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ABSTRACT: The constitutive model of concrete is of paramount significance for the design of concrete 
structures and the corresponding reliability assessment. In the present paper, the uniaxial damage model 
of concrete based on Chinese design code is introduced. It is noticed that there are seven crucial 
parameters in this model, while five of them are of physical significance and generally should be regarded 
as random variables. Therefore, the major task of the present paper is to study the effects, variations and 
randomness of these five parameters. Starting with the fuzzy analysis method (FAM), a brief uncertainty 
quantification scheme is described. This method is straightforward and easy to implement. Nevertheless, 
the prior knowledge (i.e., the engineering experience of designers or published literature) is required in 
FAM. Alternatively, the probability density evolution method (PDEM) is utilized with less needs of prior 
knowledge, while the type of marginal distribution of parameters is still required or assumed. Thus the 
epistemic uncertainty may be, more or less, brought in when applying these two methods. To improve 
this situation, i.e., to reduce the involvement of prior knowledge, a probabilistic learning method (PLM) 
is applied, in which the prior knowledge is reduced as it is nearly of data-driven background. The research 
results indicate that these three different methods of uncertainty quantification provide some basic and 
common conclusions, showing that all of them can capture the main characters of the experimental data. 
In addition, they individually offer various aspects of information due to different perspectives of these 
three methods. Therefore, these three methods might derive a series of powerful tools for uncertainty 
quantification in structural engineering, and be of future interest for opening new perspectives. 

 

1. INTRODUCTION 
In civil engineering, there are some inevitable 
uncertainties according to the observations and 
experiments. For instance, the compressive 
strength and modulus of elasticity of concrete are 
found to be random variables (Ang & Tang 2007), 
or random fields (Chen et al 2018). Thus, the 
deterministic damage models cannot well capture 
the randomness that exists in the properties of 
concrete materials. Therefore, by introducing the 

micro-fracture strain as a 1-D random field, the 
microscopic stochastic fracture model (MSFM, Li 
& Ren 2009) was proposed. Although MSFM is 
well behaved to quantify the randomness as well 
as the nonlinearity of concrete compared with 
experimental data, it is, however, inconvenient for 
complex engineering applications. In current 
Chinese design code (MHURD 2010), the 
deterministic macro-scale uniaxial damage model 
for concrete is adopted. This model, according to 
further study of Li et al (2017), can be regarded as 
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a mean value of the constitutive relationship of 
concrete with respect to (w.r.t.) MSFM in Li & 
Ren (2009). 

Inspired by the researches of Li et al (2017), 
the parameters in the deterministic Chinese design 
code can be regarded directly as random variables, 
and thus the task of uncertainty quantification 
(UQ) is in need. In fact, there are seven crucial 
parameters in the Chinese design code  model 
(CDCM), including the compressive strength 
and tensile strength  of concrete, respectively, 
w.r.t. the ultimate compressive strain  and 
tensile strain  , the initial modulus of concrete 

 and two shape parameters (  and ) to 
describe the curves in descending phase. In the 
present paper, the first five parameters of physical 
significance are then taken as random variables, 
which is studied based on experimental data. The 
mostly tough task of this case, propagation of 
uncertainty in UQ, is handled with three different 
methods in various aspects, namely the fuzzy 
analysis method (FAM, Möller & Beer 2004), 
probability density evolution method (PDEM, Li 
& Chen 2006) as well as the probabilistic learning 
method (PLM, Soize & Ghanem 2016). The 
above three UQ methods are aimed at studying the 
aleatory along with epistemic uncertainties 
embedded in CDCM, which indicate their 
individual properties in different perspectives as 
powerful UQ tools. 

 

2. CHINESE DESIGN CODE MODEL OF 
CONCRETE MATERIALS 

In Chinese design code (MHURD 2010), the 
uniaxial constitutive model of concrete for 
compression and tension is given by 

 
  (1) 
 

where  is the stress and  is the elastic strain 
of concrete,  is the damage variable and  is 
the initial modulus of elasticity. The superscript 

“ ” denotes cases for tension and compression, 
respectively. For the compressive curve, we have 

  (2) 

 
in which ,  and 

. While for the tensile 
curve, there is 

 

  (3) 

 
where  with . Noticing 
that in the CDCM, there are totally seven 
important parameters that are perhaps mutually 
dependent. On the basis of researches by Guo et 
al (1982) and Guo & Zhang (1988), the 
relationship between  and  can be given by 

 
  (4) 
 

while  can be a function of  as 
 
  (5) 
 

Also, it is found that  is related to  by 
 
  (6) 
 

Finally,  is of regression by  with (MHURD 
2010) 

 
  (7) 

 
The above Eqs.(4) to (7) are utilized for CDCM in 
Eqs.(1) to (3). Moreover, two shape parameters 
are  specified, by fitting, as (MHURD 2010) 
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  (8) 

 
Noticing that Eqs. (4) to (7) are based on 

experimental data summarized in Figure 1 (red 
solid lines), which are actually empirical formulas. 

