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ABSTRACT: Performing probabilistic damage assessment for a community under a tropical cyclone
event needs to consider the collective damage of individual structures within the community, which
involves modeling the spatial correlations of hazard demands and structural capacities between
individual structures. However, how to model these two kinds of spatial correlations and how they
influence the damage assessment remain unclear. In this paper, focus is given to the roof sheathing
damage of a residential building portfolio consisting of multiple wooden residential buildings under the
wind loads of a tropical cyclone event. Two methods are used to predict the damage of individual
buildings based on their hazard demands: one is using a direct Monte Carlo Simulation in which
structural (capacity) parameters of different buildings are treated as correlated. This method provides
accurate results but needs a lot of information. Another approach is to probabilistically predict the
damage state of each building based on its hazard demand using its fragility functions. The relative
importance of the correlations of hazard demands and structural capacities is investigated. It is
demonstrated that the correlations of damage states are strongly dependent on hazard demands. Finally,
a method is developed to simulate correlated damage states of a building portfolio given hazard
demands, through incorporating the hazard-dependent correlations with fragility functions using
Gaussian Copula.

The dramatic economic losses and social disrup-
tions caused by large-scale natural hazards, such
as tropical cyclones and earthquakes, have raised
great concerns among civil infrastructure owners
and managers as well as the engineering commu-
nity. The aftermath of recent disasters, such as Cy-
clones Larry and Yasi in Australia, has revealed the
importance of disaster mitigation strategies that fo-
cus on the collective performance of all civil infras-
tructure facilities in a community. To support the
development of the mitigation strategies, it is of sig-
nificance to quantify collective hazard damage and
losses of spatially distributed civil infrastructure fa-
cilities in a community.

Hazard damage of infrastructure is highly un-
certain since hazard demands and structural ca-

pacities have considerable variations which need
to be considered using probabilistic methods. In
addition, under a large-scale natural hazard, spa-
tial correlations exist between the damage of indi-
vidual structures in a community, which needs to
be treated carefully (Lee and Kiremidjian, 2007a;
Goda and Hong, 2008). The spatial correlations
include the correlations of hazard demands caused
by a common hazard footprint (Wang and Takada,
2005; Jayaram and Baker, 2009) and the corre-
lations of structural capacities resulting from the
similarities in materials, design and construction
practices in a common area (Vitoontus and Elling-
wood, 2013). A number of studies have investi-
gated the roles of these two kinds of spatial cor-
relations in the seismic damage of multiple struc-
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tures (Lee and Kiremidjian, 2007a; Vitoontus and
Ellingwood, 2013). However, no effort has been
made to study the relative importance of these two
correlations in damage assessment under a tropi-
cal cyclone event whose uncertainty is considerably
smaller than that of an earthquake event.

In probabilistic damage assessment of infrastruc-
ture, the hazard vulnerability of structures is usually
represented by fragility functions which provide the
marginal probabilities of structural damage states
conditional on hazard demands (Li and Ellingwood,
2006; Lee and Rosowsky, 2005). Because of the
existence of the correlations of structural capacities,
the conditional damage states need to be modelled
as correlated through assigning the correlations of
the conditional damage states to each pair of struc-
tures. However, no data available can be used to
quantify the correlations of structural capacities.
Previous work (Lee and Kiremidjian, 2007b,a; Vi-
toontus and Ellingwood, 2013; Lin et al., 2016)
simply assigned a constant correlation to the dam-
age states of each pair of structures conditional on
hazard demands, assuming that the correlation is in-
dependent of hazard demands. Nevertheless, the
correlation is expected to be dependent on hazard
demands since it is actually propagated from the
correlation of structural capacity parameters such
as component resistances given different hazard de-
mands.

