Through this approach,
the demand statistics can be approximated as:

µEDPk(x)≈ Γ
T
yk
(x)ϒ̂k(xMC) (15)

σEDPk(x)≈ Γ
T
yk
(x)ϒ̆k(xMC) (16)

where ϒ̂ and ϒ̆ are the AVVs corresponding to
µEDPk and σEDPk respectively and are obtained from
the results of a single simulation carried out in xMC.
Hence, Eqs. (15)-(16) represent the exact relation-
ships in xMC. As x moves away from xMC, the
AVVs can be kept constant as they has been demon-
strated to be insensitive to changes in the design
variables (Spence and Kareem, 2014; Bobby et al.,
2017).

4.2. The Decoupling Approach

By observing that the approximations of Sec. 4.1
can be estimated from the results of a single sim-
ulation carried out exclusively in xMC, the follow-
ing simulation-free (i.e. deterministic) optimization
sub-problem can be defined in xMC:

Find x = {x1, ...,xN}T

to minimize W = f (x)

s. t. µ̃
(d)
DV (x; v̄w)≤ L(d)

0 d = 1, ...,D
xn ∈ Xn n = 1, ...,N

(17)

where µ̃
(d)
DV is the approximate expected value of the

dth system-level loss measure defined based on the

approximation schemes of Sec. 4.1 as:

µ̃
(d)
DV (x) =

NG

∑
k=1

µ
(d)
DVk

(xMC)

+

{(
Γ

T
yk
(x)ϒ̂k(xMC)−µEDPk(xMC)

)
·

∂ µ
(d)
DVk

∂ µEDPk

∣∣∣∣∣
xMC

+
(
Γ

T
yk
(x)ϒ̌k(xMC)−σEDPk(xMC)

)
·

∂ µ
(d)
DVk

∂σEDPk

∣∣∣∣∣
xMC

}
(18)

It should be observed that the derivative of µ̃
(d)
DV

with respect to x can be derived using the chain rule.
Hence, the sub-problem of Eq. (17) can be solved
efficiently through any gradient-based deterministic
optimization algorithm. In this work, the pseudo-
discrete Optimality Criteria algorithm (Chan et al.,
1995) is adopted. By solving a sequence of opti-
mization sub-problems, each formulated in the so-
lution of the previous, a solution to the original
stochastic optimization problem of Eq. (1) can be
found in a limited number of design cycles.

5. APPLICATION
5.1. Case Study Description
The objective of this case study is to obtain the op-
timal design for a lateral load-resisting frame en-
visioned as part of a 3D tube system as shown in
Figure 1(a)-(b). The building has a total of 37 sto-
ries. The first story is 6 m high while the other
stories are 4 m high, resulting in a total height of
150 m. The total width in the X-direction is 30
m while the total width in the Y -direction is 60 m.
Two load-resisting frames are responsible for car-
rying the loads in the X-direction. Each frame con-
sists of six 5-m bays. All floors consist of steel
beams that belong to the set of AISC W24 pro-
files. All columns consist of steel box sections hav-
ing mid-line diameter, Di, belonging to the discrete
set {0.2 m,0.25 m,0.3 m, ...,4 m}with correspond-
ing thickness Di/20. Symmetry is imposed with
respect to the center vertical line. This results in a
truly large-scale PBDO problem with 259 indepen-
dent design variables. The total mass of the sys-
tem is the sum of the mass of all elements and the
added mass of 100kg/m3. The resonant response
of the building is estimated using three vibration
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Figure 1: (a) 37-story building plan; (b) Isometric
view; (c) Frame layout showing beam and column as-
signments.

modes. Two different initial designs are considered
defining Trial 1 and Trial 2 as described in Table 1.
All mean modal damping ratios are assumed to be
1.5%. The uncertain parameters associated with the
structural system are calibrated according to Table
2 of Suksuwan and Spence (2018).

5.1.1. Wind Excitation
The reference wind speed corresponding to a 1700-
year MRI, v̄w, was obtained from a Type II ex-
treme value distribution of mean and standard de-
viation 32 m/s and 4.7 m/s respectively. The ref-
erence wind speed v̄w was transformed into sam-
ples of uncertain site-specific wind speeds, V̄H ,
through the transformation proposed in Minciarelli
et al. (2001). In particular, The averaging time, the
roughness length, and the height at the meteorologi-
cal station were taken as τ = 60 s, z01 = 0.01 m, and
Hmet = 10 m, respectively. The averaging time and
the roughness length at the site of interest were as-
sumed to be T = 3600 s and z0 = 1 m, respectively.
Marginal distributions for the uncertain parameters
associated with the wind hazard are reported in Ta-
ble 3 of Suksuwan and Spence (2018).