 

 
(a) Tensile strength vs. Tensile strain 

 

 
(b) Compressive strength vs. Compressive strain 

 

 
(c) Compressive strength vs. Tensile strength 

 
(d) Compressive strength vs. Modulus of 

elasticity 
 

Figure 1: Empirical formulas in CDCM. 
 

It is obvious that, according to these formulae, 
for each design value of concrete strength, e.g., if 
we have  (the star mark in Figure 1), 
the constitutive relationship is only deterministic. 
Nevertheless, as mentioned before, randomness or 
uncertainty is objectively existent in the 
mechanical properties of concrete materials and 
cannot be negligible. In Li et al (2017), the CDCM 
is applied for identifying the parameters in the 
MSFM; similarly but more straightforwardly, the 
parameters in CDCM graphed in Figure 1 are 
taken as uncertain variables in our consideration. 
It is noted that the observed data are nearly all 
located in the range bounded by the two blue 
dashed lines (  standard derivation value, 
Std.D); or simultaneously, data are scattered in the 
region of 10% uncertainty (rectangular region). 
Therefore, the uncertain parameters in CDCM can 
be characterized as: 
1) fuzzy variables 

 

  (9) 
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where  denotes the membership function of 
triangular form, and the middle values represents 
the corresponding design variables. This is related 
to the FAM (Möller & Beer 2004). Besides, these 
uncertain parameters can also be quantified as:  
2) random variables 

 

  (10) 

 
where  denotes the normal distribution. 
Noticing that all Std.D values can be estimated by 
the experimental data shown in Figure 1. The 
propagation of uncertainty embedded by random 
variables can be performed with PDEM easily (Li 
& Chen 2006).  

Moreover, due to the limitation of original 
data in the range of design region (the rectangular 
area of engineering consideration) in Figure 1, 
one can firstly do some “learning” work based on 
the whole observed data by the so-called 
probabilistic learning method (PLM, Soize & 
Ghanem 2016). Compared with FAM as well as 
PDEM, it is no need to assume the uncertain 
parameters as fuzzy or random variables anymore. 
The basic idea for PLM is to find the manifold 
structure of original data and then generate more 
suitable new data for analysis, which is the so-
called data-driven mode. Clearly, these three 
methods stand for different viewpoints in UQ 
framework, and will give various results of 
quantification due to their own unique properties. 

 

3. THREE UNCERTAINTY 
QUANTIFICATION METHODS 

The basic theories of the three UQ methods 
mentioned above are summarized hereinafter. 

3.1. Fuzzy analysis method 
In the fuzzy analysis method, each uncertain 
parameter is considered as an interval variable 
w.r.t. a membership value. In this manner, the 
membership value is used as a parameter to 
control the extent of uncertainty quantified by the 
interval variables (Beer et al. 2013). Based on the 
extension principle and α-level optimization 
strategy (Möller et al 2000, Möller & Beer 2004), 
CDCM with assumptions in Eq.(9) can be 
quantified by the flowchart graphed in Figure 2. 
In general, it is enough that the number of α-levels 
is set to be 5 to 20, depending on the features of 
the analysis. 

 

 
Figure 2: α-level optimization. 

 

3.2. Probability density evolution method 
Denote the random source as , and the physical 
evolution system as . On the basis 
of principle of preservation of probability (Li & 
Chen 2008), we have 
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  (11) 

 
where  denotes the generalized velocity of the 
physical system. By numerically partitioning of 
the probability space of , i.e., via GF-
discrepancy strategy (Chen et al 2016), the 
probability density function (PDF) of response of 
system  can be simply obtained as 
 

 
(12) 

 
where  stands for the representative point 
set,  is the number of representative points, 
which is dependent in the present case. This value 
is chosen to be 300 by experience. 

3.3. Probabilistic learning method 
In the scope of design region graphed in Figure 3, 
data for analysis is sparse indeed. Hence, 
epistemic uncertainty may be brought in since no 
adequate data are available for supporting 
assumptions in above two methods. Noticed that 
the data distributed in all (Figure 1) are believed 
to follow the same physical principles (material 
properties), which can be utilized for “learning”. 