This study focus on the damage of a spatially dis-
tributed building portfolio under the wind loads of a
tropical cyclone event, considering the uncertainty
and correlations of both hazard demands and struc-
tural capacities. A direct Monte Carlo Simulation
(MCS) is employed to calculate structural damage
states based on hazard demands, in which struc-
tural (capacity) parameters of different buildings
are treated as correlated. The relative importance
of the correlations of hazard demands and struc-
tural capacities is investigated and the correlations
of damage states conditional on hazard demands
are developed. A method using fragility functions
to predict structural damage states is developed to
simulated correlated damage states. In this method,
Gaussian Copula is used to incorporate the hazard-
dependent correlation of conditional damage states

with fragility functions.

1. METHODOLOGIES
1.1. Loss of spatially distributed building portfo-

lios
To probabilistically assess the damage of a spa-
tially distributed building portfolio under a tropical
cyclone event, both hazard demands and damage
states conditional on the hazard demands need to be
treated as random fields which take into considera-
tion the correlations of hazard demands and struc-
tural capacities and they are mathematically formu-
lated as (Lin and Wang, 2016):

FZ|S(z|s)=
∫ ∫

FZ|DS(z|v) fDS|U(v|u) fU|S(u|s)dvdu,
(1)

where fU|S(u|s) is the joint probability density
function (PDF) of hazard demands U at the sites of
individual buildings conditional on a given scenario
S of tropical cyclone. U is the set of surface-level
wind speeds; fDS|U(v|u) is the joint PDF of damage
states DS of individual buildings conditional on U;
FZ|DS(z|v) is the Cumulative Distribution Function
(CDF) of the loss Z of the building portfolio condi-
tional on DS.

In this paper, the ratio of severe damage is con-
sidered as the loss metric of a building portfolio
(Lin et al., 2016):

Z =
N

∑
i=1

I(DSi >= 3) , (2)

where for each building, DSi=1 (no or minor dam-
age), 2 (moderate damage), 3 (severe damage) or
4 (destruction); N is the number of the individual
buildings in the building portfolio; I(·) is an indi-
cator function which returns 1 if event "·" is true
and returns 0 otherwise.

1.2. Stochastic model of correlated surface-level
wind speeds

In Eq. (1), fU|S(u|s) captures the uncertainties in
the simulation of a tropical cyclone scenario given
cyclone key parameters. The uncertainties exist
mainly because cyclone wind field models (Vick-
ery et al., 2000, 2009; Georgiou, 1986) cannot fully
capture the variations of cyclone surface winds.
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The surface wind speed at site i can be formulated
as:

Ui =U0i · εi, (3)

where U0i denotes the product of the long-lasting
(10-minute to 1-hour) mean wind speed at 10 m
above ground in open terrain calculated by cyclone
wind field models and a factor converting the mean
speed into 3-s gust wind speed; εi is a random resid-
ual modelling the wind field uncertainties. It is as-
sumed εi yields to a lognormal distribution whose
mean is one. So the mean of Ui, denoted by µU ,
equals U0i. Coefficient of Variation (CoV) of εi, de-
noted by VU , is assumed ranging from 0.1 to 0.2
(Vickery et al., 2000). In addition, spatial corre-
lations exist between εi and ε j (Pang et al., 2012),
which is denoted by ρU . Since no mathematical
model has been developed to calculate ρU , 3 cases
are considered in this study: ρU =1 (perfectly cor-
related), 0.7 (partially correlated) and 0 (uncorre-
lated).

1.3. Method 1: model correlated damage by di-
rect Monte Carlo Simulation

Given U, fDS|U(v|u) in Eq. (1) can be calculated
through a direct Monte Carlo Simulation (MCS).
To perform the direct MCS, the probability distri-
butions of all basic variables of each building need
to be known, such as the resistances of the struc-
tural components of each buildings denoted by Ri.
Ri and R j of each pair of buildings are modelled
as correlated with correlation coefficient ρR so as
to consider the correlation of structural capacities.
In each run of MCS, U is transformed into wind
loads based on the wind load model in ASCE 7-16
(ASCE, 2016) and structural analysis is performed
for individual buildings to calculate DS.