To generate realizations of f(t), the wind tunnel
data set used in the POD procedure was obtained
from the Tokyo Polytechnic University Wind Pres-
sure Database. Three loading modes were consid-
ered. The wind tunnel tests were performed on

a rigid 1:300 scale model of the aforementioned
building system. Data was recorded at 510 pres-
sure taps for a total signal length of 32 s. The sam-
pling frequency was 1000 Hz while the mean wind
speed at the top of the building model was vtun = 11
m/s. To account for both alongwind and acrosswind
actions, wind was considered from two directions,
β = 0◦ and β = 90◦, as shown in Figure 1 .

5.1.2. Loss Model
This case study is concerned with limiting dam-
age and loss to the cladding system. A total of
37 PGs are identified with each group consisting
of 60 cladding components. All cladding com-
ponents were taken as midrise stick-built curtain
wall, which is susceptible to story drift in the X-
direction. In particular, the engineering demand
parameter for each PG is taken as the maximum
story drift ratio due to wind blowing down the X
or Y directions. Each component has three possible
damage states with corresponding fragility curves
and consequence functions taken from the fragility
database found in Federal Emergency Management
Agency (FEMA) (2012).

5.1.3. Optimization Objective
The goal of the PBDO problem of interest is to
minimize the material weight of the lateral load-
resisting system, while ensuring the system-level
performance concerning the expected repair cost
and repair time of the cladding system given a
windstorm of MRI = 1700 years. Performance tar-
gets for both trials can be found in Table 1. A total
number of 1000 samples are used for each trial.

Table 1: Descriptions of Trials 1 and 2.

Trial # Trial 1 Trial 2
Initial Columns Di = 1.0 Di = 1.5 m
Initial Beams W24×176 W24×279

f1 0.19 Hz 0.24 Hz
f2 0.59 Hz 0.78 Hz
f3 1.07 Hz 1.45 Hz

L(1)
0 (Repair Cost) $500000 $500000

L(2)
0 (Repair Time) 30 days 30 days
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5.2. Results and Discussion
With respect to the optimization objective, Fig-
ure 2 reports, for Trial 1 and Trial 2, the conver-
gence history of the structural weight in terms of
the design cycles. Both trials progressed steadily
and smoothly to convergence in less than 20 cy-
cles. This limited number of simulation cycles
clearly demonstrates the efficiency of the proposed
approach. It is also interesting to observe that de-
spite the fact that Trial 1 was under-designed and
Trial 2 was over-designed, both trials reached the
same optimal solution. This indicates the insensi-
tivity of the method to the initial design point.

With respect to the system-level performance
constraints, Figure 3 and Figure 4 report the de-
sign cycle history curves of the expected repair cost
and expected repair time. The optimal solutions
from both trials satisfied both constraints. In par-
ticular, the expected repair cost was significantly
lower than the threshold cost while the expected
repair time converged to its limit value. This im-
plies how, for this example, the repair time dom-
inated the system-level performance. It is inter-
esting to observe how systems that meet the per-
formance targets were efficiently identified within
only five design cycles with the remaining cycles
serving to minimize the structural weight. This il-
lustrates how the proposed approach is capable of
identifying useful designs after only a handful of
redesigns.

With respect to the approximation scheme, Fig-
ure 5 illustrates the Taylor series approximation of
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Figure 2: Design cycle history of the objective function.
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the expected loss of the PG associated with de-
mands occurring at floor 20. In particular, the ap-
proximation is shown for select design cycles of the
sequential optimization process. As can be seen,
notwithstanding the nonlinearity of the loss surface
with respect to the mean and the standard devi-
ation of the corresponding demand, for moderate
changes in the design demands, the expected loss
was well approximated by the expansion.

6. CONCLUSIONS
This paper presented an efficient performance-
based design optimization framework for identify-
ing optimal wind-excited systems subject to mul-
tiple constraints on expected system-level loss. A
simulation-based performance assessment was pre-
sented that utilized databases of fragility and con-
sequent functions in estimating damage and loss of
systems subject to wind tunnel-informed stochastic
wind loads. The proposed framework is based on
approximately decoupling the simulation from the
optimization process. Local approximation models
are constructed from results of a single augmented
simulation. A deterministic composite function is
then defined that relates the design variables to
the performance metrics. The explicit nature of
this relationship is then exploited to define a se-
quence of deterministic optimization sub-problems
that yield solutions to the original stochastic op-
timization problem. The applicability of the pro-
posed framework was demonstrated through the op-
timal design of a large-scale lateral load-resisting
system subject to system-level constraints defined
in terms of expected repair cost and time.
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