 

(a) Tensile strength vs. Tensile strain 
 

(b) Compressive strength vs. Compressive strain 
 

(c) Compressive strength vs. Tensile strength 

(d) Compressive strength vs. Modulus of 
elasticity 

 
Figure 3: Available data in the region of design. 

 
Thus the PLM can be applied here to enrich 

the data in the design region, namely, “learning” 
the manifold structure of all available data and 
then generate some “new” data for UQ analysis. 
The basic theoretical framework for PLM can be 
summarized into two parts as followings (Soize & 
Ghanem 2016): 
1) Monte Carlo Markov Chain (MCMC): 
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In general, for a stochastic dissipative 
Hamiltonian dynamical system  

 

  (13) 

 
where ,  and  are generalized 
displacement, velocity and acceleration;  
is the Wiener process;  is the potential 
function;  is the damping term. If  is 
distributed w.r.t.  and assume we have 
 

  (14) 
 

then when  there is 
 

  (15) 

 
Eq.(15) holds in probability distribution . 
2) Diffusion Maps: 

Denote two arbitrary points in Euclidean 
space as  and , and the distance is measured by 

 

  (16) 

 
For all points in the original data set , 
using Eq.(16) to structure the adjacent matrix as 
 

  (17) 
 

By rebuilding the diffusion-maps basis, the affine 
transformation is established as 

  (18) 

 
The quantities in Eq.(18) satisfy 

 

 (19) 

 
in which  and  are eigenvalues and 
eigenvectors w.r.t. , in which  
is calculated by , see Soize & Ghanem (2016) 
for details. 

The PLM is then applied to “generate” more 
data that all follow the same original probability 
distribution and the manifold structure, as is 
shown in Figure 4. Then these data can be 
analyzed statistically, which is totally data-driven. 

 

 
(a) Tensile strength vs. Tensile strain 

 

 
(b) Compressive strength vs. Compressive strain 
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(c) Compressive strength vs. Tensile strength 

 
(d) Compressive strength vs. Modulus of 

elasticity 
 

Figure 4: Generated data by PLM. 
 

4. RESULTS OF UQ AND DISCUSSIONS 
The UQ results by the three different methods are 
illustrated in Figure 5 (curves of tension are 
amplified 5 times compared with compression 
parts for clarity). It can be seen that all of them 
can capture the basic features embedded in the 
CDCM, i.e., the ascending curve is convex. 
Nonetheless, different aspects are: 
1) For FAM, it is indicated that the ascending 

curves of compression and tension, are not 
obviously effected by uncertain parameters in 
CDCM. Besides, when the membership value 
is high (1~0.7), the descending curves are 
narrowly distributed, indicating a relatively 
low uncertain effect. It should be noted that 
the curves in Figure 5a are not w.r.t. any real 
stress-strain curve (but a set of many stress-

strain curves), and that is why there is a 
platform at the peak points. 
 

(a) 
Concrete uniaxial constitutive model via FAM 

(b) 
Concrete uniaxial constitutive model via PDEM 

 

(c) 
Concrete uniaxial constitutive model via PLM 

 
Figure 5: Results of UQ for CDCM via (a) FAM, 

(b) PDEM and (c) PLM. 
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2) The results in Figure 5b via PDEM provide 
some other useful information of UQ. It turns 
out that the value of probability density 
contour curves, for the compression part, is 
lower than that of tension, which 
demonstrates that the compression part is 
more likely to be affected. Nevertheless, the 
compressive behavior of concrete materials is 
certainly of importance; therefore, more UQ 
works are needed to be carried out in future. 

3) Based on the generated “new” data via PLM, 
the histogram results are displayed in Figure 
5c. It is somewhat similar to PDEM but 
reveals some new features. Firstly, it can be 
seen that the tails of curves in compression 
and tension parts are much thinner; 
meanwhile, the curves evolve asymmetrically, 
especially for compression part. This may be 
reasonable as the original data are distributed 
slightly above average. 
Moreover, the enriched data by PLM can be 

reused to modify the uncertainty characterizations 
in FAM and PDEM, i.e., the membership function 
can be asymmetric, or the probability distribution 
can be skewed. In summary, all of these three UQ 
methods can, more or less, help engineers to form 
a better understanding of engineering issues that 
involving either aleatory or epistemic 
uncertainties, or both of them. 
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