Although the direct MCS can provide accurate
results, it is inconvenient for applications since it
needs a lot of information and computational ef-
forts. In this paper, this method is used to verify
the accuracy of method 2 which is described in the
next section.

1.4. Method 2: model correlated damage by
fragility functions

To model fDS|U(v|u) in Eq. (1), a more common
way is to use fragility functions to represent the vul-

nerability of a class of structure under hazard de-
mands. Fragility functions provide the exceedance
probabilities of damage states conditional on haz-
ard demands, and the probability of the conditional
damage state of ith building is given by

P(DSi = v|Ui = u)
= P(DSi ≥ v|Ui = u)
−P(DSi ≥ v+1|Ui = u), (4)

where P(·) represents the probability of event "·".
Therefore, to use fragility functions to probabilis-
tically predict structural damage states, only struc-
tural types and hazard demands are needed, unlike
the direct MCS which needs the information about
the probability distributions of all basic variables
such as the resistances of structural components.
To model the conditional damage states of multiple
structures as correlated, the correlation coefficient
of the conditional damage states of each two struc-
tures, denoted by ρDSi j , is needed. Once ρDSi j has
been known, Gaussian Copula is employed to deter-
mine the joint probabilities of conditional damage
states using fragility functions and ρDSi j . However,
in previous works (Lee and Kiremidjian, 2007b,a;
Vitoontus and Ellingwood, 2013; Lin et al., 2016),
simulated ρDSi j was inconsistent with given ρDSi j

because the correlations of Gaussian Copula were
considered same as ρDSi j , and this will be explained
in detail later. Furthermore, these studies simply
assumed that ρDSi j is constant regardless of hazard
demands (U). Actually, ρDSi j is the function of Ui
and U j, which will be demonstrated in this paper.

In this section, in order to simulate correlated DS
conditional on U, a method is proposed to incorpo-
rate fragility functions with given ρDSi j using Gaus-
sian Copula. This method can maintain the consis-
tency of simulated and given ρDSi j . Furthermore, an
approach is developed to derive U-dependent ρDSi j

and incorporate it with fragility functions.
Gaussian Copula is the Cumulative Density

Function (CDF) of multiple standard uniform vari-
ables Xk,k = 1,2, ...N, (Nelsen, 2007):

FX1,...,XN (x1, ...,xN) = Φm
(
Φ
−1(x1), ...,Φ

−1(xN)
)
,

(5)
where Φm means multivariate standard Gaussian
CDF and the correlation coefficient of the ith and
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jth normal variables is denoted by ρGi j ; Φ−1 is the
inversive function of standard Gaussian CDF. Since
the probabilities of damage states mentioned in this
section are all conditional on hazard demands, for
the simplification of notation, P(DSi ≤ v|Ui = u) is
simplified as Gi(v). Similarly, P(DS j ≤ v|U j = u)
is simplified as G j(v). P(DSi = vi,DS j = v j|Ui =
ui,U j = u j) is simplified as gi j(vi,v j). A determin-
istic relation which maps DSi from Xi is established:

DSi = v, if Gi(v−1)< Xi ≤ Gi(v). (6)

Then based on Eq. (6), the joint probabilities of DSi
and DS j are formulated as:

gi j(vi,v j)

= FXi,X j

(
Gi(vi),G j(v j)

)
−FXi,X j

(
Gi(vi−1),G j(v j)

)
−FXi,X j

(
Gi(vi),G j(v j−1)

)
+FXi,X j

(
Gi(vi−1),G j(v j−1)

)
. (7)

Then through substituting Eq. (5) into Eq. (7), the
analytical formula of the joint PMF of conditional
DSi and DS j is given:

gi j(vi,v j)

= Φm
(
Φ
−1 (Gi(vi)) ,Φ

−1 (G j(v j)
))

−Φm
(
Φ
−1 (Gi(vi−1)) ,Φ−1 (G j(v j)

))
−Φm

(
Φ
−1 (Gi(vi)) ,Φ

−1 (G j(v j−1)
))

+Φm
(
Φ
−1 (Gi(vi−1)) ,Φ−1 (G j(v j−1)

))
. (8)

Given ρDSi j , the correlation coefficient of Gaussian
Copulas (ρGi j) can be calculated through solving an
optimization problem:

min
(

∑k,l k · l ·gi j(k, l)
σiσ j

−
µiµ j

σiσ j
−ρDSi j

)2

, (9)

where σi is the standard deviation of DSi condi-
tional on Ui; µi is the mean of DSi conditional on
Ui. The first two terms in Eq. (9) is the definition
of correlation coefficients where gi j(k, l) is related
to ρGi j . Eq. (8) provides the analytical expression
of gi j(vi,v j). However, it is impractical to extend
this expression into the joint PMF of N individual

buildings (N� 2). Therefore, MCS is used to sim-
ulate the conditional DS of a building portfolio us-
ing Gaussian Copula, once ρGi j of each 2 normal
variables in Gaussian Copula has been known (Lin
et al., 2016).

In summary, to simulate the conditional DS given
U and ρDSi j , the procedures are given:

Step 1: Calculate ρGi j of each two structures based
on Eq.( 9).

Step 2: Generate the realizations of correlated
standard normal variables, s1,...,sN , using ρGi j .

Step 3: Transform s1,... sN into the realizations of
uniform variables, x1,...xN , by xi = Φ(si).

Step 4: Map the realizations of DS1,...DSN from
x1,...xN by: if Gi(v−1)< xi ≤ Gi(v),DSi = v;

In previous works (Lee and Kiremidjian, 2007b,a;
Vitoontus and Ellingwood, 2013; Lin et al., 2016),
ρDSi j was simply considered same as ρGi j , which
is why simulated ρDSi j is inconsistent with given
ρDSi j .

In this paper, ρDSi j is found dependent on Ui
and U j. In order to incorporate the U-dependent
ρDSi j with fragility functions to simulate the DS, the
function describing how ρDSi j depends on Ui and U j
needs to be known. Given different realizations of
Ui and U j, ρDSi j is calculated. Then the step 1 to 4
above are followed to simulate the DS. However,
this method is inconvenient to use. As shown in the
following section, the U-dependent ρDSi j needs to
be developed using the direct MCS when the cor-
relation of structural capacities (ρR) is known, and
there is no explicit formula of ρDSi j’s relation to Ui
and U j. In addition, it is time-consuming to perform
the optimization in Eq. (9) for each pair of struc-
tures in each MCS run. To simplify this method, an
approximate method is proposed. It is found ρGi j

(solved in Step 1 above) is nearly constant regard-
less of Ui and U j, and is mainly decided by ρR. So
in the applications of the approximate method, only
ρDSi j at any Ui and U j (Ui =U j = µU is used in this
paper) given ρR is needed. Then ρGi j is calculated
and remains constant regardless of the realizations
of Ui and U j in MCS run. Afterward, the step 2 to 4
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above are followed to simulate the DS. It is unnec-
essary to know the function of ρDSi j’s relation to Ui
and U j.

2. EXAMPLE: CORRELATED ROOF
SHEATHING DAMAGE OF A RESI-
DENTIAL PORTFOLIO

An example is presented in this section. The pur-
poses are to investigate the relative importance of
hazard demand correlations (ρU ) and structural ca-
pacity correlations (ρR), and demonstrate the de-
pendence of ρDSi j on Ui and U j as well as how
to incorporate this U-dependent ρDSi j with fragility
functions to simulate the correlated DS of a build-
ing portfolio. A residential portfolio consisting of
30 wooden residential buildings is considered and
only roof sheathing damage is analyzed. The used
baseline house is provided by Rosowsky and Cheng
(1999a). It is a typical single-family wooden house
with a gable roof in Southeast United States. The
portfolio is considered as a typical homogenous res-
idential block with a size of around 3 km × 3 km.
In addition, it is assumed this portfolio was con-
structed at approximately the same time. If the port-
folio is built by the same builder following sim-
ilar design guidelines and using the construction
materials from the similar sources, ρR is assumed
considerably high, such as 0.8. For simplification,
the wind speeds and structural capacities at differ-
ent buildings are treated as stationary random fields
with equal ρU and ρR between each two buildings.

2.1. Fragility analysis of roof sheathing
Once hazard demands have been known, they are
transformed into wind loads based on the wind load
model in ASCE (2016). The wind load of the ith
building is formulated as

Wi = 0.613KzKztKdKeU2
i (GCp−GCp0)(N/m2),

(10)
where GCp is the product of gust factor and external
pressure coefficient and GCp0 is the product of gust
factor and internal pressure coefficient; Ui is the
hazard demand of the ith building; Ke is ground el-
evation factor; Kd is wind directionality factor; Kzt
is topographic factor; Kz is velocity pressure expo-
sure coefficient. Both Kzt and Ke are considered as

1. The nominal values of Kz, Kd , GCp and GCp0 for
roof sheathing are provided by ASCE (2016) and
the ratios of nominal and mean values, as well as
CoV, are given by Ellingwood and Tekie (1999).

The roof of the house consists of 32 roof panels
and the limit state function for one roof panel is

g = R− (W −D · cosθ), (11)

where θ is the slope angle of the roof; D, W and
R are dead load, wind load and panel resistance
respectively. The statistics of D and R are given
by Rosowsky and Cheng (1999b). If g < 0, the
panel is considered as failure. The damage state
of the roof is defined by the number of panel fail-
ures (FEMA, 2014). Specifically, DSi≥ 1 if there is
no panel failure; DSi ≥ 2 if there are panel failures;
DSi ≥ 3 if there are more than three panel failures;
DSi = 4 if there are more than 25 percent of panels
in failure. Kz, Kd , GCp and GCpi of different pan-
els are considered independent (Li and Ellingwood,
2006; Lee and Rosowsky, 2005). However, the re-
sistances of different panels on a roof, can be very
correlated and it is assumed the correlation is con-
stantly 0.8. To assess the damage state of a roof, the
limit states of all panels are checked first when the
house is regarded as enclosed. If there is any panel
failure, GCpi of each roof panel is resampled when
the building is considered as partially enclosed and
then the limit states of the undamaged panels are
checked again.

The fragility function of the ith roof is calcu-
lated and then fitted by the lognormal functions in
Eq. (12). And the logarithmic mean and standard
deviation of the lognormal functions, λv and ξv, are
given in Table 1.

P(DSi ≥ v|Ui = u) = Φ

[
ln(u)−λv

ξv

]
. (12)

2.2. Relative importance of the correlations of
hazard demands and structural capacities

To investigate the relative importance of hazard de-
mand correlations (ρU ) and structural capacity cor-
relations (ρR), the damage of the roof sheathing of
the 30-building portfolio is analyzed by the direct
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Table 1: The parameters of the lognormal fragility
functions of a roof.

v,(DSi ≥ v) λv ξv
2 3.815 0.1163
3 3.893 0.0979
4 3.985 0.0941

MCS when all roof panels in the portfolio are mod-
elled as correlated.

Figure 1 illustrates how VZ depends on ρR and
ρU , given several cases of VU , and µZ is also pro-
vided which is not affected by ρU and ρR. Overall,
the impacts of ρU and ρR on VZ are related to VU .
Larger VU is, weaker the influence of ρR on VZ is.
In contrast, the decrease of VU makes the impact of
ρU on VZ less obvious. If VU is as small as 0.1, ρR
is nearly as important as ρU .

2.3. Correlated damage based on fragility func-
tions and Gaussian Copulas

In the applications of fragility functions, because
of the existence of ρR, conditional DS needs to be
modelled as correlated. Firstly, when ρDSi j is di-
rectly given, Step 1 to 4 in section 1.4 are used
to simulated correlated DS. It is compared with
the method where in Step 1 ρGi j is not calculated
by solving the optimization in Eq. (9) but sim-
ply considered same as ρDSi j (Lee and Kiremid-
jian, 2007b,a; Vitoontus and Ellingwood, 2013; Lin
et al., 2016). VZ calculated by these two methods
are given in Figure 2. It is shown the result solved
by the previous method underestimate Z’s uncer-
tainty.

Afterward, the U-dependent property of ρDSi j

and how to incorporate this ρDSi j with fragility
functions to simulate correlated DS are demon-
strated.

ρDSi j of a pair of buildings is calculated using
the direct MCS method when their roof panel re-
sistances are correlated. Figure 3 shows the re-
sults when the buildings have same hazard demands
(Ui = U j = U). Obviously, ρDSi j is highly depen-
dent on U and it has a high value when U is around
50 m/s. Then the correlation of Gaussian Copula
(ρGi j) is solved, as shown in Fig.4. Unlike ρDSi j ,
ρGi j is nearly unchanged regardless of U and can be

(a) VU =0.1; µZ=0.5318

(b) VU =0.2; µZ=0.4978

Figure 1: Impacts of ρU and ρR on VZ; µU = 50 m/s.

Figure 2: VZ|U solved using fragility functions and
Gaussian Copulas;U = 50 m/s.
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Figure 3: Relation between ρDSi j and U; Ui=U j=U.

Figure 4: Relation between ρGi j and U; Ui=Ui=U.

considered constant. Although Figure 3 and 4 only
provide the case where Ui =U j =U , ρGi j is nearly
constant no matter Ui and U j are different or not.
In this example, to incorporate U-dependent ρDSi j

with fragility functions to simulate correlated DS,
ρGi j where Ui = U j = µU is used and maintained
unchanged regardless of Ui and U j. Then the accu-
racy of this method is verified through comparing
with the direct MCS method. Figure 5 provides VZ
solved by these two methods and obviously, their
results are very close to each other.

3. CONCLUSION
Modeling the correlation of hazard demands (ρU )
and that of structural capacities (ρR) plays a signif-

Figure 5: VZ solved by 2 methods; µU = 50 m/s; σU =
0.1; ρU = 1.

icant role in quantifying the risk of a spatially dis-
tributed building portfolio under a tropical cyclone
event. In this paper, the roof sheathing damage
of a residential building portfolio under a tropical
cyclone was analyzed through two methods. One
method is a direct Monte Carlo Simulation (MCS)
in which structural (capacity) parameters of differ-
ent buildings are treated as correlated. Another
method is using fragility functions to probabilisti-
cally map buildings’ damage states (DS) from U.
Through these two method, the relative importance
of ρU and ρR was discussed. In addition, how the
correlation of the conditional DS (ρDSi j) depends on
hazard demands was also demonstrated. Further-
more, a method was proposed to incorporate the
hazard-dependent ρDSi j with fragility functions to
simulated correlated DS.

A case study of a 30-building residential portfo-
lio is presented. It is found that the importance of
ρR compared with that of ρU is dependent on the
uncertainty of U. If the uncertainty is low (with a
U’s CoV of 0.1), ρR can be as significant as ρU .
Nevertheless, when the uncertainty is high (with a
U’s CoV of 0.2), ρR can be negligible.

When fragility functions are used to probabilis-
tically predict DS based on U, Gaussian Copula
can be used to incorporate U-dependent ρDSi j with
fragility functions to simulate correlated DS. The
main reason is that although ρDSi j is strongly de-
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pendent on Ui and U j, the correlation of Gaussian
Copula (ρGi j) is nearly constant regardless of Ui and
U j and can remain unchanged when the correlated
DS of a building portfolio is simulated given differ-
ent values of U. Through the comparison with the
direct MCS, the method of fragility functions and
Gaussian Copula was found accurate.
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